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ABSTRACT

CLOSED-FORM SAMPLE PROBING FOR TRAINING GENERATIVE
MODELS IN ZERO-SHOT LEARNING

Çetin, Samet
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ramazan Gökberk Cinbiş

February 2022, 49 pages

Generative modeling based approaches have led to significant advances in generalized

zero-shot learning over the past few-years. These approaches typically aim to learn

a conditional generator that synthesizes training samples of classes conditioned on

class embeddings, such as attribute based class definitions. The final zero-shot learn-

ing model can then be obtained by training a supervised classification model over

the real and/or synthesized training samples of seen and unseen classes, combined.

Therefore, naturally, the generative model ideally needs to produce not only relevant

samples, but also those that are sufficiently informative for classifier training pur-

poses. However, existing approaches rely on approximations or heuristics to enforce

the generator to produce class-specific samples. In this thesis, we propose a princi-

pled approach that shows how to directly maximize the value of training examples for

zero-shot model training purposes, by inferring and evaluating the closed-form ZSL

models at each generative model training step, which we call sample probing. This

approach provides a way to validate the quality of generated samples in an end-to-end

manner, where the generator receives feedback directly based on the prediction made

on the real samples of unseen classes. Our experimental results show that sample
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probing improves the recognition results when integrated into state-of-the-art base-

lines.

Keywords: generalized zero-shot learning, meta learning, generative models, sample

probing

vi



ÖZ

SIFIR ÖRNEKLE ÖĞRENMEDE KAPALI FORM ÖRNEK
DEĞERLENDİRME İLE ÜRETİCİ MODEL EĞİTİMİ

Çetin, Samet
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ramazan Gökberk Cinbiş

Şubat 2022 , 49 sayfa

Son birkaç yılda, üretici modelleme tabanlı yaklaşımlar ile, genelleştirilmiş sıfır ör-

nekle öğrenmede kayda değer ilerlemeler elde edilmiştir. Bu yaklaşımlar tipik olarak

nitelik tabanlı tanımlar gibi sınıf gösterimlerine koşullanmış eğitim örneklerini sen-

tezleyen bir koşullu üretici model öğrenmeyi hedeflemektedir. Bu yaklaşımlarda, sıfır

örnekle öğrenme modeli, görülmüş ve görülmemiş sınıfların gerçek ve/veya sentez-

lenmiş eğitim örneklerinin üzerinden bir gözetimli sınıflandırma modeli eğitilmesiyle

elde edilebilir. Dolayısıyla, üretici modellerin sınıflandırıcı eğitim amaçlarına uygun

olarak tercihen yalnızca alakalı değil aynı zamanda yeterince öğretici örnekler üret-

mesi gerekmektedir. Fakat varolan yaklaşımlar, üretici modeli sınıfa özgü örnekler

ürettirmeye zorlamaya yönelik yakınsamalara veya sezgisel yöntemlere dayanmakta-

dır. Bu tezde, örnek değerlendirme olarak adlandırdığımız, üretici model eğitiminin

her adımında üretilen örnekleri bir kapalı form sıfır örnekle öğrenme modeli aracılığı

ile değerlendirmeye tabi tutarak eğitim örneklerinin değerini sıfır örnekle öğrenme

amacına yönelik doğrudan maksimize eden ilkeli bir yaklaşım öneriyoruz. Önerilen

yaklaşım, bir üretici modelin görülmemiş sınıfların gerçek örnekleri üzerine yapı-
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lan öngörüleri baz alan geribeslemeleri doğrudan kullanarak sentezlediği örneklerin

kalitelerinin uçtan uca doğrulanabilmesine yönelik bir çözüm sağlamaktadır. Deney

sonuçlarımız, kapalı form örnek değerlendirme yaklaşımının en gelişkin referans yön-

temlere entegre edildiğinde tanıma sonuçlarını yükselttiğini göstermektedir.

Anahtar Kelimeler: genelleştirilmiş sıfır örnekle öğrenme, meta öğrenme, üretici mo-

deller, örnek değerlendirme
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CHAPTER 1

INTRODUCTION

State-of-the-art works in various vision problems heavily rely on supervised training.

However, supervised training is generally considered inconvenient and expensive,

requiring the collection of a large amount of data and annotation. Although there are a

lot of freely available unstructured data sources, most of the time, it is hard to collect

structured data specific to the vision problem at hand. Additionally, the laborious task

of data annotation is time-consuming, error-prone, and generally requires expertise in

fine-grained problems. To reduce the annotation overhead, various approaches are

proposed such as few-shot learning [1, 2, 3], unsupervised pretraining [4, 5], semi-

supervised learning [6] etc. Among these, Zero-shot Learning (ZSL) has recently

received great interest for being one of the promising paradigms towards building

very large vocabulary (visual) understanding models with limited training data.

The problem of ZSL can be summarized as the task of transferring information across

classes such that the instances of unseen classes, with no training examples, can be

recognized at test time, based on the training samples of seen classes. To be able

to achieve this knowledge transfer, an auxiliary information source representing seen

and unseen classes together in the same semantic space, such as manually crafted

attribute vectors indicating a common attribute (shared among all classes) in each

dimension, hyper-dimensional word vectors automatically extracted from language

models, etc. is defined. The idea is to learn a mapping from the visual space to

the semantic space at the training phase and make accurate classifications at the test

phase. However, in the ZSL setting, the classifier is enforced to make predictions

among only unseen classes at test time. This is not practical since the ultimate goal

is to generalize well to any target class with minimum or no restrictions by learning
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from the limited training data.

Generalized Zero-Shot Learning (GZSL) [7, 8] is introduced soon after and used to

refer to a practically more valuable variant of ZSL where both seen and unseen classes

may appear at test time. GZSL brings in additional challenges since GZSL models

need to produce confidence scores that are comparable across all classes.

In this thesis, we primarily investigate the generalized zero-shot learning problem by

exploiting closed-form zero-shot learning models with exact solutions in generative

model training. Before we elaborate on the details of our work, in this chapter, we

first present the overview of the zero-shot learning problem and our contributions to

the literature.

1.1 Overview

Earlier work focuses on discriminative training of ZSL models, such as those based

on bilinear compatibility functions [9, 10]. However, such models tend to yield higher

confidence scores towards seen classes. As a result, although the models have rela-

tively successful performance in the ZSL setting, they perform very poorly in the

GZSL setting.

Recent work shows that hallucinating unseen class samples through statistical gener-

ative models can be an effective strategy, e.g. [11, 12, 13, 14, 15, 16, 17, 18], reducing

the GZSL problem into a supervised classification problem. These approaches rely on

generative models conditioned on class embeddings, obtained from auxiliary seman-

tic knowledge, such as visual attributes [13], class name word embeddings [16], or

textual descriptions [15]. The resulting synthetic examples, typically in combination

with existing real examples, are used for training a supervised classifier. By design,

the conditional generative model training formulation plays a critical role in the suc-

cess of the resulting models. Naturally, the resulting models produce comparable

scores across seen and unseen classes.

In generative GZSL approaches, the quality of class-conditional samples is crucial

for building accurate recognition models. It is not straightforward to formally define
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the criteria of good training samples. Arguably, however, samples need to be (i) real-

istic (e.g. free from unwanted artifacts), (ii) relevant (i.e. belong to the desired class

distribution) and (iii) informative (i.e. contain examples defining class boundaries) to

train an accurate classifier. Clearly, a primary factor affecting the quality of generated

samples is the loss driving the conditional generative model training process.

There are a few recent works that utilize auxiliary components such as a decoder [18],

a refinement module [19], and a normalization scheme [20] to enforce the generator

to improve synthetic feature quality and synthesize more discriminative and seman-

tically consistent features. However, none of these approaches directly measure the

quality of the synthesized features for training classification models. The fundamental

challenge here is the back-propagation over long compute chains, which is expensive

and prone to gradient vanishing.

1.2 Contributions

In this thesis, we aim to address the problem of training data generating models via

an end-to-end mechanism that we call sample probing. 1 Our main goal is to di-

rectly evaluate the ability of a generative model in synthesizing training examples.

To this end, we observe that we can leverage classification models with closed-form

solvers to efficiently measure the quality of training samples, in an end-to-end man-

ner. More specifically, we formulate a simple yet powerful meta-learning approach:

at each training iteration, (i) take a set of samples from the generative model for a

randomly selected subset of classes, (ii) train a zero-shot probing model using only

the synthesized samples, and (iii) evaluate the probing model on real samples from

the training set. We then use the loss value as an end-to-end training signal for up-

dating the generative model parameters at every training iteration. While one can

use an arbitrary classifier, we specifically focus on probing models with exact closed-

form solutions since it is not efficient or even feasible to back-propagate over a long

compute chain. Optimization of the probing models with exact closed-form solutions

can be simplified into a differentiable linear algebraic expression and took part as a

1 Our use of the sample probing term is not closely related to the natural language model analysis technique
known as probing [21, 22, 23].
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Figure 1.1: Illustration of the proposed framework for the end-to-end sample probing

of conditional generative models. At each training iteration, we take synthetic training

examples for some subset of seen classes (probe-train classes) from the conditional

generative models, train a closed-form solvable zero-shot learning model (sample

probing ZSL model) over them and evaluate it on the real examples of a different

subset of seen classes (probe-validation classes). The resulting cross-entropy loss of

the probing model is used as a loss term for the generative model update.

differentiable unit within the compute graph. A graphical summary of the proposed

training scheme is given in Figure 1.1. Our quantitative and qualitative experimental

results show that the proposed sample probing scheme increases the overall synthetic

feature quality and further improves the performance of competitive baseline genera-

tive ZSL models under different configurations.

1.3 Outline

In the rest of this thesis, we present an overview of the related work in Chapter 2.

In Chapter 3, we first formally define the generalized zero-shot learning problem and

then define a mathematical framework to summarize the core training dynamics of

mainstream generative GZSL approaches and express our approach in the context of

this mathematical framework. In Chapter 4, we present the details of our experimen-

tal setup and a thorough experimental evaluation on widely used GZSL benchmark
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datasets in which the results show that sample probing yields improvements when

introduced into state-of-the-art baselines. We conclude with final remarks in Chap-

ter 5.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we present recent and related work to our proposed approach. We then

discuss the details of generative zero-shot learning models that we use as baselines

throughout our experiments.

2.1 Related work

The generalized zero-shot learning problem has been introduced by [7] and [24]. The

extensive study in [8] has shown that the success of methods can greatly vary across

zero-shot and generalized zero-shot learning problems. The additional challenge in

the generalized case is the need for deciding whether an input test sample belongs to a

seen or unseen class. Discriminative training of ZSL models, such as those based on

bilinear compatibility functions [9, 10], are likely to yield higher confidence scores

for seen classes. To alleviate this problem, a few recent works have proposed ways

to regularize discriminative models towards producing comparable confidence scores

across all classes and avoid over-fitting, e.g. [25, 26, 27]. For example, [25] estimates

correspondence between unseen and seen classes to define an unseen class aware

training loss. Similarly, [26] applies entropy-based regularization on unseen class

scores.

Generative approaches to zero-shot learning naturally address the confidence score

calibration problem. However, in general, generative modeling corresponds to a

more sophisticated task than learning discriminant functions only [28]. In this con-

text, the problem is further complicated by the need of predicting zero-shot class

distributions. To tackle this challenging task, a variety of techniques have been pro-
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posed [11, 12, 13, 14, 15, 16, 17, 29, 18] by adapting generative models, such as

VAEs [30, 31] and GANs [32]. To enforce class conditioning, the state-of-the-art

approaches use a mixture of heuristics: [12] uses the loss of a pre-trained classi-

fier over the generated samples during training. [18] additionally uses the loss of a

sample-to-attribute regressor, in combination with a feedback mechanism motivated

from feedback networks [33]. [20] introduces soul samples which are the average rep-

resentations of classes to bring a normalization effect on generator training. [19] uses

a feature refinement module together with a self-adaptive margin center loss to en-

force the generator to learn discriminative class relevant features. [14] uses projection

discriminator [34] and gradient matching loss as a gradient-based similarity measure

for comparing real versus synthetic data distributions. None of these generative ZSL

approaches, however, directly measure the value of the generated samples for train-

ing classification models. The main difficulty lies in the need for back-propagating

over long compute chains, which is both inefficient and prone to gradient vanishing

problems. To the best of our knowledge, we introduce the first end-to-end solution to

this problem by the idea of using probing models with closed-form solvers to monitor

the sample quality for model training purposes.

Our approach is effectively a meta-learning [35] scheme. Meta-learning is a promi-

nent idea in few-shot learning, where the goal is learning to build predictive models

from a limited number of samples. The main motivation is the idea that general-

purpose classification models may behave sub-optimally when only a few training

samples are provided. A variety of meta-learning driven few-shot learning models

have been proposed, such as meta-models that transform a few samples to classi-

fiers [36, 35], set-to-set transformations for improving sample representations [37,

38], fast adaptation networks for a few examples [1, 39, 40]. In contrast to such

mainstream learning to classify and learning to adapt approaches, we aim to address

the problem of learning to generate training examples for GZSL.

There are only a few recent studies that aim to tackle generative ZSL via meta-

learning principles. [41, 42] embrace the learning-to-adapt framework of MAML [1],

which originally aims to learn the optimal initialization for few-shot adaptation. The

MAML steps are incorporated by iteratively applying a single-step update to the gen-

erative model using the generative model (VAE/GAN) loss terms, and then back-
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propagating over the re-computed generative loss terms on new samples from a dis-

joint subset of classes using the single-step updated model. Our approach differs fun-

damentally, as we propose to use the discriminative guidance of ZSL models fully-

trained directly from generated sample batches. In another work, [43] proposes an

episodic training-like approach with periodically altered training sets and losses dur-

ing training, to learn non-stochastic mappings between the class embeddings and class

centers. [44], similarly inspired from meta-learning and mixup regularization [45],

proposes to train a novel discriminative ZSL model over episodically defined vir-

tual training classes obtained by linearly mixing classes. Neither of these approaches

learns sample generating models, therefore, they have no direct relation to our work

focusing on the problem of measuring the sample quality for ZSL model training

purposes, with end-to-end discriminative guidance.

The use of recognition models with closed-form solvers has attracted prior interest

in various contexts. Notably, [46] proposes the Embarrassingly Simple Zero-shot

Learning (ESZSL) model as a simple and effective ZSL formulation. We leverage

the closed-form solvability of the ESZSL model as part of our approach. [47] uti-

lizes ridge-regression based task-specific few-shot learners within a discriminative

meta-learning framework. In a similar fashion, [48, 49] tackle the problem of video

object segmentation (VOS) and use ridge-regression-based task-specific segmenta-

tion models within a meta-learning framework. None of these approaches aim to use

recognition models with closed-form solvers to form guidance for generative model

training.

Another related research topic is generative few-shot learning (FSL), where the goal

is learning to synthesize additional in-class samples from a few examples, e.g. [50,

51, 52, 53, 54]. Among these, [51] is particularly related to following a similar mo-

tivation of learning to generate good training examples. This is realized by feeding

generated samples to a meta-learning model to obtain a classifier, apply it to real

query samples, and use its query loss to update the generative model. Apart from the

main difference in the problem definition (GZSL vs FSL), our work differs mainly by

fully training a closed-form solvable ZSL model from scratch at each training step,

instead of a few-shot meta-learners that are jointly trained progressively with the gen-

erative model. For example, in [50] the aim is to learn transformation function which
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can be used on a few examples to obtain transformed new examples that can be used

during classifier training. Newer approaches based on GANs and VAEs learn to syn-

thesize new examples based on prior knowledge coming from examples at hand, e.g.

[55, 16]. Most of these approaches also train the feature extraction backbone through

meta-learning as well.

Finally, we note that meta-learning-based approaches have also been proposed for

a variety of different problems, such as learning-to-optimize [56, 57] and long-tail

classification [58, 59]. In contrast to these meta-learning approaches, our main goal

is to directly measure the quality of the generative model by end-to-end fitting zero-

shot models purely using the synthesized samples and back-propagating their zero-

shot recognition loss for the generative model.

2.2 Background

Before we dive into the details of the sample probing approach in the following chap-

ter, here we present overviews of the baseline generative zero-shot learning models

into which the proposed sample probing scheme is integrated throughout the experi-

ments.

2.2.1 cWGAN

cWGAN [34] is the simplest one among all generative ZSL baseline models that we

integrated the sample probing scheme into and performed experiments with. cWGAN

consists of a generator G which synthesizes fake features from random noise z and

class embedding a, and a discriminator D tries to discriminate real features x and

generated features G(z, a). Both G and D are conditioned on the class embedding a.

Optimized loss is given by,

Lwgan = E [D(x, a)]� E [D(G(z, a), a)]� �E
⇥
(k�D(G(z, a), a)k2 � 1)2

⇤
(2.1)

where � is the penalty coefficient.
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2.2.2 TF-VAEGAN

TF-VAEGAN [18] achieves state-of-the-art results in GZSL setting by introducing a

semantic embedding decoder (SED) into an already strong feature generating VAE-

GAN (f-VAEGAN) [13] consisting of f-VAE and f-WGAN. f-VAE consists of an en-

coder E conditioned on class embedding, that learns a mapping from feature space to

latent space, and a decoder G (shared between f-VAE and f-WGAN) conditioned on

class embedding that reconstructs image feature x from a random noise z. Optimized

loss is given by,

Lvae = KL(E(x, a)kp(z|a))� E
E(x,a)

[logG(z, a)] (2.2)

where KL is the Kullback-Leibler divergence, p(z, a) is a prior distribution and logG(z, a)

is the reconstruction loss.

The generator of f-WGAN, generates a feature x from noise z and the discriminator

D tries to discriminate real and fake features. Both G and D are conditioned on class

embeddings a. Optimized loss is defined in Eq. (2.1). Hence, the f-VAEGAN [13] is

then optimized by,

Lvaegan = Lvae + ↵Lwgan (2.3)

where ↵ is the weight of WGAN loss that needs to be tuned. Semantic embedding

decoder Dec, reconstructs class embeddings a from the synthesized features G(z, a)

and is optimized using l1 reconstruction loss by:

LR = E [kDec(x)� ak1] + E [kDec(G(z, a))� ak1] (2.4)

Hence, the final TF-VAEGAN loss formulation of is then defined as,

Ltfvaegan = Lvaegan + �LR (2.5)

where � is a hyper-parameter for semantic embedding decoder reconstruction error

weighting. Additionally, TF-VAEGAN uses a feedback mechanism that we avoid in

our experiments for simplicity as we discuss in Chapter 4.

2.2.3 LisGAN

LisGAN [20] generates synthetic image features through a conditional WGAN. Gen-

erator synthesize fake features from a random noise z, and class embedding a, whereas
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the discriminator D tries to effectively discriminate real x and fake features G(z, a).

Loss formulation of generator G is given by,

LG = �E [D(G(z, a))]� �E [(logP (y|G(z, a))] (2.6)

where the first two terms are the Wasserstein loss and the classification loss on the

synthesized feature respectively. � is a weighting parameter. Loss formulation of

discriminator D is given by,

LD = E [D(G(z, a))]� E [D(x)]

� �(E [(logP (y|G(z, a))] + E [logP (y|x)])

� � E
⇥
(k�D(G(z, a))k2 � 1)2

⇤
(2.7)

where � is a hyper-parameter. The last three terms are the classification loss on syn-

thetic samples, the classification loss on real samples, and the enforcer of the Lips-

chitz constraint, respectively. Additionally, [20] introduces the concept of soul sam-

ples which are the average representations of classes, a similar idea to prototypical

networks for FSL [35], to enhance the general quality of the synthetic features by

regularizing the generator training.

2.2.4 FREE

FREE [19], similar to TFVAEGAN [18], base their approach on f-VAEGAN [13],

consisting of a f-VAEGAN and a feature refinement module. f-VAEGAN aims to

learn a mapping from semantic space to visual space for feature generation by op-

timizing Eq. (2.3) as already discussed in Section 2.2.2. Additionally, to learn dis-

criminative feature representations a feature refinement module constrained by the

self-adaptive margin center loss (SAMC-loss) which encourages intra-class compact-

ness and inter-class separability and a semantic cycle consistency loss that pushes the

feature refinement module to learn semantically-relevant representations, are intro-

duced. Overall objective consisting of the jointly trained encoder E, generator G,

discriminator D, and feature refinement module FR can be formulated as,

LFREE(E,G,D, FR) = Lwgan + Lvae + �samcLsamc + �sccLscc (2.8)

where Lwgan and Lvae are the f-VAEGAN loss components defined in Eq. (2.1) and

Eq. (2.2) respectively; Lsamc and Lscc indicating the self-adaptive margin center loss
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and the semantic cycle-consistency loss and, �samc and �scc are the weights control-

ling corresponding losses.

In Chapter 4, we present experimental results showing the performance of all afore-

mentioned competitive generative ZSL baselines on four benchmark GZSL datasets,

with and without the proposed sample probing scheme.
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CHAPTER 3

METHOD

In this chapter, we first formally define the generalized zero-shot learning problem

and then define a mathematical framework to summarize the core training dynamics

of mainstream generative GZSL approaches. We then express our approach in the

context of this mathematical framework.

3.1 Problem definition

In zero-shot learning, the goal is to learn a classification model that can recognize

the test instances of unseen classes Yu, which has no training examples, based on the

model learned over the training examples provided for the disjoint set of seen classes

Ys. We refer to the class-limited training set by Dtr, which consists of sample and

class label pairs (x 2 X , y 2 Ys). In our work, we focus on ZSL models where

X is the space of image representations extracted using a pre-trained ConvNet. In

generalized zero-shot learning, the goal is to build the classification model using the

training data set Dtr, such that the model can recognize both seen and unseen class

samples at test time. For simplicity, we restrict our discussion to the GZSL problem

setting below.

In order to enable the recognition of unseen class instances, it is necessary to have

visually-relevant prior knowledge about classes so that classes can visually be related

to each other. Such prior knowledge is delivered by the mapping  : Y ! A,

where A expresses the prior knowledge space. In most cases, the prior knowledge

is provided as d -dimensional vector-space embeddings of classes, obtained using

visual attributes, taxonomies, class names combined with word embedding models,
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the textual descriptions of classes combined with language models, see e.g. [60].

Following the common terminology, we refer to  as the class embedding function.

3.2 Generative GZSL

In our work, we focus on generative approaches to GZSL. The main goal is to learn

a conditional generative model G : A⇥ Z ! X , which takes some class embedding

a 2 A and stochasticity-inducing noise input z, and yields a synthetic sample x 2 X .

Once such a generative model is learned, synthetic training examples for all classes

can simply be sampled from the G-induced distribution PG, and the final classifier

over Y can be obtained using any standard supervised classification model. We refer

to the trainable parameters of the model G by ✓G.

As summarized in Chapter 2, existing approaches vary greatly in terms of their gen-

erative model details. For the purposes of our presentation, most of the GZSL works

(if not all) can be summarized as the iterative minimization of some loss function that

acts on the outputs of the generative model:

LG = E
(x,a)⇠Dtr

[`G (G(a, zx), a)] (3.1)

where zx refers to the noise input associated with the training sample (x, y) and `G is

the generative model learning loss. (x, a) ⇠ Dtr is shorthand notation for (x, (y)) ⇠
Dtr. At each iteration the goal is to reduce LG approximated over a mini-batch of real

samples and their class embeddings.

In our notation, we deliberately keep certain details simple. Noticeably, zx greatly

varies across models. For example, in the case of a conditional GAN model, zx ⇠
p(z) can simply be a sample from a simple prior distribution p(z), e.g. as in [12,

14, 29]. In contrast, in variational training, zx is the latent code sampled from a

variational posterior, i.e. zx ⇠ q(z|x), where the variational posterior q(z|x) is given

by a variational encoder trained jointly with G, e.g. as in [18, 13].

Another important simplification that we intentionally make in Eq. (3.1) is the fact

that we define the generative model learning loss `G as a function of generator output

and class embedding, to emphasize its sample-realisticity and class-relevance estima-
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tion goals. However, the exact domain of `G heavily depends on its details, which

typically consists of multiple terms and/or (adversarially) trained models. In most

of the state-of-the-art approaches, this term is a combination of VAE reconstruction

loss [13], conditional or unconditional adversarial discriminator network [12, 18, 14,

13], a sample-to-class classifier for measuring class relevance [12] and sample-to-

embedding mappings [18]. The loss LG may also incorporate additional regulariza-

tion terms, such as `2 regularization or a gradient penalty term [14].

In the following, we explain our sample probing approach as a loss term that can,

in principle, be used in conjunction with virtually any of the mainstream generative

zero-shot learning formulations.

3.3 Sample probing as generative model guidance

The problem that we aim to address is enforcement of G to learn to produce sam-

ples maximally beneficial for zero-shot model training purposes. We approach this

problem through a learning to generate training samples perspective, where we aim

to monitor the quality of the generative model through the synthetic class samples it

provides.

In construction of our approach, at each training iteration t, we first randomly select

a subset of Y t
pb-tr ⇢ Y of seen classes. We refer to these classes as probe-train classes.

This subset defines the set of classes that are used for training the iteration-specific

probing model over the synthetic samples. More specifically, we first take samples

from the model G with the parameters ✓tG for these classes, and fully train a temporary

ZSL model over them using regularized loss minimization:

�t = argmin
�

E
x=G(z,a⇠At

pb-tr)
[`pb (fpb(x, a), a)] (3.2)

where fpb is the scoring function of the temporary probing model parameterized by

� and `pb is its training loss. At
pb-tr is the set of class embeddings of classes in Y t

pb-tr.

Regularization term over � is not shown explicitly for brevity.

The result of Eq. (3.2), gives us a purely synthetic sample driven model �t, which

we leverage as a way to estimate the success of the generator in synthesizing training

17



examples. For this purpose, we sample real examples from the training set Dtr as val-

idation examples for the probe model. Since we use a (G)ZSL model as the probing

model, we can evaluate the model on examples of the classes not used for training the

model. Therefore, we sample these probe-validation examples from the remaining

classes Ypb-val = Ys \ Y t
pb-tr, i.e. the classes with real training examples but unused for

probe model training, and use softmax cross-entropy loss over these samples as the

probing loss:

Lpb = � E
(x,y)⇠Dpb-val

⇥
log p(y|x;�t)

⇤
(3.3)

where Dpb-val ⇢ Dtr is the data subset of classes Ypb-val. p(y|x;�t) is the target class

likelihood obtained by applying softmax to fpb(x, (y);�t) scores over the set of

target class set. Here, as target class set, one can use only the classes in Ypb-val (ZSL

probing) or those in both Ypb-tr and Ypb-val (GZSL probing). We treat this decision as a

hyper-parameter and tune on the validation set.

We use a weighted combination of Lpb and LG, as our final loss function. Therefore,

the gradients r✓GLpb act effectively as the training signal for guiding G towards yield-

ing training examples that results in (G)ZSL probing models with minimal empirical

loss.

3.4 Closed-form probe model

A critical part of construction is the need for a probing model where minimization

of Eq. (3.2) is both efficient and differentiable, so that the solver itself can be a part

of the compute graph. Probing models that require iterative gradient descent based

optimization are unlikely to be suitable as one would need to make a large number

of probing model updates for each single G update step, which is both inefficient and

prone to gradient vanishing problems. We address this problem through the use of a

ZSL model that can be efficiently fit using a closed-form solution.

For this purpose, we opt to use the ESZSL [46] as the main closed-form probe model

in our experiments. The model is formalized by the following minimization problem:

min
�

kXT�A� Y k2Fro + ⌦ (�) (3.4)
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where X 2 Rdx⇥m and A 2 Rd ⇥k represent the feature and class embeddings cor-

responding to m input training examples and k classes, Y is the {0, 1}m⇥k matrix of

groundtruth labels, � 2 Rdx⇥d is the compatibility model matrix, and ⌦ (�) is the

regularization function, defined as:

⌦ (�) = �xk�Ak2Fro + �akXT�k2Fro + �nk�k2Fro (3.5)

where �x,�a,�n correspond to term weights. When the regularization term weights

are set such that �n = �x�a, the optimal solution to Eq. (3.4) can be computed in a

closed-form:

�? = (XXT + �xI)
�1XY AT(AAT + �aI)

�1 (3.6)

This approach was originally proposed as a standalone label-embedding based ZSL

model in [46], with the practical advantage of having an efficient solver. Here, we

re-purpose this approach as a probing model in our framework, where the fact that

the model is solvable in closed-form is critically important, enabling the idea of end-

to-end sample probing. For this purpose, we utilize the solver given by Eq. (3.6) as

the implementation of Eq. (3.2), which takes a set of synthetic training samples and

estimates the corresponding probing model parameters.

3.5 Alternative probe models

While we utilize ESZSL in our main experiments, we demonstrate the possibility

of using the proposed approach with different probe models using two additional

alternatives. The first one, which we call Vis2Sem, is the regression model from

visual features to their corresponding class embeddings, defined as follows (using the

same notation as in ESZSL):

min
�

k�TX � AY Tk2Fro + �nk�k2Fro. (3.7)

A discussion of the Vis2Sem model can be found in [61]. The second one, which we

call Sem2Vis, is the class embeddings to visual features regression model of [62]:

min
�

kX � �AY Tk2Fro + �nk�k2Fro. (3.8)

Both models, just like ESZSL, are originally defined as non-generative ZSL mod-

els, and we re-purpose them to define our data-dependent generative model training
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Figure 3.1: The compute graph view of the proposed approach, at some training

iteration t. The upper half shows sampling from the generative model and the lower

half shows sample probing model loss. Circles denote generator and probing model

parameters. Blue arrows show the back-propagation path for updating the generative

model. Best viewed in color.

losses. Unlike the bi-linear compatibility model of ESZSL, however, these models

rely on distance based classification, and do not directly yield class probability esti-

mates. While one can still obtain a probability distribution over classes, e.g. by apply-

ing softmax to negative `2 distances, for simplicity, we directly use the Sem2Vis and

Vis2Sem based distance predictions between the visual features of probe-validation

samples and their corresponding class embeddings to compute Lpb as a replacement

of Eq. (3.3).

3.6 Summary

A summary of the final approach from a compute graph point of view, is given in

Figure 3.1. The proposed approach aims to realize the goal of learning to generate

good training samples by evaluating the synthesis quality through the lens of a closed-

form trainable probe model, the prediction loss of which is used as a loss for the

G updates. Therefore, G is expected to be progressively guided towards producing
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realistic, relevant and informative samples, through the reinforcement of which may

vary depending on the inherent nature of the chosen probe model.
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CHAPTER 4

EXPERIMENTS

We present a thorough experimental evaluation on GZSL benchmarks in which the

results show that the proposed sample probing approach yields improvements when

introduced into state-of-the-art baselines. In this chapter, we first explain the exper-

imental setup in detail. Then, we present the results of our extensive experiments,

comparisons, and analyses.

4.1 Experimental setup

The lack of a consensus on setting details for the experimental setup poses a serious

threat to making accurate and consistent comparisons across studies in the field of

(G)ZSL. Elaborately specifying training details such as training schemes and hyper-

parameter tuning strategies is an aspect that should be emphasized to be able to repro-

duce experimental results as accurately as possible and to make meaningful compar-

isons across studies. In particular, the principled tuning of hyper-parameters, which

naturally have a serious impact on the test result, is of high importance. Below, we

present the details of our experimental setup including our proposed principled hyper-

parameter tuning policy.

4.1.1 Datasets

We use four widely used GZSL benchmark datasets: Caltech-UCSD-Birds (CUB) [63],

Oxford Flowers (FLO) [64], SUN Attribute (SUN) [65] and Animals with Attributes

2 (AWA2, more simply AWA) [8], for the experiments.
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Table 4.1: Statistics for CUB, FLO, SUN and AWA in terms of size, granularity,

number of images, number of attributes, and number of classes as in proposed splits

defined by [8].

Dataset Size Granularity # of images # of attributes
# of classes

train + val test all

CUB [63] medium fine 11 788 312 100 + 50 50 200

FLO [64] medium fine 8 189 1024 62 + 20 20 102

SUN [65] medium fine 14 340 102 580 + 65 72 717

AWA [8] medium coarse 37 322 85 27 + 13 10 50

CUB [63] is a medium-scale fine-grained dataset consisting of 11 788 images of 200

classes of birds species such as chipping sparrow, tropical kingbird, summer tanager,

etc. Attribute annotations of the CUB dataset have 312 dimensions, indicating bill

shape, eye color, size, breast pattern, etc.

FLO [64] is a medium-scale fine-grained dataset consisting of 8 189 images of 102

classes of flowers such as balloon flower, magnolia, water lily, etc. Each class con-

sists of between 40 and 258 images. Attribute annotations of the FLO dataset have

1024 dimensions.

SUN [65] is a medium-scale fine-grained dataset consisting of 14 340 images of 717

classes of scene types such as airfield, waiting room, zoo, etc. Attribute annotations of

the SUN dataset have 102 dimensions, indicating working, metal, open area, stressful,

etc.

AWA [8] is a medium-scale coarse-grained dataset consisting 37 322 images of 50

classes of animals such as polar bear, tiger, zebra, etc. Attribute annotations of the

AWA dataset have 85 dimensions, indicating brown, stripes, water, eats fish, etc.

Following the state-of-the-art, we use the class embeddings and the proposed splits

version 2.0 defined by [8]. Table 4.1 summarizes the detailed statistics of each afore-

mentioned dataset.

In our experiments, we use the image features extracted from ResNet-101 backbone
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pre-trained on ImageNet 1K. In the experiments based on fine-tuned representations,

we use the backbone network fine-tuned with the training images of seen classes, as

in [13, 18].

4.1.2 Evaluation metrics

In contrast to ZSL, GZSL evaluation includes not only the test classes but also the

training classes. We evaluate the results in terms of GZSL-u (u), GZSL-s (s), and h-

score (H) values [8]. GZSL-u indicates the top-1 performance on unseen/test classes,

whereas GZSL-s indicates the top-1 performance on seen/training classes. The h-

score, i.e. the harmonic mean of GZSL-u and GZSL-s scores, aims to measure how

well a model recognizes seen and unseen classes collectively.

4.1.3 Sample probing hyper-parameters

All the hyper-parameters of baseline generative ZSL models are kept unchanged ex-

cept for the number of training iterations. Apart from the number of training it-

erations, we only tune the hyper-parameters of the sample probing model, on the

validation set. We tune (i) the number of meta-learning tasks, (ii) the number of dif-

ferent sets of probe-validation classes, (iii) the number of probe-train classes, (iv) the

number of probe-validation classes, (v) the number of synthetic samples generated

for probe-train classes, (vi) the number of probe-validation samples, (vii) the sample-

probing loss weight, (viii) the sample-probing loss type, (ix) closed-form probe model

type, (x) the regularization parameters of ESZSL [46] and (xi) the weighting coeffi-

cients of Vis2Sem [61] and Sem2Vis [62].

4.1.4 Hyper-parameter tuning policy

In our preliminary studies, we observe that the final GZSL performance, especially

in terms of h-score, of most models, strongly depends on the selection of the hyper-

parameters. We also observe that there is no widely-accepted policy on how the

hyper-parameters of GZSL models shall be tuned. It is a rather common practice
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in the GZSL literature to either directly report the hyper-parameters used in experi-

ments without an explanation on the tuning strategy or simply refer to tuning on the

validation set, which we find a vaguely-defined policy as (i) [8] defines an unseen-

class only validation split, which does not allow monitoring the h-score, and (ii) it is

unclear which metric one should use for GZSL model selection purposes.

The main factor that complicates model selection in GZSL is the fact that the degree

of fitting to the training set can heavily affect the balance between making seen-class

versus unseen-class predictions at test time and may significantly alter the resulting

h-score values, even in the case of generative approaches. Therefore, for instance,

measuring only ZSL accuracy on a validation set with unseen classes only may yield

suboptimal results.

Therefore, to obtain comparable results within our experiments, we use the following

policy to tune the hyper-parameters of our approach and our baselines: we first leave

out 20% of train class samples as val-seen samples. We periodically train a supervised

classifier by taking synthetic samples from the generative model and evaluating it on

the validation set, consisting of the aforementioned val-seen samples plus the val-

unseen samples with respect to the benchmark splits. We choose the hyper-parameter

combination with the highest h-score on the validation set. We obtain final models by

re-training the generative model from scratch on the training and validation examples

combined using the selected hyper-parameters.

4.2 Main results

In this section, we discuss our main experimental results. As we observe that the

results are heavily influenced by the hyper-parameter tuning strategy, our main goal

throughout our experiments is the validation of the proposed sample probing idea by

integrating it into strong generative GZSL baselines and then comparing results using

the same tuning methodology. Using this principle, we present two main types of

analysis: (i) the evaluation of the proposed approach using ESZSL as the probe model

in combination with a number of generative GZSL models, and (ii) the evaluation of

alternative closed-form probe models within our framework.
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4.2.1 Generative GZSL models with sample probing

To evaluate the sample probing approach as a general technique to improve gener-

ative model training, we integrate it into four recent generative GZSL approaches:

conditional Wasserstein GAN (cWGAN) [66, 34], LisGAN [20], TF-VAEGAN [18]

and FREE [19]. We additionally report results for the variant of TF-VAEGAN with

the fine-tuned representations (TF-VAEGAN-FT), as it is the only one among them

with reported fine-tuning results. For the cWGAN, we follow the implementation

details described in [14], and tune hyper-parameters using our policy. For LisGAN,

TF-VAEGAN and FREE models, we use the official repositories shared by their re-

spective authors. We use the version of TF-VAEGAN without feedback loop [18],

for simplicity, as the model yields excellent performance with and without feedback

loop. In all models (except cWGAN), we only re-tune the number of training iter-

ations of the original models using our hyper-parameter tuning policy, to make the

results comparable, as it is unclear how the original values were obtained. 1 We

keep all remaining hyper-parameters unchanged to remain as close as possible to the

original implementations.

The results over the four benchmark datasets are presented in Table 4.2. In terms of

the h-scores, we observe improvements in 17 out of 19 cases, at varying degrees (up

to 4.6 points). Only in two cases, we observe a slight degradation (maximum of 0.2

points) in performance. Overall, these improvements over already strong and state-

of-the-art (or competitive) baselines validate the effectiveness of the proposed sample

probing approach, suggesting that it is a valid method towards end-to-end learning of

generative GZSL models directly optimized for synthetic train data generation pur-

poses.

4.2.2 Sample probing with alternative closed-form models

We now evaluate our approach with different closed-form probe models, specifically

ESZSL[46], Sem2Vis [62], and Vis2Sem [61], as described in Section 3.4. For these

experiments, we use the TF-VAEGAN as the base generative model.

1 We also tune LisGAN for AWA2 as the original paper reports AWA1 results instead.
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Table 4.2: Evaluation of sample probing with multiple generative GZSL models on

four benchmark datasets. Each row pair shows the effect of adding sample probing to

a particular generative GZSL model, using ESZSL as the closed-form probe model.

We use the same hyper-parameter optimization policy in all cases to make results

comparable. We observe h-score improvements at varying degrees in 17 out of 19

model, feature & dataset variations.

Sample probing
CUB FLO SUN AWA

u s H u s H u s H u s H

cWGAN [34]
N 45.1 53.1 48.7 50.7 74.3 60.3 41.6 37.3 39.3 - - -

Y (ESZSL) 48.2 52.4 50.2 51.8 74.1 61.0 44.4 36.6 40.1 - - -

LisGAN [20]
N 40.9 60.5 48.8 53.1 81.7 64.4 41.5 36.6 38.9 44.2 77.0 56.1

Y (ESZSL) 44.2 59.2 50.6 56.7 77.8 65.6 44.0 35.4 39.2 46.2 71.5 56.2

TF-VAEGAN [18]
N 53.9 58.4 56.0 59.4 78.3 67.5 42.9 39.3 41.0 54.4 75.2 63.2

Y (ESZSL) 51.1 63.3 56.6 63.5 83.2 72.1 44.0 39.7 41.7 55.2 74.7 63.5

TF-VEAGAN-FT [18]
N 64.2 72.7 68.2 70.0 91.3 79.2 46.5 41.7 44.0 41.7 90.2 57.0

Y (ESZSL) 63.1 76.1 69.0 70.2 91.7 79.5 47.8 40.6 43.9 45.6 87.6 60.0

FREE [19]
N 51.2 61.5 55.9 62.8 80.7 70.6 46.2 37.2 41.2 48.2 78.7 59.8

Y (ESZSL) 51.6 60.4 55.7 65.6 82.2 72.9 48.2 36.5 41.5 51.3 78.0 61.8

The results with four configurations over four benchmark datasets are presented in

Table 4.3. First of all, in terms of h-scores, we observe considerable performance

variations across the probe models and datasets: Sem2Vis performs the best on CUB

(+0.9 over the baseline), ESZSL provides a clear gain on FLO (+4.6) and a rela-

tive improvement on AWA (+0.3), and Vis2Sem improves the most on SUN (+1.8).

These results suggest that sample probe alternatives have their advantages and dis-

advantages, and their performances can be data-dependent. Therefore, in a practical

application, probe model options can be incorporated into the model selection pro-

cess.

More in-depth understanding of closed-form model characteristics for sample probing

purposes, and the formulation and evaluation of other probe models can be important

future work directions. Overall, the fact that we observe equivalent (2) or better (9)

h-scores in 11 out of 12 sample probing experiments indicates the versatility of the

approach in terms of compatibility with various closed-form probe models.
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Table 4.3: Sample probing with alternative closed-form models, based on TF-

VAEGAN.

Closed-form

probe model

CUB FLO SUN AWA

u s H u s H u s H u s H

- 53.9 58.4 56.0 59.4 78.3 67.5 42.9 39.3 41.0 54.4 75.2 63.2

ESZSL 51.1 63.3 56.6 63.5 83.2 72.1 44.0 39.7 41.7 55.2 74.7 63.5
Sem2Vis 51.9 63.0 56.9 58.6 80.9 68.0 44.7 38.4 41.3 54.9 74.6 63.2

Vis2Sem 37.1 70.4 48.6 58.3 80.1 67.5 46.0 40.1 42.8 55.3 74.3 63.4

4.2.3 Comparison to other generative GZSL approaches

Performance comparisons across independent experiment results can be misleading

due to differences in formulation-agnostic implementation and model selection de-

tails. Nevertheless, we present an overall comparison to the (other) state-of-the-art

generative GZSL results.

In Table 4.4, we compare our results with the state-of-the-art generative approaches

for GZSL. During training, we select our best model based on the validation results

and report test results on models that give the best validation scores. For consistency

and to keep the baseline comparable to our results, we again report our results for Lis-

GAN, TF-VAEGAN (without feedback loop), and FREE using our hyper-parameter

tuning policy, but do acknowledge that the original papers typically report higher

results. The upper part of the table contains results with the original image represen-

tations, and the lower part contains those based on fine-tuned representations.

From the results without fine-tuning, we observe that the proposed sample probing-

based generative model yields state-of-the-art h-scores in all CUB, FLO, SUN and

AWA datasets. We also observe competitive results in terms of individual unseen and

seen class accuracy values. When compared against results using fine-tuned represen-

tations, we again observe state-of-the-art h-scores on CUB and FLO datasets, with a

close second on SUN. On AWA, we observe that f-VAEGAN achieves the highest re-

sults with a significant margin over our TF-VAEGAN based baseline, where the sam-

ple probing improves the baseline yet still achieves a score below that of f-VAEGAN.
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Table 4.4: Comparison against state-of-the-art generative model based GZSL on

CUB, FLO, SUN and AWA datasets. Results obtained with the proposed features

are reported, together with the results obtained with fine-tuned features under fine-

tuned (FT). The results are reported in terms of top-1 accuracy of unseen (u) and seen

(s) classes, together with their harmonic mean (H).

CUB FLO SUN AWA

u s H u s H u s H u s H

f-CLSWGAN [12] 3.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4 57.9 61.4 59.6

Cycle-WGAN [67] 47.9 59.3 53.0 61.6 69.2 65.2 47.2 33.8 39.4 59.6 63.4 59.8

LisGAN [20] 40.9 60.5 48.8 53.1 81.7 64.4 41.5 36.6 38.9 44.2 77.0 56.1

f-VAEGAN [13] 48.4 60.1 53.6 56.8 74.9 64.6 45.1 38.0 41.3 57.6 70.6 63.5
TF-VAEGAN [18] 53.9 58.4 56.0 59.4 78.3 67.5 42.9 39.3 41.0 54.4 75.2 63.2

Meta-VGAN [42] 55.2 48.0 53.2 - - - - - - 57.4 70.5 63.5
FREE [19] 51.2 61.5 55.9 62.8 80.7 70.6 46.2 37.2 41.2 48.2 78.7 59.8

Ours (based on TF-VAEGAN) 51.1 63.3 56.6 63.5 83.2 72.1 44.0 39.7 41.7 55.2 74.7 63.5

f-VAEGAN [13] 63.2 75.6 68.9 - - - 50.1 37.8 43.1 57.1 76.1 65.2
FT TF-VAEGAN [18] 64.2 72.7 68.2 70.0 91.3 79.2 46.5 41.7 44.0 41.7 90.2 57.0

Ours (based on TF-VAEGAN) 63.1 76.1 69.0 70.2 91.7 79.5 47.8 40.6 43.9 45.6 87.6 60.0

Overall, while it is hardly fair to compare models with significant implementation de-

tails, these results suggest the overall competitiveness of the obtained data generating

models with sample probing.

4.3 Analysis

In the following, we present further analyses taking a more in-depth look at per-class

seen and unseen performance gain of sample probing on the FLO dataset, discussing

the effect of whether using ZSL or GZSL loss and observing the effect of sample

probing loss weight on validation and test h-scores. Additionally, we also include

quantitative and qualitative analyses of sample quality.
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Table 4.5: Performance of baseline model with and without sample probing on FLO

unseen classes (using TF-VEAGAN and ESZSL). Average per class top-1 accuracies

of all unseen classes are listed.

Class ID Baseline Sample probing Class ID Baseline Sample probing

001 25.0 25.0 (+0.0) 011 42.5 48.3 (+5.8)

002 23.3 36.7 (+13.4) 012 85.1 74.7 (-10.4)

003 55.0 50.0 (-5.0) 013 14.3 10.2 (-4.1)

004 55.4 53.6 (-1.8) 014 75.0 93.7 (+18.7)

005 86.2 87.7 (+1.5) 015 51.0 61.2 (+10.2)

006 75.6 77.8 (+2.2) 016 82.9 75.6 (-7.3)

007 72.5 77.5 (+5.0) 017 55.3 68.2 (+12.9)

008 92.9 96.5 (+3.6) 018 53.7 56.1 (+2.4)

009 37.0 43.5 (+6.5) 019 77.6 81.6 (+4.0)

010 75.6 86.7 (+11.1) 020 51.8 66.1 (+14.3)

4.3.1 Per class performance of sample probing for seen and unseen classes in
FLO

Sample probing improves the GZSL results of TF-VAEGAN baseline on FLO with

the performance gain in terms of GZSL-u (+4.1), GZSL-s (+4.9) and h-score (+4.6).

While these results are informative about the overall performance of the approach, it

can be insightful to observe the per class performance of the sample probing for seen

and unseen classes since the h-score is a harsh metric.

In table 4.5, we can observe the performance of the baseline TF-VAGEAN model

with and without sample probing for 20 unseen classes in the FLO dataset in terms

of average top-1 accuracy. With the integration of the sample probing scheme, the

performance of the baseline model increases in 14 out of 20 classes, while 6 of them

have double-digit improvements (+18.7, +14.3, +13.4, +12.9, +11.1 and +10.2).

On the other hand, the performance of the baseline model decreases in 5 classes (with

the highest accuracy drop of �10.4) while remaining the same for a single class.

Since the final classification models tend to yield higher confidence scores through

seen classes in the GZSL setting, performance gains in the majority of the unseen

classes show the superiority of the proposed sample probing.

We can make similar observations for 82 seen classes in FLO, listed in Table 4.6
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Table 4.6: Performance of baseline model with and without sample probing on FLO

seen classes (using TF-VEAGAN and ESZSL). Average per class top-1 accuracies of

all seen classes are listed.

Class ID Baseline Sample probing Class ID Baseline Sample probing

021 87.5 87.5 (+0.0) 062 36.4 72.7 (+36.3)

022 75.0 75.0 (+0.0) 063 100.0 100.0 (+0.0)

023 88.9 94.4 (+5.5) 064 90.0 100.0 (+10.0)

024 75.0 87.5 (+12.5) 065 90.0 95.0 (+5.0)

025 100.0 100.0 (+0.0) 066 100.0 100.0 (+0.0)

026 75.0 75.0 (+0.0) 067 62.5 75.0 (+12.5)

027 75.0 75.0 (+0.0) 068 36.4 54.5 (+18.1)

028 76.9 76.9 (+0.0) 069 90.9 100.0 (+9.1)

029 93.7 100.0 (+6.3) 070 100.0 100.0 (+0.0)

030 94.1 94.1 (+0.0) 071 87.5 87.5 (+0.0)

031 50.0 60.0 (+10.0) 072 52.6 57.9 (+5.3)

032 22.2 77.8 (+55.6) 073 89.7 94.9 (+5.2)

033 88.9 88.9 (+0.0) 074 73.5 67.6 (-5.9)

034 87.5 100.0 (+12.5) 075 91.7 100.0 (+8.3)

035 88.9 88.9 (+0.0) 076 76.2 81.0 (+4.9)

036 53.3 53.3 (+0.0) 077 96.0 96.0 (+0.0)

037 100.0 100.0 (+0.0) 078 93.0 93.0 (+0.0)

038 81.8 90.9 (+9.1) 079 100.0 100.0 (+0.0)

039 25.0 50.0 (+25.0) 080 90.5 90.5 (+0.0)

040 61.5 76.9 (+15.4) 081 87.9 90.9 (+3.0)

041 96.0 100.0 (+4.0) 082 63.6 72.7 (+9.1)

042 50.0 58.3 (+8.3) 083 80.8 88.5 (+7.7)

043 69.2 73.1 (+3.9) 084 47.1 70.6 (+23.5)

044 100.0 94.7 (-5.3) 085 46.2 53.8 (+7.6)

045 62.5 75.0 (+12.5) 086 66.7 75.0 (+8.3)

046 97.4 97.4 (+0.0) 087 76.9 84.6 (+7.7)

047 92.3 92.3 (+0.0) 088 83.9 90.3 (+6.4)

048 78.6 92.9 (+14.3) 089 91.9 94.6 (+2.7)

049 100.0 100.0 (+0.0) 090 68.7 75.0 (+6.3)

050 22.2 44.4 (+22.2) 091 53.3 66.7 (+13.4)

051 82.7 84.6 (+1.9) 092 76.9 76.9 (+0.0)

052 88.2 88.2 (+0.0) 093 77.8 77.8 (+0.0)

053 63.2 73.7 (+10.5) 094 96.9 96.9 (+0.0)

054 91.7 91.7 (+0.0) 095 88.5 84.6 (-3.9)

055 71.4 64.3 (-7.1) 096 44.4 44.4 (+0.0)

056 100.0 100.0 (+0.0) 097 61.5 61.5 (+0.0)

057 69.2 69.2 (+0.0) 098 81.2 62.5 (-18.7)

058 100.0 100.0 (+0.0) 099 84.6 76.9 (-7.7)

059 84.6 100.0 (+15.4) 100 90.0 90.0 (+0.0)

060 100.0 100.0 (+0.0) 101 91.7 91.7 (+0.0)

061 100.0 100.0 (+0.0) 102 80.0 80.0 (+0.0)

32



Table 4.7: ZSL vs GZSL based sample probing losses, (using TF-VAEGAN and

ESZSL).

Baseline
Sample probing

zsl-loss gzsl-loss

u s H u s H u s H

CUB 53.9 58.4 56.0 50.5 63.6 56.3 51.1 63.3 56.6
FLO 59.4 78.3 67.5 62.4 83.8 71.5 63.5 83.2 72.1
SUN 42.9 39.3 41.0 44.0 39.7 41.7 46.0 36.9 41.0

AWA 54.4 75.2 63.2 55.2 74.7 63.5 55.6 72.8 63.0

in terms of average top-1 accuracy. The performance of the baseline TF-VAEGAN

remains the same for 37 classes, most of them are already classified highly accurately.

The baseline model with integrated sample probing improves the results for a lot of

seen classes with a significant ratio of 39 out of 82. Performance gain for Class-032

reaches a remarkable +55.0 bringing up the average top-1 accuracy from 22.2 to 77.8.

6 out of 82 seen classes experience performance decrease with sample probing where

the highest drop is measured as �18.7 bringing down the accuracy of Class-098 from

81.2 to 62.5.

4.3.2 ZSL vs GZSL loss in sample probing

We define two different types of losses (zsl-loss and gzsl-loss) used as Lpb in Eq.3.3.

They differ from each other in terms of classes among which the real examples of

probe-validation classes are classified, during the evaluation of the sample probing

ZSL model. zsl-loss and gzsl-loss indicate that the examples of probe-validation

classes are classified among only probe-validation classes, and both probe-train and

probe-validation classes, respectively.

In Table 4.7, we present a comparison of our approach, using TF-VAEGAN as the

generative model and ESZSL as the probe model when zsl-loss and gzsl-loss used as

Lpb. We observe that using either one during the evaluation of the sample probing

ZSL model, brings its own characteristic results. On all datasets, using zsl-loss in-
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Table 4.8: Selected sample probing loss types for GZSL models using ESZSL as the

closed-form probe model on CUB, FLO, SUN and AWA datasets.

CUB FLO SUN AWA

cWGAN [34] gzsl gzsl zsl -

LisGAN [20] gzsl gzsl zsl zsl

FREE [19] gzsl gzsl zsl zsl

TF-VAEGAN [18] gzsl gzsl zsl zsl

TF-VAEGAN-FT [18] gzsl zsl zsl gzsl

creases the seen accuracy while using gzsl-loss increases the unseen accuracy. We

choose among these two options using our same hyper-parameter tuning policy, on

the validation set.

Table 4.8 also reveals an interesting pattern showing that independent from the gen-

erative model being used, a single version of the loss tends to be selected in each

dataset. The only exceptions are observed with the fine-tuned features, which is not

unusual considering that the visual data is (almost) completely different. This pattern

highlights that this choice is data-dependent, most likely due to various non-trivial

factors.

4.3.3 Effect of sample probing loss weight

We observe the effects of sample probing loss weight on h-score in the validation and

test set results to gain more insight into the challenging nature of model tuning in the

ZSL setting.

Figure 4.1 shows the validation and test set h-score values as a function of sample

probing loss weight. In the test set results, we observe an overall increasing perfor-

mance trend with larger loss weights, up to the weight 6, highlighting the contribution

of sample probing. The optimal weight with respect to the validation and the test sets,

however, differs. In the validation set results, the maximum value of the h-score is ob-

tained when the sample probing loss weight is set to 5. This observation is an example
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Figure 4.1: The effect of sample probing loss weight on the CUB dataset. Loss weight

is set to 5 in test time concerning the best performance in validation time.

Table 4.9: Comparison of mean per-class Fréchet Distance between real and gener-

ated unseen class samples on CUB, AWA and FLO datasets for TF-VAEGAN and our

approach. Lower is better.

CUB FLO AWA

Baseline 21.5 31.0 18.5

Ours 19.8 30.2 17.9

of the difficulty of tuning the ZSL model based on the validation set. Still, we set the

loss weight to 5 following our hyper-parameter tuning policy, which yields almost 0.5

lower than the maximum test-set score observed for this single hyper-parameter.

4.3.4 Quantitative analysis of sample quality

We quantitatively evaluate the sample quality using Fréchet (Wasserstein-2) distance,

which is also used in the FID metric for evaluating GANs.

In Table 4.9, we provide a comparison for TF-VAEGAN and our approach for respec-

tive mean per-class Fréchet distances between real and synthetic samples (200 syn-

thetic samples per class) of unseen classes on CUB, FLO and AWA datasets. Lower

distance scores indicate better sample quality.
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From the table, we can observe that the sample probing provides lower Fréchet dis-

tances over TF-VAEGAN baseline on all three CUB (-1.7), FLO (-0.8) and AWA

(-0.6) datasets indicating that the sample quality of generator trained with sample

probing is better. Overall, the results show that sample probing helps the generator to

generate more realistic samples compared to TF-VAEGAN.

4.3.5 Qualitative analysis of sample quality

We further investigate the qualitative analysis of the sample quality to provide addi-

tional insight into the improvements that can be gained using the proposed sample

probing scheme.

We present t-SNE visualizations of synthetic class samples in Figure 4.2, which

can be useful in the presence of quantitative metrics such as the h-score and the

Wasserstein-2 distance. t-SNE plots visualize what kind of improvements can be

achieved in terms of the learned manifolds. In the figure, each plot corresponds to an

unseen class on the FLO dataset (pink primrose, canterbury bells, sweet pea, globe

thistle, spear thistle and yellow iris, respectively), and the points correspond to the t-

SNE embeddings of real samples (⇥ points), generated samples using TF-VAEGAN

with sample probing ( points) and those using the baseline TF-VAEGAN model with-

out sample probing (N points).

From the plots, we can observe that the generative model trained with sample probing

tends to yield samples much more aligned with the corresponding true class distribu-

tions, compared to those of the baseline model. Overall, these plots demonstrate how

sample probing can improve the overall sample quality of a generative model, and

possibly lead to superior recognition models when the generated samples are used for

classifier training.

4.3.6 Training time

As the sample probing model involves using a closed-form solver at every single

generative model update step, it does have an extra cost. For example, training TF-
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(c) (d)

(e) (f)

Figure 4.2: t-SNE visualization of different unseen classes from FLO dataset. Each

plot shows t-SNE embeddings of real samples (⇥ points), generated samples us-

ing TF-VAEGAN with sample probing ( points) and those using the baseline TF-

VAEGAN [18] model without sample probing (N points).

VAEGAN for 100 epochs on the CUB dataset takes 27.2 minutes without sample

probing, and 43.2 minutes with sample probing. Despite its overhead, since all the

experiments are in the feature domain as in other mainstream generative GZSL stud-

ies, the overall experiment durations remain practically feasible, in the order of 1 to 5

hours (depending on the maximum number of iterations, and the dataset size).
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this chapter, we conclude the studies that constitute the thesis and we discuss the

ideas about potential future works and promising contributions that can be used to

expand and make the proposed approach in this thesis more valuable.

5.1 Conclusion

We propose a principled GZSL approach, namely sample probing, which makes use

of closed-form ZSL models in generative model training to provide a sample-driven

and end-to-end feedback to the generator. Sample probing aims to directly maximize

the value of training examples for ZSL training purposes and can easily be integrated

into existing generative GZSL approaches.

In Chapter 3, we investigate the already existing competitive generative zero-shot

learning model baselines into which the sample probing scheme is integrated, in detail

and we formulate the proposed sample probing scheme as a simple yet powerful meta-

learning approach and investigate several alternative closed-form solvers. We then

show that the resulting compute graph is both efficient and end-to-end differentiable

that generative model parameters can be updated with training signals produced by

probing models with exact closed-form solutions.

The experiments over four benchmark datasets with four recent and competitive gen-

erative GZSL approaches show that the proposed sample probing scheme consis-

tently improves the GZSL results. Additional quantitative and qualitative analyses

also point out the increase in the overall sample quality. Extensive experiments show
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that further performance gain can be achieved with various closed-form probe mod-

els that can be easily incorporated into the model selection process, indicating the

versatility of the approach in terms of compatibility. According to performance com-

parisons across independent experiments, sample probing achieves state-of-the-art

results when integrated into state-of-the-art baselines.

Additionally, we elaborate on the details of the hyper-parameter selection process in

the generalized zero-shot learning setting. Through our studies in GZSL, we experi-

ence difficulties in hyper-parameter tuning policy and, naturally, comparisons across

independent studies. Unfortunately, the proposed tuning policy is vaguely defined as

discussed in Chapter 4 and, to the best of our knowledge, there is no comprehensive

work focusing on this problem. We repeatedly observed that final results are heavily

influenced by the hyper-parameter tuning strategy which makes it even more impor-

tant to follow a principled tuning policy. In this thesis, we present a principled hyper-

parameter tuning policy, defined in Chapter 4, that makes the comparisons and anal-

yses made in this study more accurate. We believe that the proposed hyper-parameter

tuning policy will be illuminating for future studies and will lead to consistent results

in the field.

5.2 Future work

While we mainly focus on integrating sample probing scheme into existing genera-

tive GZSL approaches in this thesis, we already observe the unique characteristics

of ESZSL [46], Vis2Sem [61] and Sem2Vis [62] on four benchmark GZSL datasets

in Chapter 4. More in-depth analyses of closed-form model characteristics and the

formulation and evaluation of other probe models such as expanding Table 4.3 to

other generative models and introducing new closed-form solvers into sample prob-

ing scheme, can be important future work directions.

More detailed and comprehensive ablation studies focusing on the analyses of hyper-

parameters of sample probing scheme such as the effects of the selection of sample

probing loss type on the training of other closed-form solvers, the number of synthetic

samples generated for closed-form solver training in each iteration, etc. can be worth

40



to explore in future.

Another potential future work direction can be the evaluation of the sample prob-

ing scheme under different configurations on zero-shot and other weakly supervised

learning settings.
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