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ABSTRACT

INVESTIGATION OF PARALLEL-CONNECTED GAN E-HEMT
VSI-BASED SERVO DRIVES

Yiiriik, Hiiseyin
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ozan Keysan

January 2022, [T138] pages

Nonlinearities in voltage source inverters (VSIs) are thought to be the primary cause
of output voltage distortions which cause low-order harmonics in the output current.
These nonlinearities also considerably degrades control performance and system sta-
bility for low-speed applications with low-inductance motors, particularly when the
system operates in the low-torque area. The impact of the nonlinearities on the phase
current and current control of a silicon (Si) metal-oxide-semiconductor field-effect
transistor (MOSFET) based VSI are examined in this thesis using a coreless perma-
nent magnet synchronous motor (PMSM). To address this issue, a gallium nitride
(GaN) enhancement-mode high electron mobility transistor (E-HEMT) based VSI is
proposed. Based on the results, a GaN E-HEMT VSI-based servo drive is being de-
veloped to replace its Si MOSFET VSI-based counterpart. It is about half the size of
the previous one, allowing for the use of two servo drives in parallel rather than one
for redundancy. The use of parallel-connected servo drives offers the benefit of in-
creased torque capacity, reliability, redundancy, and modularity. Smaller variances in
the system clocks of the separate microcontrollers, asynchronous pulse width mod-

ulation (PWM) carrier signals, and hardware differences, on the other hand, might



cause non-identical output voltages of the parallel modules, resulting in circulating
currents. These circulating currents limit parallel operation, increase power con-
sumption, induce imbalanced power distribution, and degrade control performance.
A fault-tolerant parallel-connected GaN E-HEMT VSI based servo drive scheme is
proposed to reduce the circulating currents and to eliminate the need for extra in-
ductors at the output and separate DC supplies at the input of the inverters. Various
experimental tests are conducted with up to six parallel-connected servo drives and a

PMSM for validation.

Keywords: nonlinearity in VSIs, dead time, coreless PMSMs, GaN E-HEMT VSI-

based servo drive, parallel-connected VSIs
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0z

PARALEL BAGLI GAN E-HEMT VSI TABANLI SERVO SURUCULERIN
INCELENMESI

Yiiriik, Hiiseyin
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Dog. Dr. Ozan Keysan

Ocak 2022, sayfa

Cikis akiminda diisiik dereceli harmoniklere neden olan cikig gerilimi bozulmala-
rinin birincil nedeninin gerilim kaynag eviricilerindeki (VSller) dogrusal olmayan
yapilar oldugu diisiiniilmektedir. Bu dogrusal olmama durumlari ayrica, 6zellikle sis-
tem diistik torklu alanda calistiginda, diisiik endiiktanslt motorlara sahip diisiik hizli
uygulamalar i¢in kontrol performansimi ve sistem kararliliim1 énemli ol¢iide diisii-
riir. Dogrusal olmayan yapilarin, bir silikon (Si) metal-oksit-yar1 iletken alan etkili
transistor (MOSFET) tabanli VSInin faz akimi ve akim kontrolii {izerindeki etkisi, bu
tezde cekirdeksiz bir sabit miknatisli senkron motor (PMSM) kullanilarak incelen-
mistir. Bu sorunu ele almak i¢in, bir galyum nitrid (GaN) gelistirme modlu yiiksek
elektron hareketli transistor (E-HEMT) tabanli VSI 6nerilmistir. Sonuglara dayana-
rak, Si MOSFET VSI tabanl yerine muadili GaN E-HEMT VSI tabanl bir servo
stiriicti gelistirilmistir. Bir Oncekinin yaklasik yaris1 biiyiikliigiindedir ve yedeklilik
icin bir servo siiriicli yerine paralel olarak iki servo siiriiciiniin kullanilmasina izin
verir. Paralel bagl servo siiriiciilerin kullanimi, artan tork kapasitesi, giivenilirlik, ye-

deklilik ve modiilerlik avantaj1 sunar. Ayr1 mikrodenetleyicilerin sistem saatlerindeki
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kiigiik farkliliklar, asenkron darbe genislik modiilasyonu (PWM) tasiyici sinyalleri ve
donanim farkliliklar1 ise paralel modiillerin 6zdes olmayan ¢ikis gerilimlerine neden
olabilir ve bu da dolasan akimlara neden olabilir. Bu dolasan akimlar paralel c¢alis-
may1 sinirlar, gii¢ tiikketimini arttirir, dengesiz giic dagilimina neden olur ve kontrol
performansim diisiiriir. Hataya toleransli paralel bagli GaN E-HEMT VSI tabanli bir
servo siiriicli semasi, dolasan akimlar1 azaltmak ve invertorlerin ¢ikisinda ekstra in-
diiktor ve girisinde ayr1 DC besleme ihtiyacim1 ortadan kaldirmak ic¢in Onerilmistir.
Dogrulama i¢in alt1 adede kadar paralel bagl servo siiriicii ve bir PMSM kullanilarak

cesitli deneysel testler gerceklestirilmisgtir.

Anahtar Kelimeler: VSI’lerde dogrusal olmayan yapilar, 6lii zaman, ¢cekirdeksiz PMSM’ler,
GaN E-HEMT VSI tabanl servo siiriicii, paralel bagli VSI’ler
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Scope of the Thesis

Permanent magnet synchronous motors (PMSMs) with a coreless structure that is
wound on itself rather than on iron, offer bene ts such as zero cogging, linear torque
characteristics, and low inertia. These features make them a good candidate for ap-
plications such as gimbals, aerospace, robotics, unmanned systems, optic stabilizers,
etc. where high-precision position control is required [1]. On the other hand, these
motors have low inductance and low electrical time constant, which require a high
switching frequency to reduce current ripple [2] and to obtain a high current control
bandwidth.

For a speci c target tracking radar application, due to target maneuvers and the
beamwidth of the antenna, the system requirements are speci ed:@2 atrack-

ing error for5 Hz and5 sinusoidal position reference. The following equations can
be used to calculate the required bandwidif, (,.s) of the position controller of the

servo drive which feeds a PMSM coupled to an antenna.

= A sin (wt)
—= Aw cos ()
* = Aw?sin (wt)
_ge (1.1)
Kp =
r

f bw_pos 2 J

whereA =5 =180rad, w = 2 5rad=s, the inertia of the antennh= 0:005kgm?.
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From these equations, the required torque 0:43Nm, the required position con-
troller gaink, = 1233:7 Nm=rad and the required position controller bandwidth
fow pos = 79:06 HZ are calculated. To be on the safe side, the target position con-
troller bandwidth is taken as00 Hz. As a general rule of thumb, for a cascade
control scheme, the bandwidth of the inner loops should be about ten times higher
than the outer loop. So, following this rule of thumb, the required speed and current
controller bandwidth are approximatel)kHz and10kHz, respectively. In the same
manner, the target switching frequency of the servo drive is S€9@&H z during the
thesis.

Two types of inverters, voltage source inverters (VSIs) and current source inverters
(CSls), are considered for the servo drive. VSIs have DC-link capacitors to achieve
a constant voltage at the outputs. On the other hand, CSls have DC-link inductors to
deliver a constant current to the loads. The power switches of the VSIs should have
bidirectional current conduction capability and block forward voltage [3]. Hence,
commercial power switches such as SIMOSFETs and GaN E-HEMTs are suitable for
VSIs. The current conduction of the power switches in CSls is unidirectional, but the
power switches should block reverse polarity voltage as well. Thyristors meetithe
requirements of CSils, but they are mainly used for medium-high voltage and power
applications [4]. The power switches stated above should be used either back to back
connected, which introduces complexity to the gate driver, or in series with a diode. In
both cases, CSls need six additional power switches, which increases the conduction
losses and also the size of the inverter. The DC-link inductor of the CSls helps to
limit the current when the motor phases are short-circuited, but it negatively affects
the dynamic response of the system [5]. With the help of output Iter capacitors,
CSls have nearly sinusoidal voltages at the outputs. This is an advantage for the
EMI problem and also reduces over-voltage problems on the terminals of the motor
compared with the VSI case [6]. However, since the servo drive is supplied from a
low voltage battery, typicallR4V, in the target tracking radar application, there will

not be such a voltage at the terminals of the motor to cause the insulation to wear
off, even in the case of VSI. Based on the comparisons above, in the thesis, VSI is
preferred for the servo drive due to its lower size and higher dynamic response, and it

is more appropriate for low-voltage and low-power applications.



In the application, the target switching frequency of the servo drive was d€ito
kHz. But, as the switching frequency increases, the effects of the time-related terms
in the nonlinearity in VSIs also increase. The key causes of output voltage distortions

in VSIs are nonlinearities such as

dead time,

switching time,

delay time,

voltage drops on the power switches,

parasitic capacitances.

Low-order harmonics in the output current are caused by these distortions, which
raise core losses and cause torque ripples [7—10]. Due to the nonlinearities in VSI,
control ef ciency and system stability degrade signi cantly in low-speed applications

with low-inductance motors, particularly when the system operates in the low-torque

region. In Fig. 1.1, the problem is also depicted as a block diagram.

Fig. 1.2a shows an IGBT-based VSI driving a PMSM and the impact of the dead
time, which is one of the nonlinearity factors of the VSIs, on the phase current and
the quadrature currents is shown in Fig. 1.2b ( [11]). The dead time is compensated
by a least-mean-square algorithm ( [11]) and the compensation results are given in
Fig. 1.2c.

The effects of these nonlinearities on the phase current and current control of the Si
MOSFET-based VSI are studied in this work using a coreless PMSM. The in uence
of the nonlinearities on the current control bandwidth is investigated. This effect
should be considered before tuning linear controllers to achieve high-bandwidth cur-
rent control in zero-crossing regions. In this thesis, a GaN E-HEMT-based VSI is
suggested as a solution to this issue. Following that, advancements in the current
control mechanism are illustrated by analyzing experimental ndings obtained with
GaN E-HEMT and Si MOSFET-based VSIs. It is shown that GaN E-HEMT-based

VSl is a better option for applications requiring high bandwidth control.
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Figure 1.1: The block diagram of the nonlinearity problem.

Considering the results of this work, a GaN E-HEMT VSI-based servo drive is de-
signed to replace its Si MOSFET VSI-based counterpart. The size of the designed
servo drive is about half of the previous one. This and the fast switching capability of
the GaN E-HEMT makes it possible to use two parallel servo drives instead of one to

increase redundancy, as shown in Fig. 1.3.

Using parallel-connected servo drives has many bene ts [12], including increased
torque (hence power output) capacity, reliability, redundancy, and modularity. Smaller
variations in the system clocks of the individual microcontrollers, asynchronous PWM

carrier signals, and hardware differences, on the other hand, will cause the output
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(b)

(©

Figure 1.2: (a) IGBT-based VSI to drive a PMSM. (b) Ph@seurrent () and
quadrature axis currentgy(iq) without dead time compensation (c) with dead time

compensation (Figures are taken from: [11])

voltages of the parallel modules to be non-identical, resulting in circulating currents
between inverters [13], [14]. These circulating currents restrict parallel operation, add

extra power dissipation, disrupt power transfer, and reduce control ef ciency [15-17].
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Figure 1.3: The simpli ed block diagram of two servo drives connected in parallel.

To better visualize, the structure of the two parallel-connected inverters is shown in
Fig. 1.4 ( [18]). Fig. 1.5a ( [18]) depicts the circulating current between inverters
caused by asynchronous PWM carriers. The circulating current is decreased using a

high-frequency voltage compensation technique, as seen in Fig. 1.5b ([18]).

Separated DC supplies, extra inductors at the outputs, PWM techniques, changed con-
trol approaches, and other strategies have been suggested in the literature to minimize
circulating currents. In this study, a fault-tolerant parallel-connected GaN E-HEMT
VSI-based servo drive system, which removes the requirement for extra inductors and
separate DC supplies while allowing the use of a conventional PI current control and
a standard SVPWM method is presented. By synchronizing the carrier signals, the
circulating current generated by the phase mismatch between carrier signals of the
parallel-connected inverters is removed. By increasing the switching frequency with-
out adding extra inductors to the output of the inverters, the circulating current caused
by inherent hardware variations is reduced. Up to six servo drives are connected in
parallel and tested under various situations usigg\a PMSM to investigate the per-
formance of the proposed approach. The results demonstrate that parallel operation
not only enhances the system's torque capacity but also its modularity, exibility,

reliability, and redundancy.

1.2 The Outline of the Thesis

Chapter 2 presents the background information on the nonlinear components in the
Si MOSFET-based VSI-fed PMSM drive. Next, the effect of changing the switching

frequency on nonlinearities is investigated using aourrent controller. The impact
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Figure 1.4: The structure of the two parallel-connected inverters (Figure is taken
from: [18]).

of the change in apparent resistance along the nonlinear region on the stability of
cascaded control loops is studied. The WBG GaN E-HEMT based VSI is used to
analyze the in uence of switching frequency and dead time on nonlinearity. For the
GaN E-HEMT based VSI-fed PMSM drive with various dead time values, the band-
width measurements of thg andiy control loops are provided. Finally, the power
losses and costs of GaN E-HEMTs and Si MOSFETSs are determined and compared
with an application.

In Chapter 3, rst, a basic overview of GaN E-HEMTs is provided. The signi cance
of the layout as well as the problems of hig¥f=dtand high switching frequency are

highlighted. Then, some details on a three-phase, two-level GaN E-HEMT VSI-based
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