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ABSTRACT

IMPROVING CLASSIFICATION PERFORMANCE OF ENDOSCOPIC IMAGES WITH
GENERATIVE DATA AUGMENTATION

Caglar, Umit Mert
M.S., Department of Multimedia Informatics, Modelling and Simulation

Supervisor: Prof. Dr. Alptekin Temizel

February 2022, 80 pages

The performance of a supervised deep learning model is highly dependent on the quality and variety of
the images in the training dataset. In some applications, it may be impossible to obtain more images.
Data augmentation methods have been proven to be successful in increasing the performance of deep
learning models with limited data. Recent improvements on Generative Adversarial Networks (GAN)
algorithms and structures resulted in improved image quality and diversity and made GAN training
possible with limited data. The process of endoscopic imaging is essential for diseases with symptoms
occurring inside the body. Medical experts use gastrointestinal endoscopic imaging to assess their
patients and treat them. Ulcerative Colitis (UC) is a gastrointestinal disease where the assessment of
a patient's health is done by Mayo scoring, where experts evaluate the severity of the disease symp-
toms. The classi cation of endoscopic images according to Mayo classes with deep-learning-based
approaches has been studied and proven to be feasible. This thesis proposes adopting a GAN-based
synthetic image generation process to increase the number of images in the dataset used by deep-
learning-based methods. The results show that the classi cation performance of deep-learning-based
approaches can be improved by 2.7% with the help of synthetic images generated by generative adver-
sarial networks.

Keywords: Generative Data Augmentation, Generative Adversarial Networks, Image Classi cation



Oz

URETKEN VER | COGALTMA ILE ENDOSKOP | GORUNTULER INDE SINIFLANDIRMA
BASARIMININ 1Y ILESTIRILMES |

Caglar, Umit Mert
Yuksek Lisans, Cokluortam Bilisimi, Modelleme ve Similasyon Bolumi

Tez Ydneticisi: Prof. Dr. Alptekin Temizel

Subat 2022, 80 sayfa

Derin dgrenme temelli bilgisayarla gori modellerinin performargitim s ras nda kullan lan goériin-
tulerin kalitesi ve cesitliljine bayl d r. Baz uygulamalarda yeni goriintt toplamak imkans z olabilir.
Veri cogaltma yontemlerinin k s tI veri olmas halinde performans iyilestirmegiesdg gosterilmis-

tir. Cekismeli Uretici Aglar (CUA) tizerindeki giincel gelismelergsnda tiretilen sentetik goriintilerin
kalitesi ve cesitlilgi artm st r ve k s tl veri ile CUA gitimi miimkiin k | nm st r. Endoskopik goriintii-
leme viicut icinde semptomlara neden olan hastal klar n teshisi icin Gnem arz etmektedir. Ulseratif Ko-
lit (UK) doktorlar n gastrointestinal endoskopi yontemi ile hastalar na teshis ve tedavi uygubad
gastrointestinal hastal kt r. UK hastgin n deggerlendiriimesi i¢in hastal k belirtilerinin siddetine gore
Mayo skorlama sistemi kullan Imaktad r. Derigrénme temelli yaklas mlarla endoskopi gorintule-
rinin Mayo skoruna goére s n and r Imas denenmig ve uygulanabilir gldgosterilmistir. Bu tezde
CUA egitimi ile sentetik goriintiiler elde edilerek, bu gorintiiler ile degneimme modellerinin 6rnek
uzay genigletilerek nihayetinde s n and rma performanslar nda iyilestirrgiaeanas 6nerilmekte-
dir. Sonuglara gére CUA taraf ndan uretilen sentetik goriintiilerle dgrianine temelli yaklas mlar n

s n and rma performans nda %2.7 art ggbanm st r.

Anahtar Kelimeler: Uretici Modeller, Cekismeli Ureticighar, Goriintii S n and rma
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CHAPTER 1

INTRODUCTION

Deep learning(DL) based computer vision methods enable various tasks such as classifying and de-
tecting speci ¢ patterns or objects in images. Using deep-learning-based methods to classify images
is a well-known and widely studied area. Supervised image classi cation with deep learning requires
a dataset and class labels so that a network can be trained according to the supervision of the labels.

Endoscopy (internal imaging) is a widely used medical imaging technique to determine the presence,
frequency, and severity of symptoms for particular diseases such as Ulcerative Colitis (UC). A widely
used scoring technique for the severity of the symptoms of UEndoscopic Mayo ScoréEMS)

where medical doctors score colonoscopy images in a range of 0 to 3, where the severity of the disease
increase with the EMS.

Ali et al. [1] concluded that DL methods could be employed to detect diseases in gastrointestinal en-
doscopy. As DL models are data-driven and probabilistic approaches that perform by training on data,
they are particularly useful when a mathematical expression of a phenomenon is extremely hard or im-
possible to achieve. They are also powerful for image classi cation, which is impossible to formulate
thoroughly. They also pointed out that recent studies have shown that Gastrointestinal diseases can be
successfully identi ed with DL methods. Moreover, DL models for diagnosing UC disease have been
actively studied for several reasons. The number of adequately labeled images and datasets is minimal,
and there is a lack of experts on the classi cation task. Because of these reasons, it was imperative to
work on this topic as increasing the classi cation performance of a DL model means that the quality
of human lives could be improved.

EMS estimation from colonoscopy images can be handled as a classi cation task where deep-learning-
based classi cation models are trained using labeled images and then fed with unlabeled images ac-
quired from new patients to classify them with respect to the EMS.

The classi cation performance of deep networks depends on the quantity and quality of the data. In
most cases, data is limited, especially in the medical domain. There may also be quality issues such
as data imbalance, where the number of samples in each class category signi cantly varies. Most of
the medical datasets contain more healthy samples than the disease samples. The quality of the data
cannot be easily measured as quantity. The quality of a dataset affects the real-world representation
power of the dataset; the samples have to follow a distribution similar to the real world.

Data augmentation is a well-known and solid way to improve the performance of DL-based image
classi cation methods. Many studies have shown that the quantity and quality of a dataset could be
improved by data augmentation where existing images are manipulated or new images are synthesized.



The manipulations such as rotation, ipping, and cropping result in unique transformations of existing
images in the dataset. Generative data augmentation is a sub-branch of data augmentation where
generative models are used to generate synthetic data. Adaptive Synthetic (ADASYN) [2] which is

a generative approach to generate synthetic data and Synthetic Minority Over-sampling Technique
(SMOTE) [3] which is another approach for synthetic oversampling to overcome imbalanced dataset
problem were successfully applied in time series and numeric data.

Generative Adversarial Networks (GAN), rstintroduced by Goodfellow et al. [4] and later described
and discussed in comparison to other generative models in detail [5] have been proven to be successful
in synthetic image generation and generative data augmentation as discussed by Madhu et al. [6].
The architecture of GAN consists of two neural networks, namely generator, and discriminator. The
task of each network is to compete against each other so that the generator network's output images
are indistinguishable by the discriminator. This adversarial training enabled the synthesis of images
similar to real images.

The performance of GAN has been improved since their rst introduction, and different generator and
discriminator architectures were proposed in the process. With the improvements in GAN structure
and computing power, generative data augmentation in the image domain has become a reality. Yi
et al. [7] discuss improvements on GANs and various applications in the medical domain, including
image classi cation. They have also shown that GAN can generate synthetic image data to augment
the original data and improve the classi cation performance by increasing the quantity and quality of
the original image dataset.

This thesis aims to improve the classi cation performance of a deep-learning-based classi cation
method by employing a GAN to generate synthetic images where GAN training is done using lim-
ited data. The hypothetical baseline for image classi cation is accepted to be the network trained
using the existing images. The classical data augmentation methods are expected to increase this base-
line work's performance, and generative data augmentation is desired to increase the classi cation
performance further.

Several subsets of the original dataset were formed to evaluate the performance contribution of the
generative data augmentation method. These subsets were created with a balanced number of images
in each class. Every subset contained the previous subset's entire images and included 50 more images
per class.



1.1 Research Questions

Data augmentation methods have been proven to increase the performance of deep networks with
limited data. Recent advances in GAN have improved image quality and diversity with limited data.
GAN can be utilized to generate synthetic images. Can the generated synthetic images be used for
generative data augmentation and improve the classi cation performance of a deep learning model?

1.2 Motivation

The generative data augmentation method discussed in this thesis can be applied to image datasets to
improve classi cation performance by increasing the diversity of the original dataset—the increased
diversity results in better deep learning training and better model performance. The diversity of a
dataset is also essential when data is limited, which is generally the case in real-world image datasets.

The use case of this thesis aims to improve the classi cation performance of the deep learning model
tasked to classify UC disease severity according to the EMS. Even a slight improvement over the base-
line performance can affect many human lives and improve the quality of their lives. As an automated
classi cation model can be helpful for knowledge distribution among experts and help inexperienced
medical doctors in classifying endoscopic images, the model's performance is of paramount impor-
tance.

1.3 Contributions of the Study

The main contribution of this study is improving the Endoscopic Mayo Score (EMS) classi cation of
UC performance of a deep-learning-based neural network when limited amount of data is present. The
contribution can be detailed in three main parts.

Firstly, the generative model training with limited data can provide speci c insights about the dataset.
The dataset at hand is limited, imbalanced, and contains some artefacts. Cleaning the dataset and
training a GAN model is also useful for the training and fair evaluation of the image classi cation
model.

Secondly, the image classi cation baseline experiments provide insights about the suf cient number of

images for the training of image classi cation model and whether addition of new images improves the

classi cation performance. This phenomenon is called network saturation, and the number of images
that are adequate for classi cation performance can be used as a baseline.

Finally, the image classi cation performance of the deep-learning-based classi cation algorithm can
be improved with generative data augmentation. The improvements and metrics for evaluating the
performance will be analyzed in detail.



1.4 Organization of the Thesis

The thesis work consists of four main parts. The rst part is data preparation, where the dataset is
cleaned from artifacts, markings, and instruments, and also all images are resized to a square shape.
Also, several new subsets of the original dataset were formed to be used in experiments.

The second part is baseline performance evaluation experiments using the whole dataset and partial
datasets. This baseline evaluation aims to nd the saturation in classi cation performance associated
with the number of authentic images and their contribution to classi cation performance.

GAN Training is the third part, where partial and whole datasets were used to train conditional GANs
and class-speci ¢ GANs. Conditional GANs were trained with all four classes with class knowledge,
and class-speci ¢ GANs were trained over pre-trained Flickr-Faces-HQ Dataset (FFHQ) networks and
transfer learning techniques were used.

The fourth part consists of experimentation intending to determine the bene ts of synthetic data aug-
mentation over baseline performance for partial datasets. Both conditional and class-speci ¢ trained
GANSs were used, and results were reported using only synthetic images and the performance evalua-
tion in real images.



CHAPTER 2

LITERATURE REVIEW

In this work, Generative Adversarial Networks (GANs) were used to apply generative data augmenta-
tion for Endoscopic Mayo Score (EMS) classi cation of Ulcerative Colitis (UC) disease. This chapter
starts with an introduction to data augmentation and generative data augmentation. Then a brief intro-
duction to the main GAN model used throughout this thesis is given. Relative GAN algorithms, i.e.,
prequel and sequel models to the main GAN model, will be provided. Finally, the details of the use
case of endoscopic image EMS classi cation for UC disease will be shared.

Generative Adversarial Networks (GANSs) are used in many different applications. One such applica-
tion is to synthesize images given some real examples. The synthesized images can be used to enhance
the performance of deep learning methods by increasing the number of training images they can use
in training.

2.1 Related Work

The performance of deep learning approaches can be improved by data augmentation, as detailed in
the works of Shorten et al. [8]. Many different augmentation methods can be applied to increase the
performance and make the neural networks more robust against noise. Generative data augmentation
is a branch of data augmentation where the aim is to generate synthetic data similar to the original
data.

Antoniou et al. [9] experimented with generative data augmentation using GANs. They reported
performance improvement in different datasets of OMNIGLOT, EMNIST, and VGG-Face. They have

trained conditional GANs, which use class information in the training process, and images can be
generated using class conditions.

In their work, Poka et al. [10] used GAN-based data augmentation to improve the face detection per-
formance of deep learning methods of convolutional neural networks (CNN) and Siamese networks.
They have approached a different property of GANs in their work than straightforward using synthe-
sized images along with the original data.

They have used the latent representation of face images provided by the GAN structure of StyleGAN2.
They have also employed transfer learning from other face image datasets.



Frid-Adar et al. used GAN to enhance classical data augmentation further by injecting synthetic im-
ages into network training [11]. They have employed classical augmentation and counted how many
augmented images were shown to the classi cation network.

As they had a limited amount of Computed Tomography (CT), the presence of data augmentation is
crucial. They have reported an increase from 78.6% to 85.7 % in sensitivity for using generative data
augmentation over classical augmentation. And an increase from 88.4% to 92.4% in speci city.

For image synthesis, they have employed different GANs for each class. The GAN structure they have
used in their work was customized DCGAN.

Shin etal. [12] employed GANSs to generate 3D images of brain MR images to augment and anonymize.
They have used conditional GAN training for the label to image (synthesis) and image to label (classi-
cation) tasks.

Rashid et al. [13] have reportedly used GAN based data augmentation to improve the classi cation
performance of deep learning models.

Yorioka et al. employed Auxiliary Classi er Generative Adversarial Network (ACGAN) in their work
[14]. The ACGAN structure combines class conditions into generative and discriminative networks.
The structure of ACGAN is an extension over conditional GAN and enables discriminators to distin-
guish class information along with real or fake authentication.

They have created an arti cial dataset that is a subset of the original dataset of CIFAR-10 and called it
a small dataset. While the original CIFAR-10 dataset contained ten classes and 6000 images per class,
resulting in a total of 60000 images, the small CIFAR-10 dataset contained only 500 images per class
for ten classes, resulting in a total of 5000 images.

The performance over a small dataset was evaluated as the baseline, and it was also used as the training
dataset for their ACGAN. They have also arti cially created a classical data augmented dataset, more-
over, trained another ACGAN over this data augmented dataset. Furthermore, they applied classical
data augmentation over the second trained ACGAN.

They have shown classical augmentation improved their performance metric (accuracy) from 61% to

65%. A similarimprovement was absent when generative images were added as only 2% improvement
was reported. The further classical data augmentation and retraining ACGAN over classical data

augmented dataset decreased the classi er's performance.

The FID score performance of GAN training should not be considered as a metric of classi cation
performance augmentation, as they have reported it as a critical remark as the analysis of their work.
The quality of images generated from a GAN does not always translate to improved classi cation
performance when used in classi cation network training.

Similar work was done by Mudavathu et al. priorly [15], employing Auxiliary Conditional GAN.
However, this work was done on tl&8 28 pixels sized FMNIST dataset. Furthermore, the work
lacks a performance baseline of a classi cation network nor the proposed dataset augmentation im-
provements. Their work used a discriminator network to label synthetic images, and they have added
synthetic images to the original dataset if synthetic images passed their discriminator's test and were
labeled as real.



In their work, Yoon et al. [16] employed Generative Data Augmentation aiming to improve lesion
detection performance. They have synthesized colonoscopy images and proposed to use generative
data augmentation instead of traditional augmentation. They have cropped images to achieve only
endoscopic view instead of full-screen view and resized cropped ima@&sto 256 pixel shape to

make them compatible with StyleGAN2 structure. They have achieved an FID score as low as 42 in
GAN training.

They have used the YOLOv3 framework as it is fast and a pre-trained Darknet53 network with transfer
learning to endoscopic images as the backbone feature extractor of YOLOv3. They have also arranged
a visual Turing test to determine the quality of synthetic images generated to augment the original
dataset.

Their contribution to the performance of the detection algorithm is comparable with traditional aug-
mentation in the F1 score, as both traditional augmentation and generative augmentation yielded 2-
2.5% improvement from 92% to 94%. However, the generative augmentation resulted in 1.5% to 2 %
improvement over traditional augmentation in sensitivity performance.

It is evident from the literature review that the Generative Adversarial Networks can be successfully
used to generate synthetic images which can be used for data augmentation. It is also noteworthy
that prior GAN structures provide limited data augmentation capability while GAN structures that
are newer and have better image generation performance provide substantial improvement in deep
learning.

Although there are some customized networks for generative networks, the main structure of dual
networks of discriminator and generator are the backbone of GAN training. It is also shown in various
works that StyleGAN2 architecture is extraordinarily better than previous structures in custom datasets
where the amount of data is limited.

StyleGAN2-ADA is relatively and Alias-Free GAN (StyleGAN3) has not yet been released. Their
presence in the literature was minimal or was completely absent in this thesis work’s literature survey
phase. However, experiments on StyleGAN3 were also carried out to compare its performance against
StyleGAN2-ADA.

2.2 Image Classi cation

Image classi cation is an essential and fundamental task in many arti cial intelligence methods such as
convolutional neural networks. A classi cation task can be trivially set up as an algorithm that gets an
input data and outputs its class. The research on classi cation tasks requires speci ¢c numerical metrics
that outline the performance of an algorithm. There has to be a test set where the ground-truth classes
are known to achieve these metrics. The performance of a classi cation algorithm can be measured
with accuracy, precision, recall, F1 score, sensitivity, and speci city. As sensitivity and recall are
identical by de nition 6, the term recall will be used for consistency throughout the remainder of this
thesis.

The performance of a classi cation algorithm can be improved by many different means. Most im-
portantly, if the concept of the classes and perception is clear, then an algorithm can be created to t
the classi cation task. An algorithm can be formulated from a mathematical model that simulates the



real-world system with known concepts. However, there are only a few wild guess methods and gen-
eralized Iters to nd patterns in the data and classify them into predetermined classes with unknown
concepts.

Image classi cation focuses solely on image data, a two-dimensional signal with spatial information.
The media of image data is generally a two-dimensional discrete (digitized) sample in the form of
pixels. In image data, the spatial information of each pixel correlates with neighboring pixels. The
task of image classi cation is a well-known task for human beings, and the human-level performance
in the task is extraordinarily high compared to numerical data classi cation. Although the task itself is

trivial for humans, there is a considerably limited knowledge on how visual perception works.

Humans can easily classify many different objects, yet how they exactly accomplish this task is a
great mystery to this day. With little information on visual perception, a mathematical algorithm
that can model image classi cation can not be formed explicitly. Generalized lters to recognize
speci ¢ patterns in images have also been studied and researched thoroughly. However, if there is no
knowledge about any pattern in images or if these patterns are complex and dif cult to formulate, then
these generalized lters tend to fail to achieve satisfactory classi cation performance.

2.3 Improving Image Classi cation Performance

The neural networks trained for image classi cation tasks perform better when the number of training
samples increase. The advances in computation power, storage, and network capabilities resulted in
higher resolution, and larger datasets and neural networks that can train on large datasets have been
developed in recent years.

The performance of a classi cation algorithm depends on many aspects, including dataset split, hy-
perparameters, loss functions, optimization algorithms and training utilities. Dataset split is essential
to measure how good an algorithm will perform in a real-world situation and is equally necessary to
prevent a learning algorithm from over tting on the training set. Training hyperparameters are the
parameters that are not learnable and the engineer or scientist sets with intuition. Loss functions are
the measurements where training, validation and test sets are assessed according to the ground truth
values. Optimization algorithms optimize the deep learning model updates according to the task of
minimizing the loss functions associated with the model. Training utilities include early stopping,
weight decay, transfer learning, drop-out, and data augmentation.

Early stopping is a method that is employed when further training after a point in deep learning is not
bene cial and stopping before reaching the hyperparameter of episode length or total epochs. Weight
decay is a regularization method used to prevent over tting by adding a prede ned weight to the loss
function calculation so that the exact minima for the training set are never reached; hence, it can be
more generalizable. Transfer learning is employed to continue training over a pre-trained model so
that previously learned low frequency or low-level features could be preserved, and the newer dataset
can be employed to transfer previous networks weights over the new dataset. Drop-out is another
regularization technique that is also aimed at preventing over tting. Finally, data augmentation is
a method to prevent over tting by applying marginal or extreme data manipulations to increase the
diversity of the data that a deep learning model trains on.



2.4 Data Augmentation

Data augmentation is a process where data is augmented arti cially so that image classi cation learn-
ing improves in stability and, preferably, classi cation performance. Itis shown that data augmentation
makes Neural Networks less prone to pixel and shape memorization. Thus, it is an ef cient way to
overcome over tting.

An image data can be augmented with the following methods:

Rotations and ipping

Mirroring

Scaling and translations
Changing color hue or saturation
Cropping

Adding noise

Filtering

Changing brightness or contrast
Patch removal

The range of possible data augmentation methods is unlimited. Types of data augmentation range from
simple rotation and ipping to more complex pixel shifting, padding, cutting geometrical shapes, and
adding noise or lItering. Deep learning models tend to overt to the available data when possible.
The data augmentation processes explicitly attack on over tting problem to reduce its occurrence and
create more stable training runs. Various data augmentation methods are employed generally in many
different deep learning models and it became a standard approach when training a deep learning model.

2.5 Generative Data Augmentation

The concept of augmenting datasets for image classi cation networks ts the image domain as dis-
cussed by Aggarwal et al. [17]. It is intuitive to take photographs from different perspectives, angles,
and lighting conditions when forming a dataset. Similarly, it is bene cial for CNNs to observe images
in a dataset from different perspectives, angles, and lighting conditions.

Data augmentation is an arti cial way to augment the original dataset by applying speci ¢ manipula-
tions to the training dataset. Even though the augmentation methods include basic image manipula-
tions, their results improve the performance of the classi cation model while making the model less
prone to over tting. Shorten et al. [8] describes data augmentation as an approach that attacks the
cause of over tting as opposed to other proposed performance improvement methods.

Data imbalance occurs when a dataset contains fewer samples for a class than another class. The
severity of imbalance can lead to many different problems in neural network training. The models
trained on imbalanced datasets give a poorer performance for underrepresented classes. To alleviate
the imbalance of classes oversampling and undersampling techniques can be used. These techniques
are naive approaches that re-introduce the exact data for the training (oversampling) or do not introduce
some data (undersampling).



There are also adaptive sampling methods (ADASYN) [2] and data augmentation based methods
(SMOTE) [3]. Data augmentation is found to be bene cial for overcoming data imbalance. The
model is enabled to observe more samples from underrepresented classes, and each sample the model
observes is augmented; hence memorization and over tting are less likely to occur, resulting in better
classi cation performance.

The generative data augmentation method is used to increase the variation of the training dataset by
injecting synthetic data into the training dataset. The models trained with the set will observe sam-
ples from a wider variety and in different forms [10] and their performance will increase thanks to
generative data augmentation.

2.6 Generative Adversarial Networks

Generative models, as described by Goodfellow et al. [18] are probabilistic models where the proba-
bility distribution of speci c variables can be learned from a dataset. Then the probability distribution
can be used explicitly to form graphical models or implicitly to sample from a distribution.

An encoder structure, as described in [19], "encodes" the knowledge behind a set of data. It can be
expressed as a funnel that distills critical points of a dataset. The result of this encoding operation can

be used in many different applications. One such application is to use a decoder structure to recreate
the dataset. The resultant recreated data can either be the same as the input data that has been encoded
or similar to it, depending on the architecture of the encoding network.

The structure of a specialised Multi Layer Perceptron called autoencoders was introduced by Cottrell
et al. [20]. The system of autoencoders can be expressed as a structure that Iters the most or all of the
essential features of an input dataset and can reconstruct similar or exact data. This structure stores a
smaller amount of information to represent the data, and this compression mechanism can be used in
many different applications.

Kingma et al. [21] proposed addition of a noise variant to the latent space of the autoencoder structure
hence introducing Variational Autoencoders. The structure of variational autoencoders are same as
autoencoder with the difference of enabling the addition of noise as the input to the decoder part of the
autoencoder.

Goodfellow et al. introduced Generative Adversarial Networks in their 2014 work [4]. Yann LeCun,
Al Scientist at Facebook and Professor at New York University, expressed his thoughts on GAN as the
most exciting idea in the last ten years of Machine Learning eld in an online question session [22].

From the rst GAN structures, the GAN study has come so far from simple and small resolution image
generation to fake video generation in high quality that it is tough to distinguish between arti cial and
natural. Although many improvements have been proposed for the GAN structure, the critical points
of GANs are still valid up to this day. Jabbar et al. [23] describes different variants of GANs and
similarities between autoencoders and Generative Adversarial Networks in detail.

The performance of how generated data are close to original data can be measured with certain ex-
pressions. A specialized network that tries to distinguish if data is generated (fake, forged) or original
is called a discriminator. This network aims to learn how to discriminate original data and generated
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data. The output of this network can be used as feedback to the generator on how well the generator is
generating data and how close or far the generated data is away from the original data.

The discriminator-generator duo networks form the basic structure of generative adversarial networks,
GAN for short. GANs are trained similarly to any other neural network where initial weights and
hyperparameters are set before training. Initial weights are generally randomly generated numbers,
while hyperparameters are searched for best performance results. The weights of each network (gen-
erator and discriminator) are updated at each learning step. The learning action updates both networks
simultaneously.

The generator aims to generate images that resemble the original data. The discriminator aims to
distinguish any generated data as fake while original data is original. The performance of the discrim-

inator is only essential to push the generator to achieve better performance. Many different metrics
measure the performance of the generator. The rst and foremost usage area of GANs is the image
domain, where data is in a two-dimensional shape and contains spatial information in each pixel.

One general performance metric for GANs is Fréchet Inception Distance (FID), where a number of
randomly generated images is measured in Fréchet Inception Distance to the original dataset. The
calculation of the FID score can be done with a certain xed number of images such as 10 thousand or
50 thousand, and the FID score will be named FID10k and FID50k. The number of original images is
generally xed as the whole dataset.

There are also many metrics to measure how well a generated image falls within the original dataset
in terms of mathematical expressions. The list of these metrics and details about the most used one are
given in section 3.5.

A brief chronological list starting from the rst GAN to the most recent addition of StyleGAN.

1. GAN: Generative Adversarial Network introduced in June 2014 by Goodfellow et al. [4]

2. DCGAN: Unsupervised Representation Learning with Deep Convolutional Generative Adver-
sarial Networks introduced in January 2016 by Radford et al. [24]

3. WGAN: Wasserstein GAN introduced in January 2017 by Arjovsky et al. [25]

4. ProGAN: Progressive Growing of GANs for Improved Quality, Stability, and Variation intro-
duced in October 2017 by Karras et al. [26]

5. StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks intro-
duced in December 2018 by Karras et al. [27]

6. StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN introduced in December
2019 by Karras et al. [28]

7. StyleGAN2-ADA: Training Generative Adversarial Networks with Limited Data introduced in
June 2021 by Karras et al. [29]

8. StyleGAN3: Alias-Free Generative Adversarial Networks introduced in June 2021 by Karras et
al. [30]

2.6.1 GAN

Generative Adversarial Networks, GAN for short, rstintroduced by Goodfellow et al. in 2014 [4], and
had a lot of different discussions on how to improve their output performance and decrease the chronic
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problems on the training and training ef ciency. The discussions and improvements include using new
loss functions, augmentation methods, and structural changes. Although there are many different types
of GANs, the literature of this thesis work will focus on some of the most used networks and networks
related to StyleGAN2-ADA.

The original GAN concept includes a generative and discriminative model where the generator tries to
t the distribution of the original data and synthesize data similar to the original data. The discrimi-
nator tries to classify an image as real or synthesized. The generator model aims to minimize the log
probability of the discriminator's correct classi cation for its synthesized data. On the other hand, the
discriminator aims to maximize the log probability of correct classi cation of the generator model's
synthetic data.

This adversarial training is named as minimax game with the value function of generative and discrim-
inative losses. The training of GANs depends on the theoretical background of this minimax game,
where a unique solution can be found to an arbitrary function expressed as in Eq. 1:

minmaxV(D;G) = Ex pyy ) 109D+ Bz, [log(l D (G(2)))] 1)

Where D and G are discriminator and generator networks, respectively. Value function, shown as
V, with Discriminator (D) and Generator (G) loss functions as variables, is calculated with the log
probability of discriminator identifying fake generator synthesized images and labeling real images
correctly. The theoretical solution for this minimax equation can be reached when the probability
of the discriminator failing to identify a fake image as fake becomes equal to the probability of the
discriminator correctly identifying a real image.

2.6.2 DCGAN

The rst iterations on GANs were plagued by many drawbacks such as being prone to mode collapse,
requiring large datasets, vanishing gradients, being capable of only generating low-resolution images,
and lacking performance metrics for GAN performance. Deep Convolutional Generative Adversarial
Networks (DCGAN) has been introduced by Radford et al. [24].

DCGAN changes the native GAN struture into a convolutional structure by the following changes:

Using convolution operation instead of pooling and omitting fully connected layers in the favor
of convolution layers.

Addition of batch normalization concept to both of the generator and discriminator networks.
Recti ed Linear Unit (ReLU) activation functions instead of sigmoids for the generator
LeakyRelLU instead of maxout activation functions for the discriminator

2.6.3 WGAN

Wasserstein GAN [25], introduces a novel loss function calculated by Wasserstein distance to GAN
training. The Wasserstein distance approximates the Earth Mover Distance, while the original GAN
used Jensen-Shannon divergence. The authors have shown that GAN training became more stable than
the original GAN, and mode-collapsing occurrence became less frequent. With the Wasserstein metric
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and previously introduced DCGAN, the authors concluded that GAN training could be improved with
this method, at the cost of not being able to use momentum-based optimizers.

2.6.4 ProGAN

Progrssively Growing GANs (ProGAN) is a novel approach introduced by Karras et al. [26]. The main
difference over the original GAN was to include a growing structure of discriminator and generator
networks. The progressive growing enables the model to start from a low resolution image and learn
ner details with the addition of new layers. They have shown that this approach increases the both
training speed and training stabilization. They have also introduced a feature map layer to replicate
the original data set distribution over minibatches and added this new layer towards the end of the
discriminator network. They have shown that this approach increased the variation.

ProGAN approached to the problem called as unhealthy competition between the discriminator and the
generator networks of GAN with two concepts. In other works, batch normalization was used to elim-
nate this unhealthy competition. In ProGAN, an equalized learning rate for all weights was ensured
that weight initialization does not result in longer convergence times. It was shown in ProGAN work
that constraining signal values in the generator network using pixel-wise feature vector normalization
and equalized learning rate resulted in a healthier competition between generator and discriminator.

Finally, a novel metric for GAN performance evaluation was introduced using a progressively growing
Laplacian pyramid, Sliced Wasserstein Distance. This new metric was proposed instead of multi-scale
statistical similarity as the latter lacks image quality assessment.

2.6.5 StyleGAN

The StyleGAN introduced by Karras et al. [27] featured a style-based generator architecture for GAN.
It was based on ProGAN with novel changes for the architecture. They have applied style-transfer
methodologies detailed in the works of Huang et al. [31] to the generator network.

They have introduced the following additions over the baseline ProGAN architecture:

Using bilinear downsampling and upsampling

Including Adaptive Instance Normalization (AdalN)

Adding mapping network

Replacing traditional input layer with a learned constant tensor

Addition of noise inputs

Introduction of a novel mixing regularization, removing correlation between neighboring styles.

With the aforementioned additions over ProGAN the StyleGAN architecture successfully applied
style-transfer methodology to the generative adversarial networks. The FID performance score of
GAN trainings on benchmark datasets with StyleGAN improved over ProGAN.
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2.6.6 StyleGAN2

The architecture of StyleGAN was analyzed and improved by Karras et al. [28] with the following
changes:

Using weight demodulation normalization instead of Adaptive Instance Normalization (AdalN)
Improvements on progressively growing technique for generator and discriminator networks
Addition of path length regularization

Lazy regularization

With these changes the StyleGAN2 framework achieved better performance metrics in terms of FID
score, Perceptua Path length, Precision and Recall.

2.6.7 StyleGAN2-ADA

Adaptive Discriminator Augmentation (ADA) is a novel approach [29] that applies classical augmen-
tations in a set order and frequency to the images the discriminator observes during training. The
strength of each augmentation was learned during training according to the novel over tting metric
applied to the discriminator. This approach makes the highest performing classical augmentations
stronger in discriminator image evaluation. This way, the augmentations in pixel blitting, general
geometric transformations, color transformations, ltering, and corruptions were the ve categories
containing 18 classical augmentation methods. Pixel blitting in the form of:

Cross ipping
90 degrotations
Integer translation

General geometric transformations in the following ways:

Isotropic scaling
Arbitrary rotation
Anisotropic scaling
Fractional translation

Color transformations with the following augmentations:

Brightness
Contrast
Luma ip
Hue rotation
Saturation

Image-space ltering in the following speci ¢ frequency bands of:
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Image-space corruptions with:

Additive RGB noise
Cutout

At the start of training, the discriminator is fed with images synthesized by the generator through

classical augmentations. The augmentation probabilities are started to be equal at rst. Through
training, the StyleGAN2-ADA framework re-arranges the probability of each classical augmentation.

This adaptive augmentation improves discriminator performance and enables GAN training with fewer
images.

With StyleGAN2-ADA architecture, the convergence of GAN training was made possible with smaller
datasets, and the problem of over tting was resolved. Without ADA, the discriminator focused on
particular features while the generator could easily fool the discriminator with those features while
generating non-realistic images. However, with ADA, the augmentations enable the discriminator to
maintain the focus on the whole image throughout training, removing the discriminator over tting
probability.

ADA improves GAN training performance, decreases the number of required images for training, and
increases the synthetic image quality of GANs. They have also included mixed-precision support
which directly increases the training speed and reducing memory usage as 16-bit and 32-bit oating
point operations could be used together. Authors had also provided better hyperparameter defaults
for different types of datasets as a result of their experiments. They had cleaned the codebase over
StyleGAN2, included standalone versions of high quality image augmentations in GPU and enabled
network import resulting in faster loading times. Because of these improvements, the StyleGAN2-
ADA structure was selected to be used in this thesis work.

Furthermore, the of cial implementation provided by Nvidia in their curated Github repository was
ported into the PyTorch framework. The bene ts of the PyTorch framework are discussed in section
3.1. Moreover, the of cial implementation in the PyTorch framework was reportedly 5-30% faster in
training speed compared to the TensorFlow implementation. The inference speed was also increased by
up to 35%, resulting in faster image generation. The addition of new command-line options also made
the operation more exible. It was also stated that GPU memory usage was similar to the TensorFlow
implementation. For the compatibility part, the dataset tool was updated to support PNG and Zip-based
datasets, as the dataset used in this thesis was formed in a PNG and later in a zipped format; this update
was a positive addition. With many improvements over the previous implementation, the StyleGAN2-
ADA-PyTorch was selected to be the main framework to train GANs and generate synthetic images.
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2.6.8 StyleGAN3

Alias-Free GAN or StyleGAN3 is the latest edition of the StyleGAN family, developed and maintained

by NVIDIA. The proposed improvements over the StyleGAN2-ADA structure are exclusively in signal
processing nature. The authors have employed signal processing techniques to overcome aliasing
occurring in progressive layers. They have shown that the nature of generating images translates input
noise signal into high-frequency noise in nal output images by amplifying the input noise in each
layer until the nal high-resolution image.

They have also proved that applying low pass lters decreases the aliasing problem of the output im-
ages. Low-pass lters Iter out high-frequency components, i.e., enabling low-frequency data while
suppressing high-frequency noise. It was discussed in their work that the aliasing problem is a pre-
dominant one that reduces translation and rotation invariance, which corresponds to unnatural effects
when images were moved (translation) or rotated. These undesired effects limit the possibility of video
generation as images tend to move and frequently rotate in videos.

The theoretical improvements discussed in their work were focused more on transformation and rota-
tion which occurs natively in video domain, image quality on the other hand, did not improve much in
terms of FID score compared with previous framework improvements. Moreover, the improvements
reduced the training speed of the previous architecture. The expense of increased training time at no
marginal bene ts in terms of FID score or image quality was the primary reason why this thesis work
was not re-done on StyleGAN3 architecture.
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2.7 Use Case: Improving Classi cation Performance of EMS Classi cation of Endoscopic Im-
ages using Generative Adversarial Networks

2.7.1 Endoscopy Imaging

Endoscopy means looking inside the body with a tool called an endoscope. Endoscopy imaging is
an essential and necessary way to diagnose and monitor certain diseases when they are present inside
the human body. Gastrointestinal diseases such as Ulcerative Colitis show symptoms in the large
intestine and only be diagnosed through an expert medical view of the large intestine. The tool used in
colonoscopies has an endoscopic imaging instrument and cleaning and sample extraction capabilities.

Medical doctors can extract samples during the endoscopic examination. They can also intervene
directly by removing polyps (cancerous tissues), cleaning wounds, and taking reference images to
discuss with colleagues. The classi cation of speci ¢ images according to a scoring system called
Endoscopic Mayo Scof&EMS) helps medical doctors to treat their patients.

Polat et al. [32] have shown that polyp detection can be accomplished by using the deep learning
method. The performance of a deep learning method can be improved by contemporary means, as
discussed in their work. One way of improving the performance of deep learning approaches is using
bootstrap aggregating or bagging, where multiple deep learning methods are bagged together, and
their predictions are combined. It is shown that with the combined power of multiple deep learning
methods, the performance of a classi cation task can be improved.

Gastrointestinal Endoscopy imaging focuses on two parts of the human intestine to diagnose and treat
diseases. The upper and lower large intestine have different characteristics. Diseases occurring in
either part are generally diagnosed by gastrointestinal endoscopy imaging.

The datasets in the medical domain have the following shortcomings. First, the data is highly sen-
sitive as it is obtained from patients and medical doctors, and their patients value privacy. Second,
the data is precious and yet scarce because of the lack of digitization and large databases and data
warehouses as opposed to other image datasets. Thirdly, the datasets in the medical domain are highly
imbalanced, i.e., disease-diagnosed imagery is under-represented while normal/healthy images are
over-represented.

Endoscopy imaging is no exception for the general rules that medical image datasets follow. The use
case dataset is a highly sensitive dataset obtained through many different endoscopic examinations of
patients. The medical doctors that obtained and created this dataset have also labeled the imagery for
Ulcerative Colitis (UC) symptoms.

2.7.2 Ulcerative Colitis

Ulcerative Colitis (UC) is an In ammatory Bowel Disease (IBD) occurring in the lower gastrointestinal
tract. Its symptoms are certain in ammations occurring depending on the severity of the disease. As
exempli ed in Fig. 1, it is possible to assess disease symptoms by visual inspection of endoscopic
images.
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2.7.3 Endoscopic Mayo Score

Medical experts classify Ulcerative Colitis with Endoscopic Mayo Score (EMS) ranging from 0 to

3 with 0 identifying a healthy person where 1,2 and 3 are showing incrementally increasing disease
activity. The dataset in the use case scenario has four classes that correspond to the severity of the
disease. Deep learning methods used in this thesis focus on EMS estimation by image classi cation.
As shown in Fig. 1, the symptoms are increasing in frequency and severity with increasing EMS.

Figure 1: Example colonoscopy images with EMS ranging from 0 to 3, from left to right.

2.7.4 Remission Score

Labeling biases, uncertainty, and subjective scoring result in many discrepancies between disease clas-
si cation as there is no speci ¢ way to distinguish the severity of diseases. Remission classi cation

can be employed to overcome the issues associated with labeling. Remission, by de nition, means
healthy and without any symptoms. Mayo-0 and Mayo-1 classes, i.e., healthy or only mildly serious
cases, are bundled together, and Mayo-2 and Mayo-3 classes that correspond to severe and most severe
cases are wrapped together. The performance of image classi cation algorithms has been obtained for
both 4 class classi cation and binary classi cation, i.e., remission score.

2.7.5 Deep Learning for Image Classi cation

Polat et al. [33] discussed that Ulcerative Colitis EMS level classi cation could be treated as a re-
gression task because the EMS level is ordinal as the EMS level increases with severity. They have
treated EMS level as ordinal, introduced a novel loss function, and trained ResNet18, Inception-V3,
and MobileNet-V3-Large networks. They have shown that the addition of the novel loss function im-
proved the results for all models. They have also shown that the results for these different networks
were in the range of 0.6 percentage points, demonstrating that either of these networks can be used
effectively with very similar results.

This thesis utilized deep learning methods to classify endoscopic images, speci cally colonoscopy
images, to estimate the Endoscopic Mayo Score (EMS) of Ulcerative Colitis (UC). The deep learn-
ing method that was used is Residual Network with 18 layers of depth (ResNet18). The performance
evaluation of ResNet18 models was done with 4-class classi cation metrics of accuracy, precision, re-
call, F1 score, sensitivity, and speci city. The remission score was also used, and binary classi cation
metrics of accuracy, precision, recall, F1 score, sensitivity, and speci city were used.
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The classi cation performance of ResNet18 was thoroughly examined, and comparisons and conclu-
sions were based on the classi cation performance. The detrimental effects, as well as improvements,
were studied, and possible reasons for these effects were included as comments.

2.7.6 Generative Data Augmentation to Improve Image Classi cation Performance

Generative data augmentation is a subbranch of data augmentation where generative models are used
to diversify the original dataset. With the help of StyleGAN2-ADA, synthetic images were generated.
The synthetic images were then used in conjunction with the original dataset to determine the effects
of generative data augmentation.
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CHAPTER 3

IMPLEMENTATION AND EVALUATION

The implementation details and evaluation metrics used in the thesis are detailed in this chapter. The
implementation details include the programming language, machine learning framework, version con-
trol system, experiment tracking tool, and high-performance computing capabilities.

The evaluation metrics used in the thesis include image classi cation performance metrics for binary
and 4-class classi cation, generative adversarial network output quality evaluation, and respective
calculation details of non-trivial metrics.

With the experiment tool's help, the thesis has been realized in a manner of organized, traceable, and
reproducible experiments. The experiments have been realized in parallel with a high-performance
computing suite. The programming language and machine learning framework had a high level of

cohesion, facilitating an easier debugging and development environment.

3.1 Implementation

This thesis has been realized with Python programming language[34]. Python is a high-level scripting
programming language that is easy to read, debug and interpret. Python programmers have agreed
on certain conventions to follow and obey when writing in Python. These simple conventions help
with the transparency and readability of the code by following Python's unique design. Thanks to
these conventions, Python code writing and reading have become more accessible. These conventions
de ne a coding style which is generally referred to as Pythonic. These conventions can be found inside
Python Enhancement Proposals (PEPSs) [35].

On the other hand, while coding with Python is faster than low-level programming languages, its run-
time performance is relatively lower than low-level programming languages like C or C++. Although
Python has an interpreter that interprets and runs Python scripts, speci ¢ frameworks have been de-
veloped to match run-time ef ciency of low-level languages. Object-Oriented-Programming (OOP) is
an option in Python, and this thesis work followed both Pythonic programming guidelines and OOP
methodology.

Implementation of experiments in the thesis was done in PyTorch framework [36]. The pyTorch frame-
work enables Pythonic programming capabilities for the most well-known and established machine
learning frameworks. The generative data augmentation component of the thesis was the of cial
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StyleGAN2-ADA Pytorch version [37]. The image classi cation component of the thesis for EMS
estimation of UC was also written in the PyTorch framework following the OOP methodology.

3.2 Experiments

Weights and Biases (WANDB) framework [38] has been used for experiment tracking. 72 GAN mod-
els (StyleGAN2-ADA) and 36096 UC EMS classi cation models (Resnet18) have been trained in total
throughout this thesis work. The resource cost of this thesis is detailed in C.1.

3.3 Image Classi cation

In this work, residual networks [39] trained on image datasets have performed image classi cation
tasks. ResNet18 has been used as the base network as it is expected to converge faster with comparable
accuracy with same depth networks.

Classi cation performance was measured with smaller datasets to nd how many images are required
to saturate the classi cation network.

The framework for image classi cation was based on the works of Kani et al. [40]. The dataset
preparation, dataset cleaning, ensemble label evaluation with experts (medical doctors), Python im-
plementation of image classi cation framework, classi cation performance evaluation, and baseline
WANDB integration were based on Gérkem Polat's Ph.D. works which are not yet published.

3.4 Classi cation Performance Evaluation

The research on classi cation tasks requires speci ¢ numerical metrics that outline the performance of
an algorithm using a test set where the ground-truth classes are known. The metrics used in classi ca-
tion tasks are shown in Table 1 as described in detail by Alpaydin [41].

Table 1: Two-class confusion matrix.

Predicted Values
Positive Negative
Ground | Positive | True Positive (TP)| False Negative (FN
Truth Negative | False Positive (FP) True Negative (TN)

True Positive (TP) is the correct classi cation as a class that was indeed that class.

True Negative (TN) measures how well an algorithm does not predict input data as a class that
was indeed not that class.

False Positive (FP), where the algorithm performs an incorrect classi cation and classi es an
input data as a class; however, it was not that class.

False Negative (FN), where the algorithm classi es an input data incorrectly as not a class;
however, the ground-truth states it was that class.
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The performance of a machine learning algorithm in a classi cation task can be measured with accu-
racy, precision, recall, F1 Score, sensitivity and speci city as detailed by Kubat [42].

1.

Accuracy is the total number of correct classi cations divided by all predictions—the metric of
a classi cation algorithm's accuracy is calculated in Eq. 2

TP+ TN
ACCUTacY = — = B T EN 2)

. Precision, where the total number of correct classi cations is divided by both correct classi -

cations and incorrect classi cations. The metric of how precise a classi cation algorithm is.
Calculated as in Eq. 3
TP

o TP 3
P recision 51 EP (3

. Recall where the total number of correct classi cations is divided by all elements in a class.

It is the metric of how many correct classi cations were made in classifying a speci ¢ class.
Calculated as in Eq. 4
TP

= 4
Recall TP+ EN 4)

. F1 score is calculated by taking the harmonic mean of precision and recall. The harmonic mean

of precision and recall is not as sensitive to data imbalance as accuracy. F1 score is calculated
asinEq. 5
2 Precision Recall

.. = 5
Precision = 5 ecision + Recall ©

. The sensitivity, which is identical to recall by de nition, is the ratio of correct classi cations to

all elements in the class. The metric of sensitivity of a classi cation algorithm is calculated as
in Eq. 6
TP

Sensitivity = TP+ EN (6)

. Speci city is the ratio of true negative to true negative and false positive combined (out of class

elements). As sensitivity and recall are identical by de nition, the term recall will be used to
cover both of the terms. The metric of speci city of a classi cation algorithm is calculated as in
Eq. 7

TN

Specificity = ———o (7)
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3.5 Generative Adversarial Networks

Performance evaluation of GANs can be performed with the following metrics, although there were
many different metrics, the most used and accepted metric was the Fréchet Inception Distance metric
introduced by Heusel et al. [43].

Average Log-likelihood Image Retrieval Performance

Coverage Metric Generative Adversarial Metric (GAM)
Inception Score (1S) Tournament Win Rate and Skill Rating
Modi ed Inception Score (m-1S) Normalized Relative Discriminative Score
Mode Score (NRDS)

Activation Maximization (AM) Score Adversarial Accuracy and Adversarial Di-
Frechet Inception Distance (FID) vergence

Maximum Mean Discrepancy (MMD) Geometry Score

The Wasserstein Critic Reconstruction Error

Birthday Paradox Test Image Quality Measures (SSIM, PSNR and
Classi er Two-sample Tests (C2ST) Sharpness Difference)

Classi cation Performance Low-level Image Statistics

Boundary Distortion Precision, Recall and F1 Score

Number of Statistically-Different Bins

(NDB)

3.5.1 GAN Performance

The output resolution of GANs is desired to match the input resolution of the dataset that GANs are
trained with. However, the quality of images differs a lot depending on subjective perception. As
manual GAN output evaluation is inef cient and not objective, there has to be a numerical metric that
can be used to measure the quality of GAN outputs.

The outputs of GAN models should resemble input dataset features, a GAN trained on images of a
speci ¢ class is expected to generate synthetic images in that class. On the other hand, the features
of the outputs can and will differ from the original images. Fréchet Distance is a distance metric
associated between two distributions and can be used to calculate Fréchet Inception Distance (FID)
and evaluate the quality of images generated using GANSs.

3.5.1.1 Fréchet Inception Distance (FID) Score

Fréchet Inception Distance, which is an advanced metric using Wasserstein Distance introduced by
Vaserstein[44], is calculated by the following steps:

A neural network (generally Inception V3) is trained on the ImageNet dataset.

The trained neural network is fed the original and synthetic images.

The mean and variance of neural network activations for original and synthetic images are ob-
tained.

The distribution of original and synthetic images are assumed to be Gaussian.
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The Wasserstein Distance is then calculated from two distributions.
The square of this distance is called the FID score.

FID score is calculated by the distance between two distributions that arise from deeper layers of a
neural network; hence the distance is more "conceptual” than raw pixel distance. However, as a neural
network is used to calculate this score, the FID score calculation is costly.

FID score is used to determine the quality of GAN outputs. FID score is calculated as in the Equation
8:

FID = jj wizg+tr(+ W 2( 2, A ®)

3.5.2 Synthetic Image Generation

GAN models synthesized images for all four classes, i.e., Endoscopic Mayo Score of 0 to 3. The
synthesized images were built from random noise components that turn into colonoscopy images when
the random noise is given to the generator network. The generator network was the only part of the
GAN used in image generation. Synthetic images generated with the same seed are shown in Fig. 2.
The effects of UC is clearly shown with increasing in ammations in the image as expected from EMS.

Figure 2: Synthetic images generated with the same seed for different target classes 0, 1, 2, 3 respec-
tively, from left to right.

3.5.2.1 Truncation

When generating synthetic images, the truncation is the main parameter to choose. The truncation
parameter determines the range of outputs. The truncation value of 0 means that all outputs will be
equal to the dataset's mean; hence, minimal truncation values will not result in different images. The

values from 0 to 1 determine the output in the original dataset range. The truncation value of 1 means
the outputs will cover the whole dataset diversity. The values below one truncation were used to

generate synthetic images that fall into the original dataset distribution.

The values above 1 mean that the output samples will be more extensive than the original dataset
distribution. To increase the diversity of the original dataset, values above one were also used to
generate synthetic images. Both in-range and out-of-range of the original distribution truncation values
were used in the experiments, and their results were analyzed and compared.
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