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ABSTRACT 

 

INVESTIGATION OF NUMERICAL SCHEMES AND THEIR EFFECTS 

ON IMPACT PRESSURES IN NUMERICAL MODELLING 

 

 

 

Çandır, Semih Batuhan 

Master of Science, Civil Engineering 

Supervisor : Asst. Prof. Dr. Cüneyt Baykal 

 

 

February 2022, 77 pages 

 

Impact pressure is generated with the high-speed fluid impact into a stationary solid 

or vice versa. Impact pressure is a phenomenon that has been studied extensively in 

ship hydrodynamics, but the exact determination of forces acting on a coastal 

structure in a numerical environment has been a challenge for coastal engineers for 

a long time. Due to their complex structure of a two-phase flow involving both water 

and air, it is very time-consuming to properly model and solve this type of problem. 

This study aims to investigate different numerical schemes and their effects on the 

impact pressures. A dam break case was used to determine the performance of these 

numerical schemes, and the numerical model was validated using a physical 

experiment. Percent error was used to compare the peak pressure value accuracies 

between schemes, and root mean square and mean absolute errors were used to assess 

the overall performance of the numerical model. This study might provide a basis 

for numerical modelling studies on numerical approaches depending on the aim of 

the research. It is possible to improve the peak pressure prediction performance up 

to 99% and overall performance up to 37.5% using specific scheme combinations. 

 

Keywords: impact pressure, dam break, numerical model, numerical schemes  
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ÖZ 

 

SAYISAL MODELLERDE SAYISAL ŞEMALAR VE ÇARPMA BASINCI 

ÜSTÜNDEKİ ETKİLERİNİN İNCELENMESİ 

 

 

 

Çandır, Semih Batuhan 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Dr. Öğretim Üyesi Cüneyt Baykal 

 

Şubat 2022, 77 sayfa 

 

Çarpma basıncı yüksek hızlı sıvının duran bir katıyla ani teması veya tam aksinin 

gerçekleşmesiyle oluşur. Çarpma, gemi hidromekaniğinde kapsamlı bir şekilde 

araştırılmış olmasına rağmen, kıyı yapılarına etki eden kuvvetlerin sayısal ortamda 

kesin sonuçlarının belirlenmesi kıyı mühendisleri için zorlayıcı olmuştur. Su ve 

havadan oluşan çift fazlı akışın karmaşık yapısı sebebiyle, problemlerin doğru bir 

şekilde modellenmesi ve çözülmesi bir hayli zaman almaktadır. Bu çalışmada, farklı 

sayısal şemalar ve bu şemaların çarpma basıncı üzerindeki etkilerinin incelenmesi 

amaçlanmıştır. Şema performanslarının belirlenmesi için bir baraj yıkılması örneği 

kullanılmış ve sayısal model fiziksel bir deney kullanılarak doğrulanmıştır. Şemalar 

arasında en yüksek basınç değerinin doğruluğu için yüzdesel hata kullanılırken, 

modellerin genel performans değerlendirmesinde ortalama karesel hata ve ortalama 

mutlak hata kullanılmıştır. Çalışmanın sayısal model çalışmalarında araştırmanın 

amacına uygun yaklaşımların belirlenmesinde temel oluşturması beklenmektedir. 

Belirli şema kombinasyonları kullanılarak en yüksek basınç tahmini performansının 

%99 oranında artırılması, bunun yanında sonuçlar genelinde %37.5’e varan 

iyileştirmeler sağlanmasının mümkün olduğu tespit edilmiştir. 

Anahtar Kelimeler: çarpma basıncı, baraj yıkılması, sayısal model, sayısal şemalar 
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CHAPTER 1  

1 INTRODUCTION  

From the earliest stages of human life, coastal areas have been attractive places for 

people because they have two primary needs to survive: food and water. Building 

settlements around coastal areas arose other needs as a result, which are access and 

protection. Coastal structures like harbors and breakwaters are built to reach overseas 

or protect the coast. With the growing technology, people even started to build 

structures on the seas. These improvements resulted in a challenge for people to 

solve. Coastal structures should endure against the wave-induced forces. It is 

essential to start from the interactions between the wave and the structure to 

understand these forces. That is why solid-fluid interaction is a great concern for 

coastal and ocean engineering.  

Generally, small-scale models of coastal structures are used to determine the wave-

induced forces acting on the structure. Several types of waves, including wind-

generated, tidal waves and tsunamis, can be modeled to study this interaction 

between solid and fluid. Breaking waves of any type are the most violent due to the 

amount of energy released. Thus, modelling breaking waves is one of the major 

coastal and ocean engineering problems. The high energy release results in huge 

pressures applied on structures, and the impact pressure is one of those. Similarly, 

waves are formed during the dam break event, where a massive fluid body is released 

instantly. The waves formed after the event are also breaking on the structures, 

resulting in impact pressures as well.  

Inevitably, the physical modelling stage is very time-consuming, and repeating the 

experiments is relatively challenging. With the invention of high-capacity 

computers, it became more and more convenient to model coastal problems in a 

numerical environment due to ease in repeating the test and relatively cheap 
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modelling stage. The physical conditions of the coastal problem are reproduced 

numerically, and the relation between solid and fluid is examined by solving 

governing equations. Numerical schemes are utilized to discretize these governing 

equations. A numerical solution algorithm is then applied to discretized equations to 

make predictions regarding the velocity and pressure fields along the computational 

domains. There are numerous numerical studies on the wave-structure interaction, 

including impact pressures. Despite the wide range of studies within this field, there 

is no general study concerning the effect of the numerical schemes on the prediction 

of pressure, and specifically, impact pressures.  

This study aims to investigate different numerical schemes and their effects on the 

computation of impact pressure caused by the violent impact of the fluid on 

structures. Results obtained with different schemes are evaluated depending on a 

reference physical experiment to assess the performance of the schemes. This 

reference experimental case is a dam break problem, which is selected in this study 

due to its convenience to carry out simulations investigating the effect of the 

numerical schemes in predicting the impact pressures. The dam break problems can 

be studied in relatively small regions, and the representative duration of these events 

is much shorter compared to studies focusing on wind-generated waves in both 

experimental and numerical studies. 

In Chapter 2, literature is summarized in two main parts. First, an overview of the 

dam break phenomenon and impact pressure is given, and then, studies on physical 

and numerical modelling of dam break phenomenon are presented. 

In Chapter 3, information on numerical modelling is given in detail, starting from 

the reference physical model experiment, including the experimental setup, physical 

properties of the fluid and data acquisition methods. Then, details of the numerical 

model used to investigate the numerical schemes are presented. The investigations 

are carried out using a numerical solver, interFoam, based on the OpenFOAM, a 

computational fluid dynamics (CFD) Library. An overview of the numerical 

environment is given in this chapter. Reynolds Averaged Navier Stokes (RANS) 
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equations are solved in interFoam, and the details are presented in this chapter. 

interFoam uses the volume of fluid (VOF) method to capture free surface; details of 

the method are also given in this chapter. Numerical solution algorithms and 

investigated numerical schemes are presented in the latter part of this chapter. Then, 

the computational mesh used to reproduce the experimental setup and corresponding 

boundary conditions are also given in this chapter. Finally, simulations and the 

investigation methodology are presented here. 

In Chapter 4, the simulation results are given for each investigation. The 

performances of the simulations are evaluated and compared using error analysis. 

Percent error (PE), normalized root mean square error (NRMSE) and normalized 

mean absolute error (NMAE) are used in the error analysis. 

In Chapter 5, a summary of the present study is given, and the conclusions of the 

investigation are presented. The recommendations for future work are also expressed 

here. 
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CHAPTER 2  

2 LITERATURE REVIEW 

Solid-fluid interactions have been studied for a long time, yet there is no holistic 

answer to some of the questions in computational fluid dynamics (CFD). Breaking 

waves and their violent impact on the coastal structures is one of them, where there 

are plenty of open questions. Phase interactions between solid and fluid phases and 

their impacts are studied both physically and numerically, and there are some 

difficulties in both. As it is a real challenge to observe and measure impact pressures 

with high accuracy in physical experiments mainly due to the sensitivity of the 

experimental equipment, it is also hard to reproduce the phase interactions correctly 

for the numerical experiments as a result of rapid change in velocity gradients. 

Despite the difficulties, dam break cases are widely studied by coastal engineers as 

these involve similarities to the coastal dynamics problems. Generally, a tank with 

two separate sections divided by a plate is used to experiment dam break cases. A 

similar setup is produced for numerical simulations using CFD tools, as shown in 

Figure 2.1. There are several options to choose from a wide range of CFD software 

in the numerical environment. In this study, OpenFOAM CFD Library is used for 

numerical analysis due to:  

• Its readily available linear solvers, numerical schemes and solution 

algorithms. 

• Its increasing usage in coastal and ocean engineering applications 

• Its open-source library allows users to create, modify and use 
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Figure 2.1. Dam break case stages 

2.1 Overview of dam break phenomenon and impact pressure 

One of the easiest ways to reproduce the violent nature of fluids on solid structures 

is the dam break cases. Dam break case studies date back to the 19th century, as 

Lobovský et al. (2014) mentioned in their experimental study conducted at the 

Technical University of Madrid. Even though numerous experimental studies are 

conducted on dam break cases, its dynamics are still not very well described. 

Mokrani & Abadie (2016) points out the natural occurrence of dam break as solid-

fluid interaction occurs first, and it is followed by a relatively stationary stage. A 

dam break case is studied using a large volume of fluid. After releasing the fluid 

body, it moves towards a stationary obstacle or directly to the vertical wall. When 

the water body reaches the stationary object, huge pressure is applied on the structure 

due to the rapid expansion of the contact region between the solid and fluid, as Dias 

& Ghidaglia (2018) explained. This pressure is not the only force involved in this 

phenomenon. Lafeber et al. (2012) introduced Elementary Loading Processes (ELP) 

to further describe the involving loads on the vertical body. There are three types of 

ELP which are ELP1, ELP2 and ELP3. ELP1 is the direct impact, ELP2 is the 

building jet along the structure, and ELP3 describes the compression effect of the 

entrapped gasses. A representative image of these three types of ELP at different 

time instances  is given in Figure 2.2. There could be different combinations of these 
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three types of ELPs involved in the dam break cases. ELP1, the direct impact loads 

occur where the velocity component normal to the wall falls to zero rapidly, and a 

hemispherical pressure arises causing a hemispherical strain into the vertical wall. 

Peregrine (2003) explains the impact pressure as the timescale in which the peak 

pressure involved is too short for times of approximately 1 millisecond in laboratory 

conditions corresponding to 10 to 100 milliseconds in the field, and a sharp 

movement is observed in the pressure-time history.  

 

Figure 2.2. Representative image of ELP types (adopted from Lafeber et al., 2012) 

Oumeraci et al. (2001) made a similar description of the impact loads where they 

studied new methods to calculate forces under severe impact conditions. 
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Identification of loads induced by waves is based on the behavior of pressure-time 

history, as shown in Figure 2.3. In Figure 2.3, 𝐹ℎ represents the horizontal force 

applied, while 𝑡/𝑇 is the dimensionless time where 𝑡 is the duration and 𝑇 is the 

wave period. They also indicate that although the impact pressure is an important 

parameter to assess solid-fluid interaction and structural response under impact 

loads, the duration of the impact pressure on the structure is also a great concern. 

 

Figure 2.3. Identification of wave loads (adopted from Oumeraci et al., 2001) 

Similar to Oumeraci et al. (2001), Lobovský et al. (2014) suggest the rise and decay 

time of the event can be calculated using a triangular approach theory, and the impact 

duration can be determined. The maximum pressure value observed is taken as a 

pivot point to determine the impact duration, and the duration ∆𝑡 which the pressure 

value rises from half-maximal to the maximum point on the pressure-time history is 

calculated, twice this duration is described as the rise time. A similar procedure is 

applied for the decay time. The duration ∆𝑡′ where the pressure value drops from 

maximum value to half-maximal value is determined, twice this duration is described 

as decay time. The summation of the rise and decay time is considered as the impact 

duration, as shown in Figure 2.4. 
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Figure 2.4. Rise & decay time definition (adapted from Lobovský et al., 2014) 

2.2 Physical and numerical modelling of dam break phenomenon 

As discussed in the previous section, dam break cases are widely used in assessing 

impact pressures. There are several novel studies including a dam break case 

considering the different stages of the flow and the different aspects of the fluid 

motion. 

Stansby et al. (1998) have studied the initial stages of the dam break flow at two 

different scales in a horizontal flume 15.24 by 0.4 meters, and the flume was 

separated with a vertical plate. Two sides of the flume are filled with different water 

levels, and the plate is instantly removed. Experimental results are compared with 

the solutions obtained using shallow-water equations, and the results are in good 

agreement with the equations except just after the release where jet-like formations 

are observed, and the interactions are rather complex to be computed fully accurate. 
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Zhou et al. (1999) and Lee et al. (2002) have used an experimental setup studied at 

the Maritime Research Institute Netherlands (MARIN) to validate their numerical 

solutions. This setup consists of a 3.22-meter-long wave tank with a width of 1 meter. 

The tank is divided into two parts with a vertical flap, one of which is a dry bed, and 

the other one is filled with water. Three different pressure transducers are placed at 

the end of the tank, and impact pressures applied on the transducers are measured. 

Zhou et al. (1999) aimed to predict the three-dimensional flow model of green water 

loading on and off the deck of the ship and their impact pressures on the structural 

body. The experimental setup is used to validate the proposed numerical model. 

Lee et al. (2002) also used this experimental setup to validate their numerical 

approach on water sloshing and water impacting. Glimm’s method is applied to the 

numerical investigation of hydraulic jumps that occurred during the sloshing motion. 

Spatial and temporal discretization effects are examined. Readers are referred to 

Glimm (1965) for further detail on Glimm’s method. 

Bukreev et al. (2004) have prepared an experimental setup to determine complex 

channel geometry and frictional energy loss effects on the dam break cases. To 

thoroughly analyze the processes, they have used both dry and flooded bottom 

scenarios in their experiments. 3.3 by 1.00 m reservoir tank is filled with water, and 

a vertical flat gate is used to separate the end of the channel from the reservoir tank. 

Dry bottom and flooded bottom cases with an initial water height before the gate 

removal are generated using the experimental setup. Experimental results are then 

used to verify the theoretical approach proposed. 

Hu & Kashiwagi (2004) explain why the dam break case is used in numerical models 

so often as implementing the initial and boundary conditions for the dam break case 

is simple. In their numerical study, the aim was to determine if the implemented 

method is capable of predicting the wave-body interactions correctly. They used a 

dam break experiment conducted in the Research Institute for Applied Mechanics,  

Kyushu University, to validate their work using a single circular pressure sensor at 

the end of the tank. 
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Kleefsman et al. (2005) proposed a calculation method for wave impact problems 

using Navier-Stokes equations for incompressible viscous flows. Experiments 

performed at MARIN for breaking dam case is used to validate the proposed 

prediction method. Tank dimensions are the same as the previous MARIN 

experiments, but a stationary obstacle is placed in the dry bottom area, and eight 

different pressure transducers are used to determine the applied pressure loads on the 

structure. They have used their experimental setup to validate their calculation 

method. In their study, compared pressure time histories show several spikes 

occurring in the prediction method and this occurrence is explained as the conversion 

of an empty cell to a fully wetted cell during one time step. Other than these spikes, 

simulations show good agreement with the experimental data. However, in the 

present study, it is seen that it is possible to prevent the generation of these spikes by 

applying appropriate numerical schemes to the solution method. 

Bukreev & Gusev (2005) have also studied the initial stages of the dam break case. 

They have investigated both shallow-water equations and Navier-Stokes equations 

in their studies to describe the initial stages of the dam break. They have concluded 

the study as neither of these approaches is enough to describe the real processes. 

Wemmenhove et al. (2010) have studied sloshing motion focused on a single impact, 

and they investigated the interaction between the fluid and the structure using two 

different simulation programs. They have used the dam break experiment as their 

validation method to numerical models using an experimental setup conducted at 

MARIN with the same dimensions as the previous MARIN experiments. Seven 

pressure transducers are used to investigate the fluid impact on the vertical wall 

located at the end of the dry bottom part. Effects of the wall flexibility are also 

included in this study, and the difference between rigid and flexible wall is observed. 

Hu & Sueyoshi (2010) have prepared an experimental setup to introduce their 

numerical methods, namely Constrained Interpolation Profile (CIP) based Cartesian 

grid method and the Moving Particle Semi-implicit (MPS) method. They have used 

a rectangular tank with the dimensions of 80 by 20 cm separated with a partition 



 

 

12 

plate to experiment the dam break case to compare these two methods developed and 

improved by the authors. In their study, they have investigated water front speed 

using these two methods and compared their results with their experimental setups. 

Introduced methods showed a good agreement with the experimental results 

considering the water front speed. On the other hand, water front speed is not enough 

to assess the complex motion of fluid flow and the solid-fluid interactions, as shown 

in their comparison figures. 

Ji et al. (2013) further examined the case by considering an incompressible flow but 

validating their results with the same small-scale experiment and previously 

mentioned larger scale experiment, MARIN experimental setup, both having a single 

pressure point at the end of the tank. They have studied the case to determine the 

performance of a CIP-based model using the tangent of hyperbola for interface 

capturing (THINC) scheme. Even though small-scale experiment shows an 

acceptable agreement with the numerical results overall, impact pressures are 

overpredicted. For the large-scale experiment, numerical results fail to show the 

impact pressures accurately, although the quasi-static stage is in good agreement 

with the experimental data. 

Lobovský et al. (2014) prepared a similar setup to MARIN scaled 2:1 at the 

Technical University of Madrid, and they aimed to measure impact pressures on the 

vertical wall at the end of the tank and vertical propagation of the pressure along the 

wall. They have placed four pressure sensors starting from the very bottom of the 

tank at the centerline to achieve this. Another sensor is placed halfway towards the 

back wall to discuss the three-dimensional (3-D) effects that may occur in the wave 

loads. 

Marsooli & Wu (2014) have studied the dam break case using the Volume of Fluid 

(VOF) method combined with Compressive Interface Capturing Scheme for 

Arbitrary Meshes (CICSAM) solving the Reynolds Averaged Navier-Stokes 

(RANS) equations. The 3-D features of the flow at the initial stage of dam break 

were examined and compared with the experimental data. Results show a good 
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agreement regarding the trend of the pressure-time history, but impact pressures at 

the solid-fluid interaction are overpredicted with the used method. 

Das & Bagheri (2015) have studied the dam break case using MacCormack-type 

schemes in their numerical methods. They used second and fourth-order 

MacCormack schemes to solve shallow-water equations and compared their results 

with the experimental data. Numerical schemes were applied to both one-

dimensional (1-D) and two-dimensional (2-D) cases for both dry and wet bed 

conditions. Water levels and velocities were compared with the experimental data 

for all the cases, but there was no information about the impact pressures. 

Zhang et al. (2017) have studied the dam break case using a 3-D unstructured mesh 

finite element model with Navier-Stokes equations. They have used an L-shaped 

channel to simulate the dam break case, and the results were compared with the 

experimental data. Velocity vectors in the reservoir and streamlines on the channel 

were also examined, and the free surface levels obtained from the numerical model 

were compared. A general trend in the water flow characteristics was obtained with 

minor discrepancies, but the impact pressures applied on the elbow are not 

investigated in this study. 

Chen et al. (2019) have studied the 3-D numerical model of green water loading on 

deck using a dam break model. VOF method is applied to the model solving Navier-

Stokes equations by OpenFOAM. A great computational effort is needed for the 

solution of the numerical model since they have tried to make a similar model as 

much as possible to the experimental model used to validate the numerical results. 

A good agreement was ensured in the pressure-time history of the numerical results 

with experimental data. However, the first peak is overpredicted, and the second 

peak is underpredicted with the used methodology. 

Güler (2020) have studied a numerical model to establish a CFD solver based on 

immersed boundary method. CFD solver ibmPorFoam developed by the author is 

validated using two different dam break cases, one of which is previously mentioned 

Kleefsman et al. (2005). During the validation process, the performance of different 
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interpolation schemes is studied considering the velocity parameter of the convective 

term, which creates the basis of this study. Despite the promising results obtained 

through the study, further improvements may be added by removing the parameter 

limitations with a detailed investigation. 

Peng et al. (2021) have studied a RANS equation-based numerical model to discuss 

the interaction of the dam break flood with a structure. The aim was to clarify the 

dam break flood effects on the structure and the influence of the initial water level 

on the impact pressure. In order to validate their results, an experimental setup 

installed at the Technical University of Madrid is used. The numerical simulation 

results fall in the confidence range of the experimental data, but the evolution of the 

impact pressure is lagged due to turbulent flow characteristics. 
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CHAPTER 3  

3 NUMERICAL MODELLING 

A numerical modelling study is performed in the OpenFOAM environment to 

investigate the effects of different numerical schemes on impact pressure prediction. 

The prediction performance of the numerical schemes is examined using this 

numerical model. Pressure-time histories obtained from a physical experiment are 

used as a reference to assess the performance of different models. Each simulation 

run is evaluated based on the performance of the peak pressure value determination 

and the performance of the overall pressure value determination.  

Information about the reference experimental study that was used to assess the 

performance of the numerical model, detailed information on the experimental setup, 

physical properties of the test fluid and data acquisition techniques are given in this 

chapter.  

This chapter will also include the overview of the numerical model, governing 

equations, surface capturing method, numerical schemes and numerical solution 

algorithms, properties of the computational mesh and boundary conditions for the 

numerical model. 

The simulations prepared for investigation and the corresponding methodology 

behind them are given in this chapter. 

3.1 Reference Physical Model Experiment 

The experimental setup used as a reference case in this study was performed by 

Lobovský et al. (2014) at the Technical University of Madrid. The reason for 

selecting this study as the reference case is that the experiment was designed to serve 

for CFD analysis, and special attention has been given to the impact pressure 
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measurements, which is the main focus of this numerical study. Sample data, 

statistical analysis, figures and video recordings are publicly available. Experiments 

for two different initial water heights (i.e., the height of the dams), which are 300 

mm and 600 mm, were performed, and the experiments were repeated 100 times. 

Details of the experimental setup will be given in the following sections. 

3.1.1 Experimental Setup 

As Lobovský et al. (2014) described, a dedicated prismatic tank was designed and 

built consisting of two separate parts divided by a vertical plate with a sliding 

mechanism. One part is filled with water to a specific level, and the other is the dry 

bed. A weight was attached to the vertical plate to simulate dam break motion. A 

schematic view of the experimental setup is given in Figure 3.1. Experiment with 

300 mm water height is used as the reference case in this study. 

 

Figure 3.1. Schematic view of the experimental setup (adopted from Lobovský et 

al., 2014) (a). side view (b). front view (c). plan view 

The prismatic tank used in the experiments has a length of 1610 mm and a width of 

150 mm. Water levels inside the prismatic tank were measured at four different 

locations along the x-axis, five different pressure transducers were placed at the left 
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end of the prismatic tank to determine the pressure-time history during the 

experiment. Dimensions of the prismatic tank and data acquisition locations are 

given in Figure 3.2.  

 

Figure 3.2. Dimensions of the tank & data acquisition locations (adopted from 

Lobovský et al., 2014) 

3.1.2 Physical Properties 

Lobovský et al. (2014) have used fresh water in their experiments, the temperature 

of the water was controlled with an error margin of ± 0.1 °C, and it was preheated to 

25 °C before each experimental run. Under these conditions, fresh water used in the 

experiment was considered a Newtonian fluid with a density of 997 kg/m3, the 

kinematic viscosity of 8.9 × 10-7 m2/s, and surface tension of 0.072 N/m. In order to 

record digital images and videos of the experiment, the fluid was dyed with 

fluorescein in some of the runs. No significant influence was observed on the fluid 

dynamics with the dyed fluid in the experiments. 

The gate of the dam was made of 10 mm thick polymethyl methacrylate and placed 

into side rails to keep the movement unobstructed. 15 kg of weight was connected to 

the plate using a steel wire and placed upon a weight dumping reservoir. The 

theoretical velocity of the weight is calculated as 4.65 m/s. 
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3.1.3 Data Acquisition 

Lobovský et al. (2014) have used five different pressure sensors to obtain impact 

pressure values at the end of the dry bottom part. Sensor-1 was placed at the tank 

bottom, which means the center of the sensor is located 3 mm above the horizontal 

bed. Sensor-2 was placed 15 mm above the bed to compare the experimental results 

with Wemmenhove et al. (2010). Sensor-3 was placed 30 mm above the bed as 

Kleefsman et al. (2005) have used in their experiments, and Sensor-4 was placed 80 

mm above the bed as Lee et al. (2002) have used in their experiments. Sensor-2L 

was placed off-centered to determine the 3-D effects of the flow on the impact 

pressure. Sensor locations are given in Figure 3.2. Sensors used in the experiment 

have a sensing diameter of 4.2 mm around their center, and the signals were recorded 

with a sampling rate of 20 kHz. Recorded videos have been used to obtain water 

levels through the tank. The digital camera used to capture video records is capable 

of recording 300 frames per second at a resolution of 512 by 384 pixels. Water level 

measurement locations are given in Figure 3.2. The data obtained from the 

experiment is non-dimensionalized to represent the behavior of the system 

independent from the dimensions. The pressure and time parameters are non-

dimensionalized using 𝜌𝑔𝐻 and √𝐻 𝑔⁄ , respectively. 

3.2 Numerical Model 

The numerical modelling study is performed based on the information given in the 

reference experimental setup, assuming a viscous and incompressible fluid flow.  

3.2.1 Overview of OpenFOAM Environment 

As OpenFOAM User Guide (2019) describes, Open Source Field Operation and 

Manipulation (OpenFOAM) is a C++ library that offers the ability to create solvers 

designed to solve a specific problem or utilities designed to perform tasks on data 
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manipulation. Besides that, it is possible to pre- or post-process the data with 

OpenFOAM, which makes data handling more consistent. 

Pre-processing tools allow users to generate different types of meshes or load a 

generated computational mesh into the system. On the other hand, post-processing 

tools provide users with visualization of the model in various displaying options. 

Each solver in OpenFOAM CFD Library has a unique structure where continuity 

and momentum conservation equations are solved simultaneously. The generic 

conservation equation in OpenFOAM is given in Equation 3.1, 

𝜕𝜌𝑈

𝜕𝑡
+ ∇ ∙ 𝜙𝑈 = ∇ ∙ 𝜇∇𝑈 − ∇𝑝                                                                      Equation 3. 1 

Several categories of numerical schemes are used to determine these terms in the 

generic conservation equation. As mentioned in OpenFOAM User Guide (2019), 

these categories can be specified as interpolation schemes, surface normal gradient 

schemes, gradient schemes, Laplacian schemes, divergence schemes and time 

schemes. 

Time schemes are used to discretize the first term in Equation 3.1, and among time 

schemes, there are three prominent options: i) backward scheme, ii) Crank-Nicolson 

scheme, and iii) implicit Euler scheme. Moukalled et al. (2016) describe these time 

schemes in their book as implicit Euler scheme uses forward differencing while 

backward scheme uses backward differencing as the name implies. The Crank-

Nicolson scheme can be considered as a combination of both. First, backward 

differencing is used implicitly and then forward differencing is applied explicitly. 

Laplacian schemes are used to determine the diffusive term of the conservation 

equation, which corresponds to the third term in Equation 3.1. As described in the 

OpenFOAM User Guide (2019), the Gauss scheme is the only option for discretizing 

the diffusive term, while an interpolation scheme and surface normal gradient 

scheme should also be selected.  
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Interpolation schemes are selected from a vast number of options for each parameter 

of the convective term, which corresponds to the second term in Equation 3.1. 

However, for all parameters involved in the generic conservation equation, there 

should be a default interpolation scheme to interpolate the cell center values to the 

faces of the cell. For the present purpose, linear, midpoint and cubic schemes are 

available in the library. 

Surface normal gradient schemes mentioned above are divided into five groups: 

corrected, uncorrected, limited, face corrected and orthogonal. The limited option 

uses a coefficient between 0 and 1 to apply a non-orthogonal correction. If the 

coefficient value is set to one, then the explicit non-orthogonal correction is applied, 

and if the value is set to zero, no non-orthogonal correction is applied. The face 

corrected option includes the non-orthogonal correction applied to the faces, and the 

orthogonal option applies correction, but non-orthogonality is ignored. 

Gradient schemes are used on the gradients, corresponding to the fourth term in 

Equation 3.1. An optional limiter may also be used with gradient schemes. There are 

two options for the gradient schemes: i) Gauss and ii) least-squares schemes. The 

least-squares option applies the second-order least-squares scheme, while the fourth-

order least-squares scheme can be applied with the fourth option. The scheme itself 

is sufficient for the least-squares option. On the other hand, an interpolation scheme 

should be specified for point-to-point interpolation if the Gauss scheme is used as 

the gradient scheme. Point-to-point interpolation here refers to the interpolation 

between cell center value to the faces of the cells. Cell limited or face limited optional 

limiter may also be specified to limit the extrapolated face values to a neighboring 

cell or face.  

Finally, divergence schemes are used to determine the convective term in the generic 

conservation equation, which corresponds to the second term in Equation 3.1. Gauss 

scheme is the only option for the discretization here, and it requires an interpolation 

scheme besides that. Some of the numerical schemes used for point-to-point 

interpolation include but not limited to centered schemes, upwinded convection 
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schemes, Normalized Variable Diagram (NVD) and Total Variation Diminishing 

(TVD) schemes. 

Further details and information on the numerical schemes used in this study will be 

given in the following sections.  

3.2.2 Governing Equations 

In this study, numerical modelling is carried out using a computational fluid 

dynamics (CFD) solver interFoam, a widely used tool in dam break modelling and 

developed based on the CFD library OpenFOAM. interFoam solves Reynolds 

Averaged Navier Stokes (RANS) equations to model the two-phase incompressible 

flow of water and air. The continuity equation in Equation 3.2 and the momentum 

equation in Equation 3.3 are simultaneously solved until the time limit specified for 

the numerical model is reached. 

𝜕𝑢𝑖 

𝜕𝑥𝑖
= 0                                                                                                              Equation 3. 2 

𝜕(𝜌𝑢𝑖) 

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜇𝑡) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)] + 𝜌𝑔𝑖     Equation 3. 3 

In Equation 3.2 and Equation 3.3, 𝑥𝑖 is the coordinate, 𝑢𝑖 is the corresponding 

velocity, 𝜌 is the density, 𝑡 is the time, 𝑝 is the pressure, 𝑔𝑖 is the gravitational 

acceleration, 𝜇 is the viscous dynamic viscosity and 𝜇𝑡 is the turbulent dynamic 

viscosity. 

The convection term in the integral generic conservation equation can be expressed 

as in Equation 3.4, which corresponds to the second term in Equation 3.3, 

∫ 𝜌𝜙�⃗� ∙ 𝑑𝐴                                                                                                       

𝐶𝑆

Equation 3. 4 
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In Equation 3.3, 𝜌 is the density, �⃗�  is the velocity vector and 𝜙 is the general variable 

depending on the conservation type, and the equation represents the net flux of 𝜙 

due to convection across the control surface out of the control volume. This 

convection term can be discretized for a cell in a 2-D cartesian grid as shown in 

Figure 3.3 using Equation 3.5. 

∫ 𝜌𝜙�⃗� ∙ 𝑑𝐴 = ∑ 𝜌𝜙𝑢∆𝑦

𝑒𝑛𝑤𝑠

− ∑ 𝜌𝜙𝑣∆𝑥

𝑒𝑛𝑤𝑠

                                              

𝐶𝑆

Equation 3. 5 

 

Figure 3.3. 2-D Cartesian grid & cell locations 

In Equation 3.5, 𝑢 is the velocity in x-direction, 𝑣 is the velocity in the y-direction, 

∆𝑥 is the distance between cell faces along the x-direction, and ∆𝑦 is the distance 

between cell faces along the y-direction. The term “enws” represents the east, north, 

west, and south faces of the cell denoted as C. Numerical schemes to find the values 

at the faces of the cell are called discretization schemes, and these are specific to 

each parameter involved in the conservation equation. 

3.2.3 Turbulence Closure 

Güler (2020) indicated that turbulence modelling with RANS equations tends to 

over-estimate turbulence beneath the dam break waves so that the pressure values 

obtained at the pressure transducer locations are lagged and do not represent the 
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experimental results. Besides that, Lobovský et al. (2014) define the flow as laminar 

in their experiment, based on the observations at the initial stages of the dam break 

event. Thus, turbulence modelling is excluded in this study to better represent the 

experimental environment and turbulent dynamic viscosity 𝜇𝑡 is equal to 0 in 

Equation 3.3. 

3.2.4 Surface Capturing Method 

The volume of fluid (VOF) method is used for surface capturing in interFoam solver. 

As indicated by Hirt & Nichols (1981), the VOF method offers a region-following 

scheme instead of a surface so that the method has fewer storage requirements. 

Therefore, the computational time is significantly reduced using this method. In the 

VOF method, the VOF-indicator function (𝛼) is defined as the value of the function 

is equal to one for the cells fully occupied with fluid, and the value is equal to zero 

if there is no fluid inside the cell. Thus, the cell must contain a free surface for the 

values in between these. The VOF-advection equation in Equation 3.6 is solved to 

determine the free surface using the Multidimensional Universal Limiter with 

Explicit Solution (MULES) algorithm, limiting the indicator function value, 𝛼 

between 0 and 1. 

𝜕𝛼

𝜕𝑡
+

𝜕𝛼𝑢𝑖

𝜕𝑥𝑖
+

𝜕𝛼(1 − 𝛼)𝑢𝑖
𝑟

𝜕𝑥𝑖
= 0                                                                    Equation 3. 6 

In Equation 3.6, compression velocity, 𝑢𝑖
𝑟 is defined as in Equation 3.7. As 

Berberović et al. (2009) described in their study, compression here refers to the 

compression of the free surface into a sharper one and should not be confused with 

the compressible flow. 

𝑢𝑖
𝑟 = 𝑢𝑖

𝑙 − 𝑢𝑖
𝑔
                                                                                                    Equation 3. 7 

In Equation 3.7, 𝑢𝑖
𝑙 is the velocity of the liquid phase and 𝑢𝑖

𝑔
 is the velocity of the 

gas phase. 
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Density and kinematic viscosity are calculated using Equation 3.8 and Equation 3.9, 

respectively, for each cell depending on the VOF-indicator function value. In these 

equations, 𝜌𝑙 and 𝜇𝑙 corresponds to the liquid properties while 𝜌𝑔 and 𝜇𝑔 corresponds 

to the gas properties. That means when the VOF-indicator function 𝛼 is equal to 1, 

density and kinematic viscosity are dependent only on the liquid phase or vice versa. 

For the values in between, density and kinematic viscosity values are computed using 

the multiphase properties within the cell. 

𝜌 = 𝛼𝜌𝑙 + (1 − 𝛼)𝜌𝑔                                                                                       Equation 3. 8 

𝜇 = 𝛼𝜇𝑙 + (1 − 𝛼)𝜇𝑔                                                                                      Equation 3. 9 

As Deshpande et al. (2012) describe, Equation 3.6 can be rewritten in integral form 

as in Equation 3.10 for the physical domain, Ω consisting of both liquid and gas 

phases. 

∫
𝜕𝛼

𝜕𝑡
𝑑𝑉

Ω𝑖

+ ∫ 𝛼�⃗� ∙ 𝑛𝑑𝑆
∂Ω𝑖

= 0                                                                     Equation 3. 10 

The discretized version of Equation 3.10 is given in Equation 3.11. 

𝛼𝑖
𝑛+1 − 𝛼𝑖

𝑛

∆𝑡
= −

1

|Ω𝑖|
∑ (𝐹𝑢 + 𝜆𝑀𝐹𝑐)

𝑛

𝑓∈𝜕Ω𝑖

                                                  Equation 3. 11 

In Equation 3.11, the unsteady term is discretized using the forward Euler scheme 

while the convective term is the summation over the cell faces 𝑓 of Ω𝑖. Convective 

fluxes 𝐹𝑢 and 𝐹𝑐 are expressed as in Equation 3.12 and Equation 3.13, respectively. 

𝜆𝑀 is another limiter implemented in the MULES algorithm, and it is equal to one in 

the interface region and equal to zero anywhere else. 

𝐹𝑢 = 𝜙𝑓𝛼𝑓,𝑢𝑝𝑤𝑖𝑛𝑑                                                                                           Equation 3. 12 

𝐹𝑐 = 𝜙𝑓𝛼𝑓 + 𝜙𝑟𝑓𝛼𝑓(1 − 𝛼𝑓) − 𝐹𝑢                                                         Equation 3. 13 
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When 𝜆𝑀 = 0, which corresponds to the fully liquid phase, the convective term is 

solved using the upwind scheme straightly. On the other hand, for the interface where 

𝜆𝑀 = 1, this corresponds to a more complex solution combining the interfacial 

compression flux with upwind flux as in Equation 3.14. 

𝐹𝑢 + 𝜆𝑀𝐹𝑐 = 𝜙𝑓𝛼𝑓 + 𝜙𝑟𝑓𝛼𝑓(1 − 𝛼𝑓)                                                    Equation 3. 14 

In interFoam, 𝜙𝑓𝛼𝑓 and 𝜙𝑟𝑓𝛼𝑓(1 − 𝛼𝑓) terms are discretized using divergence 

schemes as in the integral generic conservation equation in Section 3.2.2. 

3.2.5 Numerical Solution Algorithms 

The numerical solution algorithm is the method used to predict the values of the 

parameters for each time instance. Direct and iterative methods can be used in this 

prediction. As Moukalled et al. (2016) describe, since an accurate solution is not 

needed at each iteration, direct methods are rarely used in CFD applications. Iterative 

methods are more appealing for CFD problems. In iterative methods, linear solvers 

are used to predict the values of each parameter. Linear solvers are supported by 

preconditioners and smoothers depending on the solver type. 

As explained in OpenFOAM User Guide (2019), linear solver control is determined 

for each parameter first, and then, the solution under relaxation can be specified. 

Velocity and pressure solutions are iterative procedures using pressure-implicit split-

operator (PISO) and semi-implicit method for pressure-linked equations (SIMPLE) 

algorithms. 

The SIMPLE algorithm solves the momentum equation for pressure neglecting the 

velocity field. Discarding this term does not affect the final solution because it 

converges to zero at the end, as described in Moukalled et al. (2016).  Since there is 

a missing term in the algorithm, the pressure equation is under-relaxed to achieve 

stability.  A summary of the SIMPLE algorithm is given in Ferziger et al. (2020). 

Velocity and pressure values are estimated using the previously calculated values, 
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equations for the velocity components are solved, the pressure correction equation is 

solved, pressure and velocity values are corrected, and the process advances to the 

next iteration time if the solution has converged. 

In the PISO algorithm, the neglected velocity field term is accounted as a part of the 

correction procedure, as mentioned in Moukalled et al. (2016). In addition to the 

SIMPLE algorithm steps at the start, the momentum equation is solved explicitly 

using the latest values of pressure and velocity. Then, pressure and velocity values 

are updated, solving the second pressure correction equation and correction is done 

for the desired number of corrector steps. The process is repeated until convergence 

is obtained. 

In OpenFOAM, the PIMPLE algorithm combining PISO and SIMPLE algorithms is 

used for the solutions, as mentioned in OpenFOAM User Guide (2019). It allows 

using Courant-Friedrichs-Lewy (CFL) numbers greater than 1, combining these two 

algorithms together. The PIMPLE algorithm can also work in PISO mode, simply 

defining the number of outer correctors to zero. Holzmann (2016) describes the 

principle of the algorithm as a steady-state solution is obtained with under-relaxation 

at first, and then outer correction loops are performed until convergence is obtained 

explicitly. After the tolerance criterion is reached, the outer correction loop is 

terminated, and the process advances to the next time step. 

3.2.6 Numerical Schemes 

An introductory explanation of the numerical schemes is given in Section 3.2.1. As 

mentioned in previous sections, the study aims to investigate the numerical scheme 

performances on impact pressure prediction. Numerical schemes are used to predict 

the value of each parameter in the discretized conservation equation. 

In this study, the Gauss scheme is selected for all schemes except for the time scheme 

which is chosen as the Euler scheme since this is the default option for the dam break 

case in this CFD Library. For the Laplacian schemes option, linear interpolation 
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scheme and corrected surface normal gradient scheme are selected as suggested in 

the dam break tutorial of the library. Recalling that, for all parameters involved in 

the generic conservation equation, there should be a default interpolation scheme to 

interpolate the cell center values to the faces of the cell. The default interpolation 

scheme is selected as the linear scheme, which is another suggested option in the 

dam break tutorial. 

Using the Gauss scheme in the convective term of the discretized conservation 

equation requires an interpolation scheme option. Different interpolation scheme 

options are used to investigate their effect on the impact pressures obtained from the 

simulation, while other schemes are kept constant for a controlled performance test. 

The parameters involved in the convective term are as follows: velocity, volume flux 

and compression flux. Detailed information on these terms is given in Sections 3.2.2 

and 3.2.4. The convective terms and their corresponding notation in OpenFOAM are 

tabulated in Table 3.1. From this point on, terms will be recalled with their notations 

in OpenFOAM. 

Table 3.1. Convective terms and their corresponding notations in OpenFOAM 

Term Notation in OpenFOAM 

𝜌𝜙�⃗� ∙ 𝑑𝐴 rhoPhi, U 

𝜙𝑓𝛼𝑓 phi, alpha 

𝜙𝑟𝑓𝛼𝑓(1 − 𝛼𝑓) phirb, alpha 

 

Arikawa & Igorashi (2018) claimed that the impact pressure prediction in numerical 

modelling is highly dependent on the numerical interpolation schemes used for the 

convection term in the discretized conservation equations. Güler (2020) further 

studied the claim by performing a series of simulations using different schemes 

applied to the “rhoPhi, U” term in his thesis study. 

In the present study, numerical interpolation schemes are studied in detail, both for 

“rhoPhi, U” and “phi, alpha” terms. Several different interpolation schemes, 
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including centering schemes, upwinded convection schemes, NVD and TVD 

schemes, are applied to the numerical model while all other parameters are kept 

constant. Interpolation schemes considered for the convective term are listed in Table 

3.2. 

Table 3.2. Numerical schemes list considered for convective term 

# Numerical Scheme # Numerical Scheme 

01 linear 15 MUSCLV 

02 midPoint 16 QUICK 

03 upwind 17 QUICKV 

04 linearUpwind 18 UMIST 

05 limitedLinear, Coeff = 0.2 19 UMISTV 

06 limitedLinear, Coeff = 0.4 20 vanAlbada 

07 limitedLinear, Coeff = 0.6 21 vanAlbadaV 

08 limitedLinear, Coeff = 0.8 22 SuperBee 

09 limitedLinear, Coeff = 1.0 23 SuperBeeV 

10 Minmod 24 SFCD 

11 MinmodV 25 SFCDV 

12 vanLeer 26 Gamma 

13 vanLeerV 27 GammaV 

14 MUSCL   

 

The detailed explanation of each interpolation scheme in Table 3.2 is given below. 

Linear scheme is the central differencing method where the face value is directly 

interpolated between the owner cell and the neighbor. It is a widely used 

interpolation scheme, and most of the schemes are set to linear by default. 

midPoint interpolation scheme is a centering scheme that is very similar to the linear 

interpolation scheme. The difference between these schemes is that while the linear 

scheme applies central differencing method for interpolation, midPoint scheme 
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weighs both owner and neighboring cells equally, resulting in an arithmetic mean 

between points independent of the distance between points to the cell face. 

Spalding (1972) comparatively explains the upwind scheme using the central 

differencing method. The central difference method assumes the estimated values 

between grid points are linear, which causes the estimated solution to be equal to the 

exact solution only for the small values of the property. In contrast, with upwind 

differencing, estimations are performed between cells weighing the last grid point 

more, which implies, for example, a fluid crossing an interface possesses the 

property of the last grid cell which it passed, resulting in convergence for all values 

of the property. 

OpenFOAM employs the linearUpwind scheme based on Warming & Beam (1976). 

In their study, the aim was to provide a hybrid scheme using the advantages of both 

McCormack and second-order upwind schemes. Replacing the corrector equation 

with an upwind corrector, they constructed a hybrid scheme that can be altered 

depending on the local necessary conditions. 

limitedLinear scheme is a TVD scheme version where linear differencing is applied 

with a limiter function. Sweby’s limiter function is used in this numerical scheme to 

stabilize the linear differencing. Readers are referred to Sweby (1984) for the details 

of the limiter function. 

Minmod is another TVD scheme that uses a flux limiter to limit the derivatives to 

more realistic values. Roe (1986) initially proposed the Minmod scheme, and it is 

based on the second-order Lax-Wendroff scheme. The scheme switches between 

central differencing and linear upwind differencing when sharp gradients are 

observed and simply applies the first-order upwind scheme in the case of smooth 

gradients. As Waterson & Deconinck (2007) describes, the Minmod scheme is the 

lower bound of the TVD flux limiter diagram and one of the simplest methods to 

achieve bounded behavior. 
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van Leer (1974) describes the vanLeer interpolation scheme in his work, where he 

performed a series of research on finding the ultimate conservative difference 

scheme. In the first part of the series, the Lax-Wendroff scheme is made monotonic, 

but the process requires conservation form to be expensed. In order to provide a 

monotonic conservative scheme, the new scheme is based on Fromm’s scheme. A 

comparison between the original Fromm’s scheme, monotonic Fromm’s scheme, 

which is the focus of the study and Godunov’s scheme, is made within the study. 

The resulting approximation has a better performance than its original, costing only 

a 4/3 increase in the computational effort. Readers are referred to van Leer (1974) 

for further details on the vanLeer interpolation scheme. 

Monotonic upstream-centered scheme for conservation laws (MUSCL) is described 

in the studies van Leer (1977) and van Leer (1979). The ultimate conservative 

difference scheme is aimed at continuing works, and the MUSCL scheme can be 

regarded as a sequel to Godunov’s method. For a given order of consistency, the 

scheme can be made more accurate than the ordinary upstream-centered schemes. 

More detailed information about the MUSCL scheme can be found in van Leer 

(1977) and van Leer (1979). 

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme is 

proposed by Leonard (1979). The aim was to construct a stable convective 

interpolation scheme with good accuracy. It is based on both central and upwind 

differencing schemes and since quadratic interpolation is used for the estimation, 

obtained truncation error is third-order which means highly accurate results can be 

obtained using the QUICK scheme.  

Upstream Monotonic Interpolation for Scalar Transport (UMIST) scheme is a 

higher-order TVD scheme based on the QUICK scheme as it is described in Lien & 

Leschziner (1994). An alternative symmetric limiter is used in the UMIST scheme 

making the scheme a monotonic version of the QUICK scheme. 

In their study, van Albada et al. (1982) proposed a TVD scheme based on the second-

order upwind scheme. The aim of the study was to compare the numerical model 
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performances to solve astrophysical flow problems. The proposed scheme is 

compared with Beam, Godunov, McCormack schemes and flux-corrected transport 

methods. The performance of the proposed scheme is higher than the compared 

schemes, especially in coarser grid spaces.  

SuperBee is the numerical scheme that appears to be the upper bound of the TVD 

flux limiter diagram, as Waterson & Deconinck (2007) state in their study. The 

scheme is very effective for the solutions with discontinuities, but its extensive use 

of first-order downwinding causes it to become over-compressive. Roe (1985) 

explains the SuperBee scheme in his work. After his first-order scheme work, Roe 

proposed a second-order monotonic scheme and inserted B-functions as subroutines 

to this scheme. A hypergeometric function is used so that the function is named 

Hyperbee, and B-function corresponding to the unswitched third-order scheme is 

named Superbee. 

Self-filtered central differencing (SFCD) scheme is proposed by Ziman (1990), and 

it is based on Runchal’s central differencing scheme, a non-conservative finite 

difference scheme. In SFCD, Runchal’s method was adapted, making it a 

conservative bounded scheme. Whenever a turning point is encountered, the scheme 

sets the blending factor to zero and switches to upwind differencing to maintain 

boundedness. If the blending factor is set to unity, then the SFCD scheme reduces to 

linear upwind differencing, making the scheme a non-linear blend between upwind 

and linear upwind differencing schemes. 

Jasak et al. (1999) studied a scheme that will produce a bounded, accurate and 

converged solution for unstructured meshes. Gamma scheme is an NVD scheme 

preserving the boundedness of the solution with the normalized variable approach. 

The Gamma scheme is based on the central differencing, and it is used wherever it 

satisfies the boundedness criterion. To guarantee boundedness, it also uses upwind 

differencing. Thus, there is a switching mechanism between these schemes. 
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In Table 3.2, schemes named MinmodV, vanLeerV etc., indicate the “V” version of 

the schemes where the limiter function is applied to the direction of the greatest 

change. 

An example of the numerical scheme file in OpenFOAM is given in Figure 3.4. 

 

Figure 3.4. Example numerical scheme file, fvSchemes 
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3.2.7 Computational Mesh 

Computational mesh in this study is separated into two versions, one of which is a 

3-D computational mesh and the other one is 2-D. Dimensions of the 3-D 

computational mesh are given in Figure 3.5. The blue region in the figure indicates 

the fluid body at rest initially. 

 

Figure 3.5. 3-D Computational mesh 

In the 3-D computational mesh, the mesh size is constant in the y- and z-directions 

while a simple grading is applied in the x-direction which the ratio of the smallest 

mesh size to the greatest is 1:4. With this method, the computational time is 

decreased while the higher accuracy for impact pressure measurements is targeted 

with smaller mesh sizes at the point of interest. A representative image of the mesh 

sizes along the x- and y-directions are given in Figure 3.6. 
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Figure 3.6. Representative mesh sizes in the x- and y-directions 

The 2-D computational mesh, which lies on the x-z plane, is used for the oncoming 

investigations, which details will be presented in the following sections. Dimensions 

of the 2-D computational mesh are the same as the 3-D computational mesh except 

for the y-direction, which is excluded. 

The computational mesh is categorized depending on the size of the largest cell 

dimensions as coarse mesh and fine mesh. Detailed information about the mesh sizes 

and corresponding cell numbers are listed in Table 3.3 for 3-D and 2-D 

computational meshes. 

Table 3.3. Properties of computational mesh 

Property 3-D Coarse Mesh 3-D Fine Mesh 2-D Coarse Mesh 

Largest Cell Size 10 x 10 x 10 mm 5 x 5 x 5 mm 10 x 10 mm 

Smallest Cell Size 2.5 x 10 x 10 mm 1.25 x 5 x 5 mm 2.5 x 10 mm 

Number of Cells 289,800 2,318,400 19,320 

Number of Faces 894,450 7,055,400 77,662 

Graded Mesh Size 1:4 
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3.2.8 Boundary Conditions 

Boundary conditions are essential to solve the RANS equations. Therefore, proper 

boundary conditions should be specified to solve these equations. Using the 

appropriate boundary conditions is vital since the results obtained are directly related 

to the selected boundary conditions. Boundary conditions representing the 

experimental setup are selected for the velocity field, pressure field and VOF-

indicator function 𝛼 and detailed explanations are given in this section. 

In this study, no-slip boundary condition is applied to faces corresponding to tank 

walls for the velocity field, which indicates the relative velocity of the fluid to the 

boundary is equal to zero. On the other hand, for the atmosphere boundary condition 

in the velocity field, pressure inlet-outlet velocity is applied, a combination of 

pressure inlet velocity and inlet-outlet boundary conditions, meaning that if the 

pressure is known, inlet velocity is calculated from the flux value. The velocity value 

switches between a fixed value or zero gradient depending on the direction of the 

flow at the boundary. 

Fixed flux pressure boundary condition is applied to the tank walls for pressure field, 

which allows setting the pressure gradient to a fixed value of flux that equals zero on 

the boundary provided by the specified velocity field boundary condition. The 

boundary condition on the atmosphere for the pressure field is set as total pressure, 

which means that the pressure value is calculated using the total pressure value 𝑝0 at 

the boundary location. 

For the VOF-indicator function 𝛼, zero gradient boundary condition is applied to the 

walls of the tank so that the value at the boundary is extrapolated from the nearest 

cell value, meaning that the quantity is developed enough, and the gradient is equal 

to zero in the direction normal to the boundary. Inlet outlet boundary condition is 

applied to the atmosphere for 𝛼 which means the value is equal to a fixed value or 

has zero gradient depending on the flow direction. 
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3.3 Simulations 

Firstly, the mesh independence study is performed. Then, 3-D and 2-D meshes are 

analyzed to study the 3-D effects on the impact pressure. After that, the effect of the 

maximum courant number on the results is examined. The gradient schemes and the 

compression flux is studied to investigate their effects on the results. Finally, the 

performance of the divergence schemes is investigated using different interpolation 

schemes for each parameter in the discretized conservation equations. Details of the 

process are given in the following sections, and the corresponding results of the study 

will be presented in the next chapter. 

3.3.1 Mesh Independence 

In numerical modelling studies, it is crucial to have model results independent of the 

computational mesh so that the accuracy of the results is reliable enough to make 

conclusions.  

The mesh independence study is performed using the default interpolation schemes 

in the dam break tutorial for OpenFOAM, as shown in Table 3.4, on the 3-D 

computational mesh. Coarse and fine meshes whose properties are listed in Table 3.3 

are generated. The results obtained from the fine mesh simulation are compared with 

the coarse one. Then, the 3-D coarse mesh is selected based on the results. 

Corresponding results of the study are given in Section 4.2. 

Table 3.4. Default interpolation schemes for convective terms 

Term Notation Numerical Scheme 

rhoPhi, U linearUpwind 

phi, alpha vanLeer 

phirb, alpha linear 
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3.3.2 3-D Effects on the Impact Pressure 

As Lobovský et al. (2014) mentioned in their study, it is possible to say that 3-D 

effects exist in dam break cases. However, their direct effect on the pressures applied 

to the structure remains unknown. Considering a rectangular obstacle facing violent 

impacts, applied pressure on the sides of the obstacle is different from those applied 

to the center, but this does not indicate that the pressure applied to the center is 

affected by the movement of the fluid around it. In order to see the difference 

between the pressure values obtained from 3-D and 2-D computational meshes, two 

simulations are prepared using the default schemes given in Table 3.4. 

There is no significant difference observed between the 3-D and 2-D mesh results 

depending on the results given in detail in Section 4.3. Thus, due to computational 

constraints, the 2-D computational mesh is used for simulations for the rest of the 

investigation. 

3.3.3 Effect of Maximum Courant Number 

After the 3-D effects on the impact pressure study, the effect of the Courant-

Friedrichs-Lewy (CFL) criterion is investigated in the simulations. In OpenFOAM, 

time steps can be fixed to a constant number or controlled by the Courant number 

for each time step. The initial step size is given for the simulation to start, and then 

the time step size is calculated so that the maximum Courant number is not exceeded 

using Equation 3.15. 

𝐶𝑜 =
𝑢∆𝑡

∆𝑥
≤ 𝐶𝑜𝑚𝑎𝑥                                                                                            Equation 3. 15 

Effect of the Courant number is investigated for the values ranging from 0.5 to 0.05. 

The results of the investigation are given in Section 4.4. 
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3.3.4 Effect of Gradient Schemes & Compression Flux Discretization 

In previous simulations, a series of investigations are performed for different 

properties of the numerical model using the default scheme composition given in 

Sections 3.2.6 and 3.3.1.  

In this section and the following, numerical schemes and their effects are 

investigated. In previous simulations, the default gradient scheme, Gauss and the 

default interpolation scheme linear are used for predictions for all gradients. 

However, this may cause instabilities in the model due to sharp changes in the 

velocity gradient since no limiter is applied to the interpolation scheme. A cell-

limited linear interpolation scheme is applied to the velocity gradient to eliminate the 

possible instabilities. With this method, interpolation for the velocity gradient is 

limited with the values of neighboring cells, reducing the sharp changes in the 

estimation. 

Deshpande et al. (2012) suggest using an alternative scheme on the discretization of 

compression flux term, the interfaceCompression scheme. As it is described in 

OpenFOAM User Guide (2019), the interfaceCompression scheme is based on the 

generic limited scheme, although it does not use NVD or TVD functions. Basically, 

it applies interface compression to the phase fraction distribution so that the value is 

set as 1 if it is above 0.5 or else it is set to 0. 

Results for the effect of gradient schemes and the interpolation scheme for 

compression flux are given in Section 4.5. 

3.3.5 Effect of Divergence Schemes 

Finally, the effect of the interpolation schemes for the convective term is investigated 

in this section. The numerical schemes listed in Table 3.2 are used on the “rhoPhi, 

U” term to determine the performance. All other parameters are kept constant for a 

controlled performance test.  
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27 different interpolation schemes are evaluated for the discretization of the “rhoPhi, 

U” term and the best three options among those are further investigated for the 

following discretization, the “phi, alpha” term, resulting in a total of 81 simulations 

and 54 different numerical scheme combinations. 

Interpolation schemes for the “phi, alpha” term discretization are the same as listed 

in Table 3.2, deducting “V” schemes since they cannot be used for this term. Once 

again, the best three options among these schemes are also selected for evaluation. 

Results obtained for the best three options for the “rhoPhi, U” term and the “phi, 

alpha” term are given in Sections 4.6.1 and 4.6.2, respectively. Results of all schemes 

are given in Appendix A for the “rhoPhi, U” term and in Appendix B for the “phi, 

alpha” term. 
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CHAPTER 4  

4 RESULTS 

Results of the simulations given in Section 3.3 and the methodology used in the 

analysis of the results are presented in this chapter. 

4.1 Analysis of Results 

A series of simulations are used to investigate the performance of different numerical 

schemes. Simulation time is selected as 0.7 seconds corresponding to approximately 

4 in terms of dimensionless time. The time is non-dimensionalized using the relation 

in Equation 4.1, 

𝑇 =
𝑡

√𝐻 𝑔⁄
                                                                                                         Equation 4. 1 

Determination of the simulation time is based on the impact zone observed at sensor 

locations. The impact zone is determined using the methodology described in Section 

2.1 for the experimental results based on the median values where the highest 

probability of occurrence lies. For Sensor-1 and Sensor-2 locations, a clear impact 

zone is observed in the pressure-time histories, while Sensor-3 and Sensor-4 

locations are considered out of the impact zone depending on the pressure-time 

histories obtained at sensor locations. 

The performances of the simulations are evaluated and compared using error 

analysis. Percent error (PE) is used for the peak pressure value. Normalized root 

mean square error (NRMSE) and normalized mean absolute error (NMAE) are used 

for the overall results. For Sensor-1 and Sensor-2 locations, the overall result 

comparison is performed within the impact zone (2.44 < 𝑇 < 3.16 for Sensor-1). 

However, the comparison is performed for Sensor-3 and Sensor-4 locations, starting 
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from the beginning of the rise zone to the end of the simulation time (2.36 < 𝑇 < 4 

for Sensor-3 and Sensor-4), since no impact zone is observed at these locations. 

Percent error is calculated using Equation 4.2, 

𝑃𝐸 = |
𝑦𝑚𝑜𝑑𝑒𝑙 − 𝑦𝑒𝑥𝑝

𝑦𝑒𝑥𝑝
| × 100%                                                                     Equation 4. 2 

In Equation 4.2, 𝑦𝑒𝑥𝑝 is the value obtained in reference experiment and 𝑦𝑚𝑜𝑑𝑒𝑙 is the 

value obtained from the numerical model. 

Root mean square error is calculated using Equation 4.3 and normalized using 

Equation 4.4, 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖,𝑚𝑜𝑑𝑒𝑙 − 𝑦𝑖,𝑒𝑥𝑝)
2𝑁

𝑖=1

𝑁
                                                           Equation 4. 3 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑒𝑥𝑝
                                                                                            Equation 4. 4 

In Equations 4.3 and 4.4, 𝑦𝑖,𝑒𝑥𝑝 and 𝑦𝑖,𝑚𝑜𝑑𝑒𝑙 correspond to the ith value of the 

reference experiment and the numerical model, respectively. 𝑁 is the total number 

of data points. 𝑦𝑒𝑥𝑝 is the mean value of the reference experimental data. 

Mean absolute error is calculated using Equation 4.5 and normalized using Equation 

4.6, 

𝑀𝐴𝐸 =
∑ |𝑦𝑖,𝑚𝑜𝑑𝑒𝑙 − 𝑦𝑖,𝑒𝑥𝑝|

𝑁
𝑖=1

𝑁
                                                                     Equation 4. 5 

𝑁𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝜎𝑒𝑥𝑝
                                                                                                 Equation 4. 6 

In Equation 4.6, 𝜎𝑒𝑥𝑝 is the standard deviation of the reference experimental data. 

Median values obtained from the pressure transducers in the physical experiment are 

used to analyze the results obtained from the simulations. 
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4.2 Mesh Independence 

The mesh independence study is performed using the default interpolation schemes 

for coarse and fine meshes whose properties are listed in Table 3.3. The results 

obtained at the Sensor-1 location are used for the error analysis due to the better 

representation of impact pressure at its location. First, the peak pressure values and 

overall results within the impact zone are determined for the coarse mesh. Then, 

results obtained from the fine mesh are compared with the results of the coarse mesh. 

Corresponding results are listed in Table 4.1. 

Table 4.1. Comparison of coarse and fine meshes 

Error Type 
Difference in 

Fine Mesh 

Percent Error (PE) 0.52% 

Normalized Root Mean 

Square Error (NRMSE) 
0.3491 

Normalized Mean 

Absolute Error (NMAE) 
0.1610 

 

The percent error for the fine mesh is 0.52%, while the NMAE value is 0.1610, which 

indicates that the peak pressure prediction performance is in good agreement and the 

overall result of the coarse mesh is acceptable even though the NRMSE value 

obtained deviates more. Pressure-time histories for both cases are given in Figure 

4.1. In the figure, the upper bound of the confidence range is the 97.5% percentile, 

and the lower bound is the 2.5% percentile. A similar trend between the cases is 

observed. The coarse mesh is selected for the investigation due to the high 

computational demand in the fine mesh and favorable error margins between the 

coarse and fine meshes. 
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Figure 4.1. Pressure-time histories for coarse and fine meshes at Sensor-1 

4.3 3-D Effects on the Impact Pressure 

Two simulations are prepared using the default interpolation schemes for 3-D and 2-

D computational meshes. Then, results obtained from the 2-D mesh are compared 

with the results of the 3-D mesh regarding the peak pressure values and overall 

results within the impact zone described in Section 4.1. Corresponding results for the 

comparison of 3-D and 2-D computational meshes are given in Table 4.2. 
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Table 4.2. Comparison of 3-D and 2-D computational meshes 

Error Type 
Difference in 

2-D Computational Mesh 

Percent Error (PE) 3.93% 

Normalized Root Mean 

Square Error (NRMSE) 
0.2243 

Normalized Mean 

Absolute Error 

(NMAE) 

0.1299 

 

According to the results in Table 4.2, there is a slight difference between the two 

models, as indicated in Section 3.1.1. The maximum variation for peak pressure 

prediction between the models is 3.93%, while the computational time is reduced by 

almost 90% from 1478 seconds to 162 seconds, using the 2-D computational mesh. 

Hence, the 2-D computational mesh is used for the performance tests. 

4.4 Effect of Maximum Courant Number 

The effect of the Courant number is investigated for the values ranging from 0.5 to 

0.05 using the default interpolation schemes. Six simulations are prepared for this 

purpose. Then, the results obtained from these are compared with the reference 

experimental data regarding the peak pressure values and overall results within the 

impact zone. The results of the investigation are given in Table 4.3.  

The maximum Courant number is selected for the optimum results instead of the best 

result so that the accuracy of the simulation can be increased without increasing the 

computational time drastically.  
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Table 4.3. Comparison of the performances based on 𝐶𝑜𝑚𝑎𝑥 value 

Error Type 
Courant Number 

0.5 0.4 0.3 0.2 0.1 0.05 

PE Sensor-1 83.09% 98.37% 96.97% 51.50% 50.51% 69.30% 

PE Sensor-2 60.06% 67.22% 52.08% 15.90% 19.81% 36.77% 

PE Sensor-3 10.62% 11.88% 11.04% 9.93% 11.84% 6.45% 

PE Sensor-4 28.59% 26.38% 26.08% 25.03% 26.62% 25.55% 

NRMSE Sensor-1 0.2961 0.2912 0.2805 0.2716 0.2680 0.2592 

NRMSE Sensor-2 0.3980 0.3951 0.3757 0.3530 0.3271 0.3376 

NRMSE Sensor-3 0.3045 0.3061 0.2975 0.3131 0.2821 0.2546 

NRMSE Sensor-4 0.2128 0.2158 0.2180 0.2287 0.2161 0.2028 

NMAE Sensor-1 0.6969 0.6410 0.6268 0.6219 0.6372 0.5728 

NMAE Sensor-2 0.4723 0.4394 0.4150 0.4154 0.4075 0.4290 

NMAE Sensor-3 0.4164 0.4483 0.4407 0.4430 0.3837 0.3842 

NMAE Sensor-4 0.2125 0.2413 0.2396 0.2365 0.2208 0.2255 

 

Based on the results given in Table 4.3, 𝐶𝑜𝑚𝑎𝑥 = 0.1 is the best option to predict the 

peak pressure value depending on the percent error obtained, while 𝐶𝑜𝑚𝑎𝑥 = 0.05 is 

the best option for more accurate overall results depending on the NRMSE and 

NMAE values at the Sensor-1.  

𝐶𝑜𝑚𝑎𝑥 = 0.1 is selected for investigating numerical scheme performances at the 

slight expense of overall results. 

Pressure-time histories of the simulation with 𝐶𝑜𝑚𝑎𝑥 = 0.1 are given in Figure 4.2. 
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Figure 4.2. Pressure-time histories obtained with 𝐶𝑜𝑚𝑎𝑥 = 0.1   

4.5 Effect of Gradient Schemes & Compression Flux Discretization 

First, the effect of the gradient scheme is investigated using a cell-limited linear 

interpolation scheme, which is applied to the velocity gradient. Then, the 

interfaceCompression scheme is used for the discretization of compression flux. 

Finally, the performance of these two schemes combined is determined. Results 

obtained from these three simulations are compared with reference experimental data 

regarding the peak pressure values and overall results within the impact zone. 

Corresponding results are given in Table 4.4 with the results of the default 

interpolation scheme to assess the change in performance. 
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Table 4.4. Comparison of the performances of gradient scheme & compression flux 

discretization 

Error Type 

Cases 

Default 

Schemes 

Gradient 

Scheme 

Compression 

Flux 

Discretization 

Schemes 

Combined 

PE Sensor-1 50.51% 38.32% 8.34% 26.63% 

PE Sensor-2 19.81% 22.87% 2.51% 12.33% 

PE Sensor-3 11.84% 4.76% 4.73% 10.47% 

PE Sensor-4 26.62% 55.58% 27.32% 56.33% 

NRMSE Sensor-1 0.2680 0.2955 0.3051 0.2688 

NRMSE Sensor-2 0.3271 0.2851 0.3147 0.2742 

NRMSE Sensor-3 0.2821 0.2392 0.2929 0.2337 

NRMSE Sensor-4 0.2161 0.5994 0.2280 0.6194 

NMAE Sensor-1 0.6372 0.3328 0.6901 0.3411 

NMAE Sensor-2 0.4075 0.3821 0.4020 0.3731 

NMAE Sensor-3 0.3837 0.4013 0.4055 0.3926 

NMAE Sensor-4 0.2208 0.7690 0.2224 0.7182 

 

In Table 4.4, it is seen that the results are generally better with respect to the default 

interpolation scheme case except for the Sensor-4 location which the performance 

drastically drops with the gradient scheme. Despite the decreased performance for 

Sensor-4, a general improvement is observed for Sensor-1, Sensor-2, and Sensor-3. 

The default interpolation scheme is modified so that the cell limited gradient scheme 

is applied to the velocity gradient. The interfaceCompression scheme is used in 

compression flux discretization for further investigations at the expense of accuracy 

in peak pressure prediction. 
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Pressure-time histories for the modified case are given in Figure 4.3. A good 

agreement for the general trend is observed at the Sensor-1 location, while the 

pressure values slightly differ in the decay zone at the Sensor-2 location. Peak 

pressure value is underestimated at Sensor-3 location, but the results are in good 

agreement with the confidence range of the experimental results. However, at the 

Sensor-4 location, pressure is highly underestimated. The reason might be the 

different flow characteristics at this location, where the pressure is due to run up 

instead of the direct impact of the fluid. Since this study is focused on the impact 

pressures, this deficiency is considered acceptable and left for future work. 

 

Figure 4.3. Pressure-time histories with gradient scheme & compression flux 

discretization changes 
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4.6 Effect of Divergence Schemes 

First, the numerical schemes listed in Table 3.2 are used on the “rhoPhi, U” term 

discretization to determine the performance of the schemes, while all other 

parameters are kept constant as indicated in Table for a controlled performance test. 

Then, the best three options among those are selected regarding the peak pressure 

values and overall results within the impact zone. These selections include one for 

the best percent error, one for the best overall results in terms of NRMSE, and one 

for NMAE. The selected simulations are further investigated for the following 

discretization, the “phi, alpha” term. Once again, the best three options among these 

schemes are also selected to evaluate the performance of the scheme couples. 

Table 4.5. Selected parameters to be kept constant 

Parameter Selection 

Computational Mesh Resolution Coarse Mesh 

Computational Mesh Dimension 2-D Mesh 

Maximum Courant Number 0.1 

Gradient Scheme Cell limited linear 

Discretization of Compression Flux Interface Compression 

 

4.6.1 Effect of the Discretization of the Convective Terms in Momentum 

Equation 

The numerical schemes listed in Table 3.2 are applied to the “rhoPhi, U” term, while 

the default interpolation scheme for the “phi, alpha” term is kept constant. Results 

obtained from these simulations are compared with reference experimental data 

regarding the peak pressure values and overall results within the impact zone. 

Depending on the results of simulations with different numerical schemes, the best 

three options are selected based on PE, NRMSE and NMAE values at the Sensor-1 
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location, which are limitedLinear 0.4, SuperBee and linearUpwind schemes, 

respectively. Corresponding results of these three simulations are given in Table 4.6. 

The rest of the results are given in Appendix A. 

Table 4.6. Comparison of the performances based on the “rhoPhi, U” term 

discretization 

Error Type 

Cases 

Limited 

Linear 0.4 
SuperBee 

Linear 

Upwind 

PE Sensor-1 3.22% 5.10% 26.63% 

PE Sensor-2 1.81% 7.82% 12.33% 

PE Sensor-3 9.07% 2.02% 10.47% 

PE Sensor-4 57.67% 48.94% 56.33% 

NRMSE Sensor-1 0.2431 0.1891 0.2688 

NRMSE Sensor-2 0.3324 0.3020 0.2742 

NRMSE Sensor-3 0.2761 0.2568 0.2337 

NRMSE Sensor-4 0.7039 0.6345 0.6194 

NMAE Sensor-1 0.4911 0.4095 0.3411 

NMAE Sensor-2 0.4478 0.3917 0.3731 

NMAE Sensor-3 0.4452 0.4023 0.3926 

NMAE Sensor-4 0.7511 0.6842 0.7182 

 

The limited linear interpolation scheme with a coefficient of 0.4 is the best option to 

determine the peak pressure value, while its performance is significantly lower with 

respect to other options considering the NMAE. The NRMSE level of the case is 

also acceptable. The SuperBee interpolation scheme is the best option for overall 

results in terms of NRMSE, while relatively low accuracy is obtained with the 

NMAE analysis. On the other hand, peak pressure value accuracy is higher than in 

most cases, making the scheme a reasonably good option. The linear upwind 

interpolation scheme is the best option for overall results in terms of NMAE, while 
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the NRMSE results show that the lowest accuracy is obtained among these three 

alternatives. Besides that, the peak pressure value obtained using this scheme is 

notably lower than the other two options. 

Pressure time histories obtained from numerical models at Sensor-1, Sensor-2, 

Sensor-3 and Sensor-4 locations are given in Figure 4.4, Figure 4.5 and Figure 4.6 

for limited linear interpolation scheme with a coefficient of 0.4, SuperBee and linear 

upwind interpolation schemes, respectively. It should be once again noted that the 

numerical schemes mentioned above are only applied to the “rhoPhi, U” term 

discretization and the “phi, alpha” term discretization is kept constant as it is in the 

default interpolation scheme case where van Leer interpolation scheme is applied. 

 

Figure 4.4. Pressure-time histories for limited linear 0.4 scheme applied to the 

“rhoPhi, U” term discretization 
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According to the pressure-time histories in Figure 4.4, a good agreement between 

the simulation and the experimental results for the rise part of the impact zone is 

observed at the Sensor-1 location with good accuracy of the peak pressure value. 

After the impact zone, pressure values are overestimated for the rest of the 

simulation, causing discrepancies in the overall result. However, considering 

pressure values are within the confidence range for the experimental result, it can be 

said that the numerical scheme is acceptable for studies where the peak pressure 

value determination is a great concern. 

 

Figure 4.5. Pressure-time histories for SuperBee scheme applied to the “rhoPhi, U” 

term discretization 

In Figure 4.5, pressure values obtained at the Sensor-1 location slightly deviate 

throughout the simulation, and it is not possible to say that the overall result follows 

a specific behavior. Instead, there are several points where over and underestimations 

are observed. These deviations around the median values result in a lower NRMSE, 
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while some deficiencies are seen both in the rise and decay parts of the impact zone. 

Furthermore, the scheme gives a good agreement on the peak pressure value slightly 

lower than the previous scheme. Thus, it can be a good option for studies where both 

peak pressure and pressure values in the impact zone are great concerns. 

 

Figure 4.6. Pressure-time histories for linear upwind scheme applied to the “rhoPhi, 

U” term discretization 

Pressure time histories in Figure 4.6 show a good agreement in the decay part of the 

impact zone, and the smoothest curves are observed in this numerical scheme option. 

However, the peak pressure value is highly overestimated with respect to the other 

two scheme options. Considering the high accuracy obtained within the impact zone 

at the Sensor-1 location, this scheme is a good option for studies where the overall 

result is a great concern instead of accurate impact pressure determination. 
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4.6.2 Effect of the Discretization of the Convective Term in VOF-

Advection Equation 

27 different interpolation schemes are evaluated for the discretization of the “rhoPhi, 

U” term and the best three options, which are limited linear interpolation scheme 

with a coefficient of 0.4, SuperBee and linear upwind interpolation schemes, are 

selected to be investigated further for the following discretization, the “phi, alpha” 

term. 

Interpolation schemes for the “phi, alpha” term discretization are similar to those in 

Table 3.2, deducting “V” schemes since they cannot be used for this term. The 

updated list of the numerical schemes considered for the “phi, alpha” term 

discretization is given in Table 4.7.  

Table 4.7. Numerical scheme list considered for the “phi, alpha” term discretization 

# Numerical Scheme # Numerical Scheme 

01 linear 10 Minmod 

02 midPoint 11 vanLeer 

03 upwind 12 MUSCL 

04 linearUpwind 13 QUICK 

05 limitedLinear, Coeff = 0.2 14 UMIST 

06 limitedLinear, Coeff = 0.4 15 vanAlbada 

07 limitedLinear, Coeff = 0.6 16 SuperBee 

08 limitedLinear, Coeff = 0.8 17 SFCD 

09 limitedLinear, Coeff = 1.0 18 Gamma 

 

The numerical schemes listed in Table 4.7 are applied to the “phi, alpha” term, while 

the previously selected schemes for the “rhoPhi, U” term are kept constant. Results 

obtained from these simulations are compared with reference experimental data 

regarding the peak pressure values and overall results within the impact zone. 
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Depending on the results of simulations with different numerical schemes, the best 

three options are selected based on PE, NRMSE and NMAE values at the Sensor-1 

location. 

The limited linear interpolation scheme with a coefficient of 0.4 is evaluated first. 

The results of the best three alternatives depending on PE, NRMSE and NMAE 

values at Sensor-1 location are listed in Table 4.8. 

Table 4.8. Comparison of the performances based on the “phi, alpha” term 

discretization with limitedLinear 0.4 “rhoPhi, U” discretization 

Error Type 

Cases 

Limited 

Linear 0.4 
Upwind Gamma 

PE Sensor-1 2.29% 14.11% 3.54% 

PE Sensor-2 2.02% 6.28% 2.01% 

PE Sensor-3 9.40% 13.30% 13.06% 

PE Sensor-4 58.74% 59.86% 60.13% 

NRMSE Sensor-1 0.2136 0.1739 0.2055 

NRMSE Sensor-2 0.3069 0.2708 0.3161 

NRMSE Sensor-3 0.2618 0.2731 0.2678 

NRMSE Sensor-4 0.7059 0.7038 0.7061 

NMAE Sensor-1 0.4443 0.3981 0.4380 

NMAE Sensor-2 0.3977 0.3926 0.4177 

NMAE Sensor-3 0.4238 0.4514 0.4352 

NMAE Sensor-4 0.7316 0.7299 0.7236 

 

According to the results obtained in Table 4.8, the limited linear interpolation scheme 

with a coefficient of 0.4 further improves the peak pressure prediction accuracy, also 

boosting the results in both NRMSE and NMAE. However, a great increase in the 

accuracy of overall results is obtained using the upwind interpolation scheme 
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depending on NRMSE and NMAE, which shows the scheme is the best option for 

both. On the other hand, the Gamma interpolation scheme is the follow-up for both 

NMRSE and NMAE, while it also increases the accuracy of the peak pressure 

determination significantly. Thus, the Gamma scheme is included in the best 

alternatives among those. Pressure-time histories at Sensor-1 location for each 

alternative are given in Figure 4.7. 

 

Figure 4.7. Pressure-time histories at Sensor-1 for limited linear 0.4 scheme applied 

to the “rhoPhi, U” term discretization with the “phi, alpha” term discretization couple 

(a). limited linear 0.4 (b). upwind (c). Gamma 

Then, the SuperBee scheme is evaluated. The results of the best three alternatives 

depending on PE, NRMSE and NMAE values at Sensor-1 location are listed in Table 

4.9. 
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Table 4.9. Comparison of the performances based on the “phi, alpha” term 

discretization with SuperBee “rhoPhi, U” discretization 

Error Type 
Cases 

Gamma van Leer Minmod 

PE Sensor-1 0.50% 5.10% 5.70% 

PE Sensor-2 2.97% 7.82% 4.44% 

PE Sensor-3 2.64% 2.02% 14.76% 

PE Sensor-4 42.31% 48.94% 52.43% 

NRMSE Sensor-1 0.2217 0.1891 0.2147 

NRMSE Sensor-2 0.2545 0.3020 0.2640 

NRMSE Sensor-3 0.2127 0.2568 0.2327 

NRMSE Sensor-4 0.6097 0.6345 0.6260 

NMAE Sensor-1 0.3322 0.4095 0.3562 

NMAE Sensor-2 0.2953 0.3917 0.3548 

NMAE Sensor-3 0.3195 0.4023 0.3707 

NMAE Sensor-4 0.5934 0.6842 0.6176 

 

According to the results obtained in Table 4.9, the Gamma scheme significantly 

improves the peak pressure determination performance with a value of only 0.5% 

deviation. However, performance on the overall result is significantly reduced 

considering the NRMSE making the scheme combination undesirable since the 

SuperBee scheme is further investigated based on the NRMSE results. The van Leer 

interpolation scheme remains as the best option for overall results based on the 

NRMSE criterion. On the other hand, the Minmod scheme creates a third option 

since the overall performance based on the NMAE results is higher than the van Leer 

scheme, while the peak pressure determination performance is approximately the 

same. There is a slight decrease in the overall results depending on the NRMSE, but 

these results are still acceptable considering this option is an alternative between 
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Gamma and van Leer schemes. Pressure-time histories at Sensor-1 location for each 

alternative are given in Figure 4.8. 

 

 

Figure 4.8. Pressure-time histories at Sensor-1 for SuperBee scheme applied to the 

“rhoPhi, U” term discretization with the “phi, alpha” term discretization couple (a). 

Gamma (b). van Leer (c). Minmod 

Finally, the linear upwind scheme is evaluated. The results of the best three 

alternatives depending on PE, NRMSE and NMAE values at Sensor-1 location are 

listed in Table 4.10. 
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Table 4.10. Comparison of the performances based on the “phi, alpha” term 

discretization with linear upwind “rhoPhi, U” discretization 

Error Type 

Cases 

Linear 

Upwind 
Upwind 

Limited 

Linear 0.2 

PE Sensor-1 2.77% 18.25% 16.11% 

PE Sensor-2 17.49% 6.18% 3.73% 

PE Sensor-3 7.67% 9.44% 8.69% 

PE Sensor-4 56.42% 58.31% 56.32% 

NRMSE Sensor-1 0.2404 0.1818 0.2514 

NRMSE Sensor-2 0.2742 0.2842 0.2674 

NRMSE Sensor-3 0.2413 0.2878 0.2294 

NRMSE Sensor-4 0.6221 0.6465 0.6175 

NMAE Sensor-1 0.3349 0.3343 0.3065 

NMAE Sensor-2 0.3611 0.3711 0.3501 

NMAE Sensor-3 0.3928 0.4421 0.3795 

NMAE Sensor-4 0.6959 0.6664 0.6922 

 

According to the results obtained in Table 4.10, the linear upwind coupled with the 

linear upwind scheme gives the best result on the peak pressure determination with 

only a 2.77% difference between the simulation and the experimental results. 

Considering the initial results for the linear upwind scheme, a significant increase in 

the performance is observed while NRMSE and NMAE results also slightly increase. 

The upwind scheme further increases the overall performance in terms of NRMSE, 

while the limited linear interpolation scheme with a coefficient of 0.2 increases it in 

terms of NMAE. Besides, there is a slight increase in peak pressure performance on 

both. The linear upwind scheme is the best alternative considering both peak pressure 

and the overall performance of the scheme. Pressure-time histories at Sensor-1 

location for each alternative are given in Figure 4.9. 
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Figure 4.9. Pressure-time histories at Sensor-1 for linear upwind scheme applied to 

the “rhoPhi, U” term discretization with the “phi, alpha” term discretization couple 

(a). linear upwind (b). upwind (c). limited linear 0.2 

The rest of the results for each of the three different “rhoPhi, U” discretization is 

given in Appendix B. 

The results obtained from the investigation are compared with the default 

interpolation scheme at the Sensor-1 location in Table 4.11 for closure. 
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Table 4.11. Comparison of the performances of the investigated numerical schemes 

with default interpolation schemes (the first scheme refers to the “rhoPhi, U” term 

discretization, and the second scheme refers to the “phi, alpha” term discretization) 

Case 
Error Type 

PE Sensor-1 NRMSE Sensor-1 NMAE Sensor -1 

Default Schemes 50.51% 0.2680 0.6372 

Limited Linear 0.4 

Limited Linear 0.4 
2.29% 0.2136 0.4443 

Limited Linear 0.4 

Upwind 
14.11% 0.1739 0.3981 

Limited Linear 0.4 

Gamma 
3.54% 0.2055 0.4380 

SuperBee 

Gamma 
0.50% 0.2217 0.3322 

SuperBee 

vanLeer 
5.10% 0.1891 0.4095 

SuperBee 

Minmod 
5.70% 0.2147 0.3562 

Linear Upwind 

Linear Upwind 
2.77% 0.2404 0.3349 

Linear Upwind 

Upwind 
18.25% 0.1818 0.3343 

Linear Upwind 

Limited Linear 0.2 
16.11% 0.2514 0.3065 
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Based on the results in Table 4.11, the SuperBee and Gamma scheme couple yields 

the best result on the peak pressure prediction, while applying the linear upwind 

scheme with a coefficient of 0.4 to both terms is the follow-up. On the other hand,  

the limited linear scheme with a coefficient of 0.4 coupled with the upwind scheme 

significantly reduces errors in terms of NRMSE. The linear upwind scheme coupled 

with the linear upwind scheme results in a major improvement in terms of NMAE, 

while the peak pressure prediction performance is relatively high.
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CHAPTER 5  

5 CONCLUSION 

The primary focus of this thesis study is the evaluation of the effects of numerical 

schemes on the computation of impact pressure prediction. A numerical modelling 

study is performed using interFoam solver based on the OpenFOAM CFD Library. 

The wave-structure interaction during dam break event is investigated with different 

numerical schemes to assess the performances of the schemes. The performance tests 

are evaluated using the peak pressure prediction and the overall pressure prediction 

accuracies, comparing the numerical results with the measurements from a physical 

model experiment. The performance assessment is conducted in terms of percent 

error, normalized root mean square error and normalized mean absolute error. 

The numerical modelling process is summarized (Chapter 3). The information about 

the reference physical model experiment is given. The numerical modelling study is 

explained in detail, and an introduction to numerical solution algorithms and 

numerical schemes is presented. Numerical simulations used to investigate the 

effects of the numerical schemes are introduced. A total of 81 different simulations 

have been performed, including 54 different combinations. 

Results of the simulations and the methodology used in the analysis of the results are 

presented (Chapter 4). Although the discussions and evaluations are given previously 

at the end of each section, the conclusions of the study are summarized below: 

• 3-D effects on the impact pressure prediction are investigated using two 

simulations performed in 3-D and 2-D computational domains. The results 

of the investigation indicate that there is a slight difference between these, 

where the variation between the models is 3.93%, while the computational 

time is reduced by almost 90% using the 2-D computational mesh. Hence, 

studies with a higher number of repetitive numerical simulations may be 
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performed in 2-D computational domains, where the computational demand 

is relatively low. 

• The effect of the gradient scheme in the discretization of the convective term 

is investigated, comparing the results obtained from the modified simulation 

with the ones obtained from the default scheme combination. Based on the 

results, the gradient scheme is effective on the overall results in terms of 

NMAE. The discretization of the compression flux is also investigated, and 

the interfaceCompression scheme is found to be a better option than the 

default linear scheme. However, the comparison between the 

interfaceCompression scheme and the combined effect of two schemes 

shows that the cell-limited gradient scheme decreases the peak pressure 

prediction performance. 

• The effect of the discretization of the convective term is investigated for the 

momentum equation and the VOF-advection equation. The effects are 

examined in the momentum equation first, and then the VOF-advection 

equation is investigated using the best three results obtained in the former. 

There is no distinct numerical scheme that yields the best results in general, 

but some prominent results are obtained from the investigation depending on 

the focus. For the peak pressure prediction accuracy, the best scheme couple 

is the SuperBee on the momentum equation and the Gamma on the VOF-

advection equation. On the other hand, if the limited linear scheme with a 

coefficient of 0.4 is applied to the momentum equation and the upwind 

scheme to the VOF-advection equation, the overall pressure prediction 

accuracy is significantly increased at the expense of peak pressure prediction 

accuracy. Another alternative scheme combination is the linear upwind 

coupled with the linear upwind scheme, which increases the performance of 

the overall results without decreasing the peak pressure prediction accuracy. 

• The percent error obtained from the default scheme combination is 50.51%, 

which can be improved significantly using the SuperBee and Gamma 

combination to 0.5%, indicating a 99% improvement can be achieved with 
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this scheme combination. The default scheme combination for the overall 

pressure prediction results in an NRMSE of 0.2680 and an NMAE of 0.6372. 

These results can be reduced to 0.1739 and 0.3981 for the NRMSE and 

NMAE, respectively, which means the overall results can be improved up to 

37.5% using the limited linear scheme with a coefficient of 0.4, combined 

with the upwind scheme. The SuperBee and Gamma scheme couple increases 

the computational time by 15%, while there is no significant effect on the 

computational time using the limited linear scheme with a coefficient of 0.4 

coupled with the upwind scheme. 

The investigation of numerical scheme performances on the prediction of impact 

pressures is attempted in this study. A couple of topics that arose during the 

investigations are left for future work: 

• The investigation of the effect of divergence schemes showed that coupling 

numerical schemes regarding the momentum equation and the VOF-

advection equation yields unique results for each couple. Therefore, each 

numerical scheme coupling option should be investigated, independent of the 

initial results obtained from the first step of the assessment of the VOF-

advection equation discretization. 

• The performance assessment is based on a physical experiment. The 

performance of the schemes should be investigated with different data sets. 

• The investigation should be performed in studies in which the impact 

pressures are caused by regular and irregular waves, to come up with 

conclusions for the wave cases. 

• Even though the flow is assumed to be laminar in the investigation, turbulent 

flow characteristics are involved after the impact. The investigation should 

also be performed using turbulence model. 
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APPENDICES 

A. Results of the Effect of the Discretization of the Convective Terms in 

Momentum Equation 

Table 5.1. Results of the effect of the discretization of convective terms in 

momentum equation 
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linear 3.90% 12.51% 2.16% 55.29% 0.2055 0.2885 0.2595 0.6722 0.5100 0.4942 0.4765 0.8581

midpoint 4.37% 12.79% 1.97% 56.60% 0.2043 0.2881 0.2632 0.6708 0.5110 0.4915 0.4821 0.8591

upwind 18.27% 0.66% 13.98% 59.19% 0.3191 0.2855 0.2926 0.7094 0.6303 0.4343 0.4523 0.7604

linear upwind 26.63% 12.33% 10.47% 56.33% 0.2688 0.2742 0.2337 0.6194 0.3411 0.3731 0.3926 0.7182

limited linear 0.2 12.17% 5.14% 9.11% 58.27% 0.2463 0.3435 0.2788 0.7004 0.5010 0.4603 0.4457 0.7648

limited linear 0.4 3.22% 1.81% 9.07% 57.67% 0.2431 0.3324 0.2761 0.7039 0.4911 0.4478 0.4452 0.7511

limited linear 0.6 24.01% 1.45% 9.64% 57.85% 0.2277 0.3403 0.2763 0.6999 0.4747 0.4485 0.4445 0.7616

limited linear 0.8 20.99% 1.84% 6.96% 58.58% 0.2392 0.3394 0.2750 0.7008 0.4744 0.4417 0.4385 0.7588

limited linear 1 17.33% 0.29% 6.96% 58.37% 0.2464 0.3322 0.2709 0.7011 0.4679 0.4298 0.4340 0.7594

Minmod 9.78% 2.22% 10.24% 59.98% 0.2511 0.3010 0.2586 0.7078 0.4599 0.3964 0.4149 0.7658

MinmodV 21.84% 9.43% 8.83% 59.45% 0.2751 0.2850 0.2558 0.6900 0.4792 0.3821 0.4094 0.7505

vanLeer 15.96% 2.79% 6.91% 55.92% 0.2038 0.2927 0.2588 0.6892 0.3871 0.3794 0.4108 0.7522

vanLeerV 21.95% 10.90% 10.59% 59.73% 0.2751 0.2864 0.2572 0.6892 0.4487 0.3816 0.4117 0.7556

MUSCL 14.58% 7.59% 1.15% 55.13% 0.2275 0.3189 0.2894 0.6787 0.4302 0.4271 0.4465 0.7625

MUSCLV 21.61% 11.98% 8.43% 58.07% 0.2676 0.2852 0.2584 0.6855 0.4221 0.3758 0.4140 0.7572

QUICK 27.27% 19.00% 8.30% 51.54% 0.2609 0.3392 0.2867 0.6460 0.4961 0.4824 0.4890 0.8286

QUICKV 25.92% 6.10% 7.45% 56.77% 0.2213 0.3070 0.2770 0.6595 0.4369 0.4271 0.4727 0.8577

UMIST 20.56% 4.84% 5.35% 57.38% 0.2301 0.2852 0.2581 0.6849 0.4001 0.3654 0.4128 0.7445

UMISTV 22.02% 10.54% 9.94% 59.13% 0.2785 0.2864 0.2567 0.6884 0.4567 0.3835 0.4112 0.7569

vanAlbada 7.91% 2.92% 9.70% 58.82% 0.2329 0.2906 0.2537 0.7058 0.4203 0.3749 0.4070 0.7670

vanAlbadaV 21.88% 11.49% 8.66% 59.25% 0.2784 0.2846 0.2568 0.6908 0.4665 0.3806 0.4101 0.7522

SuperBee 5.10% 7.82% 2.02% 48.94% 0.1891 0.3020 0.2568 0.6345 0.4095 0.3917 0.4023 0.6842

SuperBeeV 23.17% 12.25% 5.52% 59.55% 0.2542 0.2868 0.2522 0.6695 0.3849 0.3999 0.4115 0.7954

SFCD 19.76% 2.93% 9.77% 59.67% 0.2173 0.2931 0.2551 0.7069 0.4445 0.3886 0.4132 0.7666

SFCDV 23.32% 10.06% 8.81% 59.13% 0.2823 0.2851 0.2552 0.6902 0.4841 0.3833 0.4107 0.7531

Gamma 20.67% 1.59% 9.35% 60.86% 0.2076 0.2933 0.2565 0.7029 0.4347 0.3895 0.4156 0.7628

GammaV 22.93% 10.76% 8.68% 58.92% 0.2783 0.2860 0.2568 0.6865 0.4777 0.3866 0.4156 0.7533
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B. Results of the Effect of the Discretization of the Convective Terms in VOF-

Advection Equation 

Table 5.2. Results of the effect of the discretization of convective terms in VOF-

advection equation with limited linear scheme with a coefficient of 0.4 is applied to 

momentum equation 
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linear 18.83% 9.34% 12.47% 58.71% 0.2769 0.3321 0.2808 0.7058 0.4567 0.4257 0.4503 0.7304

midpoint 18.79% 9.28% 12.57% 58.31% 0.2772 0.3319 0.2817 0.7046 0.4575 0.4258 0.4514 0.7273

upwind 14.11% 6.28% 13.30% 59.86% 0.1739 0.2708 0.2731 0.7038 0.3981 0.3926 0.4514 0.7299

linear upwind 17.66% 3.57% 7.83% 57.53% 0.2442 0.3253 0.2719 0.6954 0.4775 0.4362 0.4328 0.7550

limited linear 0.2 8.28% 0.30% 7.91% 58.49% 0.2477 0.3071 0.2593 0.7077 0.4510 0.3944 0.4220 0.7278

limited linear 0.4 2.29% 2.02% 9.40% 58.74% 0.2136 0.3069 0.2618 0.7059 0.4443 0.3977 0.4238 0.7316

limited linear 0.6 8.48% 1.55% 10.36% 58.18% 0.2092 0.3040 0.2594 0.7042 0.4491 0.4022 0.4226 0.7390

limited linear 0.8 8.50% 0.84% 10.56% 58.36% 0.2063 0.3043 0.2616 0.7072 0.4469 0.4005 0.4238 0.7352

limited linear 1 8.37% 0.19% 11.29% 57.91% 0.2051 0.3048 0.2625 0.7062 0.4463 0.4005 0.4233 0.7318

Minmod 8.21% 1.36% 11.86% 59.41% 0.2220 0.3024 0.2631 0.7105 0.4528 0.3984 0.4258 0.7217

vanLeer 3.22% 1.81% 9.07% 57.67% 0.2431 0.3324 0.2761 0.7039 0.4911 0.4478 0.4452 0.7511

MUSCL 19.31% 6.01% 9.67% 58.23% 0.2669 0.3066 0.2711 0.6853 0.5129 0.4288 0.4308 0.7384

QUICK 15.31% 5.43% 9.96% 58.90% 0.2496 0.3057 0.2655 0.6917 0.4433 0.4061 0.4223 0.7418

UMIST 9.09% 4.32% 12.57% 57.68% 0.2312 0.3241 0.2772 0.6931 0.4794 0.4411 0.4461 0.7537

vanAlbada 3.51% 0.18% 11.00% 59.79% 0.2299 0.3171 0.2656 0.7062 0.4681 0.4150 0.4304 0.7352

SuperBee 32.43% 14.06% 9.50% 58.47% 0.2887 0.2981 0.2646 0.6820 0.5286 0.4168 0.4212 0.7357

SFCD 4.79% 0.70% 11.68% 59.44% 0.2102 0.3158 0.2684 0.7051 0.4455 0.4166 0.4351 0.7252

Gamma 3.54% 2.01% 13.06% 60.13% 0.2055 0.3161 0.2678 0.7061 0.4380 0.4177 0.4352 0.7236
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Table 5.3. Results of the effect of the discretization of convective terms in VOF-

advection equation with SuperBee scheme is applied to momentum equation 

 

Table 5.4. Results of the effect of the discretization of convective terms in VOF-

advection equation with linear upwind scheme is applied to momentum equation 
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linear 24.25% 4.22% 7.08% 46.51% 0.2495 0.2575 0.1922 0.5569 0.3502 0.3224 0.2993 0.6210

midpoint 19.72% 5.22% 5.79% 48.79% 0.2310 0.2475 0.1889 0.5764 0.3341 0.3219 0.2761 0.6155

upwind 9.22% 5.44% 1.21% 55.44% 0.2700 0.2702 0.2580 0.6079 0.5073 0.4093 0.4066 0.6404

linear upwind 44.87% 15.30% 15.59% 51.92% 0.2520 0.2946 0.2570 0.6134 0.4205 0.3580 0.3771 0.6582

limited linear 0.2 23.46% 9.34% 5.78% 52.67% 0.2091 0.2707 0.2082 0.6207 0.3541 0.3723 0.3486 0.6947

limited linear 0.4 23.27% 2.16% 3.44% 45.33% 0.2367 0.2735 0.2043 0.6063 0.3970 0.3632 0.3345 0.5907

limited linear 0.6 37.12% 0.51% 7.66% 45.53% 0.2195 0.2896 0.2284 0.5895 0.4000 0.3357 0.3455 0.6228

limited linear 0.8 43.03% 0.75% 2.13% 47.54% 0.2480 0.2958 0.2374 0.5876 0.3449 0.3172 0.3754 0.6744

limited linear 1 49.04% 10.95% 0.81% 46.56% 0.2160 0.3148 0.2509 0.6250 0.3751 0.3731 0.3907 0.6529

Minmod 5.70% 4.44% 14.76% 52.43% 0.2147 0.2640 0.2327 0.6260 0.3562 0.3548 0.3707 0.6176

vanLeer 5.10% 7.82% 2.02% 48.94% 0.1891 0.3020 0.2568 0.6345 0.4095 0.3917 0.4023 0.6842

MUSCL 27.10% 38.07% 5.79% 40.06% 0.2297 0.2921 0.2439 0.5851 0.4167 0.3753 0.3601 0.6341

QUICK 59.62% 21.74% 11.66% 44.96% 0.3008 0.3565 0.1956 0.5781 0.4886 0.3648 0.2719 0.5489

UMIST 71.28% 28.42% 5.36% 44.32% 0.2480 0.3309 0.2349 0.6361 0.4916 0.4323 0.4041 0.6451

vanAlbada 49.24% 17.60% 0.38% 54.26% 0.2888 0.3236 0.2230 0.5878 0.4197 0.3418 0.3563 0.6616

SuperBee 37.83% 48.76% 22.43% 45.79% 0.2110 0.2860 0.2389 0.5893 0.4194 0.3988 0.3693 0.6946

SFCD 16.88% 14.32% 1.72% 43.62% 0.2054 0.2359 0.2489 0.6117 0.3874 0.3529 0.3710 0.6754

Gamma 0.50% 2.97% 2.64% 42.31% 0.2217 0.2545 0.2127 0.6097 0.3322 0.2953 0.3195 0.5934
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linear 24.87% 17.24% 8.22% 56.15% 0.2600 0.2774 0.2601 0.6225 0.3212 0.3721 0.4220 0.6871

midpoint 24.92% 17.17% 7.93% 56.06% 0.2605 0.2776 0.2597 0.6229 0.3221 0.3726 0.4209 0.6868

upwind 18.25% 6.18% 9.44% 58.31% 0.1818 0.2842 0.2878 0.6465 0.3343 0.3711 0.4421 0.6664

linear upwind 2.77% 17.49% 7.67% 56.42% 0.2404 0.2742 0.2413 0.6221 0.3349 0.3611 0.3928 0.6959

limited linear 0.2 16.11% 3.73% 8.69% 56.32% 0.2514 0.2674 0.2294 0.6175 0.3065 0.3501 0.3795 0.6922

limited linear 0.4 16.41% 5.44% 9.42% 55.82% 0.2557 0.2786 0.2308 0.6123 0.3193 0.3677 0.3862 0.7192

limited linear 0.6 16.24% 2.32% 8.18% 56.39% 0.2596 0.2806 0.2334 0.6118 0.3227 0.3705 0.3917 0.7314

limited linear 0.8 15.58% 1.51% 8.52% 56.02% 0.2574 0.2837 0.2355 0.6183 0.3268 0.3731 0.3909 0.7189

limited linear 1 15.14% 1.31% 8.38% 56.95% 0.2573 0.2855 0.2344 0.6161 0.3268 0.3807 0.3905 0.7308

Minmod 11.85% 2.53% 8.86% 55.95% 0.2522 0.2853 0.2390 0.6225 0.3343 0.3827 0.3911 0.7125

vanLeer 26.63% 12.33% 10.47% 56.33% 0.2688 0.2742 0.2337 0.6194 0.3411 0.3731 0.3926 0.7182

MUSCL 34.37% 20.39% 7.34% 57.78% 0.2802 0.2811 0.2348 0.6184 0.3651 0.3872 0.3954 0.7124

QUICK 27.45% 25.30% 9.29% 56.31% 0.2733 0.2903 0.2487 0.6173 0.3371 0.3912 0.4053 0.7288

UMIST 29.05% 13.65% 10.28% 57.22% 0.2677 0.2716 0.2326 0.6221 0.3389 0.3684 0.3914 0.7154

vanAlbada 15.43% 4.96% 7.25% 56.25% 0.2565 0.2848 0.2430 0.6277 0.3440 0.3855 0.4013 0.7023

SuperBee 36.56% 21.45% 8.61% 57.62% 0.2924 0.2859 0.2387 0.6225 0.4119 0.3859 0.3816 0.6944

SFCD 11.94% 12.23% 10.29% 56.67% 0.2550 0.2967 0.2590 0.6308 0.3773 0.4098 0.4240 0.7001

Gamma 13.10% 13.28% 9.91% 56.66% 0.2557 0.2990 0.2564 0.6258 0.3747 0.4186 0.4205 0.7123


