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ABSTRACT

DESIGN AND SYNTHESES OF POTENTIALLY CPL EXHIBITING
CHIRAL COUMARIN DERIVATIVES

Asya, Ber¢in Verda
Master of Science, Chemistry
Supervisor: Prof. Dr. Akin Akdag

February 2022, 115 pages

Interaction of chiral organic compounds with polarized light is an emerging concept
that has the potential of widespread application areas. Thus, CPL exhibiting
compounds are in high demand. Specifically, the synthesis of circularly polarized
light exhibiting organic compounds is a challenging yet promising task. In this study,
chiral fluorescent organic compounds with coumarin derivatives as chromophore
groups have been synthesized. Enantiomers of tartaric acid derivatives have been
utilized as the chiral core unit. Besides their characterization analyses, photophysical
and chiroptical studies of the compounds have been accomplished through UV-Vis,
fluorescence and CD spectroscopy in methanol, chloroform, acetonitrile, and
tetrahydrofuran. CPL studies of these compounds were conducted with the home-

made CPL instrument. The CPL results are assuring but still need enhancement.

Keywords: circularly polarized light, circularly polarized luminescence, circular

dichroism, coumarin, tartaric acid
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DAIRESEL POLARIZE ISIK YAYMA POTANSIYELINE SAHIP KiRAL
KUMARIN TUREVLERININ TASARIM VE SENTEZIi

Asya, Ber¢in Verda
Yiiksek Lisans, Kimya
Tez Yoneticisi: Prof. Dr. Akin Akdag

Subat 2022, 115 sayfa

Son zamanlarda yiiksek ilgi goren kiral organik molekiillerin polarize 1sik ile
etkilesimi, yaygin uygulama alanlar1 potansiyeline sahiptir. Bu nedenle dairesel
polarize 151k yayma potansiyeline sahip bilesikler yiiksek talep goérmektedir.
Ozellikle, dairesel polarize 151k yayma potansiyeline sahip organik bilesiklerin
sentezi zorlu ama umut verici ¢calismalardir. Bu ¢alismada, kromofor gruplar1 olarak
kumarin tiirevleri olan kiral floresan organik bilesikler sentezlenmistir. Tartarik asit
tiirevlerinin enantiyomerleri, kiral birim olarak kullanilmistir. Sentezlenen yeni
bilesiklerin karakterizasyon analizlerinin yam1 sira UV-Vis, Floresan ve CD
spektroskopisi dlgiimleri ile fotofiziksel 6zellikleri de incelenmistir. Bu bilesiklerin
CPL analizleri ev yapim1 CPL cihazi ile gerceklestirilmistir. CPL sonuglart umut

verici olmakla birlikte gelistirilmeye muhtagtir.

Anahtar Kelimeler: dairesel polarize 151k, dairesel polarize liiminesans, dairesel

dikroizm, kumarin, tartarik asit
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CHAPTER 1

INTRODUCTION

1.1  Light

Throughout the history, the definition and properties of light were a question of
debate and there were four theoretical descriptions of light being corpuscular theory,

wave theory, electromagnetic theory and quantum theory.!

Isaac Newton published “Opticks”, in 1704, and revealed his theory called
“corpuscular theory of light” which claims that light is the combination of small
different particles called corpuscles and move through space.” However later,
Newton’s theory failed to explain diffraction, interference and polarization of light.
With Huygens’ postulations about wave nature of light in “Traite de la Lumiere”,
which can be translated as “Treatise on Light”, Thomas Young and Robert Hooke
supported wave theory so that the diffraction, interference and polarization
properties of light is enlightened.*>® Subsequently, Maxwell defined light as a
wave that is the combination of an oscillating electromagnetic field with charged
particles and his definition is referred to as “classical paradigm of light as
electromagnetic waves”.” With that, scientists worked to understand the properties
of light. There were many difficulties to describe it in classical concepts of “particle”
or “wave”. Our understanding of light today was concluded by Albert Einstein, as
he stated it was not possible to explain the phenomena of light considering particle
and wave properties separately, it is only logical when they are both considered
exclusively.® Having both “particle” and “wave” features; light has various
properties. With these inherently different properties of light, it just not causes the

sensation of sight to the human eye but also helps to investigate the nature of the



universe. Both the intensity, propagation direction, frequency, and polarization

properties are very important for that manner.

1.1.1 Absorption and Emission of Light

Planck postulated that, in the 1800s, light is composed of energetic particles called
photons.> After the postulation of Planck, Einstein explained further that light travels
in bundles of energy, confirming photons having both particle-like and wave-like
properties. Each photon has an energy that is related to the frequency of vibration

given by Planck’s famous equation (Equation 1).

E=hv Equation 1

34 T

Where h and v correspond to Planck’s constant (6.63 x 10~ J.s) and

frequency, respectively.

When light interacts with matter, it is observed that light is absorbed. This absorption
was later on found to affect the electronic states of the matter that electrons from
lower energy state move to the upper state. The energy difference between the lower
and the upper state should match the incoming photons energy as can be inferred
from Planck’s equation. Measurement of this is called the electronic spectrum of that
matter. Light with lower energy causes differences in the vibrational level of the
matter. High energy light (x-ray and gamma rays) can ionize matter. Although these
last two events are extremely important, we will concentrate on the electronic
spectrum of matter which mainly deals with the UV-Vis region (200-800 nm) of the

electromagnetic spectrum.

Early on light interaction with matter was found to be an intriguing concept. With
Planck’s equation in hand and the photoelectric effect it could be concluded that
transfer of energy as photons results in absorption and emission of light.”>° For

absorption of light, photons having the same energy as the difference of two



electronic states, ground and excited states, use their energy to move one electron

from ground to excited state as shown in Figure 1.°

— _._
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Electronic Electronic
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Figure 1. Pictorial representation of absorption process.

There are fundamental principles for the experimental measurement of absorption
spectra. According to Beer-Lambert’s Law, (equation 2) the absorption of radiation
is dependent upon, concentration, path length, the intensity of the incident beam, and

extinction coefficient.'”
A=¢bC Equation 2

Where ¢: extinction coefficient (L x mol! x cm™), b: path length (cm) and

C: concentration (mol x L)

Quantity of absorption is reported as optical density (OD) and absorption spectra are
generally plotted as OD versus wavelength (A, in nm). The equation for optical
density is shown in equation 3 whereas Iy is the intensity of light and Ir is the

intensity of transmitted light.
OD = log (Io/IT) Equation 3

The process is called emission when an excited atom or molecule emits a photon of
energy having the same as the difference between two electronic states shown in

Figure 2. Emission can be taught as the reverse process of absorption.’

——
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Figure 2. Pictorial representation of emission process.



Experimental measurement of emission spectra is obtained by the collection of data
at a fixed excitation wavelength and constant intensity for the incident light (Io). Like
absorption spectra, emission spectra are plotted as emission intensity (Ic) versus

wavelength (), in nm) and the relation can be shown as Equation 4.7
Ie =2.3ICloc® Equation 4

Where /: path length (cm), C: concentration (mol x L), &: extinction coefficient (L

x mol™! x cm™), ®: quantum yield.

1.1.1.1 UV-Vis Absorption and Fluorescence Spectroscopy

The Ultraviolet (UV) region of the electromagnetic spectrum approximately
comprises between 100-380 nm range whereas the visible (Vis) region comprises
between 380-750 nm. With UV-Vis spectroscopy transmittance, reflectance and
photoluminescence studies are done and it is related to the outermost electrons and
their excitation.!! Absorption of light occurs typically in 107> s whereas emission

from an excited molecule after absorption of light occurs longer than 10 ¥ s.!2

1.1.1.1.1 UV-Vis Absorption Spectroscopy

Absorption bands in the UV-Vis region are determined by the transitions between
electronic energy states that are related to the transitions between molecular

orbitals.!3

The general bonding molecular orbitals have o and 1 MOs. According to the pairing
theorem 6" and " orbitals also arise as antibonding orbitals. In some molecules, non-
bonding orbitals are located in between bonding and antibonding orbitals. Thus, the

. . eqe, . * * * * *
absorption phenomena possibilities are 66 ,6— T , 1 —> T ,n—> 06 ,Nn— T .

Although in a molecule having all the molecular orbitals mentioned above can have

the transition stated, not all transitions occur due to the selection rule. '



Energetically, the transitions fall into the UV-Vis region. To measure this, one has
to device an instrument called UV-Vis spectrometer whose block diagram is given

below in Figure 3.

!!"l Monochromator

Source

Amplifier &

Sample Detector Readout

Figure 3. Block Diagram of UV-Vis Instrument.

1.1.1.1.2 Photoluminescence Spectroscopy

Emission spectrum of a compound can constitute two events: fluorescence and
phosphorescence. Where fluorescence is the emission from singlet excited state (S1)
and phosphorescence is from triplet excited state (Ti) (Kasha’s Rule) and the
fluorescence energy is higher than phosphorescence energy. There are several
molecules that do not obey Kasha’s rule, these molecules and the events are not in
the scope of this thesis. Fluorescence and phosphorescence spectroscopies are
referred to as photoluminescence spectroscopy. The graphical representation of these
phenomena is shown in Figure 4. The process of transition between singlet to triplet

state is called intersystem crossing (ISC).!!°

S1

T

Absorption

Phosphorescence

Figure 4. Pictorial representation of absorption, fluorescence, and

phosphorescence.



The energy of emitted photon is usually lower than the absorbed photon. This is due
to the different deactivation pathways occurring in a molecule, i.e vibrational

relaxations.

Chromophores do not necessarily fluoresce due to other deactivation pathways such
as Conical intersections but the ones that emit a photon are called fluorophores and
each has its own fluorescence properties that are intrinsic and can be modified with

t.!6 Fluorescence and phosphorescence events can be measured with

the environmen
an instrument called fluorometer in which the light source is 90° to the detector. The
plot of fluorescence intensity versus wavelength is called fluorescence spectrum.’
A simple block diagram of a fluorescence spectrophotometer can be shown as in

Figure 5.

Amplifier &
Readout

Emission
Monochromator

Detector

Excitation
Monochromator

Source

Figure 5. Block diagram of Fluorescence Spectrophotometer.

1.1.2 Polarization Of Light

Polarization of light is an important phenomenon for the understanding of
electromagnetic radiation among the entire spectral range. Malus, in 1808, identified
that the originally unpolarized light converted to partially polarized light with a
dielectric surface. Later in 1816-1817, Fresnel and Young carried out the
interference experiments, independently, and concluded a very meaningful result

that orthogonally polarized beams do not interfere since vertical and horizontal



polarization, as well as left- and right- circular polarization, generates a binary set of

orthogonal modes.'®

As mentioned before, light is electromagnetic radiation. Perpendicular oscillation of
magnetic and electric fields forms an electromagnetic wave, as shown in Figure 6.

Three mutually perpendicular cartesian axes, X, y, and, z, represents a wave.

Figure 6. Pictorial representation of electric (red) and magnetic (blue) field

components of light.

Polarization can simply be referred to as the asymmetry between the propagation and
vibration direction of the light wave.!” According to different characteristics of
polarization, polarized light can be divided into linearly, circularly, and elliptically
polarized light. Basically, refining one of the electric fields and eliminating the others
is considered as linearly polarized light as shown in Figure 7a. Further, linearly
polarized light could be turned into circularly polarized light with a delay of A/4 by
a quarter wavelength retarder that results in two planes, having the same amplitude,
propagating with a 90° phase delay as shown in Figure 7b.2° In order to form the
desired polarization, optical devices are known as electro-optic light modulators are

used.



Figure 7. Pictorial representation of a) linearly polarized and b) circularly polarized

light

1.1.2.1 Linearly Polarized Light

Polarization of a light wave is, determined by the way its electric field vector,
E"(r,"t), oscillates. As it can be seen in figure x, when the oscillation of electric field
E” (r,” ©) is in one fixed plane, linearly polarized light is generated. When light has
its electric field oscillating in xz plane while propagating along z-axis then it is said
to be x-polarized or linearly polarized light.!*?! Linearly polarized light can be
produced by an unpolarized light beam through linear polarizers, which selects only

one wave of light as shown in Figure 8.2



|

Electric Field Vector of
Unpolarized Light Linear Polarizer

Electric Field Vector of
Linearly Polarized Light

Figure 8. Pictorial representation of generation linearly polarized light from

unpolarized light using a linear polarizer and their electric field vectors.

1.1.2.2 Circularly Polarized Light

When linearly polarized light also has a circular motion, circular polarization occurs
thus, light becomes circularly polarized when the magnitude remains the same while
the direction of the E” (r,” t) rotates along propagation axes with the propagation
time. Left or right circularly polarized light is generated depending upon the
rotational direction. In other words, circular polarization will occur when the
horizontal and vertical components of the electric field have equal amplitudes but

one of them having a phase delay of 7/2 (—/2) with respect to the other.!®

Circularly polarized light is first discovered by Augustin Fresnel in 1822. Using
Fresnel triprism, left and right circularly polarized components of a plane-polarized
beam are resolved. Fresnel tripism, shown in Figure 9, can be made by placing a
right-handed quartz between two quartz left-handed half prisms. During the
experiment of Fresnel, light propagated parallel to the optic axes thus not allowing

it to be affected by double refraction however Fresnel still observed, at the exit facet,



two beams with small angular separation. In order to understand whether these
emerging beams are linearly polarized or not Fresnel used double refraction calcite

and concluded that each beam is orthogonal to the other.’

Figure 9. Fresnel Tripism.

Circularly polarized light can be formed from linearly polarized light, shown in
Figure 10, via an optical device called quarter-wave plate in which one axis of
linearly polarized light is delayed "4 wavelength relative to the orthogonal axis and

according to the delayed wave, left or right-handed helices occur.?>**

Quarter Wave Plate

Left Circularly Polarized Light

Right Circularly Polarized Light

Figure 10. Pictorial representation of right- and left- circularly polarized light

generation with a quarter-wave plate.

Since Pasteur, it is known that chiral molecules interact with polarized light
differently. That is chiral molecules are capable of rotating the plane-polarized light
in different angles. This is measured with polarimeters. This, in fact, implies that
chiral molecules act like polarizers. This observation led to the development of

several spectroscopic techniques to study chirality.

10



1.2 Chirality

Derived from Greek Word yet'p (hand), chirality is a geometric property of rigid
objects that devoid of improper rotation axes (S,). The concept was first coined in
1893 by Lord Kelvin.?> Molecules that are non-superimposable on their mirror image
are called chiral molecules and they have two specular forms which are called
enantiomers or optical isomers. Chemical properties of enantiomers are different in

an unsymmetrical environment but the same in a symmetrical one.?

There are different types of chirality, shown in Figure 11, chiral objects either can
have a chiral center (Figure 11 a.), chiral axis (Figure 11 b.), chiral plane (Figure 11
c.), or have helical chirality (Figure 11 d.).

v, CC
c|:’F PPh,

c” PPh,
" 99
SRRy
(@]
o ¢
(CHae . O
7/ 1

Figure 11. Chiral molecules having a) center of chirality, b) chiral axis, c) chiral

plane and d) helical chirality.

For molecules having a center of chirality, there is a central C atom which is
surrounded by four different atoms (Figure 11 a.). In other types of chirality, there is
not any chiral center but lacks S,. When the source of chirality possesses from a
restriction around an axis it is called axial chirality (Figure 11 b). Unlike axial
chirality, in helical chirality molecules have a curved skeleton with terminal rings in
opposite directions (Figure 11 d). When a molecule has two dissymmetric non-

coplanar rings it possesses planar chirality (Figure 11 ¢)."
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Chirality is omnipresent in nature, it can be seen in the helices followed out by the
arms of galaxies and even in the first forms of life in dinosaurs.!>!* Even during the
molecular evolution of Earth, according to the biomolecules homochirality
phenomenon, only single handedness is selected by the nature resulting in the
availability of many enantiopure biomolecules. While RNA, DNA, and polypeptides
are all right-handed (D), amino acid molecules are designated as left-handed (L).*’
However, it is important to emphasize that the less common enantiomers may also
be present in some systems, such as the presence of D-alanine and D-glutamate in

the cell wall of bacteria.®

Chiral compounds become very important due to their applications in various areas
mainly, in drug development. This led to the development of asymmetric synthesis,

chiral recognition, enantioseparation, and chiral luminescent materials.

One of the main techniques to identify molecular chirality is using the chirality of
light, circularly polarized light in particular, vide supra. Circularly polarized light
has a helical structure allowing it to be used as a chiral reagent for the identification
of chiral molecules.’! Among many other electromagnetic interactions, forceful
chiral light-matter interactions encompass optical rotation, circular dichroism, and

circular luminescence.

1.3 Chiroptical Spectroscopy

Spectroscopic techniques based on the interaction between chiral matter with
circularly polarized light are called chiroptical spectroscopies. According to the
handedness of polarization, chiral molecules interact differently with circularly
polarized light. Stereochemical information about chiral molecules can be obtained
via chiroptical spectroscopy. Depending upon the polarizability left- and right-
circularly polarized components of light travels at different velocities after
interaction with a chiral object causing the rotation of the polarized light toward left

or right. In the case of achiral molecules, even though they rotate the polarization

12



vector, there is always an oppositely oriented molecule that cancels the rotation
effect and consequently, the polarization angle of the light will not change at the end.
In other words, the interaction difference between left- and right- circularly polarized
light with the sample is what chiroptical spectroscopy is based on.3? Chiroptical
signal is the differential interaction between the energy of the electromagnetic
radiation and the energy gap of a transition that results in absorption or emission
band.?® Circular dichroism (CD) and Circularly Polarized Luminescence (CPL) are
types of chiroptical spectroscopy. While CD spectroscopy originates with the
molecules in their electronic ground state, CPL originates from the electronically

excited state.!®

1.3.1 Circular Dichroism (CD) Spectroscopy

When a medium containing a chiral molecule interacts with a circularly polarized
light, the intensity of emerging and entering lights are different due to the absorption
of light. The intensity of right- and left- absorbed light by chiral molecules is
different and this differential absorption is called circular dichroism (CD). !° When
right- and left-handed light passes through a chiral molecule, it results in spectral
features involving negative or positive peaks.** The characteristic change in circular
dichroism around the absorption band of a substance is called the “Cotton Effect”,
discovered by Aimé Cotton in 1895 using potassium chromium (III) tartrate.
Magnitude crosses zero at absorption maxima with a rapid change in opposite
directions before and after. As shown in Figure 12, the positive Cotton effect is
observed when optical rotation first increases with decreasing wavelength and the
negative Cotton effect when optical rotation first decreases with decreasing
wavelength. The sign of the signal depends upon the chromophore and the properties

of the electronic transition.3>-3
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Figure 12. Positive (a) and negative (b) cotton effect curves

The magnitude of the signal is the absorbance difference in right and left circularly

polarized light as a function of wavelength as shown in equation 5.3
AAcp (M) =AL (M) - Ar (D) Equation 5
A simple block diagram of CD spectroscopy can be shown as in figure 13:

Qo

S 5

Figure 13. Simple Block Diagram of CD spectroscopy.

Light arising from the light source first passes through a monochromator resulting in
light with a single wavelength which then linearly polarized through a polarizer. In
order to obtain a circularly polarized light, it then passes through a quarter-wave
plate, in a commercial instrument electro-optic light modulator. Sample absorbs the
circularly polarized light, and the difference between left- and right-handed
circularly polarized light is detected by the detector after being transmitted.

With the works of Biot, Pasteur, and Cotton starting 1960s, techniques that underlie
the CD instrumentation for the illumination of equilibrium structures of chiral
molecules become popular.'®3%3 Well-known applications of CD spectroscopy are

based upon the study of the helicity of biopolymers and the absolute stereochemistry
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of organic molecules. Major information about both the conformation and electronic

state of the chromophore-containing molecule can be provided by CD spectroscopy.

1.3.2 Circularly Polarized Luminescence (CPL) Spectroscopy

As mentioned before chiral molecules can act as polarizing mediums. With that in
mind, chiral molecules can emit light which can be polarized. If a chiral molecule is

emitting circularly polarized light, this can be measured with CPL spectroscopy.

Both information about molecules’ conformation and structure in their photoexcited
state can be obtained using CPL spectroscopy. Circularly Polarized Luminescence
spectroscopy is the emission analogue of CD spectroscopy. Thus the differential
emission of left- and right- circularly polarized light by chiral non-racemic
luminescent systems is classified as CPL.*® The spectroscopy is based on the
spontaneous difference in luminescence intensities between left and right circularly

polarized light. This difference can be defined with the equation 6.*3
ALV =I. M) -Ir () Equation 6

It is more common to report the degree of CPL in terms of the luminescence
dissymmetry factor gum, equation 7, due to the difficulties in the measurement of

absolute emission intensities.

Al 1L

—= Equation 7
051  Z(1+1,) 1

Slum =
One can expect that the larger | Slum | values mean larger CPL activity refers to the
good polarization degree of the emitted light. Various variables can change the gum
value some of them can be listed as; orientation of molecules, temperature, and

solvent polarity.?*
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1.3.2.1 Circularly Polarized Luminescent Materials

CPL exhibiting molecules are very promising candidates for various areas including,
optical quantum information, optical data storage, molecular photoswitches, medical
imaging techniques, and chirality sensing.*! The combination of a luminophore and
chiral environment results in the CPL-active material. Even though the lanthanide
complexes are mainly focused on early research of CPL materials with high gum
values (0.05-0.5) their applications are limited because of their low
photoluminescence quantum yield.>° Transition-metal complexes exhibited both
high gum and photoluminescence quantum yield however due to the cost, toxicity,
and rareness of these transition-metals encountered difficulty to be used.*? Simple
organic molecules are found more promising for CPL activity owing to their fine
photophysical properties, tunable chiral centers, easy synthesis, low cost, and
toxicity. Various organic materials have been reported as CPL-active material over
the past years such as transition metal complexes, conjugated polymers, and small
organic polymers.?’ The first example of CPL-active simple organic molecule (+)-
(S,S)-trans-B-hydrindanone, shown in Figure 14, is reported in 1967 by Oosterhoff

and Emeis with a gum value as +3.5x1072 at 361 nm.*

=
H
Figure 14. Structure of (+)- (S, S)-trans-B-hydrindanone.

(+)- (S,S)-trans-B-hydrindanone, which is a bicyclic ketone, has an inherently achiral
carbonyl chromophore however due to the chiral structure that it is embedded in, its
electronic transitions are chirally perturbed. By exciting the carbonyl chromophore
at 313 nm in isooctane solution it shows a CPL.*’ This first example inspired the
synthesis of many other chiral ketones, shown in Figure 15, that exhibits CPL in UV

region by carbonyl fluorescence.***
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Figure 15. Left to right; (1R)-camphor, (1R)-fenchone, (1R)-camphenilone, and
(1R)-camphorquinone.

For both above-mentioned molecules, gum values were typically within the range of
107 to 1072, These relatively low guum values are due to the low fluorescence quantum
yields of the involved carbonyl centered transitions which are under the
classification of n—n" transitions.*’ In 1979 Barnett, Drake and Mason reported the
first chiral aromatic simple organic molecule calycanthine, shown in Figure 16, with

a grum value up to +8 x 10 ~* upon UV excitation in ethanol.*®

Figure 16. Structure of Calycanthine.

Aniline chromophore involved in the calycanthine is not chiral however, as in the
case of chiral ketones, it is chirally perturbed by the chiral structure. In this case, the

.. * .. . . . .
transitions are m—7 transitions with higher fluorescent efficiencies.*’

These small organic molecules generally have good solubility in organic solvents
that reduces the fluorescence quenching by aggregation and also having small size
and lacking a transition metal in their structure increases their usage in specific

manufacturing areas where toxicity and stability are problematic.*°
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Higher gum values are observed for organic systems in their aggregated states.*’*®

This is due to the strong orbital angular momentum of chiral helical molecular
assemblies that will allow to turn the spin polarization.*’ Thus, a strong CPL signal
can be generated upon electro-excitation by a helically organized luminophore. A
popular strategy to achieve that is to cooperate chiral moieties with planar conjugated
luminophores to form helical assemblies.>® The long-range ordering of molecules in

their helical aggregated states results in this strong CPL effect.

1.3.2.2 CPL Instrumentation

There are both home-built and commercial instruments reported in the literature
over past decades. The home-built instrument’s design is based on a fluorescence
spectrometer.* The simple block diagram of a home-made Circularly Polarized

Luminescence instrument is shown in figure 17.

Horizontal
Polarizer

Vertical
Polarizer

Electro-optic
light
modulator

Detector

Monochromator

Light
source

Figure 17. Simple Block Diagram of a home-made CPL instrument.

Light arising from the light modulator is fixed at a picked frequency with a

monochromator then the intensity of luminescence light’s circularly polarized
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component is selectively modulated whereas it is converted into its horizontal and
vertical components and both are separately passes through a linear polarizers and
detector first measures the intensity difference between horizontal and vertical
component for both left and right handed circularly polarized light and with that the

intensity difference between left and right circularly polarized light can be detected.

In order to minimize the depolarization sources, there should be no extra component
between the sample and modulator. The use of a quarter-wave plate, as the
modulator, behind the optical element to modulate the light intensity is essential
because circularly polarized light will emerge elliptically polarized thus the
difference in optical path length will be a quarter of a wavelength of the light at a

certain level of stimulation.*%!

The search for CPL emitting materials is in high demand. With that in mind, the
fluorophores in chiral environment are taught to be good candidates for this purpose.

For example, coumarin and coumarin derivatives could serve this purpose.

1.4 Coumarin

Coumarin (2H-1-Benzopyran-2-one), shown in Figure 18, is an aromatic compound
having the CoHeO formula bearing benzene nucleus with pyrone ring and carbonyl
moiety is in the second position. Coumarins are colorless crystalline solids with a
vanilla-like smell and they are naturally found in various plants, mostly in fruit

parts 52,53

Figure 18. Structure of coumarin (2H-1-Benzopyran-2-one) and assigned numbers.
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William Henry Perkin was the first one to synthesize, shown in Scheme 1, and
introduce coumarin in 1868 even though it was first isolated in 1820 by A. Vogel

from tonka beans but he misinterpreted it as benzoic acid.>*

0]
OH o O )J\O. Na* 0.__0
+ _—>
@O )k OJ\ =
Scheme 1. Synthesis of coumarin via Perkin Reaction

Coumarin containing molecules are highly used in therapeutic areas in the drug
industry. Due to applications of coumarin and its derivatives in both physical,
biological and chemical fields they are broadly investigated throughout the years.>
Owing to their short synthetic routes and photostability, coumarins are widely used
as photonic materials. Even though coumarin itself has a week fluorescent activity
many fluorescent tags and probes are based on coumarin dyes since its photophysical
activities can be easily improved with structural modifications. Electron donating
groups in 7-position and electron-withdrawing groups in 3-position improve the
spectral features owing to inductive and mesomeric effects. Generally, coumarin
derivatives have an absorption maxima around 300-350 nm whereas an emission

maxima around 400-450 nm.>°

14.1 Benzocoumarin

Benzocoumarins, also known as benzochromenones, are a family of m-extended
coumarin derivatives with promising properties as a photonic material.>® There are
four different  benzocoumarin  derivatives  being  benzo[/]coumarin,
benzo[g]coumarin, benzo[f]Jcoumarin and benzo[c]coumarin depending upon the
fused position of an additional aromatic ring to the coumarin core as shown in Figure
19.57 Among those derivatives, benzo[c]coumarin exhibits diverse photophysical
properties compared to others since it has “crossed” conjugation resulting in less

contribution to the efficiency of absorption and emission wavelengths. Owing to
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their “linear” conjugation benzo[/]coumarin, benzo[g]coumarin, benzo[f]coumarin
derivatives exhibit larger wavelength emission and absorption spectra with an
increased quantum yield. Benzo[g]|coumarins are predicted have longer wavelength
absorption and emission owing to their larger transition dipole moments. Since
benzo[/]coumarin and benzo[f]coumarin have bent shape structures they have

shorter conjugation lengths with decreased transition dipole moments.>®

oo 0._0
)

benzo(h)coumarin benzo(g)coumarin

o0.__0 0.__0
‘ O Z
benzo(c)coumarin benzo(f)coumarin

Figure 19. Chemical structures of benzocoumarin derivatives.

With the advanced photophysical properties of benzocoumarin derivatives, they
provide some auspicious features over coumarin itself. Like coumarin, it is also
possible to enhance these photophysical properties with increasing intramolecular
charge transfer (ICT) via substitution of electron-withdrawing or donating groups to
appropriate positions of benzocoumarin derivatives. With these enhanced
photophysical properties of benzocoumarin derivatives, drawbacks arousing from

shorter-wavelength absorption and emission of coumarin derivatives can be

alleviated. ¥’
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There should also be a chiral unit in the molecule for it to be a cpl active, vide supra,
and tartaric acid is an auspicious candidate for cooperation with the coumarin

derivatives.

1.5 Tartaric Acid

Tartaric acid (TA), 2,3-dihydroxybutanedioic acid, is an eminent organic acid and
one of the most well-known naturally occurring chiral compounds. Jean Baptiste
Biot is the one that identified its chirality in 1832. TA has two asymmetric carbons
and depending upon their orientation three stereoisomeric forms of TA exists being,
L(+)-tartaric acid, D(+)-tartaric acid and meso-tartaric acid, shown in Figure 20.
Among two enantiomers of tartaric acid L(+)-tartaric acid is the most abundant form
of it in nature and it commonly used in many industries e.g., pharmaceutical, food
and polyester. Both L(+), and D(-) enantiomers are also highly important for

scientific applications.’®!

OH O OH O OH O
HO_ -
Yo oy o oy L,
L(+) tartaric acid D(-) tartaric acid meso tartaric acid

Figure 20. Stereoisomeric forms of tartaric acid.

Tartaric acid is a good chiral scaffold since both enantiomers are easily available and
low-priced. It can be derivatize into many fine-tuned molecules with two
unambiguous stereocenters.’® One of the prominent derivatives of tartaric acid is
TADDOLs, tetraaryl-2,2-dimethyl-1,3-dioxolan-4,5-dimethanols, (Figure 21). They
are multifaceted chiral auxiliaries and can be used as for many purposes in
enantioselective synthesis e.g., stoichiometric chiral reagents, catalytic

hydrogenation, stereoregular metathesis polymerization. 62
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Figure 21. Structure of Taddol

Amato and co-workers reported two TADDOL derivatives (Figure 22), 2,2-
dimethyl-trans-4,5-bis(di(1-naphthyl)hydroxymethyl)- 1,3-dioxolane and 2,2-
dimethyl-trans-4,5-bis(di(2-naphthyl)-hydroxymethyl)-1,3-dioxolane, that can lead
to oppositely signed CD and CPL signals on solution with a gum value of
approximately 9.4 x 10 at 410 nm and 3.9 x107 at 375 nm.*

Figure 22. Structure of 2,2-dimethyl-trans-4,5-bis(di(1-naphthyl) hydroxymethyl)-
1,3-dioxolane (left) and 2,2- dimethyl-trans-4,5-bis(di(2-naphthyl)-hydroxymethyl)-
1,3-dioxolane(right).

Also in this thesis, tartaric acid is used as a chiral scaffold for target products.
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CHAPTER 2

AIM OF THE STUDY

Circularly polarized light exhibiting compounds is an emerging concept that has the
potential of widespread application areas. Small organic compounds are remarkable
and promising candidates for CPL exhibiting materials. Compounds which are
exhibiting CPL are chiral and besides their point chirality, these compounds also
have helical chirality as well. Previous studies in our laboratories proposed that such
phenomena can be induced with tartaric acid derivatives. * With this in mind, this
study aims to synthesize coumarin conjugates of tartaric acid derivatives. Coumarin
derivatives are known to be stable fluorophores affected by chiral units attached to
them. In this context, both L and D enantiomers of C1, C2, BC1, and BC2 will be
synthesized and subsequently, their spectroscopic and chiroptic studies will be

carried out.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Synthesis of Coumarin and Benzo[f]coumarin Derivatives

In the literature, it is known that the treatment of salicylaldehyde with diethyl
malonate furnishes ethyl coumarin-3-carboxylate.®> Our synthesis toward coumarin
derivatives also started with treating salicylaldehyde with diethyl malonate in the
presence of piperidine in ethanol under reflux conditions. This reaction yielded ethyl
coumarin-3-carboxylate with a 94 % yield (Scheme 2,a). With this successful
reaction in hand, 2-hydroxy-1-naphthaldehyde was treated with diethyl malonate in
the presence of piperidine in ethanol under reflux conditions to yield ethyl

benzo[f]coumarin-3-carboxylate, 88% (Scheme 2,a)

OH o o plperldlne AcOH
+
@0 ElO)J\/U\OEt EIOH

94%

a)
__D10%KOH

2) HCI
88%

b)
[o o] plperldlne AcOH 1)10/° KOH
OH 4+ J\/U\ Pz OEt =
EtO OEt —  Eon 2) HCI
88% 80%

Scheme 2. Syntheses of a) coumarin-3-carboxylic acid, b) benzo[f]coumarin-3-

carboxylix acid.

Coumarin derivatives were subjected to saponification at 3 positions with 10% KOH
in water. The carboxylates were then acidified to get 3-carboxylic acid derivatives

of coumarins (Scheme 2).
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3.2 Synthesis of Tartaric Acid Derivatives

Syntheses of all tartaric acid derivatives were started from esterification of both D
and L tartaric acids in ethanol with SOCl, (Scheme 3). With this reaction, diethyl
tartrate was obtained in a 98% yield. Subsequently, the diol units on diethyl tartrates
were protected as acetonide by treating with 2,2-dimethoxypropane (DMP) in

acetone in the presence of pTSA (Scheme 3).

a) (o]
OH O SOCI,, EtOH OH O DMP, pTSA 0./ ~OEt
HON o ——— EtO\”/'\‘/U\OE —
98% t acetone o OEt
O OH O OH 84%
1-D o
2D
b) 0
o OH O SOCL EOH OH O DMP, pTSA o OEt
- -
NOH 98% : OEt acetone o OEt
0 OH O OH 84%
o)
1-L
2L

Scheme 3. Synthesis of a) D, b) L protected diethyl tartrates starting from tartaric

acid

3.2.1 Synthesis of compound 3

Fully protected tartaric acid was then treated with excess 1,2-ethylenediamine to get
compound 3. The work-up for this reaction was cumbersome due to difficulty in
removal of excess 1,2-ethylenediamine from the reaction medium which is achieved
by suspending the crude reaction mixture in methanol then adding toluene onto it.
This process resulted in the formation of a glue-like yellowish-brown product after

removing the solvents. (Scheme 4).
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Scheme 4. Synthesis of a) compound 3-D, b) compound 3-L from corresponding

protected diethyl tartrate.

3.2.2 Synthesis of compound 5

Fully protected tartaric acid was treated with ammonia gas in a high-pressure vessel
at 55°C yielded the amide form, 91.59% (Scheme 5). Subsequently, treatment of the
amide with LiAlH4 in a one-pot reaction did not yield satisfactory results . With
this in mind, the following reduction was performed in a Soxhlet apparatus in THF.
Due to the limited solubility of the amide in THF, it is loaded in the porous thimble
and LiAlH4 was suspended with THF in the flask. The reaction furnished target
compound 5 in a 51% yield.

a) o) o
0.~ “0Et  NH3(9) 0.~ >NH LiAIH,, THF 0. “>NH
> e e o
[o) OEt 91% [o} NH, 51% [o} NH,

0 0

2-D 4-D

5-D

b) o o
(o) OEt NH, () o NH LiAIH,, THF o NH
> —r o e X
o OEt 91% o NH, 51% o NH,
° 0 5-L
2-L 4-L

Scheme 5. Syntheses of a) compound 5-D, b) compound 5-L starting from protected
diethyl tartrate.
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33 Coupling of Diamines with Coumarin Derivatives

With compounds 3-D, 3-L, 5-D, and 5-L in hand, they were coupled with compounds
7 and 10 separately.

Compound 7 was refluxed in SOCI, to obtain the corresponding acyl chloride,
compound 8 which was then treated with 3-D and 3-L separately in DCM in the
presence of pyridine. The reaction mixture was then subjected to column
chromatography and after purification desired compounds, C1-D and C1-L, were
obtained in less than 5% yield (Scheme 6). The limited solubility of 3-D and 3-L in
DCM could be the reasoning behind this low yield.

a)

[o} HN
0.0 llll/\/NH2 - ° \\\
@(:El( ><0:,. N pyridine NH
Z Cl + —_—
I 0 N~ bcm 01, /0
H 3
o <5% ><O o
8 3-D
-, HN
~NN >
H
0~ o
C1-D
|
o [o]
b) (o} H o HN
0.0 NH \\\
= Cl + —_—
o\ N~ DCM o

o
o R L > 1,
s 0
3-L "N\/\N
-
HO] [j
0”0
C1-L

Scheme 6. Syntheses of a) C1-D b) C2-L from acyl chloride.

To overcome the low yield problem a I-ethyl-3-carbodiimide (EDC) coupling
procedure was followed. Due to the lack of solubility in DCM, the solvent was
changed to DMF. The coupling reaction was executed by dissolving compound 7 in
DMF followed by the addition of EDC.HCI, HOBt, and Hunig’s base. Subsequent
addition of compound 3 after 2 hours and stirring overnight under Ar atmosphere

yielded the crude product. The residue was further purified with column
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chromatography to get the desired compound with a 10% yield. From this experience
was concluded that the coupling reaction works better than the acyl chloride
procedure. Therefore, the other compounds were synthesized following this EDC

coupling procedure (Scheme 7).
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EDC.HCI, HOBt, Hiinig’s Base

DMF -
9%

EDC.HCI, HOBt, Hiinig’s Base

DMF -
15%

EDC.HCI, HOBt, Hiinig’s Base

DMF -
15%

NH
S
ﬁ’ 0" o
C2-p
\ o
0
N ©
0
ﬁ’ 0o
C2-L
\ o
)
N ©

Scheme 7. Syntheses of a) C1-D, b) C1-L, ¢) BC1-D, d) BC1-L, e¢) C2-D, f) C2-
L, g) BC2-D, h) BC2-L with EDC coupling method.
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34 Spectroscopic Studies

In this section of the thesis, we considered UV-Vis, Fluorescence and Circular
Dichroism (CD) studies of the synthesized compounds. Moreover, the aggregation
studies of these compounds were also performed and investigated with the same
instrumental techniques. Since the compounds are chiral, the aggregated molecules
would form chiral assemblies. These aggregated assemblies are further studied with
our home-made CPL instrument which is a basic modification of fluorometer with

in-built polarizers.

3.4.1 Spectroscopic Studies of Tartaric Acid Derivatives Bearing 3-

carboxy-Coumarin

The syntheses of compounds C1-D, C1-L, C2-D, and C2-L were discussed above.
Initially, UV-Vis spectra of C1-L and C2-L were recorded in four different solvents;
acetonitrile (ACN), chloroform (CHCIl3), methanol (MeOH), and tetrahydrofuran
(THF) (Figure 23). For C1, a slight red-shift (5 nm) was observed for CHCI3 and
MeOH compared to the ones in THF and ACN (Figure 23a). For C2, a slight redshift
(3 nm) was observed only in CHCI; between all solvents in the UV-Vis spectra

(Figure 23b).
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Absorbance
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260 280 300 320 340 360 380 400 260 280 300 320 340 360 380 400
Wavelength (nm) Wavelength (nm)

Figure 23. Normalized UV-Vis spectra of a) C1-L (10°M) b) C2-L (10°M) in
CHCI3 (black), THF (red), MeOH (blue) and ACN (pink)

In our aggregation studies, two solvents were necessary; one solvent to completely
dissolve the compound and the other one to not dissolve. With this in mind and UV-
Vis results in hand, MeOH was chosen as the solvent for further spectroscopic
investigations due to its good miscibility with water, which is used as a non-

dissolving solvent.

Similar excitation and emission spectra are observed for both C1 and C2 in
fluorescence studies (Figure 24). It is seen that the UV-Vis and fluorescence spectra

are not affected by the groups bonded to coumarin-3-carboxylates.
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Figure 24 Excitation (blue) and Emission (red) Spectra of compound a) C1-L (108
M) b) C2-L (10*M) in MeOH

So far, L forms of C1 and C2 were studied. When measuring CD spectra both
enantiomeric forms of C1 and C2 were recorded in MeOH. As seen in figure 23, CD
spectra of L and D forms were displaying opposite CD activities in the absorption
region of the chromophore group that are symmetric with respect to origin (Figure
25). Wolf et al previously reported that incorporating chiral moiety at the 4 position
of coumarin would give rise to chiroptical sensing.® Congruently, in our studies we
observed that installing a chiral group to 3-carboxylate coumarins would also exhibit

chiroptical sensing.

— (L) 10 — (L
—= (L)

CD Intensity (mdeg)

1 1 1 1 1 1 1 1 1 1 1 1 1 1
260 280 300 320 340 360 380 400 260 280 300 320 340 360 380 400
Wavelength (nm) Wavelength (nm)

Figure 25. CD spectra of a) C1-L and C1-D (10°M) b) C2-L and C2-D (10°M) in
MeOH
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Absorbance

34.1.1 Aggregation Studies of Tartaric Acid Derivatives Bearing 3-

carboxy-Coumarin

Aggregation studies were performed by adding water in different ratios to the MeOH
solutions of C1 and C2 which are well-dissolved in MeOH whereas non-dissolved
in water. Therefore, increasing water content should lead to aggregation whereby
coumarin units will stack on top of each other through = - 7 interactions, which was
our initial hypothesis. Such interactions would rise a red-shift (J-aggregate) or blue-

shift (H-aggregate) in the UV-Vis spectrum.®’

When DLS measurements were performed, it was found that solutions of C1-D, C1-
L, C2-L, and C2-D containing 80% water have appreciable hydrodynamic sizes, 127
+1.82nm, 127 £ 11.3 nm, 494.1 £ 39.5 nm, 354.2 £26.9 nm respectively. (Appendix
G)

UV-Vis spectrum of C1-L with varied water content from 20% to 80% showed that
the significant red-shift (8 nm) after 60% (Figure 26a). For the case of C2, there is
also a slight red-shift (3 nm) as the water content increases from 20% to 80% (Figure

26b).

b)

——20% Water-80% MeOH 10k
——40% Wate- 60% MeOH .
——60% Water-40% MeOH
—— 80% Water-20% MeOH

—— 20% Water-80% MeOH
—— 40% Water-60% MeOH
—— 60% Water-40% MeOH
—— 80% Water-20% MeOH
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Figure 26. Normalized UV-Vis spectra of a) C1-L (10°°M) b) C2-L(10°°M) in 20%
water-80% MeOH (black), 40% water-60% MeOH (red), 60% water-40% MeOH
(blue), 80% water-20% MeOH (pink) solutions.

0.0
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With the UV-Vis results in hand for aggregation, fluorescence studies of these were
also studied. For C1 a significant red-shift (27 nm) was observed as the water content
increases in fluorescence emission was observed (Figure 27a). In the case of C2, a

red-shift (10 nm) was observed while not that prominent as C1 (Figure 27b).
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——20% Water-80% MeOH o o
——— 40% Water-60% MeOH 10| —20% Water-80% MeOH
1.0 —— 60% Water-40% MeOH| ——40% Water-60% MeOH
— 80% Water-20% MeOH . ——60% Water-40% MeOH
—~ 5 ——80% Water-20% MeOH
2 S 08
= z
b 7]
5 5
- = 06 |-
c =
@ @
e 2
2 @
2 S 04p
S )
=] o
[ =
o2}
0.0 L L L L L L 0.0 L L L L L L
300 330 360 390 420 450 480 360 390 420 450 480 510 540
Wavelength (nm) Wavelength (nm)

Figure 27. Normalized Fluorescence emission spectra of a) C1-L (10M) b) C2-L
(10°M) in 20% water-80% MeOH (black), 40% water-60% MeOH (red), 60%
water-40% MeOH (blue), 80% water-20% MeOH (pink) solutions.

Aggregation studies for C1 and C2 were carried on with CD spectra which were
recorded for both L and D forms with varying water content in MeOH. Opposite CD
activities have remained same for two enantiomers (Figure 28). CD intensity
increased with increasing water content indicating that the formed aggregates are

ordered.
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Figure 28. CD spectra of a) C1-L and C1-D (10°°M) b) C2-L and C2-D (10°°M) in
20% water-80% MeOH (black), 40% water-60% MeOH (red), 60% water-40%
MeOH (blue), 80% water-20% MeOH (pink) solutions

For CPL studies of aggregates, the fluorometer with in-built polarizers is used. A
Fresnel Rhomb was placed at 45° to the middle of the sample and linear emission
polarizers. Hereby, circularly polarized light luminescing from the sample will be
converted into linearly polarized light after passing through Fresnel Rhomb. CPL
results were obtained from the difference between horizontal and vertical light
intensities that were measured with the detector. Picture from our home-made
instrument is shown in Figure 29. Compared CPL measurements of Eu(facam);

complex is given in Appendix F.

P Quarter Wave plate n (‘
‘z a . » Quarter Wave plate O J
o)

Figure 29. Home-made CPL Instrument.
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CPL activity was seen for both C1 and C2. For C2, however, up to 60% water
content both L and D forms exhibited CPL signals on the same side (Appendix F,
Figure 65). For 80% water content we have seen reversed CPL signals for L. and D

which are still not the same intensity in both directions (Figure 30).

CPL Intensity (delta I)

—— D 80% Water/MeOH
-120 — L 80% Water/MeOH
1

1 1 1 1 1 1
330 360 390 420 450 480 510 540

Wavelength (nm)

Figure 30. CPL spectra of C1-L and C1-D (10°M) in 80% Water-20% MeOH

For C2 CPL analyses of these aggregates were measured at different times. It was
observed that the CPL signals change from solution to solution with the same solvent
content. For example, 60% water-40% MeOH solution were prepared two times,
each time the CPL signals were different. Measurement of the same solution on
different days resulted in the same CPL spectra qualitatively. This suggests that
observed aggregates have different aggregation states. Moreover, the ambient
temperature varied drastically in our labs, this could also be a factor for observing
different CPL results. Furthermore such a trend was observed also in CD Spectra.

Similar results were observed for 80% and 90% water solutions. (Figure 31)
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Figure 31. 1) CPL spectra of C2-L and C2-D at 60% water-40%MeOH solution, 2)
CPL spectra of C2-L and C2-D at 80% water-20%MeOH solution, 3) CPL spectra
of C2-L and C2-D at 90% water-10%MeOH solution a) first solution b) first solution

rested at ambient conditions for 24 hours, ¢) second solution, d) second solution
rested at ambient conditions for 24 hours 3) CD spectra of C2-L and C2-D at 60%
water-40%MeOH solution (black), 80% water-20%MeOH solution (red), 90%

water-10%MeOH solution (blue).
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34.2 Spectroscopic Studies of Tartaric Acid Derivatives Bearing 3-

carboxy-benzo|[f]coumarin

The syntheses of compounds BC1-D, BC1-L, BC2-D, and BC2-L were discussed
above, vide supra. Like coumarin derivates, mentioned above, spectroscopic studies
of BC1 and BC2 were initialized with recording in UV-Vis spectra in CHCI3,
MeOH, ACN and THF. As can be seen in Figure 32, a prominent red shift (4 and 7
nm respectively) was observed in CHCI; for both BC1 and BC2.

a) b)
10k ——CHcl, 10F ——ACN
——THF —CHCl,
—— MeOH —— MeOH
——ACN ——THF
0.8 0.8
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2 2
S 06 S 06
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o Q
(7] 1723
< <
04 04
0.2 0.2
L L L L L 0.0 L L L L L
300 320 340 360 380 400 420 440 300 320 340 360 380 400 420
Wavelength (nm) Wavelength (nm)

Figure 32. Normalized UV-Vis spectra of a) BC1-L (10°M) b) BC2-L (10°M) in
CHCI; (black), THF (red), MeOH (blue) and ACN (pink).

In order to choose a suitable solvent for further studies solvent screening on CD
spectra was also carried out with the same solvents. For BC1 highest CD intensity
was observed with acetonitrile (Figure 33a) and for BC2 even though the highest
intensity was observed with THF (Figure 33b), second highest one, ACN, was the

solvent of choice to be consistent with BC1.
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Figure 33. CD spectra of a) BC1-L (10°M) b) BC2-L (10°M) in CHCI; (black),
THF (red), MeOH (blue) and ACN (pink).

As can be seen from Figure 34, CD spectra of L and D forms were displaying
opposite CD activities in the absorption region of the chromophore group, that are

symmetric with respect to origin.

a) b)
— O 10 —W
— O

N
o
T

N
o

o

o

CD Intensity (mdeg)

CD Intensity (mdeg)
&

W
-10 Y

-15 |

1 1 1 1 1 1 1 1 1 1 1 1 1 1
280 300 320 340 360 380 400 420 440 300 320 340 360 380 400 420 440

Wavelength (nm) Wavelength (nm)

Figure 34. CD spectra of a) C1-L and C1-D (10°M) b) C2-L and C2-D (10°M) in
ACN

Similar excitation and emission spectra are observed for both BC1 and BC2 in

fluorescence studies (Figure 35).
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Figure 35. Excitation (blue) and Emission (red) Spectra of compound a) BC1-L
(10*M) b) BC2-L (10*M) in ACN

As in coumarin derivatives (C1 and C2), vide supra, it is seen that the UV-Vis and
fluorescence spectra are not affected by the groups bonded to benzo[f]coumarin-3-

carboxylates.

34.2.1 Aggregation Studies of Tartaric Acid Derivatives bearing 3-carboxy-

benzo[f]coumarin

ACN, as dissolving, and water, as non-dissolving, were the solvents of choice for the
aggregation studies of BC1 and BC2. Solutions are prepared by increasing water

content in the medium.

When DLS measurements were performed, it was found that 80% water content
solutions of BC1-D, BC1-L, BC2-L, and BC2-D have appreciable hydrodynamic
sizes, 130 +4.21 nm, 469 £ 38.1 nm, 864 + 374 nm, 426 £290 nm respectively.

UV-Vis spectrum of BC1-L with varied water content from 20% to 80% showed that
increasing water content results in prominent red-shift (8 nm) (Figure 36a). For BC2-

L despite observing a red-shift (7 nm) with increasing water content in the medium,
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broadening on the absorption band was also observed after 70% water content

(Figure 36b).
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Figure 36. Normalized UV-Vis spectra of a) BC1-L (10°M) b) BC2-L in various
Water/ACN solutions

With the UV-Vis results in hand for aggregation, fluorescence studies of these were
also studied. For both BC1 and BC2. Like their absorption, increasing water content
in the medium resulted in a red-shift on their emission band. Gradual shift (13 nm)
was observed for BC2 (Figure 37b) whereas a prominent red shift (37 nm) was

observed for BC1 in 80% Water/ACN solution (Figure 37a).
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Figure 37. Normalized Fluorescence emission spectra of a) BC1-L (10°M) b) BC2-
L (10M) in 20% water-80% ACN (black), 40% water-60% ACN (red), 60% water-
40% ACN (blue), 80% water-20% ACN (pink) solutions
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As can be seen from Figure 38, prominent shift in the emission of BC1 could also
be seen with human-eye, it is obvious that the color is changing from blue to green

as water content increases in the medium.

Figure 38. BC1-L aggregation solutions (left to right water content 20%, 40%,
60%, and 80%) under 365 nm light.

Aggregation studies for BC1 and BC2 were carried on with CD spectra which were
recorded for both L and D forms with varying water content in ACN. Opposite CD
activities have remained the same for two enantiomers. For BC1 highest CD

intensity was observed for 60% and 80% water/ACN solutions (Figure 39).
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1 1
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Wavelength (nm)

Figure 39. CD spectra of BC1-L and BC1-D (10°M) in 20% water-80% ACN
(black), 40% water-60% ACN (red), 60% water-40% ACN (blue), 80% water-20%
ACN (pink).

For BC2, the increase in CD intensity was also observed with increasing water

content (Figure 40a). For 80% water/ACN solution an excessive increase was

45



observed (Figure 40b). This is probably due to formed aggregates have a CD activity

in addition to inherent CD activity arising from the point chirality.
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Figure 40. CD spectra of a) BC2-L and BC2-D (10°°M) in 20% water-80% ACN
(black), 40% water-60% ACN (red), 60% water-40% ACN (blue) solutions b) BC2-
L and BC2-D (10°M) in 80% water/ACN solution

For benzo[f]coumarin derived compounds (BC1& BC2) CPL measurements were
run in similar manner that was run for the coumarin derivatives. Even though they
were expected to form better aggregates due to larger surface area of
benzo[f]coumarin than the coumarin, as observed in UV-Vis and fluorescence
studies, CPL studies revealed that for enantiomeric forms reversed CPL intensities
were not observed. Furthermore, the CPL signals were on the same size for both

enantiomeric forms (Appendix F).
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CHAPTER 4

CONCLUSION

The syntheses of 8 new compounds were accomplished. Even though the last step
installing coumarin units on tartaric acid derivatives was low in yield, the final
compounds were purified and characterized. Spectroscopic properties of these
compounds were investigated using UV-Vis, fluorescence, CD and CPL. It is seen
that, coumarins and benzo[f]coumarins modified at 3 position with carboxylate
shows chiroptical properties. The aggregation studies for coumarin bearing
compounds were run in MeOH-water while benzo[f]coumarin bearing compounds
were studied in ACN-water. UV-Vis, fluorescence and CD studies showed the
formation of ordered aggregates. It is manifestly seen that better aggregates are
formed for compounds bearing compound 3 (C1 & BC1) rather than compound 5
(C2 & BC2) as tartaric acid derivative. The CPL studies with a home-made CPL

instrument showed varied CPL intensities.
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CHAPTER 5

EXPERIMENTAL

5.1 Methods and Materials

All starting materials and solvents except ethyl acetate and hexane were purchased
from Sigma Aldrich and were used without further purifications. Solvents used for
Flash Chromatography were distilled prior to use (EtOAc and Hexane over CaCly).
The reactions were monitored by thin layer chromatography (TLC) (Merck Silica
Gel 60 F254) and visualized by UV light at 254 nm.

Structural evaluation of the synthesized compounds was accomplished with the

instruments stated below.

'H and '3C nuclear magnetic resonance spectra of the compounds were recorded in
deuterated solvents with Bruker Avance III Ultrashield 400 Hz NMR spectrometer.
The chemical shifts were stated in parts per million (ppm) with tetramethylsilane
(TMS) as internal reference. Spin multiplicities were indicated as s (singlet), d
(doublet), dd (doublet of doublet), t (triplet), tt (triplet of triplet), m (multiplet) and
coupling constants (J) were reported as in Hz (Hertz). 'H NMR, '*C NMR, and other
NMR techniques spectra of compounds were given in Appendix A. NMR spectra

were processed with MestReNova program.

Infrared (IR) Spectra were recorded with Thermo Scientific Nicolet iS10 ATR-IR
spectrometer. Signal locations were reported in reciprocal centimeter (cm™). The

IR spectra of the compounds synthesized are given in Appendix B.

UV-Vis measurements were recorded with Shimadzu UV-2450 spectrophotometer.
Spectroscopic measurements were carried out in methanol, acetonitrile,

tetrahydrofuran, and chloroform. UV absorption spectra were processed with
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OriginPro 2019. The UV-Vis spectra of the compounds synthesized are given in
Appendix E.

High Resolution Mass Spectra (HRMS) were processed in positive mode on (ESI)
using Time of Flight mass analyzer. The high-resolution mass spectra of compounds

synthesized are given in Appendix C.

Fluorescence measurements were recorded with Perkin Elmer LS55
spectrofluorometer. Spectroscopic measurements were carried out in methanol,
acetonitrile, tetrahydrofuran, and chloroform of spectroscopic grade. The
fluorescence spectra of the compounds synthesized are given in Appendix D.

Fluorescence spectra were processed with OriginPro 2019 program.

CD measurements were recorded with Jasco J-1500 CD Spectrometer. Spectroscopic
measurements were carried out in methanol, acetonitrile, tetrahydrofuran, and

chloroform of spectroscopic grade. CD spectra were processed with OriginPro 2019.

CPL measurements were recorded with home-made CPL instrument. Spectroscopic
measurements were carried out in methanol and acetonitrile of spectroscopic grade
and water. CPL spectra were processed with OriginPro 2019. The CPL spectra of

the compounds synthesized are given in Appendix F.
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5.2 Synthesis of Tartaric Acid Derivatives

5.2.1 Synthesis of diethyl 2,3-dihydroxybutanedioate

ol O

OH O
(V)]

To a tartaric acid (5.0 g, 33.31 mmol, 1.0 eq) solution in EtOH (20 mL), SOCIl,
(12.60 mL, 174.3 mmol, 5.2 eq) was added via dropping funnel at 0°C. After 1 hour
of stirring at room temperature, the mixture was heated to reflux for 3 hours. Solvent
and excess SOCl, were removed in vacuo to yield the white-yellow oily product (6.8
g, 98 %). 'H NMR (400 MHz, CDCl3) § 4.55 (s, 2H), 4.33 (t, 3H), 3.10 (s, 2H), 1.35
(t, 6H).

5.2.2 Synthesis of diethyl 2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate®®

o
o o >

e ji:

0

2
To a solution of compound (1) (6.2 g, 30.4 mmol, 1 eq) in acetone (100 mL), 2,2-
dimethoxy propane (12.6 mL, 103.3 mmol, 3.4 eq) and p-toluenesulfonic acid (2.1
g, 12.16 mmol, 0.4 eq) are added. The resulting mixture was stirred overnight at
room temperature. Afterwards, ammonium hydroxide was added, and white
precipitates were filtered off. Acetone was removed under vacuo. The mixture was
extracted with DCM and water. Combined organic layers were dried over NaxSO4
and DCM was removed in vacuo to yield orange liquid as the product (6.35g, 85 %).!

1H NMR (400 MHz, CDCl3) & 4.78 (s, 2H), 4.29 (q, J = 7.1, 2.0 Hz, 4H), 1,51 (s,
6H) 1.32 (q, J = 7.2, 2.0 Hz, 6H).
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5.2.3 Synthesis of N, N*-bis(2-aminoethyl)-2,2-dimethyl-1,3-dioxolane-4,5-

dicarboxamide®’
o}
0 '\l!-l/\/'\“'l2
X N
° > NH
o M 2
3)
Compound (2) (1.0 g, 4.1 mmol, 1 eq) and ethylenediamine (5 mL, 74.9 mmol, 18.3
eq) were mixed at room temperature and the resulting mixture was stirred 2 days at
room temperature. Excess ethylenediamine was co-evaporated with methanol and
toluene several times in vacuo and vacuum-dried for 1 day (1.0 g, 89 %). '"H NMR

(400 MHz, MeOD) 6 & 4.60 (s, 2H), 3.44 — 3.35 (m, 2H), 3.34 — 3.25 (m, 2H), 2.82
—2.74 (m, 4H), 1.50 (s, 6H).

5.2.4 Synthesis of 2,2-dimethyl-1,3-dioxolane-4,5-dicarboxamide’

o}
0 NH,
><o:§‘r\ NH,
o]
@

Solution of diethyl 2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (2) (3.1 g, 12.59
mmol) in EtOH (30 mL) was cooled with liquid nitrogen to -40°C and ammonia gas
was bubbled through the solution until it was saturated. The resulting solution is
directly placed in the high-pressure reactor and heated overnight to 55°C. After
cooling the resulting medium to room temperature, excess ammonia and ethanol
were removed in vacuo to yield brown solids (2.17 g, 92 %). '"H NMR (400 MHz,
DMSO-ds) 6 7.49 (s, 2H), 7.42 (s, 2H), 4.43 (s, 2H), 1.39 (s, 6H).
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5.2.5 Synthesis of (2,2-dimethyl-1,3-dioxolane-4,5-diyl)dimethanamine”’
o] NH,
><Oi: NH,
(5)

To a solution of LiAlH4 (1.30 g, 33.2 mmol, 2.50 eq) in THF, compound (4) (2.5 g,
13.29 mmol, 1 eq) was extracted with a Soxhlet thimble. The resulting mixture was
refluxed for 6 hours followed by stirring at room temperature for 16 hours.
Afterwards, the reaction was quenched by a minimum amount of water and 15%
NaOH solution. The mixture was filtered, and precipitates were washed several times
with THF. THF was removed in vacuo from combined filtrates to yield
corresponding diamine (1.1 g, 52 %). '"H NMR (400 MHz, CDCl3) & 3.81 - 3.76 (m,
2H), 2.90 - 2.80 (m, 4H), 1.41 (s, 6H)

53 Synthesis of Coumarin Derivatives

5.3.1 Synthesis of ethyl 2-0x0-2H-chromene-3-carboxylate®

Salicylaldehyde (1.7 mL, 16.4 mmol, 1 eq), diethyl malonate (5.0 mL, 32.8 mmol, 2
eq), piperidine (0.9 mL, 9.2 mmol, 0.56 eq) and few drops of acetic acid are mixed
in EtOH (50 mL). The resulting mixture was refluxed overnight. After removing
some of the EtOH in vacuo, the solution is poured into a beaker containing ice-water.
The generated white precipitates are filtered and further dried in vacuo (3.37 g, 94
%). '"H NMR (400 MHz, CDCls) & 8.56 (s, 1H), 7.72 — 7.61 (m, 2H), 7.43 — 7.32 (m,
2H), 4.44 (q,J=17.1 Hz, 2H), 1.43 (t,J=7.1 Hz, 3H).
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5.3.2 Synthesis of coumarin-3-carboxylic acid®®

o._.0
(o)
@)
Compound (6) (2 g, 9.16 mmol) was added to 10% KOH solution in water and
resulting mixture was refluxed for 2 hours. Afterwards the solution was cooled to
room temperature and transferred into a beaker followed by acidization with conc.
HCI. The generated white solids are filtered and dried in vacuum (1.3g, 75 %) 'H

NMR (400 MHz, CDCl3) 8 12.31 (bs, 1H), 8.99 (s, 1H), 7.85 — 7.77 (m, 2H), 7.56 —
7.48 (m, 2H).

5.3.3 Synthesis of coumarin-3-acyl chloride

0_0
(0]
()
Compound (7) (0.7 g, 3.68 mmol, 1 eq) was added to SOCl, (16 mL) followed by
the addition of a few drops of DMF and the resulting mixture is refluxed for 4 hours.

Excess SOCI> was removed in vacuo to yield yellow solids (0.70 g, 91 %) and used

directly in the next step without any further purification.

5.34 Synthesis of ethyl 3-0xo0-3H-benzo[f]chromene-2-carboxylate’!

2-hydroxy-1-naphtahldehyde (1.5 g, 8.7 mmol, 1 eq), diethyl malonate (1.5 mL, 9.8
mmol, 1.12 eq), piperidine (0.8 mL, 8.18 mmol, 0.9 eq) and 10 drops of acetic acid
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are mixed in EtOH (50 mL). Resulting mixture was refluxed overnight. After
removing some of the EtOH in vacuo, solution is poured into a beaker containing
ice-water. The generated white precipitates are filtered (2.1g, 88 %) 'H NMR (400
MHz, CDCl3) 6 9.37 (s, 1H), 8.40 — 8.32 (m, 1H), 8.16 — 8.10 (m, 1H), 8.00 — 7.93
(m, 1H), 7.82 = 7.74 (m, 1H), 7.67 — 7.60 (m, 1H), 7.53 — 7.46 (m, 1H), 4.50 (q, 2H),
1.48 (t, 3H).

5.3.5 Synthesis of 3-0x0-3H-benzo[f]chromene-2-carboxylic acid”!

U

(10)

0._0
4

Compound (9) (1.5 g, 5.59 mmol) was added to 10% KOH solution in water and the
resulting mixture was refluxed for 2 hours. Afterwards, the solution was cooled to
room temperature and transferred into a beaker followed by acidization with conc.
HCI. The generated white solids are filtered and dried in vacuum (1.07 g, 80 %) 'H
NMR (400 MHz, DMSO-ds) 6 9.38 (s, 1H), 8.60 (d, /= 8.5 Hz, 1H), 8.32 (d, J=9.1
Hz, 1H), 8.09 (d, J= 8.1 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.66 (t,J = 7.5 Hz, 1H),
7.60 (d, J=9.0 Hz, 1H).
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5.4 Synthesis of Final Products

5.4.1 Synthesis of C1

%o
)
o) HN
\\\NH

o) o

o ~¢° o

HN\/\NJID
H
[oJgie)
c

To a solution of compound (3) (0.17 g, 0.63 mmol, 1 eq) in DCM (15 mL), pyridine
(0.13 mL, 1.58 mmol, 2.5 eq) was added followed by addition of compound (8) (0.3
g, 1.58 mmol, 2,5 eq) was added slowly. The resulting mixture was stirred overnight
at room temperature. Afterwards, the residue was extracted with 1M HCI solution
(50 mL). Combined organic layers were dried over Na;SO4 and DCM was removed
in vacuo. The residue was purified with column chromatography using thin silica as

stationary phase. The product was obtained as white solid (0.01 g, 3 %)

To a stirred solution of compound (7) (0.50 g, 2.63 mmol, 2.2 eq) in DMF (15 mL),
EDC.HCI (0.50 g, 2.63 mmol, 2.2 eq), HOBt (0.35 g, 2.63 mmol, 2.2 eq) and DIEA
(1.24 mL, 7.2 mmol, 6 eq) are added and the resulting mixture is stirred for 1 hour
at room temperature under Ar atmosphere. Afterwards, compound (5) was added and
the resulting solution was stirred overnight at room temperature. The mixture was
extracted with EtOAc and aq NaHCOs solution. Combined organic layers were dried
over NaxSO4 and EtOAc was removed in vacuo. The residue was purified with
column chromatography using thin silica as stationary phase followed by washing
with diethyl ether. The product was obtained as yellow solid (59 mg, 10 %)
m.p:178°C '"H NMR (400 MHz, CDCls) 6 9.03 (t, 1H), 8.90 (s, 1H), 7.73 — 7.68 (m,
2H), 7.54 (t,J= 6.0 Hz, 1H), 7.44 — 7.39 (m, 2H), 4.60 (s, 1H), 3.69 — 3.64 (m, 2H),
3.60 — 3.53 (m, 2H), 1,52 (s, 6H). *C NMR (75 MHz, CDCl3) § 170.13, 162.32,
161.33, 154.44, 154.41, 148.50, 134.23, 129.85, 125.36, 118.56, 118.53, 118.21,
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116.66, 112.38, 77.37, 39.41, 39.33, 26.12. IR: 3345, 3042, 1697, 1524 HRMS:
(ESI-MS) m/z: [M+H]" Calcd for C31H31N4O10" 619.2040, found 619.2035 (for L

enantiomer), 619.2042 (for D enantiomer).

5.4.2 Synthesis of BC1

)
HN\/\H i _ O‘

- 0”0

To a stirred solution of compound (10) (0.50 g, 2.08 mmol, 2.6 eq) in DMF (15 mL),
EDC.HCI (0.39 g, 2.08 mmol, 2.6 eq), HOBt (0.28 g, 2.08 mmol, 2.6 eq) and DIEA
(2.15 mL, 12.48 mmol, 6 eq) are added and resulting mixture is stirred for 1 hour at
room temperature under Ar atmosphere. Afterwards compound (3) was added and
resulting solution stirred overnight at room temperature. Mixture was extracted with
EtOAc and aq NaHCO3 solution. Combined organic layers were dried over Na>xSOg4
and EtOAc was removed in vacuo. The residue purified with column
chromatography using thin silica as stationary phase. The product was obtained as
yellow solid (32 mg, 4 %) m.p: 162°C 'H NMR (400 MHz, CDCls) § 9.62 (s, 2H),
9.09 (t, 2H), 8.41 — 8.36 (m, 2H), 8.10 — 8.06 (m, 2H), 7.92 — 7.86 (m, 2H), 7.78 —
7.71 (m, 3H), 7.63 — 7.54 (m, 5H), 4.63 (s, 2H), 3.74 — 3.67 (m, 4H), 3.65 — 3.58 (m,
4H), 1.54 (s, 6H). '*C NMR (75 MHz, CDCl3) § 170.15, 162.69, 161.37, 154.89,
130.31, 129.42, 129.20, 129.10, 121.89, 116.69, 116.29, 113.21, 112.44, 77.24,
39.51, 29.73, 26.17. IR: 3323, 2923, 1702, 1529 HRMS: (ESI-MS) m/z: [M+H]"
Calcd for C39H35N4O10" 719.2353, found 719.2352 (for both L & D enantiomer).
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5.4.3 Synthesis of C2

o |
o

o o HN

SERRT,
0o ‘]ﬁ

Cc2
To a stirred solution of compound (7) (0.50 g, 2.63 mmol, 2.2 eq) in DMF (15 mL),
EDC.HCI (0.50 g, 2.63 mmol, 2.2 eq), HOBt (0.35 g, 2.63 mmol, 2.2 eq) and DIEA
(1.24 mL, 7.2 mmol, 6 eq) are added and resulting mixture is stirred for 1 hour at
room temperature under Ar atmosphere. Afterwards, compound (5) was added and
the resulting solution was stirred overnight at room temperature. Mixture was
extracted with EtOAc and aqg NaHCOs3 solution. Combined organic layers were dried
over NaxSO4 and EtOAc was removed in vacuo. The residue was purified with
column chromatography using thin silica as stationary phase followed by washing
with diethyl ether. The product was obtained as yellow solid (59 mg, 10 %) m.p: 182
°C 'H NMR (400 MHz, CDCls) § 9.12 (t, 2H), 8.91 (s, 2H), 7.72 — 7.63 (m, 4H),
7.43 —7.34 (m,45H), 4.04 (s, 2H), 3.90 — 3.82 (m, 2H), 3.74 — 3.67 (m, 3H), 1,50 (s,
6H). 13C NMR (75 MHz, CDCl3) § 161.94, 161.28, 154.47, 148.60, 134.14, 129.85,
125.29, 118.59, 118.22, 116.66, 109.62, 76.56, 40.23, 27.17. IR: 3342, 2985, 1710,
1530 HRMS: (ESI-MS) m/z: [M+H]" Caled for C27H2sN20s" 505.16.11, found
505.1611 (for L enantiomer), 505.1613 (for D enantiomer).
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5.4.4 Synthesis of BC2

H o
0o <<
o
NH
P N)

To a stirred solution of compound (10) (1.6 g, 6.5 mmol, 2.6 eq) in DMF (15 mL),
EDC.HCI (1.24 g, 6.5 mmol, 2.6 eq), HOBt (0.88 g, 6.5 mmol, 2.6 eq) and DIEA
(2.5 mL, 15 mmol, 6 eq) are added and resulting mixture is stirred for 1 hour at room
temperature under Ar atmosphere. Afterwards compound (5) was added and
resulting solution stirred overnight at room temperature. Mixture was extracted with
EtOAc and aq NaHCO3 solution. Combined organic layers were dried over Na;SO4
and EtOAc was removed in vacuo. The residue purified with column
chromatography using thin silica as stationary phase followed by washing with
diethyl ether. The product was obtained as yellow solid (24 mg, 15 %) m.p: 174°C
'"H NMR (400 MHz, CDCl; § 9.69 (s, 2H), 9.22 (t, J= 5.8 Hz, 2H), 8.42 (d, J= 8.4
Hz, 2H), 8.10 (d, /= 9.1 Hz, 2H), 7.94 (d, /= 8.0 Hz, 2H), 7.74 (t, J = 7.8 Hz, 2H),
7.63 (t,J=17.5 Hz, 2H), 7.48 (d, /= 9.1 Hz, 2H), 4.12 (s, 2H), 3.92 (d, J = 6.6 Hz,
2H), 3.76 (d, J = 14.1 Hz, 2H), 1.51 (s, 6H). *C NMR (75 MHz, CDCls) § 162.40,
155.00, 144.21, 135.91, 130.38, 129.57, 129.18, 126.78, 122.05, 116.73, 116.36,
113.31, 77.24, 40.41, 27.21. IR: 3323, 2892, 1710, 1563 HRMS: (ESI-MS) m/z:
[M+H]" Caled for C3sH29N20s" 605.1924, found 605.1922 (for L enantiomer)
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APPENDICES

A. NMR Spectra

NMR spectra were recorded at Bruket Avance III Ultrashield 400 Hz CDCls;, MeOH,

and DMSO were used as solvents in all records.
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Figure 43. '"H NMR spectrum of Compound 3.
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Figure 44. "H NMR spectrum of Compound 4.
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Figure 46. '"H NMR spectrum of Compound 6.
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Figure 48. '"H NMR spectrum of Compound 9
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Figure 49. '"H NMR spectrum of Compound 10.

78



.

-
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B. IR Spectra

IR spectra were recorded at Thermo Scientific Nicolet iS10 ATR-IR spectrometer.
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Figure 63. IR spectrum of BC1.
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C. High Resolution Mass Spectra (HRMS)

High Resolution Mass Spectra (HRMS) Spectra were processed in positive mode on

(ES+) using Time of Flight mass analyzer.
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Figure 66. HRMS spectra of C1-L, C1-D, BC1-L, BC1-D, C2-L, C2-D, and BC2-
L.
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D. Fluorescence Spectra

Fluorescence spectra were recorded at Perkin Elmer LS55 spectrofluorometer.
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Figure 67. Excitation (left) and Emission (right) spectra of a) C1-L (10 M) , b) C2-
L (10® M) ¢) BC1-L (10 M), d) BC1-L (10 M) aggregates at 20% water- 80%
MeOH (black), 40% water- 60% MeOH (red), 60% water- 40% MeOH (green), 80%

water- 20% MeOH (purple).
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E. UV-Vis Spectra

UV-Vis measurements were recorded with Shimadzu UV-2450 spectrophotometer.
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Figure 68. Unnormalized UV-Vis Spectra of a) C1-L (10° M), b) C2-L (10> M) ¢)
BC1-L (10° M), d) BC1-L (10° M) in CHCls, MeOH, THF and ACN.
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Figure 69. Unnormalized UV-Vis Spectra of aggregates of a) C1-L (10 M) , b)
C2-L (10° M) ¢) BC1-L (10° M), d) BC1-L (10°° M).
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F. CPL Spectra

CPL measurements were recorded with home-made CPL instrument.

105



—— D 20% Water- 80% MeOH - —— D 40% Water- 60% MeOH
025 ——L 20% Water- 80% MeOH —— L 40% Water- 60% MeOH

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

340 360 380 400 420 440 460 480 500 520 540 340 360 380 400 420 440 460 480 500 520 540

CPL Intensity (delta I)

—— D 60% Water- 40% MeOH —— D 80% Water- 20% MeOH
-100 | L 60% Water- 40% MeOH 420 - L 80% Water- 20% MeOH
L L L L L L L L L L L L L L L L L L
340 360 380 400 420 440 460 480 500 520 340 360 380 400 420 440 460 480 500 520 540

Wavelength (nm)

Figure 70. CPL spectra of C1-L and C1-D (10 M) at a) 20% water- 80% MeOH,
b) 40% water- 60% MeOH, c¢) 60% water- 40% MeOH, d) 80% water- 20%
MeOH.
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Figure 71. CPL spectra of C2-L and C2-D (10 M) at a) 20% water- 80% MeOH,
b) 40% water- 60% MeOH.
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Figure 72. CPL spectra of C2 at 80% water- 20% MeOH solution (10°M) a) first
solution b) first solution rested at ambient conditions for 24 hours, ¢) second

solution, d) second solution rested at ambient conditions for 24 hours.
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Figure 73. CPL spectra of C2 at 90% water- 10% MeOH solution (10°°M) a) first

solution b) first solution on the next day, ¢) second solution, d) second solution on

next day.
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Figure 74. CPL spectra of BC1-L and BC1-D (10°° M) at a) 20% water- 80% MeOH,
b) 40% water- 60% MeOH, c¢) 60% water- 40% MeOH, d) 80% water- 20% MeOH.
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Figure 75. CPL spectra of BC2-L and BC2-D (10°° M) at a) 20% water- 80% MeOH,
b) 40% water- 60% MeOH, c¢) 60% water- 40% MeOH, d) 80% water- 20% MeOH.
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Figure 76. Literature CPL Spectrum of Eu(facam); in DMSO (Kondo Y, Suzuki S,
Watanabe M, Kaneta A, Albertini P and Nagamori K Temperature-Dependent
Circularly Polarized Luminescence Measurement Using KBr Pellet Method

Frontiers in Chemistry 2020, 8, 1-5 DOI: 10.3389/fchem.2020.00527)
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Figure 77. CPL spectrum of Eu(facam)s; in DMSO (10 M) acquired with our
home-made instrument
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G. DLS Results
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Figure 78. Size distribution curve by number average of C1-D, C1-L, C2-L, C2-D,

BC1-L,

BC1-D, BC2-L and BC2-D
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