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ABSTRACT

IMPROVEMENT OF TEMPORAL RESOLUTION OF FMRI DATA FOR
BRAIN DECODING

Varol, Emel
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş T. Yarman Vural

February 2022, 67 pages

In this study, we aim to increase the accuracy of the mapping between the states of

the brain and problem-solving phases namely planning and execution. To create a

computational model to generate the mapping, an fMRI dataset obtained from sub-

jects solving the Tower of London problem has been used. fMRI data is suitable for

this problem as it provides regional and time-varying changes in brain metabolism.

However, developing the model using fMRI data is not trivial. Generally, fMRI data

has a very large feature vector while having a small sample size due to the scanner

limitations. We propose two methods to overcome these limitations and increase the

mapping performance. Both methods have a preliminary stage where we perform

preprocessing. Preprocessing stage includes feature selection and whitening. The

proposed methods are built with polynomial regression and neural networks utilizing

the spatial and temporal nature of the data.
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ÖZ

BEYİN ŞİFRESİ ÇÖZÜMÜ İÇİN FMRG VERİSİNİN ZAMANSAL
ÇÖZÜNÜRLÜĞÜNÜN GELİŞTİRİLMESİ

Varol, Emel
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş T. Yarman Vural

Şubat 2022, 67 sayfa

Bu çalışmada, beynin durumları ile problem çözme aşamaları olan planlama ve yü-

rütme arasındaki haritalamanın doğruluğunu artırmayı hedefliyoruz. Haritalamayı oluş-

turan bir hesaplama modeli oluşturmak için, Londra Kulesi problemini çözen denek-

lerden elde edilen bir fMRG veri seti kullanılmıştır. fMRG verileri, beyin metaboliz-

masında bölgesel ve zamana göre değişen değişiklikleri sağladığı için bu problem için

uygun bir veridir. Ancak, fMRG verilerini kullanarak model geliştirmek kolay değil-

dir. Genellikle fMRG verileri, tarayıcı sınırlamaları nedeniyle az bir örnek miktarına

sahipken çok büyük bir nitelik vektörüne sahiptir. Bu sınırlamaların üstesinden gel-

mek ve haritalama performansını artırmak için iki yöntem öneriyoruz. Her iki yönte-

min de ön işleme yaptığımız bir ön aşaması vardır. Ön işleme aşaması, özellik seçimi

ve beyazlatmayı içerir. Önerilen yöntemler, verilerin uzamsal ve zamansal yapısını

kullanan polinom regresyon ve sinir ağları ile oluşturulmuştur.
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Anahtar Kelimeler: fMRG, Londra Kulesi, Beyin Şifresini Çözme, Karmaşık Problem

Çözümü
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Onur Yakışkan, who have been a second family to me. They have always loved and

supported me. I feel truly blessed to have them by my side.

I would like to thank my friends Merve Taplı, Hüseyin Aydın, Cem Önem, Ezgi Ekiz
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CHAPTER 1

INTRODUCTION

Have you ever wondered what happens in your brain when you are solving a puzzle

or any kind of problem? As humans, we live in a chaotic world with a wide range of

problems to solve everyday. We constantly think and design solutions for problems

to survive or to have fun. Human brain is the creator of most of the problems and

solutions to them. Besides being a designer, human brain is the one making us able to

produce relevant moves for these solutions. The set of type and factor variations for

the problems we encounter throughout our lives have an unimaginable size. There-

fore, human brain, which is the commander that makes us survive in the middle of

this world of problems, is a mysterious organ for the researchers.

With the advances in the technology, activation in the brain can be visualized now.

Pictures of the brain can be taken while complex problems are being solved which

gives researchers opportunity to analyze this mysterious organ. There are many dif-

ferent brain imaging techniques to monitor the functioning of human brain. Elec-

troencephalography (EEG) measures the electrical activity in the brain while Positron

Emission Tomography (PET) reveals the metabolic or biochemical function of the

brain using a radioactive tracer. Magnetic Resonance Imaging (MRI) and functional

Magnetic Resonance Imaging (fMRI) measure the changes in Blood Oxygen Level

(BOLD) signals. Functional Magnetic Resonance Imaging (fMRI) is the most pop-

ular technique to conduct experiments for analyzing how human brain works and

understanding functioning of the human brain.
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1.1 Problem Definition

fMRI is widely used in brain decoding, which is finding the relations between the

patterns of neural activation and the performed tasks, for complex problem solving.

We predict the cognitive state of a subject at a given time instance by analyzing the

brain image (fMRI) captured at that moment. Generally, fMRI data have a high spa-

tial resolution meaning that they have a very large feature vector compared to Elec-

troencephalography (EEG), Functional near-infrared spectroscopy (FNIRS) and other

brain data. Due to scanner limitations, retrieving high resolution images decreases the

sample acquisition rate. A small number of brain volumes can be captured as a re-

sult of the limitations. High spatial and low temporal resolution of the data arises a

problem called the Curse of Dimensionality when estimating the parameters of the

classifier for brain decoding. Bellman [4] defines the Curse of Dimensionality saying

that the number of samples required to estimate an arbitrary function grows exponen-

tially with the number of input variables for a given level of accuracy. The Curse

of Dimensionality problem reduces the generalization and the classification perfor-

mance of the classifier that is used for cognitive state decoding. In this thesis, the

goal is to increase the cognitive state classification performance by increasing tempo-

ral resolution of the fMRI data.

In this thesis, Tower of London (TOL) data set, which consists of fMRI images col-

lected while subjects were solving a computerized version of the TOL, is used to

develop the solution for the described problem. The data set has around 600 brain

volumes per session while it has a feature vector of size 185405. The data set has

also sparsity problem as many of the features do not contribute to cognitive task. We

do not have sufficient number of samples to estimate a brain decoding model for a

feature vector of this size. In other words, the nature of the data set makes it almost

impossible to optimize a classifier properly.

2



1.2 Proposed Method

In this study, we propose a computational model for temporal interpolation of fMRI

data. The main focus of this thesis is to overcome the Curse of Dimensionality and

sparsity problem in the fMRI data. In order to decrease the effects of Curse of Dimen-

sionality problem, reducing the feature space or generating synthetic samples using

machine learning methods are the first solutions that comes to mind but they also have

some drawbacks.

Reducing feature space is one of the ways to overcome the Curse of Dimensional-

ity and sparsity but it leads to information loss and decrease in classification per-

formance. Sample generation is another solution but it requires a huge computation

power considering the feature space in TOL data set. Although these solutions are not

enough or feasible alone, proposing a combination of them would be an intelligent

way to solve the problems due to the nature of fMRI data. In order to experiment and

verify this, we are going to design an interpolation method to generate samples after

selecting a method for feature selection.

Our method consists of feature selection, data augmentation and normalization. Fol-

lowing that, a classifier is estimated to create a mapping between human brain activity

and complex problem solving stages.

1.3 Contribution of This Thesis

Preprocessing of the fMRI data is essential to achieve a high performance on the

classification of fMRI images according to complex problem solving stages. As many

previous studies also propose, feature selection, temporal interpolation and of course

normalization need to be performed in preprocessing stage. This study proposes two

novel methods for temporal interpolation on top of voxel selection using ANOVA and

normalization.

In Section 2.6, we overview the related work on data augmentation methods. It is

3



mentioned that generative neural networks are widely used for data augmentation.

Cubic spline interpolation and support vector regression are also used for generation

of complementary data. In this study, first a polynomial regression model is intro-

duced as a interpolation method. As the second proposed model, a complex neural

network is trained to generate samples. Polynomial regression estimates a simple

function for voxel intensities at a given time. This is a method that was inspired by

voxel instensity-time plots since a signal for a given voxel looks very similar to a

polynomial function. Regression was used for fMRI sample generation in the previ-

ous works [36]. However, only the polynomial regression was not considered in these

applications. The proposed neural networks model the data set as a nonlinear function

with multiple parameters utilising time and voxel coordinate information. Because of

the nonlinear behavior of fMRI signals, a higher order nonlinear function is needed

to model intensities. Unlike the GAN method mentioned in Section 2.6, this is a fully

connected architecture and unlike cubic spline interpolation, the methods proposed

make use of the temporal and spatial nature of the data set. Besides, these models

estimate nonlinear functions with high degrees avoiding underfitting.

1.4 Outline Of The Thesis

In Chapter 2, we present the background information on this thesis. Brain decoding,

fMRI, the Tower of London data set and machine learning methods are overviewed.

Chapter 3 introduces our method to increase the temporal resolution of fMRI data.

This chapter explains the steps of the proposed method which consists of feature

selection, data augmentation, normalization and brain decoding.

Chapter 4 presents the brain decoding performances after temporal interpolation. In

addition, the results are discussed by comparing the classification results, providing

Fourier Analysis and Shannon Entropy calculations.

In Chapter 5, the overall outcomes of this study are summarised and discussed. Then,

the possible directions of this thesis are briefly described.

4



CHAPTER 2

BACKGROUND FOR BRAIN DECODING PROBLEM BASED ON FMRI

DATA

In this chapter, the aim is to give an overview to functional magnetic resonance imag-

ing (fMRI) studies, the characteristics of fMRI imagery and bring an understanding

of brain decoding. The Tower of London data set (TOL), which the proposed models

are implemented on is introduced and explained. Then, the required domain knowl-

edge to understand this study, on machine learning methods is provided. In addition,

the data generation and interpolation methods are surveyed while focusing separately

on general approaches and the methods used in fMRI studies.

2.1 fMRI Background and Characteristics

Medical imaging technology has reached to an era in which it is possible to retrieve

scans of our bodies and create three dimensional models of organs to be able to ana-

lyze abnormalities and detect diseases. [33] Blood Oxygen Level Dependent (BOLD)

functional magnetic resonance imaging (fMRI) is one of the technologies to capture

the activities in our brain in four dimensional space-time images. Besides diagno-

sis, it helps us to relate what we do or think with blood oxygen levels in different

regions of our brain. fMRI data enable us to understand what happens in our brains

and decode our mental states.

The discovery of fMRI dates back to 1936 by Pauling and Coryell and the use of it

continuously increasing in neuroscience studies. fMRI is extensively used in neuro-

5



science research because it can be performed on a clinical 1.5T scanner, relatively

low cost and high spatial resolution. [9]

fMRI helps us to detect regional and time varying changes in the brain metabolism.

The changes in the metabolic state of the brain is measured by MRI machine through

the scan. Detectable effects can be observed as a result of the changes in the oxy-

genation level of hemoglobin which create fluctuations in the local MR signal known

as the blood oxygenation dependent (BOLD) effect. [34]

In fMRI experiments, subjects are asked to perform a simulation which is a combi-

nation of a series of cognitive tasks. Subjects are asked to do specific tasks such as

playing a game, solving a mathematical problem, listening to a music or gambling

while fMRI data is collected. In this study, the complex problem solving phases

namely the resting, planning and execution states of the obtained scans are consid-

ered. The data consists of the time series for each unit volume of the brain, which

can be used to examine correlation between signal values and stimulus. The collected

images show which anatomic region of the brain is active at a given time. Oxygen

consumption increases in the anatomic regions of the brain which are relevant to the

performed task, as a result of the activation of the responsible neurons.

Voxel is the building block of fMRI images with a volume about 1mm3 containing

4-5 thousands of neurons. fMRI images have high dimensionality which can vary

according to the characteristics of fMRI machine. Each scan used in this study con-

tains around 180000 voxels. Also, a scan with that much resolution takes a noticeable

amount of time and the retrieved data is not continuous. Therefore, the number of

scan samples is very small compared to the resolution of the scans.

2.2 fMRI Data And Brain Decoding

Brain decoding aims to find the relations between the patterns of neural activation in

the human brain and the tasks performed during the retrieval of brain scans. Multi

Voxel Pattern Analysis (MVPA) can be used in brain decoding. MVPA is employed

to recognize cognitive states by voxel signal values using machine learning meth-

6



ods. Principal component analysis, voxel selection methods, data generation, support

vector machines and neural networks are widely used MVPA methods. [14, 23]

Before classification methods are utilized to detect relations between scans and the

tasks, voxel selection or data generation is required to overcome the Curse of Dimen-

sionality. In most neuroimaging studies, the sample size is too small compared to

voxel number in an image. Temporal resolution is low for the images with the huge

number of non-zero voxels due to the sampling frequency because of the MR machine

limitations. For the high resolution scans with more than 100000 voxels, the sample

size generally is lower than 1000. Therefore the number of features outnumber the

sample size, which is known as curse of dimensionality, in many studies. [19, 5] The

Tower of London data set, which will be introduced in detail, is used in the imple-

mentation of the proposed methods. Curse of dimensionality is a challenge we face

in TOL data set as well. Number of voxels in each sample is around 180 000 but we

only have 590 time instances per session.

Voxel selection, which reduces the number of voxels, is a popular way of overcoming

the Curse of Dimensionality problem in the fMRI studies. Besides reducing the effect

of the Curse of Dimensionality in brain decoding performance, voxel selection is

utilised to avoid overfitting and improve classification accuracy. Most of the time,

the limitation on the computational resources is another problem while working with

a brain volume with high number of voxels. Feature reduction methods are helpful

as it reduces the computational resources needed for the brain decoding experiments.

There are many popular feature reduction methods. Principal component analysis and

independent component analysis are commonly used unsupervised feature reduction

methods. ANOVA and Pearson Correlation Coefficient approaches are some of the

supervised feature reduction methods used in fMRI studies. [19]

Some studies select specific brain regions which are related to a prescribed cognitive

task to reduce the dimensionality. Also, averaging voxel intensities over each anatom-

ical region (AAL) is possible for reducing the dimension of fMRI voxel features. [6]

proposes a method to cluster voxels into spatially coherent regions of homogeneous

functional connectivity. Generated clusters can be utilised in feature reduction simi-
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larly.

In addition to feature reduction by selecting the informative voxels at each anatomic

region or averaging the voxel time series, data augmentation is also an approach to

overcome the Curse of Dimensionality problem. Instead of reducing feature space

size, the sample number can be increased by data augmentation. Interpolation and

regression methods can be utilized to place extra scans between the original scans

acquired.

There are a wide range of methods to define a feature space based on fMRI data. In

this study, the feature space is voxel intensity values at a particular time instance. The

cognitive task which is performed at that particular time defines the label. Following

the mentioned methods to overcome curse of dimensionality and improve generaliza-

tion of the data, fMRI scans are classified into tasks using mostly nonlinear supervised

machine learning methods such as SVM and neural networks.

2.3 The Data Set: An fMRI Study of the Tower of London

Complex problem solving has been a popular topic in Neuroscience for decades due

to its importance in high-level tasks. Planning and executing a task are crucial parts

of human life. The underlying cognitive processes or the neural architecture behind

problem solving has not been uncovered completely yet. Tower Of London (TOL)

task developed by Shallice (1982) is one of the tasks that has been extensively used to

evaluate complex problem solving and planning function. [22] The setup of Tower of

London task is composed of 3 bins with different capacities and 3 balls with different

colors located on the bins. The task it to reorganize the balls from the initial state to

a goal state while moving one ball at a time in the minimum number of moves. [2]

Some of the studies conducted on the TOL task have shown that especially frontal

lobe syndrome patients performed poorly on the TOL. As an implication of that, the

findings have been accepted as a proof that the frontal cortex has a connection with

planning processes. [31, 22] TOL is a popular task to examine a variety of clinical

disorders including Parkinson’s [17], Huntington’s [15] and autism [11]. The task
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has recently been employed by the investigators to examine complex problem solving

processes of normal human populations with the help of neuroimaging. [20]

18 participants whose ages ranged between 19 and 38 participated in the computer-

ized version of TOL experiment. Figure 2.1 summarizes this process. They were

shown two configurations for each puzzle namely the start and goal state. Balls were

moved by clicking on them and clicking on the intended destination bin. Participants

were asked to manipulate the start state into goal state using minimum number of

moves and they were not informed about the number. Bins presented had different

depths and only the top-most ball could be moved. [21] Subjects experienced a prac-

tice session and a scanning session. Participants were familiarized with TOL task

in practice session. After that, each participant underwent scanning session which

includes 4 runs containing 18 different puzzles. Each puzzle had a time limit of 15

second of which the first five seconds were allocated for planning only. Planning time

slot could be extended if the participant wanted to continue planning. There was a

12-second resting time between puzzles in which participants focused on a plus sign

located on the center of the screen.

Table 2.1: Subject details of experiment setup.

# of subjects ages # of sessions per subject # of puzzles per session

18 19-38 4 18
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Figure 2.1: fMRI image acquisition summary.

fMRI images were collected using a 3T Siemens TRIO scanner with an 8-channel ra-

dio frequency coil located in the Imaging Research Facility at Indiana University. The

images were acquired in 18 5 mm thick oblique axial slices using the following set

of parameters: TR=1000 ms, TE=25 ms, flip angle=60, voxel size=3.125 mm3.125

mm5 mm with a 1 mm gap [21].

2.4 Structure of fMRI Data

The fMRI data acquired from TOL experiments carries a variety of information in-

cluding voxel intensity values, voxel coordinates, anatomic region ID’s and the label

of the cognitive task at each scan, namely planning, execution or resting.
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Table 2.2: The structure of the session data for a participant.

attribute dimensions details

voxel intensity (185405, 590)

185405 voxel intensity values (feature vector

size/image resoluton) per time sample,

590 time instance (number of samples)

coordinates (185405, 3)
(x,y,z) coordinate values of each voxel in brain

images

regionIDs (185405,1)
anatomical region id for each voxel in brain

images

In this thesis, the time series input vector for the ith voxel for a session with T time

instances is referred as Vi:

Vi = [Vi(1), Vi(2), Vi(3), . . . , Vi(T − 1), Vi(T )], (2.1)

and spatial index of ith voxel is (xi, yi, zi).

Let the number of voxels in a sample be n. Spatial input vector for a brain volume at

time t is named as S(t):

S(t) = [V1(t), V2(t), V3(t), . . . , Vn−1(t), Vn(t)] (2.2)

And label of the cognitive state at time t is defined as:

y(t) ∈ [execution, planning] (2.3)

2.5 Brief Explanation of Machine Learning Methods For Brain Decoding

In this section, background information needed for essential steps of the models pro-

posed will be introduced. There will be three main topics, namely, voxel selection,

data augmentation and classification.
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2.5.1 Voxel Selection

In this thesis, an Analysis of Variance (ANOVA) feature selection method is used to

reduce the number of features in S(t) defined in Equation 2.3. Voxel selection selects

the voxels which contribute to the cognitive process and discard the remaining ones.

Also, ANOVA voxel selection makes the space and time complexity of the analysis

on the data set feasible given the large number of voxels in each brain volume.

We calculate f-value scores for each voxel. The voxels are ordered according to their

f-value scores and the most discriminative voxels in terms of f-value score are se-

lected.

f-value score for a given voxel Vi with label vector yi is calculated as:

fi =
MSB(Vi, yi)

MSW (Vi, yi)
(2.4)

where yi is the label that indicates the subtask namely planning or execution. MSB(Vi, yi)

is the mean square value between Vi and yi as shown in equation 2.5,

MSB(Vi, yi) =
SSB(Vi, yi)

dfbetween

, (2.5)

SSB(Vi, yi) is the sum of squares between Vi and yi and dfbetween is number of qroups

(planning and execution) minus one.

MSW (Vi, yi) is the mean square value within Vi and yi. It can be formulated as

shown in equation 2.6

MSW (Vi, yi) =
SSW (Vi, yi)

dfwithin

(2.6)

where SSW (Vi, yi) is the sum of squares within group and dfwithin is the total number

of elements in Vi minus number of groups, which is called as the degree of freedom.

2.5.2 Data Augmentation

Data augmentation in the context of this thesis is that estimating a continuous function

to model voxel intensity time series to generate intensity values at the missing time
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instances. fMRI data has a high dimensional feature space, which means a high

number of voxels in each brain volume, while it has small number of samples due to

scanner limitations. This leads to poor generalization performance on the classifier

used in brain decoding. Data augmentation is used to generate fMRI scans to increase

the generalization and brain decoding performance.

In this thesis, neural networks and polynomial regression are used in temporal in-

terpolation of fMRI data. This chapter gives the background information on these

methods.

2.5.2.1 Polynomial Regression

In this study, as a baseline we use polynomial regression to insert time samples. Poly-

nomial regression is a method of regression analysis in which Vi(t) is estimated as an

kth degree polynomial of the independent variable t. It is utilized to find a nonlinear

relationship between the time t and the corresponding voxel intensity Vi(t).

The purpose of the regression analysis is to compute the expected value of Vi(t) in

terms of t where Vi(t), t ∈ R. The simple linear regression model is:

Vi(t) = β0 + β1t+ ϵi (2.7)

where ϵi is a random error with zero mean. This linear relationship may not be enough

to model nonlinear relations as it will most likely underfit.

Polynomial regression can be employed to model data sets that can be visualized as

curves. The polynomial function of order k can be defined for voxel intensity time

series as,

Vi(t) = β0 + β1t+ β2t
2 + β3t

3 + ...+ βkt
k + ϵi, (2.8)
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2.5.2.2 Neural Networks

Considering the fact that fMRI voxel time series are nonlinear functions of time, in

this study, neural networks are employed to interpolate the voxel time series Vi(t)

using regression. Therefore, it is needed to have an understanding about how neural

networks can be used as a nonlinear function interpolator.

Our brains process information using a network of neurons. Neurons receive an input

and process it. Then, they deliver the output of electric signals to the neurons they

are connected to. Artificial neural networks works roughly with the same principle.

Figure 2.2 and 2.3 exhibit the similarity between a biological neuron and an aritificial

neuron.

Figure 2.2: Biological Neuron.

A neural network is a machine learning model inspired by the human brain, which are

designed to recognize patterns. Artificial neural networks share the same structure

with natural networks of neurons, which gives them much more prediction perfor-

mance over the previously used regression models.

Perceptron can be thought as a basic artificial neuron. It takes several inputs and the

computes the weighted sum of them. It applies an activation function on the weighted

sum. If the weighted sum is bigger than a threshold, it returns 1 otherwise it returns

0. A perceptron can only be used for implementation of linearly separable functions.
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To model nonlinear functions, a network of neurons is necessary.

The perceptron introduced by Frank Rosenblatt [28]. Perceptron is an algorithm for

learning a binary classifier that maps real valued input vector v to an output of f(v)

such that,

f(v) =

1 w · v + b ≥ 0

0 otherwise
(2.9)

where w is a vector of weights with real values, w · v is the dot product
∑n

i=1wivi, n

is the number of inputs to the Perceptron and b is the bias. Figure 2.3 illustrates the

Perceptron algorithm as formulated in Equation 2.9.

Figure 2.3: Perceptron introduced by Frank Rosenblatt [28].

Loosely speaking, neural networks are multi-layer Perceptron units that are organised

in a hierarchy for various machine learning tasks, such as, clustering, classification

and regression. It accepts a set of observations to estimate the network parameters to

be able to predict the nature of an unknown sample.

A neural network is composed of three main layers as illustrated in Figure 2.4. Input

layer is the layer that inputs the data to be processed by the network. Each neuron in

this layer takes one feature of the input. Hidden layers do all of the processing job in

the network. A neural network can have one or more hidden layer. In hidden layers,
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neurons receive the outputs of the neurons in the previous layer as their input. After

that, they multiply the input by weight and add the bias. Output layer assemble the

output from the last hidden layer and output it after applying an activation function.

Figure 2.4: An artificial neural network with one hidden layer.

Figure 2.4 exhibits an example of a fully connected neural network. It takes an input

vector with 2 features, namely, v1 and v2.

Equation 2.10 formulates the output oj from the hidden layer. wij corresponds to

weights and bj is the bias for the hidden layer. f1 is the activation function used in

this layer:

oj = f1(
2∑

i=1

wijvi + bj), where j ∈ [1, 2, 3] (2.10)

Equation 2.11 formulates the output layer of the neural network. wjk represents the

weights and bk is the bias of the output layer. f2 is the activation function applied

to the weighed sum in the output layer. ok corresponds to the output of the neural

network.
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ok = f2(
3∑

j=1

wjkoj + bk) (2.11)

Training process of a neural network is a procedure to find optimal weights and biases

that minimizes the error between the network’s prediction and the desired result with

respect to a cost function. A cost function is a function that determines how well a

machine learning model performs for a given set of data. Cost functions calculate

the difference between anticipated and expected outcomes and shows it as a single

real number. One of the most used cost functions is the sum of the square errors.

Backpropagation is the procedure to minimize the cost function.

2.5.3 Classification

2.5.3.1 Support Vector Machines

Support Vector Machine (SVM) introduced by Vapnik [35] is a kernel method for

classification of data by mapping it from a nonlinearly separable space to a linearly

separable space. Support Vector Machines (SVM) are widely used for classification

of fMRI data which requires a nonlinear model.

Kernel functions are used to accomplish the mapping process. After applying kernel

functions, the linear separation of data can be performed in the kernel space. This

procedure is illustrated in Figure 2.5, in which a kernel function ϕ is used for the

mapping.
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Figure 2.5: An Overview of SVM.

Polynomial and Radial Basis Function (RBF) kernels are widely used for this pur-

pose. RBF kernel is defined as,

KRBF (S(t1), S(t2)) = e−γ∥S(t1)−S(t2)∥2 , (2.12)

where γ is a parameter which is bigger than zero and it sets the spread of the kernel.

S(t1) and S(t2) correspond to two brain volumes at time t1 and t2

After the kernel function maps the lower dimensional feature space to a higher dimen-

sional kernel space, SVM sets up a hyper plane. The hyper plane that has the largest

distance to the closest training sample points (support vectors) of any class (margin)

reaches the optimal separation by reducing the generalization error.

In SVM, the aim is to maximize the margin between support vectors and hyper-plane.

The loss function to maximize margin is hinge loss in SVM. Hinge loss L(S(t)) is

formulated as,

L(S(t)) = max
(
0, 1− y(t)f(S(t))

)
, (2.13)
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where S(t) is the input, a brain volume at time t, and f(S(t)) is the predicted cogni-

tive state by the SVM for the given input S(t). y(t) is the expected label, cognitive

state, of the brain volume S(t) at time t.

The cost is 0 when the label is predicted correctly otherwise the cost is computed as

1− y(t)f(S(t)). Regularization parameter can be added to the cost function in order

to balance the margin maximization and loss.

After calculating the partial derivatives with respect to the weights which gives the

gradients, the weights can be updated. [27]

2.6 Related Work

fMRI data has always been a popular non-invasive technique to record brain activation

during a mental process for brain studies. There are studies focusing on complex

problem solving using TOL data. Some of these studies also experimented feature

reduction and interpolation of the fMRI data.

One of the studies on complex problem solving using TOL data set [1] utilizes voxel

selection and interpolation in data processing part of the pipeline proposed to explore

the cognitive network dynamics among planning and execution phases of complex

problem solving. Voxel selection step is introduced to overcome the Curse of Dimen-

sionality problem. The large number of voxels in each brain volume (185,405 voxels

per time instant) is reduced to a set of selected voxels and the noise that is inherent

in data is decreased as a result of that. Temporal interpolation to increase the number

of brain volumes for each puzzle was needed because of the small sampling rate (1

sample per second) and the short duration of each puzzle (max 15 seconds). ANOVA

feature selection is utilised to select the most discriminative subset of voxels which is

the new feature set successfully making the space and time complexity of the analysis

on data set feasible. After voxel selection, cubic spline interpolation function is used

to increase temporal resolution. This method prevents edge effects and smooths the

spikes out differently from linear interpolation methods. Data processing is followed

by building functional brain networks. The results from each step are classified by
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SVM to compare the effect of data processing and generated brain network. The rel-

evant SVM classification results are reported as 74% after 10000 voxels are selected,

81% after interpolation while raw data is giving 60% classification success. This

study clearly shows the positive effect of voxel selection and interpolation for sample

generation.

[2] describes the same data processing procedures with [1]. It focuses on the steps

before building functional brain networks and investigates the effect of interpola-

tion, voxel selection, noise and combination of these methods on classification per-

formance. Voxel selection selects 25000 voxels while the number of selected voxels

is 10000 [1].

[36] makes nonlinear estimation and modelling of fMRI data proposing a spatio-

temporal support vector regression [35] method for data augmentation. This study

introduces a 4D data representation as the feature vector to perform SVR on. fMRI

data is spatially divided into small windows, such as 3x3x3 voxel regions. Entire time

series for the voxels falling into the small region is taken. Sample generation is done

within the respective window using Support Vector Regression (SVR). The intensity

time series generated for voxels in spatially overlapped windows are averaged to com-

pensate for the spatial correlation between neighbouring windows. For a given voxel

with coordinates (u,v,z) and time point t, feature vector is defined as x̄ = [u, v, z, t]T

(u ∈ R, v ∈ R, z ∈ R, t ∈ R). Full fMRI image size is S = Su × Sv × Sz

and St is total number of time points. Within each region, number of samples is M

where M = Mu × Mv × Mz. Input samples are x̄ = x̄1, x̄2, x̄3, ..., x̄M and corre-

sponding scalar output intensities are ȳ = ȳ1, ȳ2, ȳ3, ..., ȳM . The proposed model is

fSV R([u, v, z, t]
T ) = y. After estimating this model, intensities for new time points

can be estimated for voxels and data can be generated. This study presents SVR as a

data augmentation method for fMRI data for the first time and it makes use of both

coordinate and time information of the voxels. This is a novel method that gives

another aspect for fMRI data augmentation.

There are studies on sample generation for fMRI data which utilise generative ad-

versarial networks (GAN) as well. [38] proposes a generative adversarial network to
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perform data augmentation on fMRI data. This approach is not suitable for our study

since we aim to make use of time information and develop a model for temporal in-

terpolation. GAN architectures do not depend on time instead synthetic samples are

generated and discriminator component is tried to be tricked by the generated sam-

ples. Besides this, considering GAN to generate more samples brings us back to our

main problem, the curse of dimensionality. TOL data set is too small to train a good

GAN architecture.

2.7 Chapter Summary

In this chapter, fMRI and brain decoding, TOL data set and the representation of the

data are briefly explained. After that, we explain the machine learning methods that

are used in the proposed method and related works that are previously done.
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CHAPTER 3

A NEW SPATIO-TEMPORAL MODEL FOR FMRI DATA AUGMENTATION

This chapter introduces our proposed methods for temporal augmentation of fMRI

data. The main goal is to find a model to generate new data using the information

in the observed data and improve the generalization performance of the classifier by

training with more samples.

The application of interpolation methods and generative models are surveyed to de-

sign the proposed methods. Bi-cubic spline interpolation [13], GAN [38] and SVR

[36] are used to increase temporal resolution of fMRI data in the previous studies.

SVR, Neural Networks and Polynomial Regression methods are brought together to

introduce novel methods for interpolation of fMRI data. To assess the effect of data

generation on brain decoding performance, SVM [18], logistic regression [29], neu-

ral networks [13] and Gaussian Naive Bayes [8] classifiers are used in the previous

studies.

3.1 A Spatio-Temporal Data Augmentation Method

fMRI data is known to have a high spatial resolution and low time resolution com-

pared to the other brain data acqusition data, such as, EEG and FNIRS.

In a typical event based cognitive task experiment, there are total of approximately

200,000 voxels at each brain volume for a given time instance. An fMRI session

consists of several dozens of time samples to characterize a cognitive process. If we

assume that we represent each brain volume as a labeled feature, the data set consists
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of 200,000 dimensional feature vectors for each labeled time samples. Thus, we

characterize the data set of couple of dozens of sample in 200,000 dimensional vector

space. This problem, called the Curse of Dimensionality, can be attacked by reducing

the space dimension and increasing the time samples.

The suggested method consists of 4 stages as illustrated in Figure 3.1:

• Voxel selection to reduce spatial dimension.

• Data generation to increase temporal resolution: Fit voxel intensity time series

to a continuous function and recover the intensity values for the missing time

instances.

• Perform whitening transformation to normalize the data.

• Classification to evaluate brain decoding performance: Classifier to decode

brain volumes to complex problem solving phases.

Figure 3.1: Pipeline of Procedures.

3.1.1 Voxel Selection Using ANOVA

As mentioned in the Chapter 2, fMRI data generates voxel intensity values propor-

tional to the neural network activities in each voxel.

If a particular voxel time series is relatively low intensity values, the corresponding

voxel location is inactive which means that the particular voxel does not contribute to
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the underlying cognitive process. Thus eliminating the inactive voxels not only reduce

the dimension but also, removes the noise, contributed by the irrelevant voxels.

Therefore, a voxel selection method should be used before applying designed algo-

rithm to data. Feature reduction methods select relevant voxels for the decoding of

fMRI activity patterns. [37] As a result of feature reduction procedure, the most dis-

criminative voxels are used for developing the proposed interpolation methods.

ANOVA is utilized to select the most informative voxels in the TOL data. To use [2]

as a baseline for the performance of this study, the total of 185,405 voxels are reduced

to 25000 voxels. These are supposed to be the most informative 25000 voxels with

respect to the f-value score. Also, 6000 voxels are selected to create a smaller data

set for the experiments.

The f-value scores for each voxels are calculated as described in Section 2.5.1. We

order the voxels according to their f-value scores. Then, we select 6000 and 25000

voxels with the highest f-value scores to reduce the brain volume and remove redun-

dant voxels.

3.1.2 Whitening Transformation

The noise embedded in the fMRI data may have temporal correlations or noise col-

oration with the brain activities because of physiological and physical effects out-

side the brain. [25] The temporal correlation is a result of neural and hemodynamic

sources, scanner-induced low-frequency drifts and cardiac pulsation. [24] Temporal

correlation present in the noise signal of fMRI data complicates the estimation of ac-

tive brain regions resulted by an external stimulus. This might result in a increase

in false-positive rates. [25] The whitening transformation is applied to the data such

that the data has zero mean and unit variance. The whitening method normalizes the

fMRI voxel time series Vi(t) by the following equation:

V̂i(t) =
Vi(t)− µ√

σ2 + ϵ
, (3.1)
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where the normalized voxel intensity times series is V̂i(t), µ = 1
T

∑T
t=1 Vi(t) and

σ2 =
∑T

t=1(Vi(t) − µ)2 are mean and variance of values of that voxel’s intensity

time series. T is number of time instances and ϵ > 0 is a small number to prevent

numerical instability.

3.1.3 Interpolation of fMRI Data For Increasing the Time Resolution

Voxel selection and whitening transformation (normalization) enable us to design al-

gorithms, conduct experiments and analyses in more feasible time and complexity.

As mentioned in the earlier chapters, TOL data has limited number of subjects and

scans from short time periods. The lack of enough samples brings the problem of not

being able to train the machine learning models to decode human brain. The decod-

ing performance is intended to be increased by injecting generated informative data

between the original data at original time instances.

In order to assess how the amount of information, which is introduced after generat-

ing samples with interpolation, entropy and frequency spectrum of the data sets are

analyzed. Entropy is used to measure information gain as entropy is the average infor-

mation production rate by a stochastic source of data. Therefore, entropy comparison

between the real and generated data sets can be done to assess which data set carries

more information.

Following entropy analysis, frequency spectrum is plotted to examine if the frequency

spectrum of the interpolated data resembles the original one and the original nature of

the fMRI data is preserved. Frequency spectrum of a signal is the range of frequencies

contained by a signal. An intuitive understanding of the qualitative behaviour of the

system can be revealed looking at the frequency spectrum of the signal. In this study,

Fourier Transform will be used to find the frequency domain representation of the

data set.

The main motivation of this study is to increase the number of time samples so that we

have a sufficient number of the brain volumes to decode the cognitive tasks of human

brain. We need to interpolate intensities over time in an intelligent way. Therefore, a
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relation between time and intensity values should be found. Time information should

be a part of the feature vector to achieve this. Discrete time values will be used to train

interpolation model. The intensities for the time points in between will be queried and

used in classification.

In TOL data set, each subject performs a set of experiments, which are called sessions.

Subjects are asked to solve different puzzles having resting times between them. The

puzzles are labeled as resting, planning and execution according to what the subject

does at time of measurement. To make the time values in the input vector sufficient

for training of regression models, each session is divided into puzzles and they are

interpolated separately. Each puzzle is assumed to start on time point 0 and treated as

if one scan was retrieved in a second.

The sessions are divided into puzzles using the fact that there are time periods that the

subject is resting between the puzzles and each puzzle is composed of a continuous

period of planning phase followed by a continuous period of execution.

The samples, which are generated by interpolation, have to be labeled as planning or

execution. To explain labeling procedure, samples measured at time t and (t+1) are

the observed time instances and generated samples are assumed to be in two groups

divided by the mid sample. The samples generated in the [t,(2t+1)/2] are of the label

of the sample measured at time t and the rest is labeled as the label of the sample

measured at (t+1).
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Figure 3.2: Voxel intensity vs. Time plot illustration to explain the labeling of the

generated samples.

Figure 3.2 illustrates the labeling logic that is explained earlier in this Section. Sam-

ples at t0, t1, t2, t3 and t4 represent the actual voxel intensity where as the lines in

between are the interpolated intensities. P represents the label of the planning phase

while E is for the label of the execution phase.

In this study, two methods to increase temporal resolution of the TOL data set are

introduced.

3.1.3.1 Interpolation By Polynomial Regression

As we mention before, fMRI recordings resembles a nonlinear discrete function and

cannot be modeled using linear regression. The nature of the data requires a nonlinear

curve fitting method.

Figure 3.3 illustrates three puzzles from a voxel intensity time series. The figure

shows that this time series can be fit to a polynomial function of degree 6 by examin-

ing the number of turning points in the plots for each puzzle.
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Figure 3.3: Voxel intensity vs. Time plot (Voxel 770, first 3 puzzles from session 3,

subject 146).

Equation 3.2 formulates Vi(t) as a kth degree polynomial in t. Vi(t) represents the

voxel intensity value of ith voxel at time t.

Vi(t) = a0 + a1t+ a2t
2 + . . .+ akt

k (3.2)

Assuming that each voxel can be modelled independently from each other, the time

series of a given voxel for a given puzzle is fit to a polynomial curve by minimizing

the least squares error between the original samples and the results from polynomial

function. The voxel intensity values at missing time instances are estimated for all

puzzles separately and the interpolated data for each puzzle is concatenated to build

the interpolated voxel session time series. For a session with 18 puzzles and 25000

voxels, 18× 25000 = 450000 polynomial functions are estimated.

Observed time instance and voxel intensity value pairs are used for estimating the

polynomial function. Predictions are done using the time values between the real
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observation times as the polynomial curve provides a continuous representation for

the voxel intensity time series. Generated samples are placed between the measured

intensity values.

3.1.3.2 Interpolation By Neural Networks

In the previous section, an interpolation method using by minimizing the least squares

error between the actual samples and a polynomial is proposed. Even though pre-

viously described method is promising, designing a more complex method have a

potential to increase the performance even more.

In the previous method, it is assumed that the voxel intensity values over time can be

modeled independently from each other. However, the spatial correlations also exist

among the voxels. The fMRI data analysis cover the spatio-temporal relationship

between a stimulus and the cerebral activation in fMRI. Even though the data has an

apparent spatio-temporal nature, there are few proposed models based on this fact.

[26, 12, 36] In this method, a spatio-temporal modelling method is proposed. Instead

of having a model for each voxel-puzzle pair, a model per puzzle is trained. The

estimation of voxel intensities is done by taking how voxels are located relatively to

each other into account as well.

The coordinates of voxels provide spatial information about the proximity of voxel

groups. In the suggested method, the feature vector is extended by adding voxel

coordinates. The coordinates is normalization before being used.

A novel neural network model is proposed for building a nonlinear model to recover

missing scans between the known brain volumes. The architecture has two network

components as illustrated in Figure 3.4:

• Neural Network 1: A neural network layer that learns the spatial relations

among the voxels using the voxel coordinates and then returns a new representa-

tion for the coordinates. The encoding step provides disentanglement of spatial

and temporal weights. Neural Network 1 consists of a single fully connected
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layer with 50 neurons. The new representation of the coordinates (xi, yi, zi) is

shown as f(xi, yi, zi) in Figure 3.4, where f : R3 → R50. ReLu is selected as

the activation function.

• Neural Network 2: A fully connected neural network that takes the mea-

surement time t along with the encoded coordinates f(xi, yi, zi) as input, and

then estimates a voxel intensity value Vi(t) for the ith voxel at the coordinate

(xi, yi, zi) and time t. This component has three fully connected layers with

100, 50 and 25 neurons. ReLu is used as the activation function.

Figure 3.4: Neural network model for interpolation.

Each puzzle is modelled by training the neural network with the described structure.

Interpolated puzzles are concatenated to create the interpolated session data.
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3.1.4 Decoding the Planning and Execution Phases of TOL Game

Brain decoding in this study refers to predicting whether an fMRI sample was taken

during planning or execution phases. After the voxel selection, whitening transfor-

mation on the original data, and data augmentation by temporal interpolation are per-

formed, decoding the phases of complex problem solving is done. General idea in this

step is to measure the effect of temporal interpolation on brain decoding performance.

In order to test the validity of the suggested interpolation methods, we train an SVM

classifier with the original and interpolated data separately and test the classifier with

the original data set. The amount of increase in the performances of the classifier can

be considered as a measure of validities of the suggested methods.

3.2 Chapter Summary

In this chapter, we first give the motivation behind the proposed method. Then,

We introduce the suggested method to increase the temporal resolution step by step.

Voxel selection, temporal interpolation, normalization and brain decoding steps are

explained in detail.
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CHAPTER 4

EXPERIMENTS ON MEASURING THE EFFECT OF INTERPOLATION

OF FMRI DATA ON BRAIN DECODING

In this chapter, the brain decoding performances for the original and interpolated data

sets are measured and compared. Fourier and Shannon Entropy analysis is performed

to analyze the decoding performances achieved.

4.1 Software and Hardware Configuration for Brain Decoding Experiments

The computer configuration is crucial to conduct experiments on this study because

of the high dimensionality. It requires feasible RAM, CPU and GPU configurations.

For polynomial model, utilizing CPU is generally sufficient while training a neural

network with several layers requires GPU support to estimate that amount of param-

eters.

The server used for training processes has 32 GB of memory. Utilized graphics card

is NVDIA GeForce GTX 1080 which has a 8 GB memory and memory speed of 10

Gbps. CPU is Intel Core i7-4930K CPU with processing speed of 3.40GHz.

The main programming language used in the study was Python to implement and pre-

pare experiments fast. numpy, pandas, tensorflow-gpu, scikit-learn and scipy pack-

ages are used in the development of the experiment scripts. Neural networks are built

utilizing tensorflow and other functionalities used such as polynomial regression and

SVM is selected from scikit-learn. numpy and pandas are used to read data and do

mathematical operations easily.
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4.2 Experiments On TOL Data Set For Testing And Analyzing the Suggested

Data Augmentation Model

In this set of experiments, SVM classifier is utilized for examining the effect of in-

terpolation by the proposed methods. fMRI samples are classified into two cognitive

states, namely planning and execution.

Voxel selection is applied to the data set as a first step. 25000 voxels are selected

as in [2] for comparable results and in addition to that, 6000 voxels are selected to

get faster results while determining the parameters for the interpolation. Figure 4.1

presents a histogram for the average selected voxel count per anatomic regions of the

brain.

Figure 4.1: Average number of voxels selected from each anatomical region across

all subjects.

Each fMRI data acquisition session consists of solving a puzzle. First, the sessions are

divided for each puzzle to be used in k-fold cross validation. 8-fold cross validation

is used to compute model accuracy. In each run of train and test, seven of the puzzles

are selected to fit the model and the remaining one is used to test the model. The

mean of the accuracies retrieved from each run is written down as the performance of

the data set used for training.

In order to compare the brain decoding performances, a baseline classification is done

by training an SVM using the original fMRI data without any interpolation. The

prediction accuracies of this baseline experiment are listed in Table 4.1,
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Table 4.1: Brain decoding accuracy results for the original fMRI data.

#voxels normalized not normalized

6000 0.8489 0.7217

25000 0.8483 0.7506

The first interpolation method introduced in Chapter 3 is the polynomial regression.

A polynomial function or order 6 and 8 is estimated for the both fMRI data sets with

reduced voxel numbers, 6000 and 25000.

The second proposed method is a novel neural network architecture to interpolate the

fMRI data by regression. The same reduced data sets with 6000 and 25000 voxels are

experimented for their impact in the brain decoding accuracy. The result with the best

classification accuracy is achieved by the suggested model as shown in Table 4.4. The

model receives normalized coordinate and time information at the input. The model

has a hidden layer with 50 neurons to learn the spatial relations among the voxels, and

three fully connected hidden layers with 100, 50 and 25 nodes for the voxel intensity

value prediction that expects the encoded coordinates and time at the input.

Number of epochs is 500, which is selected according to the sum of absolute errors

in each epoch. Figure 4.2 shows the sum of absolute errors and it can be seen that the

error stops decreasing around 500th epoch.

Learning rate is selected as 0.01 as the start value. Looking at the errors for each

epoch shown in Figure 4.2, the learning rate has been decreased gradually during the

training. ReLu is the selected as activation function.
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Figure 4.2: Average Sum of Abs Error of Puzzles In Each Epoch (NN Method -

Subject 146, Session 3 with 25k Voxels).

After data generation, the puzzle indices for train and test is determined for each run

of 8-fold cross validation. The train puzzles are taken from generated data and test

puzzle are from original data. The mean of the decoding performances can be found

in the Table 4.2 and 4.4,

Table 4.2: Brain decoding accuracy results for the fMRI data interpolated by the

polynomial regression.

polynomial degree #voxels normalized not normalized

6 6000 0.8684 0.8075

6 25000 0.8715 0.8075

8 6000 0.8666 0.8066

8 25000 0.8680 0.8246
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Table 4.3: Brain decoding accuracy results for the fMRI data interpolated by the

proposed neural network method.

#voxels normalized not normalized

6000 0.8663 0.8304

25000 0.8806 0.8515

Table 4.1, 4.2 and 4.4 report the brain decoding performances for the original and

interpolated fMRI data sets. Table 4.1 shows that the baseline performance for the

brain decoding is 85%. We achieve 87% when the temporal resolution is increased

using the polynomial interpolator of degree 6 on 25000 voxels as listed in Table 4.2.

The feature vector with 25000 voxels gives a sligtly better performance than using

6000 voxels. In addition, Table 4.2 shows polynomial of degree 6 reaches a better

performance than degree 8. It means that degree 6 provides a better modelling of the

signal than degree 8. The highest performance, which is 88%, is achieved using the

neural network interpolator as reported in Table 4.4. This shows that representing the

voxel signal as a higher-order non linear function improves the performance.

Table 4.4: Brain decoding accuracy results for the fMRI data interpolated by the

proposed neural network method.

#voxels normalized not normalized

6000 0.8663 0.8304

25000 0.8806 0.8515

Before conducting experiments on the suggested neural network interpolator, a sim-

pler neural network architecture is used to perform temporal interpolation of the orig-

inal fMRI data. This neural network has 3 fully connected layers with 60, 40, 20

neurons. ReLu is used as the activation function and the number of epochs is selected

as 400 according to the sum of absolute errors in each epoch. The main difference
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from the suggested method here is that this architecture does not encode the voxel

coordinates. Here input layer expects an input vector [xi, yi, zi, t], which consists of

coordinates of the ith voxel and the time t as illustrated in Figure 4.3.

Figure 4.3: The simple neural network that is experimented before experimenting our

suggested method which is described in Section 3.1.3.2.

The fMRI data interpolated using the simple neural network results in the lowest brain

decoding performance among all the methods we experiment. The performance is re-

ported as 84% in Table 4.5 while the proposed neural network architecture achieves

88%. This proves that the disentanglement of space and temporal weights is neces-

sary to improve the performance. The first component of the proposed neural network

shown in Figure 3.4, which encodes the voxel coordinates and learns the spatial rela-

tions among the voxels, plays a key role in modelling the TOL data.

Table 4.5: Brain decoding accuracy results for the fMRI data interpolated by the

simple neural network method illustrated in Figure 4.3.

#voxels normalized not normalized

25000 0.8420 0.7298

4.2.1 Analysis of the Interpolated fMRI Data

In this section, we analyze and compare the original and interpolated fMRI data in

terms of their information content and frequency domain spectrum.
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Figure 4.4, 4.5, 4.6, 4.7 and 4.8 show Voxel intensity vs. Time plot of a randomly

selected voxel. The parts with white background correspond to the resting state, the

orange parts show the planning state and blue back-grounded parts mean that subject

is in planning state. The plots are from data sets with 25000 voxels.

The voxel intensity values generated for an individual voxel do not depend on the

selected voxel number for polynomial regression, because each voxel has its own

regression model for generation. Polynomial regression with degree 6 for 25000 se-

lected voxels provides an increase in classification performance around 2% which

was reported in Tables 4.1 and 4.2.

Figure 4.4: The original voxel intensity values vs. Time plot of voxel with id 770.
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Figure 4.5: The voxel intensity values vs. Time plot of voxel with id 770 after im-

proving temporal resolution by polynomial regression of degree 6.

As seen in the Figure 4.4 and 4.5, the polynomial interpolation performs smoothing

on the original signal. Representing the signal as a polynomial curve of degree 6

has a higher generalization performance compared to the original signal and it avoids

overfitting.
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Figure 4.6: The voxel intensity values vs. Time plot of voxel with id 770 after im-

proving temporal resolution by the method using neural networks.

Figure 4.7: The voxel intensity values vs. Time plot of voxel with id 770 after improv-

ing temporal resolution by the method using neural networks for the first 3 puzzles

only.
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Figure 4.8: The voxel intensity values vs. Time plot of voxel with id 770 after im-

proving temporal resolution by the method using neural networks for the puzzles with

id 10-11-12-13 only.

As reported in Table 4.4, the proposed interpolation by neural network with a novel

architecture gives the highest brain decoding performance among all of the perfor-

mances noted. The voxel intensity vs. Time plot, Vi(t) vs. t, of voxel 770 after neural

network interpolation is shown in Figure 4.6, 4.7 and 4.8. As seen, it has a nonlinear

nature.

After examining these plots, simpler architectures with smaller depth and number of

neurons may be considered to check if there is an overfitting problem. However, the

most notable performances are achieved by this setting in terms of brain decoding ex-

periments. Analyzing the interpolated voxel time series shows that this architecture

adds a high degree of nonlinearity to the fMRI measurements. Therefore, a better per-

formance has been achieved. This observation can be examined in depth by looking at

the Fourier Transform plots and entropy comparisons of the original and interpolated
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brain volumes.

In order to compare the nature of the original and interpolated fMRI data, plots for

shorter time periods are provided for visual inspection in Figure 4.7 and 4.8. This

enables us to analyze the puzzles in detail.

All of the reported decoding performances show that the normalization of the fMRI

time series increases classification performance notably. Noise coloration in fMRI

data caused by physiological and physical effects outside of the experiment may cause

false-positives. The whitening transformation gets rid of those effects.

4.2.1.1 Entropy Analysis

Entropy is used to measure the number of possible states to a system. In intelligent

systems, the information is modelled into states according to reconfigurations of its

components. This study focuses on the information retrieved from the brain in the

form of fMRI data. Brain as an intelligent system utilizes the information by creating

models of sensory input through readjustments of neural connections [30].

Brain entropy gives us the predictability of voxel signals over time as it does not

measure the number of states directly. It provides us an estimation which has a very

close relation to the number of possible states in the brain namely predictability of

the behaviour of the voxel signals. In this study, information density introduced by

Shannon is used to estimate predictability since they are closely related [32]. Less

predictable voxel time series has higher entropy since each data point introduces new

information while low entropy time series has a repeating pattern over time making it

predictable.

Neuroscience studies discovered that a collection of anatomic regions coordinate to

form a cognitive task, for instance the complex problem solving. Hence, in this study,

we stimate the anatomic region level entropy to analyse the classification results. For

a region participating the complex problem solving task more, voxel BOLD signal

intensities are expected to have a pattern over time. Therefore, they produce lower
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entropy compared to less active anatomical regions as their voxel time series have a

random nature. [10].

As described above, we expect to see lower entropy for the data sets generated by the

proposed methods since higher decoding performance is achieved using the classifiers

trained with them.

Before moving onto entropy results and comparison, let us formulate the static en-

tropy estimation for each anatomic region.

fMRI BOLD signals for a Complex Problem Solving session is a set of voxel time

series of length n representing the neural activity. BOLD values measured for a voxel

Vi are represented as time series Vi(t). Averaging the time series of the voxels located

in a region gives the representative time series for the region which we will refer as

Vr(t). nr represents the number of voxels in a region r [10].

Vr(t) =
1

nr

∑
∀Vi∈r

Vi(t) (4.1)

Kernel probability density estimation method is used to estimate the probability den-

sity function, P (Vr) for a given region [10].

P (Vr/r) =
1

nh

n∑
t=1

K(
Vr − Vr(t)

h
) (4.2)

where n is the number of time samples for a session, Vr is the representative time

series for a region r, K is the kernel smoothing function, and h is the bandwidth size.

Finally, the estimated probability density function is used to calculate the region en-

tropy for a given region r:

H(Xr) = −
∑

∀t∈Vr(t)

P (Vr)log2P (Vr) (4.3)

In the study [7], the regions with the lowest static entropy are reported. We select a

subset of 10 anatomic regions from the listed regions, which are right superior parietal

gyrus, left superior parietal gyrus, left medial orbitofrontal gyrus, right Precuneus,

left calcarine, right calcarine, left angular gyrus, right lingual gyrus, right cuneus,
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and left cuneus to estimate the entropy values for our data sets. These regions are also

mentioned to be the most active regions in the previous neuroscience studies [16, 3].

The region entropies are estimated for each session for a given subject. Figure 4.9,

4.10, 4.11, 4.12 and 4.13 show the region entropy estimations for different data sets

for TOL experiment.

First, we select the samples labeled as planning phase and estimate the regional static

entropy as formulated before in Equation 4.1, 4.2 and 4.3. Following that, execution

time instances are analyzed separately.

Figure 4.9: Region entropy estimations for samples labeled as planning phase. Av-

eraged for all sessions and subjects, calculated using all data sets: the original fMRI

data, the interpolated fMRI data by the polynomial interpolation of degree 6 and the

interpolated fMRI data by the proposed neural network method.
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Figure 4.10: Region entropy estimations for samples labeled as execution phase. Av-

eraged for all sessions and subjects, calculated using all data sets: the original fMRI

data, the interpolated fMRI data by the polynomial interpolation of degree 6 and the

interpolated fMRI data by the proposed neural network method.

Secondly, an entropy estimation is performed on the full time series, without selecting

the planning or execution phases. Following figures illustrate the results obtained

from these experiments.
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Figure 4.11: Region entropy estimations for the session 5 of subject 175, calculated

using all data sets: the original fMRI data, the interpolated fMRI data by the polyno-

mial interpolation of degree 6 and the interpolated fMRI data by the proposed neural

network method.

Figure 4.11 exhibits the entropy estimation for subject 175 who is an expert partici-

pant. It shows a similar range for the entropy estimations reported in Figure 4.9 and

4.10. We see that neural network and polynomial interpolation increase the informa-

tion content of the fMRI data.
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Figure 4.12: Region entropy estimations averaged for all sessions of subject 146,

calculated using all data sets: the original fMRI data, the interpolated fMRI data

by the polynomial interpolation of degree 6 and the interpolated fMRI data by the

proposed neural network method.
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Figure 4.13: Region entropy estimations averaged for all sessions and subjects, cal-

culated using all data sets: before interpolation, after polynomial interpolation (de-

gree=6) and after neural network interpolation.

As seen in the Table 4.1, Table 4.2 and Table 4.4, there is an increase in the clas-

sification performance after interpolating the data. Figure 4.9 and 4.10 show very

close entropy values for the original fMRI data and the fMRI data interpolated by

the polynomial model. The plots also show that interpolation performed using neural

network method resulted in a dramatic decrease in region level entropy. Figure 4.11,

Figure 4.12 and Figure 4.13 illustrate a similar result for the analysis from the data

with all phases.

Table 4.6, Table 4.7 and Table 4.8 can be seen for a detailed analysis as they clearly list

the estimated values. It proves the entropy values are consistent with the classification

results. Neural network interpolation increases classification results noticeably and it

is seen that it has lower entropy values compared to the other data sets. Polynomial
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regression achieves a negligible increase in classification performance so it is pretty

close to original data set in terms of entropy.

Table 4.6: Region Entropy Estimation (Averaged for all sessions and subjects) (bit-

s/sample).

Original Polynomial Int. NN Int.

Calcarine_L 0.4167 0.4228 0.3719

Calcarine_R 0.4290 0.4345 0.3759

Lingual_R 0.4350 0.4397 0.3925

Parietal_Sup_R 0.4361 0.4398 0.3275

Frontal_Med_Orb_L 0.4378 0.4466 0.2522

Parietal_Sup_L 0.4389 0.4431 0.3743

Cuneus_R 0.4392 0.4426 0.3062

Precuneus_R 0.4428 0.4440 0.3630

Cuneus_L 0.4440 0.4490 0.2757

Angular_L 0.4636 0.4695 0.2758

Table 4.7: Region Entropy Estimation for Planning Phase (Averaged for all sessions

and subjects) (bits/sample).

Original Polynomial Int. NN Int.

Calcarine_L 0.4445 0.4540 0.3816

Calcarine_R 0.4575 0.4674 0.3859

Frontal_Med_Orb_L 0.4619 0.4697 0.2570

Cuneus_L 0.4642 0.4712 0.2801

Lingual_R 0.4647 0.4731 0.4031
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Table 4.8: Region Entropy Estimation for Execution Phase (Averaged for all sessions

and subjects) (bits/sample).

Original Polynomial Int. NN Int.

Frontal_Med_Orb_L 0.4728 0.4771 0.2568

Cuneus_L 0.4954 0.4979 0.2790

Calcarine_L 0.4980 0.4993 0.3809

Angular_L 0.5004 0.5027 0.2796

Precuneus_R 0.5004 0.4998 0.3695

4.2.1.2 Fourier Transform Plots and Analysis

The Fourier Transform decomposes a function into a sum of sinusoidal basis func-

tions. Fourier transform is one of the major methods to compute frequency domain

representation of a signal. Fourier transform of a continuous voxel signal v(t) is

computed as follows where f is the sampling frequency:

F{v(t)} = Fi(f) =

∫ ∞

−∞
Vi(t)e

2πiftdt (4.4)

In our case, we have discrete intensity values representing voxel signals that’s why

discrete Fourier transform is utilised. It is computed as below where T is the number

of time samples:

F{Vi(t)} = Fi(f) =
T∑
i=1

Vi(t)e
2πiftdt (4.5)

In this section, frequency domain representation plots for the signals are analyzed to

qualify the frequency content of the voxel time series. Figure 4.4, Figure 4.5 and

Figure 4.6 compares the analyse the consistency of the brain decoding performances

from the original and interpolated fMRI data. Fourier transform gives us important

information about the signal’s nature.
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Figure 4.14: The Fourier Transform of the original voxel intensity vs. Frequency plot

of voxel with id 770.
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Figure 4.15: The Fourier Transform of voxel intensity vs. Frequency plot of voxel

with id 770 after improving temporal resolution by the polynomial interpolation

method.

Figure 4.14 and Figure 4.15 plots show the frequency spectrum of the original signal

and the interpolated signal using polynomial regression with degree 6 for voxel 770

of subject 146 during session 3. Recalling the classification results presented, the

classification performances are pretty close to each other for these data sets. The data

set interpolated by polynomial regression with degree 6 adds a slight performance

improvement. As seen in the plots provided for Fourier transforms, the frequency

domain representation for the signals have a common shape. Only some frequency

values are introduced in the interpolated one preserving the same shape while not

introducing any non linearity.
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Figure 4.16: The Fourier Transform of voxel intensity vs. Frequency plot of voxel

with id 770 after improving temporal resolution by the neural network method.

Figure 4.16 is created for the interpolated fMRI data by the suggested neural network

method. As shown in the signal plot itself as Figure 4.6, the generated signal has

a higher degree of nonlinearity compared to other data sets, which leads a better

brain decoding performance. Since neural network introduced by this study has a

great amount of parameters compared to polynomial regression method, it can fit a

complex function to the data. As seen in the Figure 4.16, this method introduces a

wide range of different frequencies resulting in a higher degree of nonlinearity for the

data.

4.2.1.3 Complexity and Scalability

TOL data has a high spatial resolution. In the original fMRI recordings, each brain

volume consists of 185405 voxels. Since the interpolation methods introduced in this

54



study have high computational complexity with many parameters to be estimated. It

is not feasible to use a feature set with many features.

The time it takes to train the proposed models is pretty dependent on number of vox-

els. We can roughly calculate number of parameters to be estimated for each method.

We recall that the neural network interpolator is represented with 2 components in

Figure 3.4. The component that learns the spatial relations among the voxels takes an

input with 3 features and trains 50 neurons. The second component, which expects the

encoded representation of the voxel coordinates and time, has 3 fully connected hid-

den layers with 100, 50 and 25 neurons. It outputs the predicted voxel intensity value

for the given voxel location and time. In each epoch, 3∗50+51∗100+100∗50+50∗25
parameters for weights and 1 ∗ 50 + 1 ∗ 100 + 1 ∗ 50 + 1 ∗ 25 parameters for bias

are to be estimated in the neural network model. Recalling that we use 500 epochs

for training the neural networks, this amount of parameters are estimated 500 times.

The set of input vectors consist of the all combinations of the observation times and

voxel coordinates. Therefore, the number of voxels affects the time we update the

parameters during an epoch. Obviously, training takes more time as the voxel set gets

bigger. Number of samples is also a multiplier for the duration of training.

For polynomial regression, the method fits a model for each voxel’s signal. That

makes polynomialfunctiondegree + 1 parameters to estimate for each voxel. The

total number of parameters to estimate in the polynomial interpolation method is

(polynomial function degree + 1) ∗ (number of voxels). Therefore, the meth-

ods are not scalable in terms of feature set size. Table 4.9 exhibits the average time

for generating samples for subject 146-session 3 data using different methods.
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Table 4.9: Total time spent on data generation for subject 146 session 3 data.

Method # of voxels Data generation duration

Neural network interpolation 6000 314 seconds

Neural network interpolation 25000 1251 seconds

Neural network interpolation 185405 Hardware was not enough

to compute

Polynomial interpolation 6000 86 seconds

Polynomial interpolation 25000 361 seconds

Polynomial interpolation 185405 2456 seconds

According to the results presented in Table 4.9, the number of voxels is almost in

linear relationship with the run time which includes training the generator model and

generating samples. It can be seen that sample generation for only one session of

one subject took at least 86 seconds for the polynomial regression and at least 314

seconds for the neural network model. According to the classification results, 25000

voxels give the best result with neural network model and it is taking 1251 seconds.

Recalling that we have 18 subjects with 4 sessions each, we multiply the reported

run times with 72 to calculate the approximate time it takes to complete the data

augmentation for the whole data. It is obvious that this algorithms take too long for

the high dimensional feature spaces and it is not feasible to scale the feature set up. It

is also reported that using all of the voxels in feature set is not possible for the neural

network model.

Due to the reasons mentioned in above, the methods are not scalable in terms of the

number of samples. We update parameters for each sample in an epoch. Therefore, as

the number of brain volumes gets bigger, the training will be slower. Also, the meth-

ods do not necessarily need to be scalable with respect to number of samples, since

we propose the data augmentation methods because there is not enough samples to

train a classifier in the original fMRI data. If we had the sufficient number of samples

in the data to prevent the Curse of Dimensionality problem, the brain activation could

be decoded to complex problem solving phases without generating samples.
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4.3 Chapter Summary

In this chapter, the effect of the temporal interpolation on brain decoding perfor-

mance is presented. The reported results are discussed by using Fourier and Shannon

Entropy analysis.

Table 4.10: Brain decoding performance summary of the proposed method.

Method Brain decoding performance

Baseline 0.8489

Polynomial Interpolation 0.8715

Neural Network Interpolation 0.8806

Table 4.10 summarizes the highest performance from each experiment. Baseline

performance corresponds to the decoding performance for the original fMRI data.

Polynomial interpolation and neural network results correspond to the results of the

suggested method.
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CHAPTER 5

CONCLUSION

In this study, we focus on improving the brain decoding performance by enhancing

temporal resolution of fMRI data set. We propose two novel methods for temporal

interpolation to reduce the effects of the Curse of Dimensionality problem, and dis-

cuss the results observed through the experiments conducted. The suggested model is

verified and validated in an fMRI data set, while the subject solve a complex problem,

they played the Tower of London (TOL) game.

5.1 Summary

In this study two interpolation methods are introduced following the application of

standard data pre-processing methods. These methods are discussed and justified

with the experiments, results and analyses.

• Preprocessing Step:

- Since the fMRI data, for the TOL game experiment, has a high spatial res-

olution, it is not feasible to keep all of the voxels in the feature set. Besides,

irrelevant voxels in the feature set may lead to poor generalization performance

causing the overfitting problem in both interpolation and classification steps.

25000 and 6000 voxels are selected to create two separate data sets with re-

duced voxel number utilising ANOVA voxel selection method.

- The feature vectors are normalised such that the data set has a zero mean and
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unit variance. This removes the noise embedded in the fMRI recordings, and

ensures that all the voxel time series, which are recorded from various subjects

and sessions, are represented in the same scale.

• Interpolation methods are introduced since fMRI data does not have enough

samples compared to the number of voxels in a brain volume. Interpolation

step is the main focus of this study.

- Sample generation by the polynomial interpolation method is introduced. A

polynomial curve is fit to each voxel time series for a given puzzle. As a result,

the newly generated voxel intensities are located in between the observed time

instances. This method is used for sample generation after pre-processing.

- A neural network is designed to increase temporal resolution as a second

method. The voxel coordinate and the time form the input vector of the pro-

posed neural network.

• Experiments are conducted to assess if a better brain decoding performance is

achieved using the proposed method. After pre-processing, we end up with two

data sets which consist of the selected voxel time series. SVM classification

performances are reported on the data with the selected voxels.

- First, the polynomial interpolation method is experimented with the differ-

ent polynomial degrees. The generated data is used to train an SVM classifier.

Then, the classifier is tested with the original fMRI data. 2% increase is ob-

served compared to the pre-processed data sets.

- Second, the neural network interpolation method is experimented on the pre-

processed data sets. An SVM classifier is trained with the interpolated fMRI

data and it is tested using the original fMRI data. About 3% increase is observed

compared to the pre-processed data sets.

• The time series of a randomly selected voxel is plotted for the original and

interpolated fMRI data. This is an important way of analyzing the nature of the

data.
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• The Fourier transform of the time series of a randomly selected voxel is plot-

ted for the original and interpolated fMRI data. It shows that data generated

with polynomial regression has a very similar frequency spectrum to the origi-

nal data while the neural network interpolation introduces various frequencies.

This is an important observation to be able to explain the results.

• Entropy analysis is conducted to compare the information content of the orig-

inal and interpolated fMRI data. The entropies are calculated in anatomical

region level. The entropy estimations for the lowest entropy regions are com-

pared to justify the classification results.

5.2 Discussion

The proposed interpolation methods achieve a higher brain decoding performance

compared to the original fMRI data. The baseline performance for the brain decoding

is 85%. The polynomial interpolation method has a performance of 87% in brain

decoding. It increases the performance around 2%, and this method is feasible in

terms of run time and memory needs. On the other hand, we report that the suggested

neural network method achieves a performance of 88% but this method takes a long

time to complete. In addition to that, providing the memory and computational power

required is impracticable. To get a notable performance increase, the neural network

model is preferable but training the neural network is costly in terms of resources

needed.

5.3 Future Work

The classical Multi-Layer Perceptron architecture, in our suggested neural network

interpolation method, can be replaced by autoencoders and LSTM. Classifiers, other

than SVM, can be used for evaluating the decoding performance.
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