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ABSTRACT

INVESTIGATION OF PARALLEL-CONNECTED GAN E-HEMT
VSI-BASED SERVO DRIVES

Yürük, Hüseyin

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ozan Keysan

January 2022, 138 pages

Nonlinearities in voltage source inverters (VSIs) are thought to be the primary cause

of output voltage distortions which cause low-order harmonics in the output current.

These nonlinearities also considerably degrades control performance and system sta-

bility for low-speed applications with low-inductance motors, particularly when the

system operates in the low-torque area. The impact of the nonlinearities on the phase

current and current control of a silicon (Si) metal-oxide-semiconductor field-effect

transistor (MOSFET) based VSI are examined in this thesis using a coreless perma-

nent magnet synchronous motor (PMSM). To address this issue, a gallium nitride

(GaN) enhancement-mode high electron mobility transistor (E-HEMT) based VSI is

proposed. Based on the results, a GaN E-HEMT VSI-based servo drive is being de-

veloped to replace its Si MOSFET VSI-based counterpart. It is about half the size of

the previous one, allowing for the use of two servo drives in parallel rather than one

for redundancy. The use of parallel-connected servo drives offers the benefit of in-

creased torque capacity, reliability, redundancy, and modularity. Smaller variances in

the system clocks of the separate microcontrollers, asynchronous pulse width mod-

ulation (PWM) carrier signals, and hardware differences, on the other hand, might
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cause non-identical output voltages of the parallel modules, resulting in circulating

currents. These circulating currents limit parallel operation, increase power con-

sumption, induce imbalanced power distribution, and degrade control performance.

A fault-tolerant parallel-connected GaN E-HEMT VSI based servo drive scheme is

proposed to reduce the circulating currents and to eliminate the need for extra in-

ductors at the output and separate DC supplies at the input of the inverters. Various

experimental tests are conducted with up to six parallel-connected servo drives and a

PMSM for validation.

Keywords: nonlinearity in VSIs, dead time, coreless PMSMs, GaN E-HEMT VSI-

based servo drive, parallel-connected VSIs
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ÖZ

PARALEL BAĞLI GAN E-HEMT VSI TABANLI SERVO SÜRÜCÜLERİN
İNCELENMESİ

Yürük, Hüseyin

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ozan Keysan

Ocak 2022 , 138 sayfa

Çıkış akımında düşük dereceli harmoniklere neden olan çıkış gerilimi bozulmala-

rının birincil nedeninin gerilim kaynağı eviricilerindeki (VSIler) doğrusal olmayan

yapılar olduğu düşünülmektedir. Bu doğrusal olmama durumları ayrıca, özellikle sis-

tem düşük torklu alanda çalıştığında, düşük endüktanslı motorlara sahip düşük hızlı

uygulamalar için kontrol performansını ve sistem kararlılığını önemli ölçüde düşü-

rür. Doğrusal olmayan yapıların, bir silikon (Si) metal-oksit-yarı iletken alan etkili

transistör (MOSFET) tabanlı VSInin faz akımı ve akım kontrolü üzerindeki etkisi, bu

tezde çekirdeksiz bir sabit mıknatıslı senkron motor (PMSM) kullanılarak incelen-

miştir. Bu sorunu ele almak için, bir galyum nitrid (GaN) geliştirme modlu yüksek

elektron hareketli transistör (E-HEMT) tabanlı VSI önerilmiştir. Sonuçlara dayana-

rak, Si MOSFET VSI tabanlı yerine muadili GaN E-HEMT VSI tabanlı bir servo

sürücü geliştirilmiştir. Bir öncekinin yaklaşık yarısı büyüklüğündedir ve yedeklilik

için bir servo sürücü yerine paralel olarak iki servo sürücünün kullanılmasına izin

verir. Paralel bağlı servo sürücülerin kullanımı, artan tork kapasitesi, güvenilirlik, ye-

deklilik ve modülerlik avantajı sunar. Ayrı mikrodenetleyicilerin sistem saatlerindeki
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küçük farklılıklar, asenkron darbe genişlik modülasyonu (PWM) taşıyıcı sinyalleri ve

donanım farklılıkları ise paralel modüllerin özdeş olmayan çıkış gerilimlerine neden

olabilir ve bu da dolaşan akımlara neden olabilir. Bu dolaşan akımlar paralel çalış-

mayı sınırlar, güç tüketimini arttırır, dengesiz güç dağılımına neden olur ve kontrol

performansını düşürür. Hataya toleranslı paralel bağlı GaN E-HEMT VSI tabanlı bir

servo sürücü şeması, dolaşan akımları azaltmak ve invertörlerin çıkışında ekstra in-

düktör ve girişinde ayrı DC besleme ihtiyacını ortadan kaldırmak için önerilmiştir.

Doğrulama için altı adede kadar paralel bağlı servo sürücü ve bir PMSM kullanılarak

çeşitli deneysel testler gerçekleştirilmiştir.

Anahtar Kelimeler: VSI’lerde doğrusal olmayan yapılar, ölü zaman, çekirdeksiz PMSM’ler,

GaN E-HEMT VSI tabanlı servo sürücü, paralel bağlı VSI’ler
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Scope of the Thesis

Permanent magnet synchronous motors (PMSMs) with a coreless structure that is

wound on itself rather than on iron, offer bene�ts such as zero cogging, linear torque

characteristics, and low inertia. These features make them a good candidate for ap-

plications such as gimbals, aerospace, robotics, unmanned systems, optic stabilizers,

etc. where high-precision position control is required [1]. On the other hand, these

motors have low inductance and low electrical time constant, which require a high

switching frequency to reduce current ripple [2] and to obtain a high current control

bandwidth.

For a speci�c target tracking radar application, due to target maneuvers and the

beamwidth of the antenna, the system requirements are speci�ed as a0:02� track-

ing error for5 Hz and5� sinusoidal position reference. The following equations can

be used to calculate the required bandwidth (f bw_pos) of the position controller of the

servo drive which feeds a PMSM coupled to an antenna.

� = A sin (wt)

_� = � Aw cos (wt)

•� = � Aw2 sin (wt)

� = J •�

kp = � � �

f bw_pos =
1

2�

r
kp

J

(1.1)

whereA = 5�= 180rad, w = 2� 5 rad=s, the inertia of the antennaJ = 0:005kgm2.
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From these equations, the required torque� = 0:43 Nm, the required position con-

troller gain kp = 1233:7 Nm=rad and the required position controller bandwidth

f bw_pos = 79:06 Hz are calculated. To be on the safe side, the target position con-

troller bandwidth is taken as100 Hz. As a general rule of thumb, for a cascade

control scheme, the bandwidth of the inner loops should be about ten times higher

than the outer loop. So, following this rule of thumb, the required speed and current

controller bandwidth are approximately1 kHz and10kHz, respectively. In the same

manner, the target switching frequency of the servo drive is set to100kHz during the

thesis.

Two types of inverters, voltage source inverters (VSIs) and current source inverters

(CSIs), are considered for the servo drive. VSIs have DC-link capacitors to achieve

a constant voltage at the outputs. On the other hand, CSIs have DC-link inductors to

deliver a constant current to the loads. The power switches of the VSIs should have

bidirectional current conduction capability and block forward voltage [3]. Hence,

commercial power switches such as Si MOSFETs and GaN E-HEMTs are suitable for

VSIs. The current conduction of the power switches in CSIs is unidirectional, but the

power switches should block reverse polarity voltage as well. Thyristors meet thev-i

requirements of CSIs, but they are mainly used for medium-high voltage and power

applications [4]. The power switches stated above should be used either back to back

connected, which introduces complexity to the gate driver, or in series with a diode. In

both cases, CSIs need six additional power switches, which increases the conduction

losses and also the size of the inverter. The DC-link inductor of the CSIs helps to

limit the current when the motor phases are short-circuited, but it negatively affects

the dynamic response of the system [5]. With the help of output �lter capacitors,

CSIs have nearly sinusoidal voltages at the outputs. This is an advantage for the

EMI problem and also reduces over-voltage problems on the terminals of the motor

compared with the VSI case [6]. However, since the servo drive is supplied from a

low voltage battery, typically24V, in the target tracking radar application, there will

not be such a voltage at the terminals of the motor to cause the insulation to wear

off, even in the case of VSI. Based on the comparisons above, in the thesis, VSI is

preferred for the servo drive due to its lower size and higher dynamic response, and it

is more appropriate for low-voltage and low-power applications.
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In the application, the target switching frequency of the servo drive was set to100

kHz. But, as the switching frequency increases, the effects of the time-related terms

in the nonlinearity in VSIs also increase. The key causes of output voltage distortions

in VSIs are nonlinearities such as

� dead time,

� switching time,

� delay time,

� voltage drops on the power switches,

� parasitic capacitances.

Low-order harmonics in the output current are caused by these distortions, which

raise core losses and cause torque ripples [7–10]. Due to the nonlinearities in VSI,

control ef�ciency and system stability degrade signi�cantly in low-speed applications

with low-inductance motors, particularly when the system operates in the low-torque

region. In Fig. 1.1, the problem is also depicted as a block diagram.

Fig. 1.2a shows an IGBT-based VSI driving a PMSM and the impact of the dead

time, which is one of the nonlinearity factors of the VSIs, on the phase current and

the quadrature currents is shown in Fig. 1.2b ( [11]). The dead time is compensated

by a least-mean-square algorithm ( [11]) and the compensation results are given in

Fig. 1.2c.

The effects of these nonlinearities on the phase current and current control of the Si

MOSFET-based VSI are studied in this work using a coreless PMSM. The in�uence

of the nonlinearities on the current control bandwidth is investigated. This effect

should be considered before tuning linear controllers to achieve high-bandwidth cur-

rent control in zero-crossing regions. In this thesis, a GaN E-HEMT-based VSI is

suggested as a solution to this issue. Following that, advancements in the current

control mechanism are illustrated by analyzing experimental �ndings obtained with

GaN E-HEMT and Si MOSFET-based VSIs. It is shown that GaN E-HEMT-based

VSI is a better option for applications requiring high bandwidth control.
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Figure 1.1: The block diagram of the nonlinearity problem.

Considering the results of this work, a GaN E-HEMT VSI-based servo drive is de-

signed to replace its Si MOSFET VSI-based counterpart. The size of the designed

servo drive is about half of the previous one. This and the fast switching capability of

the GaN E-HEMT makes it possible to use two parallel servo drives instead of one to

increase redundancy, as shown in Fig. 1.3.

Using parallel-connected servo drives has many bene�ts [12], including increased

torque (hence power output) capacity, reliability, redundancy, and modularity. Smaller

variations in the system clocks of the individual microcontrollers, asynchronous PWM

carrier signals, and hardware differences, on the other hand, will cause the output
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(a)

(b)

(c)

Figure 1.2: (a) IGBT-based VSI to drive a PMSM. (b) PhaseA current (i a) and

quadrature axis currents (i d, i q) without dead time compensation (c) with dead time

compensation (Figures are taken from: [11])

voltages of the parallel modules to be non-identical, resulting in circulating currents

between inverters [13], [14]. These circulating currents restrict parallel operation, add

extra power dissipation, disrupt power transfer, and reduce control ef�ciency [15–17].
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Figure 1.3: The simpli�ed block diagram of two servo drives connected in parallel.

To better visualize, the structure of the two parallel-connected inverters is shown in

Fig. 1.4 ( [18]). Fig. 1.5a ( [18]) depicts the circulating current between inverters

caused by asynchronous PWM carriers. The circulating current is decreased using a

high-frequency voltage compensation technique, as seen in Fig. 1.5b ( [18]).

Separated DC supplies, extra inductors at the outputs, PWM techniques, changed con-

trol approaches, and other strategies have been suggested in the literature to minimize

circulating currents. In this study, a fault-tolerant parallel-connected GaN E-HEMT

VSI-based servo drive system, which removes the requirement for extra inductors and

separate DC supplies while allowing the use of a conventional PI current control and

a standard SVPWM method is presented. By synchronizing the carrier signals, the

circulating current generated by the phase mismatch between carrier signals of the

parallel-connected inverters is removed. By increasing the switching frequency with-

out adding extra inductors to the output of the inverters, the circulating current caused

by inherent hardware variations is reduced. Up to six servo drives are connected in

parallel and tested under various situations using a24V PMSM to investigate the per-

formance of the proposed approach. The results demonstrate that parallel operation

not only enhances the system's torque capacity but also its modularity, �exibility,

reliability, and redundancy.

1.2 The Outline of the Thesis

Chapter 2 presents the background information on the nonlinear components in the

Si MOSFET-based VSI-fed PMSM drive. Next, the effect of changing the switching

frequency on nonlinearities is investigated using ani d current controller. The impact

6



Figure 1.4: The structure of the two parallel-connected inverters (Figure is taken

from: [18]).

of the change in apparent resistance along the nonlinear region on the stability of

cascaded control loops is studied. The WBG GaN E-HEMT based VSI is used to

analyze the in�uence of switching frequency and dead time on nonlinearity. For the

GaN E-HEMT based VSI-fed PMSM drive with various dead time values, the band-

width measurements of thei d andi q control loops are provided. Finally, the power

losses and costs of GaN E-HEMTs and Si MOSFETs are determined and compared

with an application.

In Chapter 3, �rst, a basic overview of GaN E-HEMTs is provided. The signi�cance

of the layout as well as the problems of highdV=dtand high switching frequency are

highlighted. Then, some details on a three-phase, two-level GaN E-HEMT VSI-based
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