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ABSTRACT

AUTOMATIC CELL COUNTING FROM MICROCHANNEL IMAGES

Ertiirk, 1zzet Fatih
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gozde Bozdag1 Akar
Co-Supervisor: Prof. Dr. Haluk Kiilah

February 2022, 08| pages

Cell counting is an important method used in many fields such as disease diagnosis
in medicine. For example, the number of white blood cells in the blood gives infor-
mation that there is a disease in the body. There are manual and automatic methods
developed for cell counting. Although manual methods take a lot of time and are
prone to error, they are preferred in many areas because they are less expensive than
other methods. However, automated cell counting methods such as flow cytometry
have been developed to achieve faster and more accurate results. The common fea-
ture of flow cytometry methods is that the fluid containing cells is passed through a
microchannel one by one. These methods enable automatic cell counting as well as
obtaining the physical properties of cells such as size. In cases where different cell
types are examined together, cells can be classified by using the cell size and thus,
the information about how many cells there are in each group can be obtained. For
example, the type of disease can be determined by counting the types of white blood
cells. The electrical impedance spectroscopy method, which is one of the flow cy-
tometry methods, analyzes the effect of cell migration on the electric field applied to
the microchannel, enabling the detection, counting and physical properties of cells.

However, this method is quite expensive due to the devices that must be used for



the method. In this thesis, it is aimed to develop an alternative method for counting
the cells passed through the microchannel and classifying them according to their
size. The flow of cells through the microchannel was recorded with a camera, and the
images were processed with the proposed method, enabling the cells to be automat-
ically detected, followed and counted, and classified according to their size. Image
processing methods such as filtering, segmentation, opening and closing are used for
automatic detection of cells, and Kalman filter and Hungarian assignment algorithm
are used for tracking and counting. Classification according to their size was done
with the K-medoids method and the ratio of different types of cells was found. The
proposed method has been tested with various experiments and it has been concluded
that cells can be detected correctly with image processing methods and cell counts

can be successfully performed up to a certain flow rate.

Keywords: cell counting, object tracking, microchannel

vi



0z

MIKROKANAL GORUNTULERINDEN OTOMATIK HUCRE SAYIMI

Ertiirk, 1zzet Fatih
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Gozde Bozdag1 Akar
Ortak Tez Yoneticisi: Prof. Dr. Haluk Kiilah

Subat 2022 , 0§ sayfa

Hiicre sayimi tipta hastalik teshisi gibi bir ¢cok alanda kullanilan 6nemli bir yontem-
dir. Ornegin kandaki akyuvar hiicrelerinin sayis1 viicutta hastalik bulunduguna dair
bilgi vermektedir. Hiicre sayimi i¢in gelistirilmis manuel ve otomatik yontemler bu-
lunmaktadir. Manuel yontemler, ¢cok zaman almasina ve hataya acik olmasina rag-
men diger yontemlerden daha az pahali olmasi sebebiyle bir ¢ok alanda tercih edil-
mektedir. Ancak, daha hizli ve daha dogru sonuglar elde etmek icin akis sitometrisi
gibi otomatik hiicre sayma yontemleri gelistirilmistir. Akis sitometrisi yontemleri-
nin ortak 6zelligi hiicreler igeren sivinin bir mikrokanaldan tek tek gecirilmesidir. Bu
yontemler, otomatik hiicre sayiminin yapilmasinin yaninda hiicrelerin boyutu gibi fi-
ziksel ozelliklerinin de elde edilmesini saglamaktadir. Farkli hiicre tiirlerin bir arada
inceledigi durumlarda hiicre boyutu kullanilarak hiicreler simiflandirilabilir ve boyle-
likle hangi tiirden ne kadar hiicre olduguna dair bilgi elde edilebilir. Ornegin akyuvar
hiicrelerinin ¢esitleri sayilarak hastaligin tiirii tespit edilebilmektedir. Akis sitomet-
risi yontemlerinden biri olan elektriksel empedans spektroskopisi yontemi ise hiicre
gecisinin, mikrokanala uygulanan elektrik alanina etkisini analiz ederek hiicrelerin

tespitini, sayilmasini ve fiziksel 6zelliklerinin elde edilmesini saglar. Ancak yontem
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icin kullanilmasi gereken cihazlardan dolay1r bu yontem olduk¢a pahalidir. Bu tez
calismasinda, mikrokanaldan gegirilen hiicrelerin sayilmasi ve boyutlarina gore sinif-
landirilmasi i¢in alternatif bir yontem gelistirilmesi amag¢lanmistir. Hiicrelerin mikro-
kanaldan akis1 bir kamera ile kaydedilmis ve Onerilen yontem ile goriintiiler islene-
rek hiicrelerin otomatik tespit edilmesi, takip edilerek sayilmasi, ve boyutlarina gore
siniflandirilmast saglanmistir. Hiicrelerin otomatik tespiti i¢in filtreleme, segmentas-
yon, agcma ve kapama gibi goriintii isleme yontemleri, takip edilerek sayilmalari i¢in
ise Kalman filtre ve Hungarian atama algoritmasi kullanilmigtir. Boyutlarina gore si-
niflandirma islemi ise K-medoids yontemi ile yapilmig ve farkl: tip hiicrelerin orani
bulunmustur. Onerilen yontem ¢esitli deneyler ile test edilmis ve goriintii isleme yon-
temleri ile hiicrelerin dogru sekilde tespit edilebildigi ve belirli bir akis hizina kadar

hiicre sayiminin basariyla yapilabildigi sonucuna ulagilmagtir.

Anahtar Kelimeler: hiicre sayimi, nesne takibi, mikrokanal
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CHAPTER 1

INTRODUCTION

Cell counting is widely used and very important for all cell-related research, including
biological applications, genetics, biochemistry, medical diagnostics and treatments.
Also, cell counts are important for monitoring cell health and proliferation rate, seed-
ing cells for subsequent experiments, transfection or infection, and preparing them for
cell-based experiments. It is important that cell counts be accurate, consistent, and
fast, especially for quantitative measurements of cellular responses [11]. For example,
in medical diagnosis, the amount of leukocytes, white blood cells, in the blood shows
whether there exists a disease in the body. Neutrophils, the most common subtype of
leukocytes, protect the body against a bacterial disease. Similarly, another subtype,
the lymphocytes, protects the body against viral diseases. The source of the disease
can be determined by looking at the ratio of these white blood cells in the blood. As
a different example, biologists need cell counting to examine the time-dependent in-
crease in the number of cells in the cell culture they use in bacterial experiments. In

short, cell counting techniques have been developed and used for many purposes.

The first method developed especially for accurate cell counting is hemocytometers.
As seen in Figure[I.1] thick glass chambers are divided into sections of calibrated area
and depth. Generally, the size of the squares is Imm x Imm, and further subdivided
into 0.05mm x 0.05mm squares. The chamber’s edges are designed to hold a special
glass coverslip 0.1 mm above the grid in order to create restricted areas of known
volume [12]. A small sample of cell suspension is placed into the chamber, and the
cells are counted manually by using a microscope. Then, the total number of cells
in a suspension is easily calculated from the counts of cells in the hemocytometer

chamber. This is a manual and the least expensive cell counting method. However, it



is slow, and open to human errors, and therefore the least reliable method [13].

#I \

L 10 pm

Mount Overflow
Inlet

10x objective  *2HT" 40x objective

Figure 1.1: Hemocytometer cell counting method [1]]

Automated cell counters are developed to provide faster, more accurate and detailed
results. First method from the automated cell counters is image based automatic cell
counting that has the same principle with hemocytometers, and uses the microscope
image to count cells. It is designed to be faster and easier alternative to manual count-
ing. Moreover, they can provide statistical information on the cell size depending
on the camera properties. An example from an image based automated cell counter

product screen is shown in Figure[1.2]

Result 2019-08-03 00:00

m Default

Total concentration
2.08X10 /ml® (561)

Live 80%
1.66X10%ml (448)

Dead

4.16X105/ml (73)

Save as Done

Figure 1.2: Image based automated cell counting device example [2]

There are same challenges for image processing. Firstly, the microscopic images are
inherently noisy and contain optical artifacts. Moreover, image blurring and non-
uniform illumination also make the cell counting more challenging [14]. Therefore,
the used image processing techniques depends on the application. Generally, for a

standard cell counting operation, filtering for noise reduction, segmentation of cells
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from the background by using global threshold, and morphological operations for
separation of the cells can be used [15]. For the cases where cells are not completely
visible, such as overlapping or cells in the process of dividing, some additional meth-
ods are required to accurately detect cells. For instance, adaptive histogram equaliza-
tion can be used for image enhancement. In order to detect cells correctly, different
methods such as edge detection, Hough transform or model based tracing can be used.
For the overlapping cells, distance transform, similarity matrix generation by using

template matching can be used for correct detection [[14]].

Cells generally have a round shape, and having a known shape has many conveniences
for accurate cell detection. However, in some applications, the cells do not have a
definite shape as shown in Figure[I.3] In these cases, in addition to the common image
processing techniques, Laplacian of Gaussians, radial symmetry transform methods

can be used for accurate separation and counting of the cells [3].

Figure 1.3: Segmentation of cells having non-uniform shapes [3]]

Another type of automatic cell counters is Coulter counter method. The method is de-
veloped for fast counting and sizing of the cells, and based on the electrical impedance
of the cells. It uses the principle that the electrical resistance of a conducting liquid is
increased by the addition of an insulating material. The conductivity changes when
a cell passes through the orifice. The resulting series of voltage pulses are electron-
ically amplified, scaled and displayed on a suitable display. The magnitude of the
voltage change is used to determine the volume of the cell. Figure [T.4] shows the
schematic representation of the Coulter counter. A histogram plot is generated from
the measurements, and different cell population can be divided by using an appropri-

ate threshold.

Flow cytometers are most frequently used method for detailed cell counting and anal-

ysis, however, they are extremely expensive. In flow-based cell counting and analysis
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Figure 1.4: Schematic representation of Coulter counter [4]]

methods, it is aimed to identify cells more easily by separating them from each other
thanks to the microfluidic structure. One of the flow cytometry method is fluores-
cence activated cell sorting as shown in Figure [I.5] They use fluorescence detection
technologies, and provide highly accurate cell counts with detailed properties. This
makes them able to recognize cell types of the same size within the same sample
[12]]. In this method, while the liquid solution containing the cells is passed through
the microchannel, the cells are exposed to the laser beam one by one, and each cell
emits light. The fluorescence intensities of the inside and outside of the cell are mea-
sured with electronics light detectors. The change in the voltage value read from the
detectors indicates the passage of the cell, and thus cells can be counted from these
voltage changes. Moreover, it is possible to obtain more information about the cells.
Forward scattered light is used to obtain biological characteristic such as size, and
the magnitude of the forward scattered light is roughly proportional to the size of the
cell. On the other hand, side scattered light that is caused by granularity and struc-
tural complexity inside the cell is used to measure internal structure of the cell [16]].
Both measurements give a 1-D histogram for cells. In order to group the cells more

effectively, two measurements are used to create a 2-D scatter plot, and therefore,
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grouping of the cells become easier.

st i Y 3 —_
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> | Side scattering,

©
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e’ Detectors
Incidentlight ~ § =" 4-ua__ [E?%
wavelength, A i

" Forward scattering

Figure 1.5: Fluorescence activated cell sorting method [5]]

Another method of the flow cytometry is electrical impedance spectroscopy. A cell
can be modelled electrically as in Coulter method when it is applied to an alternating
current electric field as in Figure [I.6] and an electrical impedance equation can be
obtained. Impedance causes phase and amplitude changes in the alternating current

circuits.

In this method, as shown in Figure |'1l7[, while the solution containing the cells is
passed through a micro-channel, an electric field is applied with the electrodes and
the impedance of the cell creates a difference between the input and output signal at
the electrodes. Figure[I.8|shows an example of the current change between electrodes
when a cell passes. By detecting these changes, number of cells can be obtained.
Moreover, some characteristics of the cell can be determined by examining the phase

and amplitude changes.

Impedance measurements over a wide frequency range provide different information

5
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Figure 1.7: Electrical impedance spectroscopy method for cell counting [3]
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Figure 1.8: Current change example while a cell is passing between electrodes [7]]

about cells such as cell size, membrane capacitance, and cytoplasm conductivity as
function of frequency. Obtaining different measurements, amplitude and phase, at

different frequencies allows to obtain these features and divide the cells accurately.
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For example, when low frequency signal is applied, measured amplitude is used to
determine the cell size. When signal has intermediate frequencies, measurements
give information about the plasma membrane properties. At high frequencies, mea-
surements give information about the dielectric properties of the cell interior [17].
Different information increases the dimension of cell properties and provides more

accurate grouping of the cells.

Although flow cytometry methods make it easier to determine the number of cells
from different groups by giving various information about the cells, they are ex-
tremely expensive. In this thesis, an effective and cheaper method that automatically
detects, counts and classifies cells by size is proposed. The proposed method is based
on image processing and object tracking techniques. Cells must be visible to use im-
age processing methods. However, some cells, such as white blood cells, have no
color. Therefore, they cannot reflect the light and cannot be seen easily. For these
cases, staining of such cells in different colors is a frequently used method to see
them under the microscope. By using this method, the cells can be visible under fluo-
rescent light and recorded easily by the camera. The working system of the proposed
method is as follows. As used in flow cytometry methods, the cell containing solution
is passed through the microchannel. The microchannel is viewed with a microscope,
and images are taken and saved by a high speed camera. The recorded images are
processed with image processing techniques such as noise filtering, segmentation and
morphological operations, and cells are detected automatically. A cell is displayed
multiple times during the flow. In this way, instead of taking measurements at one
location in the microchannel as in flow cytometer methods, multiple images are ob-
tained for cell counting and analysis. Although flow cytometry methods try to ensure
the passage of cells one by one, this is not always possible. Since detection and track-
ing is done along the microchannel, it enables more accurate counting of cells that
move together and separate in a part of the microchannel. Automatically detected
cells are tracked in the image sequence by using an object tracking algorithm so that
they can be followed in all frames. Finally, measured cell sizes are classified by a
clustering algorithm. Moreover, the speed of the cell is also measured from the im-
ages in order to create a control parameter for the flow rate. As a result, the number

of cells passing through the microchannel, and the size of the cells can be determined



by using image processing techniques and object tracking algorithm. The proposed
method can be easily applied in many laboratories because the required devices are

usually found in cell research laboratories.

This thesis contains 5 chapters. In Chapter 2] the background information about ob-
ject detection and tracking methods is given. In Chapter [3] the experimental setup for
image acquisition is described. In Chapter {] proposed algorithms for automatic cell
detection, tracking and size classification algorithms are constructed and explained
with examples. In Chapter [5 the performance of the algorithm is tested with the
recorded images by performing various experiments. Finally, in Chapter [6] the con-

clusion and future work of the thesis study is provided.
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CHAPTER 2

BACKGROUND ON OBJECT DETECTION AND TRACKING

2.1 Introduction

In this chapter, background information for the proposed cell counting and analysis
algorithm is given. The proposed cell counting and analysis algorithm is a kind of
tracking algorithm that consists of detection, data association, and data classification
parts. The aim of the algorithm is to find the number of cell passing through the
microchannel, classify them according to sizes, and find the flow speed of the cells
from the frames taken by the camera. The proposed algorithm contains three main
topics such as detection, tracking and classification. This chapter starts with a general
information about object tracking, and then the possible algorithms for each topics

are provided.

2.1.1 Object Tracking

Object tracking is a popular topic nowadays, and it is used for many different pur-
poses such as video surveillance, activity analysis, human-computer interaction, traf-
fic control and robotics, motion-based pattern recognition, video indexing and vehicle
navigation [18]]. Depending on the application, one or more objects can be tracked.
Generally, object tracking is composed of two main components: observation model
and tracking process. The observation model is the descriptor of objects defining its
appearance, velocity and location. Tracking is a process to find out the motion trajec-
tory of an object while the video frames progresses along with the time, and identify
the object position in every frame of the video [19]]. There are some challenges such

as pose variation, shape deformation, scale change and rotation of the object. In
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many instances, the target object may disappear [20]. These challenges are handled

with different algorithms in the literature.

Since object tracking includes both observation model and tracking process, there are
several object tracking methods containing different observation models or methods
that are used for tracking process. In the case of objects that have a similar appearance
and can be distinguished by small details, such as people or vehicles, it is important
to obtain special features so that correct matching of the similar objects between dif-
ferent frames can be achieved. These features can be color, gradient, edges, texture,
optical flow or biological features [19]. More detailed feature extraction can be done
with convolution neural network or other deep learning methods [21]]. Geometrical
shapes are also an observation model and can be used for simple object tracking prob-
lems. As a summary, it is possible to find an object tracking algorithm for different

needs in the literature.

Multiple object tracking algorithms can be divided into broad groups. One of the
grouping method is initialization method, detection-based tracking and detection-free
tracking. Detection-based tracking includes a detection part, and uses detected ob-
jects to link into trajectories. On the contrary, detection-free tracking requires manual
initialization of a fixed number of objects in the first frame, and then localizes these
objects in subsequent frames [22]. An alternative way to group tracking algorithms is
grouping according to processing mode, online and offline tracking. Online tracking
is also called as sequential tracking. This method uses the only the past informa-
tion available up to current frame while offline tracking needs all frames during the
motion, and therefore offline tracking is limited by the memory [22]. Another clas-
sification of multiple object tracking divides algorithms into two, deterministic and
probabilistic. Deterministic method means that there is no randomness in the sys-
tem. As a consequence, this method is problematic for complex movements, velocity
change and noisy measurements. Other one is the statistical method that includes
uncertainty factors such as noise in measurements and random complication in the
motion. Therefore, it is more robust model, but it is more complicated [23]. Motion
model is an important parameter in multiple object tracking algorithms, and it is used
for estimation of possible position of an object in the future frames. There are two

groups as linear and non-linear. Linear motion model includes constant velocity or
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constant acceleration motion models. If the motion of an object cannot be described

with a linear equation, it is called as non-linear motion [22].

2.2 Image Processing Algorithms for Object Detection

In many cases, objects need to be detected that means they need to be separated
from the background. For this purpose, many different methods have been developed
according to the problem and the environment. In this section, only a few algorithms

that are generally used in object detection are briefly explained.

2.2.1 Image Noise and Denoising

CMOS image sensors suffer from different noise sources such as thermal noise, AD
conversion noise, pixel noise, amplifier noise and readout noise[24]. The noisy parts
prevent to obtain more information from the image. Therefore, they must be reduced
or eliminated. Filtering is a well-known technique for noise reduction and image en-
hancing. Although main purpose of this filters is noise reduction, these filters can be
used to emphasize or remove some features in the image. There are several methods

to remove noise in image, and they are explained briefly in the following sections.

2.2.1.1 Mean Filter

One of the simple linear filter is the arithmetic mean value or average filter. It takes the
average of pixels in a region with determined size [25]. It removes short tailed noise
and smooths out the impulses in the image at the cost of blurring image. The size of
the region to be averaged is important and have significant effect on the blurring [26].
Since each pixel has equal weight, implementation of mean filter is easier, and needs

less computation time than other methods.
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2.2.1.2 Gaussian Filter

Gaussian filter is a linear and non-uniform low pass filter that is similar to mean filter,
but it uses a different kernel. It is used to reduce noise, and the outputs are blurry
images. A Gaussian filter is defined as in the Equation 2.1 and the only parameter
that control the filter is variance, o2. Mean of the filter is assumed to be 0.

1 r2+y2

Gla,y) = —ge 2 2.1

27w

Gaussian filter is more effective in smoothing images, and it is basically used in hu-
man visual perception system [26]. Although weights are different for pixels, the

filter has symmetrical coefficients and this makes it easy to apply.

2.2.1.3 Median Filter

Median filter is a non-linear digital filtering method to remove noise from the image.
It is widely used since it preserves the edges while removing the noise, and it is really
effective at removing salt and pepper type noise [26],[25]. It takes the pixels in a
region with determined size, sorts them in order from smallest to largest or largest to
smallest, and picks the middle value called as median value as the output. Implemen-
tation of median filter is not simple due to sorting in each step, especially for larger

filter size that causes high computational cost.

2.2.1.4 Wiener Filter

Wiener filter is an important technique to remove distortions especially for the dis-
tortions originated from linear motion or unfocused optics [26] [27]. It also called
as inverse filtering and aims to reduce mean square error. It is very sensitive the ad-
ditive noise and works in frequency domain. It generally outputs blurry image and

computational cost is larger due to working in frequency domain.
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2.2.2 Background Modelling

Background modelling is very important part for the obtaining foreground objects,
and has many application area such as intelligent visual surveillance [28]], intelligent
visual observation of animals and insects [29], optical motion capture, human ma-
chine interaction, and content based video coding [30]. There are different methods
for different requirements such as detection of moving objects from stationary back-
ground or detection of a material on a table. The background modelling methods for
foreground moving object detection generally use similar algorithm. A background
model is generated from first frames, and then current frame is compared with mod-

elled background. Finally, algorithm updates the background [31].

Several difficulties can be encountered in background modelling, and four main chal-
lenges are explained shortly. The first challenge is the illumination change that has
significant effect of the background model especially in outdoor scenes [32]]. A good
background model is expected to be robust against gradual or sudden changes of the
light in the environment. Dynamic background is another challenge in background
modelling. That means the background contains some movement, it does not con-
tain only static objects. An excellent background model should effectively identify
irregular movement of the object [33]. The other challenge is the shadows of the
foreground objects that moves together with the objects. They needed to be separated
from foreground objects. The final challenge is video noise. That challenge does not
contain only the sensor noise, but also includes camera shaking, lens aging and other

things as in [31]][32].

There are many background modeling methods developed for different situations.

These methods can be classified in the following categories [33]].
e Basic Background Modeling: This group includes the background modelling
by using average, median or histogram analysis [34]].

o Statistical Background Modeling: This group contains background models
that is modelled by a single Gaussian or a mixture of Gaussians or a Kernel

Density Estimation. Statistical variables are used to classification of pixels.

e Fuzzy Background Modeling: This group is dedicated to the critical situ-
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ations generating imprecision and uncertainties in the background modelling
[32]. The background is modeled using a fuzzy running average or Type-2

fuzzy mixture of Gaussians.

e Neural Network Background Modeling: This group includes the background
modelling methods that represent the background by mean of the weights of a
neural network trained on clean frames. The neural network learns the classifi-

cation.

o Wavelet Background Modeling: This group makes the background modelling

by using dicrete wavelet transform in the temporal domain.

e Background Clustering: This group uses 2 class clustering methods to clas-

sify pixels. K-mean algorithm or Codebook methods are in this group.

e Background Estimation: A filter such as Kalman or Wiener or Tchebychev is
used for background modelling. If the pixel value deviates significantly from

the estimation, it is declared as foreground.

2.2.3 Segmentation

Segmentation can be described as process of partitioning an image into component
regions or objects. There are different segmentation techniques for different cases.

Segmentation methods can be classified as follows [35]]:

e Region Based: A region is a pixel group having similar properties and region
based segmentation divide image into regions. This technique is generally bet-

ter for noisy images.

o Edge Based: Edges are found by analyzing discontinuities in the pixel intensi-

ties. This method uses edges to find the objects.

e Threshold: Thresholding method is a simple, fast and powerful technique for
image segmentation. The separation of objects from the background is done by
selecting a value T. There are two threshold methods, global and local. In the

case of global thresholding, T value is constant. On the other hand, multiple
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threshold values are used in local thresholding. A pixel is segmented as object

if the pixel intensities are larger than the threshold, T [36].

o Feature Based Clustering: This method is more complicated and it uses fea-
tures of the objects. It is the process of grouping objects that have similar
properties. There are different algorithms for feature extraction and clustering

such as K-mean and Fuzzy C-Means.

2.2.4 Morphological Operations

Morphological image processing is a nonlinear image processing technique used for
filtering, enhancement and feature extraction [37]]. It is a shape based algorithm es-
pecially for binary and grayscale images [38]. There are some imperfections due to
segmentation. Some pixels between the background and the objects are labeled as a
part of the objects. Moreover, there can be small white pixel regions in the image that
can be called as noise. In order to remove these imperfections and noisy parts, mor-
phological image processing techniques is used [39]. There is a structuring element
with a desired shape, size and origin. Image is scanned with this structuring element,
and mathematical operations are performed according to morphological operation.
The structuring element is the same as convolution mask in linear image filtering.
Dilation and erosion are basic morphological operations, and build many algorithms
in morphological image processing. In a spatial domain over the basis n; and no, let
A be the image, B be a structuring element. Dilation operation satisfies the Equation

[2.2] and erosion operation satisfies the Equation [2.3]

1, for (nq,ns) where A(ny,ns) * B(ny,ng) > 1
Ao B (n1,n2) (n1,n2) * B(n1,n2) 22

0, otherwise

1, for (ny,ng) where A(ny,ng) * B(—ny, —ng) = > B(ni,nsg)

ni,n2

ASB=
0, otherwise
(2.3)

Dilation operation increases the size of the object by adding pixels to the boundary
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elements. It can be said that it is analogous to smoothing spatial low pass filter in
linear filtering. Erosion operation is the complement of the dilation operation, and
decreases the object size from boundary elements. Since erosion operation removes
structures lesser in size than the structure element, it can be used to remove noisy
connection between objects. It is analogous to sharpening high pass filter in linear
filtering [8]. Figure 2.1 and [2.2] shows the visual examples for dilation and erosion

operations with a rectangular structure element, respectively.

Original image
Dilated image

Figure 2.1: An example for dilation operation [§]

Original image Eroded image

\

Figure 2.2: An example for erosion operation [8]]

There are secondary operations in morphological image processing such as opening
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and closing. Opening is an algorithm that is useful for smoothing the contour, elim-
inating narrow protrusions, and breaking narrow passages without changing the size
of objects too much. It is also useful for removing of unwanted noise, small regions in
the image [39]]. It performs first erosion, and then dilation, Ao B = (A©B)® B. Like-
wise, closing is another algorithm that is useful for smoothing sections of contour,
elimination small holes, and filling the gaps in that contour. It performs first dilation,
and then erosion that are the basic morphological operations, Ae B = (A® B) © B.
Figure 2.3]and [2.4]shows the visual examples for opening and closing operations with

a rectangular structure element, respectively.

Original image Open image

ORD

Figure 2.3: An example for opening operation [8

QOriginal image
Close image

Figure 2.4: An example for closing operation [§]
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2.2.5 Connected-Component Labeling

Connected component labeling algorithm aims to find and label connected pixel re-
gions in the binary image with center of mass and size information. For pixel b(z, y),
the four pixels b(z—1,y), b(x,y—1),b(x+1,y), b(x,y+1) are called the 4-neighbors
of the pixel, and the four-neighbours together with the b(x — 1,y — 1),b(x + 1,y —
1),b(z —1,y+ 1), and b(xz + 1,y + 1) are called the 8-neighbours of the pixel. Two
pixels p and ¢ are called as 4-connected or 8-connected if there is a path that contains
4 neighbours or 8 neighbours between p and ¢ [40]. Figure [2.5]illustrates these con-
cepts. Center pixel is shown in orange, and its neighbors are colored by light yellow.
For 4-connectivity, only top, bottom, left and right pixels are counted as connected.

For 8-connectivity, all pixels around the center are counted as connected.

® ® ®
® ®
4-connectivity 8-connectivity

Figure 2.5: 4-connectivity and 8-connectivity

There are different connected component labeling algorithms that can be grouped in
two parts. Firstly, the algorithms based on the label propagation search an unlabeled
object pixel, and label it with a new label firstly. In later processing, they propagate
the same label to connected pixels [40]]. There are different search methods for differ-
ent algorithms such as counter tracing labeling and hybrid object labeling. Secondly,
algorithms based on label equivalent resolving process a binary image in raster scan
in two steps. In the first step, they assign a label to each object pixel. In the second
step, they integrate the equivalent labels [40]. There are many algorithms for label
equivalent resolving method such as multi-scan, four-scan and two-scan algorithms.
Two scan algorithm with 8-connectivity definition is used for connectivity check and
labeling due to its easy implementation. Pixel with black dots are used in connectivity

check operation. At the first step, image is scanned pixel by pixel from the top-left
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pixel to bottom-right pixel. Labeling algorithm is the following.

At the first pass,

e Step 1: Check the value of pixel.

e Step 2: If it is O, it belongs to background and unlabeled, otherwise it belongs
to object and need to be labeled.

e Step 3: Check left pixel whether it is labeled or not.

e Step 4: If it is labeled, assign the same label to current pixel, and go to the next

pixel, Step 1. If it is not labeled, check top-left pixel.

e Step 5: If it is labeled, assign the same label to current pixel, and go to the next

pixel, Step 1. If it is not labeled, check top pixel.

e Step 6: If it is labeled, assign the same label to current pixel, and go to the next

pixel, Step 1. If it is not labeled, check top-right pixel.

e Step 7: If it is labeled, assign the same label to current pixel, and go to the next
pixel, Step 1. If it is not labeled, assign a new label to the current pixel, and go

to Step 1.

Figure [2.6] shows the result of first pass for an example image. Although there are 2
different connected regions, the first pass result in 5 different labeling. The second
pass algorithm will solve this problem. This time, labeled image scanned pixel by
pixel from the top-left pixel to bottom-right pixel. Labeling algorithm is the follow-

ing.

At the second pass,

e Step 1: Check the pixel whether it is labeled or not.

e Step 2: If it is not labeled, it belongs to background, go to the next pixel, Step
1.

e Step 3: It it is labeled, check the top pixel whether it is labeled with a different
label.
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Figure 2.6: Labeling example after the first pass

e Step 4: If it is not labeled with a different label, go to the next pixel, Step 1. If
it is labeled with a different label, mark these two labels as equivalent. Go to

the next pixel, Step 1.

After all pixels are scanned, equivalent label set is obtained as in Table 2.1} There are
two different equivalent label sets and equivalent labels counted as a single label. At
the end, 2 different connected regions are detected and labeled successfully. Labeling

result after second pass is shown in Figure

Table 2.1: Table of equivalent labels

Labels | Equivalents
1 1,2,4

2 1,2,4

3 3,5

4 1,2,4

5 3,5

Another necessary parameters are the center of mass and size information of the la-

beled regions. Centroid, center of mass, is calculated by using Equation [2.4]

1
Centroidi(i,j) = — 1,7) forl = 1,...max label no 2.4)
P,

! i,jERy
where P is total number of pixel in label [, and R, is the region of label [.
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Figure 2.7: Labeling example after the second pass

Width is the number of pixels of the object on the horizontal axis, and width of the
labeled region can be found easily by max(j) — min(j) + 1 formula, where j is
the column index in the labeled region. Likewise, length is the number of pixels of
the object on the vertical axis, and the length of the labeled region can be found by
max (i) — min(i) + 1 formula, where i is the row index in the labeled region. By
using centroid, width and height information of labeled regions, a bounding box can

be drawn to labeled objects.

2.3 Tracking Methods

The tracking part is the second part, and responsible for linking objects between de-
tections from consecutive frames. It is used to follow an object during its motion.
At this point, the motion model is an important parameter to link detections between
consecutive frames. If the motion model is known, next location of the object can
be estimated by using a mathematical model. When a new frame is taken, detections
and estimations are compared, and they are linked if they are close enough to each
other. However, measurements and motion model may not be exactly true, that means
measurements can include noise, and time difference between frames may not be the
same that causes an error in the mathematical motion model. Moreover, each object
can move at different speeds. Another major challenge is that a detection become
invisible for a few frames or when two detections move together and seen as a single
object during a part of the movement. Due to these challenges, a tracker for each

object must be used for making prediction of the next location of the object. This
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tracker must model the motion of objects between consecutive frames for next posi-
tion estimations, and must be robust for speed changes, invisible frames, noise in the
measurements and the processes. Since there are several algorithms in the literature,

only suitable algorithms for the proposed method are described.

As stated, a tracker is necessary in order to make estimation for future location of
an object, and it must be robust to different problems. Therefore, it must be prob-
abilistic method. There are two well-known probabilistic tracking method, Kalman
filter and Particle filter, and they use only the inforamation from past frames. Kalman
filter can be used for linear or linearized processes and measurement system, and the
uncertainty of Kalman filter is restricted to Gaussian distribution. On the other hand,
Particle filter can be used for nonlinear systems, and deal with non-Gaussian noise
distribution. Moreover, Particle filter consumes longer computation time [41]. In
the case of a linear system with Gaussian-distributed object states, Kalman filter is
proved to be optimal estimator [42]. As a result, Kalman filter is more appropriate
method for proposed cell tracking algorithm since motion model of the cells in the
microchannel is linear, and it can be considered as constant velocity motion due to

constant flow rate.

2.3.1 Kalman Filter

Kalman filter is a statistical and region based tracking method, and appropriate for
multi-target tracking especially small number of objects [20]. In the case of a linear
system with Gaussian-distributed object states, Kalman filter is proved to be optimal
estimator [42]. Mathematically, Kalman filter is an estimator to predict and correct
the states of linear processes [43]. Kalman filter has a predict-correct model as shown
in Figure 2.8] That means, Kalman filter firstly makes an estimation for the future
frame, and then by using measurements, it updates itself, and make new prediction
more accurately according to error between estimation and measurements including

noises.

There are 4 sets of equations that form the basis of the Kalman filter. x, is the state
vector, and represents the dynamic behaviour of the object. Subscript & is the discrete

time indicator. The aim is to estimate state vector from measurement vector, z;. The
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Figure 2.8: The Kalman Filter predict/correct model [9]

first equation is the process equation and given in Equation[2.5]

Ty = ATp_1 + Wiy (2.5)

where A represents the state transition matrix, and wy_; is the Gaussian process noise
with normal probability distribution, 0 mean and variance (). The second equation is

the measurement equation that is given in Equation [2.6].

2z, = Hxp + vy, (2.6)

where H is the measurement matrix and z; is the observed measurement. vy is the
Gaussian measurement noise with normal probability distribution, 0 mean and vari-
ance R. Process and measurement equations describe linear model. The third equa-
tion set is time update equations given in Equations and 2.8 State vector, xy, is
not directly measured, instead, measured 2z, is used to update unknown states of xy.
Apriori estimate of state 2, and covariance error 2, estimate is obtained for the next
time step k.

T, = AZp_1 + wg (2.7)

P, = AP, A" +Q (2.8)

where P is the initial state estimation error covariance matrix. Until now, given equa-
tions are related with the feedback part of the system. The final equation set is mea-

surement update equations and given in Equations 2.9} [2.10|and 2.T1] The objective
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is to estimate aposteriori estimation of x; that is linear combination of the apriori

estimate and the new measurement.

K, =P H' (HP;H" + R)™ (2.9)
i = ay + Kz — Hiy,) (2.10)
P, =(1—KH)P; (2.11)

K, is the Kalman filter gain and computed by Equation After 2, and P is
computed by the z, time and measurement equations are calculated recursively with
previous aposterior estimates to predict new aprior estimate. The recursive behaviour
of estimation is one of the highlights of the Kalman filter [44]. These equations are
general Kalman filter equations. Vector and matrix sizes may change according to

number of object to be tracked and motion model.

2.3.2 Assignment Algorithm

At many points in daily life, situations that require the assignment of available re-
sources to needs may be encountered. For example, 4 postmen in the field have to
deliver to 4 different addresses. To achieve an efficient result, all postmen should go
to the nearest location and the overall distance traveled should be minimized. Simi-
larly, detections need to be matched with the closest estimates in object tracking al-
gorithms. One of the methods developed for this purpose is the Hungarian algorithm.
Before making the assignments, distance parameters between all resources and needs
must be determined. There can be different definitions for the distance between two
points. A well-known distance type is Euclidean distance that represents the shortest
distance between two points. In a 2-D plane, the Euclidean distance, d, between point

A = (p1,p2) and B = (q1, ¢2) can be formulated as in Equation[2.12]

d=+/(pr —p2)? + (1 — @2)? (2.12)
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Manhattan Distance is the another distance type and formulated for the same points

as in Equation [2.13]

d=|p1— @+ |p2 — ¢ (2.13)

Another distance formulation that is especially appropriate for Kalman filter applica-
tions is given in Equation 4.3 It takes into account the Euclidean distance between
the points, and also includes the confidence of the prediction that is the covariance of

the predicted state and the process noise of Kalman filter.

d(z) = (z — Hz)'YS (2 — Hz) + In|X| (2.14)

where ¥ = HPH?T + R and |Y| is the determinant of Y.

After obtaining a distance matrix including distance between points, assignments
must be done according to total minimum distance. Hungarian algorithm can be
used for the assignment problem. Hungarian algorithm is explained with an example
for the detections and tracker assignment case. Let n be the number of detection to
be assigned trackers with the same number. It is not possible to assign a detection
to multiple trackers, and a tracker to the multiple detections. There are nxn distance
values, and n! combinations for assignments. The following example shows how the
Hungarian algorithm gives the minimum distance assignment for n = 4 [45]]. Let A

be the 4x4 cost matrix.

80 40 50 46
40 70 20 25
30 10 20 30
35 20 25 30

e Step 1: Apply row reduction, subtract the smallest element in a row from all

elements in that row.
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Let B be the resultant matrix after Step 1.

40 0 10 6]

20 50 0 5
B—

20 0 10 20

15 0 5 10

e Step 2: Apply column reduction, subtract the smallest element in a column

from all elements in that column.

Let C' be the resultant matrix after Step 2.

(95 0 10 1|

5 50 0 0
C =

5 0 10 15

0 0 5 5

e Step 3: Cover all Os with minimum number of vertical and horizontal lines.

For C matrix, three lines, drawn to row 2,4 and column 2 covers all Os.

e Step 3: If number of lines covering the all Os are equal to row or column size,

go to Step 5. Else, go to Step 4.

e Step 5: Start assignments by using Os starting with the row that has minimum

number of Os.

Let D be the resultant matrix after Step 4.

(94 0 9 0]

5 51 0 0
D =

4 0 9 14

0 1 5 5]

For D matrix, there are 4 lines to cover all Os.
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e Step 5: If the minimum number of lines covering all Os is not equal to row
or column size of the matrix, find the smallest element, s, in the matrix that is
not covered by the lines. Subtract s from uncovered elements, and add s to the

elements that has two lines. Go to Step 3.

When the algorithm continues with Step 3, assignments can be done as in Dx* with

minimum total cost.

(24 0 9 0]

5 51 0° 0
D" —

4 0° 9 14

0 1 5 5

If the cost matrix is not a square matrix, a dummy zero row or column is added to
the matrix so that the matrix become a square matrix. Then, the same algorithm is

applied. However, no assignment is done by using that dummy row or column.

2.4 Classification of Unlabeled Samples

Classification or clustering is an unsupervised learning method to divide the data
points into a number of groups so that data points in the same group are more similar
to each other and less similar to those in the other group. Among the best-known
classifiers are K-means and ISODATA [46],[47]. ISODATA means iterative self or-
ganizing data classification technique, and mostly used in remote sensing. It creates a
predefined number of classes, and requires several parameters to control the number
of clusters and the iterations. On the other hand, K-means is a statistical and data
mining method. It divides n observation to k clusters based on the Euclidean mean
value. This method is simple and fast if the number of clusters is known [46]. One
of the main advantage of K-means algorithm is time complexity. Time complexity
of K-means is O(N KdT'), where T is the number of iterations, and d is the num-
ber of features, KX is the number of clusters, and NN is the data count. Since K, d,
and 7" are usually much less than NV, the time complexity is approximately linear.

Therefore, K-means is very desirable for large data sets [48]. Moreover, K-means
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and ISODATA have similar clustering performance while K-means requires lower

computational time [49].

K-means algorithm finds a partition of n measurements into k clusters, and each mea-
surement belongs to a cluster with the closest mean. K-means algorithm needs initial
k value that specifies the number of clusters, and then make assignments to min-
imize the squared error [50]. K-means algorithm is explained step by step. Let
A = ay,aq,.....,a, represents the set of data points and C' = ¢y, co, ....c;, represent

centers.

Step 1: Specify k cluster centers randomly from the data set.

Step 2: Compute the Euclidean distance between cluster centers and each data

point.

Step 3: Place the data into the cluster with least distance.

Step 4: Recompute the new center, mean value, for all clusters.

Step 5: Recompute the distance between each data and cluster centers.

Step 6: If any data changes the cluster, redo from Step 3, else stop.

Since the number of clusters is predetermined, having a wrong measurement, that
generates outlier, affects the classification significantly. That is, K-means algorithm
is sensitive to outliers. As a solution, instead of using the mean value of the objects
in a cluster as a reference point, medoids are used [S1]. This algorithm is called
as K-Medoids, and it is a good alternative to the K-mean algorithm. The partitioning
method is performed based on the minimizing the sum of dissimilarities between each
object and corresponding medoid. The dissimilarity is defined as absolute difference
between an object and medoid. K-medoids algorithm is performed in following steps

[52].

e Step 1: Specify k random points as medoids from data set a

e Step 2: Assign each object to the nearest medoid by using any distance metric

methods.
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e Step 3: Randomly select a non-medoid object.

e Step 4: Compute the total cost of swapping the medoid with a new random

point.

e Step 5: If the cost is negative, use the new random point as the medoid, and

repeat from step 2 until no change occurs.
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CHAPTER 3

EXPERIMENTAL SETUP AND IMAGE ACQUISITION

3.1 Introduction

In this chapter, the experimental setup that is required for the automatic cell count-
ing from microchannel images is demonstrated, and image acquisition is explained.
In Section the experimental setup is demonstrated with brief information about
components. Since the imaging is an important part due to providing inputs to the
proposed algorithm, some basic information about CMOS imaging is given initially,
and then detailed information about the image acquisition with ORCA-Flash4.0 LT+

scientific CMOS camera is explained in Section 3.3}

3.2 Experimental Setup

A setup consisting of important components is needed for automatic cell tracking
from microchannel images. For this purpose, the laboratory and apparatus currently
used in the Mikro Biyosistemler Inc. are used. Mikro Biyosistemler company cre-
ates solutions for biomedical applications such as circulating tumor cells detection
systems. They especially works on the micro electro mechanical systems and mi-
crofluidics technologies. One of the current projects carried out in this company is
cell counting and analysis using the electrical impedance spectroscopy method that
is explained briefly in Chapter[I] The tools used in Mikro Biyosistemler laboratory
are those that can be easily found in the cell research laboratories, and no additional

material was needed for the proposed method.

In the experiments, instead of real and live cells, floresbrite beads are used with dif-
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ferent sizes and colors. They have similar electrical and physical characteristic with
real cells, and they glows under fluorescent light. Therefore, they are visible for
the cameras. These beads are inside the phosphate-buffered saline solution that has
similar physical and electrical properties with the plasma where the cells live in the
body. Therefore, the solution is suitable for cell culture, and used widely in biological
experiments. Two types of beads modelling two types of cells are used in the experi-
ments. The first bead type has 6.1um diameter, and the second bead type has 9.8m

diameter. These beads are named as cells in the thesis.

The first and the main component of the setup is the microchip that contains the
microchannel and electrodes. The microchannel is the channel through which the
fluid containing the cells is passed, and has a cross-sectional area of 30umx30um
with a length of 2mm. The electrodes are used to apply alternating current signals to
be used impedance measurements in electrical impedance spectroscopy method. The

lab-on-chip including the microchannels is shown in Figure [3.1]

Figure 3.1: The microchip including the microchannels and electrodes

A chip holder is used to fix the microchip and make connections for electrical mea-
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surement and fluid flow. Figure [3.2] shows the chip holder with connection cables.
The connection cable is used to electrical connection of the electrodes in the chip to

the other necessary components.

Figure 3.2: The chip holder with connection cables

The microchip that is inside the chip holder is connected to a PCB with the connection

cable, and connections for fluid flow is done as shown in Figure[3.3]

[.
]
»

Figure 3.3: Combined setup elements on the microscope

PCB is used for extending the electrical lanes, and connecting them to the connectors
for impedance measurement. There are two tubes connected to the microchannel.

First one is the inlet, that includes the phosphate-buffered saline solution containing
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cells, and the other tube is the outlet tube where the solution passed through the mi-
crochannel is collected. The part including microchip, chip holder, PCB and tubes are

fixed to the microscope for viewing the microchannel with the help of the microscope.

The flow of the liquid is provided by Flugient Flow EZ that is a liquid pressure gener-
ator and controller. The pressure is controlled by the computer software. This device
is connected to inlet tube of the system. The solution in the inlet tube is pushed into
the microchannel by the pressure generated by the flow generator. The connectors
on the PCB is connected to the Zurich HF2IS that is a 50MHz Impedance Spectro-
scope. The impedance spectroscope generate signals at different frequencies, and
this signals are applied to the microchannel initially. Then, it senses and measures
the output voltage of the microchannel. By using phase and amplitude differences, an
impedance is calculated and saved to the computer. The measured impedance values
have peaks at some points that indicates the effect of the cell. By this way, number of
cells and properties can be obtained. Although the impedance spectroscope is a key
component for the electrical impedance spectroscopy, it is not used in the proposed

method.

Leica Dmi 8 microscope is used to view the microchannel and the cells in 5x zoom
mode. It has C-Mount adapter that provides external camera connection to the micro-
scope. A fluorescent light source was also used to illuminate the microscope. There
is a light filter set that filters the incoming fluorescent light. The filter set includes
DAPI, FITC and TxR filters and any combination can be used. These filters are used
to make different stained cells appear together or individually. In the experiments, all
filters are used to make all types of cells are visible. Moreover, only visible things are

the cells under the fluorescent light.

An ORCA-Flash4.0 LT+ scientific CMOS camera is mounted the microscope, and
the images taken by the camera are transferred to the computer. The camera in the
setup is only used to observe the microchannel to see the possible situations easily.
The camera software is used for live view of the microchannel. Therefore, most
of the function of the camera is not used, and no images are saved. However, the
camera is the key component of the proposed method, and images are needed to be

saved at high fps rate. For this reason, appropriate selections are made in the camera
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settings, the images are recorded in a special format, and then the images are read
by the written MATLAB code. Camera functions and appropriate settings for the
proposed method are explained in the Image Acquisition part. Note that, although the
microscope and the camera is not used in electrical impedance spectroscopy method,
they are necessary components used for the control and observation of the operation

of the system. Figure [3.4]shows the setup with all components.

IMPEDANCE
SPECTROSCOPE ‘

Figure 3.4: The experiment setup with all components

3.3 Image Acquisition

Image acquisition is the most important part of the algorithm since it provides inputs
to the algorithm from a sensor, and any problem on this part causes failure in the
algorithm. Therefore, it is important to understand the possible effects of the image
acquisition part on the system. In the following section, some basic information is
given about the CMOS camera sensor and imaging parameters, and then technical
details of ORCA-Flash4.0 LT+ scientific CMOS camera, and appropriate settings for

cell detection and tracking are provided.
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3.3.1 CMOS Camera Basics

A camera is an optical device that is used for image capturing, and the sensor is
the most important part of a camera. The sensor generates images from photons, to
electrons, and finally to grey levels. In modern microscopy digital cameras, there are
2 main categories, CCD and sCMOS. CCD is the first digital camera and have been
used for scientific imaging for decades [53]]. It is well suited to high-light applications.
However, it lacks sensitivity and speed. Readout of the pixels is done sequentially.
Therefore, frame rates are limited. On the other hand, SCMOS cameras has different
readout mechanism. Readout process is done in parallel. Therefore, SCMOS sensors
operate in higher speed, and frame rates. Moreover, sSCMOS cameras provide larger
dynamic range meaning that there are more gray levels between black and white
[S4]. Both types can provide same pixel sizes. As a result, sSCMOS camera is chosen
for microscopy image capturing of moving cells because of lower power dissipation,

higher frame rates, larger dynamic range and lower cost [55],[24]].

Basically, a CMOS camera consists of an 2-D array of CMOS sensors, and each sen-
sor includes a photo-diode and an amplifier. Incoming light is converted to electrical
charge by photo-diode, and amplifiers convert charges to voltage. Each pixel is con-
verted to a digital value by using CDS circuit and AD converter [24]]. Then, readout
process is done in parallel for columns. An example of CMOS image sensor is given
in Figure In this CMOS sensor type, each column has two CDS circuits and
AD converter. Number and location of CDS circuit and AD converter may differ for
different types of CMOS sensors. Figure[3.5]shows an example sensor similar to the

sensor used in ORCA-Flash4.0 LT+ scientific CMOS camera.

Exposure time(shutter time) is the length of time that the photo-diode inside the dig-
ital camera is exposed to light in order to create a pixel value. Long exposure time
provides more energy to create pixel value with less noise, however, that may cause

undesired blurry results for moving objects.

Readout time is the necessary time to digitization and readout of pixel values in a
frame. Readout time depends on the readout methodology that determines the reading

order and algorithm of pixels.
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Figure 3.5: The structure of the CMOS Image Sensor [10]

Frame rate is a key parameter for cameras. It generally expressed as frame per second,
fps, and represent number of consecutive frames captured by the camera in a second.
Equation[3.1]is a general fps equation, however, fps value may be dominated by frame

acquisition time or frame read time depending on the camera and parameter selection.

1
~ Frame Acquisition Time + Frame Read Time

Ips (3.1)

where frame acquisition time is the total time including shutter opening, exposure,

and shutter closing time, and dominated by the exposure time.

3.3.2 Image Acquisition with ORCA-Flash4.0 LT+ sCMOS Camera

There is a digital CMOS camera that is connected to the microscope in order to take
images from the microchannel during the cell flowing. It is a ORCA-Flash4.0 LT+
scientific CMOS camera that is designed for microscope imaging by Hamamatsu Pho-

tonics Company. It is equipped with an advanced CMOS imaging sensor FL-400 that
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provides low noise and high resolution [10]. Table [3.1] shows some technical details

of the camera.

Table 3.1: Technical Details of ORCA-Flash4.0 LT+ scientific CMOS camera

Effective area 13.312mm (H) x 13.312mm(V)
Effective number of pixels | 2048(H)x2048(V)

Cell size 6.5pum x 6.5um

Sensor readout time 33ms (Normal Mode)

Sensor readout time 10ms (Rapid Rolling Mode)
Exposure time 3ms to 10s (Normal Mode)
Exposure time Ims to 10s (Rapid Rolling Mode)
Frame rate (2048x2048) 30 frames/s

AD conversion 16 bit

Interface USB3.0

The FL-400 CMOS image sensor consist of 2048x2048 pixels that are composed of
a photo-diode and an amplifier. Incoming light is converted to charge by the photo-
diode and then converted to voltage by the amplifier. The voltage that is converted in
each pixel is output by the switch one by one. FL-400 imaging sensor has an on-chip
CDS circuit that provides low noise. The output of the CDS circuit is sampled by a
16bit AD Converter, and digital data is obtained. There are two split readout schemes

at the top and bottom halves of sensor to provide independent and fast readout [[10]].

The CMOS image sensor has rolling shutter exposure and readout method. In this
mode, the exposure and readout are done by line by line instead of taking a snapshot.
That means, parts of the images are not recorded exactly at the same time. However,
this method is not a problem even if the objects are moving during the exposure since
rolling shutter time is very small. Figure|3.6/shows exposure timing of rolling shutter

method.

The camera reads out the CMOS image sensors from the center to the top and the

bottom simultaneously. Figure 3.7 shows the readout method.

There are several readout methods such as Normal, Binning, Sub-array and Rapid
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Exposure length is same for all lines
Exposure timing is different for all lines

Figure 3.6: The exposure timing of rolling shutter method [10]
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Figure 3.7: Readout method of the camera [10]

Rolling Mode. In normal mode, charge readout is performed for all pixels individu-
ally. In Binning mode, 2x2 or 4x4 binning modes are available. In this mode, adjacent
2 or 4 pixels are added that causes decreasing the resolution. In sub-array mode, a
region of interest can be selected to readout. The last method is Rapid Rolling and
it is preferred to acquire images of fast moving objects in order to minimize distor-

tion effect of rolling shutter mechanism. Operation modes of the camera is shown in
Figure[3.§]

In free running mode, the exposure and readout timing settings are set by software
commands and controlled by an internal microprocessor. Normal readout mode is

used when the exposure time is longer than readout time. On the contrary, if the

41



Free running mode

Normal readout mode / Electrical shutter mode

(Automatically switching)

External trigger mode

Edge trigger mode

Start trigger mode

Global rest
edge trigger mode

Level trigger mode

Global reset level
rigger mode

Synchronous readout
trigger mode

Figure 3.8: Readout method of the camera [10]

exposure time is shorter than readout time of 1 frame, electrical shutter mode is used.
The mode selection is done automatically according to exposure time selection. Table

shows the some possible fps values for free running mode based on readout time.

Table 3.2: fps values based on readout time for free running mode

Horizontal Width | Vertical Width | fps
2048 2048 30
1024 60
512 120
256 240
128 481

The captured frames that consist of 2048x2048 pixels, each with a 16 bit digital value
transfer to the computer via USB3.0 interface. Figure [3.9]shows the timing chart for

free running-normal readout mode of the camera.

Figure [3.10]is taken by the ORCA-Flash4.0 LT+ scientific CMOS camera at full res-
olution (2048x2048). The microchannel is located only a small part of the frame.
Therefore, only the part that covers microchannel is selected at 2048x256 resolution

instead of full resolution. In this way, readout time is decreased to 3.75ms from 30ms.

The exposure time is set to 10ms.The exposure time can be extended to collect more
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Figure 3.9: Timing chart for the free running, normal readout mode [[10]

Figure 3.10: Full resolution (2048x2048) frame of the microchannel

photons, and increase the signal-to-noise ratio, however, moving objects may cause
motion blur. Nevertheless, low exposure time causes low intensity values without
motion blur. 10ms is an appropriate value in order to increase signal to noise ratio

of the pixel with a small motion blur. Due to the motion of the cells in the exposure
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time, the cells appear longer than they are, that allows easier detection of the cells.
According to timing chart shown in Figure[3.9] fps rate is directly related to exposure
time since it is larger than the readout time. As a result, fps is calculated as 100 for

10ms exposure time.

Captured images are transferred to the computer via USB3.0 interface. In order to
transfer all captured images, transfer rate of USB3.0 must be larger than the total
image size in a second. Otherwise, some frames will be lost. Calculation of the total
size of frames in a second with 16 bit pixel resolution is given in Equation The
Equation [3.2] gives 100 MB/sec that is less than transfer rate of USB3.0 (4.8Gb/sec)
for 2048x256 frames taken at 100 fps.

2(B/pixel) * H x V (pizels/ frame) = fps(frame/sec)

TotalSize(MB/sec) = 920

(3.2)

Hokawo Imaging Software that is developed by HAMAMATSU is used for saving
frames to the computer’s hard disk by using streaming mode. In streaming mode,
incoming frames are written to computer disk directly. In case the writing speed
of the hard disk is lower than the data transfer rate, although a buffer is used for
the data waiting to be written, data loss may occur, and the fps may decrease. This
situation was experienced in the setup conditions used, and therefore fps value was
measured about 97.5 fps. Captured consecutive frames at 97.5 fps are saved in HIS
file format. HIS file is a special file type, and details about the HIS file format is
given in Hokawo User Manuel Document [10]]. In this file format, two header types
are explained. The first header given in Table[3.3]is the header of the HIS file, and the
second header given in Table [3.4]is the header of images within the sequence. After
the HIS file is opened, the first header is read initially, and the necessary information
for reconstruction of the images are taken. These information contains image width
and height, total number of frames in the file, file type, and time stamp value that
is the time tag of the camera for each frame. File type shows the number of bits
representing each pixel, and time stamp value is high resolution time tag of each
frames. Comment length value is also important for correct read of the file. The first

frame is read according to file type after the first header, and reshaped according to
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height and width value. Then, consecutive headers and images are read until the total

number of frames that is given in the first header are read.

Table 3.3: Header of HIS file

Bytes Content

0-1 Character IM

2-3 Comment length in Bytes (CL)
4-5 Image width in pixels(W)

6-7 Image height in pixels(H)

8-9 X-offset

10-11 Y-offset

12-13 File Type (1: 8bit, 2: 16bit, 11: 24bit RGB)
14-17 Number of images in the file
18-19 0

20-21 0

22-29 Time stamp of image O (double)
30-33 Marker

34-63 Additional information

64 to 64+CL-1 Comment Area

64+CL to 64+CL+DL-1 | Image Data
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Table 3.4: Header of images within sequence

Bytes Content

0-1 Character IM

2-3 Comment length in Bytes (CL)

4-5 Image width in pixels(W)

6-7 Image height in pixels(H)

8-9 X-offset

10-11 Y-offset

12-13 File Type (1: 8bit, 2: 16bit, 11: 24bit RGB)
14-17 0

18-19 0

20-21 0

22-29 Time stamp of image the next image(double)
30-33 Marker

34-63 Additional information

64 to 64+CL-1

Comment Area

64+CL to 64+CL+DL-1

Image Data (DL = H¥*W*Bytes from file type)
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CHAPTER 4

PROPOSED CELL COUNTING AND ANALYSIS ALGORITHM

4.1 Introduction

In Chapter 3] the microchannel images are captured by the ORCA-Flash4.0 LT+ sci-

entific CMOS camera in 2048x256 pixels sizes with 16 bit pixel resolution as in

Figure d.1]

Figure 4.1: Cropped frame (2048x256) that covers the microchannel

Exposure time is set to 10msec that corresponds to 100 fps, and 97.5 fps is obtained

experimentally. Captured frames are transferred to the computer via USB3.0 inter-
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face. By using Hokawo software, frames are saved to hard disk as a HIS file. The file
is opened and frames are read according to HIS file format that is given in Table [3.3]
and Table 3.4]

In this chapter, the proposed cell counting and analysis algorithm is explained. Cell
counting and analysis algorithm is a tracking algorithm that consists of detection and
data association parts. The aim of the algorithm is to find the number of cell passing
through the microchannel, classify them according to sizes, and find the flow speed
of the cells from the frames taken by the camera. The chapter is divided into three
main sections. Section[4.2]is Automatic Cell Detection that is about image processing
algorithms that are used for automatic detection of cells while they are flowing. The
output of Automatic Cell Detection Section is input to the Section [4.3] Cell Tracking
that is about tracking of cells by applying a data association algorithm. Finally, width
and speed of counted cells are found, and clustering according to the size is done in

Section4.5] Cell Analysis. Figure 4.2 shows the flowchart of the algorithm.

2048x256
Frames
Centroid Measured
. @100fps CELL Bounding BOXITRACKING Parameters| CELL
" DETECTION

‘ ‘ ANALYSIS

Figure 4.2: Flowchart of cell counting and analysis algorithm

4.2 Automatic Cell Detection

Initialization method of the cell counting and analysis algorithm is detection based
meaning that objects to be tracked are found automatically from the detections. The
automatic cell detection algorithm creates the observation model of the cell counting
and analysis algorithm, and it finds the cells automatically. Automatic cell detection
block takes frames from the camera, and detect the cells with their centroids and
bounding boxes. As the first step, saved frames are read one by one from the HIS file
that has special format as in Table [3.3]and [3.4] Initially, the format, size, timestampt
and the total number of the frames are obtained from the headers. Then, a frame is

read according to size and format information. At each iteration, a frame is read from
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the file with its header that includes timestampt value of that frame. At the end, the

image is ready for image processing algorithms.

The proposed detection algorithm includes five steps. Initially, a low pass filter is
applied to the frames in order to reduce the noise, and then the background is mod-
elled. A constant threshold value is determined for cell segmentation. The segmenta-
tion results are processed with morphological operations. Finally, centeroid, length,
and width of the blobs will be found and a bounding box is created by connected

component labeling algorithm. Figure shows the flow chart of the cell detection

algorithm.
CELL DETECTION
‘ - | ‘  [conNECTED-
BACKGROUND
DENOISING| . MODELLING . ,SEGMENTATION  MORPHOLOGICAL = |COMPONENT
‘Gaussian Filter’ ‘ Basic Background ‘ Global Thresholding OPEBATIO_NS LABELING
Model Opening-Closing 8-connectivity
‘ ‘ 2 pass algorithm

Figure 4.3: Flowchart of the cell detection algorithm

In this section, appropriate algorithms are selected for each part, and the results are

showed by using the example microchannel images.

4.2.1 Image Noise and Denoising

CMOS image sensors suffer from different noise sources such as thermal noise, AD
conversion noise, pixel noise, amplifier noise and readout noise[24]. The noisy parts
prevent to obtain more information from the image. Therefore, they must be reduced
or eliminated. Filtering is a well-known technique for noise reduction and image en-
hancing. Different methods are explained in Chapter 2] Gaussian filter is selected
from explained filters since it has easier implementation and lower computational
cost. Moreover, some of the noise source of image such as thermal, pixel circuit AD
conversion has approximately Gaussian distributed characteristic that makes Gaus-
sian filter more appropriate image filtering [56]. A Gaussian kernel with standard
deviation 1 is created to suppress the noise, and the frames are filtered with that

Gaussian kernel. The created Gaussian kernel with standard deviation 1 is given in
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Figure 4.4
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Figure 4.4: Gaussian Kernel for low pass filtering

The statistical information can be helpful to understand filtering effect on the images.
For this purpose, mean value, standard deviation, maximum and minimum values
of the 10 frames from the microchannel images are used. Mean value and standard

deviation is calculated by using Equation 4.1/ and Equation 4.2} respectively.

10 2048 256

= EM%ZZZPW@Z I,k 4.1

=1 j=1 k=1

10 2048 256

'L—]lkl

In Equation . 1], average value of the pixels is found. The standard deviation found
by Equation {4.2] is a measure of the amount of variation of pixels from the mean.
Maximum and minimum are helpful to determine impulsive changes on the pixel

intensities.

Before filtering, the histogram plot of about 5 million pixels from 10 frames showing
background that means there is no cell in the image is shown in Figure 4.5 Mean
value is calculated as 104.9 with 4.78 standard deviation. Maximum pixel value is

185, and minimum pixel value is 50.

After filtering the frames with Gaussian filter given in Figure .4} a histogram plot

shown in Figure 4.6]is obtained. Mean value remains same since Gaussian kernel has
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Histogram plot of pixel intensities from 10 frames
T T T T T

Number of Pixel_s

Pixel Intensity

Figure 4.5: Histogram plot of background frames

zero mean, however standard deviation is decreased to, 1.495. Maximum pixel value
is 118, and minimum pixel value is 95. These results shows that filtering decreases
the variance, therefore the power of the noise, and eliminate sharp changes in the

pixel intensities.

Histogram plot of pixel intensities from 10 frames

Number of Pixe[s

Pixel Intensity

Figure 4.6: Histogram plot of filtered background frames

As explained in [2.2.1.2] part, Gaussian filter outputs a blurry image. Figure 4.7 is

an example of original and blurry filtered image parts that contains cells. For more

visible images, only some part of the frames are shown.
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Original Image Filtered Image

Figure 4.7: Original and filtered images containing cells

4.2.2 Background Modelling

Figure 4.1 shows the microchannel under daily light. However, cells are colored in
order to become visible under a fluorescent light. Under this light, the only visible
things are cells, and they need to be separated from background. Therefore, a back-

ground model must be created.

As explained in Chapter [2] there are different types of methods containing differ-
ent algorithms. They are robust to different challenges. Therefore, an appropriate
method should be chosen to be used under the setup conditions. There is a stable
fluorescent light source, therefore, there is no illumination change problem. The only
moving things are the cells, and there is no other object to causes small movements
meaning that there is no dynamic background problem. Shadows can be seen for
some cells, and video noise is only originated from the camera. Moreover, the cam-
era is stationary, that provides no challenge due to movement of the camera. As a
result, choosing a basic background model method is enough to detect cells, and pro-

vides low computational cost. Shadows can be eliminated in segmentation step by
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determining appropriate threshold. Table shows the parameters obtained from the

histogram of about 5 million pixels taken from 10 background frames.

Table 4.1: Parameters of the background model

Mean 104.9
Standard Deviation | 1.495
Mod 105
Median 105
Maximum 118
Minimum 95

4.2.3 Segmentation of Cells

Segmentation can be described as process of partitioning an image into component
regions or objects . There are different segmentation techniques for different cases as
explained before. In the previous part [4.2.2] the background model was obtained as
in Table d.1] For segmentation of cells, global thresholding method is used due to its
simplicity and effective results for the experiment. This method is used for similar
cases in [S7]] and [S8]. A threshold value between the background and the cells must
be determined. Therefore, the intensity of the cell is analyzed for different cases.
There is no exact range for cell intensities since cells can flow from any depth within
the microchannel that causes different intensities at different level. Figure shows
an example for intensity values for 3 different cells in a frame. Brighter cells have
edges with higher pixel values than other cells body. The selected threshold value
must separate each cell from the background and ensure that brighter cells do not

appear wider. Moreover, it should eliminate the shadows.

As aresult, 160 is selected as threshold, experimentally. After segmentation, a binary
image is obtained that contains only O or 1. The pixels with value less than threshold
value belong to the black background, 0, and remaining pixels segmented as white

cells, 1. Figure shows filtered image and segmentation result.
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[X.Y] [140 145]
Index 307
[R.G,B] [0.592157 0.592157 0.592157]

[X.Y] [138 432]
Index 249
[R.G.B] [0.427451 0.427451 0.427451]

[X.Y] [146 490]
Index 412
[R.G,B] [0.886275 0.886275 0.886275]

Figure 4.8: Intensity values for different cells in a frame. Index values, 307,249, and

412 are the pixel intensities.

Filtered Image Segmentation Result

Figure 4.9: Filtered image and segmentation result
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4.2.4 Morphological Operations

There are some imperfections due to segmentation. Some pixels between the back-
ground and the cells are labeled as a part of cells. Moreover, there can be small white
pixel regions in the image that can be called as noise. In order to remove these imper-
fections and noisy parts, morphological image processing techniques is used [39]. A
rectangle structuring element is selected with the size of 10x2 for opening operation
since moving cells look like a rectangular shape. By using opening operation, small
regions less than 10x2 sizes are eliminated, and imperfections of the segmentation is

eliminated. Figure 4.10]shows the image after segmentation and opening result.

The image after segmentation Opening Result

Figure 4.10: The image after segmentation and opening result

As it seen in Figure [3.10] there are electrodes in the microchip, and some part of
the microchannel is under the electrodes. Those electrodes cause invisible region
in the microchannel. While cells are flowing in the microchannel, they observed in a
rectangular shape due to exposure time. When they go under the electrodes, some part
of the cells become invisible. Therefore, cells may be divided into 2 different cells in

some frames, and that causes wrong input for the next algorithms. 2 parts of the cells
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are merged with closing operation with a rectangular structuring element with the size
30x4. Figure d.T1|shows an example for that case. There are 3 consecutive frames in
Figure 4.T1] The first frame shows the cell before it passes under the electrode. The
second frame shows the cell while it is passing under the electrode. The last frame
shows the cell after it has passed under the electrode. Figure 4.12] shows the result
of closing operation for the same case in Figure d.I1] As a result, cell division is

prevented by using closing operation from morphological image processing.

frame n-1 frame n frame n+1

Figure 4.11: 3 consecutive frames that show the effect of invisible region. Frame n-1:
before cell passes under the electrode. Frame n: while the cell is passing under the

electrode. Frame n+1: After the cell passed under the electrode.

4.2.5 Connected-Component Labeling

Final step before the tracking section is finding connected components, blobs. and
labeling them. Connected component labeling algorithm aims to find and label con-

nected pixel regions in the binary image with center of mass and size information.

The explained connected-component labeling method, 2 pass algorithm with 8 con-
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frame n-1 frame n frame n+1

Figure 4.12: 3 consecutive frames that show the result of closing for invisible region.
Frame n-1: before cell passes under the electrode. Frame n: while the cell is passing

under the electrode. Frame n+1: After the cell passed under the electrode.

nectivity in Chapter [2] is used. Figure [4.13|shows an example of labeling and bound-
ing box result. Cells are covered by green bounding box with label id. Moreover,
centroid of each cell marked with a blue star. These parameters are the necessary
inputs for the tracking part, Section[4.3] The region having less than 21 pixels are not
considered as the cell. This is the last precaution taken in addition to denoising, and

morphological operations to avoid erroneous detection.

4.3 Cell Tracking

Cell tracking part is the second main part of the cell counting and analysis algorithm.
This part takes the input, centroid and bounding box of each labeled components from
the cell detection part for each frame. These labeled components, cells, are followed

with a unique ID during the flow in the microchannel. The parameters such as start-
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Figure 4.13: An example result for connected-component labeling

end time and location of a cell in the microchannel, width of the cell are used in the

cell analysis part.

As stated previously, the main purpose of the cell tracking part is to follow each la-
beled component with a unique identifier, ID, during the flowing process. To achieve
the aim, detections between frames should be linked correctly. At this point, the mo-
tion model is an important parameter to link detections between consecutive frames.
If the motion model is known, next location of the object can be estimated by using
a mathematical model. When a new frame is taken, detections and estimations are
compared, and they are linked if they are close enough to each other. However, mea-
surements and motion model may not be exactly true, that means measurements can
include noise, and time difference between frames may not be the same that causes an
error in the mathematical motion model. Moreover, each object can move at different
speeds. Another major challenge is that a detection become invisible for a few frames
when it passes under the electrodes, or when two detections move together and seen

as a single object during a part of the flow. Since there are many challenges to follow
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each detection while they are flowing, a tracker for each object is used for making
prediction of the next location of the object. This tracker must model the motion of
objects between consecutive frames, and must be robust for speed changes, invisible
frames, noise in the measurements and the processes. Kalman filter that is explained

in Chapter [2]is used to next position estimations.

4.3.1 Cell Tracking Algorithm Flow

Automatic cell detection block provides centroid and bounding box information of
all labeled components. The first step of the tracking algorithm is predicting new
locations by using Kalman filter. The second step is generating a cost matrix that
contains a special distance between detections and predictions. This cost matrix is
solved by Hungarian assignment algorithm with a non-assignment cost parameter.
This algorithm provides prediction and detection matches if it is possible. On the
other hand, a prediction may not be assigned any detection or a detection may not
be matched with a prediction. In the case of unassigned detection, a new tracker is
created. For the case of unassigned prediction, predicted value is saved to be used in
the next cost matrix. After assignment part, Kalman filter corrects its estimation with
measurements. If a cell leaves the microchannel, its tracker is deleted so that it is not

used in assignment problem.

The flow of the algorithm is as follows:

Take detections from cell detection part.

Take the predictions from tracker.

Generate a cost matrix by using distance between predictions and detections.

Solve the cost matrix to link detections and predictions.

If there is a prediction that is not assigned to any detection, update tracker with

last prediction.

If there is a detection that is not assigned to any prediction, create a new tracker.
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e Update location parameter of the tracker by using assignments from the cost

matrix.
e Update related parameters of unassigned trackers.

e Delete the tracking if it satisfies invisibility condition.

The tracking algorithm is also represented with the flow chart as in Figure

4.3.1.1 Tracker Structure

A structure called as tracker is created for each object. This structure includes all

necessary information to be used in tracking. Table shows the tracker parameters.

Table 4.2: Parameters of tracker structure

ID

Bounding box

Centroid

Kalman filter

Time stampt

Age

Consecutive Invisible Count

Width

ID is the unique identifier for a tracker and it is different for all objects. ID is assigned
when a tracker is generated and never changes. Bounding box is the rectangle shape
drawing that includes whole object. It is updated at each step and useful for visu-
alization. If the object detected in the new frame, new bounding box is assigned to
this part. If it is not detected, previous bounding box is preserved to show estimated

position of the object while it is not visible.

Centroid shows the last position of the object and updated at each step. If the object is

detected in the new frame, centroid is updated with new position. On the other hand,
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Centroid
Bounding Box

Take
Detections

k.
Take
predictions of
Kalman Filters
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Assign
Detection to
Trackers

nassigned
Detection

Create New
Tracker

Update
Kalman Filters

NO

Delete tracker

Figure 4.14: Flow chart of the tracking algorithm

centroid is updated with the estimation of Kalman filter. This parameter is used for

speed analysis of the object, and important for delete condition of the track.

Kalman filter is the tracker method that is used for estimating next position of the

object. Each tracker has its own Kalman filter, and multiple object tracking is done
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by using single trackers. The Kalman filter is created with centroid of the object
when it is detected firstly. Kalman filter predicts the next position of the object and
this estimation is used in detection-tracking assignment part. After detection-tracking
part, Kalman filter is updated with new measurements. If it is not updated manually

due to non-assignment, it uses last prediction for the next prediction.

Timestampt parameter comes from the frame, and shows the timer of the camera
when the frame is taken. It is updated at each frame, and used for high accuracy
speed analysis of the object since time difference between consecutive frames are not

constant always, and fps can be changed due to different reasons.

Age parameter shows the number of frames that the tracker exists. Consecutive invis-
ible count is a critical parameter and shows the number of frames that the tracker is

not matched with any detection. It is used in deleting condition of the tracker.

Width is an important parameter for classification of the cells with respect to sizes.
Width component of the tracker is an array of width values measured in all frames

that the tracker exists.

4.3.1.2 Detection to Tracking

When a new frame comes with detections, these detections should be matched with
the estimations of trackers so that objects can be followed correctly. At this step,
a cost matrix is constructed that shows distance between each tracker and detection
to solve assignments of detections to tracks. Cost matrix includes distance values
between estimations and detections. Hungarian assignment algorithm is used to solve

cost matrix with the minimum cost.

Distance is calculated by Equation {£.3] and it takes into account the Euclidean dis-
tance between the predicted centroid of the tracker and the centroid of the detection.
It also includes the confidence of the prediction that is the covariance of the predicted

state and the process noise of Kalman filter.

d(z) = (z — Hz)'Y (2 — Hz) + In|X| (4.3)
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where ¥ = HPH” + R and |Y| is the determinant of 3.

There are 4 different possible cases for detection-tracking matching. The first case is
that the number of detections and trackers are the same, and these detections belong
to these trackers. This case is straightforward and detections are assigned to trackers
by solving the cost matrix for the minimum total cost. The second case is that the
number of detections are larger than trackers due to first detection of objects. In
this case, the cost matrix is solved for the minimum total cost, and new trackers are
created for unassigned detections. The third case is that there are more trackers than
detections due to invisible moments. In this case, the cost matrix is solved for the
minimum total cost, and unassigned trackers are updated with predicted values. The
final case is that the number of detections and trackers are the same, however, some
object may detected firstly, and some trackers may wait for deleting. In such cases, the
distance values are large. The cost matrix is solved for the minimum total cost, and
assignment is done with a distance value that is larger than the non-assignment cost
value, and assignment is ignored. As aresult, instead of matching new detections with
the dead trackers, new trackers can be created for new objects, and trackers waiting

to be deleted preserved with predicted values.

4.3.1.3 Deleting A Tracker

A tracker is created with the first detection of an object, and used until the object
leaves the microchannel. The consecutive invisible count parameter is used for de-
ciding to delete a tracker or not. If consecutive invisible count is equal to 3, and the
location of the object near the end of the microchannel, tracker is deleted so that it is
not used in detection to tracking assignment problem. Note that, the location of the
object is also important since an object may not be visible in the microchannel for
several reasons, and tracker must be preserved at these moments. Otherwise, when

an object seen again, it would take a new ID that causes wrong cell count.
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4.4 An Example For Tracking Algorithm

In this part, an example of tracking algorithm including all possible assignment cases
described in detection to tracking part is given. At a random time, while frame 200
is taken, there are 2 detections with their trackers as shown in Figure 4.15|and Figure

4.16!

Figure 4.15: Frame 200 having 2 cells

id {4 bbox  [ftimestampt [[]centroid [[]est centroid 1] end |®| kalmanFilter 1] age
2|[146,832,13,... 1.1381e+07 8448571 844.7678
3[132,335,12,... 1.1381e+07 368.0534 363.4742

Figure 4.16: Existing trackers when frame 200 is taken

Algorithm starts with taking the estimations from Kalman filters of each trackers.
Kalman filter estimations are listed in Table and detections from frame 200 are
listed in Table 4]

Distance between each detection and tracker is calculated by using Equation and
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Table 4.3: Kalman filter estimations when frame 200 is taken

ID | column | row
2 152 845
3 138 363

Table 4.4: Detections from frame 200

column | row
138 368
151 845

cost matrix, C is obtained as follows.

418.37 12.66
12,70 426.32

C:

Since the 2 cells are far from each other, each tracker has one small and one large
cost value. When the cost matrix is solved, tracker 1 with ID 2 is assigned to the
second detection, and tracker 2 with ID 3 i assigned to the first detection. Trackers
are updated with new measurements. Cell with ID 3 has larger length that means
it has larger speed. Therefore, after 10 frames, 2 cells overlap and appear as one

connected component as in Figure 4.17]

Algorithm starts with taking the estimations from Kalman filters of each trackers.
Kalman filter estimations are listed in Table [4.3] and detection from frame 211 is

listed in Table 4.6].

Table 4.5: Kalman filter estimations when frame 211 is taken

ID | column | row
2 154 1068
3 145 1073

Distance between each detection and tracker is calculated by using Equation {4.3] and
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Figure 4.17: Frame 211 having overlapped cells

Table 4.6: Detection from frame 211

column | row

146 1073

cost matrix, C' is obtained as follows.

15.20
12.66

Since position of two cells are close, cost values are closer. When the cost matrix is
solved, tracker 2 with ID 3 is assigned to the detection. Tracker 2 with ID 3 is updated
with new measurement while tracker 1 with ID 2 is updated with the estimated value.
After 2 frames, the cell with ID 3 exceeds the cell with ID 2, and become detectable

as a single object again as in Figure

Algorithm starts with taking the estimations from Kalman filters of each trackers.

Kalman filter estimations are listed in Table and detections from frame 214 are
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Figure 4.18: Frame 214 when 2 cells separate

listed in Table 4.8l

Table 4.7: Kalman filter estimations when frame 214 is taken

ID | column | row
2 154 1174
3 148 1177

Table 4.8: Detection from frame 214

column | row
145 1211
154 1097

Distance between each detection and tracker is calculated by using Equation and
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cost matrix, C' is obtained as follows.

19.20 18.25
14.80 24.06

When the cost matrix is solved, tracker 2 with ID 3 is assigned to the first detection,
and tracker 1 with ID 2 is assigned to the second detection. Trackers are updated with
new measurements. After 10 frames, a new cell is enter the microchannel. Estima-
tions before frame 224 is listed in Table [4.9] and detections from frame 224 are listed
in Table

Table 4.9: Kalman filter estimations when frame 224 is taken

ID | column | row
2 156 1292
3 151 1861

Table 4.10: Detection from frame 224

column | row
150 1874
155 1292
156 10

Distance between each detection and tracker is calculated by using Equation 4.3] and

cost matrix, C' is obtained as follows.

063.18 12.66 2942
12.98 589.87 6121

Since position of two cells are close, and the new cell is far away from other two cells,
distance values for detection 3 are larger. When the cost matrix is solved, tracker 2
with ID 3 is assigned to the first detection, and tracker 1 with ID 2 id assigned to the
second detection. Trackers are updated with new measurements. However, the third
detection is not assigned to any tracker. Therefore, a new tracker with ID 4 is created

as in Figure After new tracker is created, Figure [4.20]is obtained.
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id 1+ bbox [ftimestampt [ centroid [1]est_centroid [0 end |®| kalmanFilter 11 age

o

a[‘ISDJE?SJ... 1.1381e+07  1.2923e+03 1.2922e+03 0 87
3 [145,1821,1... 1.1381e+07  1.8477e+03 1.8612e+03 0 32
4[151,1,12,22] 1.1381e+07 10.5852 0 0 1

Figure 4.19: Trackers after frame 224 is processed

Figure 4.20: Frame 224 when a new cell is entered to the microchannel

After 9 frames, cell with ID 3 leaves the microchannel. In that frame, Kalman filter

estimations are listed in Table 4.T1] and detections from frame 233 are listed in Table

412

Table 4.11: Kalman filter estimations when frame 233 is taken

ID | column | row
2 | 157 1470
3 | 148 2060
4 | 144 256

Distance between each detection and tracker is calculated by using Equation and
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Table 4.12: Detection from frame 233

column | row
146 271
158 1470

cost matrix, C' is obtained as follows.

2578 12.65
C'=|5721 632.78
1291 2631

When the cost matrix is solved, tracker 3 with ID 4 is assigned to the first detection,
tracker 1 with ID 2 is assigned to the second detection. However, tracker 2 with ID 3
is not assigned to any detection. After 3 frames, tracker with ID 3 is deleted since that
cell left the microchannel. Remaining trackers are shown in Figure 4.21] and Figure

4.22] shows frame 233.

id Y3 bbex  [Jtimestampt ] centroid [[]est_centroid ] end |®| kalmanFilter ] age
2[132,1523,1... 1.1381e+07  1.5379e+03 1.5379%e+03 0|1x7 Kal i

ilte 98
4[143,401,10,... 1.1387e+07 427.9825 427.7042 0|1x7 KalmanFilter

12

Figure 4.21: Trackers after frame 233 is processed

4.5 Cell Analysis

Cell analysis part consists of classification of cells according to sizes, and speed anal-
ysis to interpret effect of flow rate on the cells. Cells appear circular when stationary,
but appear larger than their actual size as they glow under fluorescent light. The
width, that is described as the maximum number of pixels belongs to the object on
the horizontal axis, of the cells can be used for size classification since cells are cir-
cular. There are 2 types of cells, and their actual sizes are about 6pm and 10um.
Blurry edges are also a challenge for correct width measurement. For an effective

width classification, width measurements must be correct.

When the cells move in the microchannel, they lengthen in the direction of movement,
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Figure 4.22: Frame 233 when a cell left the microchannel

and proportional to velocity due to the exposure time, and they appear as a rectangle.
This time, the effect of the light scattered from the cells on the width decreases de-
pending on the velocity. It is difficult to model how much the width decreases since
each cell can have a different velocity. Therefore, it is not easy to estimate the actual
size correctly from the measured width of the cells in motion. As a solution to this
situation, a width value was created by using the width values measured in the area
where the cells appear circular before they start moving in the microchannel. How-
ever, in this case, partial visibility of the cell before entering the frame also causes
erroneous measurement. As a solution to all problems, the width values measured
between 25 and 250 horizontal pixels of the image were kept, and their averages were

used as the width of that cell.

Although rare, some cells enter the microchannel together and a new cell is detected
when they are separated in the microchannel. However, its position has already moved
out of the width measurement area. Moreover, since it is in motion, the measured

width value will not reflect reality. In such cases, the first detected width value of the
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cell is saved and used. A flag is also kept indicating that this value is unreliable. In
the following sections, classification method used for clustering the cells according

to their widths, and speed measurement is explained in detail.

4.5.1 Classification of Cells

An important part of the automatic cell counting algorithm is classification of the
cells to determine how many cells are in which size class such as 6/m or 10pum. The
cells must be classified according to the measured width. In order to obtain statistical
information of measured pixel width of each class, measurements are taken from the
cells from each class. Figure shows the histogram plot of cells’ width when
6um cells are used only. In this case, 545 cells are counted, and most of the cells are
measured with widths between 7.5 and 10 pixels. However, there are a few number
of cells with larger widths. Likewise, Figure 4.24{ shows the histogram plot of cells’
width when 10um cells are used only. 322 cells are counted, and most of the cells are
measured with widths between 13 and 17 pixels, and there are some cells with too
small or large widths. As seen in Figures and{.24] most of the measurements are
centered around a certain value, however, few cells measured much larger or much
smaller. Larger width measurements may result from adherent cells, and smaller
widths may result from movement of cells in the width measurement area. These
values may classified wrongly. Since their effect on the total ratio is little, this error

has negligible effect on the results.

Histogram plot for cell widths of 6um cells
T T

Number of Cells

I

Figure 4.23: Histogram plot of cell widths for 6m cells

Cell Width (Pixels)
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Histogram plot for cell widths of 10um cells

= T T

Number of Cells
5

Cell Width (Pixels)

Figure 4.24: Histogram plot of cell widths for 10um cells

In the real case, cells from both size classes exist in the solution, and they are counted
together. Most of the measurements will center around 2 different pixel values, 9 and
15. However, there will be an intersection area where it cannot be determined which
measurement belongs to the class. In order to divide measurements into 2 class, an

unsupervised clustering method, K-medoids, is used.

Figure {4.25] shows the histogram plot of cell width that is the union of the widths in
Figure d.23|and[4.24] Classification result is also shown in Figure [4.25| with different

colors.

Histogram plot for all cell widths
T T

=6u
[=10u

Number of Cells

| L ol e -
Cell Width (Pixels)

Figure 4.25: Histogram plot of cells width created by combining the 6-10m mea-

surements

It is known that, there are 545 cells with the mean value 9 from the 6m sample set,
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and 322 cells with the mean value 15 from the 10m sample set. Algorithm outputs 2
clusters with 536 and 331 elements by determining the 8.75 and 14.63 as the medoids.
Originally, 62.86% of the total cells belong to the 6sm sample set, and 37.14% belong
to the 10pm sample set. According to K-medoids classification, 61.82% of the total
cells belong to the 6um sample set, and 38.18% belong to the 10m sample set. It is
expected to obtain different classification result due to erroneous measurements and
widths in the intersection area. Nevertheless, K-medoids algorithm provides a good
classification result. Note that this algorithm does not depend on the actual values, but
rather on the distribution of width measurements. Therefore, it can be used to separate
any 2 groups of cells of different sizes. It can also be used not only to classify into 2
but also to divide into more groups. However, it should not be forgotten that the total
number of groups must be known and the cell sizes must be sufficiently separated

from each other.

4.5.2 Speed Analysis

Speed analysis is necessary part for the detecting relationship between liquid pressure
and flow rate in the microchannel. For this purpose, average speed is calculated by

using Equation 4.4
Ty — T2
tl — t2

v = (4.4)

where x; is the last position of the cell observed at time ¢; and x5 is the first position
of the cell observed at time ¢, . The start position of the microchannel is around 200
pixel bottom from the top of the frame. Moreover, end position of the microchannel
is around 1800 pixel bottom from the top of the frame. Therefore, start time of each
tracker is saved when the current location is about 200 pixels bottom from the top of
the the frame, and end time of each tracker is saved when the current location is about

1800 pixels bottom from the top of the frame as shown in Figure

As it explained in Chapter [3] pixel width is 6.5um corresponding 1.3xm in 5x zoom
mode. Therefore, the difference between start and end pixel location of the cell is
multiplied with the 1.3m, and real amount of the displacement is calculated. Time
information is taken from the timestampt parameter. The timestampt is read from

the header of the frame, and it is the time tag of the camera. Figure shows an
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Figure 4.26: The microchannel with red horizontal lines that shows start and end

positions for the speed analysis

example histogram plot of cell velocities from 623 cells. Mean value of the velocity
is measured as 7.13pm/msec.

Histogram plot of cell velocities (um/ms)

B 3 8
T T T

3
T

i Number of Cells

Velocity of the cell

Figure 4.27: Velocity histogram of 623 cells in ym/msec unit
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CHAPTER 5

EXPERIMENTAL RESULTS

In order to test the proposed cell counting and analysis algorithm explained in Chap-
ter[d], various tests were carried out under the setup conditions described in Chapter [3]
For this purpose, image sequences were taken and processed in various situations on
2 different days. On the first day, images were recorded for the case where only one
type of cell was passed through the microchannel initially. By using these images,
cell counting accuracy of the algorithm was tested. Afterwards, images in which cells
of different sizes were passed through the microchannel were recorded, and both the
number of cells and their classification according to their size were tested. On the sec-
ond day, a solution containing cells from both dimensions was prepared, and images
were recorded while different pressure values are applied. By using these images,
both the number of cells and their classification according to their size were tested.
Moreover, effect of the pressure on the algorithm is also tested. The proposed algo-
rithm also applied without Gaussian filter to show effect of noise in the images. In
addition, the proposed algorithm without morphological operations is applied to all
recorded sequences. In this Chapter, the test results obtained on cell counting, clas-
sification by size, and velocity analysis are shown and evaluated. In all experiments,
each image sequence contains 5974 frames that are recorded for 1 minute. Each HIS
file size is 5.81GB. The proposed algorithm is implemented in MATLAB, and run by
Intel(R) Core(TM) i7-6700 CPU @3.40GHz. Computation times are provided with

each result.
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5.1 Experiment 1

On the first day experiment, initially, the solution containing 500.000 cells with 6m
size per milliliter are passed through the microchannel, and 7 sequences of images
were recorded. The cells in the images were counted both by the proposed algorithm
and carefully by eye. In order to show the importance of Gaussian filtering and mor-
phological operations, the proposed algorithm applied without them. In Table[5.T] the
numbers obtained by counting the cells by eye, by proposed algorithm, by proposed
algorithm without Gaussian Filter and by the proposed algorithm without morpholog-
ical operations are shown. In addition, wrong counts between the proposed algorithm

and the eye count is shown in the table.

Table 5.1: Comparison of cell counts in 7 image sequences for 6. case

Seq. | Prop. Alg. | Eye | Error | W/o Gaussian Filt. | W/o Morph. op.
1 99 99 0 99 137
2 127 126 1 128 146
3 117 118 1 117 154
4 57 57 0 57 67
5 69 69 0 69 95
6 41 41 0 42 56
7 42 42 0 42 59
Total 552 552 2 554 714

Results shows that 552 cells are counted by both method, proposed algorithm and
eye. Although the total cell counts are the same, there are 2 wrong counts. When the
cause of the wrong cell count was investigated, it was observed that some cells moved
together along the microchannel and therefore could not be counted as separate cells.
The desired pressure value of the pressure controller device is set to 2 mbar. However,
it is observed on the application user interface of the pressure controller device that
the device does not always provide constant pressure. This situation results in cells
to move at different speeds. Speed plot of the cells is given in Figure [5.1| that demon-
strates that cells have different speeds. Average speed of the cells are calculated as

4pm per millisecond.
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In the second case, the solution containing 500.000 cells with 10um size per milliliter
are passed through the microchannel, and 7 sequences of images were recorded. The
cells in the images were counted both by the proposed algorithm and carefully by eye.
In order to show the importance of Gaussian filtering and morphological operations,
the proposed algorithm applied without them. In Table [5.2] the numbers obtained
by counting the cells by eye, by proposed algorithm, by proposed algorithm without
Gaussian Filter and by the proposed algorithm without morphological operations are

shown. In addition, wrong counts between the proposed algorithm and the eye count

Number of Cells
8 & 2

Histogram plot of cell velocities (um/ms)
T T T

Velocity of the cell

Figure 5.1: Speed plot of the cell with 6m size

is shown in the table.

Table 5.2: Comparison of cell counts in 7 image sequences for 10u case

Seq. | Prop. Alg. | Eye | Error | W/o Gaussian Filt. | W/o Morph. op.
1 13 13 0 13 28
2 171 171 0 175 216
3 80 81 1 83 131
4 37 37 0 37 66
5 6 6 0 6 8
6 10 10 0 10 15
7 14 14 0 14 26
Total 331 332 1 338 490

Results shows that 331 cells are counted by the algorithm and 332 cell are counted
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by eye. The difference between the results was originated from the cells moving
together along the microchannel. The desired pressure value of the pressure controller
device is set to 2 mbar, again. The histogram of cell velocities is given in Figure
that demonstrates that cells have different speeds. Average speed of the cells are

calculated as 4.5pm per millisecond.

Histogram plot of cell velocities (um/ms)

. Numbe[of Cells

Velocity of the cell

Figure 5.2: Speed plot of the cell with 10um size

As the final experiment of the first day, the solution containing 250.000 cells with
6pm size and 250.000 cells with 10um size per milliliter are passed through the mi-
crochannel, and 7 sequences of images were recorded. The cells in the images were
counted both by the proposed algorithm and carefully by eye. In order to show the
importance of Gaussian filtering and morphological operations, the proposed algo-
rithm applied without them. In Table[5.3] the numbers obtained by counting the cells
by eye, by proposed algorithm, by proposed algorithm without Gaussian Filter and
by the proposed algorithm without morphological operations are shown. In addition,

wrong counts between the proposed algorithm and the eye count is shown in the table.

Results shows that 359 cells are counted in both methods. The desired pressure value
of the pressure controller device is set to 2 mbar. The histogram of cell velocities is
given in Figure [5.3| that demonstrates that cells have different speeds. Average speed

of the cells are calculated as 4m per millisecond.

Width of the cells are measured, and reliable results are classified as in Figure @
Note that the distribution of cell width is more important for cell classification than

actual widths. Even if cells are measured larger or smaller in different conditions, it
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Table 5.3: Comparison of cell counts in 7 image sequences for 6-10u case

Seq. | Prop. Alg. | Eye | Error | W/o Gaussian Filt. | W/o Morph. op.
1 91 91 0 94 120
2 64 64 0 64 84
3 64 64 0 63 87
4 23 23 0 23 36
5 50 50 0 45 72
6 45 45 0 50 77
7 22 22 0 22 33
Total 359 359 | 0 361 509

has no effect on classification. Classification results shows that there are two center

point for the cell witdth that are 8 and 14.4. The ratio of the cells with 6um size to

Number of Cells
& B L3 8

Histogram plot of cell velocities (um/ms)
T T T T

Velocity of the cell

Figure 5.3: Speed plot of the cells in 7 image sequences

the all counted cell is 66%.

5.2 Experiment 2

On the second day experiment, besides the classification of cells according to the
number and size, the effect of applied fluid pressure was also observed. The solu-
tion containing 250.000 cells with 6,m size and 250.000 cells with 10pum size per

milliliter are passed through the microchannel, and 10 sequences of images were
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Figure 5.4: Histogram plot of the cell width for 7 image sequences

recorded. The cells in the images were counted both by the proposed algorithm and
carefully by eye. In order to show the importance of Gaussian filtering and morpho-
logical operations, the proposed algorithm applied without them. In Table [5.4] the
numbers obtained by counting the cells by eye, by proposed algorithm, by proposed
algorithm without Gaussian Filter and by the proposed algorithm without morpholog-
ical operations are shown. In addition, wrong counts between the proposed algorithm

and the eye count is shown in the table.

Table 5.4: Comparison of cell counts in 10 image sequences for 6-10u case

Seq. | Prop. Alg. | Eye | Error | W/o Gaussian Filt. | W/o Morph. op.
1 65 65 0 65 96
2 61 61 0 63 93
3 87 88 1 87 122
4 130 129 1 134 208
5 63 64 1 63 83
6 68 68 0 69 101
7 55 56 1 55 72
8 91 91 0 92 135
9 64 64 0 64 86
10 64 64 0 65 90

Total 748 750 4 757 1086
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Results shows that 748 cells are counted by the algorithm although there were 750.
However, error is not only 2. 4 cells are counted incorrectly. The desired pressure
value of the pressure controller device is set to 2 mbar. The histogram of cell veloci-
ties is given in Figure [5.5] that demonstrates that cells have different speeds. Average
speed of the cells are calculated as 4.3um per millisecond. Width of the cells are

measured and classified as in Figure 5.6

Histogram plot of cell velocities (um/ms)
T T T T T T

Number of Cells
& 8 3 2

Velocity of the cell

Figure 5.5: Speed plot of the cells for 10 image sequences

Width of the cells are measured, and reliable results are classified as in Figure @
Classification results shows that there are two center point for the cell width that are
14.8 and 24.5. The ratio of the cells with 6m size to the all counted cell is 71%. As
explained before, the distribution of cell width is more important for cell classification
than actual widths as shown in this case. These center points are different than the
previous experiment results due to changing setup conditions such as intensity or
angle of the fluorescent light source. Since the effect of this situation on the cells is

similar, the width distributions did not change significantly.

Under the same conditions, desired pressure value is set to 6 mbar, and 12 sequences
of images were recorded. The cells in the images were counted both by the proposed
algorithm and carefully by eye. In order to show the importance of Gaussian filtering
and morphological operations, the proposed algorithm applied without them. In Table
[5.5] the numbers obtained by counting the cells by eye, by proposed algorithm, by
proposed algorithm without Gaussian Filter and by the proposed algorithm without

morphological operations are shown. In addition, wrong counts between the proposed

83



Histogram plot of widths from 734cells
T T T

T
. E6u
, =10u

Cell Width (Pixels)

Number\ of Cells )

Figure 5.6: Histogram plot of the cell width for 10 image sequences

algorithm and the eye count is shown in the table.

Table 5.5: Comparison of cell counts in 12 image sequences for 6-10 case

Seq. | Prop. Alg. | Eye | Error | W/o Gaussian Filt. | W/o Morph. op.
1 140 140 2 151 287
2 124 124 0 134 229
3 116 116 0 119 187
4 126 125 1 143 285
5 123 125 2 134 234
6 145 146 1 165 297
7 113 113 0 128 237
8 139 141 4 151 310
9 90 89 1 97 153
10 124 126 2 132 282
11 136 136 4 154 314
12 111 110 1 115 200

Total 1487 1491 | 18 1623 3015

Results shows that 1487 cells are counted by the algorithm although there were 1491.
However, error is not only 4. 18 cells are counted incorrectly. Since the desired
pressure value of the pressure controller device is set to 6 mbar, speed of the cells

are measured with larger values. The histogram of cell velocities is given in Figure
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[5.5] that demonstrates that cells have different speeds. Average speed of the cells are

calculated as 7.3pm per millisecond.

Histogram plot of cell velocities (um/ms)

E
T

Number of Cells
8 &

Velocity of the cell

Figure 5.7: Speed plot of the cells for 12 image sequences under 6 mbar pressure

Width of the cells are measured, and reliable results are classified as in Figure [5.8]
Classification results shows that there are two center point for the cell width that are

12.8 and 23.4. The ratio of the cells with 6m size to the all counted cell is 69%.

Histogram plot of widths from 1402cells
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Cell Width (Pixels)

Figure 5.8: Histogram plot of the cell width for 12 image sequences

5.3 Computation Analysis

The computation part of the sub parts of the algorithm is measured as in Figure 5.9
As seen in the Figure [5.9] most of the computation time is consumed on morpholog-

ical operations. In summary, 75% of the total time is used for morphological opera-
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tions, 9% is used for reading frames from HIS file, 8% is used for cell segmentation,
4% 1is used for Gaussian filtering for noise elimination, 3% is used for connected
component labeling, 1% is used for tracking algorithms, and almost 0% is used for

clustering part.

PIE CHART FOR COMPUTATION TIMES

Clustering Connected Component Labeling
0% 3%

Tracking
1%

File Read
9%
Filtering
4%
Segmentation
8%

Morphological
Operations
75%

Figure 5.9: Pie chart for the computation time of each part of the proposed algorithm

The total computation time of the algorithm is measured from CPU time. Table [5.6|
and [5.7] that are located at the end of the chapter shows the measured computation
time of the proposed algorithm in seconds for experiment 1 and 2, respectively. The
average computation time for 5974 frames is 350 seconds, and average processing

time is measured as 64.4 msec for a frame.

5.4 Comments on Results

Test results show that cell counting is done successfully for all cases. Width measure-
ments are classified by using the distribution of the widths. Although a comparison
could not be made with a reference result in the classification of cells according to
their width, gathering the measurements around 2 main values and classifying them
according to their distribution gives logical results. It was observed that the applied
fluid pressure had a significant effect on the velocity of the cells, and the increase in

cell velocity caused more errors in cell counting. When cells move faster, the num-
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ber of frames in which cells are detected and tracked decreases and the cells appear
longer. The change on the location of the detections are larger and affected by the
noise more. Further increase in fluid pressure may result in inaccurate counting of
cells. As a result, the test results show that the algorithm counts the cells correctly
and make a valid classification according to sizes if the liquid pressure is less than or

equal to 6 mbar.

The proposed algorithm includes many measures such as Gaussian filter, morpho-
logical operations, and minimum area in connected component labeling for accurate
detection. When the Gaussian filter is removed and the results are obtained again,
it is seen that the wrong cell count increases. In addition, the measured cell widths
increase. However, the number of errors that occur is not as great as in the removal
of morphological operations. When morphological operations are removed, the er-
ror in the number of cells increases a lot. In addition, in this case, the confidence
flag marked in the cell width is also lit very few times. The minimum area condition
of the connected component labeling algorithm prevented thousands of false counts
in the absence of morphological operations. Because without morphological opera-
tions, faulty segmentations cannot be cleaned and special problems such as electrode
area are not solved. Although the most of the computation time is consumed in the

morphological operations, their contribution to the proposed algorithm is vital.
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Table 5.6: Computation time for experiment 1

Experiment Id

Proposed Algorithm Computation Time (seconds)

Exp 1-1-1 375
Exp 1-1-2 358
Exp 1-1-3 352
Exp 1-1-4 347
Exp 1-1-5 339
Exp 1-1-6 337
Exp 1-1-7 336
Exp 1-2-1 335
Exp 1-2-2 346
Exp 1-2-3 334
Exp 1-2-4 335
Exp 1-2-5 341
Exp 1-2-6 334
Exp 1-2-7 337
Exp 1-3-1 338
Exp 1-3-2 337
Exp 1-3-3 339
Exp 1-3-4 337
Exp 1-3-5 338
Exp 1-3-6 336
Exp 1-3-7 337
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Table 5.7: Computation time for experiment 2

Experiment 1d

Proposed Algorithm Computation Time (seconds)

Exp 2-1-1 398
Exp 2-1-2 373
Exp 2-1-3 367
Exp 2-1-4 355
Exp 2-1-5 350
Exp 2-1-6 350
Exp 2-1-7 344
Exp 2-1-8 346
Exp 2-1-9 350
Exp 2-1-10 364
Exp 2-2-1 366
Exp 2-2-2 363
Exp 2-2-3 350
Exp 2-2-4 378
Exp 2-2-5 368
Exp 2-2-6 365
Exp 2-2-7 362
Exp 2-2-8 357
Exp 2-2-9 348
Exp 2-2-10 349
Exp 2-2-11 340
Exp 2-2-12 334
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Cell counting is a method used in many areas of cell experiments. Various methods
have been developed in order to count the cells correctly and to extract as much data
about the cells as possible. Firstly, the cells counted by manual methods when the
cells are stationary. Then, cells could be analyzed one by one by passing them through
a microchannel with the contributions of microfluidic technology. In this thesis, it is
aimed to count the cells while they are passing through the microchannel, to measure
their size and velocity, and to group according to cell size if more than one cell type is
desired to be counted. For this purpose, while the stained cells were passed through
the microchannel, they are illuminated with fluorescent light, and microscope images
are taken recorded at high frame rate with a camera. With the proposed method, cells
are automatically detected by using image processing techniques, and then accurate
counting was attempted by tracking them along the microchannel with the object

tracking algorithm.

The proposed algorithm consists of three main topics. The first topic is the automatic
detection of cells. This is achieved by using image processing algorithms such as
Gaussian filtering for noise elimination, background modeling and segmentation for
cell detection, morphological operations for removing segmentation faults and elim-
inating undesired situations caused by the setup conditions, and finally connected
component labeling method for labeling each detection separately with a centroid
and bounding box. The second topic is tracking of the cells along the microchannel.
This is achieved by an object tracking method. Kalman filter is used to obtain next
position estimates of the detections, and estimations and detections are matched by

using Hungarian algorithm for the optimal solution. Finally, width and speed infor-
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mation is obtained by using related measurements. For cases where multiple sizes of

cells are used, width measurements are grouped by K-medoids clustering algorithms.

In order to test the proposed method, experiments were carried out on the setup in the
Mikro Biyosistemler company, which is currently used for other researches. Accord-
ing to experimental results, the proposed method successfully counted the cells and
made clustering. The proposed method can be used in many different projects and
places, as it requires equipment such as microscopes and cameras that generally exist
in cell research laboratories. If the proposed method is compared with other methods,
it can be said that the proposed method is faster and more accurate than manual count-
ing methods, and it is ahead in terms of obtaining statistical information about cell
sizes. Compared to EIS method, the proposed method cannot give that much detailed
information about cells. However, EIS method requires a more complex method and
more expensive equipment to provide detailed information. As a result, the proposed
algorithm can be used for accurate and automated cell counting if the frame rate of
the camera is high enough for the cell speed, background is stable, camera is sta-
tionary, and the motion of cells in the microchannel is modelled by a linear motion
model. Differential counting of cells having different sizes is also can be done by
using the proposed algorithm. Moreover, the proposed method can be used directly
in cell counting as well as as a reference value for many cell counting studies under

development.

The proposed method uses recorded images for now that is it is working offline. As
future work, the camera images are directly taken from the serial interface of the cam-
era, and processed online. By this way, total computation time can be decreased as
the amount of file read time. In the proposed method, closing is used to eliminate a
setup problem. By designing an appropriate microchannel for the proposed method,
total process time can be decreased as the amount of closing operation. Velocity mea-
surement can be made with the proposed method, but it is only used to control the
flow rate. As future work, a new axis can be added for the grouping of different cells
by determining the effect of cell size on velocity by considering microfluidic dynam-
ics. The proposed method counts cells moving in groups along the microchannel as a
single cell. As future work, instead of counting connected cells as a single cell, it is

aimed to count cells separately by using detailed shape analysis.
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