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Computer Engineering, Bilkent University

Prof. Dr. Ertan Onur
Computer Engineering, METU

Assist. Prof. Dr. Pelin Angın
Computer Engineering, METU

Date:24.01.2022



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Berke Tezergil

Signature :

iv



ABSTRACT

USER ASSOCIATION AND ROUTING IN UAV-SUPPORTED HETNETS

Tezergil, Berke

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Ertan Onur

January 2022, 116 pages

With the introduction of millimeter waves in 5G, using wireless backhaul has become

feasible with higher performance comparable to that of fiber cables. Using unmanned

aerial vehicles as small cells enabled many use-cases by reducing the average link

length and increasing the line-of-sight probability. In this work, a heterogeneous

network with users, flying small cells on unmanned aerial vehicles, and macro base

stations are considered. We introduce two main problems: establishing backhaul

routes for small cells to maximize data capacity for users, and associating every user

with a base station.

The problem is named as the UAV-UAR problem. Initially, a mixed-integer linear

programming formulation is given, which is optimal, but requires considerable time

to find a solution. Using this formulation, a flow network definition is given for

the heterogeneous network, and used to formulate relabel-to-front algorithm-based

heuristics. While these heuristic methods do not guarantee optimality, they are sig-

nificantly faster than the exact solution.

The first developed heuristic, Relabel-to-Front-Eliminate, eliminates all edges that

users allocate capacity except one. The second heuristic, Relabel-to-Front-Heuristic,

v



uses a heuristic preflow initialization to associate users before execution. The final

heuristic, Relabel-to-Front-Iterative, uses the second method, but iteratively changes

user association until the result no longer improves. Monte Carlo Simulation results

show that relabel-to-front-based heuristics have comparable, and usually the same

throughput performance to that of linear programming optimization, but with a sliver

of the execution time, outperforming by 20 to 1000 times depending on other param-

eters.

Keywords: 5G and Beyond Mobile Networks, Heterogeneous Networks, User Asso-

ciation, Routing, mmWave, Flow Networks
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ÖZ

İHA DESTEKLİ HETEROJEN AĞLARDA KULLANICI
İLİŞKİLENDİRMESİ VE YÖNLENDİRME

Tezergil, Berke

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ertan Onur

Ocak 2022 , 116 sayfa

5G ile birlikte milimetre dalga frekanslarının kullanıma alınmasıyla, kablosuz geri

taşıma kullanımı fiber kablolara yakın performans verebilmeye başlamıştır. Böylece

insansız hava araçlarını küçük hücreler olarak kullanmanın önü açılmıştır. Küçük hüc-

reler, bağlantıların uzunluğunu kısaltarak ve görüş olasılığını artırarak ağ performan-

sını artırırlar. Bu tezde, kullanıcıların, insansız hava aracı üstünde küçük hücrelerin,

ve makro baz istasyonlarının oluşturduğu bir heterojen ağı ele alıyoruz. Bu ağın iki

ana problemi İHA küçük hücreler için geri taşıma yolları oluşturup kullanıcılara ay-

rılan ağ kapasitesini artırmak, ve kullanıcıları baz istasyonlarıyla eşleştirmektir.

Bu probleme UAV-UAR problemi adını veriyoruz. İlk olarak, karışık tamsayılı doğru-

sal programlama kullanarak yapılan formülasyon optimal çözümü bulsa da, çalışma

zamanı özellikle gerçek zamanlı kullanım için oldukca uzun kalmaktadır. Bu sorunu

çözmek için, heterojen ağ bir akış çizgesine çevrilmiştir. Bu formülasyon sayesinde

Relabel-to-Front algoritması tabanlı buluşsal algoritmalar geliştirerek en iyi çözümü

bulamasak da çözüm hızını ciddi biçimde artırıyoruz.
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İlk buluşsal metod Relabel-to-Front-Eleme, kullanıcıya atanan kenarları seçilen bir

tanesi harici eleyerek doğru sonucu bulmaktadır. İkinci metod Relabel-to-Front-Buluşsal

Önakış, relabel-to-front algoritmasının başında kullanılan önakış atamasını buluşsal

bir şekilde yaparak kullanıcı atamasını baştan yapmaktadır. Son metod, Relabel-to-

Front-Yineleme ise ikinci metodu kullanmakta ama sonuç iyileşmeyene kadar alter-

natifleri denemektedir. Monte Carlo simülasyonlarının sonucu bize relabel-to-front-

tabanlı buluşsal metodların çalışma zamanını 20 ile 1000 kat arası hızlandırarak, doğ-

rusal programlama optimizasyonuna yakın ağ verimi sağladığını göstermiştir.

Anahtar Kelimeler: 5G ve Ötesi Mobil Ağlar, Heterojen Ağlar, Kullanıcı İlişkilen-

dirme, Yönlendirme, Milimetre Dalga, Akış Ağları
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CHAPTER 1

INTRODUCTION

With the introduction of 5G, mobile networks are evolving in a rapid pace. The in-

troduction of new technologies such as millimeter wave (mmWave) frequencies and

Integrated Access & Backhaul (IAB) paves the way for further developments while

also making a case for the concepts that did not see wide use in the previous genera-

tions. Wireless backhauling and network densification are examples of such concepts.

Improvements in wireless backhauling gave rise to the small cell architectures, which

significantly aided in increasing user density in networks.

Small cells can be used in a myriad of use-cases, such as by increasing cell-edge

performance, coverage, or acting as a base station (BS) without lengthy and expen-

sive deployment procedures. These can also be deployed to various locations such as

lamp posts, vehicles, or on top of aerial platforms. While the concepts of using aerial

platforms and satellites has been around for a long time, the performance improve-

ments in wireless backhauling make it feasible to deploy unmanned aerial vehicles

(UAVs) or high altitude platform stations (HAPSs) with similar performance to that

of fiber-backhauled macro base stations (MBS).

Using UAVs and HAPSs in cellular networks as relays or base stations significantly

improve network flexibility and allow the network a greater degree of adaptability,

albeit with its own problems. For instance, managing UAV trajectories with regard

to energy consumption, recharging, and service performance is a prominent problem

of UAVs as small cells. Furthermore, while using mobile UAVs as small cells im-

prove the degree of freedom for deployment, the deployment problem with UAVs is

three dimensional whereas conventional networks mostly do not consider the third

dimension, the height of network elements.
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Provided that UAVs are used as network elements and their logistical problems are

solved, comes the network operation-related parts. After deploying the UAVs to their

respective locations, the traffic has to be routed to the core network, preferably via

MBSs with fiber connectivity. Establishing the links are often not the scope of the

available works. Configuring the links after deployment in such a way to maximize

the flow of traffic going to the core network can significantly increase the network

performance. Moreover, the carrier frequency used for the communication, or the

availability of multi-hop connections change the performance ceiling. Most of the

available works perform on sub-6 GHz frequencies that have higher range and ro-

bustness at the cost of performance.

Combining small cell, UAV, mmWave, and IAB concepts results in a high-performance

network that mitigates the shortcomings of individual concepts. For example, IAB

network often suffer from interference as both access and backhaul traffic is sent us-

ing the same channel. To mitigate this, a network can employ mmWave links that are

directive and noise-limited. While interference ceases to be a problem, network is

now noise limited and has shorter range since mmWave inherently has high path loss.

To solve this, small cell concepts are employed. Having a denser network consisting

of small cells and MBSs significantly shortens the link distance, which somewhat re-

duces the negative effects of mmWave in terms of range and noise-limitedness. Using

small cells require careful planning and deployment as there are few candidate loca-

tions that can support small cells with high performance. Employing UAVs for small

cells increases the freedom of the network operator as they have mobility and do not

require a fixed location, notwithstanding their own problems. Finally, as UAVs do

not have wired backhaul, employing wireless backhaul is required. IAB comes to the

rescue in that aspect as well.

Employing all these concepts together, a quite effective network can be designed.

This network can operate on multiple use-cases thanks to the degree of freedom that

small cell architecture generally, and UAVs specifically, support. On top of this net-

work scheme, we define the problem of user association and routing in the next sec-

tion.
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1.1 Motivation and Problem Definition

Consider the scenario in Figure 1.1. In an urban setting, users have multiple alterna-

tives available to choose a base station that serves them. However, there is no single

parameter that can govern this choice. For example, if links are chosen by proximity,

UE1 has to be served by UAV small cell (UAV-SC), but this link is non-line-of-sight

(NLoS), which significantly degrades performance. Users can prioritize connecting

to MBSs as they have fiber connectivity to the core network, but if UE2 in Figure 1.1

connects to the MBS, as the link is NLoS, the performance will not be as high as what

can be attained from the UAV-SC.

Figure 1.1: An example urban scenario consisting of two users, a UAV-SC, and a

MBS.

User association is only one part of the problem. Suppose UE2 chooses the UAV-SC

as its base station. Since UAV-SC does not have any wired connection like MBS, it

has to employ wireless backhaul links to send any data to the core network. For this

purpose, UAV-SCs can either directly use MBSs, or they can employ other UAV-SCs
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for backhauling their traffic, using a multi-hop structure for backhauling. Routing of

backhaul links is another problem that has to be considered for this network.

In this thesis, we consider an IAB Heterogeneous Network (HetNet) with UAVs as

small cells. In this network, we consider the problem of user association and routing,

which we name the UAV-UAR problem. To the best of our knowledge, user associ-

ation and routing problem for UAV small cells is not jointly studied in the literature.

Furthermore, available studies mostly use carrier frequencies of sub-6 GHz, which

does not have the capability to satisfy the 5G data rate requirements. For this purpose,

we employ 28 GHz that lies in FR2 frequency band, and 60 GHz V-band, which is a

mmWave band that does not require licensing. To the best of our knowledge, there

are no works on UAV small cells that operate on V-band frequencies.

We use 28-60 GHz mmWave frequencies due to them being able to deliver 5G data

rates. While the mmWave frequencies have less range compared to sub-6 GHz fre-

quencies due to higher free-space pathloss and susceptibility to atmospheric attenu-

ation, they can also achieve much better throughput. Since we employ UAV-SCs to

shorten the link distances, the effect of shorter range is somewhat mitigated. Further-

more, interference is not as destructive for mmWave frequencies as sub-6 GHz as they

often employ directive links and beamforming. Directivity also aids in the network se-

curity as it is much harder to intercept the links without alerting the network. Finally,

IAB networks are often interference-limited but due to the directivity of mmWave

links, the network becomes noise-limited. Furthermore, the effect of noise on the

network performance is also reduced as UAV-SCs are employed to shorten the links

and improve signal strength.

Usually, the go-to solution method for optimization problems is integer program-

ming methods. While these methods find the optimal solution, they take quite a long

time to find the optimal solution and any system that uses such algorithms cannot

be real-time responsive. For this purpose, the proposed algorithm makes use of a

flow network-based modeling of the HetNet to provide real-time solution in seconds.

With this speed, the proposed algorithm can be used in cellular networks for dynamic

configurations.

Finally, since UAV small cells and their characteristics are handled during network
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modeling, the proposed algorithm supports any type of user equipments (UEs), SBSs,

or MBSs, or even multiple types of a network element in the same network. While

this thesis finds the solution of the problem in IAB HetNets with UAV small cells, the

proposed algorithm can also be employed for other networks that use different type

of small cells, provided that the modeling is made accordingly.

1.2 Contributions

Our contributions are as follows:

• A survey on wireless backhauling in 5G is conducted prior to experiments.

This survey focuses on the literature employing wireless backhauling on five

main topics, namely resource allocation, deployment, scheduling, performance

evaluation, coverage, and security. Furthermore, we also studied opportuni-

ties that wireless backhaul brought about, which are UAV/HAPS usage, mobile

edge computing (MEC), rural connectivity, and satellite backhauling. Finally,

we also briefly mention the technologies that might aid wireless backhauling

beyond 5G. Sections directly related to this work can be found in Chapter 2.5

• An IAB HetNet model that employs UAVs as small cells is proposed. UEs

connect to either the MBSs or the UAVs, depending on the capacity of the

available links. UAVs employ multi-hop connections to bring the user data

to any MBS, which have fiber connectivity to the core. The network uses V-

band frequencies for communication, which is supported for 5G. This model is

presented in Chapter 3.1

• The problem of user association and routing in HetNets with UAV-SC’s (UAV-

UAR) are formulated using the aforementioned network model. For this prob-

lem, a mathematical formulation is presented using constraints and the objec-

tive of maximizing the network throughput. Using this formulation as the ba-

sis, a mixed integer linear program (MILP) developed to solve the problem in

Chapter 3.2.

• While the aforementioned MILP finds the optimal solution, its execution time
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is not acceptable to be used in a dynamic system. Because of this shortcom-

ing, an algorithm is proposed that has O(V 3) complexity with V being the

number of nodes in network, which is suitable for real-time usage in dynamic

networks. Since the proposed HetNet model can be modeled as a flow network,

an algorithm based on the relabel-to-front algorithm for flow maximization is

proposed for UAV-UAR problem. The initial algorithm uses the relabel-to-front

algorithm, and after execution eliminates all outgoing edges from UEs but one

of them, conforming to the user association constraint. We call this algorithm

Relabel-to-Front-and-Eliminate (RTF-E) and introduce this heuristic in Chap-

ter 4.1.

• While the RTF-E algorithm produces a valid result, performing initial user as-

sociation assignment instead of eliminating edges is a better approach in terms

of choosing the serving BS. For this purpose, we add a heuristic preflow initial-

ization, and use it with the default relabel-to-front method. We call this algo-

rithm Relabel-to-Front-Heuristic (RTF-H) and define it in Chapter 4.2. On top

of RTF-H, we also define another heuristic named Relabel-to-Front-Iterative

(RTF-I) in Chapter 4.3, which iteratively tries alternative BSs that have higher

upper bounds than the initial result.

1.3 The Outline of the Thesis

The thesis is organized as follows:

Chapter 2 gives background information regarding the cellular networks and related

works to this topic. In the beginning, an overview of pre-5G networks are given, with

emphasis on wireless backhauling. After this, concepts such as network densification

and aerial network elements are mentioned. These topics are important to explain the

rationale behind the choice of network model in this thesis. Furthermore, the concepts

of flow networks and maximum flow problem are explained in detail as these topics

provide the basis to proposed heuristics. Finally, a comprehensive list of related work

is given in the end of this chapter.

Chapter 3 introduces the problem and its solution with an MILP. On top of the back-
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ground given in the previous chapter, the UAV-UAR problem is introduced in detail,

albeit not from a purely mathematical perspective, initially. The network structure

and the rationale behind choices such as using wireless backhauling and UAV’s as

small cells are also explained. Moving on, a mathematical formulation is made for

the UAV-UAR problem, which provides a MILP optimization to perform the basis for

our comparisons.

Chapter 4 presents the novel algorithm solution for the same problem. In this chap-

ter, the flow network formulation is introduced. Following this formulation, three

heuristics are introduced. These heuristics use the relabel-to-front algorithm as their

basis, but they implement further operations to satisfy the user association constraint

as maximum flow problem allocates all available flows from source nodes, which are

users in our network model.

In Chapter 5, experiment setup is detailed, and the results are discussed. Initially,

the simulation parameters and scenarios are explained, alongside the method of sim-

ulation. Following this, topology generation process is explained in detail. After the

simulation related information, we present the results in five categories, namely the

comparison between RTF-based and MILP methods, effect of user demand, transmit

power, UAV altitude, and user association. The chapter is concluded with a discussion

regarding simulation results.

Chapter 6 concludes the thesis. Final remarks and future work are briefly mentioned.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this section, we will start by giving an overview of pre-5G cellular networks and

then introduce the concept of network densification. We will mention UAVs and

HAPSs as network elements and how they change the traditional network structure.

Furthermore, flow networks and relabel-to-front algorithm, which forms up the basis

of the novel algorithm proposed in this thesis, will also be briefly introduced in later

sections.

2.1 An Overview of Pre-5G Cellular Networks and Wireless Backhaul

In the first 2G cellular networks, the mobile devices connected to the base transceiver

stations (BTS’s) wirelessly. These BTS’s were then connected to the base station

controllers (BSC), which had control plane functionality for the air interface, and

a connection to the core network via mobile switching centers (MSC). All of this

connection except the one between the mobile devices and BTS’s were wired E-1

based or IP-based connections. Initially, GSM networks had the task of carrying

voice but with the introduction of GPRS, GSM networks also started carrying data.

The voice used circuit-switching, which meant that required resources for the call

were allocated on the call setup and then released after the call. On the contrary, data

was transported on the Internet using packet switching, meaning that 2G networks

had to implement and use both stacks on their network elements.

In 3G, base stations of UMTS (which are called Node-B’s) were connected with high-

speed DSL connections, microwave radio, fiber and microwave Ethernet lines. More-

over, the transition was to the IP-based protocols instead of legacy SS7. Like its
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predecessor, 3G networks also carried voice and data using the same infrastructure.

This duality imposed more and more challenges in network design and operation. For

example, any network element had to implement one stack for voice traffic with its

own protocols and another one for data traffic. Moreover, scheduling and handling

two different stacks added complexity to network management and operation. Be-

cause of these reasons, especially during 3G, the transition from circuit-switching to

packet-switching became very common due to the increasing effect of data services

over the whole network. With a packet-switched network, all services can be imple-

mented on a unified core, resulting in better resource utilization and improved cost

efficiency [1].

Despite the difference in voice and data service, networks usually used the same

backhaul lines to the controllers and to the core network. The ATM-based transports

provided constant throughput, which was suitable for the voice traffic but not for data

traffic since it had a bursty nature. Ethernet was a technology that has proven itself

time and again for the data communications. In spite of this reliability, Ethernet could

not be used directly in the telecommunication networks due to some inherent differ-

ences, such as the lack of synchronization signals, even though it delivered higher

capacity at a lower cost per bit [2]. Finally, with the introduction of Carrier Ethernet,

these shortcomings were solved and operators were able to unify the voice and data

communication on the same network without any additional supporting protocols [1].

With the introduction of LTE, the network adopted an all-IP approach, which finally

unified the voice and data duality. This unification is realized by transitioning the

voice telephony to the IP side. Network design was also greatly simplified with this

unification, as the network now implemented and operated only one stack. Perhaps

the biggest advantage of IP architecture was that all interfaces became IP compliant,

and physical infrastructure became transparent and interchangeable. These develop-

ments made it possible to change the backhaul medium quite easily and opened new

possibilities to implement wireless backhauling. To give an example, using the same

interface for all connections effectively meant that theoretically, a BS could connect

to another BS since both used the same protocols and procedures.

For GSM/GPRS networks, only wireless backhaul solution was microwave radio at
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this time. Although backhauling using satellite was possible, it was too expensive

and cumbersome to be of wide use. At that time, passive optical networks (PON)

and mmWave radio were seen as the future backhaul technologies enabling higher

datarates with better cost-efficiency [1]. However, while the mmWave technology

has the potential to support Gbps-level speeds, it was not fit for cellular use due to its

power consumption and hardware characteristics up until 5G era [3].

For LTE and LTE-Advanced networks, relays were introduced as a new network el-

ement to improve network coverage and range by employing wireless backhauling.

3GPP TR 36.806 [4] detailed the relay architectures. There were two types of relays:

Type 1 relays had cells and identities of their own and had the same radio resource

management (RRM) mechanisms as the eNBs, Type 2 relays did not have identi-

ties and some parts of the RRM was controlled by their donor eNB [5]. Type 2 relays

supported L1 (decode-and-forward) and L2 relaying, which did not require the imple-

mentation of the whole RRM stack and consequently made these type relays simpler.

Type 1 relays also supported L3 relaying and even self-backhauling, which we will

mention later.

Both Type 1 and Type 2 relays were dependent on donor eNBs for their operations,

and while Type 1 was capable of independent operations with a unique identity, it

was still classified as a relay, not as an eNB with wireless backhaul capabilities. This

shortcoming also shows the expectation of the network maintainers from relays: they

were seen as a way to extend network coverage. This is more evident in the later

version of the relays in Release 11 where their operation scenarios were defined as

coverage extension and indoor coverage [6].

While the proposed concepts did have some good points and were a potential game-

changer for contemporary networks, LTE relays did not see widespread use. There

are two major reasons for this: the first reason is that in pre-5G networks, frequency

was a very scarce resource. LTE networks were stuck to sub-6 GHz frequencies for

access, and this weakened the LTE relay concept significantly simply because using

the same frequencies for backhaul meant taking away from the access side which was

already strained. The second reason is that the networks did not meet the densification

projections that were made for LTE networks. In a sense, the networks did not get
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dense enough to justify the deployment of wireless relays and allocation of spectrum

from access to backhaul side.

To make eNB’s capable of wireless backhauling, self-backhauling concept was in-

troduced in LTE-Advanced. This new concept gave eNB’s full relay capability: in

essence, self-backhauling enabled eNB’s to use the same radio resources for both

access and backhaul usage. Self-backhauling improved spectrum efficiency through

resource reuse, and cost efficiency through hardware and management tools reuse.

However, the self-backhaul brought about a few challenges of its own, such as access-

backhaul interference, and scheduling between access and backhaul [7]. Gamboa and

Demirkol [8] have experimented using the LTE self-backhauling solution and have

shown improvements in both the coverage and downlink bitrate of the network, de-

spite self-interference and in-band communication reducing the effectiveness of the

overall setup.

The challenges introduced with self-backhauling and relays will be handled with the

new technology introduced in 5G. Bhushan et al. highlight network densification as

the key mechanism for future wireless evolutions [9]. This densification is twofold:

spatial densification and spectral aggregation. The spatial densification is achieved

by increasing the number of antennas per node as well as increasing density of base

stations deployed in a given area. The spectral aggregation is achieved when larger

amounts of bandwidths are used. However, these concepts are beneficial only if the

backhaul can support the denser network. The details of these developments and

challenges will be given in the next subsection.

2.2 Network Densification in 5G

The three major use-cases of the 5G, namely eMBB, URLLC and mMTC, has shaped

the 5G network architecture. These three use-cases necessitate the development of

different technologies and concepts to meet the service requirements, sometimes with

conflicting targets. The network architecture has become increasingly denser over

the years, from 4-5 BS/km2 in 3G to an anticipated 40-50 BS/km2 in 5G [10]. This

densification cannot be achieved with the existing macrocell architecture, and small
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cell architecture is introduced to realize the densification.

There are some initial challenges related to the densification. First challenge is the

cost of deployment for SBSs. Fiber backhauling solutions may be effective in terms

of the connection quality it provides, but not only it is costly, but installing fiber

is also a tedious process which takes time and effort. Moreover, there may be some

infrastructural challenges for cabling certain areas, such as roads or densely populated

urban centers. Costs can be significantly reduced by employing wireless backhauling

on small cells as they do not require any extra infrastructure. Furthermore, since

wireless access and backhaul can use the same medium and protocols, there is further

cost reduction through hardware reuse.

Second challenge related to the densification is the performance. Densification can

only be realized with wireless backhauling, but the performance of wireless back-

hauling with sub-6 GHz frequencies is nowhere near fiber. In wireless backhaul, a

new type of interference is introduced into the system: namely the access-backhaul

interference, which reduces the performance of both links. In releases 10 and 11,

enhanced inter-cell interference coordination (eICIC) and further enhanced inter-cell

interference coordination (feICIC) were introduced to reduce interference in order to

extend the coverage range in heterogeneous networks (HetNets) [11, 12, 13]. Tra-

ditional fiber backhaul solutions do not suffer from any interference problems and

perform adequately well in any situation.

Even if the interference problem is solved, the spectrum used in LTE is not in a ca-

pacity to satisfy the requirements of 5G networks. With the introduction of mmWave

spectrum in Release 15, the wireless backhaul finally has the potential to reach the

performance of its fiber counterpart. With the beam-based air communication in

mmWave spectra, the access-backhaul interference no longer becomes the limiting

problem, as they are noise-limited unlike the interference-limited LTE networks [14].

Even though the mentioned challenges are still not solved, densification and wireless

backhauling bring new capabilities to the future networks. For example, the devel-

opments on wireless backhaul significantly improves the performance of satellite and

aerial networks. Furthermore, wireless backhauling makes rural connectivity easier

by increasing the flexibility in deploying the networks with reduced or no infrastruc-
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ture. Wireless backhaul also aids mobile edge computing cases by making it easier to

deploy edge servers closer to the users.

The developments in wireless backhaul significantly aid the densification of the net-

work. Deploying small cells in lamp posts, on ground vehicles, and UAVs increase

the number of alternative cell locations or overall deployment schemes, which in turn

makes achieving densification easier. Recent research is also focused on using UAVs

for a myriad of purposes, from bringing service to remote areas such as highways

[15] to acting as MEC servers for IoT computation offloading [16].

2.3 Aerial Network Elements

HAPS and UAV are aerial platforms that can arbitrarily change their locations and act

as mobile network components. Their high altitude enable them to maintain line of

sight for reliable communications. Moreover, they can move closer to the UEs to al-

low transmission with lower power. Mobility of these solutions introduce completely

new opportunities to improve the effectiveness of the networks or solve old prob-

lems efficiently enough to be considered by the service providers. However, just like

the wireless backhaul, HAPS/UAV usage have challenges of their own such as node

placement, air-to-ground channel modeling and resource management [17, 18, 19].

2.3.1 The State of the Art

Azizi et al. propose to use profit maximization as a utility function to solve the joint

radio resource allocation, air base station (ABS) altitude determination, and user as-

sociation in a heterogeneous network of ground and air base stations [20]. Since the

given problem is a MINLP, it is decomposed into three subproblems, which are it-

eratively solved until convergence. One of these subproblems is an INLP, which is

slightly challenging compared to the other two subproblems which are continuous.

This INLP is solved without any relaxation methods. The proposed method has lin-

ear complexity in terms of users, which is a significant improvement compared to

the similar methods having cubic or higher complexities. Results show that macro

aerial base stations (MABS) can operate at higher altitudes than small aerial base sta-
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tions (SABS) and cover a larger area. However, lower operating altitude means lower

path-loss for SABSs. If all of the optimization variables are used jointly (altitude

determination, power allocation, sub-carrier allocation, and user association), a net-

work profit increase of 47% can be achieved. Moreover, compared to having a single

ground base station, employing two MABS and two SABS almost doubles the over-

all network profit. These performance improvements are more evident in suburban &

urban areas, and decrease for dense & high-rise urban areas.

Jaffry et al. cover the moving networks in 5G in their work [21]. In this work, non-

terrestrial networks supported backhaul is highlighted as a future direction in this

research area. UAV/HAPS are envisioned to give wide area coverage with wider area

and near-LoS coverage. UAVs’ low cost also allow them to act as relays with ease of

deployment and extended operation times. These UAVs can provide backhaul links to

ground-based networks. While this provides a new degree of freedom, there are also

challenges related to three-dimensional channels that these UAVs will have to use.

Even though UAV/HAPS are mentioned only as a future direction, this work is very

comprehensive in the area of land-based moving networks with challenges, use-cases

and applications and any we encourage all interested readers to consult [21] for these

topics.

Wang et al. investigate the successful content delivery performance in integrated

UAV-terrestrial networks [22]. In the proposed model, caching-enabled UAVs are

used to offload the bursty traffic from the terrestrial cellular networks. UAVs use

self-backhauling and share the spectrum resources with the terrestrial network. Wang

et al. derive a closed-form expression for the achievable rate of the mmWave back-

haul link for UAVs under general and noise-limited cases. Then, the authors analyze

the minimum cache hit probability to achieve a certain backhaul rate requirement.

Finally, using stochastic geometry, Wang et al. also analyze the successful content

delivery probabilities with an approximated LoS model. Numerical results show that

adding UAVs with LoS increases the successful content delivery probability. Self-

backhauling with mmWave is shown to achieve adequate results, but with increased

UAV density the achievable rate is reduced. Minimum cache hit probability is pos-

itively correlated with the backhaul rate and UAV density. Caching-enabled UAV

network also outperforms the terrestrial-only network in terms of successful content
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delivery probability. Increasing UAV density increases the successful content deliv-

ery probability up to a certain point, after which the probability decreases because of

the LoS interference. The optimal UAV height is also shown to decrease with higher

UAV densities.

Wu et al. study the joint optimization of user scheduling and trajectory for UAV net-

works with NOMA usage [23]. K-means clustering is used to partition the users. The

problem of joint scheduling and trajectory is a non-linear non-convex optimization

problem, and block coordinate descent method is used to divide the original prob-

lem into two blocks, namely the multi-user communication scheduling block and

UAV trajectory block based on NOMA. Wu et al. propose an iterative algorithm to

alternately solve the subblocks. Simulation results show that the proposed NOMA

method outperforms OMA, NOMA simple circular trajectory and NOMA static po-

sition methods in terms of system max-min rate.

Dao et al. study the aerial radio access networks (ARAN) in their survey [24]. Dao

et al. first describe the ARAN architecture and its fundamental features related to 6G

networks. Then, the authors analyze ARANs from several perspectives such as energy

consumption, latency, transmission propagation, and mobility. Dao et al. mention en-

ergy refills, network softwarization, mobile cloudization, data mining, and multiple

access methods as technologies that enable the success of ARANs. Event-based com-

munications, aerial surveillance, smart agriculture, urban monitoring, health care, and

networking in underserved areas are given as the application areas of ARANs. As a

final note, Dao et al. highlight the open research areas and trends towards 6G ARANs.

Cao, Lien and Liang propose a deep reinforcement learning scheme for intelligent

multi-user access to non-terrestrial BSs [25]. Cao et al. use a centralized agent de-

ployed in non-terrestrial BSs to train a deep Q-network (DQN), and UEs indepen-

dently make their access decision based on DQN’s input. The authors use a UE-

driven scheme, which eliminates the need to retrain the system when the number of

UEs is changed. Cao et al. also design a new long short-term memory (LSTM) net-

work to capture the time-dependent feature of non-terrestrial BSs. Simulation results

show that system throughput increases with a higher number of deployed UEs/non-

terrestrial BSs. The proposed deep reinforcement learning scheme outperforms RSS-
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based, Q-learning-based, UCB learning-based and random methods in terms of sys-

tem throughput. The proposed scheme also performs significantly less handovers than

other methods.

Mozaffari et al. present a tutorial on UAVs in wireless communications [26]. In their

tutorial, Mozaffari et al. present the potential applications of UAVs, key research

directions on these potential applications, and open problems of these research direc-

tions. Coverage and capacity extension, disaster-related deployments, connectivity

enhancement, 3D MIMO-, IoT-, and cache-enabling are highlighted as potential ap-

plications for UAVs as base stations. Flying backhaul is also highlighted as another

potential application to enable cost-effective, reliable, and high-speed wireless back-

haul connectivity for terrestrial networks. Air-to-ground channel modeling, optimal

deployment, trajectory optimization, cellular network planning and provisioning, re-

source management and energy efficiency, and drone UE usage are highlighted as

challenges and open problems. Centralized optimization, optimal transport theory,

machine learning, stochastic geometry, and game theory are proposed as the analyti-

cal frameworks to enable UAV-based communications.

Khamidehi and Sousa investigate the trajectory optimization problem for multi-aerial

base station (ABS) networks [27]. The objective of the optimization problem is to

maximize the minimum data rate of cell-edge users under ABSs power, backhaul link

capacity, and collision avoidance constraints. ABSs are first partitioned into clusters

with a modified K-means approach so that UEs are served by their associated ABS.

Then, the optimization problem is divided into three sub-problems, namely power

allocation, joint ABS-user association and subchannel asignment, and trajectory op-

timization. An iterative method with successive convex approximation is used to

efficiently solve these subproblems. Simulation results show that increasing the max-

imum flight time also increases the max-min data rate since ABSs have more time to

reduce the distance to the cell-edge users. With increased maximum flight time, ABSs

also adjust their trajectories so that they can visit all associated users. Backhaul ca-

pacities are given as the bottleneck of the given problem, but after a certain increase in

backhaul capacity, the bottleneck becomes the maximum transmit power constraint.

Constraining the propulsion power of ABSs also increases the service time; without

this constraint, ABSs cannot finish their mission with the available power.
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Kurt et al. present a vision for future HAPS networks and state-of-the-art liter-

ature review [28]. Kurt et al. first present HAPS use-cases for next generation

networks. HAPS-Mounted super macro base station (HAPS-SMBS) is proposed

as a complementary solution to terrestrial systems. These HAPS-SMBSs are envi-

sioned to support data acquisition, computing, caching, and processing. Use-cases for

HAPS-SMBSs are given as supporting IoT devices, backhauling SBSs, covering un-

planned user events, operating as aerial data centers, filling coverage gaps, supporting

and managing aerial networks, supporting intelligent transport systems, and handling

LEO satellite handoffs and providing seamless connectivity. Kurt et al. present a gen-

eral view of HAPS system and its subsystems. Then, the authors give an overview

of the channel models, radio resource management, interference management, and

waveform design for HAPS systems. Kurt et al. also highlight the contributions of

machine learning in design, topology management, handoff, and resource allocation

problems of HAPSs. Finally, the authors present the challenges and open issues in

two groups, namely next-generation (10 years) and next-next-generation (20 years)

and provide possible roadmaps.

It is worth mentioning that machine learning approaches are widely used for UAV

problems. UAVs form a distributed network and with machine learning, UAV net-

works can effectively become self-organizing. In the previous sections, we have

mentioned numerous works using machine learning for UAV-related problems [29,

30, 31, 32, 15]. In the future, employing fast machine learning methods and distribu-

tive approaches will result in highly flexible UAV networks that require little to no

management at all.

2.3.2 Open Issues and Challenges

Although there are many use-cases related with UAVs and HAPSs, there are also

open issues prohibiting wide usage. For example, regulatory aspects for UAV/HAPS

operation are not uniform and dependent on the location. Furthermore, frequency

usage is also crucial for UAV/HAPS since it directly affects performance. As we

mentioned before, higher frequencies have different licensing schemes, which may

impose limitations on UAV/HAPS operations. Handling the regulatory aspects re-
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garding UAV/HAPS is a challenge that needs to be solved.

The mentioned use-cases in [28] have different requirements and hence different

problems. For instance, HAPS operating as a data center have different requirements

than a HAPS extending coverage. Since there is a high diversity in terms of use-

cases, system models also have different challenges, and integrating multiple of these

use-cases in one design remains an important open research area.

Radio resource management with UAV/HAPS also remains an open challenge. Low

computational overhead is desired with UAV/HAPS systems and machine learning

approaches are promising in this regard. Moreover, serving different 5G use-cases

such as URLLC and mMTC together is another challenge in terms of radio resource

management. In such systems, objectives are completely different and changing the

service type or supporting multiple use-cases at the same time requires a specific de-

sign. UAV/HAPS operations have to support multiple use-cases and switch between

them seamlessly as needed, and radio resource management seems to be the key con-

cept to realize this switch.

Network stability is another problem with UAV/HAPS usage. Since aerial systems

have potentially high mobility and use aerial ad hoc technologies for interconnection,

guaranteeing stability in such a dynamic network is difficult. Hierarchical systems

formed between satellites, terrestrial networks and UAV/HAPSs are helpful in this

regard, but highly dynamic topologies bring challenges to keep up the existing state

of the network and high performance. To alienate the network stability problem and

handle the dynamic nature of UAV/HAPS networks, routing protocols and network

organization designs seem to be directions to handle different mobility patterns, traffic

characteristics, and implement redundancy. To summarize, network stability remains

an open research area for UAV/HAPS integration into contemporary networks.

Channel models for 3D designs are also not developed enough and requires investi-

gation. Air-to-air and air-to-satellite links require further elaboration as the channel

model directly affects system design and performance. Having accurate channel mod-

els can pave the way for the researchers to make performance evaluations to show that

UAV/HAPS systems can perform well in their mentioned use-cases. Thus, channel

modeling and performance evaluation remain open research challenges.
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2.4 Flow Networks

In computer science, graph is a data structure consisting of vertices and edges that link

them together. Graphs are used to represent a wide range of problems in computer

science, and quite effective solutions are developed for these problems. Moreover,

graph is a frequently used data structure by other areas as well. The reason is twofold:

graphs are naturally representative of relationships between different components,

and there are a myriad of developed methods whose effectiveness have been proven

both in scientific and commercial context.

Flow networks are a type of directed graphs. Let G = (V,E) be a flow network with the

capacity function c that indicates the maximum flow associated with an edge. There

are two distinguished vertex types, namely source s and sink t. A flow f in G is a

real-valued function satisfying three properties:

• Capacity constraint: For all u, v ∈ V , f(u, v) ≤ c(u, v)

• Skew symmetry: For all u, v ∈ V , f(u, v) = −f(v, u)

• Flow conservation: For all u ∈ V − {s, t},
∑

v∈V f(u, v) = 0

First property indicates that flows cannot exceed the capacity of their respective edges.

Second property indicates that between two vertices, flow values must be the same

with reversed signs. Third property indicates that except source and sink vertices,

vertices cannot accumulate flows in them.

Flow networks are frequently used to model a source flow in a graph. For example,

water pipe or electrical current modeling, supply logistics, communication networks,

traffic and road capacity modeling can all be done using flow networks. Maximum-

flow problem is the simplest and perhaps most used problem which finds the max-

imum flow that can be sent from the source to the sink while conforming to flow

constraints.
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2.4.1 Solutions to the Maximum-Flow Problem

There are various methods to solve the maximum-flow problem. Ford-Fulkerson

method is an iterative method with several implementations. Another type of so-

lution is push-relabel algorithms. Both solutions make use of a number of concepts

that need introduction to grasp their inner workings. Residual networks, augmenting

paths, and cuts are the aforementioned concepts.

Given a network and a flow, the residual network consists of the edges that can admit

more flow. Mathematically, the residual capacity cf is defined as the admissible flow,

which is found by subtracting the allocated flow from the capacity:

cf (u, v) = c(u, v)− f(u, v) (2.1)

The set of residual edges Ef also need to be defined for the residual network defini-

tion:

Ef = {(u, v) ∈ V × V s.t. cf (u, v) > 0} (2.2)

The residual edges are the edges in G with positive residual capacity. Using the

residual edges, we define the residual network Gf = (V,Ef ). In the residual net-

work, an augmenting path p is a simple path from source to sink. By definition, each

edge on the augmenting path admits additional positive flow without violating capac-

ity constraints. The residual capacity of p is the minimum residual capacity on the

augmenting path p, since that is the maximum amount of flow that can be admitted

without violating capacity constraints.

A cut (S, T ) of a flow network is a partition of V into S and T = V − S such that

s ∈ S and t ∈ T . The net flow across the aforementioned cut is f(S, T ) and the

capacity of the cut is c(S, T ). A minimum cut of a flow network is the cut with

minimum capacity out of all possible cuts. Using these definitions, the max-flow

min-cut theorem is defined as follows:

If f is a flow in a flow networkG = (V,E) with source s and sink t, then the following
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conditions are equivalent:

1. f is a maximum flow in G

2. The residual network Gf contains no augmenting paths

3. |f | = c(S, T ) for some cut (S, T ) of G

Ford-Fulkerson method finds an augmenting path p and increases the flow f on every

edge on p by the residual capacity cf (p). If no augmenting paths can be found, then by

max-flow min-cut theorem, the flow f is a maximum flow. Edmonds-Karp algorithm,

which selects the augmenting paths using a breadth-first search, has a complexity of

O(V E2). Another family of algorithms, namely the push-relabel algorithms, can be

used to solve the maximum-flow problem as well. In terms of asymptotical speed,

push-relabel algorithms include the fastest algorithms to solve the maximum-flow

problems.

The approach in push-relabel algorithms is different than the Ford-Fulkerson method

since push-relabel algorithms work on one vertex at a time, and use its neighbors in

the residual network. Moreover, push-relabel algorithms do not maintain the flow

conservation property during their execution. Instead, these algorithms maintain a

preflow satisfying capacity constraints, skew symmetry, and a relaxed version of flow

conservation allowing nonnegative total net flows in each vertex other than the source.

Excess flow e(u) is the total net flow at a vertex u.

Push-relabel algorithms make use of a height concept that allows pushing flows ’down-

hill’, from a higher vertex to a lower vertex. Initially, height of the source s is fixed

at |V |, and the sink t at 0. All other vertices initially have 0 height and these increase

with time. Initially, the algorithm sends the capacity of the cut (s, V − s) from the

source. Suppose that every intermediate vertex has a reservoir that vertices use to

store the excess flow, if any. This reservoir is used during the execution of the algo-

rithm, whose contents will be pushed downhill as the execution progresses. To push

the reservoirs downhill, "relabel" operation is used to increase the height of a vertex.

After relabeling and pushing flows until they arrive to the sink, there comes a point

when the maximum admissible flow is reached. At that point, the excesses that re-
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main in the reservoirs are pushed back to the source so that the preflow adheres to the

flow conservation constraint.

There are three operations that the push-relabel algorithm uses. The algorithm first

initializes a preflow using InitializePreflow procedure given in Algorithm 1. The algo-

rithm first sets all heights, excesses, and flows corresponding to edges to zero. Source

height is set to the number of vertices. Finally, all flows from the source is filled fully

by the capacity, and the reverse flows and excesses are updated accordingly.

Algorithm 1 Preflow Initialization
1: procedure INITIALIZEPREFLOW(G, S)

2: for each vertex u ∈ V [G] do

3: u.height← 0

4: u.excess← 0

5: for each edge (u, v) ∈ E[G] do

6: f [u, v]← 0

7: f [v, u]← 0

8: for each vertex s ∈ S do

9: s.height← |V [G]|
10: for each vertex u ∈ Adj[s] do

11: f [s, u]← c(s, u)

12: f [u, s]← −c(s, u)
13: s.excess← s.excess− c(s, u)
14: u.excess← c(s, u)

After initializing the preflow, push-relabel algorithm performs push or relabel oper-

ations until there are none available. Algorithm 2 defines how the push operation is

performed. Push assumes that vertex u has a positive excess, the residual capacity of

(u, v) is positive, and u is one height higher than v. The operation finds the admissible

flow to (u, v) and pushes this flow by adding this number to the flow (and subtracting

it from the reverse). Excess values of vertices are also updated accordingly.

If there are no available push operations, it is either the case that there exist no aug-

menting paths in the residual network, or vertex heights do not allow push operations.

If first case holds, then the algorithm finishes. Otherwise, relabel operations are ap-
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Algorithm 2 Push
1: procedure PUSH(u, v)

Require: u.excess > 0, cf (u, v) > 0, u.height = v.height+ 1

2: df (u, v)← min(u.excess, cf (u, v))

3: f [u, v]← f [u, v] + df (u, v)

4: f [v, u]← −f [u, v]
5: u.excess← u.excess− df (u, v)
6: v.excess← v.excess+ df (u, v)

plied so that augmenting paths can be used to push the flows. Algorithm 3 updates

the height of u so that a push operation can be performed. To update the height, a

vertex v with the minimum height is chosen among the vertices that are adjacent to u

in the residual graph.

Algorithm 3 Relabel
1: procedure RELABEL(u)

Require: u.excess > 0, (u, v) ∈ Ef and u.height ≤ v.height ∀v ∈ V
2: u.height← 1 +min{v.height : (u, v) ∈ Ef}

The generic implementation of push-relabel algorithm has an asymptotic bound of

O(V 2E). Relabel-to-front algorithm defined in Cormen et al.’s book Introduction

to Algorithms’ Chapter 26.5 [33], which also makes use of the same basic concepts,

improves this bound to O(V 3). To understand the algorithm, concepts of admissible

edges and neighbor lists have to be defined. An edge (u, v) is admissible if push

operation can be called on its vertices. Neighbor listN [u] for a vertex contains exactly

the vertices for which there may be a residual edge (u, v).

The main operation of relabel-to-front algorithm is defined in Algorithm 4. Discharge

pushes all excess flow of a vertex u through admissible edges to neighboring vertices

until u becomes inadmissible. In the algorithm, current[u] gives the current vertex

under consideration in N [u], and next − neighbor[u] gives the vertex that comes

after v in N [u], which is either another vertex or NULL. Discharge method tries to

push excess flow to any available admissible edge via push method. If there are no

admissible edges available, then the method calls relabel to increase the height of u

so that the excess flow can be pushed. This process continues until all excess flow is
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pushed from u.

Algorithm 4 Discharge
1: procedure DISCHARGE(u)

2: while u.excess > 0 do

3: v ← current[u]

4: if v = NULL then

5: RELABEL(u)

6: current[u]← N [u].head

7: else if cf (u, v) > 0 and u.height = v.height+ 1 then

8: PUSH(u,v)

9: else

10: current[u]← next-neighbor[v]

Relabel-to-front algorithm is defined in Algorithm 5. Similar to push-relabel algo-

rithm, relabel-to-front algorithm first initializes preflow and gets all vertices except

source and sink in a list L. The algorithm also initializes all current neighbors for

vertices in L. After initialization, the algorithm picks the first vertex in L as u and

starts a loop. In this loop, the initial height of u is saved and then DISCHARGE(u) is

called. If a RELABEL operation is made in this call, then u is moved in front of L.

Finally, the vertex after u in L is chosen as u and the loop continues until u becomes

NULL.

Relabel-to-front algorithm is important for this thesis as the proposed algorithms

make use of relabel-to-front algorithm heavily. The methods and algorithms men-

tioned in this chapter will frequently be referenced in later sections when explaining

the proposed algorithm in the thesis.

2.5 Related Work

Having mentioned the general concepts that are seen in most papers of wireless back-

hauling area, we now present the reader our survey. Further sections will present

the challenges of wireless backhauling, state-of-the-art in these topics, main learning

points, and open issues regarding these areas.
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Algorithm 5 Relabel-to-Front
1: procedure RELABEL-TO-FRONT(G, S, T )

2: INITIALIZEPREFLOW(G, S)

3: L← V − {S, T }
4: for each vertex u ∈ V [G]− {S, T } do

5: current[u]← N [u].head

6: u← L.head

7: while u 6= NULL do

8: old-height← u.height

9: DISCHARGE(u)

10: if u.height > old-height then

11: current[u]← N [u].head

12: u← next[u]

For this purpose, we have highlighted six main topics: resource allocation, deploy-

ment, scheduling, performance evaluation, coverage, and security. Each of these top-

ics have their own section with the same structure defined in the previous paragraph.

These topics are especially important because their solutions are directly related to

the effective realization of wireless backhauling. The specific points regarding their

importance to the wireless backhauling are highlighted in the respective sections.

Wireless backhauling is an area that shares many challenges with traditional network-

ing. Deployment, security, and coverage are examples of such challenges. Further-

more, there are challenges more specific to wireless backhauling due to different char-

acteristics, such as scheduling of small cell backhaul traffic or deployment of small

cells for high performance. Resource allocation seems to be the paramount problem

for wireless backhauling as the dynamic management of resources is required to ef-

fectively use the scarce resources available. Finally, performance evaluation works

are significant since these show the feasibility of wireless backhaul usage in the field

without any performance losses, while also highlighting the necessary adaptations for

effective field usage.
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2.5.1 Resource Allocation

The first challenge before the implementation of any wireless backhaul system is the

resource allocation problem. Resource in this context can be defined as anything

that the network manages to perform its operation. Examples can be the bandwidth,

energy, links and their capacities, or time-slots. Networks use these resources to

optimize their performance. Frequently, the bandwidth or energy allocation has to be

carefully adjusted to get the best possible performance from a wireless backhauled

network.

User association is another frequently seen aspect of the resource allocation problems.

For HetNets, a UE can get service from multiple BSs at any given time since SBSs and

their associated MBSs often have overlapping coverage areas. Because of this, user

association becomes another decision which can be used to optimize overall network

performance. In this regard, approaches may be to maximize the average sum rate or

the worst performing UE. User association is also used for load balancing of various

resources, meaning that sub-optimal associations may take place. User association is

mostly taken into account with another parameter such as transmit power allocation

or spectrum allocation/scheduling.

2.5.1.1 State of the Art

In [34], Bonfante et al. use massive MIMO to construct a two-layer network in which

small cells use wireless access and backhaul links. The two-layered system consists

of mMIMO-BSs and small cells that use a fixed allocation of access and backhaul

slots. All small cells receive their respective backhaul traffic from the base stations

employing mMIMO. These BSs are connected to the core network with high-capacity

wires and serve only the small cells, whereas the small cells only serve UEs and do

not take part in backhaul of other small cells’ traffic. For their system, the parameter

α ∈ [0, 1] defines how the available time slots were divided between access and

backhaul usage. Two different deployment scenarios are considered for small cells.

In the first scenario, the small cells are randomly and uniformly distributed to the BS

area; whereas in the second one, which the authors named as ad-hoc deployment, they
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are deliberately placed closer to UEs to increase the throughput.

Tang et al. optimize beamforming and power allocation to maximize energy effi-

ciency in CoMP networks doing simultaneous wireless information and power trans-

fer (SWIPT) [35]. There are two types of users in these networks, namely the energy

harvesting users (e.g. IoT devices) and information decoding users (e.g. laptops,

mobile phones). Tang et al. separately consider beamforming and power allocation

since the combined problem is non-convex. The authors first propose a zero forcing

approach for beamforming to suppress interference for all nodes. The authors also

propose a partial zero forcing approach for beamforming, which exploits interference

as an energy source for energy harvesting users, while at the same time cancelling

the interference of information decoding users. Simulation results show that partial

zero forcing outperforms the zero forcing method. Moreover, both methods converge

to their global optimals after a number of iterations. Increasing the number of small

cells and information decoding users also increases the energy efficiency. Increasing

the number of energy harvesting users increases the energy efficiency up to a cer-

tain number, after which efficiency sharply decreases for zero forcing, and decreases

mildly for partial zero forcing.

In [36], Zhang et al. have formulated a problem to optimize the energy efficiency

of wireless backhaul bandwidth and power allocation problem in a small cell. The

network in question is a two-tiered network in which the MBS uses mMIMO to com-

municate with the small cells whereas small cells use OFDM to communicate with

the UEs. The aforementioned problem is formulated as a nonlinear programming

problem, which is shown to be non-convex. Therefore, the authors have decomposed

the problem into two convex subproblems for wireless backhaul bandwidth allocation

and power allocation. Two versions of the algorithm are developed, namely the op-

timum iterative algorithm and low-complexity algorithm, which fixes the bandwidth

allocation factor by the value calculated from the equal power allocation. It is shown

that the proposed iterative algorithm gets better results in all metrics than the low-

complexity one, whereas they both outperform the existing benchmark.

Nguyen et al. study the joint design of downlink transmit beamforming and power

allocation in two-tier wireless backhauled small-cell heterogeneous networks [37].
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Nguyen et al. first formulate the problem of maximizing the energy efficiency of the

wireless backhauled small cell HetNets. The proposed power consumption model

considers adaptive decoding power at each small cell access point (SAP), making the

model more appropriate. The problem is non-convex and NP-hard, and Nguyen et

al. propose an exhaustive search based on branch-and-bound algorithm for global

optimal solution. However, this solution has high complexity, and Nguyen et al. also

propose a low-complexity algorithm based on first order Taylor convex approxima-

tion (FOTCA). As the final step, Nguyen et al. also extend the problem formulation

to consider the small cell selection that takes into account the impact of power to

switch on/off the SAPs. Introducing this as a binary variable, the authors model this

as a mixed integer second order cone programming (MISOCP) approximated prob-

lem. This problem is decomposed into subproblems by the ADMM approach and

Nguyen et al. develop a distributed algorithm to solve this problem individually at

every SAP. Numerical results indicate that the all proposed methods outperform the

fixed power allocation scheme. Moreover, the small cell selection algorithm also

outperforms others since selectively activating the SAPs results in significantly less

power consumption. Second best algorithm is the adaptive decoding power. Finally,

it is shown that having a high power budget usually results in the MBS consuming too

much power and reducing the energy efficiency. Nguyen et al. suggest that having

low budgets result in better energy efficiency since it does not allow excessive power

allocation.

In [38], Saha, Afshang and Dhillon explore the bandwidth partition scenarios between

access and backhaul side of the network in a full wireless configuration. The authors

propose a network that used sub-6 GHz frequencies for control traffic and mmWave

for data traffic. For the backhaul traffic of small cells, Saha et al. compare two differ-

ent strategies. In the first strategy, the available bandwidth is partitioned equally to all

small cells. In contrast, in the second strategy, the bandwidth is partitioned propor-

tional to each small cell load. The authors report that the load-balanced partitioning

always provides higher coverage than fixed partitioning. Furthermore, for a given

partition strategy, the existence an optimal access-backhaul split maximizing the rate

coverage probability is shown. As a third point, Saha et al. show that IAB-enabled

network outperforms the macro-only network up to a certain point, beyond which the
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performance gains disappear and they converge to the same point.

Huang et al. propose a fairness-based distributed resource allocation algorithm (FDRA)

[39]. Huang et al. use stochastic geometry to model the two-tier HetNet and define

the channel reuse radius based on the spectrum sensing threshold. FDRA is proposed

to maximize the total throughput in the small cell tier while considering the outage

probability and fairness. To model the real traffic load accurately, tidal effect and

users’ actual geographical distribution are jointly considered and improved FDRA is

proposed to further improve the throughput in hot areas. Simulation results show that

FDRA improves fairness compared to the benchmark method CSRA. In all metrics,

IFDRA outperforms FDRA while FDRA in turn outperforms CSRA.

In [40], Pham et al. consider the effects of resource offloading for mobile edge com-

puting on the small cells that use wireless backhauling to a MBS. The authors high-

light that the resource offloading research mostly assumes there is backhaul capacity

for their purpose, but the real-life situation does not conform to that assumption. The

authors decompose this joint task offloading and resource allocation into two parts.

In the first part, the decision to offload the computation based on a given bandwidth

factor and computation resource allocation is made; whereas in the second part, wire-

less backhaul bandwidth and computation resource allocation is made for a fixed

offloading decision. These two sub-problems are solved individually with an itera-

tive algorithm for the solution of the original problem. Moreover, the authors have

extend the problem into multiple scenarios, such as ultra-dense networks, machine

learning usage for computation offloading, and partial offloading of the computation.

The proposed algorithm is compared to the given problem’s two extremes where all

computations are either performed locally or offloaded to the mobile edge computing

server. As expected, with an increasing number of UEs, fewer offloading decisions

are made, since the available resources decrease with a larger number of UEs. Fur-

thermore, the proposed algorithm achieves lower computational overhead since its

decisions are made only when offloading is advantageous. The same performance

improvements are also seen in UEs’ transmit power because the algorithm considers

the consumed power while offloading for its decision-making.

Song, Liu and Sun consider the joint radio and computational resource allocation
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problem in NOMA-based MEC in HetNets [41]. Song et al. minimize the energy

consumption while guaranteeing task execution latency. The optimization problem

is solved using decomposition and iteratively employing alternating optimization.

Simulation results show that partial offloading outperforms full offloading and local

computing in terms of energy efficiency. Increasing task tolerance latency increases

energy efficiency for all configurations.

In [42], Han et al. investigate the user association and resource allocation problem in

the mMIMO-enabled HetNets. The network in question uses renewable energy but is

also connected to the grid in case of deficiencies. Han et al. formulate a problem of

network utility maximization subject to backhaul, energy, and resource constraints.

The given problem is solved using first a primal decomposition, and then a Lagrange

dual decomposition. In the first decomposition, the problem is divided into two parts:

the lower-level problem i.e. resource allocation problem of BSs and higher level prob-

lem i.e. cell-association problem of users. The lower level problem is also divided

into N subproblems for individual BSs. The higher level problem is solved using

the solution of resource allocation problem. To make this a distributive algorithm, the

Lagrange dual decomposition is used to divide the problem into dual and master prob-

lems. In the resulting distributive algorithm, the UEs calculate and choose the optimal

BS allocation at their side and report this connection to BSs; whereas BSs solve the

dual problem and then broadcast the next turn’s information to users. Furthermore,

Han et al. design a virtual user association and resource allocation (vUARA) scheme,

which reduces the communication overhead over the air interface and removes the

information leaks to other users. In this scheme, after the initial resource allocations

are made and user associations are reported, the measurements are reported to the

radio access network controller (RANC), in which vUARA resides. RANC simulates

the iterative cycles and after finding an optimal user association and resource allo-

cation, reports this to the users and BSs. The proposed algorithm outperforms the

common user-association schemes, i.e., max-SINR association and range expansion

association.

Le et al. consider network and weighted sum energy efficiency of dense HetNets

[43]. The authors propose a resource allocation algorithm supporting both delay-

sensitive users with minimum data rate requirements and delay-tolerant users with
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data rate fairness considerations. The problem is formulated and solved in three dif-

ferent ways. Mixed-integer programming, time-sharing, and sparsity-inducing for-

mulations are employed to tackle the non-convex functions with efficient sub-optimal

solutions. All formulations make use of successive convex approximations to find the

solutions iteratively. Numerical results show that the proposed formulations perform

quite similar from an energy efficiency perspective in terms of static consumed power

and maximum transmit power at femtocells. Mixed-integer programming formula-

tion is shown to be superior in terms of energy efficiency to other approaches when

users’ QoS and number of femtocells are considered.

In [44], Omidvar et al. propose a hierarchical optimization method for HetNets with

flexible backhaul. In flexible backhaul, only some network elements are connected

to the core with fiber connection and the rest of the network must reach to these BSs

via wireless connections with dynamic links. The authors formulate a two-timescale

hierarchical RRM control problem for HetNets with flexible backhaul. For the over-

all problem, RRM control variables are divided in two as long-term and short-term

control variables. For long-term control, flow control, routing control and discontin-

uous transmission control are used whereas for short-term control, link scheduling

control is used. From these variables the problem is formulated. The problem is then

divided into two sub-problems by using primal decomposition. The inner problem be-

comes the optimization of routing control and flow control under a fixed DTX control

and link scheduling policy. For the outer problem, an iterative algorithm is proposed

whose solution is shown to be optimal. At each subframe, the scheduling information

is sent to the UE and UE sends back the instantaneous SINR value as feedback. At

each superframe, the RRM system receives the average associated link rates of BSs

and sends back the next DTX time-sharing scheme, routing and flow control updates.

The proposed algorithm performs better than five chosen baseline methods in terms

of network utility for different backhaul connected BS percentage and BS power. The

algorithm converges faster than all baseline methods, has similar signaling overhead,

is shown to be more cost-saving compared to the baseline methods and adds only

little overhead in terms of CPU utilization.

Gao et al. propose a quantum coral reefs optimization algorithm for joint resource

allocation and power control problem in D2D HetNets [45]. Gao et al. first propose
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a model for cooperative D2D HetNets and then derive analytical formulas for the

total throughput of this model. A combination of coral reefs optimization algorithm

and quantum evolution are proposed as a novel quantum coral reefs optimization

algorithm (QCROA) to optimize the resource allocation and power control problem.

The strength of this approach is that the same algorithm can be used for different

parameters by changing the parameter vector, which showcases the reusability of

this algorithm. Simulation results show that the proposed algorithm outperforms all

alternative methods in throughput under different maximum power, cellular unit and

idle relay count constraints.

In [46], Liu et al. have considered the resource allocation problem on a two-tier

network that uses mMIMO on the MBS and in-band full-duplex communications on

small cells. User association and spectrum allocation in the aforementioned network

scheme is formulated as a mixed-integer nonlinear programming (MINLP) problem.

To solve this problem distributively and efficiently, the primary problem is divided

into two sub-problems, namely the user association problem for fixed spectrum allo-

cation, and spectrum allocation with given user association. Next, an iterative algo-

rithm is developed to solve the original problem. The proposed algorithm is compared

with the max SINR user association algorithm and shown to be outperforming it in

terms of sum logarithmic rate. It is also shown that the optimal spectrum allocation

outperforms any fixed spectrum allocation scheme.

Song, Ni and Sun investigate the distributed power allocation problem in non-orthogonal

multiple access HetNets [47]. The power allocation problem is modeled as a two-

stage Stackelberg game where MBS is the leader and SBS is the follower. MBS tries

to maximize its throughput under power and minimum rate constraints whereas SBS

tries to find the best response to MBS’ actions. Simulations show that the proposed

algorithm converges fast and is better in terms of throughput compared to Nash game,

dedicated spectrum allocation, and orthogonal multiple access.

In [48], Bojic et al. have proposed a dynamic resource allocation algorithm for mo-

bile backhauled networks. The authors state that the problem with mobile backhaul

resource allocation is often the assigned capacity. If this is made statically, resources

are wasted in lightly loaded areas, whereas areas with heavy loads will experience

33



congestion. For dynamic assignment, the size of the resource chunks assigned needs

to be carefully considered; if the size is too large, resources will be wasted, if they are

small, then too many signaling may occur. The authors propose a backhaul resource

manager (BRM) that fairly allocates the resources based on the network topology,

link capacities and resource allocations. BRM is linked with the network manage-

ment system and/or with the backhaul nodes to receive the needed information. From

the aforementioned information, the BRM will perform the capacity-aware path com-

putation. It is shown that the dynamic algorithm outperforms SPF by 40% and CSPF

by 20-30%.

Hu et al. propose a power allocation model to maximize energy efficiency in HetNets

[49]. The problem is modeled as a probabilistic fractional programming optimization

problem. Bernstein approximation and Dinkelbach method are used to transform the

problem into a standard convex approximation problem. Simulation results show that

the transmit power convergence is quite fast and outperforms the rate maximization-

based robust power allocation algorithm in terms of energy efficiency. The proposed

algorithm is slightly worse than the energy-efficiency based optimal power alloca-

tion algorithm, but the aforementioned algorithm considers perfect CSI, which is not

available in the actual communication scenario.

In [50], Faruk et al. have thoroughly analyzed the energy consumption character-

istics of macro and small cells. It is shown that wireless backhaul, especially with

PtMP microwave links, results in high power consumption compared to other alter-

natives. BS equipment and cooling are also shown to be the most power-consuming

tasks. Self-backhauling is shown to be an alternative to other wired and wireless back-

haul methods due to its advantageous characteristics such as reduced deployment and

maintenance costs, fast rollout and relaxed constraints compared to LoS deployments.

The power consumption of small cells with fixed wireless access to MBS and self-

backhauled small cells are compared. Since PtP links consume power independent

from the load, they are shown to be more power-efficient than self-backhauling as the

BS load increases. The break-even point is shown to be 50% load. It is given that af-

ter 55W power consumption on fixed wireless radio links, they become less-efficient

than self-backhauling solutions. This result is more evident if the number of MBSs

increase. Lastly, it is shown that the implementation of PtMP links where a single
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PtMP unit serves several small cells results in a more power-efficient solution as the

number of served small cells increase.

In [51], Wang, Hossain and Bhargava have delved into the topic of radio resource

management of 5G small cell backhauling. General aspects such as cell association,

RAT selection, resource and interference management, cell coordination, spectrum

sharing and energy-efficient backhauling are explored. Then, some existing works

about these aspects are briefly analyzed. Finally, a case study is conducted with

a mMIMO-based in-band wireless backhauling network is given. It is shown that

user rates can significantly be increased with backhaul-aware cell association and

bandwidth allocation schemes.

Siddique, Tabassum and Hossain compare the performance of in-band full-duplex

(IBFD) and out-of-band full-duplex (OBFD) backhauling [52]. Siddique et al. for-

mulate a problem to maximize the minimum achievable rate at the small cells in a

hybrid IBFD/OBFD setting. This problem is solved in a centralized fashion by trans-

forming the original problem into the epigraph form. The authors also solve the in-

dividual IBFD and OBFD backhauling problems, which provides useful insights into

the nature of these schemes. Then, solutions are found for two distributed backhaul

spectrum allocation schemes, namely maximum received signal power (max-RSP)

and minimum received signal power (min-RSP). Max-RSP scheme assigns a larger

amount of backhaul spectrum to closer SBSs, offering higher backhaul rates to SBSs

at the cost of lowering the available access spectrum. Min-RSP scheme conversely

allocates larger backhaul spectrum to the SBSs that are farther away from the MBS.

Numerical results are validated using Monte Carlo simulations. These simulations

show some interesting results. Hybrid allocation scheme favors IBFD for low inter-

ference and OBFD for high interference settings. For OBFD scheme, access spectrum

allocation seems to be following the same pattern for lower rank (i.e. closer) SBSs

as well as the higher rank (i.e. farther) SBSs, but the backhaul spectrum required is

higher for higher rank SBSs due to weak backhaul signal strength. Conversely, IBFD

case lower rank SBSs are limited by backhaul interference. This starts to improve

with higher rank SBSs, which require higher access rates i.e. more access spectrum

for higher performance. It is shown that hybrid scheme outperforms both individual

schemes by prioritizing IBFD for low interference and OBFD for high interference
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scenarios.

In [53], Shariat et al. have decomposed the overall resource allocation problem be-

tween backhaul and access links to power and sub-channel allocation. The optimiza-

tion is first done between one small cell and a UE, and then were generalized into

multiple UEs. A novel algorithm is proposed for rate balancing that employed small

cell grouping and resource slicing. The evaluation shows that joint optimization with

rate balancing provides significant improvements for resource allocation between ac-

cess and backhaul links. This method works not only for IAB systems, but it also

shows significant improvements for fixed backhaul partitioning systems.

Khodmi, Benrejeb and Choukair develop a joint power allocation and relay selection

algorithm for heterogeneous ultra-dense networks [54]. Khodmi et al. use the in-

crement water-filling algorithm for power allocation and a non-linear programming

algorithm for resource allocation. Simulations show that multi-hop relay improves

the coverage and achieves the data rate requirements of cell-edge users compared to

no relay or single-hop relay architectures.

In [55], Hao et al. have developed an energy-efficient resource allocation algorithm

for two-tiered networks that use mMIMO on the MBS and OFDMA-based cellular

frequencies on the small cells. A hybrid analog-digital precoding scheme at MBS is

proposed. From this scheme, a problem for power optimization and subchannel allo-

cation is formulated to maximize the energy efficiency of the HetNet subject to users’

QoS and limited wireless backhaul. The formulated problem is a MINLFP problem,

and the authors made use of transformations, namely MINLFP to DCP, and then DCP

into convex optimization by appropriate approximation, to solve it iteratively. In sim-

ulations, the proposed algorithm is used with two structures: fully connected structure

and subarray structure, for beamforming RF chains. If subchannel allocation is not

considered, then the hybrid precoding scheme with subarray structure performs the

best in energy efficiency, while having the lowest throughput of three. The energy

efficiency of hybrid precoding with fully connected structure is negatively correlated

with the number of RF chains, whereas its throughput is positively correlated. The

results are similar when subchannel allocation is considered.

Mahmood et al. propose the adaptive capacity and frequency optimization method
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for wireless backhaul networks [56]. Conventional network planning and its short-

comings are mentioned in this work. Mahmood et al. generate synthetic time series

data based on real network data. This time series data is then used to train autoregres-

sive integrated moving average (ARIMA) and multi-layer perceptron (MLP) models.

These models are then used in the automated planning algorithm. Results show that

MLP models especially have very low mean absolute percentage error (MAPE) and

all models have performed below the error threshold of 10. The proposed methods are

shown to achieve better capacity planning and optimization as well as reduce resource

wastage.

In [57], Han and Ansari have developed a system for user association and power con-

sumption on two-tiered HetNets with green energy and on-grid power usage. The

proposed algorithm works in a distributed fashion and optimizes the use of green en-

ergy and the traffic delivery latency of the network. The system tries to make use of

green energy wherever possible over on-grid power. Moreover, when forced to use

on-grid power, the system balances the use of on-grid power and the traffic delivery

latency. The traffic arrival process is modeled to be a Poisson process; therefore,

base stations realize a M/G/1-PS (processor sharing) queue. The algorithm, which

the authors have named GALA, is distributed to BS and users. The BS-side algo-

rithm measures the traffic load and updates the advertising traffic load. In contrast,

the user-side algorithm selects the optimal BS based on the advertised traffic load,

BS’s energy-latency coefficient and BS’s green traffic capacity. The developed algo-

rithm is compared with maximum rate algorithm and α-distributed algorithm, which

consists of several optimization policies for user-BS associations to balance the flow

level traffic among BSs. The GALA algorithm is shown to outperform both of the

algorithms significantly in terms of power saving at the cost of negligible latency

increases compared to the α-distributed algorithm.

Ma et al. investigate the user association and resource allocation problem of MIMO-

enabled HetNets [58]. The network in question is a two-tiered HetNet consisting

of a single mMIMO MBS and multiple small cells. Ma et al. formulate the prob-

lem of maximizing the α-fairness network utility via user association and resource

allocation. The optimization problem is formed as a mixed-integer nonlinear pro-

gramming problem. Then, this problem is solved using an algorithm based on the
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Lagrangian dual decomposition method. Simulations show that the proposed method

significantly outperforms the benchmark methods such as optimal UA and equal RA

(where all UEs associated with a BS use the same resources) or max-SINR UA and

optimal RA (UA is done solely by checking max-SINR), while falling short of the

global optimum only by a very small margin.

Huskov et al. propose a smart backhaul architecture that adapts itself according to

given task [59]. The system can adapt itself to certain equipment conditions for dif-

ferent equipment types defined previously. This development aims to save power

by reducing the amount of unused resources, while keeping network at a high perfor-

mance regardless of the load. The proposed system also makes use of a concept called

multiple-input distributed-output (MIDO). MIDO aims to serve multiple devices on

the same spectrum band providing interference alignment. Simulations show that the

usage of MIDO with the proposed system outperforms standard MIMO systems 2.5

and 30 times for 2x2 and 8x8 configurations, respectively. However, Huskov et al.

also highlight the fact that employing higher number of antennas at receiver side is

unrealistic.

Zhang et al. design a two step resource allocation scheme for mmWave enabled IAB

networks [60]. User association and transmit power allocation problem is iteratively

solved. User association problem is solved using a distributed framework based on

the many-to-many matching game. For this purpose, Zhang et al. design a novel

backhaul capacity and interference aware matching utility function considering the

interference penalty and backhaul capability simultaneously. For power allocation,

convex approximation is used. This problem is then solved iteratively to converge to

a KKT point. Simulations show that the proposed algorithm outperforms the random

matching algorithm by up to 71.9% when the number of SBSs is 10.

Pu et al. formulate a resource allocation problem for mmWave self-backhauling net-

works [61]. The problem is modeled as a combinatorial integer programming prob-

lem. By introducing penalty factors, Pu et al. transform the problem into another

equal problem which can then be solved by the Markov approximation method. The

proposed algorithm maximizes the sum data rate and satisfies the minimum traffic

demands of all users while satisfying the backhaul constraints of the individual SBSs.
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Simulation results show that the achieved data rates in each UE is slightly bigger

than the required data rate, and repeating BH traffic is minimized with the proposed

algorithm. In terms of spectral efficiency, the proposed algorithm outperforms the

benchmark methods of OBFD and access-backhaul split significantly.

Dai et al. tackle sum-rate maximization problem via joint user association and power

allocation in H-CRANs [62]. Dai et al. solve the user association problem first in a

central fashion. The power allocation problem is formulated as a generalized Nash

equilibrium problem and then solved distributively using variational inequality theory.

Simulations show that the proposed algorithm has considerably lower computational

complexity and signaling overhead than the centralized max sum-rate method.

Xu et al. give a detailed survey of resource allocation problem of 5G HetNets [63].

Xu et al. first define different types of HetNets, and the resource allocation problems

related with these types. For traditional HetNets, Xu et al. highlight transmit power,

user association, and bandwidth allocation optimization as general problems. For

OFDMA-based HetNets, subchannel allocation is another problem due to multiple

orthogonal subcarrier usage. For NOMA-based HetNets, cross-tier and co-channel

interference are problems to be considered alongside user fairness. For relay-based

HetNets, relay selection and transmit power allocation are recurring problems. For

H-CRANs, inter-cell interference, signal overhead reduction and baseband unit man-

agement are the problems to be tackled. For multi-antenna HetNets, interference

cancellation and beamforming design are architecture-specific problems. Integration

of new techniques and technologies such as IRS and ultra-dense networks require

careful consideration for resource allocation problems to attain the best performance

possible.

2.5.1.2 Lessons Learned

While resource allocation is by no means a problem unique to wireless backhauling,

effective distribution of the resources is crucial for a performing network. With this

in mind, we highlight the following points:

• Access/backhaul resource split is very important in terms of effective resource
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usage, because employing a dynamic split makes the network adaptable to dif-

ferent scenarios. Employing dynamic and fast algorithms that can adapt to

changing conditions is very useful for ultra-dense networks with wireless back-

hauling.

• Ultra-dense networking employs many small cells that a UE can connect to,

meaning that at any time instant, multiple BSs are available for UEs. While

this increases the network adaptability and redundancy, user association is im-

portant for network performance as the small cells usually do not have good

range and require LoS, finding a suitable BS is important. From the network’s

perspective, the network can employ suboptimal user associations to keep up

the average performance at a certain level or achieve a certain minimum.

• Transmit power allocation is important for the wirelessly backhauled networks

as high air interface usage may result in inter- and intra-tier interference. Em-

ploying spatial multiplexing with the right transmit power allocation effectively

nullifies the interference from the UE side, while BSs employ beamforming in

tandem with power allocation to reduce the effect of interference.

• With the usage of MEC in 5G networks, computation offloading is a possibil-

ity that can result in power savings and effective computation. However, while

wireless backhaul can allow offloading computation-heavy tasks, there may be

cases in which offloading can induce performance penalties to the air interface,

resulting in power wastage from the network side. Consideration of air inter-

face is required for computation offloading decisions in wirelessly backhauled

networks.

2.5.1.3 Open Issues and Challenges

Resource management remains an open challenge for future networks. 3D network-

ing is a new concept that significantly changes the network design. Because of this,

resource allocation schemes also require a new approach for 3D networking for the

best performance. Spectrum and interference management also remains an important

open issue for future networks [64].
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With a myriad of new concepts being introduced in 5G networks and beyond, net-

works are inevitably getting more and more complex. While new concepts come

with performance gains, they also introduce complexity to the design of a network.

In terms of resource allocation, using multiple technologies increases the complex-

ity of the problem. New models are required in this direction to allow better design;

which, in turn, will allow better problem formulations that capture the requirements

and result in better performance gains [63].

Spectrum sensing is another way to increase resource efficiency. The tradeoff be-

tween dynamic resource allocation and spectrum sensing capabilities remain an open

research area that can result in better spectrum and resource efficiency.

The majority of the mentioned works do not use mmWave frequencies. Consequently,

most mentioned works cannot meet the KPI demands of 5G communications in terms

of throughput. While beamforming and mMIMO are technologies that can enable bet-

ter performance with mmWave usage, resource allocation problems have to consider

beamforming and mMIMO usage alongside the main problem, which adds more de-

grees of freedom and makes the problem even harder. Due to these points, mmWave

frequencies and the resource allocation schemes require a more in-depth exploration.

Machine learning-based resource allocation is also promising since it allows au-

tonomous management of networks. BSs can capture an enormous amount of data

that can be used for training a model for user association, transmit power calculation,

or spectrum allocation. While these are open research areas, the training process is a

problem since there aren’t enough resources for training in one BS. Therefore, either

distributed algorithms are required for this task, or a new paradigm must be developed

in order to realize machine-learning based dynamic resource allocation.

2.5.2 Deployment

Base station deployment is a problem not specific for wireless backhauling. Nonethe-

less, deployment plays a critical role when wireless backhaul is employed. Here, the

challenge is where to place MBSs and small cells. Wireless backhaul enables more

radical deployment strategies since infrastructure (or the lack of it) has less of an im-
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pact compared to traditional backhaul. Similar to the traditional networks though, de-

ployment directly impacts network performance. Therefore, innovative deployment

schemes have to be employed to make wireless backhauling feasible.

Mesh, star and tree topologies are usually considered while deploying networks. Tree

topologies are especially used with hierarchical networks, as well as with wireless

backhauled networks. In such schemes, root node of the tree has fiber backhaul ca-

pabilities, and all other nodes send their data via their parent to the root node to be

backhauled to network core. Mesh topology is also suitable to be used with wireless

backhauling as it promotes redundancy via multiple paths. Finally, wireless back-

hauling also allows dynamic deployment with mobile base stations, which improves

network’s capabilities while making management and deployment harder.

While the deployment of small cells is a task performed before the actual deploy-

ment, moving elements such as UAVs and nomadic BS make this problem dynamic.

Because of this, finding the optimal deployment in a fast manner becomes important

as this increases the network adaptability and reduces the time that the network is

affected by the condition changes in a bad way.

2.5.2.1 State of the Art

In [34], Bonfante et al. propose a two-layer network scheme where self-backhauling

small cells serve UEs and MBSs using mMIMO backhaul their data. Small cells use

fixed allocation of access and backhaul slots. Two different deployment scenarios

are considered for small cells. In the first scenario, the small cells are randomly and

uniformly distributed to the BS area; whereas in the second one, which the authors

named as ad-hoc deployment, they are deliberately placed closer to UEs to increase

the throughput. To reduce the inter-cell interference, small cells in ad-hoc deployment

use a more directive antenna that serve only the closest UEs, thus reducing interfer-

ence. Results show that the performance increases threefold when ad-hoc deployment

is used compared to uniform deployment.

McMenamy et al. investigate mmWave backhaul network flow affected by the num-

ber of hops and deployment of fiber-connected BSs [65]. The authors first determine
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which nodes will have fiber backhauling given the deployment while satisfying the

constraint on the number of hops. Then, the authors maximize the overall flow while

meeting the flow demand of every node and the constraint on the number of RF chains

for every node in the network. Simulation results show that increasing the number of

hops reduces the number of required fiber-connected BSs (BGWs), but also the total

flow. Number of RF chains grows with the number of hops. If the number of BGWs

are reduced, then the performance can be maintained by increasing the number of RF

chains at the expense of power consumption.

Aftab et al. address UAV-BS placement problem with a novel machine learning

based intelligent deployment mechanism [29]. An intelligent long short-term mem-

ory (LSTM) model is used to predict the deployment with a feedback mechanism for

self-correcting. Simulation results show that deep learning-based approach outper-

forms the normal deployment in terms of outage probability. ML-based deployment

also achieves far better energy efficiency compared to the normal deployment.

In [66], Fouda et al. have considered a scenario where UAV are deployed to a highly

congested area where some UEs suffer low quality and some have no service at all.

The network in question is a two-tiered network with gNB’s that serve UEs in tandem

with UAV small cells. The network uses in-band frequency division duplexing (FDD)

as the operation mode. The UAVs’ mobile capabilities are used as the main degree

of freedom to maximize the overall system sum-rate. The authors have formulated an

optimization problem to find the UAVs’ optimal 3D deployment locations, UE power

allocations, precoder design at gNB and UE-base station associations. Since these

optimization parameters have different update intervals, the problem is decomposed

into two parts: in the first part, average sum-rate is maximized by optimizing the

UAV locations, access and backhaul link power allocations; whereas in the second

part, precoder design and transmit power allocation is optimized to maximize the in-

stantaneous sum-rate. Simulations show that UAV deployment increases the average

sum-rate at the expense of performance of UEs that are close to gNBs. It is also

shown that UAVs cannot support a high number of UEs as efficiently and distributing

users between UAVs is key to a high-performance network.

Park, Tun and Hong propose initial deployment and trajectory optimization tech-
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niques for stable communication between high speed train (HST) and UAVs [30].

Park et al. use Soft Actor-Critic (SAC) method of reinforcement learning for optimiz-

ing the UAV trajectory and Support Vector Machine (SVM) for optimal initial UAV

deployment. Numerical results show that with less HST speed, less handovers occur

and UAVs can have lower operating altitudes with higher data rates. Conversely, with

faster HST speeds, UAVs have to increase their altitudes to keep the connection up.

Zhang et al. formulate a joint optimization problem of UAV deployment, caching

placement and user association for maximizing the QoE of users [67]. The cache-

enabling UAVs are deployed at peak hours to the hotspots to alleviate the pressure on

the MBSs. The formulated optimization problem is divided into three subproblems.

UAV deployment subproblem is solved via a swap matching based algorithm. Then,

Zhang et al. solve the caching placement subproblem with a greedy algorithm, and

user association problem with a Lagrange dual. The joint problem is solved with a

novel low complexity iterative algorithm. Simulation results show that the proposed

algorithm can reach the near optimal value of the exhaustive search within 0.02 mean

opinion score (MOS). The proposed algorithm outperforms the random and classic

algorithms in terms of UAV backhaul traffic offloading ratio, and average MOS, under

varying user numbers, cache space, and UAV height.

Okumura and Hirata propose an algorithm to automatically plan the deployment of

300 GHz wireless backhaul links [68]. The algorithm first selects a pair of adjacent

cells that can get a LoS connection. After deploying a master BS to the center rooftop,

the algorithm deploys the slave BSs according the the previously mentioned pairs of

adjacent cells to find a LoS path from every slave BS to the master BS. Simulation

results show that this deployment scheme exceeds the standart demand of 100 Gbit/s

even when the rain rate is 100 mm/hr.

In [69], Polese et al. have explained the integrated access and backhaul concept and

explored some scenarios for its real-life usage. A thorough explanation of IAB is

made, its architecture, network procedures, topology management, scheduling and

resource multiplexing aspects are detailed. Then, an evaluation of an IAB mmWave

network is made through simulations with different configurations. For routing the

backhaul traffic, wired-first and highest-quality-first approaches are tested and wired-
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first approach is found to be better in terms of throughput and latency. For IAB

deployment scenarios, three alternatives are compared: namely, only donors scenario

in which only some wired gNBs exist, IAB scenario where alongside the first scenario

donors, some IAB nodes are available, and all wired scenario where it is assumed

that the topology is the same with the second scenario but all backhaul connections

are wired. All wired scenario outperforms the others as expected, but IAB scenario

outperforms the donors-only scenario in average delays, 5th percentile throughput

and average buffering in target UEs.

Hu et al. propose an intelligent UAV-BS deployment scheme based on machine learn-

ing [31]. Hybrid ARIMA-XGBoost model is used for predictions: ARIMA handles

linear predictions and XGBoost is then applied on the residue of ARIMA. Simulation

results show that the proposed hybrid prediction model has a prediction accuracy of

87% in the worst case. The proposed deployment scheme also significantly reduces

the blocking ratio, increases the capacity, throughput, and resource utilization of the

network.

In [70], Dahrouj et al. have proposed a hybrid system that uses RF as well as

FSO links for wireless backhauling. The hybrid usage combines the low-cost, high-

availability and high-coverage nature of RF and high-capacity, low-latency nature of

FSO, bringing the best of both worlds. To reduce complexity, the problem is first

relaxed such that only optical fiber links are allowed. Using the found planning, the

found nodes are connected with fiber or hybrid RF/FSO links. To improve reliability,

the planning is made so that the network is K-link disjoint. This is done by clustering

the BSs together and iteratively finding the links between clusters. The authors show

that the solution is equivalent to a maximum weight clique in the planning graph.

The results indicate that as K increases, the network design is cheaper than fiber-only

while maintaining the required reliability and key performance indicators (KPIs).

Liu et al. investigate a fast deployment strategy of UAVs using deep learning [32].

Liu et al. formulate a problem of finding the optimal UAV-BS position as fast as

possible, while maximizing the sum of downlink rates in the network. The authors

solve this problem by designing a geographical position information learning algo-

rithm, which employs a dueling deep Q-network. Simulation results show that the
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proposed algorithm finds the deployment position in seconds with little loss. While

reinforcement learning requires training after any changes in the scenario, the pro-

posed algorithm does not have such a requirement and achieves 96% of the optimal

value. For different area sizes and UE densities, the proposed algorithm performs

almost indistinguishably from reinforcement learning but with less time.

Zhang et al. optimize the BS and gateway densities of an mmWave backhaul net-

work to improve network spatial throughput [71]. Low density makes the network

backhaul-limited, but after a certain density, the performance gains disappear be-

cause the network becomes interference-limited due to the intra-tier interference of

the newly added elements. The optimal densities are found numerically and the sim-

ulation results show that with the increasing network density, the spatial throughput

first increases and then converges to a gateway density-related constant.

Kulkarni, Ghosh and Andrews [72] propose a network with k-ring deployment with

wireless backhauling. In k-ring deployment, a BS with fiber connection is on the

centre while all other BSs are backhauled wirelessly to this BS, and then to the core.

Kulkarni et al. argue that with their design, instantaneous rate performance is in-

dependent of the scheduling, which makes the system noise-limited. The authors

formulate an optimization problem for a fixed k that maximizes the end-to-end rate

achieved by all UEs. For this purpose, Kulkarni et al. define the max-min rate as

the maximum rate that can be achieved by the worst member of a routing strategy.

The analysis is done initally for IAB, and then extended to orthogonal access and

backhaul (OAB), which basically means different resources for access and backhaul.

For IAB case, Kulkarni et al. employ highway routing, which designates the x and y

axes that are centered on the fiber backhauled BS as the highways. The data is then

distributed from these highways, even if this results in more hops than a direct path.

If BSs on the highways have larger antenna gains than others, this scheme is justified.

Nearest neighbor routing is used as the benchmark scheme. IAB solution requires

the global load and access rate information, which makes its solution more complex.

OAB is simpler to implement since it does not require such information. Kulkarni et

al. present results in four main fields. First, it is shown that with higher number of

rings, the performance drops significantly since the network is backhaul-limited. Sec-

ond comparison is made between full-duplex and half-duplex modes. Full-duplexing
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shows significant potential in terms of data rate if the self-interference is kept below

-100 dB. However, Kulkarni et al. also note that these results do not seem practical.

Third comparison is made between OAB and IAB. It is shown that OAB can slightly

outperform IAB if the access/backhaul resource assignment is made according to the

load. If this assignment is made in a fixed fashion regardless of the expected load,

then IAB is the better choice. Finally, dual and single connectivity are compared in

terms of performance. It is shown that, performance gains with dual connectivity is

higher if there are load imbalances in single connectivity cases.

Zhang and Ansari investigate the backhaul-aware uplink communications in a full-

duplex drone BS-aided HetNet problem with the objective to maximize the total

throughput while minimizing the number of deployed BSs [73]. The authors de-

compose the problem into three parts, namely (i) joint user association, power, and

bandwidth problem, (ii) drone BS placement problem, (iii) determining the number

of drone BSs to be deployed. The first problem is solved using an approximation

algorithm. The second problem is solved using exhaustive search, while the third

problem is solved using linear programming. Simulation results show that the block-

ing ratio of the proposed algorithm outperforms the benchmark methods in terms of

total throughput and the blocking ratio.

Saadat, Chen and Jiang consider multi-hop backhauling for ultra-dense networks [74].

The authors propose a deployment scheme that allows multiple backhaul paths to

MBSs, helping overcome the blockage problem to some extent and improve over-

all reliability. The proposed method for backhaul is called the multipath multi-hop

(MPMH) backhaul. Saadat et al. assume that the small cell density is much higher

than the user density, and each SBS only serves one user. User-serving SBSs relay

their backhaul traffic via the closest SBS to the MBS. The backhaul routing is based

on minimizing the number of hops. The proposed MPMH backhaul is compared with

direct backhauling, multihop backhauling and multiple-association backhauling that

employs multiple paths between sender and receiver. Simulation results show that

MPMH backhaul outperforms all other alternatives regardless of the inter-site dis-

tance. It is also shown that multi-hop scheme significantly improves LoS probability.

Finally, as the inter-site distance increases, multipath scheme shows significant gains

over multi-hop scheme. Needless to say, MPMH backhaul incorporates the advan-
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tages of both schemes together.

Nasr and Fahmy analyze the scalability of ring and star topologies in mmWave back-

haul networks [75]. The network in question has one MBS with fiber connectivity and

multiple small cells with star or ring topology. Mesh topology uses multiple hops to

relay traffic to the MBS, whereas in star topology, every small cell has direct connec-

tion to the MBS. Simulation results show that initially, star topology performs better

but as transmit SNR increases, mesh topology performance increases faster. Similar

results can be observed for different small cell sizes as well. Increasing small cell

numbers almost linearly increases the performance for both topologies.

2.5.2.2 Lessons Learned

We highlight the following points for the deployment problem:

• UAVs are used for different purposes, such as content caching and performance

improvement. UAV deployment directly affects the performance gains from

such use cases. It is shown that with correct deployment, UAVs can be used as

small cells with better freedom and adaptability.

• With the new ultra-dense network architectures, hierarchical designs seem to be

advantageous. Using tree structures allow better flow designs for backhauling,

while mesh structures allow better flexibility and redundancy by employing

multiple links for backhauling. Mesh structures employ every small cell as

both an access node and a backhaul node for other small cells, whereas tree

structures make use of small cells that perform backhauling most of the time,

especially for nodes that have higher heights in the tree structure.

• Machine learning approaches are widely employed with UAV deployment prob-

lems, and with solid results. Machine learning approaches are also shown to be

quite fast, which is a significant step to realize a self-organizing network with

UAVs. Compared to the optimization approaches using linear programming

and similar formulations, machine learning approaches give flexibility to the

network to adapt to different conditions rapidly.
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2.5.2.3 Open Issues and Challenges

Current research on UAVs do not make use of mmWave frequencies. In the fu-

ture, UAVs can use mmWave frequencies for better performance. The deployment of

mmWave-using UAVs is an open research problem that requires investigation. This

problem has different facets such as vertical modeling, beam management, and an-

tenna design.

While UAVs and other mobile cell options provide flexibility for 5G networks, cur-

rent approaches are still not fast enough to be used for self-organizing networks on a

grand scale. Current formulations are often optimization problems that require con-

siderable time for solving. Consequently, these solutions do not use the mobility

capabilities to the fullest extent. Faster and more adaptable approaches are required

for self-organizing networks and this problem remains an open challenge. While

some machine learning approaches are performing in this area, there is still room for

improvement, especially for larger-scale self-organizing networks.

UAV and mobile cell mobility also presents problems for mesh and tree topologies, as

the moving cells alter the topology and adaptation to these movements are required.

This problem can be solved in a central or distributed fashion. While each seem to

have their own advantages, distributed approaches seem to have an edge since the

cells have a high volume of base stations. The adaptability of topologies is an open

challenge that needs an effective solution for a moving network with high perfor-

mance.

2.5.3 Coverage

In 5G, HetNets, and small cell deployments such as femto- or picocells are envisioned

to be employed for expanding cell coverage. As we mentioned in previous sections,

these technologies employ wireless backhauling and their performance is directly

linked with the wireless backhaul quality. Because of this, coverage enhancements

via wireless backhaul are frequently analyzed in the literature.
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2.5.3.1 State of the Art

Lukowa et al. evaluate the performance of IAB with central scheduling [76]. The

authors consider IAB with mmWave for coverage extension. Lukowa et al. also

propose two different TDD schemes, namely Split TDD, and Flexible TDD. In Split

TDD, data flows are split in the time domain for all cells, which avoids downlink-

to-uplink interference. In Flexible TDD, any BS can be scheduled for downlink or

uplink flow in any time slot, allowing effective multiplexing of downlink and uplink

slots. Beamforming is used to cancel out the interference and increase the coverage.

Power allocation for backhaul links are also controlled to protect the uplink access

from strong backhaul interference. Results show that while Split TDD achieves high

downlink throughput, Flexible TDD outperforms it even though interference is ar-

guably higher. The deployment of relay nodes also provides significant throughput

gains in the 5th percentile users for both downlink and uplink.

Qu, Li and Zhao study the coverage problem in device-to-device relay networks [77].

Qu et al. formulate the coverage problem to maximize the overall system downlink

rate. The proposed problem is transformed into a 0-1 integer programming problem

and the authors propose a novel algorithm that uses a greedy approach to find the

optimal solution. Simulation results show that the relay node covers a larger area as

it moves outward from the cell center. This is because the required bandwidth for

device-to-device communication gets less and the allocated resources can serve more

UEs. As the relay location grows, spectral efficiency goes up as the relay covers more

UEs, but then goes down as the backhaul link deterioration overpowers the coverage

increase. The proposed scheme is also shown to outperform the existing SINR-based

scheme.

Singh and Singh use full-duplex amplify and forward relays to enhance the cover-

age probability and the transmission capacity of D2D enabled cellular networks [78].

The authors derive closed form expressions for coverage probability and transmis-

sion capacity as a function of D2D user density and SIR threshold. Singh et al. also

analyze the effect of D2D user density, relay node density and D2D link distance

on the coverage probability and transmission capacity. Numerical results show that

for cellular users, coverage probability is improved with relay nodes as they enhance
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the SIR at receiver. For lower SIR threshold, coverage probability is higher and vice

versa. For D2D users, same phenomenon can be observed albeit with higher coverage

probabilities than the cellular users in all cases. The transmission capacity also in-

creases with the introduction of relay nodes for both cellular and D2D users, whereas

it decreases with higher SIR thresholds. The transmission capacity initially increases

for higher relay node densities, but after a certain density value, any increase results

in a decrease in the transmission capacity since the gains are overpowered by the

interference introduced with the high relay density.

In [79], Sharma, Ganti and Milleth have analyzed the coverage of a two-tier network,

in which small cells are connected to the MBSs wirelessly and use in-band full-duplex

communication. MBSs also serve the UEs, meaning that they have to manage the

resource split for access and backhaul. Coverage formulation is made for both IBFD

and FDD for both macro and small cells. These formulations are then compared in

simulations, which are shown to be on-par with the numerical results found. FDD

is shown to have a better coverage probability than IBFD for different configurations

of small cell signal-to-interference thresholds and small cells per macro cell ratios.

The authors have also introduced bias to the system to connect to small cells even if

MBS gives better SIR values. For high bias values, coverage as well as average rate

significantly decreases. IBFD suffers from inter-tier interference and low coverage

but provides higher rates.

Khan et al. use UAVs to outsource network coverage according to a desired QoS

requirement [80]. In the proposed system, UAVs belong to the operators and the op-

erators may use other operators’ UAVs to provide coverage. The authors propose a

reputation-based auction mechanism to model the interaction between the outsourc-

ing operators and the serving UAVs. To enforce the service level agreement, Khan

et al. propose a blockchain-based system using support vector machines (SVM) for

real-time autonomous and distributed monitoring of the UAV service. Simulation

results show that increasing the number of monitoring nodes also increases the prob-

ability of true classification and reduces the false alarm probability. Ergodic capacity

is shown to be positively correlated with the UAV cost for deviation. Furthermore, if

the UAV moves towards the area that requires coverage, service quality increases but

this also increases the cost since the old service area gets worse service.
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Kamel, Hamouda and Youssef investigate the uplink coverage and ergodic capacity

of mMTC considering an ultra-dense network environment [81]. Kamel et al. model

the small-scale fading using a general α− µ channel model and the Rayleigh fading,

and consider the direct MTC access mode where MTC nodes directly connect to

small cells. Analysis on the proposed system model reveals that the impact of high

density of small cells in UDNs relaxes the requirements on the maximum transmit

power, which in turn reduces the complexity, and increases the battery life and cost

savings. Simulation results show that the uplink coverage is significantly high at

relatively low coverage thresholds. 80% of the time, MTC nodes experience an SINR

of at most 0 dB. As the number of MTC nodes increase, the coverage performance

declines since the limited resources are allocated to a higher number of nodes. Higher

power truncation threshold results in a significantly higher coverage performance. As

the power truncation threshold gets smaller, the effect of MTC node density on the

coverage performance also decreases. This is because the network becomes noise-

limited at low power truncation threshold. Increasing the small cell density results

in a significant coverage performance gain, but after a certain density, the coverage

probability reaches a maximum. Increasing the MTC node density at low small cell

density results in a sharp decrease in coverage probability, but this decrease becomes

milder at higher small cell densities.

Zaidi et al. propose a network where UAVs are used as decode-and-forward relays

to extend the coverage [82]. NOMA is applied on two different set of users, namely

the ground users and the UAVs. UAVs are used to forward the data to cell-edge

users. Simulation show that the outage probability is reduced with increasing SNR

and reducing the value of threshold data rate. However, while increasing the transmit

power of the UAVs reduces the outage probability, this is not possible as UAVs are

power-limited. Increasing the altitude of UAVs also increases the outage probability.

Finally, it is shown that for the same parameters, NOMA outperforms OMA systems

by a significant margin.

Jo et al. employ a joint method of "iteration and convex optimization based on

power control (PC)" and "advanced range expansion (RE) technique" to overcome

the trade-off between the throughput maximization and coverage optimization in 5G

ultra-dense HetNets [83]. The authors derive the transmission power of optimal cov-
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erage in terms of minimal handover failure rates. Jo et al. try to minimize the sum

of handovers occuring too early or too late. Too early handover is defined as when

a handover occurs due to higher signal power from a target BS but actually the re-

ceived signal is enough to keep up the connection alive. Too late handover is defined

as when handover never occurs until the receiver power from serving BS decreases

below a certain threshold that is not high enough for connection. Jo et al. propose

an iterative power allocation algorithm for the derived power problem. Numerical

results show that the proposed algorithm shows 2-5% better fairness performance in

idle mode coverage compared to the benchmark methods. Moreover, RLF rate is

shown to converge to zero for the proposed algorithm whereas benchmark methods

do not converge. The proposed method also achieves almost the same result as the

power control algorithm that only focuses on maximizing the throughput.

Shokry et al. use UAVs as a cell-free network to provide coverage to vehicles on a

highway with no infrastructure [15]. Shokry et al. formulate the UAV trajectory deci-

sions as a Markov decision process and use deep reinforcement learning to learn the

optimal trajectories of the deployed UAVs to maximize the vehicular coverage. Deep

deterministic policy gradient is adapted to solve the continuous control task. Simu-

lations show that the proposed method consistently outperforms random dispatching,

fixed dispatching and hovering methods. The proposed method provides the desired

coverage with fewer UAVs compared to other methods. The authors also show that

the proposed method inherently reduces the energy consumption as well since adding

an energy penalty results in a reduction of only 16% in energy consumption.

Khoshkholgh et al. [84] propose a large-scale aerial-terrestrial HetNet and specifi-

cally focus on its coverage performance. The authors evaluate the coverage proba-

bility as the complementary cumulative distribution function of the SIR ratio. From

there, Khoshkholgh et al. conduct Monte Carlo simulations. Results indicate that in-

creasing the percentage of aerial BSs do not always result in a coverage increase.

Moreover, high-rise environments can support a higher aerial-to-ground BS ratio

since high-density blockages in such environments result in the dominance of NLOS

interference. Furthermore, the authors also report that due to the aggressive inter-

ference in UAV communication, densifying the network is especially destructive, re-

gardless of the environment. However, this effect can be mitigated by replacing some
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ground BSs while introducing aerial BSs. Finally, adjusting the height at which aerial

BSs reside can increase the coverage probability, especially at sub-urban environ-

ments in which the overall performance is lowest.

Azimi-Abarghouyi et al. [85] perform coverage analysis for finite wireless networks.

The authors model the network using stochastic geometry and Poisson point pro-

cesses. The given setup is highlighted as being useful for mmWave communications,

indoor, and ad hoc networks. The coverage probability is mathematically derived

with a lower bound as well. Numerical results indicate that there is an optimal dis-

tance of the user in terms of coverage probability. The tightness of the bounds are

validated with the numerical results. Finally, it is shown that coverage probability is

improved when the path loss exponent is larger.

Siddique, Tabassum and Hossain analyze the performance of spectrum allocation

schemes for IBFD and OBFD backhauling [52] and the coverage rate for these schemes.

The authors propose two schemes, namely maximum received signal power (max-

RSP) and minimum received signal power (min-RSP). It is shown that IBFD and

OBFD schemes work well in different environments in terms of coverage. For min-

RSP, SBSs that are farther from the MBS have higher coverage rates while closer ones

have lower coverage rates. Conversely, for max-RSP, the closer SBSs have higher

coverage rates. In terms of duplexing, IBFD scheme has better overall coverage rate

than OBFD scheme with both algorithms. In max-RSP case, OBFD backhauling

outperforms IBFD for the farthest SBSs only. Whereas in min-RSP case, OBFD

backhauling outperforms IBFD only for the closest SBSs.

2.5.3.2 Lessons Learned

We highlight the following points for network coverage with wireless backhauling:

• In terms of coverage, small cell usage is the best solution to cell-edge per-

formance issues to date. Employing SBSs to extend the coverage is a solid

approach that will be employed frequently in future networks.

• While mmWave communications have less range than the traditional sub-6

GHz frequencies, ultra-dense networking is made possible with mmWave us-
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age. In contemporary networks, deploying new BSs to improve coverage often

bring their own problems such as inter-cell interference. Using mmWave fre-

quencies with beamforming and mMIMO mitigates most of these problems,

and allows new deployments to extend network coverage.

• In terms of coverage, machine learning usage is very promising for future net-

works for a multitude of tasks such as mitigation of coverage holes or interfer-

ence. While the performance of these ML algorithms is solid in terms of net-

work KPIs, more research on such ML algorithms are required to make these

algorithms perform faster, allowing better response times to changing network

conditions.

2.5.3.3 Open Issues and Challenges

Coverage analysis is a tool that researchers have frequently used to show the per-

formance gains of small cell usage. Moreover, the chosen papers act as proof that

various concepts such as IBFD or aerial-terrestrial networks perform well. Though

coverage analysis is a general problem of networking, it is nevertheless important to

show that the performance of newer concepts are adequate.

Coverage enhancements are often made at the expense of capacity or throughput.

While coverage enhancements are very important for ubiquitous connectivity targets

for future cellular networks, these enhancements need to be able to satisfy the de-

mands of 5G networks. This is also due to the inherent characteristics of the frequen-

cies used for wide coverage; lower frequencies have better range but worse capacity.

This tradeoff is still an open research problem and its solution will directly allow

the operators to increase the coverage as well as the performance with the existing

hardware and infrastructure.

Network deployment is an area closely linked with coverage. Massive coverage gains

can be made at the table with the correct network deployment designs. Small cells

are at the heart of this phenomenon, and the points that we mentioned for network

deployment also hold for coverage to some extent.

Although we will mention the rural connectivity in a later section, bringing ubiq-
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uitous coverage while meeting the demands of 5G use-cases is a very challenging

task. Doing this in a rural context is even harder. While wireless backhauling makes

ubiquitous connectivity possible, there are challenges specific to rural connectivity in

terms of both coverage and performance. Therefore, ubiquitous coverage is still an

open challenge.

Satellites, UAVs, and HAPSs are also other network elements whose use are made

feasible with wireless backhauling. Currently, their main use-case is ubiquitous con-

nectivity and expanding the coverage of existing networks. Consequently, the chal-

lenges related to satellites, UAVs, and HAPSs are also in some sense open challenges

related to coverage.

Another point with wireless backhauling is that the traditional coverage models are

often 2D models. With mmWave usage and integration of UAVs, HAPSs, and satel-

lites, these models will no longer be accurate. Because of this, new 3D models for

coverage are required for efficient network designing [86].

Infrastructure sharing is another concept that can result in enhancement of coverage

quality and availability [86]. This concept not only reduces deployment and manage-

ment costs, but it also aids in coverage/capacity balance. Network slicing and other

technologies that can aid in infrastructure sharing in an effective manner should be

investigated in the future.
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CHAPTER 3

USER ASSOCIATION AND ROUTING PROBLEM IN HETNETS WITH

UAVS AS SMALL CELLS (UAV-UAR)

In this chapter, the problem of user association and routing in HetNets with UAV-SCs

(UAV-UAR) is introduced. First, the system model for IAB HetNet with UAV-SCs

is introduced. The developed model can also be presented as a flow network. This

flow network presentation is then used to formulate the UAV-UAR problem. Finally,

using the aforementioned formulation, a mixed-integer linear programming (MILP)

problem is proposed to solve the UAV-UAR problem.

3.1 The UAV-UAR Problem Definition

Consider a cellular network with UEs, MBSs and UAV-SCs. The network uses

mmWave frequencies to support high data rates. However, mmWave frequencies

have considerably lower ranges than sub-6 GHz frequencies due to high path loss and

sensitivity to blockage, foliage, and atmospheric attenuation. In the network model,

if a UE is close enough to an MBS, it will have a strong link, and consequently, high

capacity. This will not always be the case, and after some threshold distance, the link

capacity will be even worse than that of sub-6 GHz frequencies. The link deteriora-

tion problem can be solved by increasing the network density via introducing more

BSs. UAV-SCs come to the rescue by acting as BSs to serve UEs close to them.

While MBSs can send backhaul traffic back to core network easily via fiber links,

UAV-SCs do not have such capabilities. To operate as BSs, UAV-SCs have to send

their traffic to MBSs either directly, or via multiple hops using other UAV-SCs. In the

network model, MBSs serve UEs and UAV-SCs by acting as their core network entry
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point. UAV-SCs serve not only UEs but also potentially other UAV-SCs by providing

them access to an MBS.

The rationale behind using UAV-SCs instead of MBSs is twofold. Firstly, MBSs are

much costlier in terms of time and money than UAV-SCs due to their installation pro-

cedures. Secondly, for some scenarios (e.g. rural deployments), deploying MBSs can

simply be impossible due to nonexistent power links, or terrain conditions. MBSs and

UAV-SCs use mmWave frequencies to support high capacity connections. While for

MBSs, the advantage is better UE performance, UAV-SCs also make use of signif-

icantly better backhaul links, which in turn increases their capabilities to serve UEs

and give a service that is comparable to the MBSs in terms of performance.

All elements in the network use the same carrier frequencies for communication, in-

tegrating access and backhaul. This integration normally results in access-backhaul

interference, but also promotes frequency and hardware reuse, which makes it desir-

able. MmWave links use massive MIMO antenna arrays and beamforming to realize

point-to-point links. Directive nature of the links significantly mitigate the losses

related to mmWave frequencies, while also making the networks noise-limited in na-

ture instead of interference-limited. Due to beamforming, any interference or block-

age simply breaks the link, but the probability of such an occurrence is negligible.

Consequently, access-backhaul interference ceases to be a limitation for the proposed

network.

In the proposed network, there is a high chance that a UE has multiple available

links to different BSs. Choosing which of these available BSs serve the UE directly

affects the network throughput. Since short-distance links will possibly be the ones

that allow the highest capacity, choosing the link with the highest capacity might be

a sound action. However, consider a case where the closest UAV-SC has the highest

link strength, but it cannot backhaul the traffic to the core network as its available

backhaul hops are fully used. In such a case, the limiting factor is not the actual link

strength, but the available backhaul capacity for each BS.

To sum up, there are two problems related to the network throughput: the first one is

to choose which BS to serve a UE, and the second is to find backhaul routes to send

the user traffic from the UAV-SCs to MBSs. These problems will be the basis for
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Table 3.1: Variables used in problem formulation are presented in this table.

f [i, j] flow from vertex i to vertex j

c(i, j) capacity of the edge from vertex i to vertex j

ai,j binary value indicating whether flow from vertex i to vertex j is used or not

di throughput demand of i’th UE

S number of UEs

A number of UAVs

T number of MBSs

S set of vertices representing UEs

A set of vertices representing UAVs

T set of vertices representing MBSs

UAV-UAR problem, which will be detailed in the next section.

3.2 MILP Formulation for UAV-UAR

In this section, we will first define the two problems mentioned in the last section with

more detail. These detailed definitions will then form the basis for the UAV-UAR

problem definition. The variables and parameters used for the problem formulation

can be found in Table 3.1.

The first problem, namely choosing one of the available BS’s to serve the UE, is a

standard user association problem. A UE si has a throughput demand di. To satisfy

this demand, si has to choose a BS b ∈ {A, T }, and the capacity of the link between si

and b is csi,b. If b is a MBS i.e. b ∈ {T }, then the available capacity is the same as the

link capacity. Otherwise, b is a UAV-SC (i.e. b ∈ {A}), the link capacity provides an

upper bound to the available capacity. This is because while MBSs can directly send

the incoming traffic using fiber backhaul links, UAV-SC’s backhaul is not guaranteed

in this way, and uses wireless links. If the sum of capacities of available wireless links

is smaller than the link capacity between the user and UAV-SC, then the backhaul

capacity becomes the limiting factor.
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The backhaul capacity brings us to the second problem, namely routing the traffic

from UAV-SCs to MBSs. Unlike UEs, UAV-SCs can use multiple paths and multiple

MBSs to backhaul their traffic. UAV-SC’s are capable of concurrently serving users

and sending backhaul traffic. For this purpose, UAV-SCs first use any single-hop links

to MBSs. If these are not enough, then other UAV-SCs are queried for any available

backhaul routes. Finally, the sum of mentioned links gives the backhaul capacity and

how much user throughput can be supported. By routing traffic to the UAV-SCs that

are closer to MBSs, backhaul capacity can be greatly increased. A good solution of

routing problem will allow for a better capacity available to the users from UAV-SCs.

Combining the aforementioned two problems, we now define the UAV-UAR prob-

lem. Given a topology in the form of a graph G = (V,E) where V is the set of

network elements and E is the set of links between them, the objective is to find the

(UE,BS) tuples representing which user is served by which BS and flows f [i, j] be-

tween every network element that maximizes the total throughput achieved by UE’s

in the network. More formally:

Let G = (V,E) be a flow network where V = {S,A, T } is a set of vertices

and E is its edges. S = {s1, s2, . . . , sS} is the set of vertices representing the

UEs, A = {a1, a2, . . . , aA} is the set of vertices representing the UAV-SCs and

T = {t1, t2, . . . , tT} is the set of vertices representing the MBSs with fiber con-

nectivity. Source vertices are the vertices in the set S and sink vertices are in the set

T . For the edges (s, u) ∈ E, the capacity c(s, u) is a positive value that represents the

link capacity in the cellular network. The joint user association and routing problem

can be formulated as follows:
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max
f,a

∑
j∈V

f [i, j]ai,j, ∀i ∈ S (3.1)

s.t.
∑
j∈V

ai,j = 1,∀i ∈ S (3.2)

∑
j∈V

f [k, j] =
∑
j∈V

f [j, k],∀k ∈ I (3.3)

f [j, l] ≤ c(j, l),∀j, l ∈ V (3.4)∑
j∈V

f [i, j] ≤ di,∀i ∈ S (3.5)

∑
j∈V

f [i, j] ≥ 0,∀i ∈ S (3.6)

Objective 3.1 aims to maximize the total flow going out of all vertices in S, which

are source vertices, i.e. UEs. The objective uses flow values in conjunction with ai,j

values to enforce user association. Constraint 3.2 represents the user association in

such a way that every UE can only use one of its available links to a BS. Constraint

3.3 represents the flow conservation quality for intermediate nodes, i.e. the incoming

sum of flows to an intermediate node must be equal to the outgoing sum of flows.

As intermediate nodes cannot accumulate flows in them, any incoming flow must be

sent via edges that do not send any flows. Constraint 3.4 represents the flow capacity

constraint, i.e. a flow cannot be assigned a value that is greater than its capacity.

If users have an available flow that is greater than their demand, only the demand

should be allocated, as denoted in Constraint 3.5. Finally, Constraint 3.6 states that

UEs cannot have incoming flows.

Since the variables ai,j are binary and f [i, j] are non-integer finite values, the defined

problem can be formulated as a mixed-integer linear programming (MILP) problem.

To give an idea about the search space, consider S = 100, I = 20, T = 2, in which

case there is a total of 2662 links, assuming a topology where every user is connected

to every BS (22 links for each user, a total of 2200) and every BS has a connection to

all other BSs (21 links for every BS, a total of 462). There is a total of 2662 f [i, j]

and 2200 ai,j values to be assigned. For simplicity, assuming that f [i, j] can only take

discrete values in the range [0, 10000], which is larger and continuous in reality, the

problem complexity becomes 10000266222200 ≈ 1011310. In terms of input variables,

61



assuming S � A, T , the search space complexity is O(10000(S+I+T−1)IT2S(I+T )) =

O(104SIT ).

The MILP formulation has the advantage of guaranteeing optimal solution, meaning

that this approach results in a high-performance network using the full potential of all

available network elements. However, the cost associated with the MILP formulation

in terms of execution time and memory usage is quite high as well, to such an extent

that it is not suitable for real-time use. Because of this, while the MILP model is

suitable to show the performance ceiling of a network in a time snapshot, it is inad-

equate for a dynamic network where UAV mobility is quite high. We will alleviate

the problem of the MILP formulation with a novel algorithm that has significantly

better performance in terms of execution time, with minor sacrifices in throughput

performance. Chapter 4 will introduce heuristic solutions with the aforementioned

characteristics.
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CHAPTER 4

RELABEL-TO-FRONT ALGORITHM BASED SOLUTIONS TO THE

UAV-UAR PROBLEM

While the UAV-UAR problem can be modeled as an optimization problem, there are

also other approaches available. As we mentioned before in Chapter 2, flow net-

works can also be used to model cellular networks. Using a flow network allows the

formulation of UAV-UAR problem as a maximum-flow problem, which has a sig-

nificantly better performance in terms of execution time. However, the formulation

requires some work as the UAV-UAR problem has some constraints that does not fit

into maximum-flow problems by default.

As we mentioned in Chapter 2, push-relabel methods have the best time complex-

ity among algorithms for solving the maximum-flow problem. As the basis of our

algorithm, relabel-to-front algorithm defined in [33] is chosen. This algorithm is ex-

plained in detail in Chapter 2. In this chapter, we will first formulate the UAV-UAR

problem as a maximum-flow problem. During this formulation, we will show the

modifications that we make to extend the relabel-to-front algorithm to fit the UAV-

UAR problem. Later, on top of the relabel-to-front algorithm, we will introduce two

heuristic methods that use the relabel-to-front algorithm as a base, but have better

results in total throughput achieved.

4.1 Adaptation of the Relabel-to-Front Algorithm to the UAV-UAR Problem

Recall the mathematical definition in Chapter 3: Let G = (V,E) be a flow network

where V = {S,A, T } is a set of vertices and E is its edges. S = {s1, s2, . . . , sS} is

the set of vertices representing the UEs, A = {a1, a2, . . . , aA} is the set of vertices
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representing the UAV-SCs and T = {t1, t2, . . . , tT} is the set of vertices representing

the MBSs with fiber connectivity. Source vertices are the vertices in the set S and sink

vertices are in the set T . For the edges (s, u) ∈ E, the capacity c(s, u) is a positive

value that represents the link capacity in the cellular network.

The objective is to maximize total flow from UEs to MBSs. If we define S as the

set of source nodes and T as the set of sink nodes, the problem at hand becomes a

multi-source, multi-sink problem. By adding consolidated auxiliary nodes for sources

(denoted supersource) and sinks (denoted supersink), this problem is transformed into

a maximum-flow problem. Auxiliary nodes are connected only to their counterparts

with edges that have infinite capacity.

While this problem can be solved using relabel-to-front algorithm to find the max-

imum total flow, the solution will not be valid as in its default form, the algorithm

employs all available links from source nodes to allocate flows. In other words, the

algorithm violates the user association constraint. To make sure that the found solu-

tion conforms to all problem constraints, minor changes are necessary. After finding

a solution that maximizes the flows, if we eliminate the flows from source nodes in

such a way that only one outgoing link is used, then the solution becomes valid and

in this form, the algorithm can be used to solve the UAV-UAR problem. Since we

eliminate edges that violate the user association constraint, we name this algorithm

Relabel-to-Front-and-Eliminate (RTF-E).

RTF-E can be seen in Algorithm 6. The operation begins by calling the RELABEL-

TO-FRONT algorithm. After it has returned a solution, the algorithm starts iterating

all source vertices representing UEs in line 3. To select the ideal flow, the variable

ideal is initialized in line 4. Then, the algorithm iterates through all outgoing flows

from s in lines 5-9. The ideal flow is defined in such a way that (i) if there is at least

one flow greater than the s’s demand, then it is the flow with the least capacity, (ii)

if all flows have capacities less than s’s demand, then it is the flow with the most

capacity. Lines 6-7 perform the operation for condition (i) and lines 8-9 for condition

(ii). After finding the ideal flow, the flows are iterated again in line 10-14. All flows

except ideal are cancelled in lines 11-12. Line 13-14 checks that if the allocated

flow is greater than the demand, then it reduces the allocated flow to the s’s demand,
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removing the excess.

Algorithm 6 Relabel-to-Front-Eliminate
1: procedure RTF-E(G, S, T )

2: RELABEL-TO-FRONT(G, S, T )

3: for each vertex s ∈ S do

4: ideal← NULL

5: for each vertex i ∈ Adj[s] do

6: if f [s, i] > f [s, ideal] ∧ f [s, ideal] < ds then

7: ideal← i

8: else if f [s, ideal] > f [s, i] > ds then

9: ideal← i

10: for each vertex i ∈ Adj[s] do

11: if i 6= ideal then

12: f [s, i]← 0

13: else if f [s, i] > ds then

14: f [s, i]← ds

In terms of complexity, line 2 takes O(V 3) time since it is the default implementation

of RELABEL-TO-FRONT algorithm. For loop at line 3 takes O(V ) time, and in this

loop, all flows of a UE is iterated twice. A UE can be connected to at most A + T

vertices, but if we take this as V for simplicity, the complexity becomes O(V ) for

the first loop. Second loop makes the same iteration with O(V ). Therefore, loop at

line 3 has a complexity of O(V (V + V )), which is O(V 2). The overall complexity

becomes O(V 3 + V 2), which is effectively O(V 3). The complexity of RTF-E is

the same as relabel-to-front, and much better than the exponential complexity of the

MILP formulation.

In terms of correctness, relabel-to-front algorithm produces a valid flow network as

a solution. For UAV-UAR problem, only user association constraint is violated. In

the algorithm, the loop in lines 10-14 ensures that only one flow has nonzero value

for every vertex representing a UE. Except the variable ideal, all flows are set to zero

in line 12. Therefore, RTF-E algorithm solves the UAV-UAR problem. Note that in

the second loop, skew symmetry constraints are violated. However, to calculate the

end result, we are only interested in the outgoing flows from source nodes and not the
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overall graph. This does not mean that the result is invalid, as validating the graph

is not necessary since any updates will only reduce the assigned flows. Thus, the

links used will remain the same, making the result valid. As mentioned before, this

solution is not guaranteed to be an optimal one.

Arguably, RTF-E is a relatively easy adaptation to the relabel-to-front algorithm. In

the next sections, we will propose different heuristics with better performance.

4.2 Heuristic Preflow Initialization

While RTF-E is an easy implementation, it does no considerations in terms of per-

formance except keeping the link with the most allocated flow for every UE. In this

section, we propose a heuristic to allocate preflows in such a way that the initial as-

signment chooses the best flow from all available flows. We will first explain the ratio-

nale behind the proposed heuristic, and then explain the algorithm in detail. Finally,

we will perform the complexity and correctness analysis of the proposed heuristic.

In the relabel-to-front algorithm, first step is to initialize preflows from source(s).

After this step, the algorithm tries to discharge all excess flows accumulated in the

intermediate vertices. This operation solves the routing part of the UAV-UAR prob-

lem. Since source vertices are used only for preflow initialization and cancelling any

allocated preflow that could not be discharged to the sink(s), user association problem

must be solved in the preflow initialization.

When initializing preflows, relabel-to-front algorithm allocates all possible flows from

every source node. To realize user association, this process has to be changed in such

a way that only one preflow is allocated. This makes the initial state of the flow

network conforming to the user association constraint. Since the algorithm does not

perform any operations on source vertices except pushing allocated flows back if

needed, the flow network does not violate the user association constraint. Another

point to consider is the effect of the preflow initialization on throughput. Since this

decision is final, choosing a flow is basically determining an upper bound on the user’s

throughput. This is because during the execution of the algorithm, the allocated flow

is guaranteed to not go up, but may be pushed back by some amount if it cannot be
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discharged to one or more sink vertices. For this purpose, we propose a heuristic for

choosing the preflow. If there are no edges with a capacity that can satisfy the user’s

demand, then the edge with the most capacity is chosen. Otherwise, if there are a

number of edges that has more capacity than the user’s demand, among these edges,

the edge with the least capacity is chosen.

The rationale behind the heuristic is explained as follows. If no edges can fully satisfy

the demand, then choosing the one with the most capacity ensures that the potential

upper bound is the highest available. For the second case, if we have multiple alterna-

tives available, choosing the one with the least capacity leaves us room for potential

improvements. We will employ this characteristic in the third algorithm that we in-

troduce later in this chapter.

Algorithm 7 defines the procedure for heuristic preflow initialization. The procedure

first initializes height, excess, and flow values for all vertices in lines 2-6. Starting

from line 7, the algorithm iterates through source vertices with the variable s and

initializes their heights and finds the ideal preflow. Line 8 initializes the height, and

in lines 10-14, the algorithm iterates through all outgoing edges from s and finds the

ideal flow according to the conditions that we described in the previous paragraph.

Lines 11-12 handle the first condition and lines 13-14 handle the second condition.

After the ideal flow is found, the algorithm first finds the flow value for the ideal flow.

This is done in such a way that if it can satisfy the demand fully, then it is initialized

to the user’s demand (lines 15-16). Otherwise, the initialization uses the whole edge

capacity (lines 17-18). Lines 19-22 make the assignment of flows and excesses.
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Algorithm 7 Heuristic Preflow Initialization
1: procedure HEURISTICINITIALIZEPREFLOW(G, S)

2: for each vertex u ∈ V [G] do

3: u.height← 0

4: u.excess← 0

5: for each edge (u, v) ∈ E[G] do

6: f [u, v], f [v, u]← 0

7: for each vertex s ∈ S do

8: s.height← |V [G]|
9: ideal← NULL

10: for each vertex u ∈ Adj[s] do

11: if c(s, u) > c(s, ideal) ∧ c(s, ideal) < ds then

12: ideal← u

13: else if c(s, ideal) > c(s, u) > ds then

14: ideal← u

15: if c(s, ideal) ≥ ds then

16: cap← ds

17: else

18: cap← c(s, ideal)

19: f [s, ideal]← cap

20: f [ideal, s]← −cap
21: s.excess −= cap

22: ideal.excess += cap

The complexity of HEURISTICINITIALIZEPREFLOW has a complexity of O(V 2).

The first for loop (lines 2-4) iterates through all vertices, which hasO(V ) complexity,

and second for loop (lines 5-6) iterates through all edges withO(E) complexity. Final

for loop (lines 7-22) iterates through all source vertices, and in this loop all adjacent

vertices are iterated again in lines 10-14. Thus, the final for loop as a complexity

of O(V 2). For a fully connected graph, E ≈ V 2, and the final complexity becomes

O(V + V 2 + V 2), which is equal to O(V 2).
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Algorithm 8 Relabel-to-Front with Heuristic Preflow Initialization
1: procedure RTF-H(G, S, T )

2: HEURISTICINITIALIZEPREFLOW(G, S)

3: L← V − {S, T }
4: for each vertex u ∈ V [G]− {S, T } do

5: current[u]← N [u].head

6: u← L.head

7: while u 6= NULL do

8: old-height← u.height

9: DISCHARGE(u)

10: if u.height > old-height then

11: current[u]← N [u].head

12: u← next[u]

Using HEURISTICINITIALIZEPREFLOW(), we now define the Relabel-to-Front-Heuristic

(RTF-H). The algorithm 8 is basically the same as relabel-to-front algorithm defined

in Algorithm 5, but in line 2, we use our own heuristic preflow initialization. In terms

of correctness, this algorithm solves the UAV-UAR problem. Since the relabel-to-

front algorithm only violates the user association constraint, and line 2 solves this

problem as it only initializes one nonzero flow per user, the final solution conforms to

the UAV-UAR problem constraints. Heuristic preflow initialization has a complexity

of O(V 2), and the algorithm itself also has a complexity of O(V 3), meaning that the

overall complexity of this algorithm is also O(V 3). In other words, introducing the

heuristic preflow initialization incurs no performance loss compared to the relabel-to-

front algorithm.

While RTF-E provides a solution to the UAV-UAR problem, RTF-H is expected to

perform better in terms of total achieved throughput. RTF-E guarantees that it keeps

the best flow from all remaining outgoing flows of a user. However, during the exe-

cution of the algorithm, since all users flood the network with all available links, the

redundant capacity has to be discharged to the MBSs. While canceling the redundant

flows afterwards results in a valid solution for UAV-UAR problem, the redundant ca-

pacity may result in less useful capacity being discharged. This in turn may result in
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a non-ideal flow or the ideal flow with a less than optimal value being chosen. RTF-H

alleviates both these problems: Since it only allocates one flow per UE, the algorithm

does not handle any redundant flows. Furthermore, the flow selection selects the best

flow available. Thus, RTF-H algorithm starts its execution with the best upper bound

and is more likely to be closer to this upper bound in its final state.

4.3 Iterative Relabel-to-Front Algorithm

RTF-H is certainly an improvement over RTF-E, but as we mentioned before when

we explained the heuristic, there is room for improvement. Recall that if there are

multiple links available that can fully satisfy user demand, then the heuristic chooses

the link with the least capacity. If during the execution of the algorithm the assigned

flow gets reduced, other available alternatives may provide better results.

Consider this example: suppose a user s has a demand ds and there are two links to

vertices a, b available with c(s, a) > c(s, b) > ds. The heuristic initially chooses the

vertex b and assigns the flow f [s, b] ← ds. Yet, after the algorithm finishes, the flow

has a value that is less than ds. In this case, there is another alternative available with a

higher upper bound. The same argument can be made for cases where there is no edge

with the capacity higher than the user’s demand. In this case, ds > c(s, a) > c(s, b),

and the vertex a is chosen with the flow f [s, a]← c(s, a). Suppose after the algorithm

finishes, c(s, b) > f [s, a], in which case the higher bound that the vertex b provides

has the possibility of improving the assigned flow.

In both cases, while the alternatives available are not guaranteed to perform better

than the assigned flow in the end, their upper bound are higher than the final result.

Consequently, if we iteratively try other available alternatives for vertices whose de-

mands are not fully satisfied, the total achieved throughput may actually increase.

The algorithm can iterate until it founds a solution that is less than the previous one.

We call this algorithm Relabel-to-Front-Iterative (RTF-I), and present this as our final

heuristic method for UAV-UAR problem.

RTF-I algorithm uses RTF-H as its main operation, but performs the alternative flow

selections between every call. In the initial call to RTF-H, the algorithm initializes
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preflows as usual, but for subsequent calls, preflow initialization is not performed in

RTF-H. After RTF-H finds a solution, RTF-I has to reset the graph state for inter-

mediate and sink nodes in the same way as preflow initialization does. For source

vertices, RTF-I has to scan every edge to determine if there is an alternative with a

higher upper bound available. If so, the old flow is cancelled and new flow is ini-

tialized. After this is done for every source vertex, RTF-H is called again to find a

solution on the same graph, but with a different set of preflows.

We will now explain the operation of RTF-I, as defined in Algorithm 9. The algorithm

first makes a call to RTF-H. This call finds an initial solution and the graph state for

the iterative algorithm to work on. The algorithm has a while loop in lines 3-30 that

runs until RTF-H calls cannot improve the solution. The algorithm iterates through

all vertices with the variable v in lines 4-29. In this iteration, height, excess, and

flow states are reset for all intermediate and sink vertices in lines 25-29. For source

vertices, we first find the assigned flow in line 7. An if condition checks whether the

assigned flow is nonzero and less than the demand. Note that there can only be one

nonzero flow of a source vertex. If the flow is less than the demand, then the algorithm

searches for a better alternative in lines 9-13. This search is performed on all edges of

the source vertex v except the edge of the assigned flow. In this search, the heuristic

that RTF-H uses to select the ideal flow is directly used. Namely, if there are no edges

that can fully satisfy dv, then the edge with the highest capacity is chosen. This search

is made in lines 10-11. Otherwise, if there are edges with capacities higher than dv,

then among those edges, the edge with the least capacity is chosen in lines 12-13.

There is the possibility that the found ideal capacity is lower than the actual assigned

flow. Line 14 checks this condition and if this is the case, no changes are made to the

assigned flow and the loop breaks (line 25). However, if the capacity is higher, then

the old flow is reset and excess value is reduced accordingly for the receiving vertex

in lines 19-20. If the ideal edge has a capacity higher than dv, then dv is assigned

as the flow in lines 15-16. Otherwise, the flow fully uses the edge capacity in lines

17-18. Lines 21-24 make the assignment to the flows and excesses as necessary.

After this operation is performed for every source vertex, RTF-H is called in line

30. However, in this call, RTF-H does not make any preflow assignment as we have

already performed that step in the algorithm manually.
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Algorithm 9 Iterative Relabel-to-Front with Heuristic Preflow Initialization
1: procedure RTF-I(G, S, T )

2: RTF-H(G, S, T )

3: while RTF-H finds a better result than previous one do

4: for each vertex v ∈ V do

5: if v ∈ S then

6: for each vertex i ∈ Adj[v] do

7: if dv > f [v, i] > 0 then

8: ideal← NULL

9: for each vertex j ∈ {Adj[v]− i} do

10: if c(v, j) > c(v, ideal) ∧ c(v, ideal) < dv then

11: ideal← j

12: else if c(v, ideal) > c(v, j) > dv then

13: ideal← j

14: if c(v, ideal) > f [v, i] then

15: if c(v, ideal) ≥ dv then

16: cap← dv

17: else

18: cap← c(v, ideal)

19: i.excess −= f [v, i]

20: f [v, i], f [i, v]← 0

21: f [v, ideal]← cap

22: f [ideal, v]← −cap
23: v.excess← cap

24: ideal.excess += cap

25: break

26: else

27: v.height← 0

28: v.excess← 0

29: for each flow f [v, i], i ∈ A, T do

30: f [v, i]← 0

31: RTF-H(G, S, T )
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Recall that RTF-H has a complexity of O(V 3). RTF-I starts with a RTF-H call,

which has O(V 3) complexity. Then, the while loop iterates through all vertices with

the for loop at line 6. In this iteration, there are two nested for loops that iterate all

flows of a source vertex. There can be |V − 1| connections at most, meaning that the

complexity becomes O(V 3) for the loop at line 6. There is another for loop at line

29 that goes through all flows of a non-source vertex. This also has a complexity of

O(V ). Thus, the for loop at line 4 has a complexity of O(V 3+V 2). In the while loop

at line 3, there is a call to RTF-H, bringing the total complexity of the inner part of

the while loop to O(V 3 + V 2 + V 3). To find how many times the while loop can be

executed at most, we must find how many alternative flows the algorithm tries. In the

worst case, a source vertex must try every connection one by one, meaning that the

while loop will be called V times. Combining all these figures together, RTF-I has a

complexity of O(V 3 + V (V 3 + V 2 + V 3)), which is O(V 4).

In this chapter, we introduced three methods based on relabel-to-front algorithm that

all solve the UAV-UAR problem, with significantly better runtime performance, but

no optimality guarantee. In next chapters, we will present the simulator setup, em-

pirical results of the proposed algorithms, and make a detailed analysis in terms of

various parameters.
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CHAPTER 5

SIMULATION RESULTS AND DISCUSSION

In the previous chapters, we defined the UAV-UAR problem, provided an MILP

model and three heuristic algorithms based on the relabel-to-front algorithm and flow

network modeling. In this chapter, we will validate and assess the performance of

mentioned methods with simulations. First, we will generate the structures that will

represent the network and explain this process in detail. Later, we will use generated

topologies to perform Monte Carlo simulations, which will be used to analyze the

effect of various parameters on network performance. After all mentioned steps, we

will present the result of our simulations. The results will be presented in multiple

subsections, and each subsection will focus on the effect of one parameter on the

UAV-UAR problem. We will present the results grouped by the scenarios in every

subsection.

5.1 Simulation Scenarios

We identified two scenarios for UAV-UAR problem that fits its use-cases. 3GPP in-

troduces numerous use-cases and scenarios alongside their design parameters and

equations that define operation-related parameters such as LoS probability or path

loss. Two main scenarios interest us in this document: namely rural macro (RMa)

and urban macro (UMa) use-cases [87].

As we mentioned in Chapter 2, aerial network technologies are frequently mentioned

for enabling and/or improving rural connectivity. It is quite logical to apply UAV-

UAR problem in this context. There are two main motivations in a rural context:

the first motivation is bringing service using wireless backhauling, and the second
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Table 5.1: Variables used in simulations with their range of values.

Variable Explanation Values

x horizontal length of the oper-

ation area

2000 m for RMa, 1000 m for UMa

y vertical length of the opera-

tion area

2000 m for RMa, 1000 m for UMa

fc center carrier frequency 28 GHz and 60 GHz

f bandwidth 1.5 GHz and 3 GHz

Gt transmitter antenna gain 8 dBi

Gr receiver antenna gain 8 dBi

Pt transmit power [10,35] dBm

rec receiver sensitivity -98 dBm

di throughput demand of i’th UE [150,1200] Mbps

S number of UEs [200,500]

A number of UAVs [10,50]

T number of MBSs [2,4]

hUAV UAV height [30,300] m

hUE UE height 1.5 m

hMBS MBS height 35 m for RMa, 25 m for UMa

one is to make this service high-capacity and mmWave, using 5G infrastructure. In

a wide area, using some fixed MBS’s, we will try to serve a number of users using

UAV’s as their BS’s, employing wireless backhauling. For this use-case, we will use

28 GHz carrier frequency, which is in FR2 frequency band for 5G. While this carrier

frequency will not supply very high throughput, it is nevertheless more reliable than

higher frequency bands, and has less free space path loss. We will also use 60 GHz

frequencies for comparison.

Due to low LoS probability, urban scenarios are often very dependent on smart de-

ployment schemes to keep LoS connections. While the UAV-UAR problem is not

related with deployment, it can nevertheless be applied in urban scenarios to maxi-

mize throughput. Even though the algorithm will perform optimizations in terms of
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user association and routing, compared to the RMa scenario, deployment is a more

effective factor on throughput in UMa scenario. We will use the same frequencies for

UMa scenario as well. In urban scenarios, UAV’s can be employed to increase the

LoS probability and link strength by shortening the links between UEs and BSs.

For both scenarios, we will start with a fixed deployment scheme. All network ele-

ments will have randomized coordinates at first, which will also determine the link

strengths between them. The topology generation will be explained in the next sec-

tion. Link capacities will be determined using path loss and LoS probability equations

from 3GPP [87].

5.2 Topology Generation

After defining the scenarios that will be used for simulations, we need example

topologies that will be used to solve the UAV-UAR problem. We require a number of

UEs, UAV-SCs, and MBSs to form a network. This network will be conforming to

the network model that we introduced in Chapter 3 to define the UAV-UAR problem

on. To generate such a network, we first need the locations of the aforementioned net-

work elements. For this purpose, we define Algorithm 10, which will first generate

the coordinates for network elements.

The coordinates alone are not enough to form a network. Using the locations, we

will then introduce link and link capacities will be calculated using link budgets. Path

loss calculations will be done according to the formulas given by 3GPP [87] for our

scenarios. LoS probabilities are also needed to calculate path losses, which are also

given in 3GPP [87]. Using path losses, antenna gains, and noise, we calculate the

received power, and we then find the link capacity in terms of Mbps.

The algorithm GENERATETOPOLOGY starts by randomly generating coordinates in

line 2. x, y values use the values in Table 5.1 while z values are determined by height

values in the aforementioned table depending on the type of vertex initialized. In

three loops, source, intermediate, and sink vertices are generated. In lines 10-20,

using the generated coordinates, distances between two nodes are found. Then, using

this distance, LINKBUDGET finds the capacity using a path loss and LoS probability
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Algorithm 10 Topology Generation
1: procedure GENERATETOPOLOGY(S,A, T )

2: coordinates← Generate |V | random 3D coordinates

3: vertices← [ ]

4: for i in 0 to S do

5: vertices.append(VERTEX(TYPE=SOURCE))

6: for i in 0 to A do

7: vertices.append(VERTEX(TYPE=INTERMEDIATE))

8: for i in 0 to T do

9: vertices.append(VERTEX(TYPE=SINK))

10: for i in 0 to |V | do

11: v1 ← vertices[i]

12: c1 ← coordinates[i]

13: for j in 0 to |V | do

14: v2 ← vertices[j]

15: c2 ← coordinates[j]

16: if v1.type 6= SOURCE ∧ v2.type 6= SOURCE then

17: distance← EUCLIDEANDISTANCE(c1, c2)

18: if distance > 0 then

19: capacity ← LINKBUDGET(distance)

20: (v1, v2)← capacity

21: (v2, v1)← capacity
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specific for the scenario, distance, and other parameters. If both vertices are not

source vertices, two-way edges are generated with the found capacity at lines 20 and

21. If both are source vertices, we do not generate any links as UEs do not connect

to each other in cellular networks. In the end, we have a graph which represents

a network. Using this graph, the implemented algorithms will add necessary data

structures such as flows and solve the UAV-UAR problem.

5.3 Monte Carlo Simulations

After generating a topology as defined in the previous section, we will perform Monte

Carlo simulations to compare the results of MILP and RTF-based solutions. To solve

the MILP formulation, we use Gurobi solver [88] for Python. RTF-based algorithms

are implemented in Python. For a number of steps, we generate a topology, and

using this topology, find a MILP-based and a RTF-based result. Using multiple such

simulations, we find an averaged result.

In these simulations, we will first present the performance of RTF-based heuristics,

namely RTF-E, RTF-H, and RTF-I. After this, we will give a comparison of RTF-I

and MILP optimizer. We will perform simulations to see the effect of UAV height,

receiver sensitivity, transmit power, and different user demands. For all simulations,

our performance metric will be the total throughput and its ratio to the total demand.

5.4 Simulation Results

This section presents the results of our simulations. In the first subsection, a com-

parison of all RTF-based heuristics will be given. In the later subsections, we will

observe the effect of four parameters, namely different user demands, different trans-

mit powers, different receiver sensitivities, and different UAV operation heights.

The results that we present will be based on three metrics, namely total satisfied

throughput, satisfied throughput percentage, and associated user percentage. Total

satisfied throughput percentage denotes the total user throughput that the network

manages to handle and is used for MILP and RTF comparison figures. The second
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metric, namely the satisfied throughput percentage, is in figures that show the effect

of different simulation parameters under different user numbers. We use percentage

instead of total throughput simply to be able to normalize results based on user num-

bers and compare results under different user numbers. The final metric, namely the

associated user percentage, shows how many users managed to connect to the net-

work and have their data delivered to MBSs in any way. we denote connection as the

satisfaction demand of user being greater than 20%. Under this threshold, the user is

considered not connected to the network.

5.4.1 Performance of RTF-Based Heuristics

First of all, we will show the performance of proposed heuristics and MILP solution.

For this demonstration, we have two cases: RMa scenario with 28GHz carrier fre-

quency, and UMa scenario with 28 GHz carrier frequency. UAV and MBS numbers

are fixed to 30 and 4, respectively.

(a) Total throughput (b) Execution time

Figure 5.1: Comparison of RTF-based heuristics and MILP optimization in terms of

total throughput and execution time is shown.
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Figure 5.1 shows three heuristics and MILP optimization in two subfigures. Subfig-

ure 5.1a shows the number of users versus total throughput, whereas Subfigure 5.1b

shows the number of users versus execution time. In Subfigure 5.1a, MILP result

denotes the optimal result that can be found. Note that all RTF results are almost

identical to that of MILP, which is a testament to the performance of proposed heuris-

tics as they work almost optimal in this case. Real gains can be observed in Subfigure

5.1b, where the execution time of the algorithms are shown. MILP execution times

begin at 2 seconds and go as high as 10 seconds with the highest user count, whereas

all RTF methods have less than 0.2 second execution time with the highest user count,

which amounts to a speedup of 50 times.

Figure 5.2 shows the results in the same format but for UMa scenario with 28GHz car-

rier frequencies. In Subfigure 5.2a, in terms of throughput, except RTF-I, all results

are optimal whereas RTF-I is quite close to optimal. The real difference is evident

in Subfigure 5.2b where the execution time performance can be seen. In this sub-

figure, while RTF-E and RTF-H have significantly outperformed MILP, RTF-I has

significantly worse execution time than other two heuristics. Even so, RTF-I still out-

performs MILP until user count exceeds 500. The reason this happens is that when

the number of users gets higher, there are significantly more alternatives for RTF-I

to try. Furthermore, more users means more demand to satisfy, which increases the

problem difficulty, further degrading the execution time. These two characteristics

combined results in a significant performance loss, especially if RTF-I cannot attain

the maximum throughput in the first try.
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(a) Total throughput (b) Execution time

Figure 5.2: Comparison of RTF-based heuristics and MILP optimization in terms of

total throughput and execution time is shown.

Figure 5.3: Comparison of different user demands and user numbers in terms of sat-

isfied percentage is shown for RMa scenario and 28 GHz carrier frequency.
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5.4.2 Effect of User Demand

In this section, we will show the effect of user demand on the network performance.

For this purpose, demands ranging between CAT4 and CAT9 are used.

Figure 5.4: Comparison of different user demands and user numbers in terms of sat-

isfied percentage is shown for UMa scenario and 28 GHz carrier frequency.

For the effect of different user demands in RMa scenario, we present Figure 5.3. 28

GHz carrier frequency, 10 UAVs and 2 MBSs are simulated. This figure presents

the effect of increased user demand quite nicely. For every figure, the satisfied per-

centage drops when the user demand is increased. However, while for 200 users the

satisfaction is still above 90%, 300 users have a 17% drop, and this trend gets worse

for 400 and 500 users with 30% and 37% drops, respectively. For a fixed number

of UAVs and MBSs, the network can support only so much total demand, and after

a certain threshold, cannot fully satisfy users because of the limited backhaul capac-

ity. As the effect of demand increase becomes much higher with higher user counts,

consequently, the drop in satisfied percentage is also sharper.

Figure 5.4 shows different user demands and how much of them RTF-H managed

to satisfy. This graph is for UMa scenario and 28 GHz carrier frequency. UAV and
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MBS numbers are 30 and 4, respectively. The drop is almost linear for increasing user

demand. Moreover, the number of users does not seem to have any effect whatsoever,

the figures being more or less the same for different users. This suggests that another

parameter affects the performance here, namely the deployment of UAVs and MBSs.

Figure 5.5: Comparison of different user demands and user numbers in terms of sat-

isfied percentage is shown for UMa scenario and 60 GHz carrier frequency.

Figure 5.5 shows different user demands for UMa scenario and 60 GHz carrier fre-

quency. UAV and MBS numbers are 10 and 3, respectively. Same as the previous

figure, there is a negative correlation between the demand and satisfied percentage.

The number of users also seems to have no effect again, as all users have attained

more or less the same percentage.

5.4.3 Effect of Transmit Power

In this subsection, we will investigate the effect of transmit power on the network

performance.
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5.4.3.1 RMa Scenario

Next two simulations are performed using the RMa scenario.

In Figure 5.7, the effect of different transmit powers on RMa scenario can be seen.

For this simulation, 28 GHz carrier frequency is used. UAV and MBS numbers are

30 and 4, respectively. In terms of throughput, it can be seen from Subfigure 5.7a that

both RTF-H and MILP achieve optimal results. Subfigure 5.7b shows us interesting

information in terms of execution time. The increase in transmit power results in an

increase in the execution time. This can be seen especially in the MILP results, as the

execution time roughly doubles when the transmit power is increased from 30dBm

to 40dBm. This increase can be observed in the RTF-H execution times as well, but

their values are significantly less than the MILP ones. The reason for this increase

is that transmit power and number of links are positively correlated. This increase in

links also results in an increase in execution time as MILP/RTF takes into account

more flows.

In Figure 5.8, the effect of different transmit powers on 60 GHz carrier frequency can

be seen. UAV and MBS numbers are 30 and 3, respectively. In terms of throughput,

same as the last simulation, RTF achieves the optimal results of MILP. In terms of

execution time, values are significantly less than the ones in Figure 5.7, since there

is one less MBS. However, even though carrier frequencies are different, same trend

can be observed in the execution time, as it increases with higher transmit powers.

To show the effect of transmission power alone, we present Figure 5.6. The figure

shows transmit power versus satisfied percentage demand. UAV and MBS counts are

10 and 3, respectively. From the figure, it can be seen that as the number of users goes

up, the satisfied demand percentage goes significantly lower for all values of transmit

power. For 200 users, 25dB seems to be enough to satisfy the demand, but for higher

user numbers, the improvement still stands with higher transmit power. Furthermore,

as the number of users are increased, the effect of transmit power seems to be closer.

This shows that especially for lower number of UAVs and MBSs, increasing transmit

power might be a solution to increase network performance.
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Figure 5.6: Effect of transmit power on RMa scenario and 28 GHz frequency is

shown.

(a) Total throughput (b) Execution time

Figure 5.7: Comparison of different transmit powers on RMa scenario and 28 GHz

frequency in terms of total throughput and execution time is shown.
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(a) Total throughput (b) Execution time

Figure 5.8: Comparison of different transmit powers on RMa scenario and 60 GHz

frequency in terms of total throughput and execution time is shown.

5.4.3.2 UMa Scenario

Next two simulations are performed using the UMa scenario.

In Figure 5.9, the effect of different transmit powers with 28 GHz carrier frequency

can be seen. For this simulation, UAV and MBS numbers are fixed as 30 and 4,

respectively. In terms of throughput, the increase in transmit power did not result in

any apparent increase as the lowest value already attains optimal throughput. In terms

of execution time, RTF-H outperforms MILP as low as two times and as high as 10

times.

In Figure 5.11, the effect of different transmit powers with 60 GHz carrier frequency

can be seen. For this simulation, UAV and MBS numbers are fixed as 50 and 4,

respectively. Similar to the previous result, the optimal throughput is achieved. How-

ever, since the UAV counts in this simulation are significantly higher than the previ-
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ous one, the difference in execution time is also significantly higher, so much so that

RTF-H outperforms MILP by roughly 130 times.

(a) Total throughput (b) Execution time

Figure 5.9: Comparison of different transmit powers on UMa scenario and 28 GHz

frequency in terms of total throughput and execution time is shown.

Figure 5.10: Effect of transmit power on UMa scenario and 60 GHz frequency is

shown.
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(a) Total throughput (b) Execution time

Figure 5.11: Comparison of different transmit powers on UMa scenario and 60 GHz

frequency in terms of total throughput and execution time is shown.

Similar to RMa scenario, we present Figure 5.10 to show the individual effect of

transmit power. The figure shows transmit power versus satisfied percentage demand.

UAV and MBS counts are 20 and 3, respectively. Unlike the RMa scenario, however,

the results are stacked together, but they still show the positive correlation between

the transmit power and satisfied percentage. After 30 dBm, the satisfied percentage

goes above 90%, which is a very good increase from the initial point of 55%.

5.4.4 Effect of UAV Altitude

In this subsection, we will investigate the effect of UAV altitude on network perfor-

mance. We have tried three values for UAV altitudes, namely 70, 200, and 300m.
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5.4.4.1 RMa Scenario

In Figure 5.12, a RMa scenario network with 28GHz operating frequency can be

seen. For this simulation, UAV and MBS numbers are fixed in 30 and 3, respectively.

In Subfigure 5.12a, it can be seen that all simulations have attained the maximum

throughput. For execution time, Subfigure 5.12b shows that irrespective of the UAV

altitude, RTF-based methods significantly outperform the MILP optimization.

(a) Total throughput (b) Execution time

Figure 5.12: Comparison of different UAV altitudes on RMa scenario and 28 GHz

frequency in terms of total throughput and execution time is shown.

In Figure 5.13, same simulation is repeated with 60 GHz carrier frequency, and num-

ber of UAVs and MBSs are 30 and 3, respectively. In Subfigure 5.13a, it can be seen

that RTF results have achieved optimal throughput even with 300m UAV altitudes.

What’s different from the 28 GHz results can be seen in Subfigure 5.13b. Compared

to the 28 GHz simulations, execution times are worse for both cases. This is because

for 60 GHz carrier frequency, LoS is more difficult to establish when the distance is

increased, which in turn increases the execution time as there are fewer links that can
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handle user traffic. This is true for both access links and UAV-UAV and UAV-MBS

backhaul links.

(a) Total throughput (b) Execution time

Figure 5.13: Comparison of different UAV altitudes on RMa scenario and 60 GHz

frequency in terms of total throughput and execution time is shown.

Figure 5.14 shows the effect of UAV altitude more in-depth. 28 GHz carrier frequency

is used, with the number of UAVs and MBSs being 10 and 2, respectively. The effect

of increasing the UAV altitudes becomes more evident when the number of available

BSs is reduced. When the number of users is 200, UAV altitude does not affect

achieved throughput as severely, just a mere 7%. 300 users has a slightly worse drop

of 13%. The trend gets worse for higher user numbers with 400 users suffering a 24%

drop and 500 users a 35% one. As the UAV altitude is increased, the effect is worse

when the number of users are more.
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Figure 5.14: Effect of UAV altitude on RMa scenario and 28 GHz frequency is shown.

(a) Total throughput (b) Execution time

Figure 5.15: Comparison of different UAV altitudes on UMa scenario and 28 GHz

frequency in terms of total throughput and execution time is shown.
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5.4.4.2 UMa Scenario

In Figure 5.15, different UAV altitudes are tested in UMa scenario with 28 GHz car-

rier frequency. Number of UAVs and MBSs are 50 and 4, respectively. In Subfigure

5.15a, it can be seen that achieved throughput reduces with increasing UAV altitude.

In terms of execution time, compared to the RMa scenario simulations, the perfor-

mance gains are even more evident in Subfigure 5.15b, RTF-H outperforming MILP

by 25 and 135 times for 200 and 500 users, respectively.

Figure 5.16: Effect of UAV altitude on UMa scenario and 28 GHz frequency is shown.

Figure 5.16 shows the effect of UAV altitude for UMa scenario more in-depth. 28

GHz carrier frequency is used, with the number of UAVs and MBSs being 10 and 3,

respectively. Compared to RMa scenario, the results are once more stacked similar

to the other parameters. Furthermore, while the drop in RMa scenario is smoother,

UMa scenario has a sharper drop, especially after 120 m. The number of users seems

not to be having an inverse effect as the results are more or less the same for all user

numbers. This shows that the network is not limited in terms of total link capacity,

but something else, which is deployment, as we mentioned before for UMa scenario.
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Figure 5.17: Effect of UAV altitude on UMa scenario and 60 GHz frequency is shown.

Figure 5.17 repeats the last simulation but with 60 GHz carrier frequency. UAV and

MBS counts are the same as well. Compared to Figure 5.16, satisfied percentages

are shown to be even lower. Also, the drop in satisfied percentage is sharper. This

is mostly because 60 GHz frequency is affected more by deployment, which signif-

icantly degrades the performance in this case as Monte Carlo simulations randomly

assign locations for UAVs. Number of users also does not seem to have an adverse

impact as the results are more or less the same as before.

5.4.5 Effect of User Association

For UMa scenario simulations, the results do not seem to be on par with the RMa

scenario. To prove our hypothesis of deployment affecting the results, we present the

same results with more resolution and associated user percentage instead of satisfied

throughput. If our hypothesis is true, the associated user percentage should be the

same for a given parameter set even when the number of users is changed.
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Figure 5.18: Associated user percentages with different transmit powers in UMa sce-

nario and 28 GHz carrier frequency is shown.

Figure 5.19: Associated user percentages with different transmit powers in UMa sce-

nario and 60 GHz carrier frequency is shown.

Figures 5.18 and 5.19 show associated user percentages for different transmit powers
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for UMa scenario. Notice that the percentages are the same for a fixed transmit power.

In a backhaul-constrained network, it is expected that for a fixed set of parameters,

this percentage drops when the users are increased. This is because when the backhaul

capacity is fully allocated, new users cannot be served and user association percentage

drops. However, since these two figures show otherwise, backhaul links are available,

but the users cannot find any suitable connection to any of the available base stations.

Hence, the percentage remains fixed because of random deployment. Same trend can

be observed for UAV altitudes (Figures 5.22 and 5.23) and user demands (Figures

5.20 and 5.21) but in the opposite manner since these two parameters are negatively

correlated with network throughput whereas transmit power is positively correlated.

Compared to the UMa cases, Figure 5.24 shows the user association percentage on

different transmit powers in RMa scenario. The difference is evident; having more

users directly affects the performance and associated user percentage. Same trend can

also be observed in Figures 5.25 and 5.26.

Figure 5.20: Associated user percentages with different user demands in UMa sce-

nario and 28 GHz carrier frequency is shown.
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Figure 5.21: Associated user percentages with different user demands in UMa sce-

nario and 60 GHz carrier frequency is shown.

Figure 5.22: Associated user percentages with different UAV altitudes in UMa sce-

nario and 28 GHz carrier frequency is shown.
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Figure 5.23: Associated user percentages with different UAV altitudes in UMa sce-

nario and 60 GHz carrier frequency is shown.

Figure 5.24: Associated user percentages with different transmit powers in RMa sce-

nario and 28 GHz carrier frequency is shown.
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Figure 5.25: Associated user percentages with different user demands in RMa sce-

nario and 28 GHz carrier frequency is shown.

Figure 5.26: Associated user percentages with different UAV altitudes in RMa sce-

nario and 28 GHz carrier frequency is shown.
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5.5 Discussion

From the simulations, there are some lessons learned, and in this section, we summa-

rize the comments made in the previous section.

In terms of the performance of proposed heuristics, all three heuristics achieve the

optimal throughput that the MILP finds. The advantage in terms of execution time is

also quite significant for RTF-H and RTF-E; these methods usually outperform MILP

by 50 times or more. Furthermore, most of the time their execution times are less than

100 ms, meaning that they are very suitable for dynamic or even real-time networks

and their operations. RTF-I does a worse job than these two heuristics in terms of

execution time when it cannot find an optimal solution in the initial iterations, and

because of this, RTF-H is often found to be better than RTF-I, since the best result is

almost always the initial result found by RTF-H. Even though there are alternatives

available, not only they do not result in an improvement, but since they also result in a

worse network, the execution of RTF algorithm takes more time to allocate all flows.

Nevertheless, the performance gains from the heuristics remain significant.

In terms of scenarios, RMa scenario is found to be a better benchmark than UMa sce-

nario as it is less strict in terms of LoS probability and its effect on performance. 28

GHz carrier frequency is also better than 60 GHz carrier frequency in terms of per-

formance, as higher frequencies often require dedicated and specific channel models

and beamforming calculations. Currently, 28 GHz seem to be a better alternative as

it also allows users and base stations to use the same frequency. This is not possible

for 60 GHz as there are no antenna suitable for user devices in this frequency yet.

Even so, both scenarios and frequencies are shown to be performing in a specific set

of parameters, but careful planning is required to maximize the performance.

While the effects of different parameters on throughput is more evident on RMa sce-

nario, the UMa scenario does not show this trend. We explained the reasoning behind

this as the problems in deployment and user association. While the RMa scenario

gives better and more realistic results with Monte Carlo simulations, UMa scenario is

affected much more severely by deployment, and randomizing deployment in Monte

Carlo simulations blurs the effects of the parameters that are changed between simu-
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lations.

In terms of parameters, as we expected, UAV altitude and user demand are negatively

correlated with throughput, whereas transmit power is positively correlated. In terms

of transmit power, 30-35 dBm seem to be the sweet spot that enables solid perfor-

mance for even low numbers of UAV-SCs and MBSs. In terms of UAV altitude, the

performance drop seems to be sharper for 60 GHz as it is more susceptible to free

space path loss and LoS probability with higher distances. Altitudes up until 150 m

seem to be performing well after which we can observe a sharp performance drop.

Finally, user demand seems to have a linear effect when the number of users are the

same, but when these two numbers are both increased, since the increase in total

throughput is multiplied, the effect of higher demand becomes more severe.
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CHAPTER 6

CONCLUSION

In this chapter, we conclude this work and briefly discuss the possible future exten-

sions.

6.1 Conclusion

In this thesis, we firstly present background information on cellular networks, wire-

less backhauling, aerial networks, flow networks, and maximum flow problem. Build-

ing on top of this information, we introduce a network model, on which we define the

UAV-UAR problem. Firstly, we give a MILP formulation of this problem which is

optimal, but has a large runtime.

Since our network assumes UAV’s used as small cells, they are capable of 3D mobil-

ity, and the MILP based solution cannot handle it due to its large runtime requirement.

For this purpose, we resort to the relabel-to-front method, and develop three distinct

RTF-based heuristics for UAV-UAR problem. RTF-E employs the RTF method and

then eliminates all but the connection edge from all user’s outgoing edges. RTF-H

employs a heuristic preflow initialization in which the user association constraints are

conformed from the beginning, which removes the need to eliminate any edges that

do not satisfy the aforementioned constraint. Finally, RTF-I employs RTF-H itera-

tively by trying alternative edges that have a higher upper bound than the achieved

result.

Using Monte Carlo simulations, we show that RTF-based heuristics outperform the

MILP-based optimization in terms of execution time, while achieving comparable
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throughput results that are often within 5%. In terms of execution time, RTF-based

methods outperform MILP solution by roughly 20 and 1000 times, at worst and at

best, respectively. RTF-based solutions often have execution times less than 100ms,

and these figures go only as high as 200ms, which are still suitable for dynamic net-

works, whereas MILP methods have exeuciton times as high as 30s in worst cases.

We present results in terms of four parameters, namely the user demand, UAV height,

receiver sensitivity, and transmit power. As expected, user demand and UAV height

are negatively correlated with total satisfied throughput as increasing the demand in-

creases the link load whereas UAV height degrades the link capacity. Conversely,

receiver sensitivity and transmit power are positively correlated with the satisfied

throughput, albeit receiver sensitivity has only a minor impact. This is because links

that are broken because of receiver sensitivity are often NLoS, which has minute ca-

pacities often less than 1 Mbps anyway. For transmit power, correlation is strong as

it increases, link capacities also increase and new links can also be established.

To conclude, this thesis shows that the proposed RTF-based heuristics produce a valid

solution for UAV-UAR problem. RTF-based methods have quite fast execution time,

which makes them adequate to handle mobility. Furthermore, their performances are

comparable to optimal, meaning that there is no performance loss while improving

capabilities to handle mobility.

6.2 Future Work

First of all, while using Monte Carlo simulations for obtaining results, we have ran-

domly generated topologies. Especially for UMa scenario, deployment is very im-

portant to significantly improve LoS probability. Chapter 2 mentions various works

on deployment that aim to maximize network throughput by maximizing LoS. While

our main focus is routing and user association, using a deployment scheme will sig-

nificantly result in more performance, especially in cases where LoS probability is

affected heavily with distance.

Another extension can be made in the air interface modeling. We assume fixed

throughput per second, on which more realistic improvements can be made. There
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are various scheduling schemes that govern the air interface, which can improve the

realism and applicability of our work to cellular networks. Moreover, discrete event

simulators can be employed to set up a fully capable 802.11ay [89] network. Not only

this will improve the realism of simulations as these simulators fully implement net-

work stacks on all network elements, but they also have other alternatives available,

giving a myriad of possibilities to compare or test.

Finally, while our RTF-based heuristic methods are capable of handling mobility of

both UEs and UAV-SCs, this is not tested in this work. As an extension, modeling

mobility of network elements and showing the network performance under certain

types of mobility can be made. However, to model the mobility, topology also has

to be modeled as while UAV-SCs are flying and height topology is relatively easy to

model, UEs often use roads and are more susceptible to interacting with each other,

which requires significant consideration.
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