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Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Umut Orguner
Electrical and Electronics Engineering, METU

Prof. Dr. Tolga Çiloğlu
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ABSTRACT

SUBARRAY SELECTION IN OCTAVE ARRAYS

Kaderoğlu, Ali Rıza

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Tolga Çiloğlu

February 2022, 121 pages

Sensor layout of the octave array is designed to process a frequency range of several

octaves. Array aperture of the highest octave band is limited to uniform line array

(ULA) segment at the center. Forming a sparse array layout for the highest frequency

band by using some of the remaining elements apart from ULA could bring some

advantages such as higher array gain and better detection performance. Using a sparse

array has a drawback of violating the spatial Nyquist limit, which may cause high

sidelobes to appear in the beampattern. It is aimed to select an optimum layout with

larger aperture length and higher gain without being affected by disadvantages of

using sparse arrays. Performance of the selected layout depends on the used direction

of arrival estimation (DOA) method. In this thesis, both conventional and coarray

based DOA methods are reviewed firstly. Then, several optimization problems are

stated for selecting a subarray layout. These problems use some array parameters

such as peak-to-sidelobe level (PSL), Cramer-Rao bound, method of interval errors

(MIE) and redundancy. Minimization of PSL is used to reduce the high sidelobe

levels. To minimize DOA estimation error, CRB and MIE are used as cost functions.

PSL constraint is added to minimization of CRB problem to prevent grating lobes in

the array beampattern. Minimum redundancy array and robust minimum redundancy
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array are obtained by using redundancy and fragility in the optimization problems.

Performances of proposed array layouts are compared with the existing solution using

extensive computer simulations.

Keywords: Direction of arrival (DOA) estimation, sensor arrays, optimization prob-

lem, co-array, beamforming
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ÖZ

OKTAV DİZİNLERDE ALT DİZİN SEÇİMİ

Kaderoğlu, Ali Rıza

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Tolga Çiloğlu

Şubat 2022 , 121 sayfa

Oktav dizinin sensör yerleşimi birden çok sayıda oktavı içeren bir frekans aralığına

göre yapılmıştır. En yüksek oktav bandı için dizinin merkezinde bulunan düzgün doğ-

rusal dizin kullanılmaktadır. En yüksek frekans bandı için doğrusal dizin dışında ka-

lan elemanları ile aralıklı bir sensor yerleşimi kullanımı yüksek dizin kazancı ve daha

iyi tespit performansı gibi çeşitli avantajlar sunabilir. Düzgün olmayan bir doğrusal

dizin kullanımında daha geniş bir açıklığa erişilmesine karşılık elemanlar arası uzak-

lıkta Nyquist limiti ihmal edildiği için ışıma deseninde yüksek yan lob seviyeleri elde

edilebilmektedir. Daha büyük açıklığa ve dizin kazancına sahip olan, aynı zamanda

aralıklı yerleşimin olumsuz yönlerinden etkilenmeyen bir eniyi dizin seçimi hedef-

lenmektedir. Seçilen dizinin performansı kullanılan yön kestirim yöntemine göre de-

ğişir. Bu tezde öncelikle hem geleneksel hem de ortak dizin yön bulma yöntemleri

incelenmektedir. Daha sonra alt dizin seçimi problemi için çeşitli eniyileme prob-

lemleri belirtilmektedir. Bu problemler yan lob seviyesi, Cramer-Rao sınırı, aralık

hataları yöntemi ve yedeklilik gibi parametreleri kullanmaktadır. Yan lob bastırımı

probleminde yüksek yan lobların bastırımı, Cramer-Rao ve aralık hataları yöntemi

problemlerinde daha düşük yön kestirimi hatası, yan lob kısıdına sahip Cramer-Rao
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probleminde dizinde çıkan yan loblardan kurtulmak ve düşük yön kestirim hatası, ye-

deklilik problemlerinde ise en küçük yedekli dizin ve sağlam en küçük yedekli dizini

elde etmek hedeflenmektedir. Önerilen dizin yerleşimi ve mevcut çözümün perfor-

mansları çok sayıda bilgisayar simülasyonu kullanılarak karşılaştırılacaktır.

Anahtar Kelimeler: Geliş yönü kestirimi, sensör dizinleri, eniyileme problemi, ortak

dizin, ışın demetleme
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CHAPTER 1

INTRODUCTION

In this thesis, it is mainly focused on subarray selection from a given (sparse) sensor

array in order to improve certain performance metrics by employing different opti-

mization programs. This problem has a practical aspect as well, since such sparse

arrays are commonly utilized in towed passive/active sonar systems. These systems

collect sound signals emitted/reflected from underwater targets [1] with a hydrophone

array towed by the main platform. In general, these towed systems have an "octave ar-

ray" sensor structure in order to process signals within a larger bandwith with similar

array characteristics such as beamwidth and array gain.

An octave array is a combination of uniform line arrays which are designed for a

frequency range of several octaves [2]. The shortest uniform line array (ULA) at

the center of the octave array is used for the highest frequency band. For ULA,

angular resolution is improved when its element spacings are greater than half of the

wavelength. Unfortunately, this improvement causes high sidelobe levels. Despite

having higher sidelobe levels, using an array layout for the high frequency band with

non uniformly spaced elements could bring some improvements to the octave array

for DOA estimation. Selection of this non uniformly spaced subarray can be achieved

via an optimization program, which will assure that certain performance metrics will

be met while other constraints are satisfied. Motivation of this thesis is to study

this optimization problem (with different cost functions and constraints) and provide

different solutions for the narrowband source scenario with an octave array.

This chapter will provide an introduction by giving a background review, followed by

the proposed methods for the optimization, contributions and the outline of the thesis.
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1.1 Literature Review

In this section, brief reviews on direction of arrival (DOA) estimation methods, coar-

ray based techniques, array layout optimization and performance bounds are given.

Arrays with M sensors could reach only O (M) degrees of fredom using conven-

tional DOA estimation methods. Conventional methods can be divided into two main

groups which are beamformers and subspace methods. Beamformers are classified

as data-independent and data-dependent. Bartlett beamformer is a data-independent

method [3, 4], whereas Capon [5], linearly constrained minimum variance (LCMV)

beamformer [6], loaded sample matrix inverse (SMI) [7] and robust Capon [8] are

some of the data-dependent adaptive beamformers. Multiple apodization is also a

data-dependent method which brings the high angular resolution and lower sidelobes

with less computational cost [9,10]. As conventional subspace methods, MUSIC [11]

and ESPRIT [12] are two of the most common techniques.

O (M2) DOF could be reached with M sensors by using second-order statistics from

the sensor data. Detecting more sources than the number of sensors is achieved by

exploiting the difference coarray. Some of the well-known sparse linear arrays used

for coarray based methods are perfect array [13], minimum hole array (MHA) [14],

minimum redundancy array (MRA) [13], robust minimum redundancy array (RMRA)

[15] and nested array [16]. With these arrays, methods like KR-MUSIC [17] and SS-

MUSIC [16] are applied on the coarray data for obtaining a higher DOFs.

In array layout optimization, discrete parameters are used since the solution space

is formed by the fixed sensor positions. Evolutionary algorithms such as genetic al-

gorithm [18–20] and particle swarm optimization [21] are used for array selection

problem. Selecting an array layout among a large amount of sensor positions is

named as array thinning in the literature [22]. In most of the array thinning prob-

lems, optimization tries to minimize peak to sidelobe level of the beampattern of an

array steered to a fixed direction. Iterative FFT technique has been proposed for a

faster convergence to reach the minimum possible peak-to-sidelobe level (PSL) [23].

Hybrid genetic algorithm and modified iterative Fourier transform (HGAMIFT) algo-

rihm has been developed to use both enhanced search ability of genetic algorithm and
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fast convergence velocity of MIFT [24]. In addition to minimizing PSL, gross error

minimization is used for optimizing the array geometry for DOA estimation [25].

After selecting an array layout, its DOA estimation performance could be evaluated

using a number of performance bounds. Cramer Rao bound is a lower bound on the

variance of DOA angle estimation [26]. It is a tight bound when the SNR is high.

Therefore, it can give reliable estimates in the asymptotic region of MSE curves.

Both threshold and asymptotic regions of MSE curves could be approximated using

method of interval errors (MIE) [27].

1.2 Proposed Optimization Problems

In a large portion of this thesis, new array layouts for processing signals within the

high frequency band in an octave array are studied. For this purpose, six different

optimization problems are solved using genetic algorithm. These optimization prob-

lems are based on the parameters such as PSL, CRB, MIE, redundancy and fragility.

A brief description of each problem is as follows.

1. Minimizing the maximum of the PSL values for different steering angles:

Minimizing PSL is chosen as the cost function for most of the array thinning

optimizations [23, 24]. As sidelobe levels decrease, probability of detection of

false targets also reduces. For calculating PSL of different array layouts in the

optimization, Bartlett beamformer is employed to generate the beampattern. It

is also used as the DOA estimation method for evaluating the performance of

the final layout as a result of the optimization. According to the simulation

results presented in Chapter 6, array layout obtained with this cost function has

a better source separation performance and less DOA estimation error than the

ULA since the aperture of the new layout is wider.

2. Minimizing the Bayesian CRB for a constant SNR value: With this cost

function, it is aimed to obtain an array layout whose DOA estimation error for

the selected SNR value is minimized. Selecting a layout that can operate in

lower SNR values might be achieved if the selected SNR value is less than

threshold SNR. Instead of using deterministic CRB which depends on a single
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angle, Bayesian CRB is calculated by assuming the source DOA being random

with uniform distribution. Bartlett beamformer is used as the DOA estimation

method for evaluating the result of this optimization problem. According to

the simulation results presented in Chapter 6, obtained array layout has a poor

performance when the number of sensors is fixed in the optimization due to the

grating lobes caused by the sparsity.

3. Minimizing the Bayesian CRB for a constant SNR value with a PSL con-

straint: Aim of this optimization problem is solving grating lobe problem ob-

tained as a result of the second optimization problem. Performance of the re-

sultant layout is evaluated by using Bartlett beamformer. Array layout obtained

with this cost function in Chapter 6 has a better source separation performance

and less DOA estimation error than the other layouts using Bartlett beamformer.

4. Minimizing the Bayesian MIE for a constant SNR value: It is aimed to

obtain an array layout with less DOA estimation error similar to the second op-

timization problem. MIE gives better approximations than CRB for threshold

SNR region. For a better estimation for low SNR values, MIE is used as the

cost function rather than CRB. There is a similarity between resultant layout

and ULA when there is a sensor number constraint. Bartlett beamformer is

used to evaluate the performance of the layout obtained by this optimization.

5. Minimizing the redundancy: Aim of this optimization is to select MRA from

the elements of three octave array. SS-MUSIC is used as the DOA estimation

method for the obtained MRA. It is seen that MRA detect more sources than

the other layouts in Chapter 6 since SS-MUSIC is a coarray based method with

O (M2) elements.

6. Minimizing the redundancy with a fragility constraint: Aim of this opti-

mization is to select RMRA from the elements of three octave array to obtain a

robust layout as ULA against sensor failures. SS-MUSIC is used as the DOA

estimation method for the obtained MRA. Since the available elements for lay-

out selection optimization are fixed, resultant layout is similar to ULA.

Each of these problems are examined in detail in Chapter 6 along with Monte Carlo

analyses.
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1.3 Contributions

Amount of information for octave arrays is limited in the literature although it has

been in use for many years. Main aim of this thesis is to propose new array layouts

with elements from outside the ULA for the three octave array. Contributions from

this thesis could be summarized as follows:

• Bayesian CRB for single source is employed for estimating the RMS error per-

formance of an array [28]. In this study, Bayesian CRB is utilized as the cost

function for subarray selection problem. Benefit of using Bayesian CRB over

deterministic CRB is that the average performance over all possible angles is

obtained.

• Bayesian MIE for single source is employed for estimating the RMS error per-

formance of an array since it can approximate both asymptotic and threshold

SNR regions. In this study, Bayesian MIE is also utilized as the cost function

for subarray selection problem. Benefit of using Bayesian MIE over determin-

istic MIE is that the average performance over all possible angles is obtained

• Array layouts using different optimization cost functions are proposed for the

highest frequency band for the octave arrays instead of ULA. In the optimiza-

tions, PSL, Bayesian CRB, Bayesian CRB with PSL constraint, Bayesian MIE,

redundancy and redundancy with fragility constraint are used as the cost func-

tions. It is explained in detail why these parameters are chosen in Section 1.2.

• Coarray based DOA estimation methods are applied on MRA and RMRA whose

elements are selected among the elements of the octave array.

1.4 Thesis Outline

The outline of this thesis is as follows. Narrowband array signal model and array

performance measures are described in Chapter 2. The classical DOA estimation

methods are reviewed in Chapter 3, and coarray based DOA estimation methods are

reviewed in Chapter 4 in addition to coarray parameters and sparse array examples.

5



Detailed information about genetic algorihm and cost functions are given in Chap-

ter 5. Optimization results and performance comparisions are shown in Chapter 6.

Conclusions and future work are provided in Chapter 7.

In Chapter 2, narrowband signal model is explained with array manifold vector,

source and noise signals. Then, array beampattern is defined and performance mea-

sures are described.

Chapter 3 starts with beamforming definition. Then, Bartlett and Capon beamformer

are reviwed as a DOA estimation method. After explaining beamformer types, MU-

SIC and dual apodization methods are described. As a solution for coherent sources,

spatial smoothing process is explained.

Chapter 4 covers the coarray related topics. After defining coarray parameters, some

types of sparse linear arrays are shown. Then, DOA estimation methods for difference

coarrays are explained.

Chapter 5 gives detailed information for the array selection optimization. Firstly,

genetic algorithm is presented. Then, different cost functions for layout optimization

are explained.

In Chapter 6, first, three octave array and performance metrics for the optimization re-

sults are given. Then, optimization problems for selecting 16 sensors and their results

with performance comparisons are presented. After that, optimization problems for

selecting more than 16 sensors and their results with performance comparisons are

shown. Lastly, three different array layouts are proposed for dual apodization method

and their results are also given.

In Chapter 7, conclusions of the thesis work and required inprovements for the future

are given.
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CHAPTER 2

ARRAY SIGNAL MODEL

Sensor arrays have many applications both in civil and military systems. Probably

the most well known applications are radar and sonar systems. The main uses of

these systems are to increase the signal to noise/interference ratio of the signal of

interest, determine the angle of arrival of the signal, or to separate signals in a crowded

environment. In this chapter the general approach for array signal processing is given,

along with the notation and array signal model.

2.1 Array Manifold Vector

In the array signal model, array properties and phase differences between sensors

while receiving signal of interest are represented with array manifold vector. It is

also known as array steering vector. It depends on the array geometry, wavelength

and direction of source. The angle convention used in this study is given in Figure

2.1. Any given unit vector is represented with (ϕ, θ) pair. ϕ angle is measured on xy

plane from x-axis to the vertical projection of the unit vector on xy plane. θ angle on

the other hand is measured from the z-axis to the unit vector on the plane containing

z-axis and the unit vector. With this angle convention, the unit vector pointing to

(ϕ, θ) direction will be in the following form.

g =


cos(ϕ) sin(θ)

sin(ϕ) sin(θ)

cos(θ)

 (2.1)

One common assumption in these applications is the far-field assumption. As the dis-

tance between the source and sensors increases, wavefront of the received signal can
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Figure 2.1: Spherical coordinate system and angle definitions

be approximated as planar. This approximation can be used to simplify the manifold

definition. In order to satisfy the far-field assumption, distance between the source

and array should be greater than 2D2/λ [29]. λ denotes operating wavelength and D

denotes the aperture which is the largest physical dimension of the array. For a uni-

form line array, there will be an equal time delay between adjacent sensors with iden-

tical signals (assuming negligible propagation loss along the array) when the source is

in the far field [30]. The signal impinging on the sensor array, will have the following

time delays associated with each sensor.

τn =
−gTpn

c
(2.2)

pn =


pxn

pyn

pzn

 (2.3)
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where pn is the position vector of the nth sensor and c is the propagation speed of the

incoming wave. The resulting phase delays in each channel is as follows,

ωc = 2πfc [rad/s] (2.4)

λc =
c

fc
[m] (2.5)

ωcτn = −ωcg
Tpn

c
= −2πfc

c
gTpn = −2π

λc

gTpn. (2.6)

The equivalent effect of this time delay in frequency domain is given in 2.7.

F{x(t− τn)} = X(ω) exp(−jωτn) (2.7)

For narrow-band signals, this can be approximated as,

F−1{X(ω) exp(−jωτn)} ≈ F−1{X(ω) exp(−jωcτn)}

= x(t) exp(−jωcτn). (2.8)

We can arrange the phase delays for each channel in vector form as,

a(ϕ, θ) =


exp(−jωcτ0)

exp(−jωcτ1)
...

exp(−jωcτM−1)

 =


exp(−j 2π

λc
gTp0)

exp(−j 2π
λc
gTp1)

...

exp(−j 2π
λc
gTpM−1)

 . (2.9)

2.9 is generally referred to as the array manifold vector [28].

2.2 Narrowband Signal Model

Aim of the array signal processing is to detect N sources by using M sensors. Differ-

ent signal models are employed for this purpose in different DF (Direction Finding)

problems. Narrowband signal model is probably the most common signal model used

in various array signal problems in the literature [28]. This model uses the following

assumptions,

• Sources are in the far-field of the array.

• Sources are modelled as point emitters.
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• Medium between the source and array is homogeneous.

• Number of sources N is known or estimated from the data.

• Sensor array is assumed to be LTI.

Additionally the source signal s(t) is modeled as a baseband signal. It has both real

and imaginary parts which are denoted by sI(t) and sQ(t) respectively as given in

2.10a. The emitted signal, x(t), is the modulated version of this baseband signal

around a carrier frequency.

s(t) = sI(t) + jsQ(t) (2.10a)

x(t) = 2Re
(
s(t)ejωct

)
(2.10b)

x(t) = s(t)ejωct + s∗(t)e−jωct (2.10c)

X(ω) = S(ω − ωc) + S∗(−(ω + ωc)) (2.10d)

x(t) = 2 [sI(t) cos(ωct)− sQ(t) sin(ωct)] (2.10e)

x(t) = 2
√

s2I(t) + s2Q(t) cos

(
ωct+ arctan

(
sQ(t)

sI(t)

))
(2.10f)

x(t) = α(t) cos(ωct+Ψ(t)) (2.10g)

The emitted signal x(t) will be received by the sensor array and each element will

read the signal with different time delays, {τn}Mn=1. This delay, along with element

responses {hn(t)} can be modeled in time and frequency domain as in (2.11) and

(2.12) respectively.

ỹn(t) = hn(t) ∗ x(t− τn) + en(t) (2.11)

Ỹn(ω) = Hn(ω)X(ω) exp(−jωτn) + En(ω) (2.12)
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where en(t) is the additive noise for the nth channel. By inserting X(ω) into 2.12,

Ỹn(ω) can be written in terms of source signal S(ω).

Ỹn(ω) = Hn(ω) [S(ω − ωc) + S∗(−(ω + ωc))] exp(−jωτn) + En(ω) (2.13)

After receiving the bandpass signal, ỹn(t) is demodulated for further processing. To

demodulate ỹn(t), the signal is multiplied by the conjugate of the complex carrier

signal and then filtered by a low pass filter.

ȳn(t) =ỹn(t)e
−jωct (2.14)

Ȳn(ω) =
Hn(ω + ωc)

2
[S(ω) + S∗(−ω − 2ωc)] exp(−j(ω + ωc)τn)

+ En(ω + ωc) (2.15)

yn(t) =LPF{ȳn(t)} (2.16)

Yn(ω) =
Hn(ω + ωc)

2
S(ω) exp(−j(ω + ωc)τn) + En(ω + ωc) (2.17)

Amplitude of the frequency response of the source signal S(ω) decays rapidly with

the frequency if received signal is narrowband. In [28, p. 34], narrowband criterion is

given as

B
D

c
≪ 1 (2.18)

where B is the bandwidth of the received signal, D is the array aperture and c is the

signal propagation speed. With this narrowband signal assumption, 2.17 reduces to

Yn(ω) = Hn(ωc)S(ω) exp(−jωcτn) + En(ω + ωc) (2.19)

yn(t) = Hn(ωc)s(t) exp(−jωcτn) + en(t) (2.20)

If the sensors are assumed to be identical, their frequency responses will also be the

same. To simplify the equation, we can set Hn(ωc) = 2 for n = {0, 1, ...,M − 1}
where M is the number of sensors in the array.

yn(t) = exp(−jωcτn)s(t) + en(t) (2.21)

Note that the exponential term in 2.21 is the nth entry of the array manifold vector.

Consequently the received baseband signals for all sensors could be written in a vector

form y(t) as follows,

y(t) = a(ϕ, θ)s(t) + e(t) (2.22)
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where t = kT, T is the sampling period and k = {0, 1, ..., N − 1} and N representing

the number of snapshots. When we have multiple sources, narrowband signal model

can be written as

y(t) =AS+ e(t) (2.23)

A = [a(ϕ1, θ1), a(ϕ2, θ2), · · · , a(ϕP , θP )] (2.24)

S = [s1(t), s2(t), · · · , sP (t)]T (2.25)

where P is the number of sources, A is the array manifold matrix which contains the

manifold vectors for the source directions and S is the source signal vector.

2.3 Source Signal

There are different models used for modeling the source signal. Deterministic and

Gaussian random signal approaches are two of the commonly used model in the array

signal model [28]. In the deterministic approach, properties like frequency, duration,

bandwidth and type of the signal is known. There is not any randomness in the signal.

In the Gaussian random approach, source signal is assumed to be a Gaussian random

process with known mean vector and covariance matrix. A white Gaussian process

is most commonly used here with a zero mean vector and a diagonal covariance ma-

trix. Since the source signal in the narrowband model is a baseband signal, a complex

white Gaussian process is used and modeled as both stationary and circularly sym-

metric.

Note: A complex Gaussian random vector ∈ CN can be formed by two independent

real jointly Gaussian random vectors in RN . A complex Gaussian random vector is

said to be circularly symmetric when both its mean and pseudo-covariance are zero.

They can be defined only with their covariance matrix if they are both jointly Gaussian

and circularly symmetric [31].

2.4 Noise Signal

In the array signal model, noise signal is also modelled as complex white Gaussian

process. It is both spatially and temporally white and circularly symmetric. Being
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spatially white means that noise samples received at every sensor are uncorrelated

from each other. Since it is a stationary process, noise samples received in the same

channel are also uncorrelated.

2.5 Array Beampattern

Array beampattern defines the complex gain of the array to a unit plane wave of

frequency ω and direction (ϕ, θ) [28]. It is an important parameter for evaluation of

the array performance. It can be written as,

B(ϕ, θ) = wH (R(ϕ, θ) ◦ a(ϕ, θ)) (2.26)

where w = [w0, w1, · · · , wM−1]
T is the weight vector applied to M sensors, R(ϕ, θ) =

[R0(ϕ, θ), R1(ϕ, θ), · · · , RM−1(ϕ, θ)]
T is the element pattern vector of M sensors,

a(ϕ, θ) is the array manifold vector, ◦ denotes Hadamard (element-wise) product and

H is the Hermitian (complex conjugate) operator. With the assumption of identical

element pattern, element pattern vector in 2.26 becomes scalar,

B(ϕ, θ) = R0(ϕ, θ)w
Ha(ϕ, θ) (2.27)

If the element response is ignored or sensors are omni-directional, 2.27 reduces to

2.28. This result is also known as array factor.

B(ϕ, θ) = wHa(ϕ, θ) (2.28)

In order to plot the pattern and analyze its parameters, power pattern in linear and in

dB scales are calculated as,

Bp,l(ϕ, θ) =
∣∣wHa(ϕ, θ)

∣∣2 (2.29)

Bp(ϕ, θ) =20 log10
∣∣wHa(ϕ, θ)

∣∣ (2.30)

Array beampattern specifications are described with a number of parameters. A sum-

mary of these parameters and their definitions are as follows.

• Mainlobe is the region in the array beampattern without any null response

around the steered to direction (ϕ, θ).
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• Null-to-null beamwidth (ϕNN ) is the width of the mainlobe measured between

the null points in the left and right.

• Half of the null-to-null beamwidth ϕNN

2
defines Rayleigh resolution limit which

is the minimum angular distance for the separation of two sources with the clas-

sical DOA methods [32].

• Half power beamwidth (ϕhp) is the distance between cut-off points (ϕ1, θ1)

and (ϕ2, θ1) whose powers are Bp,l(ϕ1, θ1) = 0.5 and Bp,l(ϕ2, θ1) = 0.5. This

parameter is also known as 3 dB beamwidth.

• Peak-to-sidelobe level is the peak difference between the mainlobe and nearest

sidelobe to it.

• Null locations have an effect on the signal levels from the sources after the

beamforming. If one of the nulls lies at the direction of target, the target cannot

be seen from the peaks in the spatial spectra. Sidelobe levels also have an effect

on the target peaks on the spatial spectra. Problem of grating lobe arises if there

is a spatial aliasing in the array. Grating lobes have similar levels related to

the mainlobe and causes false target detections at the spectra. Spatial aliasing is

observed when ωc
d
c
> π where d is the distance between two adjacent sensors.

By using wavelength λc, this condition becomes,

ωc
d

c
> π

2πfc
d

c
> π

2π

λc

d > π

d >
λc

2
(2.31)

This condition is also named as spatial Nyquist theorem. Beampattern parameters that

are explained in here is shown on a beampattern of 10-element uniform line array in

Figure 2.2. Inter-element distance of the array is chosen as λc which violates the

spatial Nyquist theorem. Array is steered to (90◦, 90◦) and weight vector is chosen as

w = [1/10, 1/10, · · · , 1/10]T.
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Figure 2.2: A Beampattern and Its Parameters

2.6 Array Performance Measures

Sensor arrays can be compared with each other using a number of different perfor-

mance measures. Some of the performance parameters for beampatterns are given in

Section 2.5. In addition to them, three main performance measures are given in this

section. These measures are directivity, array gain and sensitivity.

2.6.1 Directivity and Directivity Index

One of the common parameters is directivity and denoted by D. It is the ratio of

source signal power to the noise power at the array output [28]. Noise is assumed to

be isotropic which means that it has a uniform distribution over a sphere. Directivity

is calculated as

D =
Bp,l(ϕs, θs)

1
4π

∫ π

0
dθ
∫ 2π

0
dϕ sin θBp,l(ϕ, θ)

(2.32)

where (ϕs, θs) is direction of the source signal. If sensor weight vector w is normal-

ized to obtain Bp,l(ϕs, θs) = 1, 2.32 can be written as evident in [28, Eq. (2.145)],
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D =

(
1

4π

∫ π

0

dθ

∫ 2π

0

dϕ sin θBp,l(ϕ, θ)

)−1

(2.33)

For a linear array, Equation 2.33 is further reduced to [28, Eq. (2.155)],

D =
(
wHSw

)−1
(2.34)

where S is the sinc matrix. nth row and mth column element of the sinc matrix can

be defined as,

Snm ≜ sinc

(
2π

λ
pnm

)
(2.35)

where pnm is the distance between nth and mth sensor. For a uniform line array whose

inter-element distance is λ
2
, 2.35 becomes,

D =
(
wHw

)−1
=
(
∥w∥2

)−1
(2.36)

Directivity D can also be converted to dB scale and it becomes directivity index (DI),

DI = 10 log10D (2.37)

2.6.2 Array Gain

Main aim of using a sensor array is to increase the signal to noise ratio SNR by

summing signals coherently and noise incoherently. This SNR improvement can be

measured by array gain. It is one of the important array performance measures and

denoted by Aw. Array gain can be defined as the ratio of output SNR to input SNR,

Aw =
SNRout

SNRin

(2.38)

where SNRin is the SNR of the signal received by the sensors and SNRout is the SNR

at the array output after beamforming. Array output can be written by applying sensor

weights to the received signals which can be expressed with narrowband signal model

in Equation 2.22,

z(t) = wHy(t) (2.39)
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where t = kT, k = {0, 1, ..., N − 1}, T is the sampling period and N is the number of

snapshots. Power of the array output signal can be found as,

Pz = E{z(t)zH(t)}

= E{
(
wHy(t)

) (
yH(t)w

)
}

= E{
(
wH (a(ϕ, θ)s(t) + e(t))

) ((
sH(t)aH(ϕ, θ) + eH(t)

)
w
)
}

=
(
wHa(ϕ, θ)E{s(t)sH(t)}aH(ϕ, θ)w

)
+
(
wHa(ϕ, θ)E{s(t)eH(t)}w

)
+
(
wHE{e(t)sH(t)}aH(ϕ, θ)w

)
+
(
wHE{e(t)eH(t)}w

)
(2.40)

According to the narrowband array signal model, noise signals in every sensor are un-

correlated with each other. In addition, source signal is modeled as random Gaussian

process and its samples are uncorrelated with noise signal.

E{s(t)sH(t)} =σ2
s (2.41)

E{e(t)eH(t)} =σ2
eIM (2.42)

E{s(t)eH(t)} =01xM (2.43)

E{e(t)sH(t)} =0Mx1 (2.44)

where IM is the identity matrix of dimension M x M , 01xM is the vector of dimension

1 x M with all zero elements and 0Mx1 is the vector of dimension M x 1 with all zero

elements. By using 2.41, 2.42, 2.43 and 2.44, array output power in 2.40 can be

written as,

Pz = wHa(ϕ, θ)σ2
sa

H(ϕ, θ)w + σ2
ew

HIMw (2.45)

By normalizing weight vector w such that wHa(ϕ, θ) = 1, 2.45 is reduced to,

Pz = σ2
s + σ2

ew
Hw (2.46)

SNRin and SNRout can be defined as,

SNRin =
σ2
s

σ2
e

(2.47)

SNRout =
σ2
s

σ2
ew

Hw
(2.48)

By using 2.47 and 2.48, array gain for spatially white noise can be expressed as,

Aw =
SNRout

SNRin

=
1

∥w∥2
=
(
∥w∥2

)−1
(2.49)
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With respect to 2.49, array gain for spatially white noise is equal to the directivity for

a uniform line array with λ/2 element spacing.

Sensitivity to gain, phase and sensor positioning errors is another important array

performance measure. For small error variances and arbitrary array geometry, it is

the inverse of the array gain for spatially white noise case [28, Eq. (2.209)]. It is

denoted by Tse.

Tse = A−1
w = ∥w∥2 (2.50)
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CHAPTER 3

DIRECTION OF ARRIVAL ESTIMATION

Arrays of sensors are used for many different applications in sonar, radar, commu-

nication etc. Using an array of sensors has many advantages over using a single

sensor. For instance, with appropriate signal processing, the signal to noise ratio of

the incoming signal can be increased, and/or the direction of the incoming signal can

be estimated. This estimation problem is known as direction of arrival estimation

(DOA) where the parameter of interest is the direction of incoming signal(s). There is

a vast literature on this subject [28] and many DOA methods. In this chapter we give

a brief review of some of the most commonly used/referred DOA methods.

3.1 Beamforming

Beamforming can be defined as spatial filtering of signals by using a sensor array.

Analogous to filtering of digital/analog signals, a spatial filtering operation can be

achieved using sensor data with different delays. As we have explained in Chapter 2,

the received signals in the sensor array are delayed versions of each other. And these

delays are a known (or predictable) function of sensor positions and the direction of

source signal. Since only the narrowband signal model is considered in this thesis,

the main interest will be on the narrowband beamformer illustrated in Figure 3.1. The

main idea of this signal processing structure, is to align (in time axis) the signal of

interest received by different channels and coherently sum the resulting signals. With

the white noise assumption, delayed noise signals will still be uncorrelated, hence

they will be summed incoherently. The main objective is to exploit this processing

gain obtained by the coherent sum of the desired signals over the incoherent summa-
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Figure 3.1: Time-domain narrowband beamformer

tion of noise signals. The delays and/or gains to be applied to each sensor channel

can be represented by a complex number, {wn}Mn=1, which is the nth element of the

weight vector w. In mathematical form, elements of the sensor weight vector w

are multiplied with the received channels and summed to steer the beam to desired

direction,

z(t) =
M−1∑
n=0

w∗
nyn(t) = wHy(t) (3.1)

where t = kT , k = {0, 1, ..., N − 1}, T is the sampling period and N is the number

of snapshots. Power of the beamformer output can be found by,

Pz =
1

N

N−1∑
k=0

|z(kT )|2

=
1

N

N−1∑
k=0

wHy(kT )yH(kT )w

= wH 1

N

(
N−1∑
k=0

y(kT )yH(kT )

)
w (3.2)
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Different DOA methods require the knowledge of the exact covariance of the received

signal vector y, which is in general not available, hence needs to be estimated. The

most common method to do so is to estimate it with the sample covariance matrix

and denoted by R̂y [4],

R̂y =
1

N

N−1∑
k=0

y(kT )yH(kT ) (3.3)

In order sample covariance matrix to converge the exact covariance, we need a large

number of snaphots (N ). In practice this number is in general limited to much smaller

values than desired. Note that the term in parentheses in (3.2) is the sample covariance

matrix, hence we can simplify the output power to the following,

Pz = wHR̂yw (3.4)

3.2 DOA Estimation with Beamforming

One of the methods used for finding DOA angles of sources is forming a spatial spec-

trum with beamforming. Array is steered to one direction at a time by selecting the

sensor weight vector w and the output power is recorded. Spatial power spectrum

is found by repeating it for every angle of interest. Peak points represent the direc-

tions with maximum powers and they are classified as DOA estimates for the source

signals. Spatial spectrum with beamforming can be written as,

Pz (ϕ, θ) = wH (ϕ, θ) R̂yw (ϕ, θ) (3.5)

where (ϕ, θ)∈{(ϕ1, θ1) , · · · , (ϕL, θL)} is the steering direction, w (ϕ, θ) is the sensor

weight vector used for steering the array to (ϕ, θ), Pz (ϕ, θ) is the beamformer output

power for the direction (ϕ, θ) and L is the number of steering angle pairs.

Sensor weights can be selected to maximize signal to interference and noise ratio

(SINR) by minimizing the output power due to the noise and interference signals. Be-

fore giving the SINR equation, narrowband array signal model is modified by adding

the interference signal as follows,

y(t) = a(ϕ0, θ0)s0(t) + a(ϕ1, θ1)s1(t) + e(t) (3.6)
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where (ϕ0, θ0) is the direction of the desired signal, (ϕ1, θ1) is the direction of the

interference signal, s0(t) is the desired signal and s1(t) is the interference signal.

Equation 3.6 can be written as the summation of the desired source and interference-

noise combination components,

y(t) = s(t) + n(t) (3.7)

where s(t) = a(ϕ0, θ0)s0(t) and n(t) = a(ϕ1, θ1)s1(t) + e(t). Then, covariance

matrices of the desired signal and interference-noise components can be written as,

Rs = E{s(t)sH(t)} (3.8)

Rn = E{n(t)nH(t)} (3.9)

After expressing the signal and noise-interference covariance matrices in 3.8 and 3.9,

SINR is defined as,

SINR =
wHRsw

wHRnw
(3.10)

To pass the desired signal from the beamformer undistorted, sensor weight vector w

is selected such as,

wHRsw = 1 (3.11)

Equation 3.11 is valid for multiple number of source signals. If there is a single

source, 3.11 is simplified as,

wHa(ϕ0, θ0) = 1 (3.12)

where (ϕ0, θ0) is the DOA of the single source. Then, beamformer weight vector

selection problem can be written as

max
w

wHRsw
wHRnw

subject to wHRsw = 1
(3.13)

By inserting the undistorted response constraint into the cost function, 3.13 becomes,

min
w

wHRnw

subject to wHRsw = 1
(3.14)

According to Equation 3.14, maximizing SINR is equal to minimizing the output

power of noise and interference with the undistorted response constraint. Equation

22



3.14 is valid for multiple number of sources. For a single source case, this optimiza-

tion problem can be rewritten by using the constraint in 3.12,

min
w

wHRnw

subject to wHa(ϕ0, θ0) = 1
(3.15)

where (ϕ0, θ0) is the steering direction. In Section 2.6, source and noise samples are

assumed to be uncorrelated according to the narrowband array signal model. Inter-

ference signal can also be modeled as random Gaussian process and assumed to be

uncorrelated with both desired signal and noise. In that case, correlations between

desired signal, interference and noise can be written as,

Rs =E{s(t)sH(t)} = σ2
sa(ϕ0, θ0)a

H(ϕ0, θ0) (3.16)

Ri =E{(a(ϕ1, θ1)s1(t)) (a(ϕ1, θ1)s1(t))
H} = σ2

i a(ϕ1, θ1)a
H(ϕ1, θ1) (3.17)

Re =E{e(t)eH(t)} = σ2
eIM (3.18)

E{s0(t)eH(t)} = 01xM (3.19)

E{s1(t)eH(t)} = 01xM (3.20)

E{e(t)s∗0(t)} = 0Mx1 (3.21)

E{e(t)s∗1(t)} = 0Mx1 (3.22)

Rn =E{n(t)nH(t)} = Ri +Re (3.23)

where IM is the identity matrix of dimension M x M , 01xM is the vector of dimension

1 x M with all zero elements and 0Mx1 is the vector of dimension M x 1 with all zero

elements. With these equations, covariance matrix of the received signal vector y(t)

can be written as,

Ry = E{y(t)yH(t)} = Rs +Rn (3.24)

By using 3.24, power of the beamformer output can be expressed as

Pz (ϕ, θ) = wH (ϕ, θ)Ryw (ϕ, θ)

= wH (ϕ, θ) (Rs +Rn)w (ϕ, θ)

= wH (ϕ, θ)Rsw (ϕ, θ) +wH (ϕ, θ)Rnw (ϕ, θ) (3.25)

Since the output power of the desired signal component is fixed for undistorted re-

sponse in Equation 3.11 and 3.12, beamformer weight selection problems in Equation
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3.14 and 3.15 can also be defined as,

min
w

wHRyw

subject to wHRsw = 1
(3.26)

min
w

wHRyw

subject to wHa(ϕ0, θ0) = 1
(3.27)

Different beamformer weights can be found by changing the cost function or con-

straints. Two of these methods will be explained in the following two subsections.

3.2.1 Bartlett Beamformer

Bartlett beamformer is an application of Fourier based spectral analysis [3] to the

array processing [4]. It is also known as conventional beamformer. Sensor weights in

this beamformer have a closed form expression and its computational complexity is

low. Due to these properties, it is one of the most widely used techniques in practice.

Sensor weight calculation is independent of the sensor data. Therefore, it does not

give statistically optimum weights. Despite of the non-optimum results, it is also a

robust method against the misplacement of the nulls in the beampattern. Since it is

a data independent method, optimization problem for Bartlett beamformer is written

by replacing the covariance matrix Ry with identity matrix IM in Equation 3.27,

min
w

wHw

subject to wHa(ϕ0, θ0) = 1
(3.28)

Solution of the optimization problem in 3.28 can be found using the Lagrange multi-

plier technique,

L =
(
wHw

)
+ λ

(
1−wHa(ϕ0, θ0)

)
+ λ∗ (1−wTa∗(ϕ0, θ0)

)
∂L
∂wH

= w − λa(ϕ0, θ0) = 0

wH = λaH(ϕ0, θ0)

wHa(ϕ0, θ0) = λaH(ϕ0, θ0)a(ϕ0, θ0) (3.29)
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Note that wHa(ϕ0, θ0) = 1 as optimization constraint dictates.

λ =
1

aH(ϕ0, θ0)a(ϕ0, θ0)

w =
a(ϕ0, θ0)

aH(ϕ0, θ0)a(ϕ0, θ0)
=

a(ϕ0, θ0)

M
(3.30)

Solution of the optimization problem in Equation 3.28 is the array manifold vector

that is scaled by the number of sensors M. Spatial power spectrum for Bartlett beam-

former can be found by putting 3.28 into 3.5,

Pz (ϕ, θ) =
aH (ϕ, θ) R̂ya (ϕ, θ)

M2
(3.31)

where (ϕ, θ)∈{(ϕ1, θ1) , · · · , (ϕL, θL)} is the steering direction, Pz (ϕ, θ) is the power

of the beamformer output for the direction (ϕ, θ), R̂y is the sample covariance matrix

which is calculated from the available received data snapshots, L is the number of

steering angle pair and M is the number of sensors.

3.2.2 Capon Beamformer

Capon beamformer [5] is an adaptive beamforming technique. Adaptive beamformers

update their solution for a minimization problem using estimated parameters from the

most recent array data. In Capon beamformer, minimization of output power is aimed

while having a unity gain in the steering direction (ϕ, θ). Optimization problem for

Capon beamformer is as follows,

min
w

wHRyw

subject to wHRsw = 1
(3.32)

MVDR (minimum variance distortionless) beamformer is another adaptive technique

used in the beamforming. Minimization of output power due to noise and interference

is aimed while having a unity gain in the steering direction (ϕ, θ). In [33], optimiza-

tion problem for MVDR beamformer is written as,

min
w

wHRnw

subject to wHRsw = 1
(3.33)

Since source and noise samples are uncorrelated in the array signal model, minimiza-

tion of the array output power means minimization of the output power of noise and
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interference as it is shown in Equation 3.25. Therefore, both optimization problems

in 3.32 and 3.33 give the same result. Solution of the optimization problem in 3.32

can be found using the Lagrange multiplier technique,

L =
(
wHRyw

)
+ λ

(
1−wHRsw

)
+ λ∗ (1−wTRsw

∗)
∂L
∂wH

= Ryw − λRsw = 0

Rsw =
1

λ
Ryw

R−1
y Rsw =

1

λ
w (3.34)

Equation 3.34 is a generalized eigenvalue problem [34]. Solution of this problem is

the eigenvector corresponding to the maximum eigenvalue of R−1
y Rs. For a single

source scenario, Capon optimization problem can be written by changing the con-

straint of 3.32,
min
w

wHRyw

subject to wHa(ϕ0, θ0) = 1
(3.35)

Solution of the optimization problem in 3.35 can also be found using the Lagrange

multiplier technique,

L =
(
wHRyw

)
+ λ

(
1−wHa(ϕ0, θ0)

)
+ λ∗ (1−wTa∗(ϕ0, θ0)

)
∂L
∂wH

= Ryw − λa(ϕ0, θ0) = 0

Ryw = λa(ϕ0, θ0)

w = λR−1
y a(ϕ0, θ0)

1 = wHa(ϕ0, θ0)

1 = λaH(ϕ0, θ0)R
−1
y a(ϕ0, θ0)

λ =
1

aH(ϕ0, θ0)R−1
y a(ϕ0, θ0)

w =
R−1

y a(ϕ0, θ0)

aH(ϕ0, θ0)R−1
y a(ϕ0, θ0)

(3.36)

Spatial power spectrum for Capon beamformer can be found by putting 3.36 into 3.5,

Pz (ϕ, θ) =
1

aH (ϕ, θ)R−1
y a (ϕ, θ)

(3.37)

where (ϕ, θ)∈{(ϕ1, θ1) , · · · , (ϕL, θL)} is the steering direction, Pz (ϕ, θ) is the power

of the beamformer output for the direction (ϕ, θ), R̂y is the sample covariance matrix
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which is calculated from the available received data snapshots and L is the number

of steering angle pair. Since covariance matrices Ry, Rs and Rn are not available

in practice, sample covariance matrix R̂y is used for sensor weight calculation. This

technique is known as SMI (sample matrix inverse) beamformer. Using sample co-

variance matrix, 3.36 and 3.37 becomes,

w =
R̂−1

y a(ϕ0, θ0)

aH(ϕ0, θ0)R̂−1
y a(ϕ0, θ0)

(3.38)

Pz (ϕ, θ) =
1

aH (ϕ, θ) R̂−1
y a (ϕ, θ)

(3.39)

3.3 DOA Estimation with Subspace Based Methods

Another method for finding DOA angles of sources is forming a spatial spectrum

with subspace methods. Most distinctive advantage of subspace techniques over the

classical DOA methods is observed when there are more than two sources. Classi-

cal methods can resolve two targets which are separated by half of the null-to-null

beamwidth. This limit was defined as Rayleigh resolution limit in Section 2.5. Sub-

space based methods are able to perform beyond this limit, and thus, they are called

super-resolution methods [35].

3.3.1 MUSIC

MUSIC (MUltiple SIgnal Classification) is probably the most well known subspace

technique used in DOA estimation [11]. This method divides the signal subspace and

noise subspace using the covariance matrix and orthogonality assumptions. Covari-

ance matrix of the received signal model in 2.23 can be written as,

Ry = E{y(t)yH(t)}

= AE{SSH}AH +Re

= ACAH + σ2
eI (3.40)

where A = [a(ϕ1, θ1), a(ϕ2, θ2), · · · , a(ϕP−1, θP−1)] is the array manifold matrix,

C is the source covariance matrix, σ2
e is the noise variance and P is the number of
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sources. Manifold matrix A is assumed to have full rank if the array is unambigu-

ous [4]. Number of sensors M should be greater than number of sources P for A

having full column rank. C is of rank P when the sources are uncorrelated and num-

ber of snapshots N is larger than number of sensors M. Then, ACAH has rank P.

Eigenvectors and eigenvalues of the covariance matrix in 3.40 can be found with

eigendecomposition,

Ry = UΣUH (3.41)

where Σ = diag {λ1, · · · , λM} is the diagonal matrix with positive eigenvalues in a

descending order. There are M −P linearly independent eigenvectors with eigenval-

ues (λP+1 = · · · = λM = σ2
e) and these eigenvectors form noise subspace UN . Re-

maining P eigenvectors are also linearly independent and form signal subspace US

with corresponding eigenvalues (λ1 ≥ · · · ≥ λP > σ2
e). Note that columns of noise

subspace UN is orthogonal to manifold matrix A. This can be shown as,

RyUN = σ2
eIUN

ACAHUN + σ2
eUN = σ2

eUN

ACAHUN = 0Mx(M−P)

AHUN = 0Mx(M−P) (3.42)

Range space spanned by array manifold matrix A is the same with the range space

spanned by the source subspace US since C has full rank [4]. Therefore, eigende-

composition of covariance matrix in Equation 3.41 can be written as,

Ry = USΣSU
H
S +UNΣNU

H
N (3.43)

where ΣS = diag {λ1, · · · , λP} and ΣN = diag {λP+1, · · · , λM}. By using the or-

thogonality between manifold matrix and noise subspace, DOA angles of the sources

can be found by solving aH (ϕ, θ)UNU
H
Na (ϕ, θ) = 0. True DOA angles can be

estimated from spatial MUSIC power spectrum that is calculated as,

PMUSIC (ϕ, θ) =
1

aH (ϕ, θ)UNUH
Na (ϕ, θ)

(3.44)

where (ϕ, θ)∈{(ϕ1, θ1) , · · · , (ϕL, θL)} is the steering direction and L is the number

of steering angle pair. Since covariance matrix Ryis not available in practice, sample

covariance matrix R̂y should be used for finding the noise subspace. MUSIC algo-

rithm for DOA estimation is summarized in Algorithm 1. MUSIC is a statistically
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Figure 3.2: Spatial spectra using Bartlett, Capon and MUSIC methods on a M = 10

element ULA with N = 1000, P = 2, SNR = 10 dB

efficient and consistent estimator [4]. Its performance attains Cramer-Rao Bound

(CRB) and it estimates true value as the number of snapshots N goes to infinity. For

coherent sources, this method does not work unless spatial smoothing is applied on

the sample covariance matrix R̂y [4].

An example of spatial spectra for Bartlett, Capon and MUSIC methods are illustrated

in Figure 3.2. A uniform line array with λ/2 spacing and M = 10 elements is used and

the spatial spectrum is generated by using N = 1000 snapshots. There are P = 2 nar-

rowband sources with SNR = 10 dB and DOA angles of them are {80◦, 100◦}. Peaks

in Capon and MUSIC spectrum is much sharper than the ones in Bartlett spectrum

which results in better target separation for Capon and MUSIC techniques. Peak

levels in Bartlett and Capon spectrum show true source levels at the sensor input,

whereas peak levels at the MUSIC spectrum are greater. By using a covariance ma-

trix that is calculated with infinite snapshots, peaks in the MUSIC spectrum tend to

infinity since the manifold vectors corresponding to source DOA angles are orthog-

onal to noise space. Despite of performing beyond the Rayleigh limit, Capon and

MUSIC methods suffer from coherent sources and cannot separate sources in that
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Algorithm 1 MUSIC Algorithm
1: Compute manifold matrix for the array

A = [a (ϕ1) , · · · , a (ϕL)]

2: Compute sample covariance matrix

R̂y =
∑N−1

k=0 y(kT )yH(kT )

3: Perform eigendecomposition

Ry = UΣUH

4: Construct noise subspace matrix by choosing the eigenvectors belonging to the

smallest M-P eigenvalues

ΣN = diag {λP+1, · · · , λM}
UN = [uP+1, · · · ,uM ]

5: for (ϕ, θ) = {(ϕ1, θ1) , · · · , (ϕL, θL)} do

6: Compute spatial spectrum for direction (ϕ, θ)

PMUSIC (ϕ, θ) = 1
aH(ϕ,θ)UNUH

Na(ϕ,θ)

7: end for

8: Find the DOA angle estimates by finding P highest peaks in the spectrum

case. This is also valid for Bartlett method. To solve the coherent source problem,

spatial smoothing method is applied onto the sensor data before using DOA estima-

tion methods. Details of spatial smoothing is given in Section 3.5

3.4 DOA Estimation with Dual Apodization

Beamwidth and PSL of an array (using Bartlett beamformer) are inversely propor-

tional to each other. Advantages of narrow beamwidth and low PSL can be brought

together by using dual apodization method. In [9], concept of nonlinear apodization

is proposed to control the sidelobe levels for frequency estimation. It generates a

spectrum by selecting the minimum of outputs of the multiple windows. There is a

duality between DFT operation and beamforming for linear arrays. By using this idea,

dual apodization technique is applied on the sensor arrays in [10]. In order to apply

this method, two different subarrays are selected and Bartlett beamformer weights are
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used as the sensor weights. Then,

wS1,k (ϕ) = ej
2π
λ
dS1,k cos(ϕ) k = 1, · · · ,MS1

wS2,k (ϕ) = ej
2π
λ
dS2,k cos(ϕ) k = 1, · · · ,MS2

wS1 (ϕ) = [wS1,1 (ϕ) , · · · , wS1,MS1
(ϕ)]T (3.45)

wS2 (ϕ) = [wS2,1 (ϕ) , · · · , wS2,MS2
(ϕ)]T (3.46)

where ϕ is the steering direction, wS1,k (ϕ) is the weight for kth sensor in the subarray-

1, wS2,k (ϕ) is the weight for kth sensor in the subarray-2, wS1 (ϕ) is the weight vector

for the subarray-1, wS2 (ϕ) is the weight vector for the subarray-2, MS1 is the number

of sensors in the subarray-1 and MS2 is the number of sensors in the subarray-2. After

calculating the weight vectors for both subarrays, spatial spectrums are generated as

PS1 (ϕ) = wH
S1 (ϕ) R̂ywS1 (ϕ) ϕ = 0◦, · · · , ϕL (3.47)

PS2 (ϕ) = wH
S2 (ϕ) R̂ywS2 (ϕ) ϕ = 0◦, · · · , ϕL (3.48)

where R̂y is the sample covariance matrix, ϕL is the upper limit for the steering angle,

PS1 (ϕ) and PS2 (ϕ) are the spatial spectrums of subarray-1 and subarray-2. Output

of the dual apodization spectrum is found by selecting the minimum value for each

angle.

PDA (ϕ) = min {PS1 (ϕ) , PS2 (ϕ)} ϕ = 0◦, · · · , ϕL (3.49)

3.5 Spatial Smoothing

Signals have many reflections from physical objects in the environment. In addition

to these multipath components, interference signals can be transmitted for jamming

purposes. Multipath and jamming signals are coherent which causes a rank deficiency

in the source covariance matrix C. As a result, eigenvector corresponding to coher-

ent source is a column vector in the noise subspace UN instead of signal subspace

US . Then, UH
Na (ϕ, θ) ̸= 0 and MUSIC algorithm will fail. In general, targets close

to each other will not be separated in case of high correlation for the DOA estima-

tion methods presented in this chapter. To restore the rank deficiency problem in the

source covariance matrix, spatial smoothing method is proposed in [36] for DOA es-

timation problem. In this method, uniform line array is divided into some overlapping
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subarrays. Since these subarrays are identical, manifold vectors of them can also be

assumed to be identical. This method is based on averaging covariance matrices of all

subarrays. Coherent signals are decorrelated with the random phase modulation due

to the averaging process [4]. Spatially smoothed covariance matrix can be calculated

as

R̃y =
1

K

K∑
k=1

ZkRyZk
T (3.50)

where Zk =
[
0Lx(k−1) IL 0Lx(M−L−k+1)

]
, L is the number of sensors in the

subarray, M is the number of sensors in the array and K = M − L + 1 is the num-

ber of subarrays. Rank of the spatially smoothed covariance matrix R̃y increases by

K − 1 with K subarray until R̃y becomes full rank [37]. Main disadvantage of spa-

tial smoothing technique is decreased aperture size since the aperture of the subarray

is smaller than the aperture of the original array. Despite of this problem, it solves

the coherent source problem for subspace based DOA estimators which requires less

computations than the parametric DOA estimators such as deterministic maximum

likelihood (DML) and stochastic maximum likelihood (SML). Spatial smoothing can

only be applied on translational invariant arrays such as uniform line or uniform rect-

angular arrays. For other arrays, some transformation on the sensor data should be

made in order to use spatial smoothing. In terms of the parameters, spatial smoothing

requires

M ≥ 2P (3.51)

L > P (3.52)

K ≥ P (3.53)
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CHAPTER 4

DOA ESTIMATION WITH DIFFERENCE COARRAY

With classical DOA estimation methods (Bartlett beamformer, MVDR beamformer

and MUSIC) presented in Chapter 3 the maximum number of resolvable sources is

M-1, where M is the number of sensors. Hence with these methods the degree of

freedom (DOF) of an M element array is M. Sparse linear arrays were proposed with

coarray processing algorithms to overcome this limitation. It is possible to reach

O (M2) DOF with O (M) sensors with second-order statistics. By using the data

obtained from real sensors, sensor signals of a virtual array with an increased DOF

can be obtained.

In this chapter, concept of difference coarray will be explained with related parame-

ters and sparse array types that are mainly used in difference coarray processing. In

addition, spatially smoothed MVDR (SS MVDR) beamformer and spatially smoothed

MUSIC (SS MUSIC) methods will be given as coarray DOA estimation methods.

4.1 Coarray Parameters

Sensor locations in a linear array can be defined as integer multiples of half wave-

length of the narrowband sources such that S ≜ {nλ/2 | n ∈ Z}. Sensor array will

be denoted by the integer set S throughout this chapter. As an example, sensor posi-

tions of a uniform linear array of 5 sensors with λ/2 spacing can be represented with

S = {0, 1, 2, 3, 4}. In this section, most common parameters for difference coarrays

will be given.
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4.1.1 Difference Coarray

Difference coarray of the array S is denoted by D and can be defined as

D ≜ {n1 − n2 | n1, n2 ∈ S} (4.1)

Difference coarray set D in 4.1 includes only unique values of sensor position differ-

ences n1−n2. Virtual sensor positions given by D are used in coarray DOA estimation

methods. As an example, difference coarray of a uniform linear array with 5 sensors

can be shown as D = {−4,−3,−2,−1, 0, 1, 2, 3, 4}.

4.1.2 Weight Function

Weight function gives the number of occurrences of same position difference for a

given difference coarray D. Weight function of array S can be defined as

w [m] ≜
∣∣{(n1, n2) ∈ S2 | n1 − n2 = m, m ∈ D

}∣∣ (4.2)

Weight function of difference coarray D can be computed as autocorrelation of func-

tion c [m] which can be defined as

c [m] =

1 if there is a sensor at mλ/2

0 otherwise
(4.3)

w [m] = c [m]⊛ c [−m] (4.4)

where ⊛ is the convolution operator. In [16], properties of weight function for an M

sensor array are listed as

1. w [0] = M

2. 1 ≤ w [m] ≤ M − 1 ∀m ∈ D \ {0}

3. w [m] = w [−m] ∀m ∈ D

4.
∑

m∈D\{0}w [m] = M (M − 1)

As an example, weight function of a uniform linear array with 5 sensors can be shown

as w [0] = 5, w [±1] = 4, w [±2] = 3, w [±3] = 2, w [±4] = 1.
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4.1.3 Coarray Holes

Value of the weight function at any lag may not be a positive integer. For an M

element array, largest value in D is M−1. Holes are the set of numbers which are the

zero weight lag values of D and can take value between −M + 2 and M + 2. Holes

of an coarray can be defined as

H ≜ {n | w [n] = 0, −M + 1 < n < M − 1} (4.5)

4.1.4 Central ULA Segment

Central ULA segment of the array S is the largest subset of D such that there are no

holes in it. It can be defined as

U ≜ {0,±1, · · · ,±m | m ∈ D} (4.6)

where m is the largest consecutive integer in D. Target separation performance of

coarray DOA estimators such as SS MUSIC is limited by central ULA segment since

aperture of the virtual array depends on it [16]. When there is no hole in D, U = D.

This is the case for ULA since |H| = 0 where |H| is the cardinality of H. In our case,

cardinality operator |.| gives the number of elements in H.

4.1.5 Redundancy

Redundancy of the array S is a measure of central ULA segment U with respect to

the number of sensors M . In [13], redundancy is defined as

R ≜
M (M − 1)

|U| − 1
(4.7)

where |U| is the number of integers in central ULA segment U (cardinality of U).

ULA is the maximum redundancy array configuration for a fixed sensor number.

4.1.6 Fragility

Fragility is a measure of robustness of difference coarray against broken sensors [15].

If the sensor at n in S is broken and the difference coarray D does not change, it
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is called an inessential sensor. Otherwise, it can be named as an essential sensor.

In [15], fragility is defined as

F ≜
Messential

M
(4.8)

where M is the number of sensors and Messential is the number of essential sensors

in the array S. Fragility of an array can take values between 2/M and 1 for M ≥ 4.

Minimum fragility value 2/M is obtained for ULA and maximum fragility value 1

is obtained for minimum redundancy arrays (MRA), minimum hole arrays (MHA)

and nested arrays [15]. Robustness of an array against sensor failure increases as the

fragility value decreases.

4.2 Sparse Linear Array Types for Coarray DOA Estimation

Number of detectable sources for an array depends on the size of the difference coar-

ray and central ULA segment. Main target for designing a sparse linear array with

coarray methods is to obtain D or U which have larger number of elements with de-

sired number of real sensors. There are many different sparse array configurations

which are available in the literature. Among those solutions, perfect array, non-

redundant array, nested array, minimum redundancy array and robust minimum re-

dundancy array will be explained in this section.

4.2.1 Perfect Array

Perfect array is the most efficient array type in terms of spatial sampling. There is no

hole in its difference coarray and D = U is obtained. Its weight function satisfies

w [m] = 1 ∀m ∈ D \ {0} (4.9)

Because of having unity value in its weight function except for m = 0, perfect array

has the largest aperture among other types of sparse arrays without having a hole in

its difference coarray. Despite having redundancy value of 1, perfect array exists for

M ≤ 4 [13]. As an example, array geometry of 4-sensor perfect array, non-negative

part of its difference coarray and its weight function values corresponding to non-

negative lags are shown in Figure 4.1.
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Figure 4.1: Sensor locations, non-negative part of the difference coarray and weight

function values corresponding to non-negative lags for perfect array with M = 4,D =

{0,±1, · · · ,±6} , U = {0,±1, · · · ,±6} , R = 1, F = 1

4.2.2 Minimum Hole Array

Another type of efficient sparse linear array is minimum hole array (MHA) which is

also called non-redundant array, Golomb array or minimum gap array [14]. Some

holes exist in its difference coarray D when its weight function satisfies

w [m] ≤ 1 ∀m ∈ D \ {0} (4.10)

Main aim of using a MHA is to obtain minimum number of holes and distinct lag

values in the difference coarray. Since it is a partially augmentable array, maximum

number of detectable sources is limited by |U| with DOA estimation methods used

for fully augmentable arrays [38]. Array configurations of MHA for M ≤ 4 is the

same with perfect arrays. As an example, array geometry of 6-sensor MHA, non-

negative part of its difference coarray and its weight function values corresponding to

non-negative lags are shown in Figure 4.2.
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Figure 4.2: Sensor locations, non-negative part of the difference coarray and weight

function values corresponding to non-negative lags for MHA with M = 6, D =

{0,±1, · · · ,±13,±16,±17} , U = {0,±1, · · · ,±13}, R = 1.1538, F = 1

4.2.3 Minimum Redundancy Array

Minimum redundancy array (MRA) has the maximum array aperture with a hole-free

difference coarray which has the minimum redundancy for a fixed number of sen-

sors [13]. Redundancy of an array can be calculated using Equation 4.7. For a fixed

number of sensors, minimizing redundancy R increases the central ULA length |U|
which affects the angular resolution of DOA estimation methods such as SS-MVDR

and SS-MUSIC. As number of elements in the central ULA segment U increases,

beamwidth of the difference coarray D decreases. Since largest central ULA segment

with fixed number of sensors is obtained with MRA, it has higher DOF than other

sparse linear arrays. In addition, it gives smaller DOA error with DOA estimation

methods for fully augmentable arrays. As an example, array geometry of 6-sensor

MRA, non-negative part of its difference coarray and its weight function values cor-

responding to non-negative lags are shown in Figure 4.3.
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Figure 4.3: Sensor locations, non-negative part of the difference coarray and weight

function values corresponding to non-negative lags for MRA with M = 6, D =

{0,±1, · · · ,±13} , U = {0,±1, · · · ,±13} , R = 1.1538, F = 1

4.2.4 Robust Minimum Redundancy Array

MRA is not robust against sensor failure since its difference coarray changes and

length of central ULA segment shrinks. Fragility is used as a measure of an array’s

robustness against sensor failure. Fragility of MRA is calculated as 1 by using Equa-

tion 4.8. On the other hand, ULA is one of the robust arrays against sensor failure. Its

fragility is 2/M since the only essential sensors of ULA is first and last ones. There is

a compromise between redundancy R and fragility F . Robust minimum redundancy

array (RMRA) is proposed in [15] as a solution to this problem. RMRA is as robust

as ULA since its fragility is 2/M . Its aperture and length of central ULA segment is

smaller than MRA with the same number of sensors as a result of decrease in fragility.

RMRA is suitable for SS-MVDR and SS-MUSIC methods since there is no hole in its

difference coarray. As an example, array geometry of 6-sensor RMRA, non-negative

part of its difference coarray and its weight function values corresponding to non-

negative lags are shown in Figure 4.4.
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Figure 4.4: Sensor locations, non-negative part of the difference coarray and weight

function values corresponding to non-negative lags for RMRA with M = 6, D =

{0,±1, · · · ,±6} , U = {0,±1, · · · ,±6} , R = 2.5, F = 0.333

4.2.5 Nested Array

Nested array is formed by concatenation of multiple uniform line arrays. It has a

simple array geometry and closed-form expression for sensor positions unlike perfect

array, MHA, MRA and RMRA. Array design with large number of sensors is easier

for nested arrays due to closed-form expressions, whereas it requires a combinatorial

search for other sparse arrays (4.2.1, 4.2.2, 4.2.3, 4.2.4) mentioned in this section.

According to [16], sensor positions of a nested array with ’K-level’ can be expressed

as

S = ∪K
i=1Si (4.11)

Si =

{
−d+ nd

i−1∏
j=1

(Mj + 1) , n = 1, 2, · · · ,Mi

}
i = 2, · · · , K (4.12)

S1 = {(n− 1) d, n = 1, 2, · · · ,M1} (4.13)
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where Mi is the number of sensors for ith level ULA, d is the element spacing of first

level ULA and K,M1, · · · ,MK ∈ N+. Equation 4.12 means that element spacing

of ith level ULA is (Mi−1 + 1) times the spacing of (i− 1)th level ULA. Having no

hole in the difference coarray is important for DOA estimation methods such as SS-

MVDR and SS-MUSIC. Holes exist in the difference coarray of nested array with

K > 2 levels. Therefore, two-level nested arrays are used for obtaining hole-free

coarray. As an example, array geometry of 6-sensor nested array, non-negative part

of its difference coarray and its weight function values corresponding to non-negative

lags are shown in Figure 4.5.
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Figure 4.5: Sensor locations, non-negative part of the difference coarray and weight

function values corresponding to non-negative lags for nested array with M = 6, D =

{0,±1, · · · ,±11} , U = {0,±1, · · · ,±11} , R = 1.364, F = 1

4.3 Coarray Processing Methods for DOA Estimation

Difference coarray concept is used for increasing the DOF that can be obtained with

a sensor array. O (M2) DOF is reached by using M sensors with wider aperture as a
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result of using difference coarray. Hole-free central ULA segment U of the difference

coarray D gives the virtual sensor locations for coarray processing methods. In sec-

tion 2.2, narrowband signal model for an M -sensor array is given in Equation 2.23.

For P narrowband sources whose DOA angles are {ϕ1, · · · , ϕP}, covariance matrix

of the data received by the sensors can be written as

Ry = E{yyH}

= A


σ2
1

. . .

σ2
P

AH + σ2
eIM (4.14)

where y ∈ CM×N is the sensor data matrix, {σ2
1, · · · , σ2

P} are powers of uncorrelated

sources and σ2
e is the noise power. By vectorizing the covariance matrix, data vector

for the difference coarray is expressed in [16].

yV = vec (Ry)

= vec

(
P∑

k=1

σ2
ka(ϕk)a

H(ϕk)

)
+ σ2

e 1⃗e

= (A∗ ⊙A)v + σ2
e 1⃗e (4.15)

where v = [σ2
1, · · · , σ2

P ]
T , 1⃗e =

[
eT1 , · · · , eTP

]T and ek is a column vector where its

kth element is 1 with remaining ones being 0. v denotes the source signal vector for

the difference coarray. Sign ⊙ denotes Khatri-Rao product which can be defined as

the column-wise Kronecker product of two matrices. A∗⊙A represents the manifold

matrix of the difference coarray which can be defined as

A∗ ⊙A = [a∗(ϕ1)⊗ a(ϕ1), · · · , a∗(ϕP )⊗ a(ϕP )] (4.16)

where ⊗ denotes the Kronecker product. There are w [k] repeated rows in A∗ ⊙ A

which correspond to lag k. Size of A∗ ⊙ A is M2 × P but some of its rows are

exact replicas of each other when w [k] > 1 and it has |D| unique rows. To reduce

the number of computations for generating the spatial spectrum, rows of the coarray

sensor data yD corresponding to the repeated rows of manifold matrix A∗ ⊙ A can

be removed and remaining rows can be sorted in an increasing order of coarray lags.

Then, the data vector for the difference coarray becomes

yD = ADv + σ2
e 1̄e (4.17)
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where AD = [aD (ϕ1) , · · · , aD (ϕP )] is the array manifold matrix of unique elements

of the difference coarray and 1̄e ∈ R|D|×1 is the noise vector whose ((|D|+ 1) /2)th

element is 1 and the others are 0. Covariance matrix that will be used for coarray

DOA estimation methods can be calculated as

RyD ≜ yDyD
H (4.18)

For DOA estimation using coarrays, covariance matrix augmentation and its variants

were studied in the earlier works despite of some disadvantages. Not obtaining a pos-

itive semi-definite covariance matrix with limited number of snapshots [39, 40] and

requiring use of minimum redundancy arrays [41, 42] are some drawbacks of aug-

mented covariance matrix method. In recent studies, new DOA estimation methods

are shown by combining subspace techniques with Khatri-Rao product without hav-

ing any problem caused by covariance matrix augmentation [16, 17]. In this section,

these methods are explained in detail.

4.3.1 Classical Coarray Beamforming

Classical beamforming for the difference coarray [16] is similar to the Bartlett beam-

former which is explained in 3.2.1. It differs from Bartlett beamformer by using sig-

nal powers instead of signal amplitudes due to the signal model difference between

Equation 2.22 and 4.17. By using the weight w, beamformer output can be found as

zD = wHyD

=
P∑

k=1

wHaD (ϕk)σ
2
k + σ2

ew
H1̄e

=
P∑

k=1

BD (ϕk)σ
2
k + σ2

ew
H1̄e (4.19)

where BD (ϕ) is defined as the beampattern of difference coarray D. It is a nonlin-

ear beamformer since it uses the autocorrelation of the data received by the sensors.

Beamformer output zD is formed by weighted sum of the source powers with respect

to BD (ϕk) and scaled noise variance. Weight vector of direction ϕk is the normalized

array manifold matrix for undistorted response.

w =
aD (ϕk)

|D|
(4.20)
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Spatial spectrum obtained with classical coarray beamformer can be found by putting

Equation 4.20 and 4.18 into 3.4.

PzD (ϕ) =
aH
D (ϕ)RyDaD (ϕ)

|D|2
(4.21)

where ϕ ∈ {ϕk, k = 1, · · · , L} is the steering direction, PzD (ϕ) is the power of the

beamformer output for the direction ϕ, L is the number of steering angles and |D| is

the number of elements in the difference coarray.

4.3.2 Spatially Smoothed Covariance Matrix

After vectorizing the covariance matrix, source and noise vectors become determin-

istic in the coarray signal model in Equation 4.17. In other words, elements of source

vector are equal to source signal variances which are constant for Gaussian signals.

Elements of the noise vector also take constant values of one and zeros. To increase

the rank of the covariance matrix RyD , spatial smoothing technique shown in 3.5 is

applied onto it. Since the hole free difference coarray is a ULA and the manifold ma-

trix AD has the Vandermonde structure, this technique is suitable for hole-free sparse

arrays such as perfect arrays, MRA and nested arrays. To appy spatial smoothing, the

difference coarray is divided into (|D|+ 1) /2 overlapping subarrays. Each subarray

has (|D|+ 1) /2 elements and overlap size is (|D| − 1) /2. Sensor positions of kth

subarray can be written as

Ssub,k =

{(
k + n− (|D|+ 1)

2

)
λ/2, n = 0, 1, · · · , |D| − 1

2

}
(4.22)

Data vector of kth subarray is denoted by ysub,k and equals to the row k to the row

(k + (|D| − 1) /2) of the coarray data vector yD.

ysub,k = Asub,kv + σ2
e 1̄sub,k (4.23)

where Asub,k = [asub,k (ϕ1) , · · · , asub,k (ϕP )] is the array manifold matrix of the kth

subarray and 1̄sub,k is the noise vector whose (−k + (|D|+ 3) /2)th element is 1 and

the others are 0. Asub,k corresponds to the kth to (k + (|D| − 1) /2)th rows of AD.

Covariance matrix of the kth subarray can be calculated as

Rsub,k ≜ ysub,ky
H
sub,k (4.24)
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After calculating the covariance matrices for each subarray, spatially smoothed co-

variance matrix for difference coarray can be found as

Rss ≜
1

|D|+1
2

(|D|+1)/2∑
k=1

Rsub,k (4.25)

By using spatially smoothed covariance matrix Rss, DOA angles of O (M2) sources

can be estimated with M sensors for DOA estimation methods such as SS MVDR and

SS MUSIC. Despite of reaching highest attainable number of rank for the covariance

matrix, DOF is reduced from |D| to (|D|+ 1) /2 as a result of data smoothing. Since

spatial smoothing technique requires the coarray as a filled ULA, it can not be used

with the sparse arrays whose coarrays have holes.

4.3.3 SS MVDR

MVDR beamformer [33] in 3.2.2 could be utilized for DOA estimation problem us-

ing difference coarray. It is possible for MVDR beamformer to place nulls towards

the interference directions and have a unity gain at the steering direction. Rank of

covariance matrix of the difference coarray RyD is 1 since source and noise signals

are represented by deterministic power vectors v and 1̄e. MVDR beamformer is not

capable of separating fully coherent sources . By using spatial smoothing, full col-

umn rank is reached for the covariance matrix. SS MVDR beamformer is a variant

of MVDR beamformer with a spatially smoothed covariance matrix [16]. SS MVDR

weight for steering direction ϕ can be calculated by inserting Rss instead of R̂−1
y into

the classical MVDR equation in 3.38. Then, SS MVDR weigth and spatial spectrum

equations can be written as

w =
R−1

ss ass(ϕ)

ass
H(ϕ)R−1

ss ass(ϕ)
(4.26)

Pz (ϕ) =
1

ass
H (ϕ)R−1

ss ass (ϕ)
(4.27)

where ass (ϕ) is the reference subarray manifold vector for steering direction

ϕ∈ {ϕk, k = 1, · · · , L}, PzD (ϕ) is the power of the beamformer output for the direc-

tion ϕ and L is the number of steering angles. ass corresponds to the ((|D|+ 1) /2)th

subarray whose sensors are located at
{
nλ/2, n = 0, 1, · · · , |D|−1

2

}
.
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4.3.4 SS MUSIC

Utilizing subspace techniques such as MUSIC is another DOA estimation method

that can be used for difference coarrays [16]. Number of sources should be known

or estimated in order to find the noise subspace correctly. It can be estimated using

eigenvalue based techniques such as Akaike information criterion (AIC) and mini-

mum description length (MDL). However, rank of the covariance matrix of difference

coarray RyD is 1 due to the deterministic source and noise vectors in the data model.

Rank of the covariance matrix can be restored using spatial smoothing. SS MUSIC is

a variant of MUSIC technique with a spatially smoothed covariance matrix. Spatial

spectrum of SS MUSIC is obtained by applying eigen decomposition on Rss instead

of Ry. Then, SS MUSIC spectrum can be written as

PSS−MUSIC (ϕ) =
1

ass
H (ϕ)UN,ssUH

N,ssass (ϕ)
(4.28)

where UN,ss is the noise subspace formed by the eigenvectors of Rss with small-

est M − P eigenvalues {λP+1, · · · , λM}. ass is the manifold matrix of reference

subarray which corresponds to the ((|D|+ 1) /2)th subarray with sensors located at{
nλ/2, n = 0, 1, · · · , |D|−1

2

}
. SS MUSIC algorithm for DOA estimation is sum-

marized in Algorithm 2. An example of spatial spectra for classical coarray beam-

forming, SS MVDR and SS MUSIC methods are illustrated in Figure 4.6. A two

level nested array with M1 = M2 = 5 is used and these spectra are generated by

using N = 100000 snapshots. There are P = 2 narrowband sources with SNR = 10 dB

and DOA angles of them are {80◦, 100◦}. Peaks in SS MVDR and SS MUSIC spec-

trum is much sharper than the ones in classical beamforming spectrum which results

in better target separation for SS MVDR and SS MUSIC techniques. Peak levels in

classical beamforming and SS MVDR spectrum show true source levels at the sensor

input, whereas peak levels at the SS MUSIC spectrum are greater.
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Figure 4.6: Spatial spectra using classical coarray beamforming, SS MVDR and SS

MUSIC methods on a two level nested array with M1 = M2 = 5, N = 100000,

P = 2, SNR = 10 dB
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Algorithm 2 SS MUSIC Algorithm
1: Compute manifold matrix for the physical array

A = [a (ϕ1) , · · · , a (ϕL)]

2: Compute distances between each sensors

dmn = xm − xn m = 1, · · · ,M n = 1, · · · ,M
3: Find unique distances and corresponding element indices in dmn

4: Compute manifold matrix A∗ ⊙A of the difference coarray

5: Find AD by deleting repeated rows of A∗ ⊙ A and sort them according to the

corresponding dmn

6: Find manifold matrix Ass for the reference subarray by selecting last (|D|+ 1) /2

rows of AD

7: Compute sample covariance matrix

Ry =
∑N−1

k=0 y(kT )yH(kT )

8: Vectorize Ry to obtain the data vector of the difference coarray

yV = vec (Ry)

9: Delete the rows of yV which corresponds to the repeated values of dmn and sort

them with the same order as AD to obtain yD

10: Compute the spatially smoothed covariance matrix Rss from yD

ysub,k =
[
yD,k, · · · ,yD,k+(|D|−1)/2

]T
Rss ≜ 1

|D|+1
2

∑(|D|+1)/2
k=1 ysub,ky

H
sub,k

11: Perform eigendecomposition

Rss = UssΣUH
ss

12: Construct noise subspace matrix by choosing the eigenvectors belonging to the

smallest M-P eigenvalues

ΣN = diag {λP+1, · · · , λM}
UN,ss = [uP+1, · · · ,uM ]

13: for (ϕ, θ) = {(ϕ1, θ1) , · · · , (ϕL, θL)} do

14: Compute spatial spectrum for direction (ϕ)

PSS−MUSIC (ϕ) = 1
ass

H(ϕ)UN,ssU
H
N,ssass(ϕ)

15: end for

16: Find the DOA angle estimates by finding P highest peaks in the spectrum
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CHAPTER 5

ARRAY LAYOUT OPTIMIZATION BY USING GENETIC ALGORITHM

Using all of the sensors in a large sparse array brings many disadvantages in terms of

array performance. Depending on the sparsity level of the array, high sidelobe levels,

grating lobes and unnecessary power consumption [24] can be obtained for a sparse

array unless less number of sensors are used. Selection of an array from the elements

of a large array is an optimization problem when the optimum solution does not have

a closed form expression. Without using optimization, 2M different combinations are

tried for finding a solution for an array with M sensors. In the literature, this problem

is also named as array thinning. As the number of sensors increases, solution space

for the optimization problem becomes larger. It is hard to find an optimum solution

for a large solution space. Most of the well-known optimization methods such as

conjugate gradient and down-hill simplex are used for continuous parameters [22].

However, array layout optimization requires discrete parameters and a bit string as

a solution. Evolutionary algorithms such as genetic algorithm and particle swarm

optimization are suitable for this problem despite of slow convergence to a solution

[43]. In the context of this thesis study, genetic algorithm is selected for the array

layout optimization in this thesis. Detailed information about genetic algoritm with

its important parameters and different cost function parameters for the optimization

will be given throughout this chapter.

5.1 Genetic Algorithm

Genetic algorithm is a search method which is developed by John Holland [18]. It

is based on the application of the ideas in genetics and natural selection. Aim of the
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Figure 5.1: Flowchart of the Genetic Algorithm

algorithm is to obtain an optimum solution that gives the minimum value for the se-

lected cost function. It has distinctive properties different from the other optimization

methods [19]. It uses a coding of parameters instead of the parameters themselves.

Multiple points are used for searching and derivatives are not used. Optimization

parameters are encoded in the form of bit strings. Each of these strings is called

an individiual. Optimization process is made over multiple individiuals, which as a

group is called a population. Each individual is evaluated using a cost function and

a fitness value is obtained. All individuals that exist in an iteration is named as a

generation. Nature inspired processes such as crossover and mutation is applied on
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the current generation and fittest individuals that have the lowest fitness values are

survived into the next generation. Some of the fittest individuals are separated as an

elit. Members of the elite is directly passed into the next generation. These processed

are repeated until one of the termination criteria is reached. These criteria could be

a fitness value limit, maximum number of generation and an average relative change

limit. After one of these criteria is met, fittest individiaul in the last generation is re-

ported as the result of the optimization. Flowchart of the genetic algorithm is shown

in Figure 5.1. In the following subsections, detailed information about main steps of

the algorithm will be given.

5.1.1 Creation of Initial Population

First step of the genetic algorithm is to create an initial population. Every individual in

the population is represented by M bits. Bits of all individuals in the initial population

are generated randomly. In MATLAB, these bits are created with uniform distribution

as the default option. Size of the initial population affects the performance of the

algorithm. Large population size has a higher possibility of finding a global minimum

point with a slower convergence. In the array layout optimization problem, selected

(ON) elements are shown with 1 and remaining (OFF) elements are shown with 0. For

example, a selected subarray S = {0, 1, 3, 5} from a 6 element ULA is represented

by the bit string 110101 where 3rd and 5th sensors are OFF elements. Number of ON

elements for an individual is half of the total number of elements in average when the

initial population is generated with uniform distribution.

5.1.2 Selection of Parents

Individuals of the current generation are evaluated using a selected cost function and

a fitness value is assigned to each one. A fraction of the individuals with the lowest

fitness values are assigned as elite and they are automatically selected for the next

generation. Remaining individuals are selected as parents by using different selection

methods. In general, selection methods favor the fittest individuals to create childrens

with lower fitness values. In [44], selection methods are divided into 2 groups which
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are fitness proportionate selection and ordinal selection methods.

Stochastic uniform [20] and roulette-wheel selection [19] can be classified into the

fitness proportionate section. In stochastic uniform selection, each individual is rep-

resented with a line section whose length is proportional to the fitness value. As the

algorithm samples the line by moving with equal steps, parents are selected at the

sampling points. In roulette-wheel selection, each individual is represented with a

slot whose size is proportional to the fitness value. Fittest individuals have a bigger

slot size which increases the possiblity to select as a parent.

Tournament selection [19] can be classified into the ordinal selection method. In this

method, n individuals are selected randomly into a tournament and the one with the

lowest fitness value is selected as a parent. This method is used to select the parents

for the optimizations whose results are presented in this thesis.

5.1.3 Reproduction of Current Generation

After selecting the parents, crossover and mutation operations are performed and the

new generation is created. Most of the parents reproduce with crossover which can be

done with different methods. Matched parents exchange parts of their bits and these

new bits are assigned to the children. Uniform [45], scattered, k-point and laplace

crossover [46] are some of the algorithms that are used for the crossover.

In uniform crossover, every bit is swapped between the parents with a swapping prob-

ability pe. Bit of interest is changed when the generated random number is greater

than pe. In scattered crossover, a vector with random binary elements is created. Bits

of the first parent goes to the first child when bits of the random vector are 1. In case

of 0 bits in the random vector, bits of the second parent goes to the first child. Oppo-

site rules are valid for the second children. When the first parent is 10101, the second

parent is 00111 and the binary vector is 11100, first and second children becomes

10111 and 00101 respectively. In k-point crossover, every bit sequence of the parents

are divided into k + 1 parts and parts of the first parent are swapped with second

parent. When the first parent is 11100, the second parent is 00101 and the crossover

point is 2, first and second children becomes 10101 and 00111 respectively for the
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1-point crossover. In laplace crossover [46], bits of the children are generated as

c1k = p1k + βk

∣∣p1k − p2k
∣∣

c2k = p2k + βk

∣∣p1k − p2k
∣∣

where p1k and p2k are the kth bits of the parents, c1k and c2k are the kth bits of the

children and βk is a random number generated with Laplace distribution. When the

first parent is 11100, the second parent is 00101 and β = {0, 1,−1, 1, 1}, first and

second children becomes 11101 and 01101 respectively for the laplace crossover. This

crossover method is the default option for integer genetic algorithm optimization in

MATLAB and it is used in the all optimizations given in this thesis.

Crossover operation may lead the optimization to stuck at a local minimum point

since the solution space is bounded by the bits of the parents. In addition, children

have the same bit values if the parents has the same bit string. To increase the search

space and bring diversity to the existing parents, mutation operation is used in the ge-

netic algorithm. Small ratio of the parents are selected for the mutation to prevent late

convergence. Uniform, gaussian and power mutation [46] are some of the algorithms

that are used for the mutation. In uniform method, each member of the bit string of a

parent can be flipped with a mutation probability which takes low values in general.

Some parts of the parent are mutated by changing zeros with ones or ones with zeros.

In gaussian method, each element of a parent is modified by adding a random number

with zero-mean Gaussian distribution. As the generation number increases, standard

deviation of the Gaussian distribution shrinks. In power mutation, a mutation child is

created as

ck =

pk − s
(
pk − plk

)
, tk < r

pk + s (puk − pk) , tk ≥ r
(5.1)

where ck is kth component of the child, pk is kth component of the parent, plk is the

lower bound on the value of kth component, puk is the upper bound on the value of kth

component, s is a random number with power distribution, tk =
(
pk − plk

)
/ (puk − pk)

and r is a random number with uniform distribution between 0 and 1. This mutataion

method is the default option for integer genetic algorithm optimization in MATLAB

and it is used in the all optimizations given in this thesis.

Childrens are generated with crossover and mutation operations. Crossover and mu-
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tation childrens with elite individuals form the population of the new generation. Fit-

ness calculation, elite and parent selection, crossover and mutation steps are repeated

until one of the termination criteria are reached. Termination criteria might be chosen

as limits of generation number, time, fitness value and average fitness change.

5.2 Cost Function Parameters for Array Layout Optimization

Aim of the optimization problems is to minimize the fitness value which is evaluated

by using a cost function. Different cost functions could be used for the array layout

optimization problem. Since the individuals in the genetic algorithm is encoded as

bit strings, these strings cannot be used in the cost function directly. Firstly, sensor

positions are obtained by selecting the sensors which are shown with 1 in the bit

string. Then, array parameters are calculated with the selected sensors and fitness

values are computed for the desired cost function. In this section, five different cost

functions will be explained for the array layout optimization problem. These cost

functions are peak-to-sidelobe level, bayesian CRB, bayesian MIE , redundancy and

fragility. In chapter 6, array layouts obtained by using these cost functions and their

combinations will be shown and their performances will be compared.

5.2.1 Peak-to-sidelobe Level (PSL)

Peak-to-sidelobe level is the maximum level difference between the mainlobe and the

sidelobes. It depends on the sensor positions {pk, k = 1, · · · ,M}, steering angle

ϕm and operating frequency fc. After calculating the beampattern steered to ϕm, PSL

can be computed as

PSLϕ = max {Bp (ϕm) +Bp (ϕl)}, l = 1, · · · , Nsidelobes (5.2)

where ϕm is mainlobe angle, {ϕl, l = 1, · · · , Nsidelobes} are sidelobe angles, Nsidelobes

is number of sidelobes and Bp (ϕ) is the beampattern value in dB for the direction

ϕ. Equation 2.30 is used for calculating the beampattern. If the weight vector w is

scaled for undistorted response wHa(ϕ) = 1, beampattern value at mainlobe angle
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becomes 0 dB. Then, Equation 5.2 becomes

PSLϕ = max {Bp (ϕl)}, l = 1, · · · , Nsidelobes (5.3)

Sidelobe levels affect the detection performance of the array. False targets appear in

the spatial spectrum when the sidelobe levels at the source directions are high except

for the target of interest. In addition, grating lobes appear if the Nyquist criteria is

not satisifed in the array. Minimizing the sidelobe levels is an option for overcoming

these problems. However, there is a tradeoff between minimizing the sidelobe levels

and maximizing the beamwidth. Beamwidth increases as the sidelobe levels decrease.

As a result, resolution of the array to separate two close sources decreases. PSL is

one of the most used cost functions in the array thinning literature [23, 24] due to its

calculation simplicity. In this thesis, Bartlett beamformer which is given in 3.2.1 will

be used for the PSL calculations.

5.2.2 Bayesian Cramer Rao Bound

Cramer Rao bound is a lower bound for the covariance of any unbiased estimator [26].

It can be used as a lower bound on the variance of DOA angle estimation error for

any array. It sets a benchmark for the DOA angle estimation methods. Since it is

algorithm independent, it is a suitable metric for comparison of the different arrays

and array layout optimization. According to [47], deterministic CRB of an array for

DOA estimation can be written as

CCRB (ϕ) =
σ2
e

2N

{
Re
[[
RsA

HR−1
y ARs

]
◦
[
DHΠ⊥

AD
]T]}−1

(5.4)

where D = [d1, · · · ,dP ], dk = ∂a(ϕk)
∂ϕk

, A = [a (ϕ1) , · · · , a (ϕP )], Π⊥
A = I −

A
(
AHA

)−1
AH , Rs is the signal covariance matrix, σ2

e is the variance of the noise,

N is the number of snapshots, P is the number of sources and ◦ denotes the Hadamard

product.

CRB is a tight bound for DOA estimators under high SNR. However, RMSE curve

diverges from the CRB and it increases rapidly as the SNR decreases. This phe-

nomenon is called threshold effect in MSE performance curves [48]. A typical RMSE

curve for an efficient estimator is shown in Figure 5.2 together with the CRB curve.
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RMSE curve can be divided into three different regions; namely asymptotic region,

threshold region and no information region [27]. In asymptotic region, RMSE val-

ues converge to CRB curve and DOA angle estimation errors are driven by mainlobe

errors. The starting point where the RMSE values and CRB curve take different val-

ues is called threshold SNR and denoted by SNRTH . As SNR value drops below

SNRTH , RMSE values increase due to the gross errors caused by the high sidelobe

levels. RMSE values become stationary after some point. This point is called no in-

formation SNR and denoted by SNRNI . The region between SNRNI and SNRTH is

named as threshold region and region corresponding to SNR < SNRNI is called no

information region.
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Figure 5.2: RMSE and CRB curves for DOA estimation of single source using deter-

ministic signal model with 10 element ULA, N = 1, NMTC = 10000, ϕ = 90◦

Decreasing SNRTH is desired in the array design for most of the DOA estimation

applications. In practice, SNR of the sources can be low and error in the angle esti-

mation could be high if the SNR of interest is below the threshold SNR. By using

CRB as the cost function in the genetic algorithm, a subarray can be selected with
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lower SNRTH . However, deterministic CRB is an angle dependent array parameter.

Source could be available at any angle and the deterministic CRB must be calculated

for a number of different angle values, if it is to be used as a cost function. Calcu-

lating deterministic CRB for different angles (covering the interval of interest with a

certain resolution) and taking a weighted average (weighting with the apriori density

of target DOA) of the results is actually equivalent to calculating the Bayesian CRB.

Bayesian CRB derivation involves a similar approach assuming that apriori probabil-

ity density of the source distribution is known. In [28], the Fisher information matrix

(FIM) is written as

JB = JD + JP (5.5)

where JD is the FIM due to the data and JP is the FIM due to the distribution of the

source which can be calculated as

[JP ]ij = −E

[
∂2 ln pϕ (ϕ)

∂ϕi∂ϕj

]
(5.6)

If the source has a uniform distribution between ϕl and ϕr, then the probability density

function of the source becomes pϕ (ϕ) = 1/ |ϕl − ϕr|. Since the distribution is inde-

pendent of ϕ, [JP ]ij = 0. For a single source, FIM due to the data can be calculated

as

JD =

∫ ϕr

ϕl

C−1
CRB (ϕ) pϕ (ϕ) dϕ

=
1

|ϕl − ϕr|

∫ ϕr

ϕl

C−1
CRB (ϕ) dϕ (5.7)

Bayesian FIM for a single source with uniform distribution can be found by putting

Equations 5.6 and 5.7 into Equation 5.5

JB =
1

|ϕl − ϕr|

∫ ϕr

ϕl

C−1
CRB (ϕ) dϕ (5.8)

Equation 5.8 means that Bayesian FIM for a uniform source distribution is the mean

FIM of angles ϕl ≤ ϕ ≤ ϕr. Bayesian CRB can be approximately found with finite

number of angles by taking the mean value of the FIM values of those angles as

follows,

CBCRB ≈ 1
1
L

∑L
k=1C

−1
CRB (ϕk)

(5.9)

where L is the number of angles, ϕl = ϕ1 is the lower bound and ϕr = ϕL is the

upper bound on the source angle distribution. Bayesian CRB given in Equation 5.9 is
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a bound on the variance of error in the angle estimation. Square root of the Bayesian

CRB which can be denoted as CRBBayesian will be used in the optimization problems

in Chapter 6 to be able to compare with RMSE curves. CRBBayesian can be found as,

CRBBayesian =
√

CBCRB

=
1√

1
L

∑L
k=1C

−1
CRB (ϕk)

(5.10)

After calculating Bayesian CRB for different SNR values, threshold SNR of the array

can be found by searching the lowest SNR point where RMSE values and Bayesian

CRB curve overlap.

5.2.3 Bayesian Method of Interval Errors

Finding the threshold SNR requires computation of the RMSE values for the DOA es-

timator. In order to obtain a smooth curve, large number of Monte Carlo simulations

are needed with longer simulation time. Instead of excessive simulations, MSE can

be approximated with method of interval errors (MIE) for maximum likelihood esti-

mator (MLE) [27]. CRB brings a good approximation to only the asymptotic region

of MSE, whereas MIE could approximate the asymptotic region and the threshold

region around the threshold SNR. MIE approximates MSE by dividing it into two

parts. First part is for the global errors and it is estimated by using the interval error

probabilities corresponding to the sidelobe angles. Second part is for the local errors

and it is approximated by using CRB since MSE of ML converges to the CRB in the

asymptotic region. In [27], pairwise error probabilities for deterministic signal model

are given by

Pn =Q

(√
S

2

(
1−

√
1− r2n

)
,

√
S

2

(
1 +

√
1− r2n

))

− e−
S
2

{
I0

(
rkS

2

)
− 1

22N−1
I0

(
rnS

2

)N−1∑
m=0

(
2N − 1

m

)

− 1

22N−1

N−1∑
m=1

Im

(
rnS

2

)[(
1 +

√
1− r2n
rn

)m

−

(
1−

√
1− r2n

rn

)m]

×
N−1−m∑

k=0

(
2N − 1

k

)}
(5.11)
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where rn =
∣∣aH (ϕm) a (ϕn)

∣∣ /M is the relative level of nth sidelobe,

S =
(
M/σ2

e

) N∑
t=1

|s(t)|2 (5.12)

is the SNR, Im (·) is the modified Bessel function of the first kind with order m and

Q (·, ·) is the Marcum’s Q function which is given by

Q (α, β) =

∫ ∞

β

te−
(t2+α2)

2 I0 (αt) dt (5.13)

After finding the pairwise error probabilities, approximate MSE can be calculated as

CMIE (ϕ) =

(
1−

Ns∑
k=1

Pk

)
CCRB (ϕ) +

Ns∑
k=1

Pk (ϕk − ϕm)
2 (5.14)

where ϕm is the mainlobe angle, ϕk is the angle of kth sidelobe and Ns is the number

of sidelobes. MIE is an MSE prediction method for MLE. For single source case,

MLE reduces to the following expression,

ϕ̂ ≜ argmax
ϕ

aH (ϕ)Rya (ϕ) (5.15)

which is equivalent to making a search over ϕ using Bartlett Beamformer spectrum.

A typical RMSE curve is shown in Figure 5.3 with the MIE curve. Maximum likeli-

hood (ML) method is used as the DOA estimation method and sensor data is generated

with the deterministic signal model with a single source.
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Figure 5.3: RMSE and CRB curves for DOA estimation of single source using deter-

ministic signal model with 10 element ULA, N = 1, NMTC = 10000, ϕ = 90◦

CMIE (ϕ) is also angle dependent as it is an approximate MSE for a deterministic

parameter estimator (MLE). Bayesian approach that is used for CRB could also be

applied to MIE. Bayesian MIE for a single source that has a uniform distribution

U(ϕl, ϕr) is found as

CBMIE =
1

1
L

∑L
k=1C

−1
MIE (ϕk)

(5.16)

where L is the number of angles, ϕl = ϕ1 is the lower bound and ϕr = ϕL is the upper

bound on the source angle distribution. Note that (5.16) is an MSE approximation for

maximum aposteriori estimator (MAP) with a uniform prior distribution (which in

turn is equivalent to MLE). Square root of the Bayesian MIE which can be denoted

as MIEBayesian will be used in the optimization problems in Chapter 6 to be able to

compare with RMSE curves. MIEBayesian can be found as

MIEBayesian =
√

CBMIE

=
1√

1
L

∑L
k=1C

−1
MIE (ϕk)

(5.17)
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5.2.4 Redundancy

Redundancy could be used as the cost function for array layout optimization. Ac-

cording to the definitions in 4.2.3 and 4.2.4, MRA and RMRA are obtained when the

redundacy calculated with Equation 4.7 and used as the fitness value of the genetic

algorithm. In addition to spatial efficiency in the difference coarray, larger aperture

size is reached with minimum redundancy.

5.2.5 Fragility

Fragility could be used in the constraint function for array layout optimization. Ac-

cording to the definition in 4.2.4, RMRA is obtained when the fragility calculated

with Equation 4.8 and used in the genetic algorithm. Fragility value should be equal

to 2/M for RMRA layout optimization.
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CHAPTER 6

SUBARRAY SELECTION OPTIMIZATION RESULTS

In this chapter, performance of different subarray layouts which are obtained with

cost functions presented in Chapter 5 are compared. Angle accuracy in DOA es-

timation, detection and target separation performances are evaluated after finding 6

different subarrays (corresponding to each optimization problem with different cost

functions) with the genetic algorithm. Results of the optimization for 16 sensors are

given with optimum subarray layouts and performance graphs. Then, same procedure

is repeated for subarrays that have more than 16 sensors. After presenting single sub-

arrays, double subarray selections are shown with dual apodization being the DOA

estimation method.

6.1 Three Octave Array

Octave array is a combination of multiple central nested ULAs with different element

spacings [2]. It is mainly used in towed sonars that are designed for low frequency

passive wideband processing. Desired operating frequency range is divided into mul-

tiple octaves and a different ULA is designed for upper frequency of the each octave.

By central nesting the arrays for different design frequencies, some of the sensors

are aligned with each other. Therefore, total number of sensors is less than sum of

the sensors for each octave array. Number of octaves in the array can be decided by

specifying the operating frequency range. As an example, the Five Octave Research

Array (FORA) which is built by L-3 Chesapeake Sciences Corporation is designed to

work between 50 - 3750 Hz [2]. In this thesis, a three octave array which is shown

in Figure 6.1 is selected for the subarray layout optimization. There are three differ-

63



ent ULAs with cutoff design frequencies of 1, 2 and 4 kHz. There are 16 sensors in

each of the octaves. As a result, total number of sensors in the whole array is 32.

According to the classical DOA algorithms, only the octave 3 is used for 4 kHz band

as a narrowband processing. Aim of the array layout optimization whose results are

shown in this chapter is to select sensors among all 32 sensors. Selection of sensors

outside the octave 3 increases the array aperture which narrows the beamwidth. A

higher array gain could be obtained when the number of selected sensors is greater

than 16 for high frequency band. Note that using more than 16 sensors of octave 1

will not increase the directivity index in octave 1 design frequency, since the aper-

ture is critically sampled by this 16 sensors at this frequency. Three octave array is

denoted by TOA throughout this chapter.
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Figure 6.1: Sensor positions of three octave array

6.2 Performance Metrics For Optimization Results

Different subarray selections are shown in section 6.4 by using different cost functions

in the genetic algorithm. In order to compare their performances, several Monte Carlo
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(MTC) simulations are run and three different performance metrics are calculated;

namely, RMS error (RMSE), probability of detection of all sources and probability of

resolution.

Deterministic signal model is used in the MTC simulations for RMSE calculations.

On the other hand, stochastic signal model is used for probability of detection and res-

olution calculations which require uncorrelated sources for DOA estimation methods.

In deterministic case, source signal s takes constant value of 10SNR /20 where SNR is

the input signal to noise ratio in decibels (dB) and number of sources is 1. Since

SNR defines the signal to noise ratio at each sensor, it is independent of the number

of sensors and number of snapshots. In stochastic case, source signal s takes random

value from Gaussian distribution N
(
0, 10SNR /10

)
and there are more than multiple

uncorrelated sources. Noise signal in both cases takes values from a zero mean unit

variance complex Gaussian distribution CN (0, 1) = N
(
0, 1/

√
2
)
+ jN

(
0, 1/

√
2
)
.

First performance metric is RMSE for angle estimation which can be defined as

RMSE =

√√√√ 1

NMTC

NMTC∑
k=1

(
ϕk − ϕ̂k

)2
(6.1)

where ϕk is the true source DOA, ϕ̂k is the estimated source DOA at kth MTC simu-

lation and NMTC is the number of MTC simulations. Source DOA is estimated using

MLE which reduces to the following expression for single source case,

ϕ̂ ≜ argmax
ϕ

aH (ϕ)Rya (ϕ) (6.2)

which is equivalent to making a search over ϕ using Bartlett Beamformer spectrum.

For dual apodization method, source DOA is estimated in two steps. First step is

finding the maximum point of dual apodization spectrum. Second step is finding the

peak within a beamwidth of previously found DOA by searching the spectrum of

subarray with larger aperture. Source DOA estimation for dual apodization can be

shown as

ϕ̃ = argmax
ϕ

PDA (ϕ)

ϕ̂ = argmax
ϕ

PS1 (ϕ) ϕ ∈
[
ϕ̃− ϕhp/2, ϕ̃+ ϕhp/2

]
(6.3)
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where PDA is the dual apodization spectrum, PS1 is the spectrum of subarray with

larger aperture using Bartlett beamformer and ϕhp is the half-power beamwidth. Aim

of this method is reducing the gross error detection rate caused by the high sidelobe

levels. Second performance metric is the probability of detection which is calculated

as

Prd =
1

NMTC

NMTC∑
k=1

dk, dk =

1 P̂k = P

0 P̂k ̸= P
(6.4)

where P is the true number of sources, P̂k is the estimated number of sources at

kth MTC simulation and dk is the success of detecting all sources. Method of Min-

imum description length (MDL) proposed in [49] is used for estimating the number

of sources. It finds the number of sources by evaluating an eigenvalue dependent cost

function with additional penalty term. In [28], MDL formula is given as

L (p) = N (M − p) ln


1

M−p

∑M
k=p+1 λk∏M

k=p+1 λ
1

M−p

k


P̂MDL = argmin

p

{
L (p) +

1

2
(p (2M − p) + 1) lnN

}
(6.5)

where L (p) is the cost function, N is the number of snapshots, M is the number

of sensors and (λ1 > · · · > λP > λP+1 = · · ·λM) are the eigenvalues of the sample

covariance matrix. This method is applicable when DOA estimation is made over

a single spatial spectrum such as Bartlett, MUSIC and SS-MUSIC. However, DOA

estimation with dual apodization requires taking minimum of two spatial spectrums.

It is not possible to estimate the number of sources from the sample covariance matrix

in dual apodization method. Therefore, number of peaks can be estimated over the

dual apodization spectrum by using Algorithm 3.

Algorithm 3 Number of source estimation algorithm for dual apodization method
1: Find all peaks in the spatial spectrum

2: Discard peaks outside the region
⋃P

k=1 (ϕk + [−ϕhp/2, ϕhp/2]) where ϕk is the

true DOA of kth source, P is the number of sources and ϕhp is the half-power

beamwidth

3: Discard peaks with a level smaller than SNR− 3 dB

4: Number of remaining peaks is the source number estimation P̂k
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Third performance metric is probability of resolution which is found as

Prr =
1

NMTC

NMTC∑
k=1

rk, rk =

1 P̂k = 2

0 P̂k ̸= 2
(6.6)

where P̂k is the estimated number of sources at kth MTC simulation using Algorithm

3 and rk is the success of separating two close sources.

6.3 Computation Time Comparison

Bartlett beamformer, MUSIC, SS-MUSIC and dual apodization techniques are used

as DOA estimation methods for comparing different optimum array layouts in this

chapter. Computational complexity of a DOA estimator is an important criteria for

many application areas such as radar and sonar systems. To operate in real-time

without any delay, low cost methods are preferred due to the hardware specifica-

tions of the system. Computational complexity of a method could be defined in

terms of the number of floating point operations (FLOP). A complex multiplica-

tion or a complex summation is counted as 1 FLOP [50]. In [51], it is stated that

Bartlett beamformer requires M2 (N + 2) +M + 4PL FLOPs and MUSIC requires
5
3
M3+M2 (N + P + 1)+4PL FLOPs. As a result, Bartlett beamformer has O (M2)

and MUSIC has O (M3) complexity. Eigenvalue decomposition increases the order

of complexity for MUSIC. A computation time comparison for Bartlett beamformer,

MUSIC, SS-MUSIC and dual apodization methods are shown in Figure 6.2. Compu-

tation time is found by averaging the time measurements of 100000 MTC simulations

using MATLAB R2020a under the environment of Intel Xenon E5-2620 CPU with

the processor frequency 2.40 GHz and 64 GB RAM. Two different dual apodization

configurations are used with M1 = M2 = M and M1 = M , M2 = 32. Bartlett beam-

former has the lowest complexity, whereas SS-MUSIC has the highest computation

time since it uses O (M2) virtual elements instead of O (M) sensors. Computation

time required for dual apodization technique is approximately twice of the time for

Bartlett beamformer. It requires less computation for M > 18 when it is compared

with MUSIC and SS-MUSIC.
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Figure 6.2: Computation times for Bartlett, MUSIC, SS-MUSIC and dual apodization

methods with P = 1, N = 1, NMTC = 100000

6.4 Array Layout Optimization Results For 16 Sensors

In classical octave array processing, only 16 sensor octave 3 in TOA is used for an

operating frequency of 4 kHz. Number of sensors for DOA estimation might be

limited to 16 sensors as a system design criteria for not exceeding a pre-determined

computation time. By considering the fixed number of sensor constraint, optimization

problems with different cost functions are proposed for selecting 16 sensors across the

TOA. Layouts obtained as a result of the optimizations are shown and selected sensor

positions are compared with the TOA. In addition, some of the array properties such

as beampatterns, PSL values for different steering angles, RMSE curves and coarray

weights are given.
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6.4.1 PSL Optimization

Obtaining PSLs for different steering angles below a selected level is the first op-

timization problem for selecting 16 sensors. For linear arrays, sidelobe levels are

increasing when the array is steered towards the end points which are called end fires.

End fire angles are chosen as 0◦ and 180◦ in this thesis. In Figure 6.3c, PSL values

for different angles are shown for ULA with 16 sensors. PSL increases rapidly for

ϕ < 25◦ and ϕ > 155◦. Selecting different layouts for a linear array does not change

this behaviour significantly. Therefore, optimization of PSL values are restricted for

steering angles between ϕl = 30◦ and ϕr = 150◦. Main aim is to minimize the max-

imum PSL for steering angles ϕl ≤ ϕ ≤ ϕr. This minimax optimization problem

could be constructed as

SPSL ≜ argminmax
S

PSLϕ

s.t. |S| = M

ϕ ∈ [ϕl, ϕr]

(6.7)

where PSLϕ is calculated by using Equation 5.3. There are two ways for minimizing

PSL values. One option is selecting a layout with narrower aperture. As a result of

having narrower aperture, larger beamwidth is obtained. However, minimum aperture

is obtained with 16 sensor ULA when the number of desired sensor is 16. Since it is

the default layout for the highest frequency band, no improvement could be obtained

in terms of PSL values. Second option is selecting a sparse layout whose aperture is

larger than 16 sensor ULA. First sidelobes of ULA have the highest sidelobe levels

which are around -13,5 dB. In order to minimize PSL, levels of first sidelobes should

be minimized when the remaining sidelobe levels are less than or equal to the first

sidelobe levels. By choosing elements outside the ULA at the center, levels of first

sidelobes which are PSL levels could be minimized.

In Figure 6.3a, sensor positions of selected array layout are shown with red markers

in addition to the TOA with blue markers. Selected array layout is similar to the ULA

except for its rightmost elements. Beampatterns for the selected layout and 16 sensor

ULA are shown for the steering angle ϕ0 = 90◦ in Figure 6.3b. Maximum sidelobe

levels are obtained at the first sidelobes around the mainobe. It is seen that maximum

sidelobe level decreases from -13 dB to around -16 dB. However, other sidelobe levels
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are higher than the ones in ULA.

In Figure 6.3c, PSL values for steering angles 0◦ ≤ ϕ ≤ 180◦ are shown for the

selected layout with red dash-dot line. Maximum sidelobe levels for 30◦ ≤ ϕ0 ≤
150◦ are around -16 dB. Although levels seem to be constant between 30◦ and 150◦,

decimal differences exist between the values for different steering angles. With this

optimization, lower sidelobe levels are obtained for different steering angles while

preserving the beamwidth.
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Figure 6.3: (a) Selected sensor positions for minimax PSL optimization, (b) beam-

pattern for ULA and MinMaxPSL, (c) PSL levels for different steering angles with

M = 16, ϕl = 30◦, ϕr = 150◦
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6.4.2 Bayesian CRB Optimization

Minimizing the Bayesian CRB for a selected SNR value is the second optimization

problem for selecting 16 sensors. As it is mentioned in 5.2.2, lower threshold SNR is

a desired property for DOA estimation since source SNR might be low in practice. By

selecting a layout with lower sidelobe levels, ambiguity due to the gross errors could

be minimized. Lower threshold can be obtained as a result of reduced gross errors. In

Figure 6.4b, RMSE curve of 16 sensor ULA is shown with blue markers and threshold

SNR is 2 dB. To obtain a lower threshold SNR, bayesian CRB optimization is made

for SNR = 0 dB. Then, the optimization problem for minimum Bayesian CRB can

be stated as

SCRB ≜ argmin
S

CRBBayesian (SNR)

s.t. |S| = M

SNR = SNRopt

ϕ ∼ U [ϕl, ϕr]

(6.8)

where SNRopt = 0 dB, ϕl = 30◦, ϕr = 150◦ and CRBBayesian is calculated by

using Equation 5.10. In Figure 6.4a, sensor positions of selected array layout are

shown with red markers in addition to the TOA with blue markers. Minimum CRB

is obtained with larger array aperture. As the aperture increases, beamwidth of the

array gets narrower and the RMS error in the asymptotic region decreases as a result

of increased resolution. With the fixed number of sensors constraint, the optimiza-

tion chooses the outermost elements among the all sensors. Using the outermost

elements and having an empty region at the center result in grating lobes in the beam-

pattern (using Bartlett beamformer) because of the sparsity. Having grating lobes in

the beampattern increases the gross errors and threshold SNR is not minimized as a

result.

In Figure 6.4b, beampatterns of the 16 sensor ULA and the selected array for ϕ0 = 90◦

are shown. Grating lobes and high sidelobe levels can be observed for the selected

layout. RMSE and Bayesian CRB curves are shown in Figure 6.4c. Because of the

grating lobes, two peaks with the same level are observed in the spatial spectrum for

the selected array. DOA estimation algorithm that is used for generating the RMSE

curve selects the first peak with the same level in cas eof more than one peak. First
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peak appears near the end fire angles 0◦ - 180◦ due to the grating lobes. However, true

source DOA can be between ϕl = 30◦ and ϕr = 150◦. Therefore, RMS errors for the

selected array stay nearly the constant for the whole SNR region in Figure 6.4c.
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Figure 6.4: (a) Selected sensor positions for minimum Bayesian CRB optimization,

(b) beampattern for ULA and MinCRB, (c) RMSE - SNR for Bartlett method using

ULA and array selected by GA (min CRB) with M = 16, SNRopt = 0 dB, P = 1,

N = 1, NMTC = 10000, ϕl = 30◦, ϕr = 150◦. Note that RMSE of GA selected

array does not converge to its CRB. The reason for this is the fact that the GA selected

array has grating lobes (see Figure 6.4b). This in turn results in gross errors and

causes a bias even in high SNR region. Consequently our estimator is biased hence

deterministic CRB is not reached.
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6.4.3 Bayesian CRB Optimization with PSL Constraint

In previous subsection 6.4.2, it is found that minimizing Bayesian CRB with a fixed

number of sensors causes grating lobes in the array beampattern. To solve this issue,

a PSL constraint is added into the Bayesian CRB optimization problem. Main target

is preventing the grating lobes by selecting an array whose sidelobes are below the

threshold point. Then, the optimization problem for obtaining minimum Bayesian

CRB with PSL constraint can be stated as

SCRB ≜ argmin
S

CRBBayesian

s.t. |S| = M

SNR = SNRopt

max (PSLϕ) ≤ PSLmax

ϕ ∈ [ϕl, ϕr]

(6.9)

where SNRopt = 0 dB, PSLmax = −13 dB, ϕl = 30◦, ϕr = 150◦, CRBBayesian and

PSLϕ are calculated by using Equation 5.10 and 5.3 respectively. This optimization

problem can be viewed as a combination of the problems in Equation 6.7 and 6.8.

PSLmax is selected as -13 dB to obtain the PSL of a ULA in the worst case. With-

out PSL constraint, optimization tries to select outermost 16 elements to minimize

beamwidth of the selected layout. By having a narrower beamwidth, local errors are

minimized due to the mainlobe. Having a PSL constraint forces the optimization to

select a narrower aperture to reduce sidelobe levels and wider beamwidth is obtained

as a result. Minimization of CRB with a PSL contraint results in a new layout with

narrower aperture than MinCRB and wider aperture than ULA.

In Figure 6.5a, sensor positions of selected array layout are shown with red markers in

addition to the TOA with blue markers. With the PSL constraint, outermost elements

are not selected. In comparison to ULA, a wider aperture is obtained. In Figure 6.5b,

beampatterns of the 16 sensor ULA and the selected array for ϕ0 = 90◦ are shown.

A narrower beamwidth is obtained with the sidelobe levels around -13 dB. In Figure

6.5c, PSL values for steering angles 0◦ ≤ ϕ ≤ 180◦ are shown for the selected layout

with red dash-dot line. Maximum sidelobe levels for 30◦ ≤ ϕ0 ≤ 150◦ are around -13

dB with decimal differences between the values for different steering angles. RMSE

and Bayesian CRB curves are shown in Figure 6.5d. In comparison with ULA, both
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threshold SNR and the Bayesian CRB at 0 dB are not minimized despite of having

less RMS errors in the asymptotic region.
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Figure 6.5: (a) Selected sensor positions for minimum Bayesian CRB optimization

with PSL constraint, (b) beampattern for ULA and MinCRB+PSL, (b) PSL levels

for minimum Bayesian CRB optimization with PSL constraint, (d) RMSE - SNR for

Bartlett method using ULA and array selected by GA (min CRB with PSL constraint)

with M = 16, SNRopt = 0 dB, P = 1, N = 1, NMTC = 10000, ϕl = 30◦, ϕr = 150◦,

PSLmax = −13 dB
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6.4.4 Bayesian MIE Optimization

Minimizing the Bayesian MIE for a selected SNR value is the fourth optimization

problem for selecting 16 sensors. As it is mentioned in 5.2.3, RMSE curve can be

approximated with MIE. Then, the optimization problem for minimum Bayesian

MIE can be stated as

SMIE ≜ argmin
S

MIEBayesian (SNR)

s.t. |S| = M

SNR = SNRopt

ϕ ∼ U [ϕl, ϕr]

(6.10)

where SNRopt = 0 dB, ϕl = 30◦, ϕr = 150◦ and MIEBayesian is calculated by using

Equation 5.17. Minimization of MIE at 0 dB corresponds to minimization of gross

errors caused by sidelobes since selected SNR value lies within the threshold region

of RMSE curve. MIE approximates threshold region with interval error probabili-

ties Pn which can be calculated using Eqaution 5.11. Interval error probability Pn

could be minimized by minimizing relative sidelobe levels rn. Highest RMS errors

are obtained for first sidelobes since they are the nearest sidelobes to the mainlobe.

Therefore, optimization tries to select a layout with lower sidelobe levels.

In Figure 6.6a, sensor positions of selected array layout are shown with red markers

in addition to the TOA with blue markers. Selected array layout is similar to the

ULA except for the double Nyquist distance between its fourth and fifth elements.

Beampatterns for the selected layout and 16 sensor ULA are shown for the steering

angle ϕ0 = 90◦ in Figure 6.6b. Beamwidth of the selected array is similar to the one

in the ULA due to layout similarity. First sidelobes of the selected layout is less than

the ULA although there is not any significant difference. Since the available sensor

positions are fixed, optimization makes a selection similar to ULA. In Figure 6.6c,

RMSE, Bayesian CRB and Bayesian MIE curves are shown for the selected array

and 16 sensor ULA. There is not any meaningful difference between the RMSE and

Bayesian MIE curves. Because of the similarities between two layouts, their RMSE

- SNR performances are indistinguishable.

75



-30 -20 -10 0 10 20 30

Sensor positions, /2

Three Octave Array
Selected Sensors

(a)

0 20 40 60 80 100 120 140 160 180

, deg

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

B
p
(

),
 d

B

ULA
MinMIE

(b)

-25 -20 -15 -10 -5 0 5 10 15 20

SNR, dB

10-1

100

101

R
M

S
E

, d
eg

SNRopt

RMSE - ULA
RMSE - GA
CRB - ULA
CRB - GA
MIE - ULA
MIE - GA

(c)

Figure 6.6: (a) Selected sensor positions for minimum Bayesian MIE optimization,

(b) beampattern for ULA and MinMIE, (c) RMSE - SNR for Bartlett method using

ULA and array selected by GA (min MIE) with M = 16, SNRopt = 0 dB, P = 1,

N = 1, NMTC = 10000, ϕl = 30◦, ϕr = 150◦

6.4.5 Minimum Redundancy Optimization

Minimizing the redundancy is the fifth optimization problem for selecting 16 sensors.

Unlike previous optimization problems, it is independent of the beampattern and the

beamwidth. Main aim is to reduce the number of same distances between the array

elements. In [15], the optimization problem for minimum redundancy is given as

SMRA ≜ argmin
S

R

s.t. |S| = M

D = U

(6.11)
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where R is calculated by using Equation 4.7 and D = U means that difference coarray

D is hole-free. When the number of sensors is fixed, central ULA length |U| in the

difference coarray increases as the redundancy decreases according to Equation 4.7.

With this information, optimization problem in Equation 6.11 can be reconstructed as

SMRA ≜ argmax
S

|U|

s.t. |S| = M
(6.12)

Aim of minimum redundancy optimization is selecting a layout with maximum spa-

tial efficiency of sensor placement. Difference coarray weight function for three oc-

tave array is shown in Figure 6.8b. Central ULA segment of the difference coarray

is between −40λ/2 and 40λ/2. Therefore, maximum obtainable aperture length is

40λ/2 for minimum redundancy array selection. As a result, optimization tries to

select 16 sensors with an aperture of 40λ/2.

In Figure 6.7a, sensor positions of selected array layout are shown with red markers

in addition to the TOA with blue markers. Leftmost element of the TOA is selected

in the new array layout to increase the aperture. Difference coarray weight functions

for 16 sensor ULA, three octave array and the selected array are shown in Figure

6.8a, 6.8b and 6.7c respectively. Redundancy of ULA is 8 and central ULA length

|U| is 31. Redundancy of three octave array is 12,4 and central ULA length |U| is

81. Redundancy of the selected layout is 3 and central ULA length |U| is 81. It is

seen that redundancy of the selected array is less than redundancies of ULA and three

octave array and maximum possible central ULA length is obtained.

In Figure 6.7b, beampatterns for MRA obtained with the optimization are shown

when the array is steered to 90◦. Beampattern using Bartlett beamformer is plotted

with blue dash-dots and the one for spatially smoothed difference coarray is plotted

with red line. Lower sidelobe levels are observed with the PSL being -13 dB since

the beamforming is done by using the coarray elements.
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Figure 6.7: (a) Selected sensor positions for minimum redundancy optimization, (b)

beampattern using Bartlett and Spatially Smoothed Coarray for MRA, (c) weight

function of difference coarray for MRA with M = 16
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Figure 6.8: Weight function of difference coarray for (a) ULA with M = 16 and (b)

three octave array (TOA)

Optimization problem in Equation 6.12 becomes computationally difficult as the num-

ber of sensors increase. One option might be searching a point using only half of the

TOA for reducing the search area since it is symmetric around the origin. Then, the

optimization problem can be written as

S̄MRA ≜ argmax
S̄

|U|

s.t.
∣∣S̄∣∣ = M

2

S =
{
S̄
[
M
2
: −1 : 1

]
, S̄
[
1 : 1 : M

2

]} (6.13)

In Figure 6.9a, sensor positions of selected array layout are shown with red markers

in addition to the TOA with blue markers. Aperture of the new layout is smaller than

the one shown in Figure 6.7a. Difference coarray weight function for the new array

is shown in Figure 6.9b. Redundancy of the new array is higher and the central ULA

length is smaller. According to this result, symmetrical element layout assumption

does not provide a better solution in terms of redundancy and central ULA length.

Searching an optimum point by using all TOA elements gives a better solution despite

of slower convergence and high computational cost.
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Figure 6.9: (a) Selected sensor positions for minimum redundancy optimization with

reduced dimension, (b) weight function of difference coarray for 16 element MRA

selected with reduced dimension optimization

6.4.6 Robust Minimum Redundancy Optimization

Robust minimum redundancy is the fifth optimization problem for selecting 16 sen-

sors. In addition to the minimum redundancy optimization in Equation 6.11, there is

a fragility constraint that forces the selected array as robust as ULA against sensor

failure. In [15], the optimization problem for robust minimum redundancy is given as

SRMRA ≜ argmin
S

R

s.t. |S| = M

D = U

F = 2
M

M ≥ 4

(6.14)

where R is calculated by using Equation 4.7, F is calculated by using Equation 4.8

and D = U means that difference coarray D is hole-free. There is a tradeoff between

central ULA length of difference coarray and robustness against sensor failure. Using

the constraint of having two essential sensors and fixed sensor positions forces the

optimization to select a layout similar to ULA.

80



-30 -20 -10 0 10 20 30

Sensor positions, /2

Three Octave Array
Selected Sensors

(a)

0 20 40 60 80 100 120 140 160 180

, deg

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

B
p
(

),
 d

B

RMRA
RMRA - SSC

(b)

0

2

4

6

8

10

12

14

16

w
(m

)

Redundancy: 7.5, Length of Central ULA Segment: 33

-20 -15 -10 -5 0 5 10 15 20

m, /2

(c)

Figure 6.10: (a) Selected sensor positions for robust minimum redundancy optimiza-

tion, (b) beampattern using Bartlett and Spatially Smoothed Coarray for RMRA, (c)

weight function of difference coarray for RMRA with M = 16

In Figure 6.10a, sensor positions of selected array layout are shown with red mark-

ers in addition to the TOA with blue markers. Resultant array is very similar to 16

sensor ULA except for the gap between second and third elements. Difference coar-

ray weight function for the selected array are shown in Figure 6.10c. Redundancy of

the selected layout is 7,5 and central ULA length |U| is 33. By comparing with 16

sensor ULA, there is a little improvement in terms of redundancy and central ULA

length. In Figure 6.10b, beampatterns for RMRA obtained with the optimization are

shown when the array is steered to 90◦. Beampattern using Bartlett beamformer is

plotted with blue dash-dots and the one for spatially smoothed difference coarray is

plotted with red line. PSL of the spatially smoothed coarray is higher than PSL of
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the beampattern generated with Bartlett method, whereas the beamwidths are close

to each other.

6.5 Performance Comparison of the Arrays Found by Optimization (M=16)

Array layout optimization results with 16 sensors for different cost functions are pro-

vided in section 6.4. Proposed array layouts and 16 sensor ULA are compared in

terms of DOA estimation method, DOF and aperture length in Table 6.1. Bartlett

beamformer is used for DOA estimation for all of the arrays in the table except for

MRA and RMRA. SS-MUSIC is preferred for MRA and RMRA to use the advan-

tages of coarray processing.

Table 6.1: Number of sensors (M), DOA estimation methods, DOFs and aperture

lengths and computation times for different arrays with 16 sensors

Array Type M Method DOF Aperture (λ/2) Time (ms)

ULA 16 Bartlett 16 15 6,03

MinMaxPSL 16 Bartlett 16 17 6,03

MinCRB 16 Bartlett 16 60 6,03

MinCRB + PSL 16 Bartlett 16 31 6,03

MinMIE 16 Bartlett 16 16 6,03

MRA 16 SS-MUSIC 41 20 35,47

RMRA 16 SS-MUSIC 17 8 35,47

With classical techniques such as Bartlett, DOF of an array is equal to the number of

sensors. Therefore, DOF of arrays except for MRA and RMRA is 16 and these arrays

can detect up to 15 sources. It is expected that arrays which use coarray techniques

have more DOFs such as MRA and RMRA. DOFs of MRA and RMRA are 81 and 33

in the coarray domain. However, spatial smoothing is applied for SS-MUSIC and the

DOFs are reduced to 41 and 17 as a result of the size reduction in the difference coar-

rays. Aperture lengths in the table are given as a multiple of Nyquist distance λ/2 for

4 kHz. Apertures of MRA and RMRA are 40 and 16 according to Figures 6.7a and
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6.10a. But, they are reduced to 20 and 8 after smoothing the array for SS-MUSIC.

Minimum aperture in Table 6.1 is 8 and belongs to RMRA, whereas maximum aper-

ture is 60 for the array obtained with minimum CRB optimization. Throughout this

section, arrays obtained in 6.4.1, 6.4.2, 6.4.3, 6.4.4, 6.4.5, 6.4.6 are denoted by Min-

MaxPSL, MinCRB, MinCRB+PSL, MinMIE, MRA and RMRA respectively.
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Figure 6.11: RMSE - SNR for (a) ULA and arrays selected by GA with M = 16, (b)

16 sensor RMRA and ULAs using 9 and 16 sensors with P = 1, N = 1, NMTC =

10000, ϕl = 30◦, ϕr = 150◦

In Figure 6.11a, array layouts with 16 sensors are compared by calculating RMSE

of the angle estimations as a function of SNR for N = 1 snapshot, P = 1 source,

averaged over NMTC = 10000 simulations using deterministic signal model. In each

MTC simulation, source DOA is selected randomly from uniform distribution be-

tween ϕl = 30◦ and ϕr = 150◦. MinCRB+PSL and MRA have the best performances

in the asymptotic region, whereas RMRA and MinCRB have the worse performances

according to their RMSE values. Since MinCRB has an empty area in the middle, er-

rors due to the grating lobes make the RMSE values high for all SNR regions. DOA
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estimation errors in the asymptotic region are caused by the errors due to the main-

lobe. As the array aperture increases, beamwidth of the array narrows and errors due

to the mainlobe decreases. Thus, it is expected to see less RMSE in DOA estima-

tion with the arrays with large aperture. Because of having the minimum aperture

length, RMRA has a poor performance when it is compared with other arrays. Min-

MaxPSL, MinMIE and ULA have similar performances due to close aperture lengths.

Minimum threshold SNR is obtained with MinCRB+PSL and its value is 3 dB. Min-

CRB+PSL is the optimum selection among all arrays with lower RMS errors and

ability to work at lower SNR values.

Aperture of RMRA can be found as 16 by looking at Figure 6.10a. Also, its number

of elements in its difference coarray is 33. However, spatial smoothing halves these

values. It is known that RMRA can detect upto 16 sources when SS-MUSIC tech-

nique is used. But, aperture of the array is not increased with using coarray based

DOA estimation techniques. In Figure 6.11b, RMSE-SNR performance of RMRA is

compared with ULAs using 9 and 16 sensors. It is seen that RMSE values of RMRA

is similar to the results for 9 sensor ULA whose aperture length is 8. Since the virtual

aperture of the difference coarray does not affect the real aperture and the physical

aperture is halved after spatial smoothing, aperture length of RMRA is also 8.

In Figure 6.12a, probability of detection is estimated as a function of SNR for given

arrays using N = 1000 snapshots and stochastic signal model. There are P = 9

sources at {30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦}. Equation 6.4 is used for

estimating the probability of detection with source number estimation using MDL

method. Probabilities are calculated by averaging the results of NMTC = 10000

simulations. Detection performances of all arrays increase with increasing SNR and

equal to 1 after some point. MRA has the best detection performance because it can

operate at lower SNR values with high probabiliy of detection. MinMIE performs

relatively worse than the others since it can reach probability of 1 when the SNR is 0

dB.
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Figure 6.12: Probability of detection of all sources as a function of SNR

for ULA and arrays selected by GA using M = 16, N = 1000,

NMTC = 10000 for (a) P = 9 sources with DOA Angles =

{30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦}, (b) P = 16 sources with DOA

Angles = {30◦, 40◦, 50◦, 60◦, 67◦, 74◦, 80◦, 86◦, 94◦, 100◦, 106◦, 113◦, 120◦, 130◦,

140◦, 150◦}

In Figure 6.13a, probability of detection is estimated as a function of snapshots for

given arrays using SNR = 0 dB and the remaining simulation parameters are same

with the ones used for Figure 6.12a. Detection performances of all arrays increase

rapidly with increasing number of snapshots. MRA and RMRA have lower proba-

bility of detection when the number of snapshots is below 150 because SS-MUSIC

requires more snapshots than classical methods such as Bartlett beamformer. Despite

of rapid increase at the beginning, detection performance of MinMIE converges to

unit probability slower than other arrays. ULA, MinMaxPSL and MinCRB+PSL per-

form similar to each other. Due to the empty region at the center, MinCRB fails to

detect all sources for all snapshot values.
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DOFs of MRA and RMRA are higher than the other arrays whose DOFs are 16. Ac-

cording to Table 6.1, arrays other than MRA and RMRA can detect upto 15 sources.

For the case of 16 sources, only MRA and RMRA are capable of detect all sources. In

Figures 6.12b and 6.13b, probability of detecting 16 sources are given as a function of

SNR and number of snapshots, respectively. Sources are placed at {30◦, 40◦, 50◦, 60◦,
67◦, 74◦, 80◦, 86◦, 94◦, 100◦, 106◦, 113◦, 120◦, 130◦, 140◦, 150◦} and probabilites are

calculated by using NMTC = 10000 simulations. As observed, only MRA and RMRA

can detect 16 sources due to their DOFs.

50 100 150 200

Number of Snapshots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n 

of
 a

ll 
so

ur
ce

s

ULA
MinMaxPSL
MinCRB
MinCRB+PSL
MinMIE
MRA
RMRA

(a)

200 400 600 800 1000

Number of Snapshots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n 

of
 a

ll 
so

ur
ce

s

ULA
MinMaxPSL
MinCRB
MinCRB+PSL
MinMIE
MRA
RMRA

(b)

Figure 6.13: Probability of detection of all sources as a function of num-

ber of snapshots for ULA and arrays selected by GA using M = 16,

SNR = 0 dB, NMTC = 10000 for (a) P = 9 sources with

DOA Angles = {30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦}, (b) P = 16

sources with DOA Angles = {30◦, 40◦, 50◦, 60◦, 67◦, 74◦, 80◦, 86◦, 94◦, 100◦, 106◦,
113◦, 120◦, 130◦, 140◦, 150◦}
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Figure 6.14: Probability of resolving two sources for ULA and arrays selected by GA

with M = 16, P = 2, N = 100, SNR = 10 dB, NMTC = 10000 when subarrays

other than MRA and RMRA using (a) Bartlett beamformer and (b) MUSIC

In Figure 6.14a, probability of resolving two sources is shown as a function of angu-

lar difference between DOAs of the sources using stochastic source model. Equation

6.6 is used for calculating the probability of resolution with SNR = 10 dB, N = 100

snapshots and NMTC = 10000 simulations. Longer aperture increases resolution of

an array to separate closed sources. As a consequence of similar aperture lengths,

resolution performances of ULA, MinMaxPSL and MinMIE are close to each other.

Because of using whole aperture of the TOA, MinCRB has a good resolution perfor-

mance. MinCRB+PSL has an average performance of resolving two closed sources.

MRA shows the best performance with the ability to detect two sources with 1◦ an-

gular difference. MRA and RMRA are used with SS-MUSIC method which is a

superresolution DOA estimation algorithm. Superresolution techniques are capable

of detecting two sources with an angular difference lower than the beamwidth. De-

spite of having an aperture length of 31, MinCRB+PSL performs worse than RMRA
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whose physical aperture length is 16. In Figure 6.14b, MUSIC technique is used as

a DOA estimation method for the arrays other than MRA and RMRA. In this case,

MinCRB+PSL outperforms RMRA due to having longer aperture.

According to results presented in this section, MRA outperforms other arrays with

lower RMS error, detection of low SNR sources and higher resolution for target sepa-

ration. Drawbacks of this array is requiring more snapshots and higher computational

cost. MinCRB+PSL is also an optimum solution when Bartlett beamformer is used

as the DOA estimation method. MinCRB is the worst array layout because of the

grating lobe related problems.

6.6 Array Layout Optimization Results For More Than 16 Sensors

In section 6.4, number of sensors is restricted to 16 for array layout optimizations.

Data from more than 16 sensors can be processed unless there is a limit on the com-

putation time or the hardware. Array gain increases when more sensors are selected

by the optimization since it is proportionate to the number of used sensors. In this sec-

tion ,optimization problems in section 6.4 are modified for selecting M > 16 sensors

and the obtained layouts are shown. In addition, some of the array properties such

as beampatterns, PSL values for different steering angles, RMSE curves and coarray

weights are given.

6.6.1 PSL Optimization

In order to find an optimum array for more than 16 sensors, number of sensors con-

straint in optimization problem given by Equation 6.7 is replaced with |S| > M .

Then, minimax optimization problem with the new constraint could be constructed as

SPSL ≜ argminmax
S

PSLϕ

s.t. |S| > M

ϕ ∈ [ϕl, ϕr]

(6.15)

where M = 16, ϕl = 30◦, ϕr = 150◦ and PSLϕ is calculated by using Equation

5.3. PSL values could be minimized by selecting a layout with narrower aperture and
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lower first sidelobe levels.

In Figure 6.15a, sensor positions of selected array layout are shown with red mark-

ers in addition to the TOA with blue markers. Selected array layout resembles ULA

for including 16 sensor ULA at the center. In order to select narrower aperture, 18

sensors at the center are selected. Beampatterns for the selected layout and 16 sen-

sor ULA are shown for the steering angle ϕ0 = 90◦ in Figure 6.15b. It is seen that

maximum sidelobe level decreases from -13 dB to around -16,5 dB. However, side-

lobe levels located at ϕ < 64◦ and ϕ > 116◦ are higher than the ones in ULA. Gaps

at the leftmost and rightmost parts of the layout reduces the first sidelobe levels and

increases remaining sidelobe levels.
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Figure 6.15: (a) Selected sensor positions for minimax PSL optimization, (b) beam-

pattern for ULA with M = 16 and MinMaxPSL with M = 18, (c) PSL levels for

different steering angles with ϕl = 30◦, ϕr = 150◦
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In Figure 6.15c, PSL values for steering angles 0◦ ≤ ϕ ≤ 180◦ are shown for the

selected layout with red dash-dot line. Maximum sidelobe levels for 30◦ ≤ ϕ0 ≤ 150◦

are around -16,5 dB. Although levels seem to be constant between 30◦ and 150◦,

decimal differences exist between the values for different steering angles. With this

optimization, lower sidelobe levels are obtained for different steering angles using 18

sensors. Selecting more than 18 sensors increases the sparsity of the layout, which

will increase the sidelobe levels.

6.6.2 Bayesian CRB Optimization

In order to find an optimum array for more than 16 sensors by minimizing Bayesian

CRB, number of sensors constraint in optimization problem given by Equation 6.8 is

replaced with |S| > M . Then, minimum Bayesian CRB optimization problem with

the new constraint can be stated as

SCRB ≜ argmin
S

CRBBayesian (SNR)

s.t. |S| > M

SNR = SNRopt

ϕ ∼ U [ϕl, ϕr]

(6.16)

where M = 16, SNRopt = 0 dB, ϕl = 30◦, ϕr = 150◦ and CRBBayesian is calculated

by using Equation 5.10. Aim of this optimization is obtaining a lower threshold

SNR to be able to work at lower SNR values. Threshold SNR can be minimized

by maximizing array gain which is proportional to the number of sensors. In Figure

6.16a, sensor positions of selected array layout are shown with red markers in addition

to the TOA with blue markers. As a result of relaxing the fixed number of sensors

constraint, optimization chooses all elements of the TOA. By choosing all elements,

maximum aperture length is reached and array gain is maximized.
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Figure 6.16: (a) Selected sensor positions for minimum Bayesian CRB optimization,

(b) beampattern for ULA with M = 16 and MinCRB with M = 32, (c) RMSE - SNR

for Bartlett method using 16 sensor ULA and 32 sensor MinCRB with SNRopt = 0

dB, P = 1, N = 1, NMTC = 10000, ϕl = 30◦, ϕr = 150◦

In Figure 6.16b, beampatterns of the 16 sensor ULA and the selected array for ϕ0 =

90◦ are shown. High sidelobes are observed for the selected layout as a result of being

a sparse array. RMSE and Bayesian CRB curves are shown in Figure 6.16c. Using

an aperture length of 60 decreases the RMS errors in the asymptotic region. Also,

threshold SNR of the selected array layout is 1 dB less than the one for 16 sensor

ULA.
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6.6.3 Bayesian CRB Optimization with PSL Constraint

In order to find an optimum array for more than 16 sensors by minimizing Bayesian

CRB with a given PSL, number of sensors constraint in optimization problem given

by Equation 6.9 is replaced with |S| > M . Then, minimum Bayesian CRB with the

desired PSL optimization problem with the new constraint can be stated as

SCRB ≜ argmin
S

CRBBayesian

s.t. |S| > M

SNR = SNRopt

max (PSLϕ) ≤ PSLmax

ϕ ∈ [ϕl, ϕr]

(6.17)

where M = 16, SNRopt = 0 dB, PSLmax = −13 dB, ϕl = 30◦, ϕr = 150◦,

CRBBayesian and PSLϕ are calculated by using Equation 5.10 and 5.3 respectively.

This optimization problem can be viewed as a combination of the problems in Equa-

tion 6.15 and 6.16. PSLmax is selected as -13 dB to obtain the PSL of a ULA in the

worst case. Without PSL constraint, optimization tries to select all 32 elements to

minimize beamwidth and maximize array gain of the selected layout. By having a

narrower beamwidth, local errors are minimized due to the mainlobe. High sidelobes

are observed when all elements of three octave array are selected. Having a PSL con-

straint forces the optimization to select a narrower aperture to reduce sidelobe levels

and wider beamwidth is obtained as a result. Minimization of CRB with a PSL con-

traint results in a new layout with narrower aperture than MinCRB.

In Figure 6.17a, sensor positions of selected array layout are shown with red markers

in addition to the TOA with blue markers. With the PSL constraint, all elements are

not selected like MinCRB. In comparison to ULA, a wider aperture is obtained. In

Figure 6.17b, beampatterns of the 16 sensor ULA and the selected array for ϕ0 = 90◦

are shown. A narrower beamwidth is obtained with the sidelobe levels around -13 dB.

In Figure 6.17c, PSL values for steering angles 0◦ ≤ ϕ ≤ 180◦ are shown for the se-

lected layout with red dash-dot line. Maximum sidelobe levels for 30◦ ≤ ϕ0 ≤ 150◦

are around -13 dB with decimal differences between the values for different steering

angles. RMSE and Bayesian CRB curves are shown in Figure 6.17d. In comparison

with ULA, both Bayesian CRB and RMSE at 0 dB is not minimized despite of lower

RMSE values for SNR > 0 dB.
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Figure 6.17: (a) Selected sensor positions for minimum Bayesian CRB optimization

with PSL constraint, (b) beampattern for ULA with M = 16 and MinCRB+PSL

with M = 20, (c) PSL levels for minimum Bayesian CRB optimization with PSL

constraint, (d) RMSE - SNR for Bartlett method using 16 sensor ULA and 20 sensor

MinCRB+PSL with SNRopt = 0 dB, P = 1, N = 1, NMTC = 10000, ϕl = 30◦,

ϕr = 150◦

6.6.4 Bayesian MIE Optimization

In order to find an optimum array for more than 16 sensors by minimizing Bayesian

MIE, number of sensors constraint in optimization problem given by Equation 6.10

is replaced with |S| > M . Then, minimum Bayesian MIE optimization problem with
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the new constraint can be stated as

SMIE ≜ argmin
S

MIEBayesian (SNR)

s.t. |S| > M

SNR = SNRopt

ϕ ∼ U [ϕl, ϕr]

(6.18)

where M = 16, SNRopt = 0 dB, ϕl = 30◦, ϕr = 150◦ and MIEBayesian is calculated

by using Equation 5.17. MIE approximates RMSE by combining CRB and interval

error probabilities. Without fixed number of sensors constraint, optimization maxi-

mizes array gain to decrease CRB by selecting all sensors of three octave array.
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Figure 6.18: (a) Selected sensor positions for minimum Bayesian MIE optimization,

(b) beampattern for ULA with M = 16 and MinMIE with M = 32, (c) RMSE - SNR

for Bartlett method using 16 sensor ULA and 32 sensor MinMIE with SNRopt = 0

dB, P = 1, N = 1, NMTC = 10000, ϕl = 30◦, ϕr = 150◦
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In Figure 6.18a, sensor positions of selected array layout are shown with red markers

in addition to the TOA with blue markers. This optimization also chooses all elements

of the TOA as the array layout like the minimum CRB optimization. Beampatterns for

the selected layout and 16 sensor ULA are shown for the steering angle ϕ0 = 90◦ in

Figure 6.18b. High sidelobes are observed for the selected layout as a result of being

a sparse array. In Figure 6.18c, RMSE, Bayesian CRB and Bayesian MIE curves are

shown for the selected array and 16 sensor ULA. RMSE and Bayesian MIE values of

the selected array layout are lower than ULA since it uses the whole aperture of the

TOA.

6.6.5 Minimum Redundancy Optimization

In order to find an optimum array for more than 16 sensors by minimizing redun-

dancy, number of sensors constraint in optimization problem given by Equation 6.11

is replaced with |S| > M . Then, minimum redundancy optimization problem with

the new constraint can be stated as

SMRA ≜ argmin
S

R

s.t. |S| > M

D = U

(6.19)

where R is calculated by using Equation 4.7 and D = U means that difference coarray

D is hole-free.

Aim of minimum redundancy optimization is selecting a layout with maximum spa-

tial efficiency of sensor placement. In Figure 6.7c, it is seen that maximum central

ULA segment can be obtained by using 16 sensors. Therefore, maximum obtain-

able aperture length is 40λ/2 for minimum redundancy array selection. In order to

obtain minimum redundancy with more than 16 sensors, optimization tries to select

minimum number of sensors with an aperture of 40λ/2.

In Figure 6.19a, sensor positions of selected array layout are shown with red markers

in addition to the TOA with blue markers. Leftmost element of the TOA is selected

in the new array layout to increase the aperture. Difference coarray weight function

for the selected array is shown in Figure 6.19c. Redundancy of the selected layout is
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3,4 and central ULA length |U| is 81. Redundancy of this layout is higher than MRA

with 16 sensors despite of having same central ULA length. Using an extra sensor

does not bring an advantage to the MRA in terms of spatial efficiency.

In Figure 6.19b, beampatterns for MRA obtained with the optimization are shown

when the array is steered to 90◦. Beampattern using Bartlett beamformer is plotted

with blue dash-dots and the one for spatially smoothed difference coarray is plotted

with red line. Lower sidelobe levels are observed with the PSL being -13 dB since

the beamforming is done by using the coarray elements.
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Figure 6.19: (a) Selected sensor positions for minimum redundancy optimization, (b)

beampattern using Bartlett and Spatially Smoothed Coarray for MRA with M = 17,

(c) weight function of difference coarray for MRA with M = 17
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6.6.6 Robust Minimum Redundancy Optimization

For selecting more than 16 sensors, robust minimum redundancy optimization given

in Equation 6.14 can be modified by replacing sensor number constraint with |S| >
M and fragility constraint with Messential = 2. Then, robust minimum redundancy

optimization problem with the new constraint can be stated as

SRMRA ≜ argmin
S

R

s.t. |S| > M

D = U

Messential = 2

M ≥ 4

(6.20)

where R is calculated by using Equation 4.7 and D = U means that difference coarray

D is hole-free. There is a tradeoff between central ULA length of difference coarray

and robustness against sensor failure. In Figure 6.10c, it is seen that maximum central

ULA length which is equal to 16λ/2 can be obtained using 16 sensors. This length

cannot exceed this number when the number of selected sensors is higher than 16. In

order to keep redundancy minimum, minimum number of sensors is selected by the

optimization.

In Figure 6.20a, sensor positions of selected array layout are shown with red markers

in addition to the TOA with blue markers. Using the constraint of having two essential

sensors and fixed sensor positions forces the optimization to select a 17 sensor ULA as

the new layout. Difference coarray weight function for the selected array are shown

in Figure 6.20c. Redundancy of the selected layout is 8,5 and central ULA length

|U| is 33. Main aim of robust minimum redundancy array optimization is to find

a robust array as much as ULA with less redundancy. Since the optimization can

choose elements from fixed sensor positions of the TOA, it does not find a different

array than ULA. Also higher redundancy and same central ULA length is obtained

when compared with RMRA with 16 sensors.

In Figure 6.20b, beampatterns for RMRA obtained with the optimization are shown

when the array is steered to 90◦. Beampattern using Bartlett beamformer is plotted

with blue dash-dots and the one for spatially smoothed difference coarray is plot-

ted with red line. PSL of the spatially smoothed coarray is higher than PSL of the

97



beampattern generated with Bartlett method, whereas the beamwidths are same.
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Figure 6.20: (a) Selected sensor positions for robust minimum redundancy optimiza-

tion, (b) beampattern using Bartlett and Spatially Smoothed Coarray for RMRA with

M = 17, (c) weight function of difference coarray for RMRA with M = 17

6.7 Performance Comparison of the Arrays Found by Optimization (M>16)

Array layout optimization results with more than 16 sensors for different cost func-

tions are provided in section 6.6. Proposed array layouts and 16 sensor ULA are

compared in terms of DOA estimation method, DOF and aperture length in Table

6.2. Bartlett beamformer is used for DOA estimation for all of the arrays in the table

except for MRA and RMRA which use SS-MUSIC technique. DOFs of MRA and

RMRA are 81 and 33 in the coarray domain. However, DOFs are reduced to 41 and
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17 as a consequence of spatial smoothing. Aperture lengths in the table are given as

a multiple of Nyquist distance λ/2 for 4 kHz. Apertures of MRA and RMRA are 40

and 16 according to Figures 6.19a and 6.20a. But, they are reduced to 20 and 8 after

smoothing the array for SS-MUSIC. Minimum aperture in Table 6.2 is 8 and belongs

to RMRA, whereas maximum aperture is 60 for the arrays obtained with minimum

CRB and minimum MIE optimization. Throughout this section, arrays obtained in

6.6.1, 6.6.2, 6.6.3, 6.6.4, 6.6.5, 6.6.6 are denoted by MinMaxPSL, MinCRB, Min-

CRB+PSL, MinMIE, MRA and RMRA respectively.

Table 6.2: Number of sensors (M), DOA estimation methods, DOFs and aperture

lengths and computation times for different arrays with more than 16 sensors

Array Type M Method DOF Aperture (λ/2) Time (ms)

ULA 16 Bartlett 16 15 6,03

MinMaxPSL 18 Bartlett 18 20 6,06

MinCRB 32 Bartlett 32 60 7,94

MinCRB+PSL 20 Bartlett 20 39 6,31

MinMIE 32 Bartlett 32 60 7,94

MRA 17 SS-MUSIC 41 20 40,68

RMRA 17 SS-MUSIC 17 8 40,68

In Figure 6.21a, array layouts with more than 16 sensors and ULAs with 16, 18,

20 and 32 sensors are compared by calculating RMSE of the angle estimations as a

function of SNR for N = 1 snapshot, P = 1 source, averaged over NMTC = 10000

simulations using deterministic signal model. In each MTC simulation, source DOA

is selected randomly from uniform distribution between ϕl = 30◦ and ϕr = 150◦.

MinCRB and MinMIE have the best performances in the asymptotic region, whereas

RMRA has the worst performance according to the RMSE values. As mentioned

in section 6.5, lower RMS errors are obtained for larger apertures. MinCRB and

MinMIE have the best performances in the asymptotic region as a result of having

the maximum aperture length. Both subarrays have all 32 elements of three octave

array. ULA with 32 sensor has lower threshold SNR and higher RMS errors in the
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asymptotic region when it is compared with the three octave array. Since three octave

array has a sparse layout, it has higher sidelobes, which results in higher threshold

SNR due to the ambiguity. Highest RMSE values belong to RMRA because of the

minimum aperture length.
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Figure 6.21: (a) RMSE - SNR for 16 sensor ULA and arrays selected by GA with

M > 16, P = 1, N = 1, NMTC = 10000, ϕl = 30◦, ϕr = 150◦, (b) Probability of

resolving two sources for 16 sensor ULA and arrays selected by GA with M > 16,

P = 2, N = 100, SNR = 10 dB, NMTC = 10000

RMSE performances of MinCRB+PSL, MRA, MinMaxPSL and ULA with 16 sensor

are compatible with their apertures given in Table 6.2. Although both subarrays have

same number of sensors, threshold SNR of ULA with 20 sensor is lower than the one

for MinCRB+PSL. Similar to the relation between three octave array and ULA with

32 sensor, having a larger aperture increases threshold SNR due to the false detections

of high sidelobe levels and decreases RMS errors in the asymptotic region as a result

of having narrower beamwidth. RMSE performances of MinMaxPSL and ULA with

18 sensors are close to each other because their beampatterns are similar to each other.
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Performance of three octave array with SS-MUSIC method is shown with black mark-

ers. It is seen that higher RMSE values and threshold SNR are obtained when it is

compared with the result of Bartlett beamformer which is shown with yellow (Min-

CRB) and green (MinMIE) markers. Aperture of three octave array is reduced to 20

when SS-MUSIC method is used as a result of spatial smoothing and central ULA

length. Both MRA and three octave array have same threshold SNR and RMSE val-

ues in the asymptotic region using SS-MUSIC since their central ULA length are

equal to each other. Despite of having the same aperture length with MinMaxPSL,

MRA performs better due to SS-MUSIC method which is a subspace DOA estimator.

Minimum threshold SNR is obtained with MinCRB and MinMIE and its value is 0

dB. These two array layouts are the optimum selection among all arrays with lower

RMS errors and ability to work at lower SNR values.

Threshold SNR of a layout depends on two parameters which are array gain and

sidelobe levels. By using more number of sensors, array gain can be increased and

lower threshold SNR is obtained. In Figure 6.21a, it is seen that threshold SNRS

of 20 sensor ULA and 32 sensor ULA are 1 and -1 dB respectively. Array gain

in linear scale is equal to the number of sensors for ULAs when Equation 2.49 is

used. Array gain difference in dB scale between these layouts can be calculated as

10 log10 (32) − 10 log10 (20) = 2 dB. Sidelobe level is another important parameter

for threshold SNR. In Figure 6.21a, it is seen that threshold SNR of ULA with 32

sensors is lower than three octave array although they have same number of sensors.

Peak to sidelobe level of ULA with 32 sensor is -13,5 dB and it is -6 dB for three

octave array. Having higher sidelobe levels increase the ambiguity in DOA estimation

problem. Therefore, higher threshold SNR is obtained with the three octave array.

In Figure 6.22a, probability of detection is estimated as a function of SNR for given

arrays using N = 1000 snapshots and stochastic signal model. There are P = 9

sources at {30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦}. Equation 6.4 is used for

estimating the probability of detection with source number estimation using MDL

method. Probabilities are calculated by averaging the results of NMTC = 10000 simu-

lations. Detection performances of all arrays increase with increasing SNR and equal

to 1 after some point. MRA has the best detection performance because it can oper-

ate at lower SNR values with high probabiliy of detection. Three octave array with
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SS-MUSIC method has similar detection performance since central ULA segment for

both arrays is same. Performances of MinMaxPSL, MinCRB+PSL and three octave

array (MinCRB and MinMIE) are worse than the ULAs with same number of sensors

(ULA-18, ULA-20 and ULA-32). Three octave array (MinCRB and MinMIE) has

the worst detection performance because of having high sidelobe levels in its beam-

pattern caused by sparsity. High sidelobes bring an ambiguity in DOA estimation

because of false target detection. This ambiguity problem could be solved by using

other DOA estimation techniques such as dual apodization. For source SNR values

higher than 1 dB, all subarray layouts can detect 9 sources correctly.
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Figure 6.22: Probability of detection of all sources for 16 sensor ULA and arrays

selected by GA using M > 16, P = 9, NMTC = 10000, Source DOA Angles

= {30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦} as a function of (a) SNR with N =

1000 and (b) number of snapshots with SNR = 5 dB

In Figure 6.22b, probability of detection is estimated as a function of snapshots for

given arrays using SNR = 5 dB and the remaining simulation parameters are same
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with the ones used for Figure 6.22a. Detection performances of all arrays increase

rapidly with increasing number of snapshots. MRA and RMRA have lower proba-

bility of detection when the number of snapshots is below 200 because SS-MUSIC

requires more snapshots than classical methods such as Bartlett beamformer. Three

octave array has a similar performance when it is used with SS-MUSIC. Remaining

subarrays perform similar to each other.

In Figure 6.21b, probability of resolving two sources is shown as a function of angu-

lar difference between DOAs of the sources using stochastic source model. Equation

6.6 is used for calculating the probability of resolution with SNR = 10 dB, N = 100

snapshots and NMTC = 10000 simulations. MRA has the best performance with the

ability to detect two sources with 1◦ angular difference. Three octave array has the

same performance with SS-MUSIC because of having same central ULA segment

in its difference coarray. ULA with 16 sensor performs worst since its aperture is

the smallest and Bartlett beamformer is used for DOA estimation. Having the ad-

vantage of SS-MUSIC which is a superresolution method, RMRA performs better

than the most of the arrays despite of a small aperture. Capability of resolving two

closed sources is the highest for MinCRB and MinMIE among the arrays which uses

Bartlett beamformer. Similar to the RMSE performances in Figure 6.21a, probability

of resolution performance also depends on the array aperture in addition to the DOA

estimation method. Performances of MinMaxPSL, MinCRB+PSL and three octave

array (MinCRB and MinMIE) are better than the ULAs with same number of sensors

(ULA-18, ULA-20 and ULA-32) as a result of wider aperture.

According to results presented in this section, three octave array (MinCRB and Min-

MIE) outperform other arrays with lower RMS error, lower threshold SNR and higher

resolution for target separation despite of a relatively worse performance of detecting

multiple sources using Bartlett beamformer. Detection performance of a layout is not

directly related to the number of sensors. High sidelobe levels are observed for three

octave array since it is a sparse array. Sparsity of the array increases false target detec-

tion which is the reason for poor detection performance at low SNR values. In Figures

6.23a and 6.23b, waterfall displays of Bartlett beamformer output for ULA with 16

sensor (octave-3) and three octave array are shown. In Figure 6.23b, peaks at 0◦, 60◦,

90◦, 120◦ and 180◦ are available although there is one source at 90◦. Except for 90◦,
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these peaks are appeared in the display because of the high sidelobes of three octave

array. Existence of them may confuse the user and they can be classified as targets

which do not exist in the environment. Using other DOA estimation methods such as

SS-MUSIC and dual apodization can solve this ambiguity problem. MinCRB+PSL

is also an optimum solution in terms of the multiple source detection performance.

MRA with 17 sensors is not advantageous as MRA with 16 sensors because central

ULA length is not increased.
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Figure 6.23: Waterfall displays of Bartlett beamformer output using P = 1, SNR =

10 dB, ϕs = 90◦ for (a) ULA (M = 16), (b) three octave array (M = 32)

6.8 Two-Subarray-Layouts With Dual Apodization

SS-MUSIC is superior to the Bartlett beamfomer as a DOA estimator in terms of

RMS error for angle estimation and target separation despite of high computational

complexity. Dual apodization is a low computational cost method which could bring

the narrow beamwidth and low PSL at the same time. Subarrays for this method can

be chosen by the genetic algorithm using different cost functions. In [52], both layout

and weights for the subarrays are found using the genetic algorithm by minimizing

the peak sidelobe level between the first null points of the two subarrays for broadside

steering. In this section, array layouts from section 6.4 and TOA are used as the sub-

arrays for dual apodization. Weight vectors for the subarrays are fixed and calculated
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using Equations 3.45 and 3.46. Three different two-subarray-layouts are given with

their beampatterns and spatial spectra.

6.8.1 Layout - 1 for Dual Apodization
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Figure 6.24: (a) Sensor positions for Layout - 1, (b) beampatterns of Subarray-1

and Subarray-2 for Layout-1, (c) spatial spectra of Subarray-1, Subarray-2 and dual

apodization for Layout-1 with N = 1000, P = 2, SNR = 20 dB, Source DOA

Angles = {85◦, 95◦}

In the first layout, both subarrays have 16 sensors. MinCRB explained in 6.4.2 is

selected as subarray-1 to reach the maximum aperture of TOA for obtaining the mini-

mum beamwidth. ULA is selected as subarray-2 to obtain low sidelobe levels. Similar

layout selection is also used in [10]. In Figure 6.24a, sensor positions of subarray-2

are shown with red markers in addition to subarray-1 with blue markers. Beampat-
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terns for the selected subarrays are shown for the steering angle ϕ0 = 90◦ in Figure

6.24b. An example of spatial spectra for subarray-1 (MinCRB), subarray-2 (ULA)

and dual apodization method are illustrated in Figure 6.24c. These spectra are gen-

erated by using N = 1000 snapshots. There are P = 2 narrowband sources with SNR

= 20 dB and DOA angles of them are {85◦, 95◦}. Grating lobes caused by MinCRB

are removed by ULA while preserving the narrow beamwidth. However, high level

peaks are observed around the source DOAs, which may increase the false alarms.

6.8.2 Layout - 2 for Dual Apodization
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Figure 6.25: (a) Sensor positions for Layout - 2, (b) beampatterns of Subarray-1

and Subarray-2 for Layout-2, (c) spatial spectra of Subarray-1, Subarray-2 and dual

apodization for Layout-2 with N = 1000, P = 2, SNR = 20 dB, Source DOA

Angles = {85◦, 95◦}
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In the second layout, TOA is selected as subarray-1 to reach the maximum aperture

and maximize the array gain. ULA is selected as subarray-2 to obtain low sidelobe

levels. In Figure 6.25a, sensor positions of subarray-2 are shown with red markers in

addition to subarray-1 with blue markers. Beampatterns for the selected subarrays are

shown for the steering angle ϕ0 = 90◦ in Figure 6.25b. An example of spatial spectra

for subarray-1 (TOA), subarray-2 (ULA) and dual apodization method are illustrated

in Figure 6.25c. These spectra are generated by using N = 1000 snapshots. There

are P = 2 narrowband sources with SNR = 20 dB and DOA angles of them are

{85◦, 95◦}. High sidelobes caused by TOA are removed by ULA while preserving

the narrow beamwidth.

6.8.3 Layout - 3 for Dual Apodization

In the third layout, TOA is selected as subarray-1 to reach the maximum aperture and

maximize the array gain. MinMaxPSL explained in 6.4.1 is selected as subarray-2

to obtain lowest sidelobe levels for 16 sensor arrays given in 6.4. In Figure 6.26a,

sensor positions of subarray-2 are shown with red markers in addition to subarray-1

with blue markers. Beampatterns for the selected subarrays are shown for the steer-

ing angle ϕ0 = 90◦ in Figure 6.26b. An example of spatial spectra for subarray-

1 (TOA), subarray-2 (MinMaxPSL) and dual apodization method are illustrated in

Figure 6.25c. These spectra are generated by using N = 1000 snapshots. There

are P = 2 narrowband sources with SNR = 20 dB and DOA angles of them are

{85◦, 95◦}. It is observed that dual apodization spectrum of Layout-3 is similar to the

spectrum of Layout-2 since layout of MinMaxPSL shows similarities with ULA.
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Figure 6.26: (a) Sensor positions for Layout - 3, (b) beampatterns of Subarray-1

and Subarray-2 for Layout-3, (c) spatial spectra of Subarray-1, Subarray-2 and dual

apodization for Layout-3 with N = 1000, P = 2, SNR = 20 dB, Source DOA

Angles = {85◦, 95◦}

6.9 Performance Comparison of the Two-Subarray-Layouts With Dual Apodiza-

tion

Results of two-subarray-layouts are provided in section 6.8. All of the proposed array

layouts are used with Bartlett beamformer and they have the maximum aperture of

TOA. Array layouts are compared according to the RMS errors in DOA estimation,

detection and source separation performances.

In Figure 6.27a, array layouts are compared by calculating RMSE of the angle es-

timations as a function of SNR for N = 1 snapshot, P = 1 source, averaged over
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NMTC = 10000 simulations using deterministic signal model. In each MTC simula-

tion, source DOA is selected randomly from uniform distribution between ϕl = 30◦

and ϕr = 150◦. Performances of all three proposed layouts are close to each other.

There are negligible differences between them. By comparing with 16 sensor ULA,

lower RMS values are obtained because of using maximum aperture.
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Figure 6.27: (a) RMSE - SNR for 16 sensor ULA and Two-Subarray-Layouts with

P = 1, N = 1, NMTC = 10000, ϕl = 30◦, ϕr = 150◦, (b) Probability of resolving

two sources for 16 sensor ULA and Two-Subarray-Layouts with P = 2 , N = 100,

SNR = 10 dB, NMTC = 10000

In Figure 6.28a, probability of detection is estimated as a function of SNR for given

arrays using N = 1000 snapshots and stochastic signal model. There are P = 9

sources at {30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦}. Equation 6.4 is used for

estimating the probability of detection with source number estimation using Algo-

rithm 3. Probabilities are calculated by averaging the results of NMTC = 10000

simulations. Layout-2 and layout-3 have the best detection performances since both

arrays use TOA as subarray-1. Layout-3 performs worse than ULA as a consequence
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of grating lobes of MinCRB.

-25 -20 -15 -10 -5 0

SNR, dB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n 

of
 a

ll 
so

ur
ce

s

ULA
Layout-1
Layout-2
Layout-3

(a)

50 100 150 200

Number of Snapshots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n 

of
 a

ll 
so

ur
ce

s

ULA
Layout-1
Layout-2
Layout-3

(b)

Figure 6.28: Probability of detection of all sources for 16 sensor ULA and Two-

Subarray-Layouts using P = 9, NMTC = 10000, Source DOA Angles =

{30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦} as a function of (a) SNR with N =

1000 and (b) number of snapshots with SNR = 0 dB

In Figure 6.28b, probability of detection is estimated as a function of snapshots for

given arrays using SNR = 0 dB and the remaining simulation parameters are same

with the ones used for Figure 6.28a. In this figure, layout-2 and layout-3 also have

the same detection performance. Due to the grating lobe problem of its subarray-1,

layout-3 has a poor performance and requires more snapshots to reach unit probabil-

ity.

In Figure 6.27b, probability of resolving two sources is shown as a function of angu-

lar difference between DOAs of the sources using stochastic source model. Equation

6.6 is used for calculating the probability of resolution with SNR = 10 dB, N = 100

snapshots and NMTC = 10000 simulations. Unlike the RMSE and detection perfor-
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mances, layout-1 has the best performance with the ability to detect two sources with

1, 8◦ angular difference. Performances of layout-2 and layout-3 are also same in this

case. Difference between layout-1 and layout-2 is that first one uses MinCRB as the

subarray-1 while the other uses TOA. Both layout uses ULA as the subarray-2. De-

spite of using the same aperture length, beamwidths of MinCRB and TOA are 1, 5◦

and 2◦ respectively. Having a narrower beamwidth improves the source separation

performance of the array. MinCRB can be modelled as the TOA applied with a win-

dow whose kth elements are zero for k = {9, · · · , 24} and remainin elements are 1.

As the number of elements which take zero values at the center of the array incraese,

beamwidth of the array narrows. In Figure 6.29, it is shown with a beampattern exam-

ple. Beampatterns of three different arrays are plotted and the beamwidth increases

as the number of sensors M increase. Array labelled with M = 24 has 24 sensors

from TOA and 8 sensors at the center of TOA are not used.
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Figure 6.29: Beampatterns of TOA with 16, 8 and 0 sensor gap at the center

According to results presented in this section, Layout-2 and Layout-3 outperform

Layout-1 with a better detection performance. Ambiguity problem of three octave

array is solved by using ULA and MinMaxPSL as second subarrays for dual apodiza-

tion method. Layout-1 seems to be superior in terms of resolution. But, it suffers

from the grating lobes and false alarms related to it.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, different approaches to subarray selection problem for octave arrays

are studied in optimization framework. Octave arrays are formed by combining a

number of uniform line arrays with different element spacings. With conventional

DOA estimation methods, only ULA at the center is used for the highest design fre-

quency band. Using sensors apart from the inner ULA increases the aperture, which

results in higher resolution and lower error for DOA estimation. In addition, using

additional sensors outside the inner ULA increases the array gain and reduces the

threshold SNR. Array layouts are selected by genetic algorithm with different cost

functions and their performances are presented.

In the second chapter, narrowband signal model and related parameters are explained.

Then, classical and coarray based DOA estimation methods are presented in the third

and fourth chapters. Information about genetic algorithm and cost functions used in

the optimizations are given in the fifth chapter. Optimization problems, their results

and performance comparisons are shown in the sixth chapter.

In the fifth chapter, Bayesian CRB and Bayesian MIE are derived for estimating the

RMSE performance of arrays for a single source with a random DOA angle. To

reduce the false alarms caused by the sidelobes, maximum of peak to sidelobe levels

for different steering angles is used as another cost function. Then, a PSL constraint

is added to the Bayesian CRB optimization to prevent grating lobes as a result of the

selected layout. For finding an optimum array with a hole-free coarray, redundancy

and fragility are found for obtaining MRA and RMRA from the elements of the three
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octave array.

The proposed cost functions are applied for finding the optimum subarray layouts in

the sixth chapter. Layouts with 16 sensors are found with the cost functions to select a

new array instead of ULA with the same number of sensors. MRA with 16 sensors has

the maximum DOF with SS-MUSIC method, so it can detect more sources than the

any other proposed arrays. Bayesian CRB optimization with the PSL constraint gives

the best result using 16 sensors for Bartlett beamformer method. Lower RMS errors

and higher target separation performance are obtained as a result of using a wider

aperture. Then, fixed number of sensors constraint is removed and the optimization

problems are modified to find new subarrays with more than 16 sensors. Simulation

results for the layouts found by the new optimization problems show that Bayesian

CRB optimization with the PSL and the TOA show the best performances with the

Bartlett technique. Maximum array gain and aperture length are obtained by using

all elements of TOA. To improve the RMSE and resolution performances with a less

computational complexity than SS-MUSIC, three different two-subarray-layouts are

proposed for using dual apodization method. These layouts are also compared with

the same performance metrics that are used for the previous scenarios.

According to the results presented in Chapter 6, there is a trade-off between RMS

error for DOA estimation and detection performance for layout selection problem.

Selecting a subarray with wider aperture using elements of three octave array results

in narrower beamwidth. Less RMS error in the asymptotic region and higher resolu-

tion could be obtained as a result of having narrower beamwidth. However, a sparse

layout is selected from the elements of three octave array when it is aimed to select

a wider apeture. High sidelobes and false target detections are observed when the

selected layout is sparse. Detection performance degrades as a result of increasing

number of false detections.

Threshold SNR is another important array parameter for subarray selection problem.

It sets a lower bound on input SNR at which the system can work properly. In Chapter

6, it is seen that array gain and sidelobe level affect the value of threshold SNR. Lower

threshold values are observed for the subarrays with higher array gain as a result of

using more number of sensors. High sidelobe levels increase the ambiguity in DOA
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estimation because of the false detections. Threshold SNR values for the layouts with

higher sidelobe levels are higher due to the ambiguity problem.

To conclude, it is possible to obtain better array layouts than ULA from the TOA

and considerable improvements are observed in terms of RMS errors, detection and

resolution performances without increasing the computational complexity. Number

of detectable sources could be increased by using sparse ararys such as MRA at the

expense of longer computation time.

7.2 Future Work

Although optimum subarrays are found from the discrete positions of the TOA, these

optimizations and performance analyses are made for the narrowband signals. In

the wideband scenario, sensor spacings in terms of the wavelength are changed for

each frequencies. Also, the difference coarrays will be different within the frequency

band of the wideband. Idea of finding a subarray with the genetic algorithm can be

extended to the wideband signals as a future work. Optimizations presented in this

thesis are limited to the linear arrays. Further work can be done for finding a more

generalized optimization for any type of array. It is seen that SS-MUSIC technique

is a superior DOA algorithm despite of its high computational complexity. A low

complexity superresolution method with spatial smoothing could be proposed to solve

this issue in the future.
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