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submitted by SADIK TERZİ in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Mathematics Department, Middle East Technical
University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yıldıray Ozan
Head of Department, Mathematics

Prof. Dr. M. Hurşit Önsiper
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Department of Mathematics, METU

Prof. Dr. M. Hurşit Önsiper
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Department of Mathematics, Hacettepe University

Assoc. Prof. Dr. Tolga Karayayla
Department of Mathematics, METU

Assoc. Prof. Dr. Alp Bassa
Department of Mathematics, Boğaziçi University
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ABSTRACT

ON THE BMY INEQUALITY ON SURFACES

Terzi, Sadık
Ph.D., Department of Mathematics

Supervisor: Prof. Dr. M. Hurşit Önsiper

February 2022, 36 pages

In the thesis, we are concerned with the relation between the ordinarity of surfaces

of general type and the failure of the BMY inequality in positive characteristic. We

consider semistable fibrations π : S −→ C where S is a smooth projective surface

and C is a smooth projective curve. Using the exact sequence relating the locally

exact differential forms on S, C, and S/C, we prove an inequality relating c21 and

c2 for ordinary surfaces which admit generically ordinary semistable fibrations. This

inequality differs from the BMY inequality by a correcting term which vanishes if

the fibration is ordinary. In the last chapter we discuss an alternative approach which

relates the failure of the Bogomolov inequality (c21 ≤ 4c2) on a surface X to the

existence of torsors for some special X-group schemes.

Keywords: BMY inequality, ordinarity, semistable fibrations, torsors
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ÖZ

YÜZEYLERDEKİ BMY EŞİTSİZLİĞİ ÜZERİNE

Terzi, Sadık
Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. M. Hurşit Önsiper

Şubat 2022 , 36 sayfa

Bu tezde, positif mertebede genel tipdeki sıradan yüzeyler ve BMY eşitsizliğinin ge-

çersizliği arasındaki ilişki incelendi. Pürüzsüz projektif yüzey S ve pürüzsüz projektif

eğri C için π : S −→ C yarı kararlı liflemeleri üzerinde çalışılmıştır. S, C ve S/C

üzerindeki yerel diferansiyel tam formlarla alakalı tam dizileri kullanarak, jenerik sı-

radan yarı kararlı lifleme gösteren sıradan yüzeylerin c21 ve c2 değişmezleri üzerine bir

eşitsizlik ispatlandı. Bu eşitsizlik, sıradan lifleme söz konusu olduğunda yok olan bir

düzeltme terimiyle BMY eşitsizliğinden farklılaşır. Son bölümde X yüzeyi üzerin-

deki Bogomolov eşitsizliğinin (c21 ≤ 4c2) geçersizliği ile bazı özel X-grup şemaları

için kıvrımların varlığını alakalandıran alternatif bir yaklaşım yorumlandı.

Anahtar Kelimeler: BMY eşitsizliği, sıradan, yarı kararlı liflemeler, kıvrımlar
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Prof. Dr. Tolga Karayayla and Assoc. Prof. Dr. A. U. Özgür Kişisel for their
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CHAPTER 1

INTRODUCTION

In this thesis, we are concerned with the failure of Bogomolov-Miyaoka-Yau (BMY)

inequality

c21(X) ≤ 3c2(X)

on surfaces in positive characteristic.

We know that for any complex projective smooth minimal surface X of general type,

the following holds:

• c21(X) > 0 (self-intersection number of the canonical bundle),

• c2(X) > 0 (topological Euler characteristic),

• c21(X) ≤ 3c2(X) (BMY inequality).

Over fields of characteristic p > 0, there exist surfaces of general type which violate

BMY inequality. In fact, we have surfaces of general type with c2 < 0; in what

follows we will consider only surfaces with positive c2. It was conjectured that a

modified form of the BMY inequality which contains a correction term measuring

non-smoothness of the Picard scheme holds for all surfaces in characteristic p ([14]).

This conjecture was disproved by Jang. In fact, he proved that there is no positive

constant M such that the relation c21 ≤Mc2 holds on all surfaces of general type with

smooth Picard scheme.

Theorem 1. [6, Section 3, Theorem] For any M > 0, there is a smooth proper

surface of general type X over a finite field whose Picard scheme is smooth and
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c21(X) > Mc2(X).

To get a better insight, we quot some recent results leading to further counter exam-

ples to BMY inequality in characteristic p.

In [2], Easton uses a concrete geometric approach to produce a family of counter-

examples to BMY inequality for surfaces. These surfaces are abelian covers of P2

branched over particular arrangements of lines which exist only in positive character-

istic.

Theorem 2. [2, Section 3, Theorem] For each prime q ≥ 3 and all sufficiently large

primes p ∼= −1 (mod q), there exists a surface S in characteristic p, nonsingular and

of general type, with
K2
S

χ(OS)
> 9.

In [20], Urzua constructs surfaces of general type (which are étale simply connected)

with smooth Picard schemes for which c21/c2 is dense in [2,∞).

Theorem 3. [20, Theorem 6.6] Let k be an algebraically closed field of characteristic

p > 0. Then, for any real number x ≥ 2, there are minimal surfaces of general type

X over k such that

1. c21(X) > 0, c2(X) > 0,

2. πét
1 (X) is trivial,

3. H1(X,OX) = 0,

4. and c21(X)/c2(X) is arbitrarily close to x.

These phenomena give rise to two intriguing problems in positive characteristic.

1) To determine the precise conditions on surfaces of general type in character-

istic p > 0, under which the BMY inequality (or a version with an additive

correcting term) holds.

2) To find relations of BMY type between the invariants c21, c2 of surfaces of gen-

eral type under varying hypotheses.
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One may conjecture that the modified form of BMY inequality, if exists, should have

a term which accounts for the pathological behaviour of the sheaves of locally exact

differentials in characteristic p (non-ordinarity of the surface and of the Picard scheme

of the surface) (*). This is the point of view we adapt in this thesis.

Recently, K. Joshi obtained inequalities relating c21, c2 for surfaces of general type

under additional hypotheses. A notable relation is the inequality c21 ≤ 5c2 for minimal

surfaces of general type which are Hodge-Witt and satisfy certain extra hypotheses.

Theorem 4. [7, Theorem 4.7.8] Let X be a smooth, projective, minimal surface of

general type. Assume

1. c2(X) > 0,

2. pg > 0,

3. X is Hodge-Witt,

4. Pic(X) is reduced or H2
cris(X/W ) is torsion free,

5. and H2
cris(X/W ) has no slope < 1/2.

Then c21(X) ≤ 5c2(X).

Now, we briefly explain the content of each chapter of the thesis.

The background material in Chapter 2 contains definitions and some basic facts about:

• semistable fibrations on surfaces and their invariants

• absolute, relative, and arithmetic Frobenius morphisms

• locally exact differential forms on varieties

• ordinarity of varieties, relative ordinarity for surfaces fibered over curves and

the notion of being generically ordinary

• group schemes and group torsors

3



In Chapter 3, we first prove the following Proposition.

Proposition 5. Let π : S −→ C be a fibration. Then there exists a morphism of

OS-modules ϕ : π∗FC∗Ω
1
C/k −→ FS∗π

∗Ω1
C/k.

Next we prove

Lemma 6. Let π : S −→ C be a fibration on a smooth projective surface S and let

W be the arithmetic Frobenius morphism (Definition 17). Then one has a short exact

sequence

0 −→ π∗B1
C/k −→ B1

S/k −→ W∗B
1
S/C −→ 0. (4)

This exact sequence is the main tool in proving our main result in Chapter 4, which

concerns ordinary smooth projective surfaces of general type which admit generically

ordinary semistable fibrations. For such a surface we prove an inequality relating

c21 and c2, which differs from the BMY inequality by an additive term that vanishes if

the fibration is ordinary.

Theorem 7. Let S be an ordinary smooth projective surface which admits a gener-

ically ordinary semistable fibration π : S −→ C of genus g ≥ 2 over a smooth

projective curve of genus q ≥ 1. Then the invariants c21 and c2 satisfy the following

equation

c21 = 2c2 +
12

p− 1
.h1(B1

S/C)− 3δ

where δ is the total number of singular points in the fibers of π.

Corollary 8. Under the hypotheses of Theorem 7, the following inequality holds

c21 ≤ 3c2 +
12

p− 1
.h1(B1

S/C)− 4δ.

We also have the following lemma which provides examples of surfaces for which the

BMY inequality holds. In the proof of this lemma, we will use the basic properties of

the Ekedahl-Oort strata in A∗
g,1,n ([13], Sections 2-6).

Lemma 9. Let π : S −→ C be a semistable fibration of genus g ≥ 2 such that

the fibers are all (i) ordinary, or (ii) of p-rank g − 1, or (iii) supersingular but not

superspecial, or (iv) superspecial. Then π is isotrivial. Hence, the BMY inequality

holds on the surface S.
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In Chapter 5; we address the existence of a special type of inseparable Galois covers,

namely the principal homogeneous spaces on X for groups of type GL
a,b defined in

[19]. These covers contain as a particular case the αL−covers (Definition 37) of X .

This approach is motivated by the work of Mukai ([12]) on surfaces of general type

(with negative c2) which violate Kodaira vanishing theorem (KVT) and the paper by

Shepherd-Barron ([15]) on the Bogomolov inequality on surfaces. In both of these

papers one of the key ingredients is the construction of a purely inseparable finite

cover of the given surface.

We prove an elementary triviality result for αL−covers arising from suitable pairs

(X,L) of a surface X and a line bundle L on X (Lemma 10).

Lemma 10. Let X be a projective smooth surface and L be a line bundle on X such

that one of the following conditions holds.

a) X lifts to W2(k) and L−1 is numerically effective,

b) X is ordinary in dimension one, H0(X,L ) ̸= 0 where L is an invertible sheaf

corresponding to L,

c) L−1 is ample and either

• Pic0X is smooth or

• (X,L−1) lifts to characteristic zero with ramification index e < p− 1.

Then there exists no non-trivial αL−torsors on X . □

This result ties in with the fact that in characteristic p = 2, if X lifts to W2(k) then

a vector bundle E of rank two which violates the Bogomolov inequality is unsta-

ble ([15], Corollary 11). We also remark that since the existence of infinitesimal

unipotent covers of a variety is related to the non-ordinarity of its Picard scheme, the

triviality results obtained may be considered as some weak evidence in support of the

conjectural statement (*) given above.

Throughout this thesis, our notation is as follows:
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Our base field is k = F p for some prime p > 0.

S is a projective smooth surface of general type over k.

C is a projective smooth curve of genus q ≥ 1.

π : S −→ C is a semistable fibration of genus g ≥ 2.

ωS/C is the relative canonical bundle.

Mg is the moduli space of smooth genus g curves.

Mg is the moduli space of stable genus g curves.

Ag,1,n is the moduli space of principally polarized abelian varieties of dimension g

with a symplectic level-n-structure.

A∗
g,1,n is the Satake compactification of Ag,1,n.

FX and F are absolute and relative Frobenius morphisms, respectively, for a variety

X .

F also denotes Frobenius morphism on the cohomology groups of a variety X .

B1
X/k is the locally exact differential forms for a variety X .

B1
X/Y is the relative locally exact differential forms for a morphism f : X −→ Y .

PicX is the Picard scheme of X .

Pic0X is the connected component of PicX containing identity.

NS(X) is the Neron-Severi group of X .

C++(X) is the positive cone in NS(X).

W (k) (resp. W2(k)) is the ring of Witt vectors (resp. Witt vectors of length two).

µp, αp are the standard infinitesimal group schemes.

For an abelian variety A, A[p] is the subgroup scheme kernel of multiplication by p.

For an algebraic group scheme G, τ(G) = dimkHom(αp, G).

6



CHAPTER 2

PRELIMINARIES

In this part, we state basic facts about semistable fibrations, ordinarity of varieties

(especially of surfaces), group schemes and group torsors. We also include basic co-

homological tools that we shall use in the rest of the paper.

2.1 Semistable fibrations

Definition 11. Let C be a projective curve over an algebraically closed field k. We

say that C is stable (resp., semistable) if:

a) C is connected and reduced,

b) all singular points are normal crossings, and

c) an irreducible component, isomorphic to P1, meets the other components in at

least three (resp., two) points.

The relative version is given in the following definition.

Definition 12. A proper flat morphism of schemes f : X −→ Y is said to be a

(semi)stable curve over Y if every geometric fiber of f is a (semi)stable curve.

From now on, we are concerned with semistable fibrations π : S −→ C of genus

g ≥ 2 on smooth projective surfaces S where the base curve C is smooth of genus

q ≥ 1. Let T ⊂ C be the set of points over which the fiber is not smooth and t be the

cardinality of T .
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Definition 13. A semistable fibration π : S −→ C is called isotrivial if there exists

a finite morphism ϕ : C ′ −→ C such that the fiber product S ×C C
′ is, birationally

on C ′, isomorphic to the trivial fibration. In this case, one can assume that ϕ is étale

on C − T .

Remark 14. For a given semistable fibration π : S −→ C, the following hold:

1) We have a morphism απ : C −→ Mg and απ is constant iff π is isotrivial.

2) The uniqueness of the semistable model implies that if the fibration π is isotriv-

ial, then it is smooth.

Next we discuss some basic invariants of semistable fibrations. For a semistable

fibration π : S → C, we define the following invariants:

1) d = degree(π∗ωS/C),

2) δ =
∑
P∈T

δP where δP is the number of singular points in a fiber,

3) c1 and c2 are the first and the second Chern classes of S,

4) N =
⊕

P :sing in a fiber

iP ∗(k(P )).

These invariants satisfy the following relations [17, Sections 0-1, pp.46-49].

i) χ(OS) =
c21 + c2
12

= χ(π∗OS)− χ(R1π∗OS),

ii) c21 = 12d− δ + 8(g − 1)(q − 1),

iii) c2 = δ + 4(g − 1)(q − 1).

From the equations in ii) and iii), we obtain the equality c21 = 2c2 + 12d− 3δ.

We also have the following exact sequences (loc. cit.).

5) 0 −→ π∗Ω1
C −→ Ω1

S/k −→ Ω1
S/C −→ 0

6) 0 −→ Ω1
S/C −→ ω1

S/C −→ N −→ 0

8



2.2 Ordinarity

In this section, we first consider the absolute, the arithmetic and the relative Frobenius

morphisms for a morphism f : X −→ Y of varieties in characteristic p > 0.

Definition 15. The absolute Frobenius morphism FY : Y −→ Y is given by the

identity map on the underlying topological space and the p-th power map on the

structure sheaf.

Remark 16. The following diagram is commutative:

X X

Y Y

FX

f f

FY

Definition 17. The arithmetic Frobenius morphism is the morphism

W : X(p) = X ×(Y,FY ) Y −→ X

obtained from FY by the base extension.

It follows from Remark 16 that there exists a unique morphism F : X −→ X(p) over

Y fitting into the following commutative diagram.

X

X(p) X

Y Y

FX

f

F

W

f (p) f

FY

Diagram 1

Definition 18. F : X −→ X(p) is called the relative Frobenius morphism .

We next discuss the concepts of ordinarity and generic ordinarity. For a variety X of

dimension n, we have a complex

0 −→ FX∗OX
d1−→ FX∗Ω

1
X/k

d2−→ FX∗Ω
2
X/k

d3−→ · · · dn−→ FX∗Ω
n
X/k −→ 0.

9



The sheaf Im(di) is called the sheaf of locally exact i-th differential forms and is

denoted by Bi
X/k. Notice that B1

X/k = Coker(FX) and thus sits in the short exact

sequence

0 −→ OX
FX−−→ FX∗OX −→ B1

X/k −→ 0. (1)

Definition 19. ([5], Definition 1.1) We say that X is ordinary if H i(X,Bj
X/k) = 0

for all i and j.

We recall the characterization of ordinary curves and surfaces in terms of the action

of Frobenius on the cohomology.

1) Let X be a smooth projective curve of genus g. Set V = H1(X,OX).

Let Vn = {ξ ∈ V | Fm(ξ) = 0 for some positive integer m} be the subspace

on which F is nilpotent and Vs the complement of Vn in V . In fact,

Vs = Span({ξ ∈ V | F (ξ) = ξ}).

The natural number σX = dimk(Vs) is called the p-rank of X . The following

facts are well-known:

a) X is an ordinary curve if and only if σX = g.

b) The p-rank of a curve coincides with the p-rank σJ of its Jacobian.

c) For a semistable curve X , the Jacobian sits in an extension of group

schemes

0 −→ Gs
m −→ JX −→ A −→ 0

where A is an abelian variety. We define the p-rank of X by setting

σX = s+ σA.

2) Let S be a surface. By using the short exact sequence (1) and Serre duality, we

see that S is ordinary if and only if H i(S,B1
S/k) = 0 for all i. This condition is

equivalent to requiring

F : H i(S,OS) → H i(S,OS)

be bijective for i = 1, 2.

10



Definition 20. ([6], Definition 2.8) Let π : S −→ C be a proper semistable fibration.

We say that π is generically ordinary if at least one closed fiber of π is ordinary.

(Hence almost all closed fibers of π are ordinary.)

Recall that the BMY inequality is the relation

c21(X) ≤ 3c2(X)

between the Chern classes of the smooth projective surface X .

Remark 21. We can verify the BMY inequality on certain minimal surfaces of gen-

eral type by computing directly c21 and c2. For example:

1) Let π : X −→ C be any smooth isotrivial fibration with g(C) ≥ 2 and g(F ) ≥
2. Then we have

c21(X) = 8(g(C)− 1)(g(F )− 1)

c2(X) = 4(g(C)− 1)(g(F )− 1)

and so c21(X) = 2c2(X).

2) Let X be any complete intersection smooth surface of general type of degree

d = (d1, d2, · · · , dn−2) in Pn. We assume that
∑
i

di > n + 1 and we set

ξ = OX(1). Then we have

c21(X) =

[
−n− 1 +

∑
i

di

]2

ξ2 (2.2.1)

c2(X) =

[
(n+ 1)n

2
− (n+ 1)

∑
i

di +
∑
i≤j

didj

]
ξ2 (2.2.2)

and so c21(X) ≤ c2(X).

In particular, the BMY inequality holds on any smooth surface of degree d ≥ 5

in P3.

2.3 Group schemes and group torsors

Definition 22. ([18], Definition 1.5) Let X be a scheme and G be a scheme over X .

Let m : G × G −→ G be a morphism. We say that (G,m) is a group scheme if

11



m(Y ) : G(Y )×G(Y ) −→ G(Y ) gives G(Y ) a group structure in the category (Gr)

of groups for any scheme Y over X . A homomorphism between group schemes G

and H is a morphism ϕ : G −→ H such that ϕ(Y ) : G(Y ) −→ H(Y ) is a group

homomorphism.

Remark 23. ([18], Section 2.2) Let A be an R-algebra. let G = Spec(A) be an affine

scheme over X = Spec(R). To give a group structure on G is equivalent to give a

Hopf R-algebra structure on A. The last one is equivalent to give three R-algebra

homomorphisms

• s : A −→ A⊗R A

• e : A −→ R

• i : A −→ A

which satisfy the following rules for composition of R-homomorphisms

• (idA⊗s) ◦ s = (s⊗ idA) ◦ s

• (idA⊗e) ◦ s = α ◦ idA

• (s, idA) ◦ s = ϵ ◦ e

where α : A −→ A⊗RR is an isomorphism given by α(ra) = a⊗ r and ϵ is the map

which gives the R-algebra structure on A.

We have the following well-known examples:

Example 24. Affine additive group Ga

1. A = R[x] is polynomial ring over R.

2. s(x) = 1⊗ x+ x⊗ 1 (comultiplication)

3. e(x) = 0 (counit)

4. i(x) = −x (antipodal map)

Example 25. Affine multiplicative group Gm

12



1. A = R[x, x−1] is polynomial ring over R.

2. s(x) = x⊗ x (comultiplication)

3. e(x) = 1 (counit)

4. i(x) = x−1 (antipodal map)

Let R = k be an algebraically closed field of positive characteristic p.

Definition 26. The infinitesimal group schemes αp and µp are defined by the follow-

ing short exact sequences

0 −→ αp −→ Ga
F−→ Ga −→ 0, (2.3.1)

1 −→ µp −→ Gm
[p]−→ Gm −→ 1, (2.3.2)

respectively where F (Frobenius morphism) and [p] (the p-th power map) are obvi-

ously group scheme homomorphisms.

Let G be a group scheme which is flat and locally of finite type over X and S be a

scheme over X .

Definition 27. We say that G acts on S if there is a morphism S×X G −→ S so that

G(Y ) acts on S(Y ) in the usual sense for all scheme Y over X .

Definition 28. ([10], Definition 4.1.) Let S be an S-scheme on which G acts. S

is said to be a G principal homogenous space or a G torsor if there is a covering

(Ui −→ X) for the flat topology on X such that S ×X Ui is isomorphic with its

G×X Ui-action to G×X Ui.

The following proposition gives a characterization of the αp and µp torsors in terms

of differential forms on X .

Proposition 29. ([10], Proposition 4.14) Let X be a smooth variety over a perfect

field k of positive characteristic p. Then

H1(Xfl, αp) = {ω ∈ H0(X,Ω1
X) | dω = 0,C (ω) = 0}

13



and

H1(Xfl, µp) = {ω ∈ H0(X,Ω1
X) | dω = 0,C (ω) = ω}

where C is the (p−1)−linear Cartier operator.

The Cartier operator C defined in [8, 7.2] is a 1/p−linear operator fitting on the

short exact sequence

Ωi−1
X

d−→ ZΩi
X

C−→ Ωi
X

where ZΩi
X is the closed differential i-forms.

The operator C satisfies the following properties

1) C (1) = 1

2) C (df) = 0

3) C (fpω) = fC (ω)

4) C (fp−1df) = df

5) C (df/f) = df/f

6) C (α ∧ β) = C (α) ∧ C (β)

for all closed forms α, β, ω and for all functions f .
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CHAPTER 3

SOME LOCAL ALGEBRA

Let π : S −→ C be a fibration as in Chapter 1. Then one has the following short

exact sequence of OS-modules

0 −→ π∗Ω1
C/k −→ Ω1

S/k −→ Ω1
S/C −→ 0. (2)

Since FS is a finite morphism, we obtain the following exact sequence

0 −→ FS∗π
∗Ω1

C/k −→ FS∗Ω
1
S/k −→ FS∗Ω

1
S/C −→ 0 (3)

applying FS∗ in (2).

In Lemma 6, we prove the existence of a short exact sequence of sheaves of locally

exact differential forms (analogous to (3)). To this end, we first recall the definition of

the relative locally exact differential formsB1
S/C . Using the relative deRham complex

0 OS Ω1
S/C 0d

and the relative Frobenius map F : S −→ S(p), we obtain a complex

0 F∗OS F∗Ω
1
S/C 0.

F∗d

Definition 30. The sheafB1
S/C := Im(F∗d) is called the relative locally exact differential forms

for the fibered surface π : S −→ C.

Remark 31. B1
S/C sits in the following short exact sequence

0 −→ OS(p) −→ F∗OS −→ B1
S/C −→ 0.
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Remark 32. Let X be a scheme over a perfect field of positive characteristic p and

W be the arithmetic Frobenius morphism. Then X(p) ≃ X via the map W , because

Fk : Spec(k) −→ Spec(k) is an isomorphism. Therefore, B1
X/k can be viewed as a

sheaf of OX-modules on X .

Proposition 5. Let π : S −→ C be a fibration. Then there exists a morphism of

OS-modules ϕ : π∗FC∗Ω
1
C/k −→ FS∗π

∗Ω1
C/k.

Proof. Since the statement is local on the both source and target, we may assume

that S = Spec(R) and C = Spec(A). Therefore, π∗FC∗Ω
1
C/k = ˜FA∗ΩA/k

⊗
AR

and FS∗π∗Ω1
C/k =

˜FR∗(Ω
1
A/k

⊗
AR) where FA and FR denote the relevant Frobenius

morphisms. Define an R-module homomorphism

φ : FA∗ΩA/k ⊗A R −→ FR∗(Ω
1
A/k ⊗A R)

n∑
i=1

ai1.a
i
2da

i
3 ⊗ ri 7−→

n∑
i=1

(ai1)
pai2da

i
3 ⊗ rpi .

φ is a well-defined R-module homomorphism due to the equality

n∑
i=1

ai1.a
i
2da

i
3 ⊗ rpi =

n∑
i=1

ri.((a
i
1)
pai2da

i
3 ⊗ 1).

Hence, we have a morphism of OS-modules

φ̃ : ˜FA∗ΩA/k ⊗A R −→ ˜FR∗(Ω
1
A/k ⊗A R).

Thus, we obtain the required morphism of OS-modules

ϕ : π∗FC∗Ω
1
C/k −→ FS∗π

∗Ω1
C/k.

Remark 33. Since B1
A/k is a submodule of FA∗Ω

1
A/k, B1

A/k ⊗A R is a submodule of

FA∗Ω
1
A/k ⊗A R. Therefore, we get a morphism of R-modules

φ : B1
A/k ⊗A R −→ FR∗(Ω

1
C/k ⊗A R)

by restricting φ toB1
A/k⊗AR. For a given differential form a1.a2da3⊗1 ∈ B1

A/k⊗AR,

there exists a0 ∈ A such that a2da3 = da0 as a2da3 ∈ B1
A/k. Hence, a1.a2da3 =

16



a1.da0 = ap1da0 = dap1a0. As a result, any element ω ∈ B1
A/k ⊗A R can be written as

ω = da⊗ r for some a ∈ A and r ∈ R. Thus, we see that φ is an injective homomor-

phism of R-modules. Therefore, we get an injective morphism of OS-modules

ϕ : π∗B1
C/k ↪→ FS∗π

∗Ω1
C/k.

By the exact sequence (3) and Remark 33, we obtain a complex of OS-modules

0 −→ π∗B1
C/k −→ FS∗Ω

1
S/k −→ FS∗Ω

1
S/C −→ 0.

Restricting to the the open subscheme Spec(A) ⊂ C, we obtain the following com-

plex of R-modules

0 B1
A/k ⊗A R FR∗Ω

1
R/k FR∗Ω

1
R/A 0u v

where u = FR∗u ◦ φ and v = FR∗v.

We will work out the details of the R-module structure on FR∗Ω
1
R/A.

Remark 34. One has the following commutative diagram (which corresponds to Di-

agram 1 applied to the morphism f : S −→ C over Spec(A) ⊂ C).

A A

R R(p)

R

FA

ψ ψ(p)

ψ

W

FR

F

Diagram 2

In Diagram 2,

a) R(p) = R⊗A,FA
A,

b) ψ : A −→ R is a ring homomorphism which corresponds to π : S −→ C,

c) F : R(p) −→ R given by r ⊗ a 7−→ arp corresponding to F : S −→ S(p),
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d) W : R −→ R(p) given by ar 7−→ r ⊗ ap corresponding to W : S(p) −→ S,

e) W ◦ F = FR.

Therefore, FR∗Ω
1
R/A = W∗(F∗Ω

1
R/A). Then for any ω = (a1r1).r2dr3 ∈ FR∗Ω

1
R/A,

we have

ω = (a1r1).r2dr3 = (r1 ⊗ ap1).r2dr3 via W

and

(r1 ⊗ ap1).r2dr3 = ap1r
p
1r2dr3 via F

i.e., first we make Ω1
R/A an R(p)-module via F and then via the map W : R −→ R(p),

Ω1
R/A becomes an R-module. Moreover, we may view W∗B

1
R/A as a subsheaf of

FR∗Ω
1
R/A = W∗(F∗Ω

1
R/A) because B1

R/A is the subsheaf of F∗Ω
1
R/A.

Lemma 6. Let π : S −→ C be a fibration on a smooth projective surface S. Then

one has a short exact sequence

0 −→ π∗B1
C/k −→ B1

S/k −→ W∗B
1
S/C −→ 0. (4)

Proof. Let ψ : A −→ R be the ring homomorphism corrosponding to π. Let da ⊗ r

be in B1
A/k⊗AR. We may restrict v to the subsheaf B1

R/k of FR∗Ω
1
R/k as u(da⊗ r) =

rpdψ(a) = drpψ(a) ∈ B1
R/k. Also for a given dr ∈ B1

R/k since v(dr) = dr ∈
W∗B

1
R/A, we have the following sequence of R-modules:

0 B1
A/k ⊗A R B1

R/k W∗B
1
R/A 0.u v

To complete the proof, we need to prove the following claims:

Claim (1) : u is injective,

Claim (2) : Im(u) = Ker(v),

Claim (3) : v is surjective.

The first claim follows from Remark 33.
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Clearly, Im(u) ⊆ Ker(v) by the short exact sequence (2). Let dr be in Ker(v). We

have dr = 0 in B1
R/A which implies that r ∈ A i.e., there exists a ∈ A such that

r = ψ(a). Therefore, dr = dψ(a) = u(da⊗ 1). As a result, we have

Ker(v) = Im(u)

which completes the proof of the second claim.

Let [r1.(r2 ⊗ a)].dr3 be in W∗B
1
R/A. Then the last claim follows by the equality

[r1.(r2 ⊗ a)].dr3 = [(r1 ⊗ 1)(r2 ⊗ a)].dr3

= (r1r2 ⊗ a).dr3

= arp1r
p
2dr3

= dψ(a)rp1r
p
2r3

= v(arp1r
p
2r3).

(3.0.1)

Thus, the sequence

0 B1
A/k ⊗A R B1

R/k W∗B
1
R/A 0u v

is a short exact sequence of R-modules. This implies the following is a short exact

sequence of OS-modules

0 ˜B1
A/k ⊗A R B̃1

R/k W̃∗B1
R/A 0.

Therefore, we have the following short exact sequence of OS-modules

0 −→ π∗B1
C/k −→ B1

S/k −→ W∗B
1
S/C −→ 0.
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CHAPTER 4

THE MAIN RESULT

In this chapter, we prove our main result, Theorem 7. The main ingredient is the

short exact sequence of locally exact differential forms constructed in the preceding

chapter. We will use the following well-known result [4, Chapter 3, Exercises 8.3] in

the proof of Theorem 7.

Proposition 35. Let f : X −→ Y be a morphism of ringed spaces, let F be an

OX-module and let E be a locally free OY -module of finite rank. Then

Rif∗(F ⊗ f ∗E) = Rif∗(F)⊗ E

for all i ≥ 0.

Remark 36. Let π : S −→ C be a semistable fibration as in the statement of 7. Then

B1
C/k is a locally free OC-module of rank p − 1 and of degree (p − 1)(q − 1). By

Proposition 35, we have

Riπ∗π
∗B1

C/k = Riπ∗(OS ⊗ π∗B1
C/k) = Riπ∗OS ⊗B1

C/k.

We calculate the rank and the degree of the sheaf M = R1π∗OS ⊗B1
C/k and we get

rank(M) = r(p− 1) and deg(M) = (p− 1)e+ r(p− 1)(q − 1)

where r = rank(R1π∗OS) and e = deg(R1π∗OS).

Consider the Leray spectral sequence attached to the sheaf F = π∗(B1
C/k) on the

fibration π : S −→ C, namely

Epq
2 = Hp(C,Rqπ∗π

∗B1
C/k) = Hp(C,Rqπ∗OS ⊗B1

C/k) =⇒ Hp+q(S, π∗B1
C/k).

(∗)
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We have the following properties:

a) Since C is a curve, Hp(C,−) = 0 for p > 1.

b) By Corollary 11.2 in [4, Chapter 3], Rqπ∗OS = 0 for q > 1.

c) By proposition 35 and since π∗OS = OC , we have π∗π∗B1
C/k = B1

C/k.

Therefore, we get

H0(S, π∗B1
C/k) = H0(C,B1

C/k) and H2(S, π∗B1
C/k) = H1(C,R1π∗OS ⊗B1

C/k).

If we assume that C is an ordinary curve, then we also have

H1(S, π∗B1
C/k) = H0(C,R1π∗OS ⊗B1

C/k).

Now we prove Theorem 7. We remark that the hypothesis in Theorem 7 differs from

the hypothesis in Lemma 9; we remove the p-rank condition on the non-smooth fibers,

but now we assume that S is ordinary.

Theorem 7. Let S be an ordinary smooth projective surface which admits a gener-

ically ordinary semistable fibration π : S −→ C of genus g ≥ 2 over a smooth

projective curve of genus q ≥ 1. Then the invariants c21 and c2 satisfy the following

equation

c21 = 2c2 +
12

p− 1
.h1(B1

S/C)− 3δ

where δ is the total number of singular points in the fibers of π.

Proof. Recall that for semistable fibrations, we have the equality:

c21 = 2c2 + 12d− 3δ.

We will prove that (p−1)d = h1(B1
S/C). For this purpose, we will use the short exact

sequence (4) proved in Lemma 6 :

0 −→ π∗B1
C/k −→ B1

S/k −→ W∗B
1
S/C −→ 0.

We have the long exact sequence
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0 −→ H0(S, π∗B1
C/k) −→ H0(S,B1

S/k) −→ H0(S,W∗B
1
S/C) −→ · · ·

· · · −→ H1(S, π∗B1
C/k) −→ H1(S,B1

S/k) −→ H1(S,W∗B
1
S/C) −→ · · ·

· · · −→ H2(S, π∗B1
C/k) −→ H2(S,B1

S/k) −→ H2(S,W∗B
1
S/C) −→ 0.

We note the following:

1) Since S is an ordinary surface,

H i(S,B1
S/k) = 0

for all i ≥ 0. It is easily concluded that H2(S,W∗B
1
S/C) = 0.

2) Since π is a generically ordinary semistable fibration, π(p)
∗ B1

S/C |U= 0 where U

is the ordinary locus of π. However, B1
S/C is flat over OC so π(p)

∗ B1
S/C = 0. It

follows that H0(S,W∗B
1
S/C) = H0(S(p), B1

S/C) = H0(C, π
(p)
∗ B1

S/C) = 0 as W

is a finite morphism.

Therefore, by the long exact sequence

H0(S, π∗B1
C/k) = H1(S, π∗B1

C/k) = 0

and

H1(S,W∗B
1
S/C) = H2(S, π∗B1

C/k).

Now, recall that S is assumed to be an ordinary surface. Then C is an ordinary curve

and hence by using the Leray spectral sequence (∗) we have an equality:

χ(M) = h0(C,M)− h1(C,M) = h1(S, π∗B1
C/k)− h2(S, π∗B1

C/k).

On the other hand,

χ(M) = deg(M)− (q − 1) rank(M).

Therefore, we have

−h2(S, π∗B1
C/k) = χ(M)
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and so

−h2(S, π∗B1
C/k) = (p− 1)e+ r(p− 1)(q − 1)− (q − 1)r(p− 1).

This implies that (p − 1)d = h2(S, π∗B1
C/k) = h1(S,W∗B

1
S/C) = h1(B1

S/C) where

d = −e. Recall that since π : S −→ C is a semistable fibration, we have c21 =

2c2 + 12d− 3δ. Substituting d =
1

p− 1
· h1(B1

S/C), we obtain the equality:

c21 = 2c2 +
12

p− 1
.h1(B1

S/C)− 3δ.

Since for the fibration in Theorem 7

c2 − δ = 4(g − 1)(q − 1) ≥ 0

we obtain the inequality given in Corollary 8, namely

c21 ≤ 3c2 +
12

p− 1
.h1(B1

S/C)− 4δ.

Next we shall prove Lemma 9 which relates the ordinarity of the fibers in a semistable

fibration on a surface S and the BMY inequality on S. The lemma provides other

examples for which the BMY inequality holds simply because under each of the hy-

potheses (i)-(iv) on the Ekedahl-Oort type of the fibers, the given fibration is isotrivial

(cf. Remark 21). In the proof of this lemma, we will use the basic properties of the

Ekedahl-Oort strata in A∗
g,1,n ([13], Sections 2-6).

Lemma 9. Let π : S −→ C be a semistable fibration of genus g such that the fibers

are all (i) ordinary, or (ii) of p-rank g− 1, or (iii) supersingular but not superspecial,

or (iv) superspecial. Then π is isotrivial. Hence, the BMY inequality holds on the

surface S.

Proof. Let U ⊆ S be the union of the smooth fibers of π and set C ′ = π(U). The

canonical principal polarization on the relative Jacobian JU/C′ extends to a principal

cubic structure on JS/C ([11], Chapter II, Theorem 3.5) which we denote by Θ. Thus,

we obtain a morphism

h : C −→ A∗
g,1,n
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given by

p 7→ (JSp ,Θp).

In each of the cases (i), (ii), (iii) and (iv) we verify that the image h(C) lies in an

Ekedahl-Oort stratum determined by a unique elementary sequence φ ([13], Defini-

tion 2.1.).

Case (i) : |φ| = g · (g + 1)/2 correspondes only to the elementary sequence

φ = {1, 2, · · · , g}.

Case (ii) : |φ| = g · (g + 1)/2− 1 is obtained only from the elementary sequence

φ = {1, 2, · · · , g − 1, g − 1}.

Case (iii) : If the fibers are supersingular, but not superspecial, then we have |φ| = 1 for

which the elementary sequence is

φ = {0, 0, · · · , 0, 1}.

Case (iv) : If the fibers are superspecial, then we have |φ| = 0 which arises only from the

elementary sequence

φ = {0, 0, · · · , 0}.

It follows from ([13], Theorem 6.4) that the image h(C) is quasi-affine, and so the

morphism h is constant on C. Then we see that the smooth fibers of π are all isomor-

phic by applying the Torelli theorem. That is, π : S −→ C is an isotrivial semistable

fibration. Therefore, π is smooth and d = 0, δ = 0. It follows that c21 = 2c2 by

Remark 21.
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CHAPTER 5

DISCUSSION

Let X be a smooth projective surface over a field of arbitrary characteristic and E

be a rank two (semi)stable vector bundle on X . The Bogomolov inequality for E

is the inequality c21(E) ≤ 4c2(E). In characteristic 0, since the cotangent bundle

ΩX of a surface of general type is stable, we obtain the inequality c21(X) ≤ 4c2(X)

between the Chern classes c21(X) and c2(X). This relation was refined by Miyaoka

(and independently by Yau) to what is known as the BMY inequality

c21(X) ≤ 3c2(X).

In characteristic p > 0, we know by the results and examples quoted in the Introduc-

tion that, for any M > 0 there are minimal surfaces of general type (with smooth

Picard scheme) X such that the inequality

c21(X) ≤Mc2(X)

fails to hold on X .

In last chapter of the thesis, we will discuss a geometric approach applied in investi-

gating the failure of Bogomolov inequality in positive characteristic. Using the main

results in [15] we will relate the method first to αL -torsors and then to ordinarity of

the surface under consideration.

Definition 37. Let X be a scheme and L be an invertible sheaf on X and s ∈
H0(X,L p−1) be a section. The affine group scheme αs over X is defined by the

following short exact sequence in flat topology :
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0 αs L Lp 0.
F−s

where L is the line bundle corresponding to L .

In particular, when s = 0, we obtain the exact sequence defining the affine group

scheme αL :

0 αL L Lp 0.F

Lemma 10. Let X be a projective smooth surface and L be a line bundle on X such

that one of the following conditions holds.

a) X lifts to W2(k) and L−1 is numerically effective,

b) X is ordinary in dimension one, H0(X,L ) ̸= 0 where L is an invertible sheaf

corresponding to L,

c) L−1 is ample and either

• Pic0X is smooth or

• (X,L−1) lifts to characteristic zero with ramification index e < p− 1.

Then there exists no non-trivial αL−torsors on X .

Proof. We check that in each case H1(Xfl, αL ) = 0.

From the short exact sequence in (Xfl)

0 → αL → L→ Lp → 0

we obtain

H1(Xfl, αL ) = Ker(H1(Xfl, L) → H1(Xfl, L
p)).

In fact, by ([10], Chapter III, Proposition 3.7) we have

H1(Xfl, αL ) = Ker(H1(X,L) → H1(X,Lp)).

a) If X lifts to W2(k) and L−1 is numerically effective, then H1(X,L) = 0 ([1],

Corollary 2.8(ii)) and the conclusion follows.
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b) Our aim is to show that F : H1(X,L) → H1(X,Lp) is injective. Let D be the

divisor on X corresponding to L . Since H0(X,L ) ̸= 0 we may assume that D is

an effective divisor. We fix n ∈ N and tensor the exact sequence

0 → OX → F∗OX → B1
X → 0

by the invertible sheaf L −n = OX(−nD) and get the following short exact sequence

0 → L −n → F∗OX ⊗ L −n → B1
X(−nD) → 0.

In the following relevant part of the corresponding long exact sequence of cohomol-

ogy

· · · → H0(X,B1
X(−nD)) → H1(X,OX(−nD)) → H1(X,OX(−npD)) → · · ·

we have H0(X,B1
X(−nD)) = 0. To see this we observe that

H0(X,B1
X(−nD)) = {df ∈ ΩQ(X)|(df) ≥ npD} ⊆ H0(X,B1

X)

and that H0(X,B1
X) = 0 since X is ordinary in dimension one. Hence for all n ≥ 1,

Ker(H1(X,L −n) → H1(X,L −np)) = 0.

It follows that F : H1(X,L) → H1(X,Lp) is injective and so H1(Xfl, αL ) = 0.

c) H1(X,L) = 0 by KVT (in the second case, we refer to [16], Theorem 4.5.1).

Remark 38. Let X be a smooth projective surface and Pic0X be the connected com-

ponent containing 0 ∈ PicX . Then one can replace the condition in Lemma 5 (b) by

the condition that Pic0X is ordinary [9, Lemma 3].

An αL−torsor on X is clearly a purely inseparable cover of degree p. In charac-

teristic two, we have the following result of T.Ekedahl [3, Proposition 1.11] which

characterizes all covers of degree two of smooth projective varieties as αs−torsors.

Proposition 39. Let X be a smooth projective variety over a field of characteristic

two. Then any degree two covering π : Y −→ X , where Y is Cohen-Macaulay, is an

αs−torsor for a suitable line bundle L and a section s ∈ H0(X,L ).
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Remark 40. It seems an interesting problem to investigate the generalization of the

preceding proposition to covers in characteristic p > 2. Characterizing purely insepa-

rable covers of degree p which arise as torsors for group schemes GL
a,b defined in [19]

is particularly interesting.

Let us fix a minimal surface X of general type and let D be a divisor in C++(X). We

set L = OX(D). An element ρ ∈ H1(X,L −1) gives an extension

0 −→ OX −→ E −→ L −→ 0.

From this extension we obtain the following geometric structure:

a. a section X2 ⊂ P(E) with OP(1) = OP(X2)

b. the normal bundle NX2/P = L

c. an L−torsor P(E)−X2

This extension splits if and only if there is a section disjoint from X2.

Note that if c21(E) > 4c2(E), then there is an integral surface Y ⊂ P, with composi-

tion π : Y −→ X purely inseparable of degree pn [15, Theorem 1] and Y is disjoint

from X2 [15, Lemma 16]. We may assume that n = 1.

Remark 41. If c21(E) > 4c2(E) and E is semi-stable, then the cotangent bundle ofX

has an invertible subsheaf in C++(X) by [15, Proposition 6]. Therefore, the tangent

bundle of X has an invertible subsheaf which provides a degree p purely inseparable

covering π : Y −→ X . If one can show that this cover is an αL−torsor for a suitable

invertible sheaf L , then we conclude that X is not an ordinary surface by Lemma 10.

Based on this analysis, one is lead to the following conjecture:

Conjecture 42. Let X be a smooth projective minimal surface of general type which

is ordinary in dimension one. Then Bogomolov inequality c21(E) ≤ 4c2(E) holds for

any semistable rank two vector bundle E on X . In particular, we have the inequality

c21(X) ≤ 4c2(X) for the chern numbers c21, c2.
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In characteristic two, without imposing ordinarity conditions but assuming that X is

not ruled and that X lifts to W2(k), one proves that the conclusion of the preceding

conjecture holds on X [15, Corollary 11]:

(i) any rank two vector bundleE onX which satisfies c21(E) > 4c2(E) is unstable,

(ii) we have c21 ≤ 4c2 for the Chern numbers of X if X is not ruled.

Remark 43. In any characteristic p ≥ 2, S.Mukai constructs examples X of surfaces

of general type which admit purely inseparable covers of degree p [12, Theorem 2].

Mukai proves that

(a) KVT does not hold on X

(b) c2(X) < 0, hence BMY inequality fails on X .

We also observe that X is not ordinary, simply because we have nowhere vanishing

locally exact 1-forms on X .

We end this part by proposing another conjecture:

Conjecture 44. Let X be an ordinary smooth projective minimal surface of general

type in characteristic p > 0. Then KVT holds on X .
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