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ABSTRACT 

 

SPARSE RECONSTRUCTION FOR NEAR-FIELD MIMO RADAR 

IMAGING PROBLEMS USING FAST MULTIPOLE METHODS 

 

 

 

Miran, Emre Alp 

Doctor of Philosophy, Electrical and Electronic Engineering 

Supervisor: Prof. Dr. Sencer KOÇ 

Co-Supervisor: Assoc. Prof. Dr. Sevinç Figen Öktem 

 

 

January 2022, 127 pages 

 

 

Multiple-input-multiple-output (MIMO) radar is an advanced radar technique, where 

spatially distributed transmitting and receiving sub-arrays operate sequentially or 

simultaneously. In this technique, each antenna may transmit either the same or 

different waveforms, and this leads to better spatial resolution when compared to 

conventional phased array radar. Therefore, MIMO radar has been extensively used 

in imaging applications in the last two decades. In all these applications, the imaged 

scene is typically sparse and objects of interest are located at the near-field of the 

antenna. More importantly, in most of these applications, the imaging system has to 

deal with the requirement of high quality real-time recovery from large-scale under-

sampled measurement data. In this thesis, we aim to develop an efficient sparse 

solution method to large-scale near-field imaging problems. For this purpose, we 

first construct the imaging problem as a convex optimization problem and solve it 

using the augmented Lagrangian based reconstruction algorithms. Then, for large 

scale problems, we propose applying the fast multipole method (FMM) formulation 

in these algorithms for efficient computation of matrix-vector products. This 
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approach avoids constructing and storing large-scale sensing matrices explicitly in 

memory and accelerates the reconstruction. We numerically test the effectiveness of 

the approach for several near-field imaging scenarios, ranging from point scatterers 

to extended targets (2-D/3-D). Results show that we can successfully apply FMM in 

the sparse reconstruction algorithms and it makes the reconstructions very efficient 

in terms of both computation time and memory usage. 

Keywords: multiple-input-multiple-output antenna array, near-field radar imaging, 

linear inverse problem, sparse reconstruction, fast multipole method. 
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ÖZ 

 

YAKIN ALAN MIMO RADAR GÖRÜNTÜLEME PROBLEMLERİ İÇİN 

HIZLI ÇOK KUTUP YÖNTEMİ İLE SEYREK ÇÖZÜMLEME 

 

 

 

Miran, Emre Alp 

Doktora, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Sencer Koç 

Ortak Tez Yöneticisi: Doç. Dr. Sevinç Figen Öktem 

 

 

Ocak 2022, 127 sayfa 

 

Çok giriş-çok çıkışlı (ÇGÇÇ) radar, uzaysal olarak dağıtılmış verici ve alıcı alt 

dizilerin sıralı veya aynı anda çalıştığı gelişmiş bir radar tekniğidir. Bu teknikte, her 

anten aynı dalga biçimini gönderebileceği gibi, gönderilen dalga biçimleri 

birbirinden farklı da olabilir ve bu, geleneksel faz dizili radarla karşılaştırıldığında 

daha yüksek uzaysal çözünürlük sağlar. Bu nedenle, ÇGÇÇ radarı son yirmi yılda 

görüntüleme uygulamalarında yaygın olarak kullanılmıştır. Tüm bu uygulamalarda, 

görüntülenen uzayda genellikle az sayıda nesne bulunur ve bu nesneler antenin yakın 

alanındadır. Daha da önemlisi, bu uygulamaların çoğunda, görüntüleme sisteminin, 

büyük ölçekli ve yetersiz örneklenmiş ölçüm verilerinden yüksek kaliteli ve gerçek 

zamanlı çıktı vermesi beklenmektedir. Bu tezde, büyük ölçekli yakın alan 

görüntüleme problemlerine verimli bir seyrek çözüm yönteminin geliştirilmesi 

hedeflenmiştir. Bu amaçla, görüntüleme problemi öncelikle dışbükey bir 

optimizasyon problemi olarak kurgulanmış ve genişletilmiş Lagrange tabanlı 

görüntü oluşturma algoritmaları kullanılarak çözülmüştür. Ardından, büyük ölçekli 

problemlerde matris-vektör çarpımlarının verimli hesaplanması için bahsi geçen 

algoritmalara Hızlı Çok Kutup Yöntemi (HÇKY) formülasyonu uygulanmıştır. Bu 
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yaklaşımda büyük ölçekli algılama matrislerinin bellekte oluşturulması ve 

depolanması gerekmez ve dolayısıyla hızlı görüntüleme sağlanır. Noktasal saçıcılar 

ve yaygın hedefler (2-B/3-B) gibi çeşitli yakın alan görüntüleme senaryoları için 

yaklaşımın etkinliği bilgisayar ortamında test edilmiştir. Sonuçlar, HÇKY'nin seyrek 

yeniden yapılandırma algoritmalarına başarıyla uygulanabileceğini göstermiştir. 

Ayrıca, HÇKY'nin uygulanması, hem hesaplama süresi hem de bellek kullanımı 

açısından görüntüleme algoritmalarını çok verimli hale getirmiştir. 

Anahtar Kelimeler: Çok-giriş-çok-çıkışlı anten dizisi, yakın alan radar görüntüleme, 

doğrusal ters problem, seyrek çözüm, hızlı çok kutuplu yöntem 
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CHAPTER 1  

1 INTRODUCTION  

RADAR (acronym of RAnge Detection And Ranging) is an electromagnetic device 

used for locating and detecting reflecting objects of interest. Its operation is 

principally based on radiating electromagnetic energy into space and capturing the 

backscattered waves from the objects. The existence of waves was first suggested by 

Scottish physicist James Clerk Maxwell and proved by a series of experiments 

conducted by the German physicist Heinrich Hertz in 1886-1888. Although it was 

mainly utilized for military purposes in its early stages, recently, its usage has 

evolved to a wide variety of applications, one of which is microwave imaging.     

The first consideration that comes to mind for any kind of imaging technology is the 

type of energy that is used to illuminate the scene or object under test. Microwave 

imaging is carried out by the use of microwave energy, which is one form of 

electromagnetic radiation, and it is a band in the continuous spectrum as given in 

Fig 1.1. The spectrum also includes visible and infrared energy regions that are used 

in optical imaging. Only difference between them is the wavelength of the radiated 

energy. For majority regions of the spectrum, constituents of atmosphere (water 

vapor, oxygen molecules, etc.) absorbs the electromagnetic energy. The regions apart 

from the absorptive ones (frequencies above ultraviolet region (> 3 × 1017 Hz ) and 

frequencies below infrared (< 1012 Hz )) can be used for imaging of optically 

opaque objects. Microwave energy occupies the region between 3 × 108 Hz − 3 ×

1011 Hz. In contrast to the energy in the visible and infrared regions, microwave 

energy is capable of penetrating through haze, rain, snow and clouds, which makes 

it viable for radar imaging applications. Also, the width of this region extends the 

application fields of the microwave imaging from sub-surface monitoring to medical 

healthcare. 



 

 

2 

Figure 1.1. The electromagnetic spectrum and absorption characteristic of the 

atmosphere. 

Radar imaging technology plays a key role, especially for remote sensing in critical 

situations, where the system is challenged by the requirement of rapid data 

acquisition. For example, locating people being taken hostages or getting caught in 

the middle of fire in a barricaded area, investigating non-metallic objects for 

detecting concealed weapons or improvised explosive devices at security check 

points, harmless scan of human body in the search for cancerous tissues, etc. can be 

listed for such applications [1-4]. In all of them, the radar system is installed upon a 

common scenario of monitoring a target (or multiple targets) residing in close 

proximity of the antenna aperture and it is aimed to reconstruct real-time image with 

a fine resolution. 
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Figure 1.2. Illustration of down- and cross-ranges. 

In the last two decades, ultra-wideband (UWB) radar systems have attracted the 

researchers, specifically in the fields of microwave sensing and radar imaging 

applications. A UWB radar system transmits ultra-narrow pulses that occupy a very 

large bandwidth since they change very rapidly. These pulses can penetrate through 

surrounding objects and allow high resolving capability in both down- and cross-

range, leading to a three-dimensional (3-D) image reconstruction. The down-range 

resolution 𝛿𝑑𝑟 of a radar system is directly related to the bandwidth of the 

transmission by 

𝛿𝑑𝑟 =
𝑐

2𝐵
 

where, 𝑐 is speed of light. The cross-range resolution 𝛿𝑐𝑟 is determined by 

wavelength at the center frequency 𝜆𝑐, distance to the target 𝑅, and aperture width 

of the array 𝐿 in orthogonal dimensions and is given as: 

𝛿𝑐𝑟 ≈
𝑅𝜆𝑐
𝐿

 

In addition, rather than simple target detection, waveform of the scattered UWB 

signal carries information about target’s physical structure and electrical 

characteristics in its content, which eventually leads to target identification. 
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Figure 1.3. Basic SAR principle. 

UWB technology has been implemented into synthetic aperture radar (SAR) systems 

for many imaging applications (including topography, oceanography, 

geomorphology, etc.) where imaging is carried out mostly by an array of identical 

transceiver pairs. Such systems can provide high azimuthal resolution through the 

use of a large synthetic aperture, which is generated by the translation of the antennas 

in space. However, the azimuthal resolution is limited by the length of this 

translation. Besides, for high resolution, the scattered fields are usually sampled by 

very densely placed transceivers. This requirement leads to two significant 

challenges: Increased data acquisition time and implementation cost (including 

manufacturing of the dense array and design of supporting electronic equipment), 

therefore, SAR systems may not be an appropriate tool for real-time near field 

imaging applications. 

One key approach in order to deal with these challenges is implementation of 

multiple-input-multiple-output (MIMO) array topologies. MIMO arrays are 

characterized by spatially distributed transmitting and receiving sub-arrays, which 

are able to operate sequentially or simultaneously. In association with UWB 

transmission, real aperture radar systems with well-designed MIMO array topology 
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can provide 3-D images with improved resolution using fewer number of antennas 

than number of measurements required for SAR applications. With the adoption of 

UWB MIMO radar system, near-field imaging can be performed with reduced data-

acquisition time and computational cost [1, 5-12]. 

(a)                                         (b)                                      (c) 

Figure 1.4. MIMO array topologies: (a) Curvilinear array, (b) rectangular array, and 

(c) Mill’s cross array (𝜆𝑐 denotes wavelength of the center frequency of the operating 

band). 

In monochromatic case, the spacing between the antenna elements in an array must 

be about half-wavelength (𝜆/2) in order to avoid grating lobes in the radiation 

pattern, which directly affects the resolution of the radar system. Therefore, array 

aperture plays key role to establish the trade-off between the resolution and the data 

acquisition time. On the other hand, non-monochromatic approach is able to provide 

both low grating lobe level and high resolution through the use of specific MIMO 

array topologies, namely sparse arrays. Despite the fact that the grating lobes emerge 

because of the periodic reduction of antenna elements, in association with UWB 

transmission, the interference area around the main lobe can be reduced to a very 

small area. Hence, as the fractional bandwidth increases, influence of the grating 

lobes on the array pattern is significantly reduced. Recently, usage of sparse MIMO 

arrays in UWB radar imaging applications has been increased significantly [9, 11-

12]. Several sparse MIMO array topologies are investigated for this reason, 

especially in near-field imaging applications [6-10, 13-17]. 
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In a conventional MIMO radar system, the transmitting sub-array illuminates the 

target space with electromagnetic waves and the scattered fields are captured by the 

receiving sub-array. After reception, the fields are digitized into back-scattered data 

and processed by several reconstruction algorithms in order to obtain the image of 

the scene. Design of such system can be divided into three parts:  

(i) Design of the MIMO array configuration,  

(ii) design of transceiver module (TR module) and supporting electronic 

hardware,  

(iii) and implementation of the reconstruction algorithms.  

This study focuses on the last part, specifically seeks an efficient sparse 

reconstruction to large-scale near-field MIMO radar imaging problems by 

developing a fast multipole method (FMM) based approach. The research activities 

that carried out in the scope of this thesis can be given step by step as follows: 

Radar imaging is treated as the inverse problem of target detection and investigated 

by the use of its forward counterpart. Definition of ill-posedness, the shortcomings 

that it causes on the solution of inverse problem, and regularization approach to deal 

with them are discussed. Sparsity constraint and related sparse approximation 

concept are studied.  

A plus-shaped MIMO configuration is designed to be used for near-field imaging 

applications and corresponding forward problem is established to relate reflectivity 

characteristics of the imaged scene to measurement data. The problem is then 

discretized using a predefined grid and converted into a linear system of equations. 

It is shown that solution of this system gets computationally demanding, as the grid 

size and extents of the imaging configuration (e.g. array aperture) increase.  

Diagonalizability of the sensing operator and fast Fourier transforms are commonly 

utilized in the literature for efficient solution of large-scale near-field imaging 

problems [129-132]. These methods attempt to reduce computation time and 

memory requirement. Here in this thesis, it is demonstrated that FMM can be 
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employed when solving the radar imaging problem by exploitting the fact that its 

forward part is an electromagnetic scattering problem. Hence, matrix-vector 

products within the reconstruction algorithms can be carried out without forming the 

matrix (or its conjugate transpose) explicitly. 

Sparse reconstruction methods, such as greedy pursuit (based on ℓ0 “norm”) and 

convex optimization (based on 𝑙1-norm), are investigated and demonstrated for 

various near-field MIMO radar imaging scenarios with a sparse scene. Then, for 

large-scale problems, the developed FMM-based approach is applied in the sparse 

reconstruction algorithms to efficiently calculate matrix-vector products, enabling 

accelerated CPU time and reduced memory usage. 

Finally, discrete dipole approximation (DDA) is investigated and applied in near-

field MIMO radar imaging problems in order to add the contribution from multiple 

reflections in the solutions, and thereby observe the visible and quantitative 

improvements on the sparse reconstructions. Furthermore, the FMM is applied in the 

DDA solution and further acceleration is sought, which depends on the discretization 

level. 

Following the introduction chapter, the research goals are appropriately organized 

and written out as given below: 

In Chapter 2, imaging problem is defined as a discretized linear inverse problem and 

its shortcomings are explained. Regularization methods, especially sparsity 

constraint, are discussed. 

In Chapter 3, brief literature review on MIMO array, MIMO array-based radar, and 

its imaging applications are presented. A near-field radar imaging configuration with 

a plus-shaped MIMO array is implemented and corresponding forward problem is 

approximated using Born approximation. Then, the imaging problem is discretized 

and converted to a linear system of equations using a predefined grid. Also, the target 

is assumed to be stationary. 
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In Chapter 4, FMM and its mathematical background are briefly introduced. Then, a 

two stage FMM-based method is developed, which can be employed to efficiently 

calculate matrix-vector products within reconstruction algorithms. A small-scale 

near-field MIMO radar imaging problem is implemented and iteratively solved to 

demonstrate the applicability of the FMM-based method. Afterwards, the 

computational improvement that FMM can provide for large-scale problems is 

analyzed in terms of CPU-time and memory requirement.  

In Chapter 5, several off-the-shelf sparse reconstruction algorithms are presented in 

detail. Each algorithm is numerically tested for different imaging scenarios with the 

incorporation of FMM formulation. The effect of FMM on the solutions are 

investigated in terms of computation time and memory requirement. 

In Chapter 6, DDA, its background and implementation as a linear system of 

equations are presented. Usage of DDA for near-field MIMO imaging problems are 

mathematically explained and demonstrated by a numerical example. The 

reconstructed images are compared to those obtained without DDA in terms of image 

quality and results are reported. Finally, the FMM is applied in the DDA-based 

solution in order to obtain computational efficiency as a function of discretization 

level of the imaged scene. 

Finally in Chapter 7, summary of this thesis is provided with concluding remarks.  
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CHAPTER 2  

2 INVERSE PROBLEM 

The problem of locating a target and identifying its characteristics by the indirect 

observations underlie all types of radar applications. This kind of problem is 

typically referred to as an inverse problem, which can be established with the use of 

its counterpart, namely forward problem. A classical forward problem directly 

estimates the observation data using known physical parameters and problem 

geometry through an appropriate mathematical model. Hadamard described that an 

inverse problem is called “well-posed”, if 

-  a solution exists, 

- the solution is unique, 

- and the solution is stable, implying that the problem has a solution that 

depends continuously on input data [18,19]. 

If the problem violates any of these rules, it is accepted as ill-posed. Inverse problems 

generally do not have unique solution and are very sensitive to small deviations on 

its initial values, therefore, they are ill-posed in Hadamard sense. 

A linear mathematical model, which relates the observation data to the physical 

parameter(s) of interest, is expressed as 

𝐀𝐱 = 𝐛                                                      (2.1) 

where 𝐀 ∈ ℂ𝑀×𝑁 is system matrix, representing direct operator of the linear model, 

𝐛 ∈ ℂ𝑀 is observation data, presumed to be known, and 𝐱 ∈ ℂ𝑁 is a vector into which 

the unknowns are stacked in proper order. In real life applications, observations are 

always noisy and true form of the mathematical model is 

𝐛 = 𝐀𝐱 + 𝛆                                                  (2.2) 

where 𝛆 ∈ ℂ𝑀 is an additive vector that constitutes random perturbation on the 

observation data with a known statistical model. It might be caused by modeling 
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errors, physical measurement errors, or numerical implementation errors due to finite 

precision etc. 

 

Figure 2.1. Forward problem vs inverse problem. 

In the sense of the descriptions above, the calculation of 𝐛 using 𝐀 and 𝐱 (both are 

known) is the forward problem. Its solution is unique and it is insensitive to the 

observational noise. However, the estimation process of the unknown 𝐱 using noisy 

(and limited) observation data 𝐛 is the inverse problem. 

The solution of a continuous inverse problem can be done on a computer by replacing 

the problem by its discrete version. This leads to an ill-conditioned system since the 

inverse problems tend to be ill-posed. Condition number of the matrix 𝜅(𝐀), 

determines conditioning of the inverse problem and it is defined as 

𝜅(𝐀) =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
                                                     (2.3) 

where 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 denote maximum and minimum singular values of 𝐀, 

respectively. A linear system with high condition number is called ill-conditioned, 

which indicates that the solution is sensitive to small perturbations on 𝐛 [19]. 

The forward model of an imaging system creates the back-scattered data 𝐛 for the 

imaged domain with the use of reflectivity distribution 𝐱 and forward operator 𝐀 as 

illustrated in Fig. 2.1. On the other hand, the original imaging problem based upon 
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the same model is to reconstruct the reflectivity distribution 𝐱 from the 

measurements of the back-scattered data 𝐛 under the environmental noise 𝛆, which 

is typically in normal distribution. Such imaging problem is characterized as an ill-

posed inverse problem. 

During the imaging process, the scene is typically discretized by a very large number 

of points and only a limited (generally insufficient) number of measurements are 

available. In mathematics, a linear system with fewer equations than the number of 

unknowns is called under-determined (in contrast, if there are more equations than 

the number of unknowns, it is an over-determined system). Therefore, an imaging 

problem is generally under-determined by its nature. An under-determined system 

has either no solution or infinitely many solutions. A priori information is required 

to narrow down the number of solutions and obtain the most useful one.   

2.1 Solution of Inverse Problems 

One naive approach for the solution of an inverse problem with a square and 

invertible matrix 𝐀 ∈ ℂ𝑁×𝑁 is to find 𝐀−1 and simply ignore the effect of the noise 

on the problem. The solution is then given by 

𝐱 = 𝐀−1𝐛.                                                  (2.4) 

For an over-determined system (𝐀 ∈ ℂ𝑀×𝑁 ,𝑀 > 𝑁), the solution can be handled by 

a straightforward approach that is based on converting the problem into least squares 

problem 

min
𝐱
‖𝐛 − 𝐀𝐱‖2

2 

whose solution is given as 

�̂�𝐿𝑆 = (𝐀
𝐻𝐀)−1𝐀𝐻𝐛                                           (2.5) 

where, 𝐀𝐻 is conjugate transpose of 𝐀. On the other hand, for an under-determined 

system (𝐀 ∈ ℂ𝑀×𝑁 , 𝑁 > 𝑀), there are infinitely many solutions, therefore, the most 
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useful solution among them should be picked. For example, the solution with 

minimum norm �̂�𝑀𝑁 is a straightforward approach for such a system and given by 

�̂�𝑀𝑁 = argmin
𝐱

‖𝐱‖2
2     subject to    𝐛 = 𝐀𝐱,                           (2.6) 

and the solution is given by 

�̂�𝑀𝑁 = 𝐀𝐻(𝐀𝐀𝐻)−1𝐛.                                            (2.7) 

It must be noted that an underdetermined system might be inconsistent, which means 

that it does not have an exact solution. However, it is still possible to find infinitely 

many solutions that minimize ‖𝐛 − 𝐀𝐱‖2
2. Among such solutions, there exists a 

unique minimum norm one and is called the minimum norm least squares solution. 

All naive approaches given above are based on determining the inverse of an ill-

conditioned matrix (either 𝐀−1 or pesudo-inverse) and they often tend to fail for the 

solution of imaging problems. There exist some preconditioning methods for such 

non-invertible matrices, but they do not guarantee stable solutions. On the other 

hand, regularization of the problem is an effective method for such circumstances. 

2.2 Regularization of Inverse Problems 

Some modifications, alongside with a priori information, can be applied on the 

imaging problem in order to obtain approximate solutions that are less sensitive to 

noise when compared to the standard naive approaches. This modification procedure 

is called “regularization” and it replaces the ill-conditioned problem with a better-

conditioned one, whose solution is approximation to the original solution. 

Let the unknowns in (2.1) and (2.2) be renamed as 𝐱𝑒𝑥𝑎𝑐𝑡 and �̂� so that the equations 

that they satisfy will take the form of 

𝐀𝐱𝑒𝑥𝑎𝑐𝑡 = 𝐛                                                     (2.8) 

and 
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𝐀�̂� = 𝐛 + 𝛆,                                                     (2.9) 

respectively. In association with the perturbation theory, components of (2.6) and 

(2.7) satisfy following bound relation 

‖𝐱𝑒𝑥𝑎𝑐𝑡−�̂�‖
2

‖𝐱𝑒𝑥𝑎𝑐𝑡‖2
≤ 𝜅(𝐀)

‖𝛆‖2

‖𝐛‖2
,                                          (2.10) 

which indicates that the approximate solution of a perturbed linear system may 

diverge from the exact solution, when the condition number 𝜅(𝐀) is very high. The 

perturbations close to the upper bound are always encountered in discrete inverse 

problems, hence, regularization is strictly required in order to obtain rather stable 

and useful approximations for 𝐱𝑒𝑥𝑎𝑐𝑡, specifically in imaging problems. 

2.2.1 Singular Value Decomposition (SVD) 

As stated earlier, the minimum norm least squares solution to an inconsistent 

underdetermined system is unique. This solution can be obtained by SVD, which is 

a well-known method for solving discrete ill-conditioned inverse problems. 

SVD of 𝐀 ∈ ℂ𝑀×𝑁(rank(𝐀) = r) takes the form of 

𝐀 = 𝐔𝚺𝐕𝐻                                                      (2.11) 

where, 𝐔 = [𝐮1, 𝐮2, … , 𝐮𝑟] ∈ ℂ
𝑀×𝑟 and 𝐕 = [𝐯1, 𝐯2, … , 𝐯𝑟] ∈ ℂ

𝑁×𝑟 are unitary 

matrices containing left and right singular vectors, respectively, and 𝚺 =

diag[𝜎1, 𝜎2, … , 𝜎𝑟] ∈ ℂ
𝑟×𝑟 is a diagonal matrix whose entries are singular values of 

𝐀 that are placed into matrix in the following order 

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0. 

Using SVD, it is straightforward to show that pseudoinverse of 𝐀 is 

𝐀+ = 𝐕𝚺−1𝐔𝐻,                                              (2.12) 

thus, the minimum norm least squares solution can be rewritten as  
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�̂�𝑀𝑁𝐿𝑆 = 𝐕𝚺
−1𝐔𝐻𝐛.                                          (2.13) 

2.2.1.1 Truncated Singular Value Decomposition (TSVD) 

For an ill-conditioned system, the singular values of 𝐀 gradually converges to zero, 

therefore, 𝜅(𝐀) becomes very large (see (2.3)). In order to avoid division by very 

small singular values in (2.14), 𝚺 can be redefined in a truncated form 

𝚺 = diag[𝜎1, 𝜎2, … , 𝜎𝑘, 0, … ,0] 

where, 𝜎𝑘+1, … , 𝜎𝑟 are set to zero and 𝑘 denotes truncation number. TSVD replaces 

𝐀 by 𝐀𝑘 and (2.13) turns into 

𝐀𝑘
+ = 𝐕𝚺𝑘

−1𝐔𝐻.                                               (2.14) 

Hence, we have the TSVD solution as 

�̂�𝑀𝑁𝐿𝑆,𝑘 = 𝐕𝚺𝑘
−1𝐔𝐻𝐛 ≡ ∑

𝐮𝑖
𝐻𝐛

𝜎𝑖
𝐯𝑖

𝑘
𝑖=1 .                              (2.15) 

The truncation number 𝑘 governs the regularization of the problem and determines 

how sensitive the solution is in the presence of perturbation. Selection of 𝑘 is very 

significant, i.e., as 𝑘 increases, the approximate solution gets more sensitive to the 

perturbation, and as 𝑘 decreases, the approximation falls far from the actual solution 

[20]. Literature offers wide range of methods for the selection of optimal 𝑘 value, 

which can be found in [21-24]. 

It is also possible to filter out the excessively small singular values in a systematic 

way. One such approach is a member of general class of techniques, namely spectral 

filtering, that are expressed as 

�̂�𝜆 = ∑ 𝜙𝑖
[𝜆] 𝐮𝑖

𝐻𝐛

𝜎𝑖
𝐯𝑖

𝑘
𝑖=1                                         (2.16) 

where 𝜆 denotes regularization parameter and  𝜙𝑖
[𝜆]

 is filtering factor for 𝑖th singular 

value, e.g., it can be chosen as 1 for large singular values while it can be chosen as 0 
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for the rest. Two widely used choices for 𝜙𝑖
[𝜆]

 are given below and illustrated in Fig. 

2.2 and Fig. 2.3.  

i) Threshold function: 

𝜙𝑖
[𝜆]

𝜎𝑖
⁄ =

1

max(𝜎𝑖, 𝜆)
 

 

Figure 2.2. Threshold function with respect to 𝜎𝑖. 

ii) Threshold-to-zero function 

𝜙𝑖
[𝜆]

𝜎𝑖
⁄ = {

1
𝜎𝑖⁄ , 𝜎𝑖 > 𝜆

0, otherwise
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Figure 2.3. Threshold-to-zero function with respect to σi. 

2.2.2 Tikhonov Regularization 

SV-based regularization methods attempt to compute all singular values (or at least 

the most useful ones) and vectors explicitly. This is a computationally intensive 

method, therefore, they are mostly applied to ill-conditioned systems with matrices 

of small or moderate size. For large scale problems, one needs a more efficient way. 

The concept of Tikhonov regularization was visited independently several times in 

the past, however, became popular after its application to the solution of integral 

equations by Andrey Tikhonov [26-28] and David L. Phillips [29]. Tikhonov added 

a regularization term into the problem and formulated the solution as 

min
𝐱
‖𝐛 − 𝐀𝐱‖2

2 + ‖𝑳𝜆𝐱‖2
2.                                         (2.17) 

𝑳𝜆 ∈ ℂ
𝑘×𝑁, 𝑘 ≤ 𝑛, is the regularization matrix, which is commonly selected as 𝑳𝜆 =

𝜆𝐈, where 𝐈 is the identity matrix. Regarding available a priori information, 𝑳𝜆 might 

also be selected as finite difference approximation of a differential operator or a 

scaled orthogonal projection [21, 30-33].  In (2.17), 
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- the first term ‖𝐛 − 𝐀𝐱‖2
2 estimates a least squares solution from a perturbed 

data 𝐛  

- and the second term ‖𝑳𝜆𝐱‖2
2 applies smoothness into the problem by 

suppressing the perturbation through the control of 𝑙2-norm of 𝐱. 

The value of regularization parameter 𝜆 is the key factor in order to establish a 

balance between the two terms and find a sufficiently regularized solution. If it is too 

large, the second term dominates the formulation, thus, the least squares problem in 

the first term becomes meaningless. On the other hand, if it is too small, 

regularization of 𝐱 cannot be achieved because the noisy data has more weight. 

Note that as 𝜆 ⟶ ∞, solution of (2.17) becomes the zero vector, and as 𝜆 = 0, the 

formulation turns into the original least squares problem and 𝐱 becomes the naive 

solution to that problem. 

Given 𝑳𝜆 = 𝜆𝐈, (2.17) can be rewritten as 

min
𝑥
{‖𝐛 − 𝐀𝐱‖2

2 + 𝜆2‖𝐱‖2
2} ⟹ min

𝑥
{‖[

𝐛
0
] − [

𝐀
𝜆𝐈
] 𝐱‖

2

2

} ⟹ min
𝑥
{‖�̃� − �̃�𝐱‖

2

2
} 

and solution of which is in the form of 

𝐱𝑇𝑖𝑘ℎ𝑜𝑛𝑜𝑣 = (�̃�𝐻�̃�)
−1
�̃�𝐻�̃� = ([𝐀𝐻 𝜆𝐈] [

𝐀
𝜆𝐈
])
−1

[𝐀𝐻 𝜆𝐈] [
𝐛
0
] 

                   =  (𝐀𝐻𝐀 + 𝜆2𝐈)−1𝐀𝐻𝐛. 

Tikhonov solution to an inverse problem is equivalent to a filtered solution by using 

SVD. Inserting SVD of a full column matrix 𝐀 into the equations and using 𝐈 = 𝐕𝐕𝐻, 

the solution becomes 

𝐱𝑇𝑖𝑘ℎ𝑜𝑛𝑜𝑣 = (𝐕𝚺2𝐕𝐻 + 𝜆2𝐕𝐕𝐻)−1𝐕𝚺𝐔𝐻𝐛 

= 𝐕(𝚺2 + 𝜆2𝐈)−1𝐕𝐻𝐕𝚺𝐔𝐻𝐛 

= 𝐕(𝚺2 + 𝜆2𝐈)−1𝚺𝐔𝐻𝐛. 
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Figure 2.4. Tikhonov regularization function with respect to 𝜎𝑖. 

In the form of (2.16), 𝐱𝑇𝑖𝑘ℎ𝑜𝑛𝑜𝑣 can be recast as 

𝐱𝑇𝑖𝑘ℎ𝑜𝑛𝑜𝑣 = ∑ 𝜙𝑇,𝑖
[𝜆] 𝐮𝑖

𝐻𝐛

𝜎𝑖
𝐯𝑖

𝑘
𝑖=1                                   (2.18) 

where 

𝜙𝑇,𝑖
[𝜆] =

𝜎𝑖
2

𝜎𝑖
2 + 𝜆2

≈ {
1, 𝜎𝑖 ≫ 𝜆

𝜎𝑖
2

𝜆2
⁄ , 𝜎𝑖 ≪ 𝜆

 

is Tikhonov regularization function and 𝑘 is rank of 𝐀. Fig. 2.4 depicts the behaviour 

of 𝜙𝑇,𝑖
[𝜆]

. It can be seen that as the singular values are larger than parameter 𝜆, the 

filtering factor approaches to one and corresponding components directly contributes 

to 𝐱𝑇𝑖𝑘ℎ𝑜𝑛𝑜𝑣. On the other hand, for the singular values that are much smaller than 

𝜆, 𝜙𝑇,𝑖
[𝜆]

 is proportional to 𝜎𝑖
2, hence, corresponding components become negligible 

and get filtered out. Through the use of 𝜆, the filtering can be controlled in a similar 

way that parameter 𝑘 is used in TSVD. However, the most significant feature, which 

discriminates Tikhonov regularization from TSVD, is that the transition between the 
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filtered and maintained components are smoother and the filtering process is 

performed without explicitly computing the SVD of 𝐀.   

2.3 Sparse Solution to Inverse Problem 

Over the last two decades, the demand for the analysis of high-dimensional linear 

inverse problems has grown, specifically in engineering applications. One 

fundamental approach to handle such problems is sparsity constraint, which is able 

to overcome the shortcomings of the problem (ill-posedness, underdetermined 

nature, etc.) and exploit them for the improvement at the quality of its solution. The 

sparsity constraint provides, except for regularization, an approximate solution that 

contains few non-zero entries when compared to its dimension. This approach is 

referred to as “sparse approximation” [34-35]. 

Note that Tikhonov regularization generally does not guarantee a sparse solution. In 

[36], two sparse reconstruction algorithms are proposed based on generalized 

Arnoldi-Tikhonov regularization, approximating 𝑙1-norm and total variation in terms 

of 𝑙2-norm. These algorithms can provide a sparse solution for the problem within 

fewer iterations than classical Tikhonov regularization algorithm at the cost of higher 

relative error. 

The most basic expression for the sparse approximation is given by 

min
𝐱
‖𝐱‖0      subject to      𝐀𝐱 = 𝐛                                       (2.19) 

where ‖ ∙ ‖0 ∶  ℂ
𝑁 → ℝ can be denoted as ℓ0 “norm”*, which gives the number of 

non-zero entries of a vector in ℝ𝑁. ‖𝐱‖0 ≤ 𝑠 infers that the solution vector 𝐱 is s-

                                                 

 

* The reason why this term is written in quotation marks is that it is not a proper 

norm. It does not satisfy homogeneity condition, i.e., scaling a vector with a positive 

constant does not scale the “norm” as well.  
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sparse. In the case that the observed data is contaminated by noise, an error tolerance 

휀 ≥ 0 can be added to (2.19) 

 min
𝐱
‖𝐱‖0      subject to      ‖𝐛 − 𝐀𝐱‖2

2 ≤ 휀.                            (2.20) 

The regularization parameter 𝜆 can be added into the problem to obtain a balance 

between goals of minimizing error and number of non-zero components by 

min
𝑥
‖𝐛 − 𝐀𝐱‖2

2 + 𝜆‖𝐱‖0.                                           (2.21) 

It is apparent that (2.20) resembles the minimum 𝑙2-norm problem (2.6). Despite the 

notational similarity, there exists a significant difference between them. The solution 

to (2.6) is always unique and can be obtained using off-the-shelf methods based on 

computational linear algebra. On the other hand, (2.20) poses many mathematical 

challenges due to discrete and discontinuous nature of ℓ0 “norm”. The exhaustive 

combinatorial search for all possible sparse subsets is generally exponential in the 

number of columns. This makes the solution of (2.20) NP-hard, meaning that it 

cannot be solved in polynomial time.  

Although ℓ0 “norm” provides a very simple concept for sparsity, it is not always 

feasible for practical cases (e.g. radar imaging) due to the fact that the actual solution 

vector rarely contains many strict zeroes in its entries. However, a solution vector 

containing small number of non-zero elements, can be approximated by applying 

weak 𝑙𝑝-norm. 

The 𝑙𝑝-norm acts as a powerful sparsity constraint in the range of 0 < 𝑝 ≤ 1 and is 

mathematically defined by  

‖𝐱‖𝑝 = (∑ |𝑥𝑖|
𝑝

𝑖 )1/𝑝,                                       (2.22) 

thus, the problem to be solved is in the form 

min
𝐱
‖𝐱‖𝑝      subject to      𝐀𝐱 = 𝐛.                           (2.23) 
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Any 𝑝 selection within 0 < 𝑝 < 1, e.g. 𝑝 =
1

2
, 𝑝 =

2

3
, makes (2.23) a non-convex 

problem, which is very hard to solve. As 𝑝 ⟶ 0, the ℓ0 “norm” can be related to 𝑙𝑝-

norm by 

‖𝐱‖0 = lim
𝑝⟶0

‖𝐱‖𝑝
𝑝 = lim

𝑝⟶0
∑ |𝑥𝑘|

𝑝𝑁
𝑘=1 .                              (2.24) 

Fig. 2.5 illustrates the behaviour of |𝑥|𝑝 as a function of 𝑝. It can be seen that as 

𝑝 ⟶ 0, |𝑥|𝑝 becomes a count function, which returns 0 for 𝑥 = 0 and 1 otherwise. 

 

 

Figure 2.5. The behaviour of |𝑥|𝑝 as a function of 𝑝. 

When 𝑝 = 1, (2.23) becomes a convex minimization problem. In the sense of sparse 

solution, 𝑙1-norm is the closest convex function to ℓ0 “norm”. The solutions to 𝑙1-

norm and ℓ0 “norm” minimization problems that satisfy 𝐀𝐱 = 𝐛 constraint are drawn 

in Fig. 2.6. As can be seen in Fig. 2.6(b), 𝑙1-norm and the constraint intersect at 

sparse solution (i.e. 𝑥1 is non-zero, 𝑥2 is zero). So, minimization of 𝑙1-norm can yield 

the sparsest solution, which also satisfies the minimization of ℓ0 “norm”, among the 
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infinitely many solutions. Hence, the sparsest solution can be obtained with standard 

convex optimization tools. 

 

Figure 2.6. Solutions to (a) ℓ0 “norm” and (b) 𝑙1-norm minimization problems that 

satisfy 𝐀𝐱 = 𝐛 constraint. 

2.4 Numerical Approaches to Sparse Approximation 

In this thesis, two types of numerical approaches, based on sparse approximation, 

are investigated: Pursuit methods and convex optimization techniques. These 

approaches are discussed in Chapter 5 in detail. 

- Greedy pursuit methods search for an approximate solution by iteratively 

picking the components that contribute to sparsity most. Orthogonal 

matching pursuit (OMP) is a greedy method. It iteratively attempts to refine 

a sparse solution. The iterations are continued until a predetermined sparsity 

level is reached. Stagewise orthogonal matching pursuit (StOMP) is another 

type of greedy method based on OMP. It simply differs from OMP by 

selecting multiple columns at each iteration, namely stage, which makes it 

faster than OMP to converge. Regularized orthogonal matching pursuit 

(ROMP) is a modified form of OMP which does not possess a threshold value 
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for sparsity level; instead it selects the columns having similar dot products 

with the residual vector. Despite the fact that these methods are able to 

converge in very short runtime, they exhibit some challenges, e.g., they do 

not guarantee for a sparse solution [37-39].  

- Convex optimization techniques replace ℓ0 “norm” with 𝑙1-norm, which 

converts the inverse problem into a constrained convex optimization 

problem, hence, it can be solved by exploiting standard optimization tools 

[35]. Alternating direction method of multipliers (ADMM) is one possible 

approach and has been used for various imaging problems [40-43]. It is a 

form of augmented Lagrangian method (ALM) which handles solution of the 

optimization problem more efficiently by splitting it into smaller 

components. ADMM splits primal variables, augments the Lagrangian of the 

optimization problem (as in method of multipliers) and carries out iterative 

variable minimization steps. There also exist split augmented Lagrangian 

shrinkage algorithm (SALSA) [43-44] and constrained-SALSAs (C-SALSA-

1 and C-SALSA-2) [41]. These techniques transform the unconstrained 

expression of the problem into a constrained one by performing variable 

splitting and using an ALM, specifically ADMM. 

The literature also contains other algorithmic approaches such as Bayesian 

framework [45-46], non-convex optimization [47], and brute force [48]. However, 

they are not covered in the scope of this work. Non-convex optimization generally 

does not have theoretical guarantees. Brute force is only applicable for small scale 

inverse problems, although it is algorithmically correct for all cases. 

All reconstruction algorithms, including the sparsity-based ones, attempt to solve the 

inverse problem through successive solutions of the forward problem and each 

forward problem solution step corresponds to a matrix-vector multiplication. As the 

dimensions of the imaging domain gets larger, number of the point scatterers 

increases, therefore, computational complexity of the forward problem increases. 

This also increases the run-time and limits the application of the algorithms unless a 
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fast matrix-vector multiplication method is introduced. When the forward problem 

is computed directly, the operation count and memory requirement are respectively 

proportional to 𝑂(𝐼𝑁2) and 𝑂(𝑁2), where 𝑁 is the number of unknowns and 𝐼 is the 

iteration count. Note that some algorithms include multiple forward problem 

computations within each iteration, which multiplies the computational complexity. 

However, by applying some efficient tools for computation of the forward problem, 

significant reduction can be acquired for the runtime and memory requirement per 

iteration. In the literature, these tools are referred to as “fast algorithms”. “Conjugate 

gradient – fast Fourier transform” and “fast multipole method” are widely used fast 

algorithms. The former algorithm is briefly mentioned below only for completeness 

of the literature review, whereas the latter is studied throughout the thesis.   

- Conjugate Gradient – Fast Fourier Transform (CG-FFT) was the first method 

developed for accelerating the computation of forward problems, especially 

in the field of computational electromagnetics. Although its simple structure 

yields an efficient solution, the range of its applications is limited due to the 

requirement of staircase approximation for geometrical modeling [49]. Later, 

precorrected-FFT [50] and its variants [51] are developed to eliminate this 

approximation. These methods perform very effectively on planar and 

inhomogeneous objects, reducing the complexity to 𝑂(𝑁 log𝑁). However, 

they lack efficiency for the case of impenetrable objects [52]. 

 

- Fast Multipole Methods (FMM) is another method that accelerates the 

matrix-vector multiplication, which reduces the computational complexity 

and can be used for solving large scale scattering problems with less memory 

requirement and runtime per iteration. FMM was first proposed by Rokhlin 

and its usage is extended for several electromagnetic scattering problems [53-

54]. In contrast to conventional approaches such as method of moments 

(MOM), the interactions between the source and observation locations are 

calculated in a group-by-group manner. Since only the interactions between 

neighboring locations are calculated directly and stored, FMM reduces the 
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memory usage. For groups that are sufficiently far away from each other, 

group interactions are calculated by translating the total effect of the group 

to the center of the other group by using the addition theorem, which provides 

significant reduction in the operation count. Implementation of FMM reduces 

the memory requirement and CPU time to 𝑂(𝐼𝑁3/2). Multi-level fast 

algorithm (MLFMA) is later developed in order to further reduce the 

computational complexity to 𝑂(𝑁 log𝑁) [55-57]. The details about the 

implementation of the FMM are discussed in Chapter 4, while its application 

to near-field MIMO radar imaging problems are given in Chapters 4, 5 and 6. 
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CHAPTER 3  

3 MIMO ARRAYS AND FORWARD PROBLEM 

3.1 Literature Review 

3.1.1 MIMO Array 

The MIMO array concept was first introduced by Von Ramm et al. in 1975 for the 

practice of ultrasonic imaging [59]. By the use of different inter-element spacing for 

transmitting and receiving sub-arrays, they showed that grating lobes of the sub-

arrays can be eliminated. In [60], Cooley and Robinson suggested a technique to 

avoid redundancy of synthetic focus datasets obtained using conventional aperture 

designs. By replacing two-way imaging system with a one-way array of virtual 

elements, it was demonstrated that complete subsets containing all information 

required for the image reconstruction can be acquired. In [61], a synthetic aperture 

ultrasonic imaging system containing a two-way sparse array topology, namely co-

array, is patented. In [62], Lockwood et al. demonstrated a new method to design 

sparse periodic arrays by optimizing aperture functions of transmitting/receiving 

sub-arrays. Ahmet et al. [63] and Yang et al. [64] studied on different MIMO array 

topologies and compared their performances for UWB short-range applications. 

Zhuge et al. proposed a 2-D curvilinear structure, which performs better than similar 

configurations having the same number of antennas and aperture size [65]. In [11], 

an optimal design approach for MIMO array is presented by specifying the 

reconstruction quality as an optimization criterion. 
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3.1.2 MIMO Radar 

Usage of MIMO arrays in modern radar systems was first mentioned by Fishler et 

al. in 2004 [66]. Their publication established a standard approach for radar systems 

and became a beacon for the researchers working in the field of radar engineering. 

The authors proposed a MIMO radar architecture that comprises a transmitting sub-

array of widely-spaced antenna elements, whereas the elements of receiving sub-

array is placed tightly. In this way, each transmitting element is able to illuminate 

the targets in a different angle so that the problem of target scintillation (a physical 

phenomenon where radar cross section of the target changes rapidly as it moves) is 

avoided or reduced significantly. Later, the same authors compared the MIMO radar 

system with conventional radar systems in order to emphasize its apparent 

advantages, leading to strong interest in this new approach. In [67-71], MIMO radar 

systems with collocated antenna elements are considered. In [72], Xu and Li 

proposed a MIMO radar system having well-separated sub-arrays with tightly-

spaced antenna elements and investigated advantages of this configuration.  

3.1.3 MIMO Radar Imaging Applications 

In the last two decades, as the radar has been applied to various imaging applications, 

MIMO radar systems have started to make ground among them. In 2006, Bliss and 

Forsythe suggested using MIMO radar for imaging purposes for the first time and 

employed it to detect cancerous breast tissue [73]. Chen et al. followed this idea and 

further developed it for the detection and classification of breast lesions [74]. MIMO 

radar has also been integrated to SAR imaging systems. In [75], an early concept of 

MIMO-SAR is used for an interferometry application. In [76,77], detection of 

moving targets and SAR spotlight mode are respectively investigated. [1] introduces 

a MIMO-SAR-based imaging system for concealed weapon systems and extends the 

usage of MIMO radar systems for security applications. Literature also contains 

many other application fields of MIMO radar imaging such as sub-surface 
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surveillance [78,79], automotive [80], anti-personnel mine detection [81], tsunami 

wave monitoring [82], through-wall sensing [83], water accumulation monitoring in 

human body [84], etc.  

As the growing literature suggests, MIMO radar technology, in conjunction with 

large operational bandwidth, has strong potential for the development of state-of-the 

art of modern radar, specifically in remote sensing applications. 

3.2 Imaging Geometry 

Fig. 3.1 sketches imaging geometry for the MIMO array-based near field imaging 

radar, which is used throughout this thesis. In this configuration, the backscattered 

data is collected by sequential transmission from each transmitting antenna in 

association with simultaneous reception by all receiving antennas. A two 

dimensional plus-shaped MIMO array illuminates the target(s), which is placed in 

the near field of the antenna array. 

 

Figure 3.1. Plus-shaped 2-D planar MIMO array. 

The array is placed at 𝑦 = 0 plane. The receiving antennas are positioned along the 

x-axis and their locations are denoted by (𝑥𝑅 , 0, 𝑧𝑅), while the transmitting antennas 
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are placed along the z-axis and their locations are denoted by (𝑥𝑇 , 0, 𝑧𝑇), composing 

a plus-shaped MIMO radar. The received signal is represented as a function of four 

spatial coordinates 𝑥𝑅, 𝑧𝑅, 𝑥𝑇, 𝑧𝑇 and fast time 𝑡.  

The targets residing in the imaged volume are approximated by a cloud of point 

scatterers and their reflectivity characteristics are distributed discretely on these 

scatterers. Although imaging problem is fundamentally an electromagnetic 

scattering phenomenon with vector nature, we use a simple scalar model based on 

Born approximation. According to this approximation, each point scatterer directly 

reflects the transmitted signal, neglecting their interaction with the other scatterers. 

Thus, contribution from multiple reflections between the point scatterers are not 

included in the received signal [125]. In the literature, this approximation is 

successfully adopted for wide variety of radar imaging applications 

[1,2,12,17,64,65,122]. The received signal at the position of any receiving antenna 

due to a point scatterer located in the imaging scene is given as 

𝑠(𝑥T, 𝑧T, 𝑥R, 𝑧R, 𝑡) = ∫∫∫
1

4𝜋𝑅T𝑅R
𝑓(𝑥, 𝑦, 𝑧)𝑝 (𝑡 − [

𝑅T

𝑐
+
𝑅R

𝑐
]) 𝑑𝑥𝑑𝑦𝑑𝑧       (3.1) 

where 𝑝(𝑡) is the transmitted pulse in time domain, 𝑐 is the speed of light, and 

𝑓(𝑥, 𝑦, 𝑧) is the complex-valued three dimensional reflectivity distribution function 

defined on the image volume. The distances from the transmitting and the receiving 

antennas to any point (𝑥, 𝑦, 𝑧) in the image volume are denoted by 𝑅𝑇 and 𝑅𝑅, 

respectively, and they are given by 

𝑅𝑇 = √(𝑥T − 𝑥)2 + 𝑦2 + (𝑧T − 𝑧)2,                                     (3.2) 

𝑅𝑅 = √(𝑥R − 𝑥)2 + 𝑦2 + (𝑧R − 𝑧)2.                                     (3.3) 

The time domain received signal can be expressed in temporal frequency domain by 

applying Fourier transform to (3.1), which is given as  

𝑠(𝑥𝑇 , 𝑧𝑇 , 𝑥𝑅 , 𝑧𝑅 , 𝑘) = 4𝜋𝑝(𝑘) ∫ ∫∫
𝑒−𝑗𝑘𝑅𝑇

4𝜋𝑅𝑇

𝑒−𝑗𝑘𝑅𝑅

4𝜋𝑅𝑅
𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧            (3.4) 
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where 𝑝(𝑘) is the Fourier transform of the transmitted pulse with 𝑘 = 𝜔/𝑐 being the 

wavenumber that is related to the temporal frequency by 𝜔 = 2𝜋𝑓. 

Since the reconstruction process will be carried out digitally, a discrete forward 

model is required. Here, we use a predefined grid to discretize the imaging volume 

and define the 3-D reflectivity field in terms of voxels. In the literature, one can also 

find grid-free reconstruction methods, specifically for direction of arrival estimation 

[133,134]. The continuous models given in (3.1) and (3.4) can be written in a discrete 

form as 

�̃�𝑇𝑚,𝑅𝑛,𝑞,𝑘𝑙 = 4𝜋𝑝(𝑘𝑙)∑
𝑒
−𝑗𝑘𝑙𝑅𝑇𝑚,𝑞

4𝜋𝑅𝑇𝑚,𝑞 

𝑒
−𝑗𝑘𝑙𝑅𝑞,𝑅𝑛

4𝜋 𝑅𝑞,𝑅𝑛
𝑓𝑞

𝑁𝑉
𝑞=1                          (3.5) 

where �̃�𝑇𝑚,𝑅𝑛,𝑞,𝑘𝑙 is the received signal due to the 𝑞th voxel obtained at the 𝑙th 

frequency step using the pair of the 𝑚th transmitting antenna and the 𝑛th receiving 

antenna. The transmitting antennas radiate 𝑁𝐹 discrete frequencies, which are 

equally spaced by frequency step of ∆𝑓, in the operational bandwidth. 𝑅𝑇𝑚,𝑞 denotes 

the distance from the 𝑚th transmitting antenna to the center of the 𝑞th voxel and 𝑅𝑞,𝑅𝑛 

denotes the distance from the center of the 𝑞th voxel to the 𝑛th receiving antenna. 

Furthermore, it is assumed that there are 𝑁𝑇 transmitting, 𝑁𝑅 receiving antennas, and 

𝑁𝑉 voxels.  

Recall that �̃�𝑇𝑚,𝑅𝑛,𝑞,𝑘𝑙 in (3.5) neglects the multiple reflections among the voxels. The 

transmitted pulse is assumed to be directly reflected by each voxel to the 

corresponding receiving antenna without any contribution from the rest of the voxels. 

The discrete model constitutes a linear system as given in (3.6). The reflectivity 

values belonging to voxels are stacked into the vector 𝐟 in some lexicographic order 

and the measurements are listed in the same order in the right-hand-side vector �̃�. 

The matrix 𝐀 ∈ ℂ𝑀×𝑁 is the observation matrix and its total number of rows 𝑀 is 

equal to 𝑁𝑇 ×𝑁𝑅 × 𝑁𝐹, whereas the number of columns 𝑁 is equal to 𝑁𝑉. The 

expanded form of the linear system is also given in (3.7). 

𝐀𝐟 = �̃�                                                              (3.6) 
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4π

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑝(𝑘1)

𝑒
−𝑗𝑘1𝑅𝑇1,1

4𝜋𝑅𝑇1,1

𝑒
−𝑗𝑘1𝑅1,𝑅1

4𝜋𝑅1,𝑅1
… … 𝑝(𝑘1)

𝑒
−𝑗𝑘1𝑅𝑇1,𝑁𝑉

4𝜋𝑅𝑇1,𝑁𝑉

𝑒
−𝑗𝑘1𝑅𝑁𝑉,𝑅1

4𝜋𝑅𝑁𝑉,𝑅1

⋮ ⋮ ⋮ ⋮

𝑝(𝑘1)
𝑒
−𝑗𝑘1𝑅𝑇1,1

4𝜋𝑅𝑇1,1

𝑒
−𝑗𝑘1𝑅1,𝑅𝑁𝑅

4𝜋𝑅1,𝑅𝑁𝑅

… … 𝑝(𝑘1)
𝑒
−𝑗𝑘1𝑅𝑇1,𝑁𝑉

4𝜋𝑅𝑇1,𝑁𝑉

𝑒
−𝑗𝑘1𝑅𝑁𝑉,𝑅𝑁𝑅

4𝜋𝑅𝑁𝑉,𝑅𝑁𝑅

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝑝(𝑘1)
𝑒
−𝑗𝑘1𝑅𝑇𝑁𝑇 

,1

4𝜋𝑅𝑇𝑁𝑇,1

𝑒
−𝑗𝑘1𝑅1,𝑅𝑁𝑉

4𝜋𝑅1,𝑅𝑁𝑉

… … 𝑝(𝑘1)
𝑒
−𝑗𝑘1𝑅𝑇𝑁𝑇

,𝑆

4𝜋𝑅𝑇𝑁𝑇,𝑆

𝑒
−𝑗𝑘1𝑅𝑆,𝑅𝑁𝑅

4𝜋𝑅𝑆,𝑅𝑁𝑅

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝑝(𝑘𝑙)
𝑒
−𝑗𝑘𝑙𝑅𝑇𝑁𝑇

,1

4𝜋𝑅𝑇𝑁𝑇,1

𝑒
−𝑗𝑘𝑙𝑅1,𝑅𝑁𝑉

4𝜋𝑅1,𝑅𝑁𝑉

… … 𝑝(𝑘𝑙)
𝑒
−𝑗𝑘𝑙𝑅𝑇𝑁𝑇

,𝑆

4𝜋𝑅𝑇𝑁𝑇,𝑆

𝑒
−𝑗𝑘𝑙𝑅𝑆,𝑅𝑁𝑅

4𝜋𝑅𝑆,𝑅𝑁𝑅 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑓1
⋮
⋮
⋮
𝑓NV]

 
 
 
 

=

[
 
 
 
 
�̃�1
⋮
⋮
⋮
�̃�M]
 
 
 
 

     

(3.7) 

In an iterative solution to (3.7), 𝑁𝑇 × 𝑁𝑅 × 𝑁𝐹 ×𝑁𝑉 operations must be performed 

for the solution of each forward problem. Standard iterative linear system solvers 

consist of multiple forward problems within their structures. As the dimensions of 

the system increases, the solution becomes quite inefficient due to the requirements 

for excessive amount of computational resources and memory. 

3.2.1 Point Spread Function (PSF) 

Point spread function is a significant figure of merit that characterizes the resolving 

performance of an imaging system. It describes the response of the system to a point 

scatterer and provides information about the resolution limit of the system. 

As shown in Fig. 3.2, a single point scatterer is placed 55 cm away from the center 

of the array, which is composed of 30 transmitting and 30 receiving antennas. The 

separation between the antennas elements is 2.5 cm, and thus the total aperture size 

of the array is 72.5 cm × 72.5 cm. Operational bandwidth ranges from 7 GHz to 13 

GHz with steps of 1 GHz consisting of 7 frequencies. The imaged space is scanned 

along a linear path from x =  −5 cm to x =  +5 cm, with 51 spatial steps, so, the 

PSF of the plus-shaped MIMO array along 𝑥-axis is obtained. Given these 
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specifications, the linear system (3.7) is implemented and solved directly. Fig. 3.3 

depicts the reconstructed PSF, which is sinc-shaped. 

 

 

Figure 3.2. Single point scatterer illuminated by plus-shaped MIMO array. 

 

 

Figure 3.3. PSF of the plus-shaped MIMO array along x-axis. 
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3.2.2 Down-Range and Cross-Range Resolutions 

The minimum resolvable detail that can be captured by the imaging system is 

estimated by Rayleigh criterion. According to this criterion, two point sources placed 

in close proximity of each other are regarded as resolvable when the first minimum 

of the response of first point source coincides with the maximum of the second one. 

If the spacing between the point sources is greater than the minimum resolvable 

distance, they are well-resolved and if they are closer, they are unresolved. Note that 

this criterion applies when the point sources are of equal strength. Fig. 3.4 depicts all 

cases for diffraction patterns generated by two point light sources passing through a 

circular aperture, as suggested by Lord Rayleigh. 

This phenomenon can be demonstrated by two imaging scenarios, as shown in Fig. 

3.5(a) and 3.5(b). In both scenarios, the same imaging configuration is adopted as 

the one used for the PSF demonstration above. In the first scenario, the point 

scatterers are separated by 2.5 cm, while they are separated by 6 cm in the second 

scenario. The imaged space in the first scenario is discretized by 71 spatial steps from 

x =  −4 cm to x =  +4 cm, whereas 81 spatial steps from x =  −8 cm to x =

 +8 cm are used for the second scenario. Again, the linear system (3.7) is 

implemented for both of the scenarios, they are solved directly. The reconstructed 

images are given in in Fig. 3.5(c) and 3.5(d). It can be seen that the minimum 

resolvable distance (or the Rayleigh criterion) that the MIMO array can provide is 

around 2.5 cm. Above this distance, the point scatterers appear to be well-resolved 

while they are not resolved otherwise.  
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(a) 

 

(b) 

 

(c) 

Figure 3.4. Airy diffraction patterns generated by light from two point sources 

passing through a circular aperture. (a) Well-resolved case, (b) sources are at a 

distance determined by Rayleigh criterion, and (c) unresolved case.  

This result can also be mathematically supported. Theoretical cross-range resolution 

is determined by the wavelength at the center frequency 𝜆𝑐, distance to the target 𝑅, 

and aperture width of the array in orthogonal dimensions as 

𝛿ℎ =
𝜆𝑐𝑅

𝐿𝑇,ℎ+𝐿𝑅,ℎ
                                                     (3.14) 

and 
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𝛿𝑣 =
𝜆𝑐𝑅

𝐿𝑇,𝑣+𝐿𝑅,𝑣
.                                                 (3.15) 

𝐿𝑇,ℎ and 𝐿𝑅,ℎ are widths of the transmitting and receiving arrays along horizontal 

axis, whereas 𝐿𝑇,𝑣 and 𝐿𝑅,𝑣 are widths along vertical axis. The down-range 

resolution, on the other hand, is determined by speed of light and the operational 

bandwidth as 

𝛿𝑦 =
𝑐

𝐵
.                                                      (3.16) 

 

 

(a)                                                                 (b) 

 

                            (c)                                                               (d) 

Figure 3.5. Imaging environment with (a) 2.4 cm spacing between the point 

scatterers and (b) 6 cm spacing between the point scatterers. (c) Rayleigh criterion 

and (d) well-resolved case for the plus-shaped MIMO array. 
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For the radar system specifications given in the previous subsection, the cross-range 

resolutions in the orthogonal directions can be calculated as 2.4 cm, which is 

consistent with the obtained Rayleigh criterion depicted in Fig. 3.6(c). The down-

range resolution is calculated as 2.5 cm at the center frequency of the operational 

bandwidth.    
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CHAPTER 4  

4 FAST MULTIPOLE METHOD 

Direct computation of a forward problem within an iterative solver requires 𝑂(𝐼𝑁2) 

operation count and 𝑂(𝑁2) memory usage. Therefore, as the dimensions of the linear 

system (e.g. number of transceiver pairs, number of voxels) increases, computational 

complexities are encountered in solving the imaging problem. These complexities 

motivated the researchers to find more efficient computation methods. 

In this chapter, the fast multipole method is described, which is capable of reducing 

the complexity of the problem solution by accelerating it with less memory usage. 

This method was first proposed by Rokhlin and Greengard for reducing the 

complexity of classic 𝑁-body problem, which was initially developed for the 

evaluation of potential fields and gravitational forces in systems with large numbers 

of particles [85,86]. The authors’ approach was to rapidly evaluate the gravitational 

potential functions of a group of nearby particles by rewriting them in terms of 

multipole expansions and combining them into a single function belonging to that 

entire group. Thus, the interaction between that group and any other particle that is 

sufficiently away from that group can be calculated with the use of the multipole 

expansions. In other words, the FMM groups the nearby particles and carries out the 

calculations by treating them as if they form a single object [86]. 

We can consider the imaging problem in the same context, i.e., observation matrix 

of the linear system can be viewed as one type of 𝑁-body problem, whose entries 

represent the interactions between the transceiver pairs and the voxels of the 

discretized imaging space. Despite the fact that the observation matrix is full, the 

amplitude of the interaction diminishes with the increasing distance between the 

interacting parts, which makes the group-by-group approach of the FMM very 

reasonable. This chapter will mathematically show that the FMM can be applied to 
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a near-field MIMO imaging problem, enabling faster matrix-vector computation in 

an iterative solver and reducing storage requirement. This will allow us to solve 

larger imaging problems that could not be solved with standard computational 

resources.   

4.1 The FMM Formulation 

The FMM formulation starts with using addition theorem to express the three 

dimensional Green’s function in terms of multipole expansions. 

4.1.1 Addition Theorem 

Three dimensional Green’s function with 𝑒𝑗𝜔𝑡 time convention (ω = 2πf and f is 

operating frequency) is given as 

G(𝐫, 𝐫′) =
e−𝑗𝑘|𝐫−𝐫′|

4𝜋|𝐫−𝐫′|
                                              (4.1) 

where 𝐫 and 𝐫′ respectively represent field and source vectors. If a small offset vector 

x is added to the field point, (4.1) can be rewritten as 

e−𝑗𝑘|𝐫−𝐫
′+𝐱|

4𝜋|𝐫−𝐫′+𝐱|
=

e−𝑗𝑘|𝐑+𝐱|

4𝜋|𝐑+𝐱|
                                           (4.2) 

where R = r – r'. Provided that |x| < |R|, the addition theorem can be written as 

𝑒−𝑗𝑘|𝐑+𝐱|

4𝜋|𝐑+𝐱|
= −

𝑗𝑘

4𝜋
∑ (−1)𝑙(2𝑙 + 1)𝑗𝑙(𝑘|𝐱|)ℎ𝑙

(2)(𝑘|𝐑|)𝑃𝑙(�̂� ∙ �̂�)
∞
𝑙=0         (4.3) 

where 𝑗𝑙(𝑥) and 𝑃𝑙(𝑥) denote the spherical Bessel function and the  Legendre 

polynomial of order 𝑙, respectively. In (4.3), ℎ𝑙
(2)(𝑥) is the spherical Hankel function 

of the second kind and order 𝑙, given as 

ℎ𝑙
(2)(𝑥) = √

𝜋

2𝑥
𝐻
𝑙+
1

2

(2)(𝑥).                                      (4.4) 
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Note that (4.3) can be interpreted as a wave radiating from a source point, which is 

displaced from its original location by a small vector x. Inserting the elementary 

identity that converts (4.3) into a surface integral on a unit sphere [57] 

4𝜋𝑗𝑙(−𝑗𝑙)(𝑘|𝐱|)𝑃𝑙(�̂� ∙ �̂�) = ∯𝑒−𝑗𝑘�̂�∙𝐱𝑃𝑙(�̂� ∙ �̂�)𝑑
2𝐤                  (4.5) 

where �̂� is unit vector in radial direction, we obtain 

𝑒−jk|𝐑+𝐱|

4𝜋|𝐑+𝐱|
=

−j𝑘

(4𝜋)2
∯𝑒−𝑗𝑘�̂�.𝐱∑ (−𝑗)𝑙(2𝑙 + 1)h𝑙

(2)(𝑘|𝐑|)𝑃𝑙(�̂�. �̂�)
∞
𝑙=0 𝑑2𝐤     (4.6) 

where integration and summation are interchanged which is valid as long as the 

summation is truncated at some finite order N. When the truncation is applied, 

following approximation is obtained. 

𝑒−𝑗𝑘|𝐑+𝐱|

4𝜋|𝐑+𝐱|
= ∯𝑒−𝑗𝑘�̂�∙�̂�𝑇𝑁(𝑘, �̂�, 𝐑)𝑑

2𝐤                           (4.7) 

where 𝑇𝑁(𝑘, �̂�, 𝐑) is called the translation function, and has the form  

𝑇𝑁(k, �̂�, 𝐑) =
−𝑗𝑘

(4𝜋)2
∑ (−j)𝑙(2𝑙 + 1)ℎ𝑙

(2)(𝑘|𝐑|)𝑃𝑙(�̂� ∙ �̂�).
𝑁
𝑙=0          (4.8) 

This function converts outgoing waves at a source point into incoming spherical 

waves at a field point.  

4.1.2 Wave Translation 

As illustrated in Fig. 4.1, 𝐑 =  𝐫 –  𝐫′ can be expressed as a sum of three vectors: 

𝐫 –  𝐫′ =  𝐯1  +  𝐰 + 𝐯2. Using this expression, we obtain 

𝑒−𝒋𝒌|𝐫−𝐫′|

4𝜋|𝐫−𝐫′|
= ∯𝑒−𝑗𝑘�̂�∙(𝐯1+𝐯2)𝑇𝑁(𝑘, �̂�, 𝐰)𝑑

2𝐤                              (4.9) 

where 

𝑇𝑁(k, �̂�, 𝐰) =
−𝑗𝑘

(4𝜋)2
∑ (−j)𝑙(2𝑙 + 1)ℎ𝑙

(2)(𝑘|𝐰|)𝑃𝑙(�̂� ∙ 𝐰).
𝑁
𝑙=0              (4.10) 
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Figure 4.1. Expression of 𝐫 –  𝐫′ as a sum of three vectors. 

(4.10) shows that the translation function depends only on 𝐰, which is a very 

significant result. It tells us that if 𝐫 and 𝐫′ is displaced by very small vectors (v and 

w, respectively), the translation function remains unchanged. Hence, interaction 

between any two points in the computation domain can be carried out using the same 

translation function. Rewriting (4.9) in a more compact form as 

𝑒−𝒋𝒌|𝐫−𝐫′|

4𝜋|𝐫−𝐫′|
= ∯𝐴(𝐫′, �̂�) 𝑇𝑁(𝑘, �̂�, 𝐰) 𝐷(𝐫, �̂�)𝑑

2𝐤                        (4.11) 

where 𝐴(𝐫′, �̂�) is the aggregation function defined at the source point 𝐫′ as 

𝐴(𝐫′, �̂�) =  𝑒−𝑗𝑘�̂�∙𝐯1                                              (4.12) 

and 𝐷(𝐫, �̂�) is the disaggregation function defined at the observation point r as  

𝐷(𝐫, �̂�) =  𝑒−𝑗𝑘�̂�∙𝐯2 .                                             (4.13) 

When 𝐫 or 𝐫′ is displaced to another location, only aggregation and disaggregation 

functions have to be calculated. Sum of the three dimensional Green’s functions due 

to multiple sources at points 𝐫𝑛
′  can be evaluated at field point r by 

∑
𝑒−𝒋𝒌|𝐫−𝐫𝑛

′ |

4𝜋|𝐫−𝐫𝑛
′ |
= ∯𝐷(𝐫, �̂�)𝑇𝑁(k, �̂�, 𝐰)∑ 𝐴𝑛(𝐫

′, �̂�)𝑑2𝐤
𝑁𝑆
𝑛=1

𝑁𝑆
𝑛=1             (4.14) 

where 𝑁𝑆 is the number of source points and the aggregation functions 𝐴𝑛(𝐫
′, �̂�) are 

𝐴𝑛(𝐫
′, �̂�) =  𝑒−𝑗𝑘�̂�∙𝐯n.                                        (4.15) 
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The expression given in (4.14) is what enables the fast matrix-vector product 

computation. The radiated waves from all source points are aggregated at the group 

center (e.g., geometric center).  This aggregated wave is then carried to another group 

center that is far enough (|𝐱|  <  |𝐑|) by translation function. Finally, the translated 

wave is multiplied with the disaggregation function and integrated over unit sphere 

to find local field at point b, which yields the desired sum.  

4.1.3 Truncation Number 

Accurate evaluation of (4.9) depends on truncating the transfer function at some limit 

N, which is equal to the number of multipoles that will be included in the 

calculations. It is a source of numerical error in the FMM, since the exact 

mathematical expression of addition theorem is an infinite sum.  

In [54], Rokhlin defined the following formula to determine N for single precision 

computations: 

𝑁 = 𝑘𝐷 + 5 log(𝑘𝐷 + 𝜋)                                    (4.16) 

whereas for the double precision 

𝑁 = 𝑘𝐷 + 10 log(𝑘𝐷 + 𝜋)                                   (4.17) 

where 𝐷 = |𝐱| from (4.9). Another way for the control of truncation error is to utilize 

excess bandwidth formula (EBF). Chew et al. [57] and Song and Chew [87] proposed 

the following formula to determine the truncation number: 

     𝑁 ≈ 𝑘𝐷 + 1.8(𝑑0)
2/3(𝑘𝐷)1/3,                               (4.18) 

where, 𝑑0 is the desired number of digits for accuracy. 



 

 

44 

4.1.4 Integration 

The integration in (4.11) over the unit sphere can be calculated numerically by using 

quadrature rule, with sufficient number of points in elevation (𝜃) and azimuth (𝜙) 

dimensions. In this way, aggregation, disaggregation and translation functions are 

computed and stored at discrete angles. Optimum number of points and the 

quadrature rule should be determined by the number of spherical harmonic included 

in (4.11).  

The spherical harmonic coefficients 𝑎𝑛
𝑚 can be calculated by the following integral: 

𝑎𝑛
𝑚 = ∫ ∫ 𝑓(𝜃, 𝜙)𝑌𝑛

𝑚∗(𝜃, 𝜙)sin𝜃𝑑𝜃𝑑𝜙
𝜋

0

2𝜋

0
,                           (4.19) 

which can be rewritten as 

𝑎𝑛
𝑚 = ∫ 𝑒−𝑗𝑚𝜙𝑑𝜙∫ 𝑓(𝜃, 𝜙)𝑃𝑛

𝑚(cos𝜃)sin𝜃𝑑𝜃
𝜋

0

2𝜋

0
.                  (4.20) 

In [126], it is proposed that integration of a function of form (4.20) can be evaluated 

optimally by 𝑁-point Gauss-quadrature rule in 𝜃, while 𝜙 can be sampled uniformly 

by 2𝑁 + 1 points. 

4.2 FMM for Near-Field MIMO Imaging Problem 

As shown in (3.7), the entries of the system matrix obtained at 𝑙th frequency step are 

in the form of  

4𝜋𝑝(𝑘𝑙)
𝑒−𝑗𝑘𝑙𝑅𝑇𝑚,𝑞

4𝜋𝑅𝑇𝑚,𝑞 

𝑒−𝑗𝑘𝑙𝑅𝑞,𝑅𝑛

4𝜋 𝑅𝑞,𝑅𝑛
 

which are product of two three-dimensional Green’s functions. This is the key factor 

that allows a two-stage FMM-applied solution for the forward problem. Here, the 

first three-dimensional Green’s function represents the path that the transmitted 

signal traverses between the transmitting antenna and the target and it is treated by 

the first stage of FMM. The second three-dimensional Green’s function represents 



 

 

45 

the propagation of the reflected signal back to the receiving antenna and the second 

stage of the FMM is applied to this part. The stages are illustrated below in Fig. 4.2. 

 

 

(a)                                                              (b) 

Figure 4.2. Two-stage FMM. a) 1st stage and b) 2nd stage [127]. 

4.2.1 The First Stage 

Considering that only one transmitting antenna operates at a time in our imaging 

model, the aggregation step is not included in this stage, as opposed to classical FMM 

application. The transmitted signals from each transmitting antenna are carried to the 

geometric center of the scatterers in the imaged space by separate translation 

functions. Then, the translated signals are disaggregated to each voxel position. This 

stage can be represented by excluding aggregation function from (4.11) as 

�̃�𝑇𝑚,𝑞,𝑘𝑙,𝐹𝑀𝑀 = ∯𝑇𝑁,𝑚(𝑘𝑙 , �̂�, 𝑹𝑇𝑚)𝐷𝑞(𝑘𝑙, �̂�, 𝒓𝑞)𝑓𝑞𝑑
2𝐤,                  (4.21) 

where 

𝑇𝑁,𝑚(𝑘𝑙 , �̂�, 𝑹𝑇𝑚) =
−𝑗𝑘

(4𝜋)2
∑ (−𝑗)𝑙(2𝑙 + 1)ℎ𝑙

(2)(𝑘|𝑹𝑇𝑚|)𝑃𝑙(�̂� ⋅ �̂�𝑇𝑚) 
𝑁
𝑙=0   (4.22) 

𝐷𝑞(𝑘𝑙 , �̂�, 𝒓𝑞) =  𝑒
−𝑗𝑘𝑙�̂�⋅𝒓𝑞 .                                       (4.23) 
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In (4.22), 𝑅𝑇𝑚 is the distance from mth transmitting antenna to the geometric center 

of the image domain and 𝑟𝑞 is the distance from qth voxel to that center.  

Total number of operations required in this stage is 𝑁𝑇 ×  𝑁𝑉 ×  𝑁𝐹, where 𝑁𝑇, 𝑁𝑉, 

𝑁𝐹 respectively denote number of transmitting antennas, number of voxels, and 

number of frequency steps as defined separately in Section 3.2, since (4.21) must be 

repeated for each transmitting antenna and voxel position alongside with each 

frequency step. 

4.2.2 The Second Stage 

Since multiple reflections between the voxels are ignored, scattered signals can be 

aggregated at the center of the image volume using aggregation function. The 

aggregated scattered signal is then carried to the geometric center of the receiving 

sub-array (center of the plus-shaped MIMO array in our case) with the use of a 

common translation function. This stage can mathematically be expressed as follows 

�̃�𝑟𝑞,𝑅𝑟,𝑟𝑛,𝑘𝑙,𝐹𝑀𝑀 = ∯𝐴𝑞(𝑘𝑙 , �̂�, 𝒓𝑞)𝑇𝑁(𝑘𝑙, �̂�, 𝑹𝑟)𝐷𝑛(𝑘𝑙 , �̂�, 𝒓𝑛)𝑓𝑞𝑑
2𝐤         (4.23) 

where 

𝐴𝑞(𝑘𝑙 , �̂�, 𝒓𝑞) =  𝑒
𝑖𝑘𝑙�̂�⋅𝒓𝑞,                                            (4.24) 

𝐷𝑛(𝑘𝑙, �̂�, 𝒓𝑛) = 𝑒
𝑖𝑘𝑙�̂�⋅𝒓𝑛 ,                                             (4.25) 

and 

𝑇𝑁(𝑘𝑙, �̂�, 𝑹𝑟) =
−𝑗𝑘

(4𝜋)2
∑ (−𝑗)𝑙(2𝑙 + 1)ℎ𝑙

(2)(𝑘|𝑹𝒓|)𝑃𝑙(�̂� ⋅ �̂�𝑟)
𝑁
𝑙=0 .       (4.26) 

In (4.23), 𝑅𝑟 is the distance from the geometric center of the image volume to the 

geometric center of the receiving sub-array and 𝑟𝑛 is the displacement from 

geometric center of the receiving sub-array to the nth receiving antenna. 

This stage takes shorter runtime than the first stage, because it involves only one 

translation function. (4.23) must be calculated for each voxel, receiving antenna 
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position, and frequency steps. Therefore, the number of calculations that must be 

carried out in this stage is equal to 𝑁𝑉  ×  𝑁𝑅 ×  𝑁𝐹, where 𝑁𝑅 is the number of 

receiving antennas as defined in Section 3.2. 

In an iterative solver, each iteration requires the application of the forward operator 

(multiplication of the observation matrix 𝐀 with a vector) and/or its adjoint 

(multiplication of 𝐀𝐻 with a vector). The above stages describe how the FMM can 

be adopted for the solution of the forward problem. The same method can be 

followed for the calculation of the adjoint operator by simply exchanging order of 

the stages, i.e., in the first stage, transmitted signals are aggregated at the center of 

the array and translated to the center of the imaged scene. Then in the second stage, 

the reflected signals are separately translated back to the center of the array by 

individual translation functions and distributed over the receiving antennas by 

disaggregation step. 

Finally, overall operations required for the calculation of one matrix-vector 

multiplication is obtained as (𝑁𝑇 + 𝑁𝑅) × 𝑁𝑉 × 𝑁𝐹, while direct multiplication 

requires 𝑁𝑇 × 𝑁𝑅 × 𝑁𝑉 × 𝑁𝐹 operations. This improvement results in an efficient 

solution for imaging problems with large array aperture in terms of CPU time and 

memory requirement. 

Note that the developed FMM-based method does not depend on the MIMO array 

geometry, since it derives its efficiency from the number of antennas on the array, 

instead of arrangement of the sub-arrays on the aperture.     

4.3 Numerical Example 

A simple imaging scenario is created for evaluating performance of the FMM. A 

plus shaped MIMO array as shown in Fig. (4.2) is used with 30 vertically placed 

transmitting antennas and 30 horizontally placed receiving antennas. The overall 

aperture of the array is  72.5 cm × 72.5 cm and spacing between the antennas is 

2.5 cm (~0.83𝜆𝑐, 𝑓𝑐 = 10 GHz). The scene contains an array of 9 point scatterers 
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located on a grid of 2.4 cm on each side on the 𝑦 = 55 cm plane. Operational 

frequency bandwidth ranges from 7 GHz to 13 GHz with 7 frequency steps of 1 GHz. 

The reflectivity level of the all point scatterers are set to 1. 

Table 4.1 Algorithmic steps of conjugate gradient least squares. 

Conjugate Gradient Least Squares (CGLS) 

Input: 𝐀 ∈  ℂ𝑴×𝑵, 𝐛 ∈  ℂ𝑴, initial guess 𝐱𝟎  ∈  ℂ
𝑵, 𝒕𝒐𝒍 ∈  ℝ, and maximum number 

of iterations 𝒎𝒂𝒙𝒊𝒕 ∈  ℝ. 

Output: an approximate solution 𝐱𝐬𝐨𝐥 ∈  ℂ
𝑵. 

 

𝐫𝟎 = 𝐛 − 𝐀𝐱𝟎 

𝐬𝟎 = 𝐩𝟎 = 𝐀
𝑯𝐫𝟎 

𝛄𝟎 = ‖𝐬𝟎‖
𝟐 

for 𝐢 = 𝟎,… ,𝒎𝒂𝒙𝒊𝒕 
      𝐪𝐢 = 𝐀𝐩𝐢 
      𝛂𝐢 = 𝛄𝐢 ‖𝐪𝐢‖

𝟐⁄  

      𝐱𝐢+𝟏 = 𝐱𝐢 + 𝛂𝐢𝐩𝐢 
      𝐫𝐢+𝟏 = 𝐫𝐢 − 𝛂𝐢𝐪𝐢 
      If converged within 𝒕𝒐𝒍, then stop. 

      𝐬𝐢+𝟏 = 𝐀
𝑯𝐫𝐢+𝟏 

      𝛄𝐢+𝟏 = ‖𝐬𝐢+𝟏‖
𝟐 

      𝛃𝐢 = 𝛄𝐢+𝟏/𝛄𝐢 
      𝐩𝐢+𝟏 = 𝐬𝐢+𝟏 + 𝛃𝐢𝐩𝐢 
end 

𝐱𝐬𝐨𝐥 = 𝐱𝐢+𝟏 

 

 

The linear system belonging to the imaging problem is solved by conjugate gradient 

least squares algorithm (CGLS) whose steps are given in Table 4.1. The FMM is 

applied in the 1st, 2nd, 4th, and 8th steps, where forward operator and its adjoint are 

multiplied by a vector. The truncation number is determined by (4.16) to be 9. 

Translation, aggregation and disaggregation functions are separately calculated 

beforehand and stored in memory. Then, they are  recalled into the main code, thus, 

it is aimed to further reduce the time consumption of the solver. Absolute values of 

the reconstructed reflectivity values obtained with the application of FMM are given 

for two different truncation orders in Table 4.2. As a result of the truncation order, 
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FMM approach yields an error and it can be mathematically measured by the mean 

absolute percentage error (MAPE), which is given as 

MAPE =
100%

𝑛
∑|

𝑎𝑡 − 𝑓𝑡
𝑎𝑡

|

𝑛

𝑡=1

 

where 𝑎𝑡 is the 𝑡th component of the exact solution, 𝑓𝑡 is the 𝑡th component obtained 

with FMM, and 𝑛 is the dimension of the solution vectors. The MAPE of this 

imaging scenario when 𝑁 = 9 is calculated as 2.35%. This error can be decreased 

to 1.27% with 𝑁 = 19. However, increasing truncation order will remove the 

efficiency that FMM formulation provides in terms of CPU time. 

Table 4.2 Reflectivity values obtained using FMM and direct matrix multiplication. 

 Reflectivity 

f1 f2 f3 f4 f5 f6 f7 f8 f9 

Exact  Solution 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

FMM 

Solution 

𝑁 = 9 1.0200 1.0508 1.0199 1.0041 1.0203 1.0047 1.0199 1.0519 1.0196 

𝑁 = 19 1.0110 1.0415 1.0097 1.0013 1.0098 1.0019 1.0101 1.0228 1.0065 

 

An inverse scattering problem is the problem of determining characteristics of an 

object based on information of how it scatters the incoming radiation. It means that 

exact location of the target is unknown and one must scan the volume of interest in 

three dimensions with spatial steps that is smaller than cross range resolution. This, 

in result, leads to a highly ill-conditioned observation matrix that must be treated 

with some regularization techniques. Since any regularization method is not applied 

in this stage, the spatial steps are kept equal to the Rayleigh criterion (2.4 cm), hence, 

the observation matrix is well-conditioned. 

Finally, the improvement that the FMM provides is demonstrated by repeating the 

same target scenario for different number of antenna elements. Fig. 4.3 depicts CPU 

time (in seconds) and memory requirement (in Mbytes) per matrix-vector product as 

a function of number of antenna elements (i.e., 𝑁𝑇 = 𝑁𝑅). As expected, complexities 

of both CPU time and memory requirement are proportional to 𝑂(𝑁𝑇 + 𝑁𝑅), when 
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the FMM is applied in the solution of the imaging problem. The FMM outperforms 

the direct matrix-vector product above a crossover point, which depends on 

truncation order, imaging geometry, etc. Note that Fig. 4.3(b) plots the average 

memory usage that is monitored on the task manager during runtime. 

 

(a)                                                              (b) 

Figure 4.3. (a) CPU time, (b) memory requirement per matrix-vector product with 

respect to the number of the antennas for the FMM and the direct method. 

 

 

 

 

 

 

 



 

 

51 

CHAPTER 5  

5 SPARSE SOLUTION TO IMAGING PROBLEMS 

Sparsity-based algorithms have been widely applied to imaging problems lately [89-

92]. In all these problems, it is aimed to represent the measurement data sparsely by 

using minimum number of vectors from a set of vectors, namely dictionary1. The 

search for identifying the most useful vectors to establish the sparsest solution is 

computationally very intensive (NP-hard). In the literature, therefore, much effort 

has been made to find low complexity algorithms, which give close solutions to those 

that can be achieved by exhaustive search.  

For the solution of near-field MIMO imaging problems, two major categories of 

sparsity-based algortihms will be addressed in the scope of this chapter: Greedy 

pursuit methods and convex optimization techniques. The algorithms falling into 

these two categories are very practical in terms of implementation and computation. 

They not only have the ability of sparsifying the solution, but also regularize it. While 

greedy methods are based on  ℓ0 “norm”, convex optimization methods are 

constructed using l1-norm. 

This chapter will first introduce some of the now-standard sparsity-based algorithms. 

Then, it will show how FMM formulation will be applied into these algorithms and 

demonstrate its performance through several near-field imaging scenarios. 

                                                 

 

1 Assume that 𝐀 ∈ ℂ𝑀×𝑁 is a complex matrix whose columns have unit l2-norm, i.e., ‖𝑨𝑖‖2 = 1 for 

𝑖 = 1,… , 𝑁. This matrix is called dictionary. 
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5.1 Greedy Pursuit Methods 

A pursuit method basically abandons the exhaustive search and attempts to estimate 

a solution vector by modifying (or eliminating) one or multiple of its components at 

each iteration, hence, the solution is improved in terms of sparsity and regularization. 

Matching pursuit (MP), orthogonal matching pursuit (OMP), stagewise orthogonal 

matching pursuit (StOMP), regularized orthogonal matching pursuit (ROMP), and 

compressive sampling matching pursuit (CoSaMP) can be listed among such 

methods in the literature. The main difference between these methods is the approach 

that is used in each of them for determining the number of useful columns in the 

dictionary. For example, MP and OMP select only one column at each iteration, 

whereas StOMP, ROMP, and CoSaMP select multiple columns. In addition, they 

differ in calculating the residual vector and estimating non-zero components of the 

 

Figure 5.1. Block diagram for greedy pursuit algorithms [93]. 
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solution vector [93]. Fig. 5.1 illustrates a block diagram for a generic greedy pursuit 

method.  

5.1.1 Matching Pursuit 

If the matrix of the linear sytem is composed of large number of columns, it is an 

NP-hard problem to search for columns that gives the sparsest representation of the 

solution. In 1993, Mallat and Zhang proposed a greedy solution for such a problem, 

namely matching pursuit. This solution successively stores the indices of the 

columns, whose projections on the solution are the strongest, into an index set [94].   

In order to find sparse 𝐱 solution for 𝐀𝐱 = 𝐛 prolem, matching pursuit algorithm 

starts with a zero solution vector 𝐱0 = ∅, and at 𝑖th iteration, it finds the column 𝐚𝑛𝑖 ∈

𝐀 that has the strongest projection on the residual vector 𝐫𝑖−1 by 

𝑛𝑖 = argmax
𝑙

|𝐚𝑙
𝐻𝐫𝑖−1| ,      𝑙 = 1,2, … , 𝑁.                                (5.1) 

Let 𝐃𝑖 be a dictionary matrix, which is updated by 𝐚𝑛𝑖 at each iteration, and 𝛀𝑖 be 

the index set, where the indices of the selected columns are stored. After 𝑖th iteration, 

𝐃𝑖 and 𝛀𝑖 can be defined by 

[𝐃𝑖−1, 𝐚𝑛𝑖], 

                                                         and 𝛀𝑖 = 𝛀𝑖−1 ∪ 𝑛𝑖,   

respectively. Then, residual vector is calculated by 

𝐫𝑖 = r𝑖−1 −
(𝐚𝑛𝑖

𝐻𝐫𝑖−1)𝐚𝑛𝑖

‖𝐚𝑛𝑖‖2

2                                          (5.2) 

and the corresponding component of the solution vector is estimated by 

𝐱𝑖(𝑛𝑖) = 𝐱𝑖−1(𝑛𝑖)
(𝐚𝑛𝑖

𝐻𝐫𝑖−1)

‖𝐚𝑛𝑖‖2

2 .                                      (5.3) 
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One stopping criterion that can be used for the matching pursuit algorithm is ‖𝐫𝑖‖2 ≤

𝜖 [93]. 

5.1.2 Orthogonal Matching Pursuit (OMP) 

Orthogonal matching pursuit shares the same principle as MP method. It picks one 

column of 𝐀 at each iteration, which best approximates the residual. However, it 

does not simply update the residual by solving (5.2), instead it projects the estimate 

orthogonally onto the updated dictionary, which accounts for the term “orthogonal” 

[95-97]. 

Table 5.1 Algortihmic steps of orthogonal matching pursuit (OMP)  

Orthogonal Matching Pursuit (OMP) [34] 

Task: Approximate the solution of      𝐦𝐢𝐧
𝐱
‖𝐱‖𝟎      𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨       𝐀𝐱 = 𝐛 

Input: A matrix 𝐀 ∈ ℝ𝐌×𝐍 and a vector 𝐛 ∈ ℝ𝐌  

Output: A sparse solution 𝐱 ∈  ℝ𝐍. 

 

1) Initialize: Set counter 𝒊 = 𝟎. 
                  Set the index set 𝛀𝟎 = ∅. 

                  Set the residual vector 𝐫𝟎 = 𝐛 − 𝐀𝐱𝟎. 

2) Identify: Find a column 𝒏𝒊 of 𝐀 that is most strongly correlated with the 

residual vector: 

𝒏𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒍

|〈𝐫𝒌−𝟏, 𝐚𝒏𝒊〉| ,      𝒍 = 𝟏, 𝟐,… , 𝑵 and 

𝛀𝒊 = 𝛀𝒊−𝟏 ∪ 𝒏𝒊. 

3) Estimate: Find the best coefficients for approximating the signal with the 

columns chosen so far. 

𝐱𝒊 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒚

‖𝐛 − 𝐀𝒏𝒊𝐲‖𝟐
. 

4) Iterate: Update the residual: 

𝐫𝒊 = 𝐛 − 𝐀𝒏𝒊𝐱𝒊. 

     Increment 𝒊. Repeat (2) - (4) until stopping criterion is reached. 

5) Output: 𝐱(𝒏) = 𝐱𝒊(𝒏) for 𝒏 ∈ 𝛀𝒊 and 𝐱(𝒏) = 𝟎 otherwise.  
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The steps of the OMP algorithm are given in Table 5.1. Identification step is 

computationally the most expensive part of the algorithm with the complexity of 

𝑂(𝑠𝑀𝑁), where 𝑠 is the desired number of nonzeros in the approximated solution. 

For an exhasutive search, this step would take 𝑂(𝑀𝑁𝑠𝑠2). The most basic approach 

for identifying the columns that are strongly correlated to the residual vector is 

calculating maximum inner product by matrix-vector product 𝐀𝐻𝐫𝑖−1, which costs 

𝑂(𝑀𝑁). 

The estimation step consists in solving a minimization problem. This step costs 

𝑂(𝐼𝑀), where 𝐼 is the number of iterations that takes till the algorithm is stopped. 

The updated residual is also obtained as a result of this step, therefore, it does not 

require an extra calculation and does not increase the complexity of the algorithm. 

There are several stopping criteria that might be used for the OMP algorithm, which 

are given below: 

- Iterate till desired number of non-zero components in the solution vector is 

reached. If the solution vector is desired to be 𝑠-sparse, then the iterations are 

stopped when iteration number reaches the desired sparsity level.  

- Stop when ‖𝐫𝑖‖ ≤ 𝜖 is reached. 

- Stop when ‖𝐀𝐻𝒓𝑖−1‖∞ ≤ 𝜖 is reached [34]. 

Provided that the dictionary represents the measurement data exactly, OMP is 

capable of solving the problem with 𝐫𝐼 = ∅ after 𝐼 iterations. However, this solution 

is not sparse. In general, greedy pursuit methods prioritize rate of convergence and 

regularization of the solution, instead of sparsity. 

5.1.3 Stagewise Orthogonal Matching Pursuit (StOMP) 

Stagewise orthogonal pursuit method, introduced by Donoho et al. in 2012 [98], is 

an improved form of OMP. Contrary to OMP, this method selects multiple column 

indices at each iteration that the authors called stage. As in OMP, StOMP implements 
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the algorithm upon the observation vector 𝐲 = 𝐀𝐻𝐛, where 𝐛 is the measurement 

vector, i.e., 𝐛 = 𝐀𝐱. But, instead of selecting the largest component of 𝐲 at each 

iteration, it follows a threshold strategy, selecting all components above a threshold 

value 𝑡𝑆𝜎𝑆 where 𝜎𝑆 is noise level that can be defined by  

𝜎𝑆 = ‖𝑟𝑖‖2/√𝑀 

and 𝑡𝑆 takes values in the range 2 ≤ 𝑡𝑆 ≤ 3. Then, a minimization problem is solved 

in order to update the residual vector. StOMP algorithm continues to run till a fixed 

number of stages reached, whereas OMP requires to iterate by the number of desired 

sparsity level [99]. The algorithmic steps for StOMP are given in Table 5.2. 

Despite the fact that it shares a similar structure to OMP, StOMP outperforms OMP 

in terms of runtime, since it selects multiple components at each iteration. However, 

in practical applications, selecting the threshold value and its implementation into 

Table 5.2 Algorithmic steps for stagewise orthogonal matching pursuit 

Stagewise Orthogonal Matching Pursuit (StOMP) [99] 

Task: Approximate the solution of 𝐦𝐢𝐧
𝐱
‖𝐱‖𝟎      𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨      𝐀𝐱 = 𝐛 

Input: A matrix 𝐀 ∈ ℂ𝐌×𝐍 and a vector 𝐛 ∈ ℂ𝐌  

Output: A sparse solution 𝐱 ∈  ℂ𝐍. 

 

1) Initialize: Set counter 𝒊 = 𝟎. 
                  Set the index set 𝛀𝟎 = ∅. 

                  Set the residual vector 𝐫𝟎 = 𝐛 − 𝐀𝐱𝟎. 

2) Identify: Using the observation vector 𝐲 = 𝐀𝑯𝐫, set 

𝑱 = {𝒋: |𝐲𝒋| > 𝒕𝒊𝝈𝒊} 

3) Update: Add the set 𝑱 to index set 𝛀: 𝛀 ← 𝛀 ∪ 𝑱 and update the estimate and 

residual by 

𝐱 = (𝐀𝛀
𝑯𝐀𝛀)

−𝟏
𝐀𝛀
𝑯𝐛 

                                   and 𝐫 = 𝐛 − 𝐀x, 

respectively.  
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the algorithm might be difficult. Besides, different threshold values may lead to 

different solutions [98-101].   

5.1.4 Other Matching Pursuit Methods 

Literature has modern MP-based methods, which have been suggested recently for 

the improvement of standard greedy pursuit methods. They are developed to work 

better in specific situations and focus on some of the following features: 

- Selecting multiple useful columns at each iteration, 

- eliminating the columns that do not improve the solutions, 

- solving the minimization problem at the estimation step in a computationally 

efficient way. 

Regularized orthogonal matching pursuit (ROMP) [101], and compressive sampling 

matching pursuit (CoSaMP) [102,103] are the most popular modern pursuit methods. 

They are modifications of OMP that investigates various approaches for the 

Table 5.3 Algorithmic steps of regularized orthogonal matching pursuit. 

Regularized Orthogonal Matching Pursuit (ROMP) [93] 

Task: Approximate the solution of 𝐦𝐢𝐧
𝒙
‖𝒙‖𝟎      𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨      𝐀𝐱 = 𝐛 

Input: A matrix 𝐀 ∈ ℂ𝐌×𝐍 and a vector 𝐛 ∈ ℂ𝐌  

Output: A sparse solution 𝐱 ∈  ℂ𝐍. 

 

6) Initialize: Set counter 𝒊 = 𝟎. 
                  Set the index set 𝛀𝟎 = ∅. 

                  Set the residual vector 𝐫𝟎 = 𝐛 − 𝐀𝐱𝟎. 

7) Identify: 𝛀𝒊 ={𝒔-biggest indices in 𝐜𝒊 = 𝐀
𝑯𝐫𝒊−𝟏} 

8) Regularize: Among all subsets 𝑱𝒊 ⊂ 𝛀𝒊, choose 𝑱𝒊 with the maximal energy 

‖𝐜(𝑱𝒊)‖𝟐. 

9) Update: Add the set 𝑱𝒊 to the index set: 𝛀𝒊 = 𝛀𝒊 ∪ 𝑱𝒊. Calculate 

𝐱𝒊 = 𝐀(𝛀𝒊)
𝑯𝐛 

and update the residual vector 

𝐫𝒊 = 𝐛 − 𝐀(𝛀𝒊)𝐱𝒊. 
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improvement of column selection. Full form of their algorithms are given in Table 

5.3 and Table 5.4, respectively. 

ROMP was first suggested in [101]. In its identification step, it first calculates 

projection vector 𝒄𝒊 = 𝐀
𝐻𝐫𝑖−1 (𝐫0 = 𝐛) to find coordinates of 𝑠 biggest coefficients 

in 𝒄𝒊 and stack them into a set 𝐽. Then in regularization step, it searches in 𝐽 for 

coordinates that corresponding coefficient’s magnitude is greater than half the largest 

coefficient’s magnitude. These coordinates correspond to indices of the selected 

columns in each iteration. This is where ROMP differs from StOMP, which uses a 

predetermined threshsold value, in selecting columns. Also, in theory, runtime of 

ROMP is comparable to OMP, but it converges faster in practical cases [93]. 

Table 5.4 Algorithmic steps of compressive sampling matching pursuit 

Compressive Sampling Matching Pursuit (CoSaMP) [93] 

Task: Approximate the solution of 𝐦𝐢𝐧
𝐱
‖𝐱‖𝟎      𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨      𝐀𝐱 = 𝐛 

Input: A matrix 𝐀 ∈ ℂ𝐌×𝐍 and a vector 𝐛 ∈ ℂ𝐌  

Output: A sparse solution 𝐱 ∈  ℂ𝐍. 

 

10) Initialize: Set counter 𝒊 = 𝟎. 
                  Set the index set 𝛀𝟎 = ∅. 

                  Set the residual vector 𝐫𝟎 = 𝐛 − 𝐀𝐱𝟎. 

11) Identify: A proxy of the residual vector from the current samples is formed 

and the largest components of the proxy 𝐜𝒊 = |𝐀
𝑯𝐫𝒊−𝟏| are located. The first 

2𝒔 entries of 𝐜𝒊 with the largest absolute values are selected, and the selected 

indices compose 𝑱𝒊. 
12) Support Merge: The set of newly identified components is united with the set 

of components that appears in the current approximation. 𝛀𝒊 = 𝑱𝒊 ∪
𝐬𝐮𝐩𝐩(𝐱𝒊−𝟏) is identified as the augmentation of the support of the previous 

estimate 𝐱𝒊−𝟏 with the 2𝒔 indices corresponding to the entries 𝐜𝒊 with the 

largest absolute values. 

13) Estimate: A least squares problem is solved to approximate the signal 

𝐲𝒊 = 𝐀(𝛀𝒊)
𝑯𝐛. 

14) Prune: Keep the largest 𝒔 components of 𝐲𝒊, which is assigned as 𝐱𝒊. 

15) Update: Update the residual vector 

𝐫𝒊 = 𝐛 − 𝐀(𝛀𝒊)𝐱𝒊. 
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CoSaMP was first introduced in [102], which incorporates all three items given 

above. As in StOMP and ROMP, it selects multiple columns at each iteration, which 

have the largest correlation with the measurement vector 𝐛. To do this, coordinates 

of the first 2𝑠 coefficients of the projection with the biggest magnitude are sought to 

compose the set of indices belonging to the useful columns of the dictionary. In 

[103], Dai and Milenkovic proposed an algorithm that they called sub-space pursuit 

and it offers similar theoretical guarantees with CoSaMP. The other variants of 

CoSaMP are studied in [104]. In [135], perturbed OMP is proposed, where controlled 

perturbations are performed on the selected columns so that orthogonal residual can 

be decreased at each iteration.  

5.1.5 Numerical Examples 

Due to its compact structure and ease of implementation, we choose OMP algorithm 

for the demonstration of two near-field imaging scenarios with point scatterers. Fig. 

5.2(a) shows the first imaging scenario, where PSF of the plus-shaped MIMO array 

is obtained in a similar way to that shown in Chapter 3, but this time it is 

reconstructed by OMP algorithm. The point scatterer is placed 55 cm away from the 

center of the array. The imaging setup scans a linear path at y = 55 cm, extending 

from x =  −20 cm to x =  +20 cm, with 101 spatial steps. Fig 5.3(a) plots 

normalized PSF with the sparsity level of 101, implying that approximated solution 

is not sparse. 
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(a)                                                        (b) 

Figure 5.2. Imaging geometry (a) for one point scatterer and (b) for two point 

scatterers. 

As discussed earlier, the sparsity level of the solution can be determined with the 

number of iterations that OMP algorithm takes. For different sparsity levels, the 

approximate solutions are plotted in Fig. 5.3(b) and Fig. 5.3(c). It can be seen that 

the algorithm keeps the largest 𝑠 components and forces the rest to be zero. As the 

sparsity level is reduced to 1, the solution contains only the largest value, whose 

index corresponds to exact location of the point scatterer. 

 

(a)                                      (b)                                     (c) 

Figure 5.3. Reconstructed point spread functions for different sparsity levels: (a) 

101-sparse, (b) 21-sparse, (c) 1-sparse. 
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(a)                                      (b)                                     (c) 

Figure 5.4. Reconstructed solutions for different sparsity levels: (a) 101-sparse, (b) 

21-sparse, (c) 8-sparse. 

However, the same result as obtained in Fig. 5.3(c) may not be achieved for an 

imaging scene containing multiple point scatterers with different reflectivity levels. 

To demonstrate such an imaging scenario, two point scatterers that are 6 cm apart 

from each other are considered, as shown in Fig. 5.2(b). The point scatterer located 

at 𝑥 =  −3 cm (scatterer #1) has reflectivity level of 0.5, while the other is located 

at 𝑥 =  +3 cm (scatterer #2) and its reflectivity is 1.0. Fig. 5.4(a) shows the 

reconstructed non-sparse solution. As the sparsity level is reduced to 21, two point 

scatterers can still be solved. But, only scatterer #2 can be obtained when the sparsity 

level is below 9. Scatterer #1 disappears in the reconstruction since its highest 

reflectivity level is lower than 8 largest component of the scatterer #2’s response. 

Therefore, for such a scenario, it is not possible to extract the sparsest solution that 

yields the reflectivity levels at the exact locations of the scatterers, as obtained in the 

first scenario. 

5.1.6 Application of FMM in OMP Algorithm 

- Identification step: 

In the identification step, OMP includes adjoint operator, where maximum inner 

product is calculated by 𝐀𝐻𝐫𝑖−1. For a large scale imaging problem, this step will be 

computationally very demanding, therefore, we use FMM to calculate the matrix-

vector product.  



 

 

62 

- Estimation step: 

Estimation step solves 𝐱𝑖 = argmin
𝐲

‖𝐛 − 𝐀𝛀𝒊𝐲‖2 at each iteration, where 𝐀𝛀𝒊 

involves columns that has the largest projection on the residual vector at 𝑖th iteration. 

As the algorithm iterates, identified columns are stacked in 𝛀. So, number of 

columns in 𝐀𝛀𝒊 increases at each iteration. Provided that desired solution is non-

sparse, this step will solve the minimization problem  𝐱𝑖 = argmin
𝐲

‖𝐛 − 𝐀𝐲‖2 in the 

last iteration, since 𝐀𝛀𝒊 = 𝐀 at that step. Here, we solve this minimization problem 

with an inner iteration by CGLS, where forward operator and its adjoint is calculated 

by using FMM formulation. 

The second imaging scenario is simulated again for demonstrating FMM. While 

FMM is applied in both identification and estimation steps in non-sparse (101-

sparse) case, it is applied to only identification step in 21-sparse and 8-sparse cases. 

Fig. 5.5 shows the normalized reconstructions when FMM is applied. As can be seen, 

the solutions are in good agreement with those obtained without FMM, except for 

the truncation error, which is measured here by MAPE. When non-sparse solutions 

are compared, MAPE is calculated as ~0.9%. 

 

 

(a)                                      (b)                                     (c) 

Figure 5.5. Reconstructed solutions with FMM for different sparsity levels: (a) 101-

sparse, (b) 21-sparse, (c) 8-sparse. 
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5.2 Convex Optimization Techniques 

Another approach to find a sparse solution to an inverse problem is replacing ℓ0 

“norm” in (2.24) with l1-norm, yielding a convex optimization problem in 

unconstrained form  

min
𝐱
‖𝐀𝐱 − 𝐛‖2

2 + 𝜆‖𝐱‖1.                                        (5.4) 

(5.4) is referred to as “least absolute shrinkage and selection operator (LASSO)” and 

it can be redefined in a constrained form [105] 

min
𝐱
‖𝐱‖1       subject to      ‖𝐀𝐱 − 𝐛‖2 ≤ 휀.                         (5.5) 

where, 휀 is the error tolerance due to noisy measurement data and it is estimated by 

signal-to-noise ratio (SNR) of the received signal. Both (5.4) and (5.5) do not have 

an analytical solution, therefore, wide variety of research contributions have been 

added into the literature to develop new algorithms, which can give optimally sparse 

solutions for them. Lately, “alternating direction method of multipliers” (ADMM) 

and “constrained split augmented Lagrangian shrinkage algorithm (C-SALSA-1 and 

C-SALSA-2) have been the most studied algorithms, especially in imaging 

application. 

5.2.1 Alternate Direction Method of Multipliers (ADMM) 

5.2.1.1 Background 

Before investigating ADMM, four concepts must be studied in order to gain insight 

about its background: (i) Dual ascent, (ii) dual decomposition, (iii) method of 

multipliers, and (iv) variable splitting.  

(i) Dual Ascent 

General form of an equality-constrained convex optimization problem is given by 
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minimize 𝑓(𝐱) 

subject to 𝐀𝐱 = 𝐛                                           (5.6) 

where 𝑓: ℂ𝑁 ⇢ ℂ is a convex (objective) function. The Lagrangian form of (5.6) is 

𝐿(𝐱, 𝐲) = 𝑓(𝐱) + 𝐲𝑇(𝐀𝐱 − 𝐛)                                 (5.7) 

and its dual function is 

𝑔(𝐲) = inf
𝐱
𝐿(𝐱, 𝐲) = −𝑓∗(−𝐀𝑇𝐲) − 𝐛𝑇𝐲                       (5.8) 

where 𝐲 is dual variable (or Lagrangian multiplier) and 𝑓∗ is convex conjugate of 𝑓 

[107,108]. The dual problem has the form of 

maximize 𝑔(𝐲).                                            (5.9) 

Dual ascent method solves (5.9) by gradient ascent. Presumed to be differentiable, 

gradient of the dual function ∇𝑔(𝐲) can be calculated by first solving 𝐱+ =

argmin
𝐱

𝐿(𝐱, 𝐲), then substituting 𝐱+ into ∇𝑔(𝐲) = 𝐀𝐱+ − 𝐛. The dual ascent 

consists of iterating the following updates till convergence is achieved: 

𝐱𝑘+1 ≔ argmin
𝐱

𝐿(𝐱, 𝐲)                                      (5.10) 

𝐲𝑘+1 ≔ 𝐲𝑘 + 𝛼𝑘(𝐀𝐱𝑘+1 − 𝐛)                            (5.11) 

where 𝛼𝑘 is step size and 𝑘 is iteration count. (5.10) is referred to as 𝐱-minimization 

step, whereas (5.11) is dual variable update step. If 𝛼𝑘 is chosen appropriately, dual 

function 𝑔(𝐲) increases gradually at each iteration, i.e., 𝑔(𝐲𝑘+1) > 𝑔(𝐲𝑘), therefore, 

this method is called “dual ascent” [107]. 

(ii) Dual Decomposition 

Assume that function 𝑓 is separable such that 

𝑓(𝐱) = ∑ 𝑓𝑖(𝐱𝑖)
𝑁
𝑖=1                                             (5.12) 
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where 𝐱𝑖 ∈ ℂ
𝑛𝑖 are subvectors of 𝐱. Splitting 𝐀 into submatrices as 𝐀 = [𝐀1… 𝐀𝑁], 

equality constraint can be rewritten as 

𝐀𝐱 = ∑ 𝐀𝑖𝐱𝑖
𝑁
𝑖=1 .                                             (5.13) 

Lagrangian form of (5.13), which is also separable in 𝐱, can be given as 

𝐿(𝐱, 𝐲) = ∑ 𝐿𝑖(𝐱𝑖, 𝐲)
𝑁
𝑖=1 = ∑ (𝑓𝑖(𝐱) + 𝐲

𝑇𝐀𝑖𝐱𝑖 − (1/𝑁)𝐲
𝑇𝐛)𝑁

𝑖=1 .       (5.14) 

(5.10) can be decomposed into 𝑁 separate parts that can be computed in parallel, 

leading to following updates to be iterated: 

𝐱𝑖
𝑘+1 ≔ argmin

𝐱
𝐿𝑖(𝐱𝒊, 𝐲

𝑘)                                         (5.15) 

𝐲𝑘+1 ≔ 𝐲𝑘 + 𝛼𝑘(𝐀𝐱𝑘+1 − 𝐛).                                   (5.16) 

The 𝐱-minimization step given in (5.15) is solved separately, but in parallel, for each 

part (𝑖 = 1,… , 𝑁). So, this procedure is called “dual decomposition”. 

(iii) Method of Multipliers 

In order to make the dual ascent method robust, Lagrangian form given in (5.7) can 

be augmented by 

𝐿𝜌(𝐱, 𝐲) = 𝑓(𝐱) + 𝐲
𝑇(𝐀𝐱 − 𝐛) + (𝜌/2)‖𝐀𝐱 − 𝐛‖2

2                     (5.17) 

where 𝜌 > 0 is denoted as penalty parameter. When 𝜌 = 0 or a feasible solution 𝐱 

is introduced into the problem, (5.17) corresponds to the standard Lagragian 

expression. The augmented Lagrangian can be associated with the following 

problem: 

minimize 𝑓(𝐱) + (𝜌/2)‖𝐀𝐱 − 𝐛‖2
2 

subject to 𝐀𝐱 = 𝐛.                                         (5.18) 

The modified problem can be solved by applying dual ascent, which yields the 

following update equations: 
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𝐱𝑘+1 ≔ argmin
𝐱

𝐿𝜌(𝐱, 𝐲
𝑘)                                           (5.19) 

𝐲𝑘+1 ≔ 𝐲𝑘 + 𝜌(𝐀𝐱𝑘+1 − 𝐛).                                      (5.20) 

This algorithm is named the “method of multipliers” and it differs from the standard 

dual ascent by carrying out 𝐱-minimization step with augmented Lagrangian and 

using penalty parameter 𝜌 instead of 𝛼𝑘. Unlike standard dual ascent, method of 

multipliers has the advantage of converging under milder conditions, i.e., it 

converges even when 𝑓 is not strictly convex. Therefore, its convergence rate is 

comparably higher than standard dual ascent [106]. 

(iv) Variable Splitting 

Consider following unconstrained problem 

min
𝐱
𝑓1(𝐱) + 𝑓2(𝐆𝐱)                                             (5.21) 

where 𝐆 ∈ ℂ𝑀×𝑁, 𝑓1: ℂ
𝑁 ⟶ ℂ, and 𝑓2: ℂ

𝑁 ⟶ ℂ. In variable splitting, a new variable 

𝐳 = 𝐆𝐱 is defined as the argument of 𝑓2 and the unconstrained problem becomes 

min
𝐱,𝐳

𝑓1(𝐱) + 𝑓2(𝐳)    subject to    𝐳 = 𝐆𝐱.                          (5.22) 

Purpose of variable splitting is that it may be easier to solve (5.22) than the 

unconstrained problem of (5.21) in some cases [41].  

5.2.1.2 ADMM Algorithm 

ADMM is developed to bring decomposability of the dual ascent method and high 

convergence rate of the method of multipliers together. It solves a problem in the 

following form: 

minimize 𝑓(𝐱) + 𝑔(𝐳) 

subject to 𝐀𝐱 + 𝐁𝐳 = 𝐜                                      (5.23) 
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where 𝐱 ∈ ℂ𝑁, 𝐳 ∈ ℂ𝑀, 𝐀 ∈ ℂ𝑝×𝑁, 𝐁 ∈ ℂ𝑝×𝑀, and 𝐜 ∈ ℂ𝑝. In ADMM, 𝐱 is split into 

𝐱 and 𝐳, and the objective function is distributed over them. Augmented Lagrangian 

form of (5.23) is given as 

𝐿𝜌(𝐱, 𝐲, 𝐳) = 𝑓(𝐱) + 𝑔(𝐳) + 𝐲𝑇(𝐀𝐱 + 𝐁𝐳 − 𝐜) + (𝜌/2)‖𝐀𝐱 + 𝐁𝐳 − 𝐜‖2
2.  (5.24) 

ADMM involves the following updates in its iterations: 

𝐱𝑘+1 ≔ argmin
𝐱

𝐿𝜌(𝐱, 𝐳
𝑘 , 𝐲𝑘)                                         (5.25) 

𝐳𝑘+1 ≔ argmin
𝐳

𝐿𝜌(𝐱
𝑘+1, 𝐳, 𝐲𝑘)                                     (5.26) 

𝐲𝑘+1 ≔ 𝐲𝑘 + 𝜌(𝐀𝐱𝑘+1 + 𝐁𝐳𝑘+1 − 𝐜)                           (5.27) 

where 𝜌 > 0. Method of multipliers for (5.23) is written as 

(𝐱𝑘+1, 𝐳𝑘+1) ≔ argmin
𝐱,𝐳

𝐿𝜌(𝐱, 𝐳, 𝐲
𝑘) 

𝐲𝑘+1 ≔ 𝐲𝑘 + 𝜌(𝐀𝐱𝑘+1 + 𝐁𝐳𝑘+1 − 𝐜) 

where augmented Lagrangian is minimized with respect to the variables in the same 

update. On the other hand, ADMM updates the variables sequentially (or in an 

alternating fashion), and the method takes its name from this “alternating direction” 

[106].  

The LASSO problem given in (5.4) can be rewritten in ADMM form as 

minimize 𝑓(𝐱) + 𝑔(𝐳) 

subject to 𝐱 − 𝐳 = 0, 

where 𝑓(𝐱) = ‖𝐀𝐱 − 𝐛‖2
2 and 𝑔(𝐳) = 𝜆‖𝐳‖1. Finally, the update equations for 

LASSO problem are obtained as [106] 

𝐱𝑘+1 ≔ (𝐀𝑇𝐀 + 𝜌𝐈)−1(𝐀𝑇𝐛 + 𝜌(𝐳𝑘 − 𝐮𝑘)),                            (5.28) 

𝐳𝑘+1 ≔ 𝑆𝜆/𝜌(𝐱
𝑘+1 + 𝐮𝑘),                                                          (5.29) 
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𝐮𝑘+1 ≔ 𝐮𝑘 + 𝐱𝑘+1 − 𝐳𝑘+1.                                                       (5.30) 

The z-update in (5.29) is carried out by soft-thresholding operator 𝑆𝜆/𝜌, which is 

mathematically defined as 

𝑆𝜆/𝜌(𝒙
𝑘+1 + 𝒖𝑘) ≔ {

𝐱𝑖 + 𝐮𝑖 − 𝜆/𝜌, |𝐱𝑖 + 𝐮𝑖| ≥ 𝜆/𝜌

𝐱𝑖 + 𝐮𝑖 + 𝜆/𝜌, |𝐱𝑖 + 𝐮𝑖| ≤ −𝜆/𝜌
    0                      else                       

 .                   (5.31) 

Table 5.5 Algorithmic steps of ADMM 

ADMM [40,44] 

1. Set 𝒌 = 𝟎, choose 𝝆 > 𝟎, 𝐳𝟎, 𝐮𝟎 

2. repeat 

3. 𝐱𝒌+𝟏 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝐱

‖𝐀𝐱 − 𝐛‖𝟐
𝟐 +

𝝆

𝟐
‖𝐱 − 𝐳𝒌 − 𝐮𝒌‖𝟐

𝟐 

4. 𝐳𝒌+𝟏 = 𝑺𝝀/𝝆(𝐱𝒌+𝟏 + 𝐮𝒌) 

5. 𝐮𝒌+𝟏 = 𝐮𝒌 − 𝐱𝒌+𝟏 + 𝐳𝒌+𝟏 

6. 𝒌 ← 𝒌 + 𝟏 

7. until some stopping criterion is satisfied. 

 

Table 5.5 gives algorithmic steps of ADMM. Note that optimal value of 

regularization parameter 𝜆 is found by a search algorithm (e.g. cross-validation), 

since it governs sparsity of the solution indirectly [111,112]. This multiplies 

computation time by the number of trials for different 𝜆 values. When 𝜆 ≥ ‖𝐀𝐻𝐛‖∞, 

the solution of (5.4) becomes zero vector [34].  

Convergence rate of ADMM depends strongly on the choice of Lagrangian penalty 

parameter, 𝜌. If 𝜌 is selected suitably, the algorithm converges within a small number 

of iterations, while poor 𝜌 values increases the number of iterations and slows down 

the convergence rate [128]. 

One stopping criterion for ADMM that can be found in the literature depends on 

primal and dual residuals of the optimization problem. At 𝑘th iteration step, they are 

denoted by 

𝒆𝑝,𝑘 = (𝐱𝑘 − 𝐳𝑘) 
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and 

𝒆𝑑,𝑘 = −𝜌(𝐳𝑘 − 𝐳𝑘−1), 

respectively. The algorithm is stopped when the primal and dual residuals both 

satisfy predetermined stopping criteria that depends on imaging application. The 

stopping criteria can be chosen as ‖𝒆𝑝,𝑘‖2 ≤ 𝜖pri and ‖𝒆𝑑,𝑘‖2 ≤ 𝜖
dual where 

𝜖pri = √𝑁𝜖abs + 𝜖relmax{‖𝐱𝑘‖2, ‖𝐳𝑘‖2}, 

𝜖𝑑𝑢𝑎𝑙 = √𝑁𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙𝜇‖𝐝𝑘‖2. 

Furthermore, 𝜖abs > 0 and 𝜖rel > 0 are the absolute and relative tolerances, 

respectively [128]. 

5.2.1.3 Application of FMM in ADMM 

3rd step of ADMM algorithm solves a minimization problem and it will get 

computationally very demanding for a large-scale imaging problem. Here, we solve 

this minimization problem with an inner iteration by using CGLS, where 

multiplication of a vector with the observation matrix 𝐀 and its Hermitian 𝐀𝐻 are 

efficiently calculated by FMM formulation.  

5.2.2 Constrained Split Augmented Lagrangian Shrinkage Algorithm (C-

SALSA) 

In [40] and [44], split augmented Lagrangian shrinkage algorithm (SALSA) is 

suggested to solve image restoration and reconstruction problems, which are in 

unconstrained form as given in (5.4). In SALSA, the problem is converted into 

constrained form by variable splitting and tackled by an augmented Lagrangian 

based method, specifically ADMM. C-SALSA, on the other hand, solves the 

constrained problem of (5.5) by converting it into an unconstrained problem. The 

conversion is realized by adding an indicator function of the feasible set 
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{𝑥 ∶  ‖𝐀𝐱 − 𝐛‖ ≤ 휀} into the objective function. The obtained unconstrained 

problem is then transformed into a new constrained problem with the application of 

variable splitting process, which is given as 

min
𝐱
𝜙(𝐱) subject to   ‖𝐀𝐱 − 𝐛‖ ≤ 휀                                  (5.32) 

where 𝜙(𝐱) is a regularization function. It acts as a transform operator that is chosen 

with respect to the scattering characteristics of the imaged scene. For example, it can 

be chosen as l1-norm for point scatterers with background, while discrete gradient 

operator can be chosen for extended targets (a target that occupies more than one 

voxel), which has the following form: 

𝜙 = [

𝐷𝑥
𝐷𝑦
𝐷𝑧

]                                                     (5.33) 

where 𝐷𝑥, 𝐷𝑦, and 𝐷𝑧 denote difference operators along the respective directions. 

This operation is called “total variation (𝑇𝑉)” of the unknown and yields a 

reconstruction with sharp edges and boundaries of the targets are obtained without 

smoothing. 𝑇𝑉 is mathematically expressed as 

𝑇𝑉(|𝐱|) = ∑ |∇(|𝐱|)|𝑖,𝑗,𝑘                                         (5.34) 

where 

|∇(|𝐱|)| = √𝐷𝑥(|𝐱|)2 + 𝐷𝑦(|𝐱|)2 + 𝐷𝑧(|𝐱|)2                       (5.35) 

and 

𝐷𝑥(|𝐱|) = |𝐱[𝑖 + 1, 𝑗, 𝑘]| − |𝐱[𝑖, 𝑗, 𝑘]|, 

  𝐷𝑦(|𝐱|) = |𝐱[𝑖, 𝑗 + 1, 𝑘]| − |𝐱[𝑖, 𝑗, 𝑘]|,                          (5.36) 

𝐷𝑧(|𝐱|) = |𝐱[𝑖, 𝑗, 𝑘 + 1]| − |𝐱[𝑖, 𝑗, 𝑘]| 

where 𝐱[𝑖, 𝑗, 𝑘] is the 𝑖, 𝑗, 𝑘th voxel of the imaged scene. There exist two variants of 

C-SALSA algorithm, depending on choice of the regularization function 𝜙(𝐱). 
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When 𝜙(𝐱) = ‖𝐱‖1, the constrained problem (5.32) can be solved by the first variant 

of C-SALSA, namely C-SALSA-1 algorithm and its steps are given in Table 5.6. On 

the other hand, when 𝜙(𝐱) = 𝑇𝑉(|𝐱|), the second variant of C-SALSA, namely C-

SALSA-2, can be used for solving (5.32). Its algorithmic steps are given in Table 5.7. 

These two variants differ at their 3rd and 4th steps, where the regularization function 

is applied.  

Table 5.6 Algorithmic steps of constrained split augmented Lagrangian shrinkage-I 

Constrained Split Augmented Lagrangian Shrinkage Algorithm-1  

(C-SALSA-1) [109] 

1. Set 𝒌 = 𝟎, choose 𝝆 > 𝟎,  𝐳𝟎
(𝟏)

, 𝐳𝟎
(𝟐)

, 𝐝𝟎
(𝟏)

, 𝐝𝟎
(𝟐)

 

2. repeat 

3. 𝐫𝒌 = 𝐳𝟎
(𝟏)
+𝐝𝟎

(𝟏)
+𝐀𝑯(𝐳𝟎

(𝟐)
+ 𝐝𝟎

(𝟐)
) 

4. 𝐱𝒌+𝟏 = (𝐈 + 𝐀𝑯𝐀)−𝟏𝐫𝒌 

5. 𝐳𝒌+𝟏
(𝟏)

= 𝐒𝟏/𝝆 (𝛟𝐱𝒌+𝟏 − 𝐝𝒌
(𝟏),

𝟏

𝝆
) 

6. 𝐳𝒌+𝟏
(𝟐)

= 𝐛 +

{
 

 𝐀𝐱𝒌+𝟏 − 𝐝𝒌
(𝟐)
− 𝐛,        𝐢𝐟 ‖𝐀𝐱𝒌+𝟏 − 𝐝𝒌

(𝟐)
− 𝐛‖

𝟐
≤ 𝜺

𝜺
(𝐀𝐱𝒌+𝟏−𝐝𝒌

(𝟐)
−𝐛)

‖𝐀𝐱𝒌+𝟏−𝐝𝒌
(𝟐)
−𝐛‖

𝟐

,          𝐢𝐟 ‖𝐀𝐱𝒌+𝟏 − 𝐝𝒌
(𝟐)
− 𝐛‖

𝟐
> 𝜺

 , 

7. 𝐝𝒌+𝟏
(𝟏)

= 𝐝𝒌
(𝟏)
− 𝐱𝒌+𝟏 + 𝐳𝒌+𝟏

(𝟏)
 

8. 𝐝𝒌+𝟏
(𝟐)

= 𝐝𝒌
(𝟐)
− 𝐀𝐱𝒌+𝟏 + 𝐳𝒌+𝟏

(𝟐)
 

9. 𝒌 ← 𝒌 + 𝟏 

10. until some stopping criterion is satisfied. 
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Table 5.7 Algorithmic steps of constrained split augmented Lagrangian Shrinkage-

II 

Constrained Split Augmented Lagrangian Shrinkage Algorithm-2 

(C-SALSA-2) [109] 

1. Set 𝒌 = 𝟎, choose 𝝆 > 𝟎,  𝐳𝟎
(𝟏)

, 𝐳𝟎
(𝟐)

, 𝐝𝟎
(𝟏)

, 𝐝𝟎
(𝟐)

 

2. repeat 

3. 𝐫𝒌 = 𝛟𝑯(𝐳𝟎
(𝟏)
+𝐝𝟎

(𝟏)
) + 𝐀𝑯(𝐳𝟎

(𝟐)
+ 𝐝𝟎

(𝟐)
) 

4. 𝐱𝒌+𝟏 = (𝛟𝑯𝛟+ 𝐀𝑯𝐀)−𝟏𝐫𝒌 

5. 𝐳𝒌+𝟏
(𝟏)

= 𝑺𝟏/𝝆 (𝛟𝐱𝒌+𝟏 − 𝐝𝒌
(𝟏),

𝟏

𝝆
) 

6. 𝐳𝒌+𝟏
(𝟐)

= 𝐛 +

{
 

 𝐀𝐱𝒌+𝟏 − 𝐝𝒌
(𝟐)
− 𝐛,        𝐢𝐟 ‖𝐀𝐱𝒌+𝟏 − 𝐝𝒌

(𝟐)
− 𝐛‖

𝟐
≤ 𝜺

𝜺
(𝐀𝐱𝒌+𝟏−𝐝𝒌

(𝟐)
−𝐛)

‖𝐀𝐱𝒌+𝟏−𝐝𝒌
(𝟐)
−𝐛‖

𝟐

,          𝐢𝐟 ‖𝐀𝐱𝒌+𝟏 − 𝐝𝒌
(𝟐)
− 𝐛‖

𝟐
> 𝜺

 , 

7. 𝐝𝒌+𝟏
(𝟏)

= 𝐝𝒌
(𝟏)
−𝛟𝐱𝒌+𝟏 + 𝐳𝒌+𝟏

(𝟏)
 

8. 𝐝𝒌+𝟏
(𝟐)

= 𝐝𝒌
(𝟐)
− 𝐀𝐱𝒌+𝟏 + 𝐳𝒌+𝟏

(𝟐)
 

9. 𝒌 ← 𝒌 + 𝟏 

10. until some stopping criterion is satisfied. 

 

5.2.2.1 Application of FMM in C-SALSA 

As can be seen from Tables 5.6 and 5.7, the 3rd, 4th, 6th, and 8th steps of C-SALSA-1 

and C-SALSA-2 algorithms consist of multiplication of a vector with the observation 

matrix 𝐀 and its Hermitian 𝐀𝑯. Among all, 4th step is computationally most 

demanding one, since it contains the inversion of (𝚽𝐻𝚽+𝐀𝐻𝐀). We rewrite this 

step as follows 

(𝚽𝐻𝚽+ 𝐀𝐻𝐀)𝐱𝑘+1 = 𝚽
𝐻(𝚽𝐱𝑘+1) + 𝐀

𝐻(𝐀𝐱𝑘+1) = 𝐫𝑘.                (5.37) 
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Since 𝐫𝑘 is already known from 3rd step, solution of the linear system in (5.37) is 

more efficient and can be done iteratively. In this step, we apply two consecutive 

FMMs to evaluate 𝐀𝐻(𝐀𝐱𝑘+1) operation, i.e., 

 1st FMM → 𝐀𝐱𝑘+1 

 2nd FMM → 𝐀𝐻(∙), where inside the parenthesis is the result of the 1st FMM 

operation. 

It is not necessary to form to form the discrete gradient operators given in (5.36) 

explicitly. Instead, filtering the unknown vector 𝐱 with derivative kernel 

[−1 0 1] along respective directions is computationally more efficient. 

5.3 Numerical Examples 

We considered two types of near-field imaging scenarios regarding the 

dimensionality of the targets: 1-D targets (point scatterers) and extended targets. The 

images are reconstructed using one of the augmented Lagrangian based algorithms 

(ADMM or C-SALSA) that fits best to the target characteristics. In all scenarios, 

plus-shaped MIMO array configuration is used. The operational frequency 

bandwidth (7 – 13 GHz band) is kept the same and number of frequency steps (1 

GHz) are deliberately specified as low as possible so that we can investigate how the 

algorithms and sparsity constraint performs when the linear system has under-

determined nature. Also, all targets are placed at the same distance (𝑦 = 55 cm) from 

the MIMO array so that imaging system will exhibit the same resolution capability 

for each of them. In order to demonstrate focusing capability of the sparsity-based 

algorithms, the same problems are also solved by conventional CGLS algorithm. 

As illustrated in Fig. 5.6, incident signal power and signal-to-noise ratio is defined 

in the reconstructions as 

𝑆 = 𝑁𝑇𝑁𝑅𝑁𝐹 (
1

𝑁𝑉
∑

𝑓𝑞

𝑅𝑇𝑚,𝑞
2 𝑅𝑅𝑛,𝑞

2

𝑁𝑉
𝑞=1
𝑓𝑞≠0

).                                (5.38) 
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𝑆𝑁𝑅 = 10 log10 (
𝑆

𝑁
)                                           (5.39) 

where the term in the parenthesis denotes the average power reflected back from the 

imaged scene. The total power is calculated by 𝑁𝑇𝑁𝑅𝑁𝐹 times this quantity, since 

imaging problem involves 𝑁𝑇 transmitters, 𝑁𝑅 receivers, and 𝑁𝐹 frequency steps. 

Also, 𝑁𝑉 denotes number of voxels. Note that this definition strongly depends on the 

shape and reflectivity distribution of the scene due to the fact that averaging is 

realized over only non-empty voxels. 

 

Figure 5.6. Illustration of incident signal power calculation. 

In addition, quality assessment of the reconstructed images is realized by peak 

signal-to-noise ratio (PSNR), which is defined as 

PSNR = 10log10 (
MAX𝐼

2

MSE
)                                         (5.40) 

where, MAX𝐼 is maximum pixel/voxel value of reconstructed reflectivity image and 

MSE is mean squared error which can be simply defined as the mean of the square 
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of the difference between the 𝑚 × 𝑛 actual image 𝐼 and 𝐼, which is the image 

reconstructed from the noisy measurement as 

MSE =
1

𝑚𝑛
∑ ∑  [𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)]

2𝑛
𝑗=1

𝑚
𝑖=1 .                          (5.41) 

All simulations given below are realized with 30 dB input SNR unless otherwise is 

stated. 

a. Point Scatterers 

In all of the point scatterer scenarios demonstrated below, the related imaging 

problems are implemented based on (5.4) and solved using ADMM algorithm with 

the application of the FMM. Note that these problems can also be solved by C-

SALSA-1 algorithm, however, we preferred to use ADMM in order to demonstrate 

applicability of FMM in different sparsity-based algorithms. 

In the first scenario, a single point scatterer, as shown in Fig. 5.2(a), is considered. 

The image is reconstructed on a linear path parallel to x-axis, extending from x =

−12 cm to x = +12 cm with 51 equal spatial steps, since they are placed on a line. 

In this way, it is aimed to obtain a short runtime. The reflectivity level of the point 

scatterer is set to 1. Fig. 5.7 plots normalized reconstructed 1-D solution with 

 
 

Figure 5.7. Normalized reconstructed solution for scattering from one point scatterer. 
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regularization parameter 𝜆 = 6 and penalty parameter 𝜌 = 1. Unlike OMP, which 

has to carry out as many iteration steps as the predetermined sparsity level and does 

not guarantee a sparse solution, ADMM is able to converge to a solution with 

optimum sparsity (which corresponds to the sparsest solution for this example) under 

a standard stopping criterion. 

 

Figure 5.8. Imaging configuration for three point scatterers. 

The second scenario contains an imaging problem with three point scatterers. Fig. 

5.8 illustrates the corresponding imaging environment. The point scatterer at x =

0 m has reflectivity level of 1, while the scatterers at x = 2.4 cm and x = −2.4 cm 

have the reflectivity level of 0.5. 1-D solution is reconstructed on a linear path 

parallel to x-axis with the same length and spatial steps as in the previous numerical 

example. The problem is also solved by CGLS in order to demonstrate effectiveness 

of convex optimization technique. 

The normalized solutions reconstructed by ADMM and CGLS are given in Fig. 

5.9(a) and Fig. 5.9(b), respectively. As can be seen, the sparsest solution can be 

obtained using a convex optimization technique with regularization parameter 𝜆 = 6 

and penalty parameter 𝜌 = 1. On the other hand, in the CGLS solution, each point 

scatterer’s reflectivity is reconstructed like a sinc function, and hence, sidelobes of 
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point scatterer with the highest reflectivity coincide with the main lobe of the 

adjacent ones. This leads to a solution where point scatterers are not resolved 

individually. The results indicate that theoretical cross range resolution, which is 

determined using Rayleigh criterion, can be achieved by convex optimization 

techniques. Besides, pSNRs are respectively calculated as 41.33 dB and 9.89 dB for 

ADMM and CGLS, supporting our findings. 

 

(a)                                                           (b) 

Figure 5.9. (a) ADMM solution and (b) CGLS solution. 

Last scenario is based on point scatterers that are distributed on a plane. In this 

scenario, the imaged scene has an array of 9 point scatterers placed on a grid of 

2.5 cm on 𝑥- and 𝑧-directions on 𝑦 = 55 cm plane, as shown in Fig. 5.10. The 

reflectivity of the point scatterer at the center is set to 0.5, while the rest has a 

reflectivity of 1. Fig. 5.11(a) shows actual reflectivity image of the scene. The 

reconstructed images are formed on 𝑦 = 55 cm with a resolution of 2.5 mm in both 

directions, yielding 1681 pixels in total. The reconstructions are normalized by the 

largest value and corresponding images obtained by CGLS and ADMM are given in 

Fig. 5.11(b) and Fig. 5.11(c). The resulting images show that resolving capability of 

the imaging system can be obtained using both CGLS and ADMM. However, when 

the problem is solved by ADMM, we can obtain a well-focused image as opposed to 

CGLS. This emphasizes the superior focusing performance of sparsity-based 
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algorithms. Finally, quality of the reconstructed images is quantitatively evaluated 

by calculating their PSNRs, which are 42.17 dB and 12.36 dB for ADMM and 

CGLS, respectively. 

 

Figure 5.10. Imaging configuration for nine point scatterers. 

 

 

(a)                                         (b)                                          (c) 

Figure 5.11. Imaging results for the first scenario: (a) Actual reflectivity of the point 

scatterers, (b) CGLS reconstruction, and (c) FMM-based ADMM reconstruction. 

The reconstructions are normalized by the largest value, therefore, they share the 

same colorbar. 
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b. Extended Targets 

We investigate the extended targets in three categories: (i) 2-D targets in 2-D image 

space, (ii) 2-D targets in 3-D image space, and (iii) 3-D targets in 3-D image space. 

All imaging problems are implemented by (5.2) in the from 

min
𝐱
𝑇𝑉(|𝐱|)       subject to      ‖𝐀𝐱 − 𝐛‖2 ≤ 휀 

and they are solved by C-SALSA-2 algorithm with the use of FMM. 

(i) 2-D targets in 2-D imaged space: 

 

- Hexagonal Target 

A hexagon-shaped target, whose true reflectivity image is given in Fig. 5.12(a), is 

imaged by the MIMO array. It is placed into a plane of size 40 cm × 40 cm at 𝑦 =

55 cm, and the image is reconstructed using 4 mm × 4 mm pixels, giving 10201 

pixels in total. Reflectivity characteristics of the target is specified as follows: Outer 

part’s reflectivity is 1, while it is set to 0.6 for the inner parts except for U-shaped 

section, whose reflectivity is 0.4. Fig. 5.12(b) and Fig. 5.12(c) show the normalized 

reconstructed images obtained by CGLS and C-SALSA-2, respectively, where the 

color scale shows magnitude of the reflectivity distribution of the imaged scene along 

𝑥- and 𝑧-directions. 

 
(a)                                       (b)                                    (c)     

Figure 5.12. Imaging results for the hexagonal target: (a) Actual reflectivity of the 

hexagonal target, (b) CGLS reconstruction, and (c) FMM-based C-SALSA-2 

reconstruction. The reconstructions are normalized by the largest value, therefore, 

they share the same color bar.  
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When CGLS is used, the boundaries of the target and U-shaped section are blurry in 

the reconstructed image. However, solving the problem using C-SALSA-2 algorithm 

with total variation constraint yields a well-focused image, which possesses all 

details of the target. Besides, background of the target is much clearer compared to 

CGLS reconstruction. The pSNRs are respectively calculated as 22.95 dB and 36.23 

dB for CGLS and C-SALSA-2, which quantitatively supports our observations. 

(ii) 2-D targets in 3-D imaged space: 

 

- Rectangles 

Three rectangles of size 8 cm × 8 cm forms the image space as sketched in Fig. 5.13, 

and they are placed with 5 cm spacing along 𝑦-direction. Physical dimensions of the 

image space is 40 cm × 40 cm × 15 cm and it is roughly discretized by 8 mm ×

8 mm × 2.5 cm voxels, giving 18207 voxels in total. Reflectivity value of each plane 

is selected as 1.0. 2-D cuts of the reconstructed 3-D image are given in Fig. 5.14 and 

Fig. 5.15, and the 3-D image is shown in Fig. 5.16. All of the 2-D images are 

normalized by the largest reflectivity value that is estimated within the imaged space. 

It must be noted that the color scale for 2-D images are not kept same to show small 

non-zero values between the layers. 

 

Figure 5.13. Imaging configuration for rectangular planes. 
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The reconstructed images of the rectangles are more focused and boundaries are 

sharper when the problem is solved by C-SALSA-2 algorithm. By reorganizing the 

solution vector in lexicographic order, 3-D image of the scene is constructed. Fig. 

5.16 depicts the reconstructed rectangles in 3-D form, revealing that true shape of 

the targets can be acquired by C-SALSA-2 algorithm, whereas CGLS cannot yield a 

similar result. Surface of the rectangles are smoother, and their edges and vertices 

are more distinct, when the problem is solved with C-SALSA-2. Average reflectivity 

level on the planes that contain no scattering object (1st, 3rd, 5th, and 7th planes) is 

 
(a)                                       (b)                                    (c)     

 
(d)                                       (e)                                    (f)     

 

(g) 

Figure 5.14. FMM-based C-SALSA-2 reconstructions belonging to the 

corresponding planes at (a) 𝑦 = 47.5 cm, (b) 𝑦 = 50 cm, (c) 𝑦 = 52.5 cm, (d) 𝑦 =

55 cm, (e) 𝑦 = 57.5 cm, (f) 𝑦 = 60 cm, and (g) 𝑦 = 62.5 cm. 
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much smaller in C-SALSA-2 solution than those obtained by conventional CGLS  

(~15 × 10−4 with C-SALSA-2 and ~0.092 with CGLS), leading to clearer 3-D 

reconstruction. Finally, calculated PSNRs are 35.44 dB and 19.67 dB for C-SALSA-

2 and CGLS reconstructions, respectively. 

 

 
(a)                                       (b)                                    (c)     

 
(d)                                       (e)                                    (f) 

 
(g) 

Figure 5.15. CGLS reconstructions belonging to the corresponding planes at (a) 𝑦 =

47.5 cm, (b) 𝑦 = 50 cm, (c) 𝑦 = 52.5 cm, (d) 𝑦 = 55 cm, (e) 𝑦 = 57.5 cm, (f) 𝑦 =

60 cm, and (g) 𝑦 = 62.5 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13.  
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(a)                                                        (b) 

Figure 5.16. (a) FMM-based C-SALSA-2 solution and (b) CGLS solution. 

(iii) 3-D targets in 3-D space 

- Concentric Cylinders: 

Three concentric cylinders, with their common axis along down-range direction, is 

placed between 𝑦 = 52.5 cm and 𝑦 = 57.5 cm planes. Diameters of the cylinders, 

from inner to outer, are 4 cm, 8 cm, and 12 cm, respectively, and corresponding 

reflectivity values are selected as 0.2, 0.6, 1.0. The image space is a volume of 

40 cm × 40 cm × 25 cm and roughly discretized by voxels of size 8 mm × 8 mm ×

2.5 cm, giving 28611 voxels overall. The target’s image is first provided as 2-D cuts 

of the cross-sections (𝑦 = 52.5 cm, 𝑦 = 55 cm, and 𝑦 = 57.5 cm), and then as a 3-

D reconstruction. The first column of Fig. 5.17 depicts actual reflectivity 

distributions on each slice, while the second and the third columns show images 

reconstructed using CGLS and C-SALSA-2, respectively. In addition, C-SALSA-2 

solution is arranged lexicographically to give a 3-D image of the target, which is 

shown in Fig. 5.18. 
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(a)                                       (b)                                    (c)     

 
(d)                                       (e)                                    (f)   

 
  (g)                                       (h)                                    (i)   

Figure 5.17. Reconstructed images of the concentric cylinders. The left, the middle 

and the right columns respectively show actual reflectivity of the cylinders, CGLS 

reconstruction and FMM-based C-SALSA-2 reconstruction. 
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Figure 5.18. 3-D reconstruction of the concentric cylinders. 

5.4 Additional Analysis 

Performance of the FMM-based sparse reconstruction is further investigated by 

simulating the imaging problems with different input SNRs. For this purpose, CGLS 

and C-SALSA-2 reconstructions with concentric cylinders are repeated, each time 

reducing input SNR from 50 dB to 0 dB in 5 dB steps. Fig. 5.19 shows pSNR as a 

function of input SNR, revealing the behavior of both algorithms in the presence of 

 
Figure 5.19. Performance of the sparsity-based reconstruction in the presence of 

noise, when compared to CGLS. 
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noise. As can be seen, C-SALSA-2 is capable of providing pSNR above 20 dB, 

although input SNR is 5 dB. On the other hand, the performance of CGLS is not is 

not very good in the presence of noise in the input signal, since it lacks regularization 

term and corresponding pSNR continuously deteriorates as the input SNR reduces 

below 25 dB.  

Finally, in order to demonstrate the improvement that FMM grants on the solutions, 

the imaging problems are re-simulated for different number of antennas. Fig. 5.20 

plots CPU time (in seconds) and memory requirement (in MBytes) as a function of 

number of antennas (i.e., 𝑁𝑇 = 𝑁𝑅).  As expected, the graphs show that FMM 

provides reduced CPU time and lower memory usage with 𝑂(𝑁𝑇 + 𝑁𝑅) above a 

crossover point, when compared to direct matrix-vector product method, which is 

proportional to 𝑂(𝑁𝑇 × 𝑁𝑅). It must be noted that the crossover point depends on 

several things such as the type of imaging geometry, structure of the forward 

problem, how the FMM is truncated, etc. Note that Fig. 5.20(b) plots the average 

memory usage that is monitored on the task manager during runtime. 

 

Figure 5.20. Comparison of the FMM and direct matrix-vector product in terms of 

(a) CPU time and (b) memory. 

Although the sparse solution can be mathematically accelerated, the improvement 

depends on the number of antennas on the MIMO array. It is practically not feasible 

to continuously increase the number of antennas due to hardware considerations. In 

order to exploit the power of the FMM efficiently, we need to take multiple 

reflections among the voxels into account, which are ignored in our solutions so far. 
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CHAPTER 6  

6 DISCRETE DIPOLE APPROXIMATION 

In order to calculate multiple reflections among the voxels, we preferred using 

“Discrete Dipole Approximation” (DDA) method. DDA method was first introduced 

by Purcell and Pennypacker [113] to model the scattering from arbitrarily-shaped 

targets and has been applied to various scattering problems, ranging from graphite 

grains [114] to porous dust particles [115,116]. DDA simply replaces the solid target 

by an array of dipoles, which are in interaction with each other and spacing between 

them is smaller than wavelength. Each dipole possesses a dipole moment in response 

to incident plane wave and fields scattered from all other dipoles. A consistent 

solution for the dipole moments can be acquired as a solution to the resulting matrix 

equation, which is a set of coupled linear equations [114]. 

On the contrary to the previous chapters, 𝑒−𝑖𝜔𝑡 time convention is used for the 

mathematical background of DDA and FMM formulation throughout this chapter. 

6.1 Mathematical Bacground 

An object with the properties 𝑌1 = 𝜎1 − 𝑖𝜔𝜖1 and 𝑍1 = −𝑖𝜔𝜇1 occupies a volume 𝑉 

in an infinite space with the properties 𝑌0 = 𝜎0 − 𝑖𝜔𝜖0 and 𝑍0 = −𝑖𝜔𝜇0, and sources 

𝐉0 and 𝐌0. Outside the volume 𝑉, total fields satisfy Maxwell’s equations by [117] 

 ∇ × 𝐄 =  −𝑍0𝐇 −𝐌
0                                               (6.1) 

and 

∇ × 𝐇 = 𝑌0𝐄 + 𝐉
0,                                                  (6.2) 

whereas inside the volume 𝑉, the equations are  

∇ × 𝐄 =  −𝑍1𝐇                                                       (6.3) 
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and 

∇ × 𝐇 = −𝑌1𝐄.                                             (6.4) 

Equations (6.3) and (6.4) can be rewritten by  

∇ × 𝐄 =  −𝑍0𝐇 −𝐌
1                                   (6.5) 

and 

∇ × 𝐇 = 𝑌0𝐄 + 𝐉
1,                                        (6.6) 

respectively, where 𝐉1 and 𝐌1 are the equivalent sources within the volume 𝑉, 

replacing the actual scattering object. The scattered fields, then, can be obtained by 

auxiliary vector potentials 𝐀s and 𝐅s 

𝐀s = 
𝜇0

4𝜋
∫
𝐉1(𝒓′)𝑒𝑖𝑘0𝑅

𝑅
𝑑𝑉′,                                   (6.7) 

𝐅s = 
𝜖0

4𝜋
∫
𝐌1(𝒓′)𝑒𝑖𝑘0𝑅

𝑅
𝑑𝑉′                                   (6.8) 

where 𝑅 = |𝒓 − 𝒓′ | is the distance from the source point 𝒓′ to the observation point 

𝒓. If the object is much smaller than the wavelength, (6.7) and (6.8) can be 

approximated by  

𝐀s = 
𝜇0

4𝜋

𝐉1𝑒𝑖𝑘0𝑅

𝑅
𝑉                                                (6.9) 

and 

𝐅s = 
𝜖0

4𝜋

𝐌1𝑒𝑖𝑘0𝑅

𝑅
𝑉,                                            (6.10) 

respectively. The vector potentials of electric and magnetic dipoles are written as 

𝐀 = 
−𝑖𝜔𝜇0

4𝜋
𝐩
𝑒𝒊𝑘𝟎𝑅

𝑅
                                             (6.11) 

and 

𝐅 =  
−𝑖𝜔𝜀0

4𝜋
𝐦

𝑒𝒊𝑘𝟎𝑅

𝑅
.                                            (6.12) 
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Equations (6.11) and (6.12), when compared to (6.9) and (6.10), indicate that a small 

scatterer can be represented by electric and magnetic dipoles whose moments are  

𝐩 =  
𝐉1𝑉

−𝑖𝜔
                                                 (6.13) 

and 

𝐦 = 
𝐌1𝑉

−𝑖𝜔
,                                               (6.14) 

respectively. It is an important result that (6.13) and (6.14) do not depend on the 

shape of the object. 

DDA is based on evaluating (6.9) and (6.10) by applying Riemann sums. Dividing 

the volume 𝑉 into 𝑁 sub-volumes (dimensions of each is much smaller than the 

wavelength), these equations can be approximated by 

𝐀s ≈ 
−𝑖𝜔𝜇0

4𝜋
∑

𝑒𝑖𝑘0𝑅

𝑅
𝐩𝑖𝑑𝑉𝑖𝑖                                    (6.15) 

𝐅𝑠 ≈ 
−𝑖𝜔𝜖0

4𝜋
∑

𝑒𝑖𝑘0𝑅

𝑅
𝐦𝑖𝑑𝑉𝑖𝑖 .                                 (6.16) 

Apparently, (6.15) and (6.16) replace each sub-volume by electric and magnetic 

dipoles, respectively.  

6.2 Formulation 

Let 𝜇𝑑,𝑖 = 𝜇0 and 휀𝑑,𝑖 (𝑖 = 1,… ,𝑁) be constitutional parameters belonging to 𝑁 

small dielectric (non-magnetic) scatterers, which are replaced by dipoles with dipole 

moments 𝐩𝑖 and dipole polarizabilities 𝛼𝑖 located at 𝒓𝑖. Total field impinging on the 

𝑗𝑡ℎ dipole can be written as [117] 

𝐄(𝒓𝑗) = 𝐄
𝑖𝑛𝑐(𝒓𝑗) + ∑ 𝐄𝑖

𝑠𝑐𝑎(𝒓𝑗)
𝑁
𝑖=1
𝑖≠𝑗

                             (6.17) 

where 𝐄𝑖
𝑠𝑐𝑎(𝒓𝑗) is the field at 𝒓𝑗 that is scattered by 𝑖𝑡ℎ dipole and it is 

mathematically expressed as 
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𝐄𝑖
𝑠𝑐𝑎(𝒓𝑗) =

𝑖𝜔

𝑘0
2 [𝑘0

2 + ∇∇]𝐀 =
1

4𝜋𝜖0
[𝑘0
2 + ∇∇]

𝑒
𝑖𝑘0𝑟𝑖𝑗

𝑟𝑖𝑗
𝐩𝑖.                (6.18) 

The polarizability 𝛼 is what relates dipole moment 𝐩 to electric field 𝐄 induced on a 

small scatterer in the form of 

𝐩 = 𝛼𝐄.                                                 (6.19) 

When (6.17) is multiplied by 𝛼𝑗, we have 

𝐩𝑗 = 𝛼𝑗𝐄
𝑖𝑛𝑐(𝒓𝑗) − ∑

𝛼𝑗𝑘0
3

4𝜋𝜖0
[�̅� +

∇∇

𝑘0
2]
𝑒
𝑗𝑘0𝑟𝑖𝑗

𝑟𝑖𝑗
𝐩𝑖

𝑁
𝑖=1
𝑖≠𝑗

,                    (6.20) 

which yields a linear system with 𝑁 linear equations and 𝑁 unknowns. The same 

procedure can also be followed for small magnetic scatterers to find magnetic dipole 

moments, which is given as 

𝐦𝑗 = 𝛽𝑗𝐇
𝑖𝑛𝑐(𝒓𝑗) −

𝛽𝑗𝑘0
3

4𝜋𝜇0
[�̅� +

∇∇

𝑘0
2]
𝑒
𝑖𝑘0𝑟𝑖𝑗

𝑟𝑖𝑗
𝐦𝑖                           (6.21) 

with 𝛽𝑗 being magnetic polarizability.  

6.3 Polarizability (𝜶) 

In DDA, it is significant to establish a relation between the relative dielectric constant 

of the scattering medium and the polarizabilities. Purcell and Pennypacker used 

Clausius-Mosotti (CM) relation [113] 

𝛼(0) = 4𝜋𝑎3𝜖0
𝜖𝑟−1

𝜖𝑟+2
                                    (6.22) 

in their original work, where each dipole is represented by a dielectric sphere of 

radius 𝑎 and relative permittivity of 𝜖𝑟. Note that this relation is exact in the zero-

frequency limit (𝑘0𝑎 → 0) [118]. 
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In [114], Draine showed that radiative reaction correction, which is neglected in 

(6.22), can be included in the relation when 𝑘0𝑎 is finite, hence, the polarizability is 

obtained by 

𝛼 =
𝛼(𝑛𝑟)

1−
𝑖

6𝜋𝜖0

𝛼(𝑛𝑟)

𝑎3
(𝑘0𝑎)3

                                       (6.23) 

where 𝛼(𝑛𝑟) is the polarizability without radiative reaction correction, namely non-

radiative polarizability. Draine suggested using the following relation to substitute 

𝛼(𝑛𝑟) in (6.23) [114]  

𝛼(𝑛𝑟) ≈ 𝛼(0)                                            (6.24) 

therefore, (6.23) can be referred to as Classius-Mosotti plus radiative reaction 

(CMRR).  

In [119,120], vector integral equation was discretized using the method of moments 

and it was demonstrated that this approach is equivalent to DDA except for the 

definition of polarizabilities. In regard to this approach, 𝛼(𝑛𝑟) can be substituted as  

𝛼(𝑛𝑟) ≈
𝛼(0)

1+𝑏1(𝛼(0) 𝑎3⁄ )(𝑘0𝑎)2
                                 (6.25) 

where  

𝑏1 = −(
4𝜋

3
)
(1 3⁄ ) 1

4𝜋𝜖0
                                     (6.26) 

and this relation is called vector integral equation formulation (VIEF). 

The most popular form of 𝛼(𝑛𝑟) was developed by Draine and Goodman, namely 

lattice dispersion relation, in 1993  and it is given as [121] 

𝛼(𝑛𝑟) ≈
𝛼(0)

1+(𝛼(0) 𝑎3⁄ )[𝑐1+𝜖𝑟𝑐2+𝜖𝑟𝑐3𝑆](𝑘0𝑎2)
                           (6.27) 

where  

𝑐1 = −
1.8915316

4𝜋𝜖0
 



 

 

92 

𝑐2 =
0.168469

4𝜋𝜖0
 

𝑐3 = −
1.7700004

4𝜋𝜖0
 

and 𝑆 ≡ ∑ (�̂�𝑑,𝑗 ∙ �̂�𝑝,𝑗)
23

𝑗=1  is a term that carries information about direction and 

polarization of the incident plane wave with �̂�𝑑,𝑗 and �̂�𝑝,𝑗 being unit vectors for 

direction and polarization, respectively. For randomly oriented dipoles, expected 

value of 𝑆 is 1 5⁄  and the relation will called “isotropized lattice dispersion relation 

(ILDR)” [117].  

6.4 Implementation of DDA 

Let 𝑬𝑗 be the total electric field impinging on a dipole at location 𝒓𝑗 due to the 

incident electric field 𝑬𝑖𝑛𝑐,𝑗 and the electric fields scattered from the rest of the 

dipoles. Using (6.17) and (6.18), a linear system can be constructed in the following 

form: 

𝑬𝑗 = 𝑬𝑖𝑛𝑐,𝑗 − ∑ 𝑨𝑗𝑘𝑷𝑘𝑘≠𝑗
 

                                 (6.28) 

where 𝑨𝑗𝑘 is the tensor with off-diagonal elements of interaction matrix 𝑨, 

representing the interaction between receiving dipole at 𝒓𝑗 and scattering dipole at 

𝒓𝑘. This off-diagonal block can mathematically be expressed as 

   𝑨𝑗𝑘 =
exp (𝑗𝑘𝑟𝑗𝑘)

𝑟𝑗𝑘
[𝑘2(𝒓𝑗𝑘𝒓𝑗𝑘 − 𝟏3) +

𝑗𝑘𝑟𝑗𝑘−1

𝑟𝑗𝑘
2 (3𝒓𝑗𝑘𝒓𝑗𝑘 − 𝐼3)] , 𝑗 ≠ 𝑘       (6.29) 

where 𝑟𝑗𝑘 is the distance from 𝑟𝑗 to 𝑟𝑘 and 𝒓𝑗𝑘 is the unit vector in the direction from 

𝑟𝑗 to 𝑟𝑘. From (6.19), diagonal terms can be defined as 

𝑨𝑗𝑗 = 𝛼𝑗
−1,                                               (6.30) 
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Figure 6.1. System of equations for DDA. 

which can be substituted into (6.28) as 

𝑬𝑖𝑛𝑐,𝑗 = 𝑨𝑗𝑗𝒑𝑗 + ∑ 𝑨𝑗𝑘𝒑𝑘𝑘≠𝑗 .                                   (6.31) 

The terms 𝑨𝑗𝑗  and 𝑨𝑗𝑘 can be combined into the same matrix 𝑨 since their non-zero 

entries do not overlap. Resulting linear system is well-determined, containing 3𝑁  

coefficients of the 𝑁 dipoles 𝒑𝑗 yielding 3𝑁 linear equations. Fig. 6.1 illustrates the 

resulting matrix equation.  

For clarification, 𝑨12 is the tensor that represents the interaction between spatial 

components of the receiving dipole at 𝒓1 and scattering dipole at 𝒓2. 𝑨12 can be 

defined as 

𝑨12 = −
𝑘0
2 𝑒𝑥𝑝(𝑖𝑘0𝑟12)

𝑟12
[

𝛽12 + 𝛾12𝑟12,𝑥
2 𝛾12𝑟12,𝑥𝑟12,𝑦 𝛾12𝑟12,𝑥𝑟12,𝑦

𝛾12𝑟12,𝑦𝑟12,𝑥 𝛽12 + 𝛾12𝑟12,𝑦
2 𝛾12𝑟12,𝑦𝑟12,𝑧

𝛾12𝑟12,𝑧𝑟12,𝑥 𝛾12𝑟12,𝑧𝑟12,𝑦 𝛽12 + 𝛾12𝑟12,𝑧
2

]    (6.32) 

where  

𝑟12 = [(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 + (𝑧1 − 𝑧2)
2]1/2,                    (6.33) 
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𝑟12,𝑥 =
𝑥1−𝑥2

𝑟12
, 𝑟12,𝑦 =

𝑦1−𝑦2

𝑟12
, 𝑟12,𝑧 =

𝑧1−𝑧2

𝑟12
                           (6.34) 

𝛽12 = [1 − (𝑘0𝑟12)
−2 + 𝑗(𝑘0𝑟12)

−1],                               (6.35) 

and 

𝛾12 = [1 − 3(𝑘0𝑟12)
−2 + 3𝑗(𝑘0𝑟12)

−1].                            (6.36) 

Once the linear equations given in Fig. 6.1 are solved, the scattered electric field at 

any point r, which is relative to the origin, can be calculated by  

𝑬𝑠𝑐𝑎(𝑘0𝒓) =
1

4𝜋𝜖0
{𝑘0

2(𝒓 × 𝒑) × 𝒓
𝑒𝑖𝑘0𝑟

𝑟
+ [3𝒓(𝒓 ⋅ 𝒑) − 𝒑] (

1

𝑟3
−
𝑖𝑘0

𝑟2
) 𝑒𝑖𝑘0𝑟}, (6.37) 

while in the far-zone (�̂� ≫ �̂�𝑗𝑘), the 1/𝑟2 and 1/𝑟3 terms in (6.37) can be neglected 

since they rapidly diminish with increasing distance. The scattered electric field in 

the far zone approximates to 

𝑬𝑠𝑐𝑎(𝑘0𝒓) =
1

4𝜋𝜖0
{𝑘0

2(𝒓 × 𝒑) × 𝒓
𝑒𝑖𝑘0𝑟

𝑟
}.                           (6.38) 

After calculating the scattered field, total field can be determined by the 

superposition of the incident and the scattered fields as follows 

𝑬𝑡𝑜𝑡𝑎𝑙(𝑘0𝒓) = 𝑬𝑖𝑛𝑐(𝑘0𝒓) + 𝑬𝑠𝑐𝑎(𝑘0𝒓).                             (6.39) 

6.4.1 Numerical Example 

For demonstrating DDA, we considered scattering from a homogeneous lossy 

dielectric cube with 𝜖𝑟 = 2.88 + 0.34𝑖 and it is discretized by 1728 dipoles placed 

on a cubic lattice with a spacing of 𝑑 = 0.1 λ (𝑓 = 10 GHz), as shown in Fig. 6.2(a). 

When the distance between the dipoles is 𝑑, each dipole can be approximated by a 

dielectric sphere of volume 𝑑3 and its radius is defined as 

𝑎 = (
3

4𝜋
)
(1/3)

𝑑. 
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For a linearly polarized incident plane wave propagating in 𝑦-direction, the 

scattering problem is implemented in MATLAB and solved using CGLS for all 

polarizability descriptions (CM, ILDR, VIEF, CMRR). The solution is obtained by 

iterating CGLS till |𝑨 ⋅ 𝑷 − 𝑬𝒊𝒏𝒄| < 10−3|𝑬𝒊𝒏𝒄| is satisfied. Then, the scattered 

electric field in the far-zone is calculated using (6.38). Furthermore, in order to 

validate the accuracy of DDA, the same scattering problem is modeled and simulated 

in HFSS. Fig. 6.3 plots far-zone scattered electric fields in elevation plane (𝜑 = 90°), 

which are derived by DDA formulation, and compare them with the solutions 

obtained in HFSS. As can be seen, DDA and related polarizability definitions are in 

good agreement with HFSS, while VIEF gives the closest result.      

 

Figure 6.2. Discretized dielectric cube.  

.  
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Figure 6.3. Far-zone scattered electric field calculated with CM, ILDR, VIEF, and 

CMRR (in comparison with HFSS). 

6.5 DDA in Near-Field MIMO Imaging 

Treating radar imaging problem as an actual electromagnetic scattering phenomenon 

allows us to investigate how quality of the reconstructions change, when multiple 

reflections are introduced into the solution. 

In DDA, the incident electric field illuminating the target (dipole array) is generally 

presumed to be a plane wave. However, for a practical cases such as radar imaging, 

antenna elements of the array exhibit different radiation characteristics (e.g. radiation 

pattern, directivity, polarization, etc.).  

Suppose that transmitting and receiving sub-arrays of the MIMO array is composed 

of Hertzian dipole antennas. The  mathematical expression of the incident electric 

field that is radiated by the ith Hertzian dipole antenna upon the jth dipole on the target 

at the lth frequency step is written as 
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𝐄𝑖𝑛𝑐𝑖,𝑗 = 𝒂𝑝𝑖𝜂
𝑘𝑛𝐼0𝑙𝑒

𝑖𝑘𝑙𝑅𝑇𝑖,𝑗

4𝜋𝑅𝑇𝑖,𝑗
𝑠𝑖𝑛𝜃𝑖,𝑗                                    (6.40) 

where, 𝒂𝑝 is unit vector of the incident field, 𝜂 is intrinsic impedance of the medium, 

𝑘𝑙 is wavenumber at 𝑙th frequency step, 𝑅𝑇𝑖,𝑗 is distance between the 𝑖th transmitting 

antenna and the 𝑗th dipole, and 𝜃𝑖,𝑗 is angle betwen the 𝑖th transmitting antenna and 

the 𝑗th dipole in elevation plane. Solving the matrix equation in Fig. 6.1 with 𝐄𝒊𝒏𝒄 as 

in (6.40) gives an equivalent dipole moment distribution, thus, received electric field 

𝐄𝑟𝑒𝑐 measured at each receiving antenna can be calculated using (6.38). Note that 

the solution of the matrix equation and calculation of 𝐄𝑟𝑒𝑐 must be repeated for each 

transmitting antenna and frequency step. Mathematical expression of 𝐄𝑟𝑒𝑐 is given 

below 

𝐄𝑟𝑒𝑐𝑗,𝑚(𝑘𝑛𝒓𝑚) =
1

4𝜋𝜖0
{𝑘𝑙

2(𝒓𝑚 × 𝒑) × 𝒓𝑚
𝑒𝑖𝑘𝑙𝑟

𝑟
}                        (6.41) 

where, 𝒓𝑚 is the receiving antenna position that is relative to the origin. We can 

rearrange the interaction matrix in the following form  

[𝐴𝑙][3𝑁×𝑁𝑇×𝑁𝑅]×3𝑁

=

[
 
 
 
 
[𝐴𝑙,𝑥𝑥][𝑁×𝑁𝑇×𝑁𝑅]×𝑁

[𝐴𝑙,𝑥𝑦][𝑁×𝑁𝑇×𝑁𝑅]×𝑁
[𝐴𝑙,𝑥𝑧][𝑁×𝑁𝑇×𝑁𝑅]×𝑁

[𝐴𝑙,𝑦𝑥][𝑁×𝑁𝑇×𝑁𝑅]×𝑁
[𝐴𝑙,𝑦𝑦][𝑁×𝑁𝑇×𝑁𝑅]×𝑁

[𝐴𝑙,𝑦𝑧][𝑁×𝑁𝑇×𝑁𝑅]×𝑁

[𝐴𝑙,𝑧𝑥][𝑁×𝑁𝑇×𝑁𝑅]×𝑁
[𝐴𝑙,𝑧𝑦][𝑁×𝑁𝑇×𝑁𝑅]×𝑁

[𝐴𝑙,𝑧𝑧][𝑁×𝑁𝑇×𝑁𝑅]×𝑁]
 
 
 
 

 

(6.42) 

where sub-matrices represent the interaction between components of dipole 

moments due to all transceiver pairs at 𝑙th frequency step. For example, 

[𝐴𝑙,𝑥𝑥][𝑁×𝑁𝑇×𝑁𝑅]×𝑁
 includes the interaction between 𝑥-components of the dipole 

moments for all transceiver pairs at 𝑙th frequency step. Finally, for a wideband 

imaging application, the resulting matrix equation to be solved can be written as 
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[
 
 
 
 
[𝐴𝑥𝑥][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁 [𝐴𝑥𝑦][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁

[𝐴𝑥𝑧][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁

[𝐴𝑦𝑥][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁
[𝐴𝑦𝑦][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁

[𝐴𝑦𝑧][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁

[𝐴𝑧𝑥][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁 [𝐴𝑧𝑦][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁
[𝐴𝑧𝑧][𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹]×𝑁]

 
 
 
 

[
 
 
 
 
 
 
 
 [

𝛼𝑥,1
⋮

𝛼𝑥,𝑁
]

[

𝛼𝑦,1
⋮

𝛼𝑦,𝑁
]

[

𝛼𝑧,1
⋮

𝛼𝑧,𝑁
]
]
 
 
 
 
 
 
 
 

= [

[𝐸𝑥,𝑟𝑒𝑐]

[𝐸𝑦,𝑟𝑒𝑐]

[𝐸𝑧,𝑟𝑒𝑐]

] 

where the unknown is the polarizability 𝛼 belonging to each component of dipole 

moments. In a more compact form, (6.43) can be written as  

[𝐴][(3𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹)×3𝑁][𝛼][3𝑁×1] = [𝐸𝑟𝑒𝑐][(3𝑁×𝑁𝑇×𝑁𝑅×𝑁𝐹)×1].           (6.44) 

After solving (6.44), the relation between polarizability and relative dielectric 

constant distribution of the continuous medium can be established by using one of 

the CM, ILDR, VIEF, and CMRR relations. 

It must be noted that operations required to perform one matrix-vector product to 

iteratively solve (6.44) is 𝑁T × 𝑁R × 𝑁F × 9𝑁
2, which is much larger than the 

simple approach considered in previous sections and requires much more storage and 

computation time, therefore, application of an FMM-based method becomes 

inevitable to make the solution efficient.  

6.6 Application of FMM in DDA 

Provided that |𝐱| < |𝐑|, we have 

𝑒𝑖𝑘|𝐑+𝐱|

4𝜋|𝐑+𝐱|
= ∯𝑒𝑖𝑘�̂�∙�̂�𝑇𝑁(𝑘, 𝐤, 𝐑)𝑑

2𝐤                           (6.45) 

where 
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𝑇𝑁(𝑘, 𝐤, 𝐑) =
𝑖𝑘

(4𝜋)2
∑ 𝑖𝑙(2𝑙 + 1)ℎ𝑙

(1)(𝑘|𝐑|)𝑃𝑙(𝐤 ∙ �̂�).
𝑁
𝑙=0                  (6.46) 

Let 𝒓𝑖𝑗 = 𝒓𝑖𝜆 + 𝒓𝜆𝜆′ + 𝒓𝜆′𝑗 and 𝐱 = 𝒓𝑖𝜆 + 𝒓𝜆′𝑗, where 𝒓𝑖𝜆 is aggregation vector, 𝒓𝜆𝜆′ 

is translation vector, and  𝒓𝜆′𝑗 is disaggregation vector. Substituting (6.45) and (6.46) 

into (6.20) yields 

𝐩𝑗 = 𝛼𝑗𝐄
inc(𝒓𝑗) −

𝛼𝑗𝑘0
3

4𝜋𝜖0
∑ ∯𝑇𝑁(𝑘, 𝐤, 𝒓𝜆𝜆′) [�̅� +

∇∇

𝑘0
2] 𝑒

𝑖𝐤∙𝐱𝐩𝑖𝑑
2𝐤𝑁

𝑖=1
𝑖≠𝑗

, 

which can be rewritten as 

𝐩𝑗 = 𝛼𝑗𝐄
inc(𝒓𝑗) −

𝛼𝑗𝑘0
3

4𝜋𝜖0
∑ ∯𝑒

𝑖𝐤∙𝒓
𝜆′𝑗𝑇𝑁(𝑘, 𝐤, 𝒓𝜆𝜆′)𝑒

𝑖𝐤∙𝒓𝑖𝜆[�̅� − 𝐤𝐤]𝐩𝑖𝑑
2𝐤𝑁

𝑖=1
𝑖≠𝑗

. (6.47) 

Note that translation vector 𝒓𝜆𝜆′ is what determines the desired accuracy of the FMM 

formulation. Therefore, for any dipole 𝐩𝑗, we can denote all other dipoles that do not 

satisfy |𝐱| < |𝐑| condition as neighboring dipoles. The interaction between 𝐩𝑗 and 

these dipoles should be calculated directly in order to keep the accuracy at the desired 

level. Rest of the dipoles can be labeled as far dipoles and the interaction between 

𝐩𝑗 and these dipoles can be calculated by the FMM formulation. In this way, (6.47) 

becomes 

𝐩𝑗 = 𝛼𝑗𝐄
inc(𝒓𝑗) −

𝛼𝑗𝑘0
3

4𝜋𝜖0
∑ [�̅� +

∇∇

𝑘0
2 ]
𝑒𝑖𝑘0𝑟𝑖𝑗

𝑟𝑖𝑗
𝐩𝑖

𝑁

𝑖∈ℕ𝑗
𝑖≠𝑗

−
𝛼𝑗𝑘0

3

4𝜋𝜖0
∯𝑒

𝑖𝐤∙𝒓
𝜆′𝑗𝑇𝑁(𝑘, 𝐤, 𝒓𝜆𝜆′) ∑{𝑒𝑖𝒌∙𝒓𝑖𝜆[�̅� − 𝐤𝐤] ∙ 𝐦𝑖}

𝑁

𝑖∉ℕ𝑗

𝑑2𝐤 

where ℕ𝑗 involves set of indices belonging to the neighbouring dipoles. Similar 

procedure can also be followed for magnetic dipoles, which yields 
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𝐦𝑗 = 𝛽𝑗𝐇
inc(𝒓𝑗) −

𝛽𝑗𝑘0
3

4𝜋𝜇0
∑ [�̅� +

∇∇

𝑘0
2 ]
𝑒𝑖𝑘0𝑟𝑖𝑗

𝑟𝑖𝑗
𝐦𝑖

𝑁

𝑖∈ℕ𝑗
𝑖≠𝑗

−
𝛽𝑗𝑘0

3

2
∯𝑒

𝑖𝒌∙𝒓
𝜆′𝑗𝑇𝑁(𝑘, �̂�, 𝒓𝜆𝜆′) ∑{𝑒𝑖𝒌∙𝒓𝑖𝜆[�̅� − 𝐤𝐤] ∙ 𝐦𝑖}

𝑁

𝑖∉ℕ𝑗

𝑑2𝐤. 

The above equations for 𝐩𝑗 and 𝐦𝑗  rely on arranging the dipoles into groups. The 

effect of all far- dipoles on 𝑗th dipole can be calculated by using the summed effect 

of all other groups on the group that 𝑗th dipole belongs to, whereas the effect of the  

neighboring dipoles can be evaluated directly. Thus, the FMM formulation reduces 

the memory usage, since only the interactions between the neighboring dipoles are 

calculated and stored. Furthermore, group-by-group calculation for the effect of the 

far dipoles provides significant reduction in the operation count [117]. 

6.6.1 Grouping 

Fig. 6.4 depicts the grouping scenario, where the dipoles on the target are grouped 

into cubical boxes. The scenario includes a source group (golden) and corresponding 

neighbouring (white) and far (grey) groups along all directions. Each box consists of 

8 dipoles, which are represented by dielectric spheres of radius 0.5𝑎. The adjacent 

boxes, including diagonal ones, are designated as neighboring boxes and they need 

direct evaluation, while FMM can be applied for the rest. This arrangement is 

referred to as “one-box-buffer scheme” in the literature and nearest translation is 

performed along twice the edge length of the box [88]. In this scenario, distance 

between the center of the spheres is a and edge length of the boxes is 2a. As shown 

in Fig. 6.5, the aggregation and disaggregation vectors are denoted by 𝒗𝟏 and 𝒗𝟐, 

respectively, i.e., 𝒗 = 𝒗𝟏 + 𝒗𝟐, while translation vector is represented by 𝒘. All 

vectors are placed between the centers of the spheres. 
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Figure 6.4. Grouping scenario for DDA. 

 

Figure 6.5. One-box-buffer scheme, including source, buffer, and observation boxes. 

6.6.2 Numerical Examples 

i) Image Quality Comparison: 

The scenario of scattering from concentric cylinders, which is investigated in 

Section 5, is repeated in order to investigate how multiple reflections contribute to 

the quality of the reconstructed images. The problem is implemented using the 

discrete model given by (6.44) and resulting linear system is solved by C-SALSA-2 
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with the minimization of total variation of the unknown as regularization function 

and application of FMM. 

Reflectivity values of the cylinders, which were respectively selected as 1, 0.6, 0.2 

before, are replaced by relative dielectric constants of 10, 6, 2 so that the 

reconstructed images will share the same colour scaling. Vertically-polarized 

(oriented in z-direction) Hertzian dipoles are used as transmitting and receiving 

antennas. The cylinders are placed along 𝑦-direction between 𝑦 =  53 cm and 

𝑦 =  57 cm planes and discretized by dielectric spheres (dipoles) of radius 5 mm 

(1/6 𝜆𝑐, 𝑓𝑐 = 10 GHz), giving 6400 spheres in total. Classius-Mossotti relation is 

used for calculating the polarizabilities. 

 

   (a)                                                            (b) 

Figure 6.6. Normalized reconstructed images at 𝑦 =  55 cm when (a) multiple 

reflections are included  and (b) multiple reflections are ignored in the solution of 

the problem. 

Fig. 6.6(a) shows the normalized reconstruction belonging to 𝑦 =  55 cm slice of the 

cylinders, when the problem is solved by DDA approach. Fig. 6.6(b) gives the 

normalized reconstruction obtained in Section 5.4 to visibly compare the two results. 

It can be seen that quality of the reconstruction does not improve visibly when 

multiple reflections are added in the solution. To validate this result, the 
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reconstruction quality is also evaluated by PSNR. It is calculated as 36.42 dB for 

DDA solution, whereas it was obtained as 36.23 dB before, which supports our 

observations.  

 

ii) Polarimetric Imaging 

Polarization of an electromagnetic wave is defined by the curve that is traced by tip 

of the wave vector, e.g., vertical (up-down), horizontal (left-right), circular 

(clockwise or counter clockwise), etc. Polarimetric imaging is based on collecting 

data regarding the imaged scene using different combinations of transmitted and 

received wave polarizations. 

Antenna array of a radar system can be designed to transmit and receive waves with 

different polarization pairs. Typically, a single polarization radar system transmits 

and receives waves with the same direction, yielding horizontal-horizontal (HH) or 

vertical-vertical (VV) imaging. On the other hand, a dual polarization radar system 

can transmit a wave in one direction but receive in two directions, providing either 

HH and HV or VH and VV imaging. 
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Figure 6.7. HH, HV and VH polarimetric images and RGB colour composite image 

of Tomakomai, Japan, acquired by PALSAR using H/V polarization on August 19, 

2006. 

Polarization diversity increases radar sensitivity, hence, detailed information can be 

collected about the imaged target such as structure, orientation, surface properties. 

For example, buildings, which are linearly-oriented, tend to reflect waves with the 

same linear direction, while tree leaves and branches, which are randomly-oriented, 

change the polarization of the received waves since they bounce multiple times on 

them. Fig. 6.7 shows radar images obtained with different polarization pairs. 

Solving an imaging problem with DDA allows us to utilize polarization of the 

antennas while solving the problem, hence, polarimetric images of the target can be 

obtained. For demonstration, scattering from a homogeneous hourglass-shaped 

target (𝜖𝑟 = 2.88), which is composed of horizontal, vertical and diagonal parts, is 

considered. Normalized actual image of the target is given in Fig. 6.8 and it is 

discretized by dielectric spheres (dipoles) of radius 5 mm (1/6 𝜆𝑐, 𝑓𝑐 = 10 GHz), 

yielding 3460 spheres overall. The target is placed at 55 cm away from the center of 

the MIMO array of Hertzian dipoles and imaged with HH, VV and VH polarization 

pairs. The problem is modeled by using (6.44) and solved by C-SALSA-2 algortihm 

with the application of FMM. 
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Figure 6.8. Normalized actual image of hourglass-shaped target. 

Fig. 6.9(a)-(c) give color-assigned reconstruction images belonging to all 

polarization combinations, i.e. HH in green color scale, VV in red color scale, and 

VH in blue color scale. The results show that horizontally polarized fields are mostly 

scattered by the horizontal parts of the target, whereas vertically polarized fields are 

mostly scattared by the vertical parts of the target. On the other hand, diagonal parts 

are more visible with VH-polarization. Fig. 6.9(d) depicts  the resulting colour-

composite image, which is the superposition of RGB values of the color-assigned 

images. As can be seen, it exhibits a different color for different parts of the target 

with different orientation. 
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      (a)                                                       (b) 

 

      (c)                                                       (d) 

Figure 6.9. Color-assigned images for (a) HH-polarization, (b) VV-polarization, (c) 

HV-polarization. (d) Resulting colour-composite image of the target. 

iii) Additional Analysis 

The computational efficiency that FMM formulation provides for DDA solution is 

also investigated. For this purpose, we considered a scattering from a lossless 

dielectric cube of edge length  0.08 m. The cube is placed at 𝑦 =  55 cm and 

illuminated by the MIMO array of Hertzian dipoles. Fig. 6.10 sketches target, whose 

outer part has a relative dielectric constant of 2.88, while inner part has a relative 

dielectric constant of 1.72. Initially, the target is replaced by an array of dielectric 

spheres of radius 4 mm, giving 1331 spheres in total. The problem is modeled using 
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(6.44) and solved by C-SALSA-2 algorithm. The reconstructed images belonging to 

the cross sections 𝑦 =  51 cm, 𝑦 = 55 cm, and 𝑦 =  59 cm are  given in Fig. 6.11, 

where the color scale shows the normalized magnitude of the reflectivity distribution 

of the target on the corresponding cross sectional cut.  

 

Figure 6.10. Lossless dielectric cube. 

 

Figure 6.11. Normalized images reconstructed with the application of FMM at (a) 

𝑦 =  51 cm, (b) 𝑦 =  55 cm, and (c) 𝑦 =  59 cm. 

Then, the same problem is repeatedly solved, while number of dipoles (represented 

by dielectric spheres) is increased gradually. Note that each dipole moment has three 

components, therefore, the number of unknowns is three times the number of dipoles. 

CPU time and memory requirement per matrix-vector product as a function of 

number of dipoles are plotted in 6.12. As expected, the graphs show that complexities 

of CPU time and memory requirement are obtained proportional to 𝑂(𝑁1.5) using 

FMM, whereas they are obtained proportinal to 𝑂(𝑁2) using direct matrix-vector 

product. FMM outperforms the direct matrix-vector product above the crossover 
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point, which is around 10000 dipoles. Note that this crossover point might vary with 

respect to the structure of the target, size of the dielectric spheres, and truncation 

order. Although the crossover point is reached after longer runtime than the previous 

approach takes, DDA yields an efficient solution, which is practically more feasible. 

That’s because efficiency now depends on number of dipoles (represented by 

dielectric spheres), instead of number of antennas. Note that Fig. 6.12(b) plots the 

average memory usage that is monitored on the task manager during runtime. 

 

                          (a)                                                              (b)    

Figure 6.12. (a) CPU time and (b) memory requirement as a function of the number 

of unknowns. 
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CHAPTER 7  

7 CONCLUSION 

In this thesis, we present an efficient method for sparse solution to UWB near-field 

imaging problems, where the targets are assumed to be stationary. A plus-shaped 

MIMO radar configuration is utilized to implement the corresponding forward 

problem, where the imaged space is discretized by point scatterers on a predefined 

grid and received signals are defined using Born approximation. Due to this 

approximation, it is assumed that the point scatterers directly reflect the incident 

signals and multiple reflections between them are ignored. After discretization, the 

imaging problem is turned into a matrix equation to be solved, where entries of the 

observation matrix are products of two 3D Green’s functions. As major contribution, 

we use this structure as key point to apply FMM formulation for calculating matrix-

vector multiplications within iterative solvers. FMM enables us to calculate the 

multiplications without explicitly forming the observation matrix, hence, significant 

improvement at memory usage is obtained. Besides, grouping approach decreases 

the computation time significantly. It is mathematically shown that large scale 

imaging problems can be solved more efficiently, when FMM is applied in the 

solver.  

Here, it must be noted that we define the problem using a known grid, although 

various gridless approaches are also studied in the literature. That’s because number 

of scatterers and their location become an optimization parameter in the gridless 

case. Despite the fact that FMM can handle such a case, forward problem with a 

matrix that is not fixed cannot be solved using standard techniques.  

We demonstrate applicability of the proposed FMM-based approach to various 

sparsity-inducing algorithms, while seeking sparse solution to imaging problems. 

For this purpose, we first solve several imaging scenarios with point scatterers by 
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using greedy pursuit algorithms (such as OMP), which are based on minimization of 

ℓ0 “norm”. Afterwards, we convert the imaging problems of 2-D/3-D targets into 

convex optimization problem by using minimization of l1-norm or minimization of 

𝑇𝑉 of the unknown depending on the physical properties of the target and solve them 

by augmented Lagrangian based algorithms (such as ADMM and C-SALSA). All 

these algorithms include minimization problems within their structure and we solve 

them in an inner iteration, where matrix-vector multiplications are calculated by 

FMM. We show that FMM-based solution computationally outperforms classic 

direct solvers, as the number of antennas exceed a specific point. Additionally, we 

compare reconstructed images to those obtained by direct solvers. We demonstrate 

that sparsity-based algorithms are able to yield more focused images (with higher 

PSNRs), even under low input SNR levels.  

Then, we address the near-field imaging problem as an electromagnetic scattering 

problem and solve it by DDA approach, which replaces the solid target by an array 

of dipoles and includes multiple reflections in its formulation. By the use of DDA, 

we aim to observe possible changes at the quality of the reconstructed images, when 

multiple reflections are considered in the problem definition. We demonstrate that 

they do not improve the quality of reconstructions (visibly or quantitatively) for 

continuous penetrable targets. But, we think that they might be significantly 

effective, when the target of interest has multiple conductive parts, since the 

amplitude of multiple reflections might be unignorable. We leave this part as a 

research field that can be studied in the future. 

When the problem is defined with the use of DDA, complexity of the solution 

depends on the number of dipoles that are used for discretizing the imaged target. As 

the target size, thereby the number of dipoles, increases, standard solvers become 

inefficient. Therefore, we finally apply FMM in DDA formulation so that the 

reconstruction is very efficient in terms of CPU time and memory requirement.   

Because the efficiency is now based on the number of dipoles instead of number of 

antenna elements, this new solution is practically more feasible than the previous 

approach. 
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