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BERKİN AKSOY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

FEBRUARY 2022





Approval of the thesis:

ANALYZES OF BLOCK RECOMBINATION AND LAZY INTERPOLATION
METHODS AND THEIR APPLICATIONS TO SABER
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ABSTRACT

ANALYZES OF BLOCK RECOMBINATION AND LAZY INTERPOLATION
METHODS AND THEIR APPLICATIONS TO SABER

Aksoy, Berkin

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

February 2022, 61 pages

Since the beginning of the National Institute of Standards and Technology (NIST),

The Post-Quantum Cryptography (PQC) Standardization Process, efficient imple-

mentations of lattice-based algorithms have been studied extensively. Lattice-based

NIST PQC finalists use polynomial or matrix-vector multiplications on the ring with

type Zq[x]/f(x). For convenient ring types, Number Theoretic Transform (NTT) can

be used to perform multiplications as done in Crystals-KYBER among the finalists

of the NIST PQC Standardization Process. On the other hand, if the q value of the

scheme is a power of 2, as in NTRU and Saber, which are among the other lattice-

based finalists, NTT can not be used explicitly. Hence multiplications are performed

by the combination of Toom-Cook and Karatsuba algorithms. Recently, a novel tech-

nique called lazy interpolation has been introduced to increase the performance of
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Toom-Cook and Karatsuba algorithms. This thesis shows that the block recombina-

tion method is equivalent to lazy interpolation and can be used efficiently on multipli-

cation algorithms. On the practical side, we compare different hybrid multiplication

algorithms, then implement the block recombination method for Saber. Performance

results are given in cycle values on general-purpose Intel processors with C imple-

mentation. Our work speeds up key generation, encapsulation, and decapsulation

parts of Saber than the previous C implementations in the literature with a rate of

between 10%− 13%.

Keywords: Post-Quantum Cryptography, Lattice-Based Cryptography, Saber, Effi-

cient Algorithm Implementations, Block Recombination, Lazy Interpolation

viii



ÖZ

BLOCK RECOMBİNATİON VE LAZY INTERPOLATİON METODLARININ
ANALİZİ VE SABER ÜZERİNDE UYGULAMALARI

Aksoy, Berkin

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Şubat 2022, 61 sayfa

Amerikan Ulusal Standartlar Enstitüsü (NIST) tarafından başlatılan kuantum sonrası

kriptografi standardizasyon süreci ile birlikte akademik camia tarafından kafes ta-

banlı algoritmaların verimli gerçeklemeleri üzerine çalışmalar hız kazanarak devam

etmektedir. NIST yarışmasında finale kalan kafes tabanlı algoritmalar, Zq[x]/f(x)

halka yapıları üzerinde matris-vektör ve polinom çarpımları gerçekleştirmektedir-

ler. Literatürde yer alan NTT (Number Theoretical Transform) algoritması, uyumlu

halka yapılarına sahip algoritmalarda polinom çarpım algoritması olarak kullanılabil-

mektedir. NIST PQC yarışmasında finale kalan adaylar arasında yer alan Crystals-

KYBER’de NTT kullanılabilmekte iken NTRU ve Saber algoritmalarında kullanılan

halka yapısında tanımlı q değerleri 2 ve üssü katlarında tanımlı olduğu için NTT
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kullanımı mümkün olmamaktadır. Bu sebeple Toom-Cook ve Karatsuba algoritma-

ları ve kombinasyonları kullanılarak polinom çarpımları gerçekleştirilmektedir. Son

günlerde lazy interpolation olarak adlandırılan yeni bir metod tanıtılmış ve bu metod

sayesinde Toom-Cook ve Karatsuba algoritmalarının performansında iyileştirme sağ-

landığı gösterilmiştir. Bu tezde, block recombination metodunun çarpım algoritmala-

rına uygulanabileceğini ve lazy interpolation metoduna denk olduğunu gösteriyoruz.

Gerçekleme tarafında ise genel amaçlı işlemcilerde C dilinde yaptığımız çalışma ile

Saber’da hibrit çarpım algoritmalarını karşılaştırıyoruz ve block recombination me-

todunu uyguluyoruz. Bu sonuçlar doğrultusunda, Saber’da block recombination me-

todunu içeren çalışmamız ile literatürde yer alan C dilinde yapılan diğer gerçekleme

sonuçlarına göre anahtar üretimi, anahtar kapsülleme ve dekapsülleme aşamalarında

%10−%13 arasında performans artışı gözlemliyoruz.

Anahtar Kelimeler: Kuantum Sonrası Kriptografi, Kafes Tabanlı Kriptografi, Saber,
Verimli Algoritma Gerçeklemeleri, Block Recombination, Lazy Interpolation
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CHAPTER 1

INTRODUCTION

National Institute of Standards and Technology (NIST) organized a post-quantum

cryptography standardization process in 2017 and announced Round 3 finalists [1] in

July 2020. Three of four PKE/KEM schemes, Saber[13], NTRU[8] and Kyber[3],

are based on lattice-based cryptography, and NIST also stated that one of these al-

gorithms would be standard. In these schemes, arithmetic operations are defined on

the rings of the form Rq = Zq[x]/f(x) where f(x) ∈ Z. Multiplications and ad-

ditions of polynomials on these rings affect the performance and efficiency of these

schemes with different n and q values. Kyber[3] supports NTT (number theoretic

transform) [10] which has complexity O(n log n). However, constraints on the n and

q parameters limit the security levels of the schemes which can use NTT. To com-

pute A(x)B(x) = C(x) in Rq by using NTT, the forward and inverse transforms are

used and NTT−1(NTT (A)×NTT (B) where A and B consist of the coefficient of

A(x), B(x), is computed. First, coefficients of A(x) and B(x) are transformed to the

NTT domain by the forward NTT function. Second, multiplications are done and, the

result is found in the NTT domain. Therefore, the result of multiplications has to be

reversed from the NTT domain by reversing the NTT function in the final stage.
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Due to constraints of the ring structure (q = 2k), Saber and NTRU schemes cannot use

NTT multiplication. Therefore, Toom Cook [27], [9] and Karatsuba [19] algorithms

and combinations are used to perform polynomial multiplications. Toom-Cook and

Karatsuba based multiplication algorithms need pre-and post-processing operations

to perform polynomial multiplication with smaller degrees than the original multi-

plicands. The pre-and post-processing process of the algorithms is improved using

different mathematical approaches. In [7], the block recombination method has been

introduced and, its advantages are given to decrease the time complexity with opti-

mized post-processing operations of Toom-Cook and Karatsuba algorithms. Recently

in [23], the lazy interpolation method has also been presented for the Toom-Cook and

Karatsuba algorithms, and techniques similar to those used in the block recombina-

tion method are used to decrease the time complexity of multiplication algorithms.

In this thesis, we give the block recombination and lazy interpolation methods’ anal-

ysis in terms of their computational cost and the techniques they use to show the

equivalence of the two methods. On practical aspects, we work on the efficient im-

plementation of matrix-vector and vector-dot products on Saber. Selecting the ef-

ficient hybrid multiplication strategy, a combination of Toom Cook and Karatsuba

algorithms depends on the implementation platform or the ring types in which the

polynomials are multiplied. By examining different hybrid multiplication algorithms,

we show the best combination to perform matrix-vector and vector-dot products in

Saber. Then, we apply the block recombination application to Saber and get better

results than the lazy interpolation application given in [23].

On general-purpose Intel processors, we compare the performance results in terms of

clock cycles with previous C implementations [13, 14, 5, 23, 12] and our work have
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the best results among the others with improvement rates up to 13% on key genera-

tion, encapsulation, and decapsulation stages of Saber. All source codes available at

https://github.com/berkinaksoy/saber

1.1 Outline of the Thesis

In Chapter 2, post-quantum cryptography, lattice-basics, Saber crypto-scheme, and

polynomial multiplication algorithms are presented. Analysis of block recombination

and lazy interpolation methods are given and compared in Chapter 3. In Chapter

4, we apply the block recombination method to Saber and compare our work with

lazy interpolation application in [23]. In Chapter 5, we implement different hybrid

multiplication algorithms, block recombination methods to Saber, and compare the

performance results in C implementation. In Chapter 6, the results of our work are

summarized, and we mention the ideas and strategies that are open to developing in

the future.

3
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CHAPTER 2

PRELIMINARY TO THE SUBJECT

Some essential definitions and preliminaries will be introduced in this chapter to offer

the reader enough theoretical knowledge of our work and analysis.

This chapter is divided into four sections. The first section will give brief information

about Post-Quantum Cryptography. Secondly, lattice-basics are the background of

PQC algorithms that will be summarized. Thirdly, Saber crypto-scheme, one of the

candidates of the NIST standardization process in the final round, will be explained

by giving the main primitives and notations. Due to its crucial role in our analyzes,

Toom-Cook and Karatsuba algorithms and their applications will be given in the last

section.

2.1 Post-Quantum Cryptography

With the development of quantum computers, RSA (Rivest–Shamir–Adleman), DSA

(Digital Signature Algorithm), ECDSA (Elliptic Curve Digital Signature Algorithm),

and ECDH (Elliptic Curve Diffie-Hellman) are currently used public-key algorithms

based on integer factorization and discrete logarithm problems. They will be broken
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and solved in polynomial time by Shor algorithm [26]. Micheal Mosca stated [24]

that "By 2026, I believe there is a 1/7 possibility of breaking RSA-2048 and a 1/2

chance by 2031. Many firms, including Google and IBM, work on the quantum com-

puters development process. Hence, intensive academic research has been done on

developing new public key crypto schemes resistant to both classical and quantum

attacks. There are five types of algorithms with security against classical and quan-

tum computers. These algorithms consist of lattice-based, hash-based, code-based,

isogeny-based, and multivariate polynomials. It is called post-quantum cryptography.

NIST organized the standardization process in 2017. In the first round of the process,

82 algorithms were submitted, only 69 were accepted and evaluated. In 2019, 26

algorithms were selected as second-round candidates, and finally, seven were intro-

duced as final-round candidates in 2020. NIST stated that selection criteria consist

of security, sizes, and performance. Therefore, studies on efficient algorithm imple-

mentations that are both performance-oriented and compact size will continue in the

future. Moreover, NIST also highlights that multiple algorithms based on different

problems will be standard instead of a single algorithm that will be standard at the

end of the competition. Thereby, various working groups will continue to work on

the development of algorithms based on different problems.

2.2 Lattice-Basics

Let {b1, b2, . . . , bn} is linearly independent n-dimensional vector over ring Rn. The

lattice L can be defined, m1b1+. . .+mnbn where mi ∈ Z as a set of vectors. L can be

generated from set of vectors ({b1, b2, . . . , bn}), which called basis of lattice. There
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are infinitely many bases, that can generate the lattice L. Length of the bases is in the

form ||x|| = (x2
1 + . . . + x2

n)
1/2, where set of vectors defined as x = (x1, . . . , xn).

Finding shortest non-zero vector ||x|| is hard to solve and called shortest vector prob-

lem in lattice-based cryptography.

The LLL algorithm by Lenstra, Lenstra, and Lovash [25] is the most efficient algo-

rithm to find reduced bases in the lattice. It runs in with complexity O(n6 log3B).

When the n dimensional vector space increases, the founded short vector deviates

from the shortest vector of the lattice. Let {b1, b2, . . . , bn} is linearly independent n-

dimensional vector over ring Rn, then determinant of the lattice calculated as D =

|det(b1, . . . , bn)|. λ be the shortest nonzero vector in lattice L. The output of the LLL

algorithm gives a basis that meets the following three conditions:

1. ||b∗1|| ≤ 2(n−1)/4D1/4,

2. ||b∗1|| ≤ 2(n−1)/2λ,

3. ||b∗1||||b∗2|| · · · ||b∗n|| ≤ 2(n−1)/4D.

Lattice-based PQC algorithms are based on problems, Learning with Error Problem

(LWE), Ring Learning with Error (RLWE), Module Learning with Error (MLWE),

and Module Learning with Rounding (MLWR) are some of them and as explained

follows:

It is easy to solve the system with linear equations. If the noise (an error) is added to

the system, the problem becomes too hard to solve. LWE [2] is based on adding noise

to the system with the specified error distribution. For modulus q ≥ 2, n ≥ 1 and

error probability distribution χ on Zq, samples of the error distribution in normal-form

are calculated as (a,b = 1
q
⟨a, s⟩ + e mod 1). Vector a ∈ Zn

q is selected uniformly
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at random. Secret vector, s ∈ Zn
q , and error e are chose from the distribution χ.

Distinguishing error distribution from a uniform distribution is named the decision

LWE problem. Given random samples from LWE distribution, finding the secret

vector s with high probability is hard to solve the search LWE problem.

RLWE is defined as a special case of LWE problem in [22]. Coefficients of poly-

nomials are defined in Rq[x] instead of Zq[x]. Error, e, is a small polynomial and

sampled from the distribution χ. A publicly known polynomial, a, is selected ran-

domly in Rq[x]. Secret, s, is a small polynomial and sampled from the distribution χ.

Polynomial b is calculated as a.s + e, hence, finding secret polynomial s is hard to

solve search problem.

LWE-based cryptosystems are easily scalable but have less performance, while RLWE

based cryptosystems have advantageous on speed and size criteria but are more vul-

nerable to attacks. Therefore, MLWE problem [29, 20], is introduced to solve the

trade-off between LWE and RLWE offers an interpolation between LWE and RLWE.

Ring elements a and s in RLWE are replaced with module elements over the same

ring. MLWE problem is a special case of RLWE with rank 1. Publicly known matrix,

a, and secret vector, s are sampled in Rd
q . Given d is the rank of the module. As in

the LWE-RLWE problem, polynomial b is constructed as a.s + e, and finding secret

polynomial s is hard to solve the search problem.

Learning with Rounding (LWR) problem is similar to LWE. However, this time de-

terministic error/noise is added by reducing with modulus q and p. MLWR problem

and MLWE are module versions of LWE/LWR, offering performance improvements.

8



2.3 Saber Scheme

Saber [13, 14, 5] is a cryptographic primitive family consisting of the SaberPKE and

SaberKEM that are IND-CPA secure encryption scheme and IND-CCA secure key

encapsulation mechanism, respectively. Saber is one of the NIST PQC standardiza-

tion process’ lattice-based finalists, and its security is based on the hardness of the

Module Learning with Rounding (Mod-LWR) problem [21, 4]. SaberPKE consist

of key generation, encryption and decryption schemes that are given in Algorithm 1,

2, 3 respectively. By using Fujisaki-Okamoto transform [15], [17] public-key encry-

tion scheme is transformed to Key Encapsulation, Encapsulation and Decapsulation

stages which are given for SaberKEM in Algorithm 4, 5, 6, respectively. SaberKEM

algorithm has three different parameter sets as shown in Table 2.1. Rings defined on

Saber are not suitable for using NTT. Hence, Toom-Cook, Karatsuba, and schoolbook

methods and their combinations are used as polynomial multiplication algorithms.

2.3.1 Saber Notation

In Table 2.1 and Algorithms 1, 2, 3, 4, 5, 6, given parameters are explained as follows:

• Rq is quotient ring and equal to Zq[x]/f(x) where f(x) = xn+1 with n = 256.

• Rlxk represents the ring of lxk matrices over ring R. l value determines the

dimension of the matrices and security levels of the algorithm. Increasing l

values increase the security level of the algorithm.

• The coefficient of the secret vector s sampled by centered binomial distribution

βµ(R
l×1
q ) where parameter µ < p and samples are in the interval [−µ/2, µ/2].
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• p,q,T are powers of 2. Choosing high p and T values increase correctness while

decrease security level. q = 2ϵq , p = 2ϵp , T = 2ϵT with ϵq > ϵp > ϵT and hence

T |p|q.

• U denotes the uniform distribution. SHAKE-128 is used to generate seed value.

F ,H are implemented by SHA-256 and G is implemented by SHA-512.

• h ∈ Rlx1
q is a constant vector, h1, h2 ∈ Rq are constant polynomials.

Table 2.1: SaberKEM Parameter Sets

Parameter Set LIGHTSABER SABER FIRESABER

Size of n, q, p 256, 213, 210 256, 213, 210 256, 213, 210

l, T , µ 2, 23, 10 3, 24, 8 4, 26, 6

Rq Z8192[x]/(X
256 + 1) Z8192[x]/(X

256 + 1) Z8192[x]/(X
256 + 1)

Fail probability 2−120 2−136 2−165

Quantum bit security 114 185 257

NIST security level 1 3 5

Algorithm 1 SaberPKE.KeyGen

seedA ← U({0, 1}256)

A = gen(seedA) ∈ Rl×l
q

r = U({0, 1}256)

s = βµ(R
l×1
q ; r)

b = ((AT s + h)mod q)≫ (ϵq − ϵp)

return (pk := (seedA,b), sk := (s)))
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Algorithm 2 SaberPKE.Encryption

A = gen(seedA) ∈ Rl×l
q

if r is not specified then

r = U({0, 1}256)

s′ = βµ(R
l×1
q ; r)

b′ = ((As′ + h)mod q)≫ (ϵq − ϵp) ∈ Rl×1
p

v′ = bT (s′ mod p) ∈ Rp

cm = (v′ + h1 − 2ϵp−1mmod p)≫ (ϵp − ϵT ) ∈ RT

return c := (cm,b
′)

Algorithm 3 SaberPKE.Decryption

v = b′T (smod p) ∈ Rp

m′ = ((v − 2ϵp−ϵT cm + h2)mod p)≫ (ϵp − 1) ∈ R2

return m′

Algorithm 4 SaberKEM KeyGeneration

(seedA,b, s) = SaberPKE.KeyGen()

pk = (seedA,b)

pkh = F(pk)

z = U({0, 1}256)

return (pk := (seedA,b), sk := (s, z, pkh))

Algorithm 5 SaberKEM Encapsulation

m← U({0, 1}256)

(K̂, r) = G(F(pk),m)

c = SaberPKEEncryption(pk,m; r)

K = H(K̂, c)

return (c,K)
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Algorithm 6 SaberKEM Decapsulation (sk = (s, z, pkh), pk = (seedA,b), c)

m′ = SaberPKE.Decryption(s, c)

(K̂ ′, r′) = G(pkh,m′)

c′ = SaberPKE.Encryption(pk,m′; r′)

if c = c′ then

return K = H(K̂ ′, c)

else

return K = H(z, c)

2.4 Multiplication Algorithms

Fundamentals of the polynomial multiplication algorithms are given in this section.

Firstly, the naive method as schoolbook is presented, then Toom-Cook and Karatsuba

algorithms and their use-cases are explained with their advantages.

2.4.1 Schoolbook Method

Schoolbook method is the naive algorithm to multiply polynomials with A(x) and

B(x) with the degree of n − 1. Firstly, polynomial A(x) are splitted into 2 parts,

A(x) = A0 + A1y, where A0 = a0 + a1 + ... + an
2
−1x

n
2
−1, A1 = an

2
+ an

2
+1x +

...+ an−1x
n
2
−1 and y = x

n
2 . By the same way, B(x) are splitted into 2 parts. Then the

multiplication of A(x) and B(x) are calculated as:

A(x)B(x) = A0B0 + y[(A1B0) + (A0 +B1)] + y2(A1B1) (2.1)

Result of polynomial multiplication C(x) can be found by 4 polynomial multipli-

cations with degree of (n/2) and some additions. If M(n) is the complexity of

A(x)B(x) multiplication then M(n) = 4M(n/2) + c.n. By master theorem [11],
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complexity of school-book method can be found O(nlog2 4) = O(n2).

2.4.2 Karatsuba 2-way Algorithm

Karatsuba Multiplication [19] use divide and conquer strategy that improve quadratic

complexity of the classic schoolbook multiplication. To multiply polynomials with

A(x) and B(x) with the degree of n − 1, firstly, polynomial A(x) are splitted into 2

parts, A(x) = A0+A1y, where A0 = a0+ a1+ ...+ an
2
−1x

n
2
−1, A1 = an

2
+ an

2
+1x+

...+ an−1x
n
2
−1 and y = x

n
2 . By the same way, B(x) are splitted into 2 parts.Then the

multiplication of A(x) and B(x) are calculated as:

A(x)B(x) = A0B0 + y[(A0 + A1)(B0 +B1)− A0B0 − A1B1] + A1B1y
n
2 (2.2)

Using Karatsuba 2-way method, result of polynomial multiplication C(x) can be

found by 3 polynomial multiplications with degree of (n/2) and some additions.

If M(n) is the complexity of A(x)B(x) multiplication then M(n) = 3M(n/2) +

c.n. By master theorem [11], complexity of Karatsuba 2-way method can be found

O(nlog2 3) = O(n1.58). The total complexity of the Karatsuba 2-way algorithm can be

calculated from block complexities as follows:

Component Polynomial Formation (CPF):

CPF (A) = [(A0), (A1), (A0 + A1)]

CPF (B) = [(B0), (B1), (B0 +B1)]

(2.3)

Totally 6CPF (n/4) block required where CPF (n) = 3CPF (n/2) + n/2

13



Component multiplication (CM):

CM(A,B) = CPF (A)× CPF (B)

CPF (A) ∗ CPF (B) = (A0B0)︸ ︷︷ ︸
P0

, (A1B1)︸ ︷︷ ︸
P1

, (A0 + A1)(B0 +B1)︸ ︷︷ ︸
P2

(2.4)

After CM part, we have three recursive products of polynomials with size n/2, i.e

3CM(n/2) required.

Then Karatsuba 2-way reconstruction algorithm applied to get result C in the follow-

ing expressions in terms of Pi, i = 0, 1, 2

C = (P0 + (P2 − P1 − P0)x
n/2 + P1x

n)

To reconstruct resulting polynomial, we require 3R(n/2) blocks.

Finally, complexity of the Karatsuba 2-way formula can be evaluated as follows:

= 6CPF (n/2)+3CM(n/2)+3R(n/2) where complexity of CPF, CM and R blocks

converted in Equation 2.5.

CPF (n/2) =
1

3
CPF (n)

CM(n/2) =
1

3
CM(n)

R(n/2) =
1

3
R(n)

(2.5)

Complexity of CPF, CM, R blocks are shown in Table 2.2 and complexity of opti-

mized reconstruction part (R(n) = 7
2
nlog2 3− 5n+ 3

2
) as calculated in [7]. Therefore,

total complexity of the Karatsuba 2-way formula calculated as follows:

= 6CPF (n/2) + 3CM(n/2) + 3R(n/2)

= 2CPF (n) + CM(n) +R(n)

= 2(nlog2 3 − n) + nlog2 3 +
7

2
nlog2 3 − 7n+

3

2

= 6, 5nlog2 3 − 7n+ 1, 5

(2.6)
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Table 2.2: Block complexities of Karatsuba 2-way formula

Blocks Complexity

CPF (n) nlog2 3 − n

CM(n) nlog2 3

R(n) 7
2
nlog2 3 − 7n+ 3

2

2.4.3 Karatsuba 3-way Algorithm

Let A and B are polynomials with degree of n-1. A and B polynomials are divided

into 3 such as A = A0 + A1x
n/3 + A2x

2n/3 and B = B0 + B1x
n/3 + B2x

2n/3.

Multiplication of A(x)B(x) require 6 recursive products of size n/3 and then result

polynomial is found as follows:

P0 = A0B0, P1 = A1B1,

P2 = (A1 + A2)(B1 +B2), P3 = A2B2,

P4 = (A0 + A1)(B0 +B1), P5 = (A0 + A2)(B0 +B2)

(2.7)

Result of polynomial multiplication C(x) can be found by 6 (n/3) degree polyno-

mial multiplication and some additions. If M(n) is the complexity of A(x)B(x)

multiplication then M(n) = 6M(n/3) + c.n. By master theorem [11], complexity

of Karatsuba 3-way method can be found O(nlog3 6) = O(n1.63). Total complexity

of Karatsuba 3-way algorithm can be calculated from block complexities as follows:

Component Polynomial Formation (CPF):

CPF (A) = [(A0), (A1), (A1 + A2), (A2), (A0 + A1), (A0 + A2)]

CPF (B) = [(B0), (B1), (B1 +B2), (B2), (B0 +B1), (B0 +B2)]

(2.8)
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Totally 12CPF (n/4) block required where CPF (n) = 6CPF (n/4) + n/4

Component multiplication (CM):

CM(A,B) = CPF (A)× CPF (B)

CPF (A) ∗ CPF (B) = (A0B0)︸ ︷︷ ︸
P0

, (A1B1)︸ ︷︷ ︸
P1

, (A1 + A2)(B1 +B2)︸ ︷︷ ︸
P2

, (A2B2)︸ ︷︷ ︸
P3

,

(A0 + A1)(B0 +B1)︸ ︷︷ ︸
P4

, (A0 + A2)(B0 +B2)︸ ︷︷ ︸
P5

(2.9)

After CM part, we have six recursive products of polynomials with size n/3, i.e

6CM(n/3) required.

Then Karatsuba 3-way reconstruction algorithm applied to get result C in the follow-

ing expressions in terms of Pi, i = 0, 1, 2, ..., 5

C = P0 + xn/3(P4−P0−P1) + x2n/3(P5−P0−P1−P3) + x3n/3(P2−P1−P3) +

x4n/3(P3)

To reconstruct resulting polynomial, we require 6R(n/3) blocks.

Finally, complexity of the Karatsuba 3-way formula can be evaluated as follows:

= 12CPF (n/3)+6CM(n/3)+6R(n/3) where complexity of CPF, CM and R blocks

are converted in Equation 2.3.

CPF (n/3) =
1

6
CPF (n)

CM(n/3) =
1

6
CM(n)

R(n/3) =
1

6
R(n)

(2.10)

Complexity of CPF, CM, R blocks are shown in Table 2.3 and complexity of opti-

mized reconstruction part (R(n) = 14
5
nlog3 6 − 4n + 6

5
) as given in [7]. Therefore,
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total complexity of the Karatsuba 3-way formula calculated as follows:

= 12CPF (n/3) + 6CM(n/3) + 6R(n/3)

= 2CPF (n) + CM(n) +R(n)

= 2(nlog3 6 − n) + nlog3 6 +
14

5
nlog3 6 − 4n+

6

5

= 5, 8nlog3 6 − 6n+ 1, 2

(2.11)

Table 2.3: Block complexities of Karatsuba 3-way formula

Blocks Complexity

CPF (n) nlog3 6 − n

CM(n) nlog3 6

R(n) 14
5
nlog3 6 − 4n+ 6

5

2.4.4 Bernstein 4-way Split Formula

The strategy of the Bernstein four-way split formula is two recursive applications

of the Karatsuba algorithm. Bernstein [6] optimize the reconstruction part of the

four-way split formula. Let A and B be two polynomials with the degree of n − 1,

where n = 2k for k ≥ 2. A and B polynomials are divided into four A = A0 +

A1x
n/4+A2x

2n/4+A3x
3n/4 and B = B0+B1x

n/4+B2x
2n/4+B3x

3n/4. To multiply

polynomials A(x) and B(x) with three separate computations in terms of the CPF,

CM, and R as given below:

Component Polynomial Formation (CPF): CPF function is used twice recursively.

Let A = Av+Awx
n/2, B = Bv+Bwx

n/2 then Av = A0+A1x
n/4, Aw = A2+A3x

n/4

17



CPF (A) = (Av, Av + Aw, Aw)

CPF (B) = (Bv, Bv +Bw, Bw)

CPF (CPF (A)) = CPF (Av), CPF (Av + Aw), CPF (Aw)

CPF (CPF (B)) = CPF (Bv), CPF (Bv +Bw), CPF (Bw)

CPF (Av) = (A0, A0 + A1, A1)

CPF (Bv) = (B0, B0 +B1, B1)

CPF (Av + Aw), CPF (Aw),CPF (Bv +Bw), CPF (Bw) calculated in a similar way

(2.12)

Totally 18CPF (n/4) blocks required where CPF (n) = 3CPF (n/2) + n/2

Component multiplication (CM):

CM(A,B) =CPF (Av)× CPF (Bv),

CPF (Av + Aw)× CPF (Bv +Bw),

CPF (Aw)× CPF (Bw)

CPF (Av)× CPF (Bv) = (A0B0)︸ ︷︷ ︸
P0

, (A0 + A1)(B0 +B1)︸ ︷︷ ︸
P2

, (A1B1)︸ ︷︷ ︸
P1

CPF (Aw)× CPF (Bw) = (A2B2)︸ ︷︷ ︸
P3

, (A2 + A3)(B2 +B3)︸ ︷︷ ︸
P5

, (A3B3)︸ ︷︷ ︸
P4

CPF (Av + Aw)× CPF (Bv +Bw) = (A0 + A2)(B0 +B2)︸ ︷︷ ︸
P6

,

(A0 + A1 + A2 + A3)(B0 +B1 +B2 +B3)︸ ︷︷ ︸
P8

,

(A1 + A3)(B1 +B3)︸ ︷︷ ︸
P7

(2.13)
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Reconstruction (R): After CM part, we have nine polynomial products with degree

of n/4, i.e, 9CM(n/4) blocks are required. Then two layer of the Karatsuba recon-

struction algorithm applied recursively to get result C in the following expressions in

terms of Pi, where i = 0, 1, 2, ..., 8

C =P0 + xn/4(P2 − P0 − P1) + x2n/4(P6 + P1 − P0 − P3)

+ x3n/4(P8 + P0 + P3 + P1 + P4 − P2 − P5 − P6 − P7)

+ x4n/4(P7 − P1 − P4 + P3) + x5n/4(P5 − P3 − P4) + x6n/4P4

(2.14)

To reconstruct polynomial result, we need 9R(n/4) blocks. Finally, Bernstein four-

way split formula’s complexity can be evaluated as 18CPF (n/4) + 9CM(n/4) +

9R(n/4) in Equation 2.15 where complexity of CPF, CM and R blocks are presented

in Table 2.4. Optimized block complexity is derived in [6].

= 18CPF (n/4) + 9CM(n/4) + 9R(n/4)

= 2CPF (n) + CM(n) +R(n)

= 2(nlog2 3 − n) + nlog2 3 +
137

40
nlog2 3 − 24n

5
+

11

8

= 6, 43nlog2 3 − 6, 8n+ 1, 38

where CPF (n/4) =
1

9
CPF (n), CM(n/4) =

1

9
CM(n), R(n/4) =

1

9
R(n)

(2.15)
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Table 2.4: Block complexities of Bernstein four-way formula

Blocks Complexity

CPF (n) nlog2 3 − n

CM(n) nlog2 3

R(n) 137
40
nlog2 3 − 24n

5
+ 11

8

2.4.5 Toom-Cook Algorithm

Toom-Cook multiplication [27] and [9] is a generalization technique of Karatsuba

method, i.e, Toom-Cook k-way method which divide polynomial into k equal parts

instead of 2 in Karatsuba. Then splitted polynomials are multiplied and result is

constructed from this polynomial multiplications. If M(n) is the complexity of

A(x)B(x) multiplication then M(n) = (2k− 1)M(n/k) + c.n. For example, Toom-

Cook 4-way (k = 4) complexity, M(n) = 7M(n/4) + c.n, can be can be calculated

by Master Theorem as O(n1.40).

2.4.6 Toom-Cook 4-way Method

Let Av and Bv are two polynomials degree with n − 1, where n = 2k for k ≥ 2. Av

and Bv polynomials are divided into four Av = Av0+Av1x
n/4+Av2x

2n/4+Av3x
3n/4

and Bv = Bv0 + Bv1x
n/4 + Bv2x

2n/4 + Bv3x
3n/4. Product of AvBv is calculated as

given steps below:

Evaluation Part: Av polynomial is evaluated in 7 different points (0, 1,−1, 2,−2,−3,∞),

i.e, thanks to Toom-Cook 4-way method, Av polynomial can be splitted to 2k − 1

polynomials have degree n/4− 1 where k = 4.
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General matrix definition is as follows:

Av(0)

Av(1)

Av(−1)

Av(2)

Av(−2)

Av(−3)

Av(∞)



=



00 01 02 03

10 11 12 13

−10 −11 −12 −13

20 21 22 23

−20 −21 −22 −23

−30 −31 −32 −33

∞0 ∞1 ∞2 ∞3



.



Av0

Av1

Av2

Av3


(2.16)

Similarly, Bv polynomial is evaluated in 7 points with the same way and evaluated

polynomials in Equation 2.16 transposed as follows:

Let[Av(0), Av(1), ..., Av(∞)]T = XT , [Bv(0), Bv(1), ..., Bv(∞)]T = Y T (2.17)

XT =((Av0), (Av0 + Av1 + Av2 + Av3), (Av0 − Av1 + Av2 − Av3),

(Av0 + 2Av1 + 4Av2 + 8Av3), (Av0 − 2Av1 + 4Av2 − 8Av3),

(Av0 − 3Av1 + 9Av2 − 27Av3), (Av3))

Y T =((Bv0), (Bv0 +Bv1 +Bv2 +Bv3), (Bv0 −Bv1 +Bv2 −Bv3),

(Bv0 + 2Bv1 + 4Bv2 + 8Bv3), (Bv0 − 2Bv1 + 4Bv2 − 8Bv3),

(Bv0 − 3Bv1 + 9Bv2 − 27Bv3), (Bv3))

(2.18)

Multiplication Part:

XTY T = CT
v = [Cv(0), Cv(1), Cv(−1), Cv(2), Cv(−2), Cv(−3), Cv(∞)] (2.19)

Result of component multiplication (XTY T ) can be calculated by the combination of

Equation 2.18 and 2.19 as follows:
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Cv(0) = Av0Bv0

Cv(1) = (Av0 + Av1 + Av2 + Av3)(Bv0 +Bv1 +Bv2 +Bv3)

Cv(−1) = (Av0 − Av1 + Av2 − Av3)(Bv0 −Bv1 +Bv2 −Bv3)

Cv(2) = (Av0 + 2Av1 + 4Av2 + 8Av3)(Bv0 + 2Bv1 + 4Bv2 + 8Bv3)

Cv(−2) = (Av0 − 2Av1 + 4Av2 − 8Av3)(Bv0 − 2Bv1 + 4Bv2 − 8Bv3)

Cv(3) = (Av0 − 3Av1 + 9Av2 − 27Av3)(Bv0 − 3Bv1 + 9Bv2 − 27Bv3)

Cv(∞) = Av3Bv3

(2.20)

Interpolation Part:

General matrix definition is given below:



Cv(0)

Cv(1)

Cv(−1)

Cv(2)

Cv(−2)

Cv(−3)

Cv(∞)



=



00 01 02 03 04 05 06

10 11 12 13 14 15 16

−10 −11 −12 −13 −14 −15 −16

20 21 22 23 24 25 26

−20 −21 −22 −23 −24 −25 −26

−30 −31 −32 −33 −34 −35 −36

∞0 ∞1 ∞2 ∞3 ∞4 ∞5 ∞6



.



Cv0

Cv1

Cv2

Cv3

Cv4

Cv5

Cv6



(2.21)
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The equation 2.21 is converted to 2.22 by inverting the matrix as follow:



Cv0

Cv1

Cv2

Cv3

Cv4

Cv5

Cv6



=



00 01 02 03 04 05 06

10 11 12 13 14 15 16

−10 −11 −12 −13 −14 −15 −16

20 21 22 23 24 25 26

−20 −21 −22 −23 −24 −25 −26

−30 −31 −32 −33 −34 −35 −36

∞0 ∞1 ∞2 ∞3 ∞4 ∞5 ∞6



−1

.



Cv(0)

Cv(1)

Cv(−1)

Cv(2)

Cv(−2)

Cv(−3)

Cv(∞)



(2.22)

Next, [Cv0, Cv1, Cv2, Cv3, Cv4, Cv5, Cv6] is found from above general expression of

interpolation part and result polynomial reconstructed as follows:

Reconstruction Part:

Cv = AvBv

= Cv0 + Cv1x
n/4 + Cv2x

2n/4 + Cv3x
3n/4 + Cv4x

4n/4 + Cv5x
5n/4 + Cv6x

6n/4

(2.23)

To calculate the complexity of Toom Cook 4-way method, the analysis from the Equa-

tion 2.22 continues below:
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

Cv0

Cv1

Cv2

Cv3

Cv4

Cv5

Cv6



=



1 0 0 0 0 0 0

1

3

1

2
−1 − 1

20

1

4
− 1

30
12

−5

4

2

3

2

3
− 1

24
− 1

24
0 4

− 5

12

1

24

7

12

1

24
− 7

24

1

24
−15

1

4
−1

6
−1

6

1

24
− 1

24
0 −5

1

12
− 1

24
− 1

12

1

120

1

24
− 1

120
3

0 0 0 0 0 0 1



.



Cv(0)

Cv(1)

Cv(−1)

Cv(2)

Cv(−2)

Cv(−3)

Cv(∞)



(2.24)

Interpolation part is resumed in Equation 2.25 and the complexity of the method is

calculated in terms of blocks’ complexity as given in Equation 2.26.
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Cv0 = Cv(0) = Av0Bv0

Cv1 =
1

3
Cv(0) +

1

2
Cv(1)− Cv(−1)−

1

20
Cv(2) +

1

4
Cv(−2)−

1

30
CV (−3) + 12Cv(∞)

Cv2 = −
5

4
Cv(0) +

2

3
Cv(1)−

2

3
Cv(−1)−

1

24
Cv(2)−

1

24
Cv(−2) + 4Cv(∞)

Cv3 = −
5

12
Cv(0) +

1

24
Cv(1)−

7

12
Cv(−1))−

1

24
Cv(2) +

−7
24

Cv(−2) +
1

24
CV (−3)

− 15Cv(∞)

Cv4 =
1

4
Cv(0)−

1

6
Cv(1)−

1

6
Cv(−1) +

1

24
Cv(2) +

1

24
Cv(−2)− 5Cv(∞)

Cv5 =
1

12
Cv(0)−

1

24
Cv(1)−

1

12
Cv(−1)) +

1

120
Cv(2) +

1

24
Cv(−2)−

1

120
CV (−3)

+ 3Cv(∞)

Cv6 = Cv(∞) = Av3Bv3

(2.25)

M(n) = 7M(n/4)︸ ︷︷ ︸
CM

+30(
n

2
− 1) + 6(

n

4
− 1)︸ ︷︷ ︸

R

+30(
n

4
)︸ ︷︷ ︸

CPF (2.26)

From Equation 2.25 and 2.26, reconstruction cost comes from the interpolation part

required 30 polynomial additions between polynomials degree with (
n

2
)− 2 and that

causes computational cost as 30(
n

2
−1). Cost of overlap, 6(

n

4
−1) also comes from the

addition of coefficients of the result polynomial (C0+C1x
n/4+C2x

2n/4+C3x
3n/4+

C4x
4n/4 + C5x

35n/4 + C6x
6n/4). Cost of polynomial evaluation at 7 different points,

i.e., CPF part have 30 polynomial additions between polynomials degree with (
n

4
−1)

whose computational cost equal to 30(
n

4
). Cost of multiplication of evaluated poly-

nomials, i.e., CM part have 7 polynomial multiplications between polynomials degree

with (
n

4
− 1) that causes 7M(n/4) computational cost. At this point, complexity is
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derived as follows: (Note that: n = 4l and 7l = n1.40):

M(n) = 7M(n/4) + 30(
n

2
− 1) + 6(

n

4
− 1) + 30(

n

4
)

= 7M(
n

4
) +

48n

2
− 36

= 7(7M(
n

16
) +

48n

8
− 33) +

48n

2
− 36)

= 72M(
n

16
) + 7(

48n

8
) +

48n

2
− 8(36)

= 72((7M(
n

64
) +

48n

32
− 36) + 11(

48n

8
− 8(36))

= 73M(
n

43
) +

48n

2
(
72

42
+

7

4
+ 1)− 36(72 + 7 + 1)

= 7l + 24n(

7

4

l

− 1

7

4
− 1

)− 36(
7l − 1

7− 1
)

= 7l + 24n
4

3
(
7

4

l

− 1)− 6(7l − 1)

= 7l + 32(7l)− 32n− 6(7l) + 6

= 27n1.40 − 32n+ 6

(2.27)

CPF and CM blocks’ complexity is given CPF (n) = (nlog4 7 − n) and CM(n) =

nlog4 7 in [7]. Complexity of reconstruction block is found in Equation 2.28 and hence

all complexity of blocks CPF, CM, R shown in Table 2.5.

R(n) = M(n)− 2CPF (n)− CM(n)

= 24n1.40 − 30n+ 6

(2.28)

Additionally, reconstruction part of the algorithm is optimized in [28] and that ex-

plained as follows:
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Table 2.5: Block complexities of Toom Cook-4 way method

Blocks Complexity

CPF (n) nlog4 7 − n

CM(n) nlog4 7

R(n) 24nlog4 7 − 30n+ 6

Consider C(x, y) = A(x, y)B(x, y). First of all, C(x, y) are calculated at 7 points.

C(0, 1) = c0 = a0b0

C(1, 0) = c6 = a3b3

C(1, 1) = c6 + c5 + c4 + c3 + c2 + c1 + c0

= (a3 + ...+ a0)(b3 + ...+ b0)

C(1,−1) = c6 − c5 + c4 − c3 + c2 − c1 + c0

= (−a3 + ...+ a0)(−b3 + ...+ b0)

C(2, 1) = 64c6 + 32c5 + 16c4 + 8c3 + 4c2 + 2c1 + c0

= (8a3 + 4a2 + 2a1 + a0)(8b3 + 4b2 + 2b1 + b0)

C(2,−1) = 64c6 − 32c5 + 16c4 − 8c3 + 4c2 − 2c1 + c0

= (−8a3 + 4a2 − 2a1 + a0)(−8b3 + 4b2 − 2b1 + b0)

C(1, 2) = c6 + 2c5 + 4c4 + 8c3 + 16c2 + 32c1 + 64c0

= (a3 + 2a2 + 4a1 + 8a0)(b3 + 2b2 + 4b1 + 8b0)

(2.29)
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Secondly, coefficients of the result polynomial (C0, C1, ..., C6) are found below:

V1 = C(1, 1)− c6 − c0

V2 = c6 + c0 − C(1,−1)

V3 = (C(2, 1)− c0)/2− 32c6

V4 = 32c6 + (c0 − C(2,−1))/2

V5 = (C(1, 2)− c6)/2− 32c0

V6 = (V1 − V2)/2

V7 = (V3 − V4)/2

B1 = V1 − c2 − c4

B2 = V3 − 8c4 − 2c2

B3 = V5 − 2c4 − 8c2

B4 = (B2 − 4B1)/3

B5 = (B3 − 4B1)/3

B6 = (B4 +B5)/3

c1 = (B5 +B6)/5

c2 = V6 − c4

c3 = B1 − c5 − c1

c4 = (V7 − V6)/3

c5 = B6 − c1

(2.30)

When Equations 2.29 and 2.30 are analyzed, thanks to this method, 30 algebraic

additions decrease to 27 in reconstruction part. Therefore total complexity reduce to

25nlog4 7 − 32n + 6 and reconstruction complexity given in Table 2.5 is updated in

Table 2.6.
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Table 2.6: Block complexities of Toom Cook-4 way method with optimized recon-

struction part

Blocks Complexity

CPF (n) nlog4 7 − n

CM(n) nlog4 7

R(n) 22nlog4 7 − 30n+ 6
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CHAPTER 3

ANALYZES OF BLOCK RECOMBINATION AND LAZY

INTERPOLATION METHODS

In Toom-Cook and Karatsuba based multiplication algorithms, polynomials are mul-

tiplied with smaller degrees than the original polynomials. Before and after the poly-

nomial multiplications, pre-and post-processing operations are required as we told in

Section 2.4. In this section, we explain how the efficiency of post-processing oper-

ations increased using the two novel methods, block recombination and lazy inter-

polation. They are analyzed to show the equivalence by considering the advantages

they provide and the techniques they use. Block recombination method introduced

and applied to Bernstein 4-way formula in [7] while lazy interpolation introduced

and applied to Toom-Cook 4-way method in [23]. In the last part of this section,

their comparisons with classical approaches demonstrate the advantages of the two

methods in the scenario with the sum of two / three polynomial multiplications.
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3.1 Lazy Interpolation Method

The lazy interpolation method [23] reduces the complexity of the Toom-Cook and

Karatsuba algorithms by decreasing interpolation stages of the algorithms. Toom-

Cook algorithm consists of TC (Toom-Cook transformation) and TC−1 (Toom-Cook

reverse transformation), i.e., TC means the evaluation stage of algorithm and TC−1

refers to interpolation stage of the algorithm to reconstruct the resulting polynomial.

In the TC step, polynomials are divided into polynomials with small degrees in which

polynomials are multiplied in CM (component multiplication) stage. CA (component

addition) contains arithmetic additions to accumulate polynomial pairs before inter-

polation stages. The final part is TC−1 consisting of interpolation stages to recon-

struct polynomials. In equation 3.1, where Ai, Bi polynomials are degree with n− 1

and A0B0 + A1B1 is computed with classical approach. Â0 and B̂0 are the result of

TC transformations of the A0, B0.

S = (A0B0) + (A1B1)

= TC−1[TC(A0)× TC(B0)] + TC−1[TC(A1)× TC(B1)]

= TC−1[CM(Â0, B̂0)] + TC−1[CM(Â1, B̂1)]

= TC−1[Ĉ0] + TC−1[Ĉ1]

(3.1)

In Equation 3.1, the strategy of operation sequence: "two Toom-Cook reverse trans-

formations (TC−1) and then add" can be reversed to reduce the required number of

Toom-Cook reverse transformation TC−1 by using the lazy interpolation method in

Equation 3.2
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S = (A0B0) + (A1B1)

= TC−1[(TC(A0)× TC(B0) + TC(A1)× TC(B1)]

= TC−1[CM(Â0, B̂0) + CM(Â1, B̂1)]

= TC−1[Ĉ0 + Ĉ1] = TC−1[CA(Ĉ0, Ĉ1)]

(3.2)

When Equation 3.1 and 3.2 are compared, main advantage of the lazy interpolation

method is using less reverse Toom-Cook transformation (TC−1), i.e. interpolation

stage whose complexity is given in Table 2.5. Since most of the computational cost

comes from the interpolation stage compared to the other stages, applying lazy in-

terpolation to the Toom-Cook algorithm improves performance, as explained in the

following section.

3.1.1 Toom-Cook 4-way with Lazy Interpolation Method

After the evaluation and multiplication step as described in Section 2.4.5, the result

is not sent through the interpolation part this time. First, polynomials are calculated

in evaluation points. Second, the multiplication results of these polynomials are ac-

cumulated then the interpolation part is used to reconstruct polynomials. Therefore,

this method is named lazy interpolation in [23] to reduce the number of interpolation

parts.

To calculate two polynomial multiplications (AvBv+AwBw) using Toom-Cook mul-

tiplication and add them together in the classical approach. Thanks to the lazy in-

terpolation method, multiplied polynomials are accumulated before the interpolation

stage. Therefore, it is enough to use the interpolation stage of the Toom-Cook algo-
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rithm once instead of using two. In details, back to the evaluation part of the section

2.4.5, this time let us examine how to get the result of AvBv+AwBw.

Let[Aw(0), Aw(1), ..., Aw(∞)]T = ZT , [Bw(0), Bw(1), ..., Bw(∞)]T = W T

where Aw and Bw are evaluated in 7 points in same way with Equation 2.16

(3.3)

ZT =((Aw0), (Aw0 + Aw1 + Aw2 + Aw3), (Aw0 − Aw1 + Aw2 − Aw3),

(Aw0 + 2Aw1 + 4Aw2 + 8Aw3), (Aw0 − 2Aw1 + 4Aw2 − 8Aw3),

(Aw0 − 3Aw1 + 9Aw2 − 27Aw3), (Aw3))

W T =((Bw0), (Bw0 +Bw1 +Bw2 +Bw3), (Bw0 −Bw1 +Bw2 −Bw3),

(Bw0 + 2Bw1 + 4Bw2 + 8Bw3), (Bw0 − 2Bw1 + 4Bw2 − 8Bw3),

(Bw0 − 3Bw1 + 9Bw2 − 27Bw3), (Bw3))

(3.4)

From the Equation 2.19, component multiplication of AvBv+AwBw given below:

XTY T = CT
v = [Cv(0), Cv(1), ..., Cv(∞)]

ZTW T = CT
w = [Cw(0), Cw(1), ..., Cw(∞)]

(3.5)

In this step, instead of calculating Cv and Cw separately and then adding them to-

gether as CT = CT
v + CT

w in the classical approach. The process continues with lazy

interpolation method as follows:
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CT = [(Cv(0) + Cw(0))︸ ︷︷ ︸
C(0)

, (Cv(1) + Cw(1))︸ ︷︷ ︸
C(1)

, ..., (Cv(∞) + Cw(∞))︸ ︷︷ ︸
C(∞)

]

C(0) = (Av0Bv0 + Aw0Bw0)

C(1) = (Av0 + Av1 + Av2 + Av3)(Bv0 +Bv1 +Bv2 +Bv3)

+ (Aw0 + Aw1 + Aw2 + Aw3)(Bw0 +Bw1 +Bw2 +Bw3)

C(−1) = (Av0 − Av1 + Av2 − Av3)(Bv0 −Bv1 +Bv2 −Bv3)

+ (Aw0 − Aw1 + Aw2 − Aw3)(Bw0 −Bw1 +Bw2 −Bw3)

C(2) = (Av0 + 2Av1 + 4Av2 + 8Av3)(Bv0 + 2Bv1 + 4Bv2 + 8Bv3)

+ (Aw0 + 2Aw1 + 4Aw2 + 8Aw3)(Bw0 + 2Bw1 + 4Bw2 + 8Bw3)

C(−2) = (Av0 − 2Av1 + 4Av2 − 8Av3)(Bv0 − 2Bv1 + 4Bv2 − 8Bv3)

+ (Aw0 − 2Aw1 + 4Aw2 − 8Aw3)(Bw0 − 2Bw1 + 4Bw2 − 8Bw3)

C(3) = (Av0 − 3Av1 + 9Av2 − 27Av3)(Bv0 − 3Bv1 + 9Bv2 − 27Bv3)

+ (Aw0 − 3Aw1 + 9Aw2 − 27Aw3)(Bw0 − 3Bw1 + 9Bw2 − 27Bw3)

C(∞) = (Av3Bv3 + Aw3Bw3)

(3.6)

Now, result is goes to interpolation part to calculate C0, C1, C2, C3, C4, C5, C6 from

C(0), C(1), C(−1), C(2), C(−2), C(3), C(∞) as described in Equation 2.22. Next,

output of interpolation part is reconstructed as like in Equation 2.23 to get result poly-

nomial C = C0+C1x
n/4+C2x

2n/4+C3x
3n/4+C4x

4n/4+C5x
5n/4+C6x

6n/4 Thanks to

the lazy interpolation method, the interpolation part is used once no matter how many

polynomial products are summed. Instead of using two interpolation stages, once is

enough to get a result with little overhead cost causing the extra accumulation, which

is explained in the following implementation section.
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3.2 Block Recombination Method

Block recombination method [7, 16] reduces the complexity of the Toom-Cook and

Karatsuba algorithms. Polynomial multiplication algorithms are divided into four

blocks CPF, CM, R, CA. First, CPF represents the evaluation stages of multiplication

algorithms, where polynomials are split into polynomials with a small degree. Sec-

ond, CM is the multiplication stage, where the multiplication method is determined by

polynomial degree. For example, if the split polynomials have degree 16, the school-

book method is the most efficient way to multiply polynomials [18]. CA (component

addition)contains arithmetic additions to accumulate polynomial pairs before inter-

polation stages. Finally, the reconstruction part consists of the interpolation stages is

used to reconstruct polynomials.

To understand the advantage of the block recombination method, first, multiply two

pairs of polynomials and then add them together with the classical approach as shown

in Equation 3.7 where Ai, Bi polynomials are degrees with n− 1.

S = (A0B0) + (A1B1)

= R[CPF (A0)× CPF (B0)] +R[CPF (A1)× CPF (B1)]

= R[CM(Â0, B̂0)] +R[CM(Â1, B̂1)]

= R[Ĉ0] +R[Ĉ1]

(3.7)

In Equation 3.7, the strategy of operation sequence: "two reconstructions then add"

can be reversed to recombine the blocks with block recombination method in Equa-

tion 3.8.
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S = (A0B0) + (A1B1)

= R[(CPF (A0)× CPF (B0) + CPF (A1)× CPF (B1)]

= R[CM(Â0, B̂0) + CM(Â1, B̂1)]

= R[Ĉ0 + Ĉ1] = R[CA(Ĉ0, Ĉ1)]

(3.8)

When the required blocks of two strategy in Equation 3.7 and 3.8 compared, main ad-

vantage of the block recombination method is using less reconstruction blocks whose

space complexity in the interval [3nρ, 4nρ] where ρ ∈ (log2 3, log3 6). On the other

hand, component addition block comes out as an extra computational cost, it has total

space complexity with nρ where ρ ∈ (log2 3, log3 6). Therefore, at least 2nρ compu-

tational cost are saved thanks to this method.

3.2.1 Bernstein Four-way Split Formula with Block Recombination Method

Let A and B be two polynomials with the degree of n − 1, where n = 2k for k ≥ 2.

A and B polynomials are divided into four A = A0 + A1x
n/4 + A2x

2n/4 + A3x
3n/4

and B = B0 + B1x
n/4 + B2x

2n/4 + B3x
3n/4. Product of A and B can be found as

follows:
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AB = A0B0︸ ︷︷ ︸
C0

+(A0B1 + A1B0)︸ ︷︷ ︸
C1

xn/4

+ (A0B2 + A1B1 + A2B0)︸ ︷︷ ︸
C2

x2n/4

+ (A0B3 + A1B2 + A2B1 + A3B0)︸ ︷︷ ︸
C3

x3n/4 + (A1B3 + A2B2 + A3B1)︸ ︷︷ ︸
C4

x4n/4

+ (A2B3 + A3B2)︸ ︷︷ ︸
C5

x5n/4

+ A3B3︸ ︷︷ ︸
C6

x6n/4

(3.9)

According to the above expression, 9 component addition CA(n/4), 7 reconstruc-

tion R(n/4), 8 component polynomial transformation CPF (n/4) and 16 component

multiplication CM(n/4) blocks are needed to evaluate the complexity of the method.

Complexity of CPF, CM, R blocks are given in Table 2.4 and hence the total com-

plexity of recombined Bernstein four way formula calculated [7] as follows:

= 8CPF (n/4) + 16CM(n/4) + 7R(n/4) + 9CA(n/4) + 3n/2− 6

=
8

9
CPF (n) +

16

9
CM(n) +

7

9
R(n) + 9CA(n/4) + 3n/2− 6

= 6, 34nlog2 3 − 8, 9n− 3, 63

where CA(n) = (nlog2 3)

(3.10)

3.3 Comparisons of Block Recombination and Lazy Interpolation

In this section, computational costs of
∑τ

i=1AiBi, where τ ∈ (2, 3), are compared

between Classical Toom-Cook 4-way method, Toom-Cook 4-way method with lazy
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interpolation, Bernstein 4-way split formula and Bernstein 4-way split formula with

block recombination method as described in sections 2.4.5, 3.1.1, 2.4.4 and 3.2.1

respectively.

Let Av, Aw, Az and Bv, Bw, Bz be 6 polynomials with the degree of n − 1, where

n = 2k for k ≥ 2.

Toom-Cook 4-way Method: To calculate (AvBv) + (AwBw), complexity is given in

Equation 3.11 by using block complexity values in Table 2.5.

M(n) = 2CM(n) + 2R(n) + 4CPF (n) + 2n− 1

= 2n1.4 + 2(24n1.4 − 30n+ 6) + 4(n1.4 − n) + 2n− 1

= 54n1.4 − 62n+ 7

(3.11)

Where 2n − 1 cost comes from the addition of polynomials AvBv and AwBw with

degree of 2n−2. Complexity of (AvBv)+(AwBw)+(AzBz) is also found in Equation

3.12.

M(n) = 3CM(n) + 3R(n) + 6CPF (n) + 4n− 2

= 3n1.4 + 3(24n1.4 − 30n+ 6) + 6(n1.4 − n) + 2n− 1

= 81n1.4 − 92n+ 16

(3.12)

Toom-Cook 4-way method with lazy interpolation: To calculate (AvBv) + (AwBw),

complexity is given in equation 3.13 by using block complexity values in Table 2.5.

M(n) = 2CM(n) +R(n) + 4CPF (n) + CA(n)

= 2n1.4 + (24n1.4 − 30n+ 6) + 4(n1.4 − n) + n1.4

= 31n1.4 − 34n+ 6

(3.13)

Where CA(n) = n1.4. Complexity of calculating (AvBv) + (AwBw) + (AzBz) is
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given in Equation 3.14.

M(n) = 3CM(n) +R(n) + 6CPF (n) + 2CA(n)

= 3n1.4 + (24n1.4 − 30n+ 6) + 6(n1.4 − n) + 2n1.4

= 35n1.4 − 36n+ 6

(3.14)

Bernstein 4-way method: To calculate (AvBv) + (AwBw), complexity is given in

Equation 3.15 by using block complexity values in Table 2.4.

M(n) = 2CM(n) + 2R(n) + 4CPF (n) + 2n− 1

= 4(nlog2 3 − n) + 2nlog2 3 + 2(
137

40
nlog2 3 − 24n

5
+

11

8
) + 2n− 1

= 12, 85n1.58 − 11.6n+ 1.75

(3.15)

Complexity of calculating (AvBv) + (AwBw) + (AzBz) is also found in Equation

3.16.

M(n) = 3CM(n) + 3R(n) + 6CPF (n) + 4n− 2

= 6(nlog2 3 − n) + 3nlog2 3 + 3(
137

40
nlog2 3 − 24n

5
+

11

8
) + 4n− 2

= 19.28n1.58 − 16.4n+ 2.13

(3.16)

Bernstein 4-way method with block recombination: To calculate (AvBv) + (AwBw),

complexity is given in Equation 3.17 by using block complexity values in Table 2.4.

M(n) = 16CPF (n/4) + 32CM(n/4) + 7R(n/4) + 18CA(n/4) + 7CA(n/4)

+ 3n− 12

=
16

9
CPF (n) +

32

9
CM(n) +

7

9
R(n) + 25CA(n/4) + 3n− 12

=
16

9
(nlog2 3 − n) +

32

9
nlog2 3 +

7

9
(
137

40
nlog2 3 − 24n

5
+

11

8
)

+
25

9
nlog23 + 3n− 12

= 10, 78n1.58 − 2.50n− 10.94

(3.17)
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Complexity of calculating (AvBv) + (AwBw) + (AzBz) is also found in Equation

3.18.

M(n) = 24CPF (n/4) + 48CM(n/4) + 7R(n/4) + 27CA(n/4) + 14CA(n/4)

+ 4.5n− 18

=
24

9
CPF (n) +

48

9
CM(n) +

7

9
R(n) + 41CA(n/4) + 4.5n− 18

=
24

9
(nlog2 3 − n) +

48

9
nlog2 3 +

7

9
(
137

40
nlog2 3 − 24n

5
+

11

8
)

+
41

9
nlog23 + 4.5n− 18

= 15.21n1.58 − 6.11n− 16.9

(3.18)

As a result, required minimum number of operations to calculate AvBv + AwBw

(M(n) for τ = 2) and AvBv + AwBw + AzBz (M(n) for τ = 3) are given in the

Table 3.1 and 3.2 for polynomial degree with n = 256 and n = 64 respectively.

Results are calculated for given methods from calculated complexities in Equations

3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18.

Table 3.1: Minimum number of operations with given methods for n = 256

Method M(n) for τ = 2 M(n) for τ = 3

Classical Toom-Cook 4-way 111175 167019

Toom-Cook 4-way with lazy interpolation 64230 73128

Bernstein 4-way formula 79052 118866

Bernstein 4-way with block recombination 68156 95503

The equivalence of block recombination and lazy interpolation methods is explained

as follows:
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Table 3.2: Minimum number of operations with given methods for n = 64

Method M(n) for τ = 2 M(n) for τ = 3

Classical Toom-Cook 4-way 14279 21489

Toom-Cook 4-way with lazy interpolation 8301 9524

Bernstein 4-way formula 8435 12720

Bernstein 4-way with block recombination 7527 10453

It is clear from Table 3.1 and 3.2, the required minimum number of operations de-

creases in case of using lazy interpolation and block recombination methods. When

the cost of all blocks analyzed for Toom-Cook and Bernstein 4-way formula in Ta-

ble 2.5 and 2.4, most of the computational cost belongs to reconstruction blocks that

consist of interpolation stages of the multiplication algorithm. Therefore, reducing

interpolation stages by lazy interpolation or block recombination method with the

same techniques leads to decrease computational cost of polynomial multiplications.

Especially for matrix-vector products, increased performance impact of lazy interpo-

lation and block recombination method while the number of multiplied polynomial

pairs increases (AiBi) also observed in Table 3.1 and 3.2. The number of polynomial

pairs indicates the dimension of the matrix that depends on the security level of the

algorithm.

The minimum number of operations required by block recombination and lazy inter-

polation methods can slightly differ from each other depending degree of polynomial

to be multiplied (n = 64, 256) and how many pairs of polynomials (τ = 2, 3) need

to be added. Therefore, analyzes are given for Saber implementation considering

recursive applications in the next section.
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CHAPTER 4

APPLICATIONS TO SABER

In this section, first, we give brief information about the application of Saber with the

classical approach and lazy interpolation approach. Second, we apply block recom-

bination to Saber and compare it with the application given in [23]. The minimum

number of operations required by our work using block recombination and applica-

tion in [23] using lazy interpolation are calculated to show the equivalence of two

methods in Saber implementation.

In Saber, two matrix-vector multiplications in Algorithms 4, 5 and two vector-dot

products in Algorithms 5, 6 need to be performed. For Saber with level-3 security

in Equation 4.1, 3x3 matrix and 1x3 vector multiplications performed as A.S = B,

where each elements of matrix A and S (such as a00 and s0) are polynomials have

degree 256.


a00 a01 a02

a10 a11 a12

a20 a21 a22

 ·

s0

s1

s2

 =


a00.s0 + a01.s1 + a02.s2

a10.s0 + a11.s1 + a12.s2

a20.s0 + a21.s1 + a22.s2

 =


b0

b1

b2

 = B (4.1)

For 256x256 polynomial multiplication with classical approach, first, each poly-
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nomial is split by Toom-Cook 4-way method, and this reduces from two polyno-

mial multiplication have degree 256 to 7 polynomial multiplications have degree

64. Next, these polynomials keep on splitting using the iterative two-level Karat-

suba 2-way method that produces nine polynomial multiplications with degree 16.

Totally 63 polynomial multiplications, each of them having 16 degrees, are done by

the schoolbook method. Then schoolbook multiplications are reconstructed by us-

ing iterative two-level Karatsuba 2-way interpolation stage following up Toom-Cook

4-way interpolation stage. Finally, after finding the result of each polynomial pair

(a00.s0), (a01.s1), (a01.s1) which are accumulated like that a00.s0 + a01.s1 + a02.s2 to

get the result of first row (b0) at matrix B in Equation 4.1. Polynomial multiplication

steps of classical approach using iterative two-level Karatsuba and Toom-Cook 4-way

formula (TC4+2KA) is given in Algorithm 7 at pseudocode level.

4.1 Lazy Interpolation Application to Saber

Iterative two-level application of Toom-Cook 4-way method with lazy interpolation

is introduced as a combination of multiplication algorithm with the best performance

results on general-purpose processors in [23]. Each element of matrix B in Equation

4.1 is calculated by the accumulation of polynomial multiplications. The number of

interpolation stages of the Toom-Cook algorithm is reduced using the lazy interpo-

lation method. The lazy interpolation method differs from the classical method with

that component addition stage applied before sending the component multiplication

result to Toom-Cook interpolation stages. In other words, instead of reconstructing to

component multiplication result of each polynomial pair (a00s0), (a01s1), (a02s2) by

Toom-Cook interpolation algorithm, results of multiplications are accumulated. Then
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Algorithm 7 Pseudocode of hybrid multiplication algorithm (TC4+2KA) with clas-

sical approach
Let a00 = A0, a01 = A1, a02 = A2 and b0 = B0, b1 = B1, b2 = B2 in Equation 4.1

▷ Evaluation Stage

for i=0 to 2 do

CPF (Ai) = 2KAev(TC4ev(Ai)) = Aj
i

CPF (Bi) = 2KAev(TC4ev(Bi)) = Bj
i

where j = 0 to 62

▷ Multiplication Stage

for j=0 to 62 do

Cj
0 = Aj

0 ∗B
j
0 = CM(Aj

0, B
j
0)

Cj
1 = Aj

1 ∗B
j
1 = CM(Aj

1, B
j
1)

Cj
2 = Aj

2 ∗B
j
2 = CM(Aj

2, B
j
2)

where each Ci polynomial have degree 31

▷ Karatsuba Interpolation Stage

for i=0 to 6 do

Ci
0 = 2KAintp(C

i∗9
0 , C

(i∗9)+1
0 , C

(i∗9)+2
0 , C

(i∗9)+3
0 , C

(i∗9)+4
0 ,

C
(i∗9)+5
0 , C

(i∗9)+6
0 , C

(i∗9)+7
0 , C

(i∗9)+8
0 )

Ci
1 = 2KAintp(C

i∗9
1 , C

(i∗9)+1
1 , C

(i∗9)+2
1 , C

(i∗9)+3
1 , C

(i∗9)+4
1 ,

C
(i∗9)+5
1 , C

(i∗9)+6
1 , C

(i∗9)+7
1 , C

(i∗9)+8
1 )

Ci
2 = 2KAintp(C

i∗9
2 , C

(i∗9)+1
2 , C

(i∗9)+2
2 , C

(i∗9)+3
2 , C

(i∗9)+4
2 ,

C
(i∗9)+5
2 , C

(i∗9)+6
2 , C

(i∗9)+7
2 , C

(i∗9)+8
2 )

where each Ci polynomial have degree 127

▷ Toom-Cook Interpolation Stage

C0 = TC4intp(C
0
0 , C

1
0 , C

2
0 , C

3
0 , C

4
0 , C

5
0 , C

6
0 )

C1 = TC4intp(C
0
1 , C

1
1 , C

2
1 , C

3
1 , C

4
1 , C

5
1 , C

6
1 )

C2 = TC4intp(C
0
2 , C

1
2 , C

2
2 , C

3
2 , C

4
2 , C

5
2 , C

6
2 )

▷ Addition Stage

C = C0 + C1 + C2

b0 = C in Equation 4.1
45



Toom-Cook interpolation stage used recursively to find the b0 result in 4.1.Polynomial

multiplication steps of iterative two-level Toom-Cook 4-way formula (TC4+TC4)

with lazy interpolation method is given in Algorithm 8 at pseudocode level.
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Algorithm 8 Pseudocode of hybrid multiplication algorithm (TC4+TC4) in [23] us-

ing lazy interpolation
Let a00 = A0, a01 = A1, a02 = A2 and b0 = B0, b1 = B1, b2 = B2 in Equation 4.1

▷ Evaluation Stage

for i=0 to 2 do

CPF (Ai) = TC4ev(TC4ev(Ai)) = Aj
i

CPF (Bi) = TC4ev(TC4ev(Bi)) = Bj
i

where j = 0 to 48

▷ Multiplication Stage

for j=0 to 48 do

Cj
0 = Aj

0 ∗B
j
0 = CM(Aj

0, B
j
0)

Cj
1 = Aj

1 ∗B
j
1 = CM(Aj

1, B
j
1)

Cj
2 = Aj

2 ∗B
j
2 = CM(Aj

2, B
j
2)

▷ Addition Stage

for j=0 to 48 do

Cj = Cj
0 + Cj

1 + Cj
2 = CA(Cj

0 , C
j
1 , C

j
2)

▷ Toom-Cook Interpolation Stage

for i=0 to 6 do

Ci = TC4intp(C
i∗7, C(i∗7)+1, C(i∗7)+2, C(i∗7)+3, C(i∗7)+4,

C(i∗7)+5, C(i∗7)+6)

where each Ci polynomial have degree 127

▷ Toom-Cook Interpolation Stage

C = TC4intp(C0, C1, C2, C3, C4, C5, C6)

b0 = C in Equation 4.1
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4.2 Our Work

In Equation 4.1 to calculate b0, first of all, evaluation algorithms of Toom-Cook 4-way

and iterative two-level Karatsuba 2-way are used to evaluate each polynomials (a00,

a01, a02) at 63 point, i.e, splitting each polynomials have degree 256 to 63 polyno-

mials have degree 16. Iterative two-level Karatsuba 2-way algorithm is implemented

by using recombined Bernstein 4-way split formula as described in section 3.2.1.

Second, the schoolbook method is applied to perform the component multiplication

stage. After the component multiplication stage, results are accumulated instead of

sending results to the Karatsuba interpolation stage. Then accumulated these results

are reconstructed by iterative two-level Karatsuba 2-way and Toom-Cook 4-way in-

terpolation methods, respectively. After the interpolation stages, result polynomial

is reconstructed (i.e first row of result matrix B in Equation 4.1 is calculated). To

find matrix-vector multiplication results for Saber with level-3 security, another sec-

ond (b1) and third (b2) coefficients of a matrix B are calculated in the same way.

Pseudocode of polynomial multiplication steps of Toom-Cook 4-way and iterative

two-level Karatsuba 2-way with block recombination method is given Algorithm 9.

In Saber’s implementation, whether using block recombination or lazy interpolation

methods, hybrid multiplication algorithms can be implemented by Toom-Cook k-way

and Karatsuba k-way functions. Both Toom-Cook and Karatsuba algorithms are di-

vided into evaluation, multiplication, addition, and interpolation stages. The cost of

the Toom-Cook and Karatsuba algorithms’ evaluation and interpolation stages are

calculated for n = 64, 256 in Table 4.1. The minimum number of operations re-

quired to obtain the matrix-vector product in Equation 4.1, are shown in Table 4.2,

4.3 and 4.4, for classical approach, method in [23], our work respectively. Block
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Algorithm 9 Pseudocode of hybrid multiplication algorithm (TC4+2KA) in our work

using block recombination
Let a00 = A0, a01 = A1, a02 = A2 and b0 = B0, b1 = B1, b2 = B2 in Equation 4.1

▷ Evaluation Stage

for i=0 to 2 do

CPF (Ai) = 2KAev(TC4ev(Ai)) = Aj
i

CPF (Bi) = 2KAev(TC4ev(Bi)) = Bj
i

where j = 0 to 62

▷ Multiplication Stage

for j=0 to 62 do

Cj
0 = Aj

0 ∗B
j
0 = CM(Aj

0, B
j
0)

Cj
1 = Aj

1 ∗B
j
1 = CM(Aj

1, B
j
1)

Cj
2 = Aj

2 ∗B
j
2 = CM(Aj

2, B
j
2)

▷ Addition Stage

for j=0 to 62 do

Cj = Cj
0 + Cj

1 + Cj
2 = CA(Cj

0 , C
j
1 , C

j
2)

where each Cj
i polynomial have degree 31

▷ Karatsuba Interpolation Stage

for i=0 to 6 do

Ci = 2KAintp(C
i∗9, C(i∗9)+1, C(i∗9)+2, C(i∗9)+3, C(i∗9)+4,

C(i∗9)+5, C(i∗9)+6, C(i∗9)+7, C(i∗9)+8)

where each Ci polynomial have degree 127

▷ Toom-Cook Interpolation Stage

C = TC4intp(C0, C1, C2, C3, C4, C5, C6)

b0 = C in Equation 4.1
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recombination and lazy interpolation methods provide an 80% percent improvement

in the minimum number of operations required for the matrix-vector product. This

improvement is provided by the development made in the interpolation stage, as we

explained above sections. As can be seen from Table 4.3 and 4.4, block recombina-

tion application 4.2 needs less operations in interpolation stages but more operations

in other stages than the lazy interpolation application in [23]. To sum up, both meth-

ods given in Algorithm 8, 9 almost require the same number of arithmetic operations

in total. Although lazy interpolation application to iterative two levels of Toom-Cook

4-way multiplication has low complexity, 32-bit processing requirement cause disad-

vantage on performance which is given and explained in next implementation section.

Table 4.1: Blocks’ complexity of evaluation and interpolation stages of Toom-Cook

4-way and Bernstein 4-way formulas

Blocks Complexity M(n) n=64 n = 256

TC4intp(n) 24nlog4 7 − 30n+ 6 6193 48786

TC4ev(n) 2nlog4 7 − 2n 548 4193

2KAintp(n)
137
40
nlog2 3 − 24n

5
+ 11

8
2140 20634

2KAev(n) 2nlog4 7 − 2n 1300 4193
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Table 4.2: Minimum number of operations for Algorithm 7

Stages Minimum Number of Operations

Evaluation 9 ∗ (7 ∗ 2KAev(64) + TC4ev(256)) = 119637

Multiplication 9 ∗ 63 ∗ (162) = 145152

Interpolation 9 ∗ (7 ∗ 2KAintp(64) + TC4intp(256)) = 573894

Total: 838683

Table 4.3: Minimum number of operations for Algorithm 8

Stages Minimum Number of Operations

Evaluation 9 ∗ (7 ∗ TC4ev(64) + TC4ev(256)) = 72261

Multiplication 9 ∗ 49 ∗ (162) = 112896

Addition 6 ∗ 49 ∗ 31 = 9114

Interpolation 3 ∗ (7 ∗ TC4intp(64) + TC4intp(256) = 276411

Total: 470682
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Table 4.4: Minimum number of operations for Algorithm 9 with our work

Stages Minimum Number of Operations

Evaluation 9 ∗ (7 ∗ 2KAev(64) + TC4ev(256)) = 119637

Multiplication 9 ∗ 63 ∗ (162) = 145152

Addition 6 ∗ 63 ∗ 31 = 11718

Interpolation 3 ∗ (7 ∗ 2KAintp(64) + TC4intp(256) = 191298

Total: 467805
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CHAPTER 5

IMPLEMENTATION RESULTS FOR SABER

For Saber, we firstly compare hybrid polynomial multiplications combining Toom-

Cook and Karatsuba algorithms in terms of performance results and show the best.

Second, we implement our work using the block recombination method to Saber

and compare with [23] using the lazy interpolation method. Benchmark tests for

Saber crypto-scheme are performed on an Intel Core i7-7700HQ Kaby Lake pro-

cessor running at 2800 MHz with Turbo Boost and Hyper-threading disabled. The

operating system is Ubuntu 20.04.2 LTS with Linux Kernel 4.15.0, and all software

is compiled with GCC-7.4.0. The benchmark results of C implementations for Saber

with level-3 security are given and compared in terms of clock cycles of key genera-

tion, encapsulation, and decapsulation parts in Table 5.1 and 5.2. In Table 10, clock

cycles are obtained for iterative two-level Toom-Cook 4-way method from source:

https://github.com/KULeuven-COSIC/TCHES2020_SABER and refer-

ence code from source: https://github.com/KULeuven-COSIC/SABER.

Saber needs matrix-vector and vector-dot products, consisting of multiplications of

polynomials with degree 256. In Table 5.1, different hybrid multiplications are com-

pared, and iterative two-level Karatsuba 2-way following up Toom-Cook 4-way
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(TC4+2KA) is the best selection for Saber. (TC4+2KA) have up to 7.5% better perfor-

mance against its closest competitor (TC4+KA). For other combinations of multipli-

cation algorithms (except (TC4+TC4)), school-book multiplications are implemented

in the polynomial degree is not equal to 16. Performing school-book multiplications is

more suitable to multiply polynomials that have degrees less than 16 [18]. Therefore,

splitting polynomials up to a degree of 16 is enough and more efficient to implement

school-book multiplication.

In Table 5.2, our proposed implementation, iterative two-level Karatsuba 2-way fol-

lowing up Toom-Cook 4-way using block recombination method is the best result and

up to 13% faster than the nearest competitor. Iterative two-level Toom-Cook 4-way

(TC4+TC4) using lazy interpolation method in [23], which has higher cycle values,

even though it has almost the same minimum number of arithmetic operations with

our work, because of the requirement of 32 bits data type instead of 16. This require-

ment comes from using iterative two-level interpolation of the Toom-Cook 4-way

method during polynomial multiplication steps. In this case, performance results are

affected dramatically; therefore, the cycle values of Saber almost double compared

to the best result. It should also be taken into account that any arithmetic operation

larger than 16-bits create an overflow on 16-bit processors like Cortex-M4 micro-

controllers.

As can be concluded from Table 5.1 and 5.2, performance results of Saber implemen-

tation on general-purpose Intel processors show that the best result is achieved with

iterative two-level Karatsuba 2-way following up Toom-Cook 4-way by our work

using block recombination method. The other multiplication strategies in Table 5.1

have disadvantages because they exceed 16-bit operations or perform their school-

book multiplications in the polynomial degree, which be greater and less than 16.
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Therefore, the (TC4+2KA) multiplication strategy is more suitable for performing

polynomial multiplications and further improved by using the block recombination

method proposed in Saber.

Table 5.1: Compared clock cycles of hybrid multiplication algorithms

C implementations of Saber with level-3 security

Methods Cycles for Keygen Cycles for Enc. Cycles for Dec.

TC4 + 2KA 150343 188656 208099

TC4 + KA3 208266 265395 304167

TC4 + KA 162019 195339 217831

TC3 + 2KA 229655 285431 334767

TC3 + KA3 289575 373371 440275

TC3 + TC3 376722 490040 586010

TC3 + TC3 + KA 223383 285665 329449

TC4 + TC4 333117 431219 511693

TC4 + TC3 + KA 334603 432201 513088

TC4 + TC4 + KA 282461 363278 427059

TC4 + TC4 + 2KA 294137 379469 446971

Note: KA3 refers to Karatsuba 3-way, 2KA means that iterative two-level Karatsuba 2-way

method used. TC3 and TC4 represented as Toom-Cook 3-way and Toom-Cook 4-way method,

respectively.
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Table 5.2: Compared clock cycles of our work and other implementations

C implementations of Saber with level-3 security

Methods Cycles for Keygen Cycles for Enc. Cycles for Dec.

TC4 + 2KA (4.2) 133985 168720 181905

TC4 + 2KA (reference) 150343 188656 208099

TC4 + TC4 [23] 277005 347040 410742
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CHAPTER 6

CONCLUSION AND DISCUSSION

To summarize our work, we focus on Toom-Cook and Karatsuba algorithms in case of

using block recombination and lazy interpolation methods whose analyzes are given

for them theoretically and experimentally. We show the equivalences of block re-

combination and lazy interpolation methods. On the practical side, we compare the

performance results for Saber to select an optimized hybrid multiplication algorithm.

After that best result is improved further with our implementation using the block

recombination method.

Toom-Cook and Karatsuba based polynomial multiplications are gaining importance

day by day after NIST’s PQC standardization procedure. Our ideas are considered in

the implementation stages of multiplication algorithms to improve the performance

results of all crypto-schemes, which are independent of Saber. We give the results of

the C implementation of Saber on general-purpose Intel processors. Other platform-

based applications can be optimized and might be good alternatives to Toom-Cook

and Karatsuba algorithms. The outcomes of our study will give the direction on the

efficient hybrid application usage of Toom-Cook and Karatsuba algorithms.
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