
COMPETING LABELS: A HEURISTIC APPROACH TO PSEUDO-LABELING
IN DEEP SEMI-SUPERVISED LEARNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HAMDİ BURAK BAYRAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

JANUARY 2022

Approval of the thesis:

COMPETING LABELS: A HEURISTIC APPROACH TO PSEUDO-LABELING
IN DEEP SEMI-SUPERVISED LEARNING

submitted by HAMDİ BURAK BAYRAK in partial fulfillment of the requirements
for the degree of Master of Science in Scientific Computing Department, Middle
East Technical University by,

Prof. Dr. A. Sevtap Kestel
Dean, Graduate School of Applied Mathematics

Prof. Dr. A. Sevtap Kestel
Head of Department, Scientific Computing

Assoc. Prof. Dr. Şeyda Ertekin
Supervisor, Computer Engineering Dept., METU

Assoc. Prof. Dr. Hamdullah Yücel
Co-supervisor, Scientific Computing, IAM, METU

Examining Committee Members:

Prof. Dr. Ömür Uğur
Scientific Computing, IAM, METU

Assoc. Prof. Dr. Şeyda Ertekin
Computer Engineering Department, METU

Assoc. Prof. Dr. Ahmet Murat Özbayoğlu
Artificial Intelligence Engineering Department, TOBB ETU

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: HAMDİ BURAK BAYRAK

Signature :

v

vi

ABSTRACT

COMPETING LABELS: A HEURISTIC APPROACH TO PSEUDO-LABELING
IN DEEP SEMI-SUPERVISED LEARNING

Bayrak, Hamdi Burak

M.S., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Şeyda Ertekin

Co-Supervisor : Assoc. Prof. Dr. Hamdullah Yücel

January 2022, 67 pages

Semi-supervised learning is one of the dominantly utilized approaches to reduce the
reliance of deep learning models on large-scale labeled data. One mostly used method
of this approach is pseudo-labeling. However, pseudo-labeling, especially its origi-
nally proposed form tends to remarkably suffer from noisy training when the assigned
labels are false. In order to mitigate this problem, in our work, we investigate the gra-
dient sent to the neural network and propose a heuristic method, called competing
labels. In this method, we arrange the loss function and choose the pseudo-labels in
a way that the gradient the model receives contains more than one negative element.
We test our method on MNIST, Fashion-MNIST, and KMNIST datasets and show
that our method has a better generalization performance compared to the originally
proposed pseudo-labeling method.

Keywords: Semi-supervised learning, Deep learning, Pseudo-labeling, Machine learn-
ing

vii

viii

ÖZ

YARIŞAN ETİKETLER: YARI DENETİMLİ DERİN ÖĞRENMEDEKİ SÖZDE
ETİKETLEMEYE BULUŞSAL BİR YAKLAŞIM

Bayrak, Hamdi Burak

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Şeyda Ertekin

Ortak Tez Yöneticisi : Doç. Dr. Hamdullah Yücel

Ocak 2022, 67 sayfa

Yarı denetimli öğrenme, derin öğrenme modellerinin büyük miktarda etiketli veriye
olan bağımlılığını azaltmada yoğun şekilde faydalanılan yaklaşımlardan biridir. Bu
yaklaşımda çoğunlukla kullanılan metot sözde etiketlemedir. Ancak, sözde etiket-
leme, özellikle orjinal formu, atanan etiketler hatalı olduğu zaman, gürültülü eği-
timden önemli bir ölçüde olumsuz etkilenmektedir. Bu problemin etkisini azaltmak
için çalışmamızda, sinir ağına gönderilen gradyanı inceliyor ve yarışan etiketler me-
todunu öne sürüyoruz. Bu metotta kayıp fonksiyonunu ve sözde etiketleri, modelin
aldığı gradyanın birden fazla eksi eleman içermesini sağlayacak şekilde seçiyoruz.
Metodumuzu MNIST, Fashion-MNIST, ve KMNIST veri kümelerinde test ediyor ve
sunduğumuz metodun orjinal çalışmadaki metoda kıyasla daha iyi bir genelleştirme
performansına sahip olduğunu gösteriyoruz.

Anahtar Kelimeler: Yarı-denetimli öğrenme, Derin öğrenme, Sözde etiketleme, Ma-
kine öğrenmesi

ix

x

ACKNOWLEDGMENTS

I would like to give a special thanks to my thesis advisor Assoc. Prof. Şeyda Ertekin
and co-advisor Assoc. Prof. Hamdullah Yücel for reviewing and sharing their valu-
able opinions about my thesis.

This work was partially supported by the Scientific and Technological Research Coun-
cil of Turkey (TÜBİTAK) with the project "Development of Calorimeter Simulations
in High Energy Particle Physics by Generative Adversarial Networks" (project no:
119F084).

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Preliminaries: Notations and Definitions 4

2 SIGNAL VECTOR . 11

2.1 Motivation Behind Signal Vector 12

2.2 Signal Vector Analysis . 16

2.3 Signal Vector of Naive Pseudo-Labeling 18

2.4 Obtaining More Negative Signals 19

2.5 Negative Signals Experiments 22

2.5.1 One Negative Signal 22

xiii

2.5.1.1 One Sample 22

2.5.1.2 Four Samples 24

2.5.2 Two Negative Signals 26

2.5.2.1 One Sample 26

2.5.2.2 Four Samples 27

2.5.3 Three Negative Signals 29

2.5.3.1 One Sample 29

2.5.3.2 Four Samples 29

3 PSEUDO-LABEL SELECTION . 33

3.1 Warm-up Phase . 35

3.2 Pseudo-label Selection with Fixed n 38

3.3 Pseudo-label Selection with Threshold τ 39

4 NUMERICAL RESULTS AND DISCUSSION 43

4.1 MNIST . 43

4.1.1 Dataset . 43

4.1.2 Model . 43

4.1.3 Training . 44

4.1.4 Hyperparameter Selection 45

4.1.5 Results . 49

4.2 Fashion-MNIST . 53

4.2.1 Dataset . 53

xiv

4.2.2 Results . 53

4.3 KMNIST . 58

4.3.1 Dataset . 58

4.3.2 Results . 59

5 SUMMARY AND CONCLUSION 63

REFERENCES . 65

xv

xvi

LIST OF TABLES

Table 2.1 One negative signal, one sample pseudo-labels 23

Table 2.2 One negative signal, four samples, pseudo-labels 25

Table 2.3 Pseudo-labels for two negative signals 26

Table 2.4 Pseudo-labels for two negative signals and four samples 27

Table 2.5 Pseudo-labels for three negative signals and one sample 29

Table 2.6 Pseudo-labels for three negative signals and four samples 29

Table 4.1 Average validation accuracy (of three trials) for different hyperpa-
rameters and 600 labeled samples . 46

Table 4.2 MNIST. Average test accuracy and standard deviation of 10 experi-
ments. Bold number indicates the highest accuracy. 50

Table 4.3 MNIST (including mixup). Average test accuracy and standard de-
viation of 10 experiments. Bold number indicates the highest accuracy. . . 52

Table 4.4 Competing labels vs Naive labeling. Last three rows are adapted
from the work [16]. Bold number indicates the highest test accuracy. . . . 53

Table 4.5 Average test accuracy (for 5 experiments) of the model on the com-
pletely labeled datasets. 53

Table 4.6 Fashion-MNIST. Average test accuracy and standard deviation of
10 experiments. Bold number indicates the highest accuracy. 56

Table 4.7 Fashion-MNIST (including mixup). Average test accuracy and stan-
dard deviation of 10 experiments. Bold number indicates the highest ac-
curacy. 56

Table 4.8 KMNIST. Average test accuracy and standard deviation of 10 ex-
periments. Bold number indicates the highest accuracy. 59

Table 4.9 KMNIST (including mixup). Average test accuracy and standard
deviation of 10 experiments. Bold number indicates the highest accuracy. . 61

xvii

LIST OF FIGURES

Figure 1.1 Forward propagation diagram . 6

Figure 1.2 Signal vector propagation diagram 7

Figure 2.1 Change of signals and softmax outputs during epochs for a sin-
gle sample. Black and colored lines are associated with the positive and
negative signals, respectively. 15

Figure 2.2 One sample for experimentation. The image is taken from the
MNIST dataset [6]. 23

Figure 2.3 Four samples for experimentation. The images are taken from the
MNIST dataset [6]. 23

Figure 2.4 Behaviour of softmax outputs and signals during the training. Black,
and colored lines associated with the values 0 and 1 in the label vector, re-
spectively. 24

Figure 2.5 Four samples with one negative signals. Black, and colored lines
associated with the values 0 and 1 in the label vector, respectively. 25

Figure 2.6 One sample with two negative signals. Black, and colored lines
associated with the values 0 and 1 in the label vector, respectively. 27

Figure 2.7 Two negative signals with four samples. Black, and colored lines
associated with the values 0 and 1 in the label vector, respectively. 28

Figure 2.8 Softmax outputs and signals for three negative signals and one in-
put. Black, and colored lines associated with the values 0 and 1 in the
label vector, respectively. 30

Figure 2.9 Softmax outputs and signals for four samples with three negative
signals. Black, and colored lines associated with the values 0 and 1 in the
label vector, respectively. 31

Figure 3.1 Initial distribution of the elements of 100 softmax output vectors. . 34

xviii

Figure 3.2 Softmax output values of the samples at the beginning (left) and
the end (right) of the warm-up phase. Red crossed points represent the
true classes. 36

Figure 3.3 Softmax output values of the samples at the beginning (left) and
the end (right) of the warm-up phase. Red crossed points represent the
true classes. The delay coefficient λ is 1. 37

Figure 4.1 25 MNIST images [6] . 44

Figure 4.2 Average number of negative signals vs epochs 47

Figure 4.3 Average zmax vs epochs . 48

Figure 4.4 Unlabeled loss vs epochs . 49

Figure 4.5 Accuracy vs experiments for MNIST 100 labeled samples 51

Figure 4.6 25 Fashion-MNIST images [22] 54

Figure 4.7 Fully labeled training for MNIST, Fashion-MNIST, and KMNIST
datasets . 55

Figure 4.8 Accuracy vs experiments for Fashion-MNIST 100 labeled samples 57

Figure 4.9 25 KMNIST images [5] . 58

Figure 4.10 Accuracy vs experiments for KMNIST 100 labeled samples 60

xix

xx

CHAPTER 1

INTRODUCTION

Recent deep learning methods surpass the other machine learning algorithms in su-

pervised learning tasks and such an extraordinary achievement is mostly explained

by the fact that there are enormous amounts of labeled data which can be used in the

training [15]. However, to collect or construct such a vast number of labeled data is

not a straightforward task and is often costly because such a task requires time and

expert knowledge.

In order to reduce the reliance on labeled data, many approaches have been invented.

Some important ones among them are self-supervised learning [7], few-shot learning

[8], and semi-supervised learning [4]. And semi-supervised learning is one of widely

used approaches to handle datasets where the number of labeled data is very limited.

The objective in semi-supervised learning is to take advantage of samples whose la-

bels are unavailable together with the labeled samples in order to improve the per-

formance in a supervised learning task [3]. In semi-supervised learning one mostly

accepted assumption is that the decision boundaries should not lie in high density

regions but be in low density regions [4]. There are two dominant methods in semi-

supervised learning that attempt to achieve this condition, namely consistency regu-

larization and pseudo-labeling.

The main purpose of consistency regularization methods is to ask a model to produce

"similar" outputs when an input and its perturbed form are given to the model [21]. In

a more formal expression, when the input of a model is perturbed, the output should

be invariant. For instance, in temporal ensembling method, the outputs for a sample

1

are accumulated for multiple epochs and the distribution of them is encouraged to be

invariant [13].

Pseudo-labeling methods, on the other hand, follow entirely different strategy to over-

come the limited label problem. In this approach, to be able to incorporate unlabeled

samples into the training, some artificial labels, so called pseudo-labels, are assigned

to each unlabeled samples, and the model is trained using both types of samples i.e.,

labeled ones (which have their true labels) and unlabeled ones (that have their pseudo-

labels) [16].

In the original paper of pseudo-labeling, the author’s pseudo-label selection is to as-

sign only one label to a sample based on the sample’s model output [16]. However,

such a pseudo-label selection strategy comes with its own problem: When the as-

signed label is false, the model is trained with noisy data. As a consequence of this,

the performance of the model (e.g., classification score of new samples) is degraded

[1, 19].

To mitigate the negative effect (to the training) of originally proposed pseudo-label

assignment strategy, there are many attempts in the literature and some important of

them as follows:

In the work of Iscen et al. [11], the authors construct a graph in their training method,

and based on neighborhood associated with this graph, they assign labels to the unla-

beled samples.

In the work of Arazo et al. [1], a soft version of pseudo-labels (i.e., labels can have

a value between 0 and 1, they are not restricted to binary choice) are taken into con-

sideration and an intuitive loss function (i.e., which contains a lot of regularization

terms) is attempted to minimize. This work is mainly based on the idea in the paper

[20] where the authors construct a joint optimization problem in order to deal with

noisy data. Furthermore, in order to increase the model’s generalization ability, they

utilize a popular regularization method, namely mixup [24].

Another solution to weaken the negative effect of the labeling strategy which is pro-

posed in the original work is to select labels with "care". The authors in the paper [19]

give labels to the unlabeled data if such samples’ model outputs satisfy a determined

2

level of certainty condition. That is, the authors pick and label only certain amount

of the samples that satisfy a pre-determined condition. Since at the first time, it is not

possible to label all the unlabeled samples, the authors attempt to re-train the model

by using newly pseudo-labeled samples. While training iteratively, the authors adopt

a similar method expressed in the paper [9].

In this thesis, we study the single label image classification problem in the semi-

supervised learning setting from the perspective of pseudo-labeling. However, unlike

the previous works, in order to overcome the problem (i.e., selecting single label for

an unlabeled sample causes noisy training, especially when the selection is false) as-

sociated with the originally proposed pseudo-labeling technique [16], we focus on the

gradient that our model receives, and propose a heuristic method, called competing

labels, where we design our loss function and determine the pseudo-labels in such a

way that the gradient sent to the parametrized function contains more than one neg-

ative element—therefore, the model has a tendency to increase more than one of its

(softmax) outputs. In our work, we take into consideration a class-balanced scenario

and restrict ourselves to only a single model, namely a convolutional neural network

with two hidden layers.

For this objective, we arrange the rest of the thesis as follows: in the next section,

we propose some definitions and notations that are used in the coming chapters. In

Chapter 2, we derive an expression for the gradient (or signal vector) that is sent to

the model, and discuss what type of a loss function we should use in order to make

the signal vector to be able to contain more than one negative signal. In Chapter

3, we focus on the selection of pseudo-labels, and propose a strategy for pseudo-

label selection that allows both of these: the gradient has multiple negative elements

and the magnitudes of these elements are greater than certain value. In Chapter 4,

we test our approach (i.e., competing labels) on three different datasets, and show

the better performance of our method against the "naive" pseudo-labeling method.

Furthermore, in this chapter, we compare our outcomes with the results obtained in

the originally proposed work. In the last chapter, we briefly give a summary and share

important conclusions of our work.

3

1.1 Preliminaries: Notations and Definitions

In a typical semi-supervised learning task, we have two datasets: labeled and unla-

beled. The labeled dataset DL has the form

DL =
{
(s(i),y(i))

}NL

i=1
,

where s(i) is the sample (or input of the model), y(i) is the (true) label vector, and NL

is the number of labeled samples. Since in our work, our interest is a K class image

classification problem, the inputs, i.e., s(i), turn out as images.

Moreover, because our problem is restricted to the single-label (or also known multi-

class) classification, that is, for (s,y) ∈ DL, the input s can belong to only one of

K > 2 classes, an element yj of the label vector y has the value yj = 1 if s belongs

to jth class and yj = 0 otherwise, where j = 1, 2, ..., K. Note that, because of being

single-label problem, only one element of the label vector y is 1, and the rest are 0.

The unlabeled dataset DU , on the other hand, has an appearance:

DU =
{
s(i)

}NU

i=1
,

where s(i) and NU are the ith sample and the number of samples of the unlabeled

dataset DU , respectively. One important distinction between DL and DU is that the

elements of DU do not include any label vector.

Because we employ the pseudo-labeling approach, the new (i.e., pseudo-labeled) un-

labeled dataset D̃U becomes

D̃U =
{
(s(i), ỹ(i))

}NU

i=1
,

where the vector ỹ(i) is the pseudo-label vector of the ith sample. Note that in our

problem we define the pseudo-label vector ỹ in hard version; that is,

4

ỹ =
[
y1, y2, ..., yK

]
⊆ {0, 1}K .

One remark is that, as opposed to the case in the labeled dataset, more than one

elements of the pseudo-label vector can be 1 (remember it is just one in the label

vector of the labeled dataset), and we use this property in the coming chapters.

Also, to represent the true class of a sample s, we use the number c ∈ {1, 2, ..., K}.

So, the cth element of the corresponding true label vector y is yc = 1. Note that here

s can belong to DL or DU .

In our work, we define our model or parametrized function Fθ : RI −→ RK as

x = Fθ(s), (1.1)

where, θ, I , and K are the parameter vector of the function, the input dimension, and

the number of classes (defined on a classification problem), respectively. As assumed

in almost all deep learning problems, Fθ is differentiable with respect to the parameter

vector θ.

Based on the work [2], we define the softmax function S : RK −→ RK as z = S(x),

where for j = 1, 2, ..., K,

zj =
exj∑K
k=1 e

xk

. (1.2)

Now, we list two important properties of this function that can be seen effortlessly by

equation (1.2) and which we do not attempt to prove:

0 < zi < 1, for every i = 1, 2, ..., K. (1.3a)

z1 + z2 + · · ·+ zK = 1. (1.3b)

In our work, we define the loss function as C : R2K −→ R. Note that in our definition

the function C takes two arguments each of which is a K dimensional vector (this is

why its domain dimension is 2K) and maps to a scalar. More specifically, the function

C takes the softmax output vector z and a label vector y (regardless of if the label

5

Figure 1.1: Forward propagation diagram

vector is a pseudo-label vector) and returns a value C(z,y). Once more, as usual, we

assume the loss function C has a first order derivative with respect to the parameter

vector θ.

Using the definitions above, we define the learning via pseudo-labeling in semi-

supervised setting as to solve the following optimization problem:

argmin
θ

1

NL +NU

NL+NU∑
i=1

C(z(i), ỹ(i)), (1.4)

where in order to simplify the notation, we use ỹ(i) = y(i) if s(i) is a labeled sample

(otherwise we do not make any change, it is just a pseudo-label vector), and z(i) is

the softmax output vector for the sample s(i); that is, z(i) = (S ◦ Fθ)(s
(i)).

Bringing the all the functions together, for a sample s, a typical forward propagation

can be expressed as in Figure 1.1, where the capital letters are functions (i.e., Fθ, S,

and C are the parametrized, softmax and loss functions, respectively) and the lower-

case letters are the outputs of the functions except for s and y. Note that at the end of

this propagation in Figure 1.1, the loss function C takes not only the softmax output

vector z but also it takes the corresponding label vector based on our definition of the

loss function.

Since we optimize our loss function iteratively, we use square brackets to represent

the jth iteration or step. For instance, to indicate the softmax output vector of ith

sample at step j, we write z(i)[j]. In order to refer to the kth element of the same

vector, we would write z
(i)[j]
k .

6

Figure 1.2: Signal vector propagation diagram

In our work, we define the concept noisy training as

z(i)[j]c > z(i)[j+1]
c . (1.5)

That is, the model encounters noisy training when the model produces a lower true

softmax output zc at the next iteration j + 1 compared to the iteration j. In order to

measure the level of noisy training we consider how many samples N satisfy (1.5).

If N is some large number, we would call it highly noisy training. Whereas if it is

small, we say it is less noisy training.

Now, we define probably the most important concept of this thesis, namely signal

vector. By the expression, the gradient ϕ that the parametrized function Fθ receives,

or shortly the signal vector, we refer to the partial derivative of the loss function C

with respect to the output vector x of the parametrized function Fθ for a given sample

s. In a more symbolic form we express the signal vector ϕ as

ϕ =
∂C

∂x
. (1.6)

An illustration of the signal vector ϕ can be seen in Figure 1.2. In order to obtain this

vector mathematically, when we write the partial derivative of the loss function with

respect to the parameter vector (since we use gradient based optimization methods,

we have to calculate this quantity), we have by the chain rule:

7

∂

∂θ
C(z,y) =

∂C

∂x

∂x

∂θ
, (1.7)

where we use the fact that the label vector y is independent of the parameter vector θ.

As clearly seen, the first factor on the right hand side of (1.7), is just the signal vector

defined in (1.6), and the second factor is the partial derivative of the parametrized

function with respect to the model parameter vector. We will give a more detailed

analysis of the signal vector ϕ and discuss how to make it contain many negative

elements in the next chapter.

One terminology at that point is, as mentioned before, when we say "signal vector",

we refer to the vector ϕ. Also, we use the term "signal" to mean an element of the

signal vector. Similarly, when we use the plural form of it, "signals", we indicate

more than one elements in the vector ϕ.

Another important concept we use throughout the thesis quite frequently is naive

pseudo-labeling. Let s be a sample whose label is unavailable. Also let z be the

softmax output vector, i.e., z = (S ◦ Fθ)(s). Then, by naive pseudo-labeling, we

mean to assign a pseudo-label vector ỹ to the unlabeled sample s according to the

definition given in the original pseudo-label paper [16]; that is,

ỹi =

1, if i = argmaxj zj,

0, otherwise.
(1.8)

As seen in equation (1.8), the naive pseudo-labeling uses the softmax output vector

z while constructing the pseudo-label vector ỹ. More specifically, such a labeling

strategy returns a pseudo-label vector where all the elements are zero except for the

element whose index is equal to the result of argmax z. Again in the next section,

we will see that such a labeling method leads to a signal vector that contains only one

negative signal.

We now give accuracy for a set D. Let D =
{
(s(i),y(i))

}N

i=1
be an arbitrary set

containing sample and label vector pairs. Then, by the accuracy of the set D we

mean the quantity acc given as

8

acc =
1

N

N∑
i=1

Q
(
argmaxy(i) = argmax(S ◦ Fθ)(s

(i))
)
,

where Q(P) is a function and returns 1 if P is true and returns 0 otherwise.

Finally, we describe the mixup regularization method proposed in the work [24].

Let A = [(s(1),y(1)), ..., (s(N),y(N))] be an N sample-label vector sequence. Also,

let B be the shuffled version of A (i.e., the elements of A are randomly ordered).

Then, to apply mixup regularization to the sequence A we mean to have the sample-

vector sequence G which is a sequence obtained by the combination of elements of

A and B where ith element (g(i)1 , g
(i)
2) of G is given by

g
(i)
1 = γia

(i)
1 + (1− γi)b

(i)
1 , (1.9a)

g
(i)
2 = γia

(i)
2 + (1− γi)b

(i)
2 , (1.9b)

where (a
(i)
1 , a

(i)
2) and (b

(i)
1 , b

(i)
2) are ith elements of A and B, respectively, and γi is

a number from the Beta distribution, i.e., γi ∼ Beta(a, b). Note that since in our

problem, we restrict ourselves to the hard labels, we rearrange the the vector g2 such

that the greatest element of g2 is 1 and the rest are zero.

9

10

CHAPTER 2

SIGNAL VECTOR

In this chapter, we analyze the signal vector defined in Preliminaries Section 1.1.

Before starting we restate the functions and variables we use throughout this chapter.

For a sample, label vector pair (s, ỹ) ∈ DL ∪ D̃U , the output vector x of the model

Fθ is defined as:

x = Fθ(s). (2.1)

Also, the softmax output vector z is given as

z = (S ◦ Fθ)(s). (2.2)

Note that we consider the parameter vector θ and all the K dimensional vectors x, z,

and ỹ as column vectors.

Furthermore, by a loss function we mean a function C : R2K −→ R which has all

properties described in Preliminary Section 1.1 defined as

C = C(z, ỹ). (2.3)

Here we note that the (true and pseudo) label vector is independent of the parameter

vector θ; that is, ∂ỹ
∂θ

= 0.

To optimize the learning problem given in equation (1.4) (with a first order optimiza-

tion method), one has to calculate the partial derivative of the loss function C with

respect to the parameter vector θ, i.e., ∂C(z,ỹ)
∂θ

. By using the chain rule, one can ex-

11

press this derivative as:

∂C(z, ỹ)

∂θ
=

∂C

∂z

∂z

∂θ
+

∂C

∂ỹ

∂ỹ

∂θ

=
∂C

∂z

∂z

∂θ
,

(2.4)

where we use the fact that the label vector is independent of the parameter vector. In

fact, in order to obtain an expression in terms of the signal vector, one can further

apply the chain rule to (2.4) by benefiting from equation (2.1):

∂C(z, ỹ)

∂θ
=

∂C

∂z

∂z

∂x

∂x

∂θ

=
∂C

∂x

∂x

∂θ

= ϕ
∂x

∂θ
,

(2.5)

where ϕ = ∂C
∂x

is the signal vector as described in 1.1 (i.e., it contains 1 row and K

columns), and the second factor in the right hand side of the equation above (i.e., ∂x
∂θ

)

is the Jacobian associated with the model (i.e., it contains K rows and the number of

model parameters columns).

Even though we attempt to obtain an expression (of derivative of the loss function

with respect to the model parameters) in terms of the signal vector, we have not

explained why we even try to get such a formula. Now, in the next section, we give

our motivation of doing this.

2.1 Motivation Behind Signal Vector

To express our motivation, we claim that the following hypothesis is true.

Let s be a sample and z[j] be the corresponding softmax output vector at the jth

iteration. Also let ϕ[j] be the corresponding signal vector at iteration j. Then, we

claim that if the ith element of the signal vector at the iteration j is negative; that is

ϕ
[j]
i < 0, then the model tends to produce a greater ith softmax output in the next

iteration; that is, z[j]i < z
[j+1]
i .

In fact, a similar hypothesis can be proposed for positive signals; that is, if the ith

signal is positive at jth iteration, then the model tends to lower the ith softmax output

12

in the next iteration. However, for now, we restrict our attention to the negative signal

case.

To support our claim, we restrict ourselves to the simplest and well-known first order

optimization method, namely gradient descent. The optimization algorithm tries to

minimize the loss C(z,y), and to do this, at each iteration, it makes the model param-

eters move in the direction where the maximum decrease in the loss occurs. However,

how exactly does the optimizer "know" this maximum decrease information?

In one perspective, we can say that this information is stored in the signal vector

ϕ. The reason results from the definition of this vector. By the definition of ϕ =

∂C
∂x

, its each element ϕi represents how much the loss function C changes when a

"unit" change occurs in the model output xi. So, for instance, if the first element

of the signal vector, i.e., ϕ1 is negative and the rest of the elements are positive, the

optimizer has a tendency to change the model parameters in a way that it increases

x1 in the next iteration (because the signal vector indicates that the loss reduces when

x1 increases) while it decreases the other xi, i ̸= 1 (because the positive signals are

associated with the increase in the loss). As a result of this, we can expect that the

corresponding softmax output, i.e., z1 increases (since the softmax function in (1.2)

is just a normalization function) because of the increase in x1, and the others (i.e.,

z2, ..., zK) decrease.

Similar intuitive reasoning can be applied for the case where the signal vector ϕ

comprises of more than one negative element, such as two with ϕ1, ϕ2 < 0 (and

the rest are positive). In this case the gradient or the signal vector that the model

receives contains two negative signals and this situation stimulates the optimizer to

increase the corresponding model outputs (i.e., x1, x2). As a consequence of this, it

is likely (not definitely) that the corresponding softmax outputs z1, z2 would increase

(see figure 2.1).

Based on this hypothesis, we see that when we somehow manage to send a signal

vector ϕ whose true index is negative, i.e., ϕc < 0, we can avoid the noisy training

described in (1.5). In other expression, to avoid the noisy training, we think that the

model should receive a signal vector where the true element of it is negative.

13

From the perspective of an unlabeled sample where we do not know what type of a

signal vector we should construct, if we allow the corresponding signal vector to have

only one negative signal, it is less likely to avoid noisy training since, for such avoid-

ance, the index of negative signal and the true class are needed to be the same. In fact,

this is the case for naive pseudo-labeling; with this labeling—and the cross entropy

loss— the signal vector can only include one negative signal which we discover in

Section 2.3.

On the other hand, if we allow the signal vector to have more negative signals, we

would increase the chance that one of the negative signals that is associated with

the true signal ϕc is negative. Hence, based on our hypothesis above, we would

increase the chance of avoiding noisy training. In fact, this is the idea on which our

heuristic method, i.e., competing labels, is based (to obtain such a signal vector, i.e.,

containing more negative signals, we propose to use a different loss function and

labeling technique compared to the naive one about which we give more details in the

coming sections of this chapter).

After expressing our motivation, we move to the next section in order to derive some

important properties of the signal vector. We test our hypothesis with some experi-

ments in the last section of this chapter.

14

0 2 4 6 8
epoch

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

ϕ i

ϕ(1)
1 (true class)

ϕ(1)
2

(a) Signals vs epoch

0 2 4 6 8
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

z i

z(1)
1 (true class)

z(1)
2

(b) Softmax outputs vs epoch

Figure 2.1: Change of signals and softmax outputs during epochs for a single sample.
Black and colored lines are associated with the positive and negative signals, respec-
tively.

15

2.2 Signal Vector Analysis

The signal vector ϕ can be expressed as indicated in (2.5):

ϕ = α
∂z

∂x
, (2.6)

where we define α = ∂C
∂z

. In this equation, the vector α is a 1 × K dimensional

vector and the second factor on the right hand side is the Jacobian associated with the

softmax function. In order to calculate the signal vector, we now first focus on the

Jacobian and state the following proposition:

Proposition 1 (Derivative of softmax function). Let x be in RK . And let z be the

output vector of the softmax function S, i.e., z = S(x). Then, the Jacobian ∂z
∂x

is

∂z

∂x
=


(1− z1)z1 −z1z2 . . . −z1zK

−z2z1 (1− z2)z2 . . . −z2zK
...

...
...

...

−zKz1 −zKz2 . . . (1− zK)zK

 , (2.7)

where ∂zi
∂xj

= (1− zi)zi for i = j, and ∂zi
∂xj

= −zizj for i ̸= j.

Proof. For i = j, we have

∂zi
∂xi

=
∂

∂xi

exi∑
k e

xk

= exi/
∑
k

exk − exiexi/
(∑

k

exk
)2

= zi − z2i

= (1− zi)zi.

For i ̸= j, on the other hand,

∂zi
∂xj

=
∂

∂xj

exi∑
k e

xk

= 0− exiexj/
(∑

k

exk
)2

= −zizj.

16

Now, we give an expression of a signal ϕi in terms of α and z.

Proposition 2 (Value of signal). Let the signal vector ϕ be in (2.6). Then, a signal ϕi

in the signal vector ϕ can be expressed as

ϕi = zi(αi −α · zT), (2.8)

where the operation · is the dot product.

Proof. To find the signal ϕi we multiply the vector α with the ith column of the

Jacobian given in (2.7); that is,

ϕi = α · [−z1zi, ...,−zi−1zi, (1− zi)zi,−zi+1zi, ...,−zKzi]

= ziα · [−z1, ...,−zi−1, (1− zi),−zi+1, ...,−zK]

= zi

(
−

K∑
i=1

αizi + αi

)
= zi(αi −α · zT).

Next, we state the signal conservation property.

Theorem 1 (Signal conservation). Let the signal vector ϕ be defined as in (2.6).

Then, the quantity ϕ1 + ϕ2 + · · ·+ ϕK is conserved and equal to zero; that is,

K∑
i=1

ϕi = 0. (2.9)

Proof. To prove this statement we benefit from value of signal Proposition 2.

ϕ1 + ϕ2 + · · ·+ ϕK = z1(α1 −α · zT) + z2(α2 −α · zT) + · · ·+ zK(αK −α · zT)

=
K∑
i=1

αizi −α · zT

K∑
i=1

zi

= α · zT −α · zT

K∑
i=1

zi

= 0,

(2.10)

where at the last step we use the property of the softmax function in (1.3).

17

At that point, we make some comments about the signal conservation Theorem 1.

This theorem says that we cannot have arbitrary signals in ϕ. For instance, we do not

encounter a case where all the signals are negative. Similarly, we cannot construct

a signal vector where all elements are positive. From the perspective expressed in

Section 2.1, a parametrized function cannot receive a gradient that make the model

have a tendency to increase (or decrease if the elements are positive) all the softmax

outputs in the next iteration.

Another important point we underline here is that Theorem 1 is independent of the

loss function; that is, after the softmax layer we can use any loss function whose first

derivative exists and it must obey this rule.

Now we move on the next section to figure out what type of a signal vector the naive

pseudo-labeling leads to.

2.3 Signal Vector of Naive Pseudo-Labeling

In our discussion, we restrict ourselves to a loss function which is the mostly used in

classification task, namely cross-entropy loss, as done in originally proposed pseudo-

labeling paper [16]. Cross-entropy loss (of categorical version) for a sample label

vector pair (s, ỹ) is defined as [1]:

C = −
K∑
i=1

ỹi log zi, (2.11)

where z is the softmax output vector (of the input s). In order to calculate the signal

vector of the naive pseudo-labeling, we apply the definition given in (1.8) where only

one label is 1 and the others are zero in the vector ỹ. Now, without loss of generality,

we assume that the first element of the label vector is 1, i.e., ỹ1 = 1 and the rest are

zero, i.e., ỹi = 0, for i = 2, ..., K. Then, the cross entropy loss in equation (2.11)

becomes:

C = − log z1. (2.12)

18

When we calculate the derivative of the loss in equation (2.12) with respect to the

softmax output vector z, the result turns out α1 = −1/z1 and αi = 0 for i = 2, ..., K.

Furthermore, the product α · zT becomes α · zT = −1. Therefore, by employing

Proposition 2, we have the signal vector for naive pseudo-labeling as

ϕ =
[
−(1− z1) z2 · · · zK

]
. (2.13)

As seen from equation (2.13), the signal vector ϕ contains only one negative signal,

i.e., ϕ1 and the all other elements are positive. Moreover, this negative element occurs

at the index j in the signal vector for which ỹj = 1. Furthermore, one can also test

the signal conservation rule in this setting:

ϕ1 + ϕ2 + · · ·+ ϕK = z1 + z2 + · · ·+ zK − 1

= 0,

where we use the property of softmax function given in equation (1.3). As discussed

in Section 2.1, it is unlikely that giving only one negative signal to the model allows

to avoid noisy learning, especially, when the given signal is false. Now, to mitigate

this issue, we attempt to obtain a scenario where not one but many elements of signal

vector are negative.

2.4 Obtaining More Negative Signals

In this section, we discuss how we can construct a signal vector which includes many

negative elements.

One possible attempt to achieve this purpose is to set two elements of the pseudo-

label vector as 1, e.g., ỹ1, ỹ2 = 1. Under this condition the cross entropy loss function

defined in (2.11) becomes:

C = − log z1 − log z2. (2.14)

We have α = [−1/z1,−1/z2, 0, ..., 0] and α · zT = −2 when calculating the vector

19

α and the product α · zT . Using Proposition 2, we obtain the signals as ϕ1 = z1

(
−

1/z1 + 2
)

and ϕ2 = z2

(
− 1/z2 + 2

)
. However, such a strategy in order to obtain

negative signals would not allow us to necessarily obtain negative elements. For

instance, for z1 > 0.5, the signal ϕ1 would be positive because z1 > 0 (by the property

of the softmax function (1.3)) and
(
− 1/z1 + 2

)
> 0 (hence ϕ1 > 0).

To be able to have negative elements in the signal vector, we keep utilizing the strategy

of setting many elements of the pseudo-label one. However, at this point we use the

following type of loss function to reach our goal:

C = − log
(
z · ỹ

)
. (2.15)

Now, we calculate this loss function for the same pseudo-label vector, i.e., ỹ =

[1, 1, 0, ..., 0]T . After inserting such a label vector into equation (2.15), we have

C = − log(z1ỹ1 + z2ỹ2). (2.16)

To be able to find the signal vector resulting from the loss (2.16), we calculate an

element αi in the vector α and α · zT and they turn out as αi = −1/
(
z1 + z2

)
for

i = 1, 2 and αi = 0 for i ̸= 1, 2, and α · zT = −1. Using once again Proposition 2,

we have ϕi = zi

(
− 1/

(
z1 + z2

)
+ 1

)
for i = 1, 2 and ϕi = zi for i ̸= 1, 2.

Notice that in this setting we no longer suffer from positive signal issue that previously

occurred for the cross-entropy loss function. The reason is that z1+z2 < 1 (see (1.3)),

hence −1/
(
z1 + z2

)
+ 1 < 0. Furthermore, for those ϕi where ỹi = 0, the signal

becomes positive (i.e., ϕi = zi).

Now, we attempt to show that not only two but we can obtain ϕi < 0 for all those

elements of the pseudo-label vector ỹ with ỹi = 1 when we use the loss function

provided in equation (2.15).

Let I be a nonempty proper subset of the full index set {1, 2, ..., K}, i.e., I ⊂
{1, 2, ..., K}. Let ỹi = 1 for every i ∈ I and ỹi = 0 otherwise. Then, the loss

function becomes

20

C = − log
(∑

i∈I

zi

)
. (2.17)

Then, the element αi of α is found as:

αi =

−1/
(∑

i∈I zi

)
, if i ∈ I

0, otherwise
. (2.18)

Also, using (2.18) the product α · zT becomes

α · zT = α1z1 + α2z2 + ...+ αKzK

= −
∑
i∈I

zi/
∑
i∈I

zi

= −1.

(2.19)

Therefore, applying Proposition 2, we have an expression for an arbitrary signal ϕi

as:

ϕi =

zi

(
− 1/

(∑
i∈I zi

)
+ 1

)
, if i ∈ I

zi, otherwise
. (2.20)

As clearly seen from equation (2.20), for those indices i for which ỹi = 1, ϕi < 0 and

for those i with ỹi = 0, the signals are positive.

Moreover, from the same equation, we observe that the amplitude of a signal, i.e.,

|ϕi| is directly proportional to zi. For instance, among negative signals (i.e., i ∈ I),

whenever zi > zj , we have |ϕi| > |ϕj|. Since ith signal has a greater amplitude, we

may expect that the optimizer would favor the increase of zi more compared to the

element zj in the next iteration in order to reduce the loss. A similar reasoning may

also be valid for positive signals. For zi > zj , the optimizer tries to reduce zi more in

the next iteration in order to reach a minimum point of the loss.

Notice that for a label vector whose only one element is 1, the loss functions described

in (2.11) and (2.15) produce the same result. For example, for y1 = 1 and yi = 0 for

21

i = 2, ..., K, the cross-entropy loss in (2.11) produces C = − log z1. On the other

hand, since z · y = z1, the loss in (2.15) becomes C = − log z1. Based on this

observation, we can say that the loss functions in (2.11) and (2.15) produce the same

scalar for the true label vector and the pseudo-label vector (see (1.8)) because only

single element in each of these vectors is 1.

In the coming section, we conduct some experiments on the loss function provided in

equation (2.15) to understand its behaviour better and to see the relationship between

the negative signals and the softmax outputs.

2.5 Negative Signals Experiments

In this section, we investigate the relationship between the sent signals to the model

and the change in the softmax outputs corresponding to these signals. During our

experimentation session, we only focus on one and four samples cases and these

samples are given in Figures 2.2 and 2.3. These images belong to one of K = 10

class categories. Furthermore, we use Adam optimization method with a learning

rate 2× 10−4 and train our model with a fixed number of epoch which is 10.

Also, in our experiments, we take into consideration three different number of neg-

ative signals, namely one, two, and three. To construct these signals, we employ

the loss function we have proposed in equation (2.15) together with the appropriate

pseudo-label vectors. In each case, we use one and four samples described above to

investigate signal vector and softmax output vector relationship.

2.5.1 One Negative Signal

2.5.1.1 One Sample

In this one negative signal, one sample case, we use the image given in Figure 2.2, as

a sample and set its pseudo-label vector as ỹ1 = 1 and ỹi = 0 for i ̸= 1 as also shown

in Table 2.1.

Utilizing such a label vector, we obtain signals and softmax outputs for the sample for

22

sample 1

Figure 2.2: One sample for experimentation. The image is taken from the MNIST
dataset [6].

sample 1 sample 2 sample 3 sample 4

Figure 2.3: Four samples for experimentation. The images are taken from the MNIST
dataset [6].

Table 2.1: One negative signal, one sample pseudo-labels
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

s(1) 1 0 0 0 0 0 0 0 0 0

each epoch as given in Figure 2.4. The graph on the left in Figure 2.4 shows softmax

outputs values during each epoch while the graph on the right displays the signal

values. The values at epoch zero indicates the initial values. That is, for softmax

outputs, it is the value when the sample is calculated with the initial model parameters.

In terms of signal, epoch zero represents the gradient or ϕ that is sent to the model to

change the parameters in the initial epoch. After parameters are updated in the initial

epoch (i.e., epoch zero), the values of softmax outputs are expressed in epoch 1 as

seen in the same Figure.

Our first observation in Figure 2.4 is that there is only one negative signal (represented

with a blue color) and the rest are positive as predicted analytically in the previous

23

section. We also observe that giving negative signal to the model encourages it to

produce higher values for the corresponding softmax output (i.e., z1). Whereas the

positive ones cause to change in the model parameters such that the corresponding

outputs decrease. Furthermore, we see that the amplitude of the negative signal is

relatively large compared to the positive ones. This is because the signal value of ϕ1

is equal to −(1− z1) while the others are zi.

0 2 4 6 8
epoch

0.0

0.2

0.4

0.6

0.8

1.0

s
o
ft

m
a
x
 o

u
tp

u
ts

z(1)
1 (true class)

0 2 4 6 8
epoch

−0.8

−0.6

−0.4

−0.2

0.0

0.2

s
ig

n
a
ls

ϕ(1)
1 (true class)

Figure 2.4: Behaviour of softmax outputs and signals during the training. Black, and
colored lines associated with the values 0 and 1 in the label vector, respectively.

2.5.1.2 Four Samples

In this case, we use the four images given in Figure 2.3 as inputs. Moreover, for these

inputs we use the label vectors which are given in Table 2.2. When we train our model

24

with these labels and images, we obtain the relationship between softmax outputs and

signals in Figure 2.5.

Table 2.2: One negative signal, four samples, pseudo-labels
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

s(1) 1 0 0 0 0 0 0 0 0 0

s(2) 1 0 0 0 0 0 0 0 0 0

s(3) 0 1 0 0 0 0 0 0 0 0

s(4) 0 1 0 0 0 0 0 0 0 0

0 2 4 6 8
epoch

0.0

0.2

0.4

0.6

0.8

1.0

s
o
ft

m
a
x
 o

u
tp

u
ts

z(1)
1 (true class)
z(2)

1 (true class)
z(3)

2 (true class)
z(4)

2 (true class)

0 2 4 6 8
epoch

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

s
ig

n
a
ls

ϕ(1)
1 (true class)

ϕ(2)
1 (true class)

ϕ(3)
2 (true class)

ϕ(4)
2 (true class)

Figure 2.5: Four samples with one negative signals. Black, and colored lines associ-
ated with the values 0 and 1 in the label vector, respectively.

Figure 2.5 shows how the softmax outputs and signals evolve during the epochs and

each color represents a different input. As seen in the same plot, each sample’s signal

vector contains only one negative element. As we have already stated those elements

are determined by the pseudo-label vector; that is, if a element ỹi = 1, then the cor-

25

responding signal value is negative. And those elements increase the corresponding

softmax outputs. We also observe that the same magnitude situation (i.e., the absolute

value of negative signal is remarkably greater than the positive one) is valid for four

samples case regardless of the sample.

2.5.2 Two Negative Signals

2.5.2.1 One Sample

In this case, we set the pseudo-label vector in a way that we obtain two negative

signals. We perform this operation by setting the vector as in Table 2.3. When we

train our model with one input and the determined pseudo-label vector, we obtain

a relationship between softmax outputs and the signals for each epoch as given in

Figure 2.6.

Table 2.3: Pseudo-labels for two negative signals
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

s(1) 1 1 0 0 0 0 0 0 0 0

As seen in Figure 2.6, there are two negative signals, namely ϕ1 and ϕ2, which re-

sult from the labeling. Also, we observe that these two negative signals increase the

corresponding softmax outputs (i.e., z1 and z2) while the epochs increase. However,

after a certain epoch, the increase no longer occur since the corresponding signals

die (i.e., the blue curves in the figure). Moreover, we observe for the softmax out-

puts with positive signals have a tendency to decrease (i.e., the black curves in the

same figure). Furthermore, we observe that with the two negative signals case, the

magnitudes of the negative signals decrease compared to the case with one negative

signal. The reason is that according to the signal conservation theorem, the sum of

magnitudes of negative signals (i.e., |ϕ1| + |ϕ2|) is restricted by the positive signals

magnitudes’ sum (i.e., |ϕ3|+· · ·+|ϕK |). So, the negative signals are shared, hence the

magnitude decreases. Finally, when the magnitude of the negative singal is greater

(e.g., |ϕ1| > |ϕ2|), the optimizer has a tendency to increase the corresponding softmax

output more in the next epochs (e.g., z1 > z2 during the epochs).

26

0 2 4 6 8
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6
s
o
ft

m
a
x
 o

u
tp

u
ts

z(1)
1 (true class)
z(1)

2

0 2 4 6 8
epoch

−0.4

−0.3

−0.2

−0.1

0.0

0.1

s
ig

n
a
ls

ϕ(1)
1 (true class)

ϕ(1)
2

Figure 2.6: One sample with two negative signals. Black, and colored lines associated
with the values 0 and 1 in the label vector, respectively.

2.5.2.2 Four Samples

We now consider the four samples case. To obtain two negative signals for each of the

samples, we set the label vectors as given in Table 2.4. After training in this setting

we obtain Figure 2.7.

Table 2.4: Pseudo-labels for two negative signals and four samples
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

s(1) 1 0 1 0 0 0 0 0 0 0

s(2) 1 0 0 1 0 0 0 0 0 0

s(3) 0 1 0 0 1 0 0 0 0 0

s(4) 0 1 0 0 0 1 0 0 0 0

27

As seen in Figure 2.7, based on the label vector, those signals turn out as negative

(i.e., if the element is 1 in the label vector, then the corresponding signal is negative).

Moreover, when the signal is negative, the corresponding softmax output tends to

increase as observed in the previous experiments. Furthermore, when the magnitude

of the negative signal is greater (e.g., |ϕ(2)
4 | > |ϕ(2)

1 |), the optimizer favors the increase

of the corresponding softmax output (e.g., z(2)4 > z
(2)
1) in the next iterations.

0 2 4 6 8
epoch

0.0

0.2

0.4

0.6

0.8

1.0

s
o
ft

m
a
x
 o

u
tp

u
ts

z(1)
1 (true class)
z(1)

3

z(2)
1 (true class)
z(2)

4

z(3)
2 (true class)
z(3)

5

z(4)
2 (true class)
z(4)

6

0 2 4 6 8
epoch

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2
s
ig

n
a
ls

ϕ(1)
1 (true class)

ϕ(1)
3

ϕ(2)
1 (true class)

ϕ(2)
4

ϕ(3)
2 (true class)

ϕ(3)
5

ϕ(4)
2 (true class)

ϕ(4)
6

Figure 2.7: Two negative signals with four samples. Black, and colored lines associ-
ated with the values 0 and 1 in the label vector, respectively.

28

2.5.3 Three Negative Signals

2.5.3.1 One Sample

In our final negative signal case, we first focus on one sample situation with the label

vector given in Table 2.5.

Table 2.5: Pseudo-labels for three negative signals and one sample
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

s(1) 1 1 1 0 0 0 0 0 0 0

After training in this setting, we obtain the results displayed in Figure 2.8. As seen

in the Figure, the negative signals increase the corresponding softmax outputs. Also,

we observe the same behaviour in the absolute value of the negative signal: when

the number of negative signal increases, the each negative signal magnitude reduces.

This is actually expected because for a sum of positive signals, there must be in the

same amount but in negative signals by the signal conservation rule. So, the signal is

simply shared among the negative ones, hence the magnitude decreases. Moreover,

the optimizer favors the softmax output with the greater magnitude of negative signal

(e.g., |ϕ1| < |ϕ2| results in z1 < z2 in the successive epochs).

2.5.3.2 Four Samples

Finally, we investigate three negative signals situation with four samples. We use the

pseudo-labels given in Table 2.6. After the training, we have Figure 2.9. Again, we

observe that depending on the labels of the inputs, the corresponding signals become

negative; those signals tend to stimulate the optimizer to increase the corresponding

softmax outputs.

Table 2.6: Pseudo-labels for three negative signals and four samples
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

s(1) 1 1 1 0 0 0 0 0 0 0

s(2) 1 0 0 1 1 0 0 0 0 0

s(3) 0 1 1 0 0 0 1 0 0 0

s(4) 0 1 0 1 0 0 0 0 1 0

29

0 2 4 6 8
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s
o
ft

m
a
x
 o

u
tp

u
ts

z(1)
1 (true class)
z(1)

2

z(1)
3

0 2 4 6 8
epoch

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

s
ig

n
a
ls

ϕ(1)
1 (true class)

ϕ(1)
2

ϕ(1)
3

Figure 2.8: Softmax outputs and signals for three negative signals and one input.
Black, and colored lines associated with the values 0 and 1 in the label vector, respec-
tively.

So far, we have discussed how to construct a signal vector with many negative signals,

that is, using a loss in type − log(z·ỹ) and a pseudo-label vectors with many 1 entries.

However, we haven’t indicated how to choose those pseudo-labels (i.e., which indices

we should determine as 1 in the vector ỹ). In the next chapter we investigate this

problem.

30

0 2 4 6 8
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s
o
ft

m
a
x
 o

u
tp

u
ts

z(1)
1 (t)
z(1)

2

z(1)
3

z(2)
1 (t)
z(2)

4

z(2)
5

z(3)
2 (t)
z(3)

3

z(3)
7

z(4)
2 (t)
z(4)

4

z(4)
9

0 2 4 6 8
epoch

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

s
ig

n
a
ls

ϕ(1)
1 (t)

ϕ(1)
2

ϕ(1)
3

ϕ(2)
1 (t)

ϕ(2)
4

ϕ(2)
5

ϕ(3)
2 (t)

ϕ(3)
3

ϕ(3)
7

ϕ(4)
2 (t)

ϕ(4)
4

ϕ(4)
9

Figure 2.9: Softmax outputs and signals for four samples with three negative signals.
Black, and colored lines associated with the values 0 and 1 in the label vector, respec-
tively.

31

32

CHAPTER 3

PSEUDO-LABEL SELECTION

In the previous chapter (i.e., Chapter 2), we find out a way to construct many negative

signals: we manage this by using the loss function having the form C = − log(z · ỹ)
and allowing the vector ỹ to have many 1 for its elements ỹi. However, we have not

determined how to fill this pseudo-label vector; i.e., which indices should be 1.

To determine the pseudo-labels by the naive pseudo-labeling method, for instance,

would lead to highly noisy training, especially at the beginning of the training. The

reason is that the model at the beginning produces softmax outputs zi randomly, so it

would be very likely to lead to a false choice of label.

To illustrate this random distribution at the initial state, we utilize 100 (MNIST [6],

class-balanced) samples, and plot the histogram of each sample’s softmax output (i.e.,

histogram of the set {z(i)k }, i = 1, ...100, k = 1, ..., 10). Figure 3.1 shows that the

softmax outputs are located around 1/K = 0.1 and it is very unlikely that the index

of the greatest zi for a sample s represents the true class of that sample.

To overcome this problem, there is a popular technique [1, 11], called warm-up, and

now we introduce this.

33

0.0 0.1 0.2 0.3 0.4 0.5
zi

0

50

100

150

200

250

300

co
un

t

Figure 3.1: Initial distribution of the elements of 100 softmax output vectors.

34

3.1 Warm-up Phase

Warm-up phase is described as to train a model a certain number of epochs by using

only labeled samples [1]. In that way, the model gains a sort of "intuition" about

the classes and therefore, not produce random softmax outputs zi. In order to illus-

trate this, we split the 100 samples into 10 labeled and 90 unlabeled (class-balanced)

datasets and train the model only on the labeled samples (for 20 epochs and using the

loss − log(z · ỹ)).

Figure 3.2 shows that how the softmax outputs change at the end of warm-up phase.

As seen in the same figure at the initial state (on the left) all outputs are very close

to each other. Whereas at the end, the model favors the true softmax outputs so that

these outputs (i.e., red crossed points in the figure) are mostly beyond the false ones

(i.e., the blue points). Note that our labeled samples are 1, 11, ..., and 91st samples.

So, the relevant softmax outputs of those samples reach to 1 at the end of the phase.

One possible version of the loss used in the warm-up phase could be

C = − log(z · ỹ)− λ log(1− z · ỹ), (3.1)

where the second term is the delay term and the constant λ is the delay coefficient.

We introduce such a loss for the warm-up phase because in the previous one, true

softmax outputs of the labeled ones converge to 1. It prevents those samples from

contributing to the training in terms of gradient (i.e., signals) (see equation 2.20) in

the "after-warm-up" phase where we train our model by using both types of datasets

(i.e., labeled and unlabeled).

Figure 3.3 shows that when the delay coefficient λ is 1, how the softmax outputs

change. We see from the same figure that when the warm-up phase is completed, the

true softmax outputs of the labeled samples are located around 0.5 (because equa-

tion (3.1) becomes − log zc − log(1 − zc) having a minimum at zc = 0.5), and still

the model achieves to produce the outputs of the unlabeled samples where the true

ones are beyond the false ones. We treat this parameter as a hyperparameter while

obtaining our results in the next chapter.

35

0.05 0.10 0.15 0.20
z

0

10

20

30

40

50

sa
m
pl
es

initial

0.0 0.2 0.4 0.6 0.8 1.0
z

0

10

20

30

40

50

sa
m
pl
es

end

(a) Softmax output values (zi) for first 50 samples.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
z

50

60

70

80

90

100

sa
m
pl
es

initial

0.0 0.2 0.4 0.6 0.8 1.0
z

50

60

70

80

90

100

sa
m
pl
es

end

(b) Softmax output values (zi) for last 50 samples

Figure 3.2: Softmax output values of the samples at the beginning (left) and the end
(right) of the warm-up phase. Red crossed points represent the true classes.

36

0.05 0.10 0.15 0.20 0.25
z

0

10

20

30

40

50

sa
m
pl
es

initial

0.0 0.1 0.2 0.3 0.4
z

0

10

20

30

40

50

sa
m
pl
es

end

(a) Softmax output values (zi) for first 50 samples.

0.05 0.10 0.15 0.20 0.25
z

50

60

70

80

90

100

sa
m
pl
es

initial

0.0 0.1 0.2 0.3 0.4 0.5
z

50

60

70

80

90

100

sa
m
pl
es

end

(b) Softmax output values (zi) for last 50 samples

Figure 3.3: Softmax output values of the samples at the beginning (left) and the end
(right) of the warm-up phase. Red crossed points represent the true classes. The delay
coefficient λ is 1.

37

In our work, we also take advantage of this technique (i.e., warm-up phase) in the

training. Now, we introduce two pseudo-label selection strategies, namely pseudo-

labeling with fixed n and pseudo-labeling with threshold τ , in order to obtain more

than one negative signal.

3.2 Pseudo-label Selection with Fixed n

This strategy actually is a quite natural way to select pseudo-labels; that is, we choose

first n greatest zi and determine the pseudo-labels according to indices of these ele-

ments. Now, we express it in a more formal way.

Let z = [z1, ..., zK]
T and ỹ = [ỹ1, ..., ỹK]

T be the softmax output vector and the label

vector of a sample s, respectively. Let zsorted be the sorted form of z in ascending

order (i.e., zsortedi < zsortedi+1
). Also, let the corresponding sorted label vector be

ỹsorted that is described as if zsortedi = zj , then ỹsortedi = ỹj , for i = 1, ..., K (e.g.,

if z = [z1, z2, z3, z4]
T and zsorted = [z1, z4, z3, z2]

T , then ỹsorted = [ỹ1, ỹ4, ỹ3, ỹ2]
T).

Then, by the pseudo-label selection with fixed n, we mean to construct ỹsorted as

ỹsortedi =

1, for i ∈ {K,K − 1, ..., K − n+ 1}

0, otherwise
, (3.2)

where K is the number of classes (as usual).

For instance, assume zsorted = [z1, z4, z3, z2]
T . Then, pseudo-label selection with

fixed n = 2 results in ỹsorted = [0, 0, 1, 1]T . Since ỹsorted = [ỹ1, ỹ4, ỹ3, ỹ2]
T by

definition, we have ỹ = [0, 1, 1, 0]T .

One remark here is that this labeling strategy is equivalent to the naive pseudo-

labeling given in (1.8) for n = 1 since both take the index of the maximum element

in z into consideration.

Although this pseudo-label selection allows us to obtain a signal vector with many

signals, we may encounter some issues in terms of the magnitudes of those negative

ones. The reason is that because of the signal conservation Theorem 1, the sum

negative signals must be equal to the negative of the sum of positive signals. So, each

38

negative signal’s magnitude tends to decrease when n increases (and it is zero for

n = K).

So, we also introduce the next pseudo-label selection way in order to combat such a

possible problem.

3.3 Pseudo-label Selection with Threshold τ

We directly begin with the formal definition.

Let z = [z1, ..., zK]
T and ỹ = [ỹ1, ..., ỹK]

T be the softmax output vector and the

label vector of a sample s, respectively. Let zsorted be the sorted form of z in

ascending order. Also, let ỹsorted the corresponding sorted label vector which is

described as if zsortedi = zj , then ỹsortedi = ỹj , for i = 1, ..., K (again, e.g., if

zsorted = [z1, z4, z3, z2]
T , then ỹsorted = [ỹ1, ỹ4, ỹ3, ỹ2]

T). Then, by the pseudo-label

selection with threshold τ ∈ (0, 1), we mean to construct ỹsorted as

ỹsortedi =

0, for i ∈ {1, ...,M} \ {K}

1, for i ∈ {M + 1, ..., K} \ {K + 1}
, (3.3)

where M ∈ {1, ..., K} is the smallest integer that satisfies

∑
i≤M

zsortedi > τ. (3.4)

For example, let z = [0.3, 0.2, 0.1, 0.4]T . Then, zsorted = [0.1, 0.2, 0.3, 0.4]T =

[z3, z2, z1, z4]
T . For τ = 0.25, M would be 2 since zsorted1 < τ and zsorted1+zsorted2 >

τ . Therefore, we have ỹsorted = [0, 0, 1, 1]T according to equation (3.3); hence ỹ =

[1, 0, 0, 1]T .

Let us increase the threshold to τ = 0.9. In this case, M would be 4. Thus, since

i = 4 ∈ {5, ..., 4} \ {5}, ỹsorted4 = 1. Also, ỹsortedi = 0 for i = 1, 2, 3 because

i ∈ {1, ..., 4} \ {4}. Hence, ỹ = [0, 0, 0, 1]T .

One observation in this definition is that since, during the training, the zi with pos-

39

itive signals decrease, it automatically allows to increase M to satisfy the condition

expressed in (3.4). So, as opposed to the previous selection strategy, the number of 1

in the label vector is not constant during the training.

Another observation about this definition is that the negative signal magnitude for

zsortedi can be controlled by the value of threshold τ . To show this, we suppose zsorted

is the sorted version of z and ϕsorted is the corresponding signal vector of zsorted (e.g.,

if zsorted = [z1, z4, z3, z2]
T , then ϕsorted = [ϕ1, ϕ4, ϕ3, ϕ2]

T). For M < K− 1, we can

express the negative signal ϕsortedi by using Proposition 2 as

ϕsortedi = zsortedi

(−1∑
i∈{M+1,...,K} zsortedi

+ 1
)

= zsortedi

(−
∑

i∈{1,...,M} zsortedi

1−
∑

i∈{1,...,M} zsortedi

)
,

(3.5)

where we use the softmax function property (1.3).

According to equation (3.5), for τ = 0.5, the magnitude |ϕsortedi | would be greater

than zsortedi because M satisfies the condition (3.4) (i.e.,
∑

i∈{1,...,M} zsortedi > 0.5).

Furthermore, for τ = 0.2, |ϕsortedi | > zsortedi/4 since
∑

i∈{1,...,M} zsortedi > 0.2 by

the condition (3.4).

For M = K − 1, K, on the other hand, we would have a signal vector ϕ where only

one signal ϕi is negative and is equal to −(1 − zi) (by equation 3.3 and Proposition

2).

Since we do not know which labeling strategy (and which parameter) would produce

better results in our training, we treat both pseudo-labeling strategies as hyperparam-

eters of our model.

Now, we are ready to train our model (i.e., we have determined our loss function

and come up with two strategies to construct pseudo-labels), and Algorithm 1 is the

algorithm of how we train our model.

40

Algorithm 1 Training with different pseudo-labeling methods.
1: Determine the labeled and unlabeled datasets DL and DU .

2: Warm-up phase:

3: Determine number of iterations N and minibatch size m.

4: Use the loss C given in (3.1).

5: Determine the delay coefficient λ.

6: Set k = |DL|/m.

7: for number of training iterations N do

8: for k steps do

9: Sample minibatch of m labeled sample, vector pairs {(s(1),y(1)), ..., (s(m),y(m))}.

10: Compute the corresponding softmax output vectors {z(1), ...,z(m)}.

11: Update the model by its stochastic gradient:

∂

∂θ

1

m

m∑
i=1

C(z(i),y(i)).

12: end for

13: end for

14: return θwarm−up = θ

15:

16: After-warm-up phase:

17: Determine the number of iterations Nafter−warm−up and minibatch sizes mL and mU .

18: Use the loss C given in (2.15).

19: Determine pseudo-label selection strategy.

20: Set k = |DU |/mU .

21: Initialize the model: θ = θwarm−up

22: for number of training iterations Nafter−warm−up do

23: for k steps do

24: Sample minibatch of mL labeled sample, vector pairs {(s(1),y(1)), ..., (s(mL),y(mL))}.

25: Sample minibatch of mU unlabeled samples {s(1), ..., s(mU)}.

26: Compute the corresponding softmax output vectors {z(1), ...,z(mL)}, {z(1), ...,z(mU)}.

27: Compute the pseudo-label vectors {ỹ(1), ..., ỹ(mU)} based on the selection strategy.

28: Update the model by its stochastic gradient:

∂

∂θ

1

mL +mU

(mL∑
i=1

C(z(i),y(i)) +

mU∑
i=1

C(z(i), ỹ(i))
)
.

29: end for

30: end for

41

42

CHAPTER 4

NUMERICAL RESULTS AND DISCUSSION

In this chapter, we test our method (competing labels, i.e., sending many negative sig-

nals to the model) against the naive pseudo-label method on three popular gray-scale

image datasets, namely, MNIST, Fashion-MNIST, and KMNIST. In our all trainings

we use PyTorch deep learning framework [18] and use the machine Intel Xeon i5 with

a Nvidia K40 GPU in our computation.

4.1 MNIST

4.1.1 Dataset

MNIST dataset is a K = 10 class gray-scale image dataset [6] (see Figure 4.1). Each

image has 28×28 dimensions (height and width). This dataset contains 70000 images

in total where 60000 images of them are allocated for the training set, while 10000 of

them are for the test set.

4.1.2 Model

During the training on MNIST and all other datasets, we use a single model, namely

a convolutional neural network [14]. Our model contains two hidden layers where the

first hidden layer consists of 64 channels, 4× 4 kernel size, and 2 stride. The second

one, on the other hand, contains 128 channels, 4 × 4 kernel size, and 2 stride. Also,

each hidden layer is followed by batch normalization [10] and leaky ReLU activation

43

Figure 4.1: 25 MNIST images [6]

function with the negative slope 0.2 [23]. And the output layer maps to a K = 10

dimensional vector.

4.1.3 Training

In the training, as an optimization method, we use a stochastic gradient descent with

Adam [12] having a learning rate 2× 10−4 for all datasets (for the other hyperparam-

eters of the optimizer, we use the recommended values in [12]). Also, we scale our

dataset to have pixel values in a unit range [0, 1], then standardize with the mean and

standard deviation, 0.5 and 0.5, respectively.

44

While constructing our labeled and unlabeled datasets, we utilize the following pro-

cedure: First we pick NL number of labeled samples from the training dataset. Then,

from the remaining, we randomly choose NV samples for the validation purpose, and

we remove the labels of the rest of the samples and devote for the unlabeled samples.

So, in the final situation, we have three datasets, namely the labeled dataset DL, the

unlabeled dataset DU , and the validation dataset DV where only DL and DV contain

labels. In our all experiments, we deterimine the size of the validation set DV as

NV = 1000.

In the training, there are two phases, warm-up and after-warm-up phase. In the warm-

up phase, we train our model for 20 epochs. Note that in this phase, we only use the

labeled dataset DL, and the mini batch-size is 32.

As opposed to the warm-up phase, in the after-warm-up phase we utilize both datasets

the labeled one DL and unlabeled one DU . While constructing the mini batch in this

phase, we use 32 images from the labeled dataset DL (as done in [16]) and 64 from

the unlabeled dataset DU ; so the entire mini batch size is 96. We train our model for

20 epochs. Note that we define the number of epoch in terms how many times the

model "sees" the unlabeled set as performed in [11]. So, when the model uses the

entire unlabeled data only once, it actually utilizes the labeled data more than one to

update the parameters.

4.1.4 Hyperparameter Selection

To be able to train our model we have to determine the other hyperparameters such as

the delay coefficient λ and the pseudo-label selection strategy described in Chapter

3. To do this, we take into consideration the dataset DL with NL = 600 (and the

other datasets DU and DV are determined based on the procedure mentioned at the

beginning of the previous section).

We train our model for three times and obtain the (best) validation accuracy for differ-

ent hyperparameters as in Table 4.1. As seen in the table, the naive pseudo-labeling

i.e., n = 1 has its greatest value for the delay coefficient λ = 1. Also, the values for

the fixed pseudo-label selection with n ̸= 1 are lower compared to the pseudo-label

45

Table 4.1: Average validation accuracy (of three trials) for different hyperparameters
and 600 labeled samples

λ = 0 λ = 1

τ = 0.01 95.9 95.3

τ = 0.05 95.6 95.8

τ = 0.1 95.7 95.4

τ = 0.2 95.3 95.6

τ = 0.3 95.4 95.4

n = 1 95.4 95.5

n = 2 93.5 93.4

n = 3 93.0 92.4

n = 4 92.5 92.3

n = 5 92.3 92.1

selection via threshold. Even though for the threshold τ = 0.01 and the delay coeffi-

cient λ = 0, we have the greatest value (95.9) in the threshold selection strategy, for

the seek of comparison (i.e., to be able to compare with the naive pseudo-labeling),

we choose the second highest one with τ = 0.05 and λ = 1.

At that point, one interesting question would be how the different pseudo-label selec-

tion strategies behave while training. To illustrate this, we consider the delay coeffi-

cient λ = 1 case and NL = 600.

Figure 4.2 shows the average number of negative signals in the unlabeled data (note

that for the illustration purpose we define the epoch in the horizontal axis in Figures

4.2, 4.3, and 4.4 in terms of labeled data; that is, how many times the model sees

the entire labeled dataset. So, for NL = 600, after approximately 50 epochs past,

the model sees the entire unlabeled data). We observe that as expected for the fixed

pseudo-label selection, i.e., n = 1, ..., 5, the average number of the negative signals

is constant.

However, it is not the case for the selection via threshold: we have at the early epochs

some high number of signals in average. And this number gradually dies, while

epochs increase and converges to one. In other words, the pseudo-label selection via

threshold turns into naive-pseudo-labeling after a certain value of epochs.

From Figure 4.2, we also see that when the threshold decreases the convergence of

the signals to one slows down as expected since the condition in 3.4 with a smaller

46

0 25 50 75 100 125 150 175 200
epochs

1

2

3

4

5
m

ea
n

nu
m

be
r o

f n
eg

at
iv

e
sig

na
ls

τ= 0.01
τ= 0.05
τ= 0.1
τ= 0.2
τ= 0.3
n=1
n=2
n=3
n=4
n=5

Figure 4.2: Average number of negative signals vs epochs

threshold τ can be satisfied by a smaller integer M in 3.3.

Another statistics in the unlabeled dataset that we investigate is the average of the

greatest softmax outputs (i.e., 1
NU

∑NU

i=1maxj z
(i)
j). Figure 4.3 shows how average

zmax of unlabeled samples change while epoch increases. We observe from the same

figure that while epoch changes, the naive pseudo-labeling and the threshold strategies

behave similarly, compared to the fixed selection with n = 2, ..., 5. Also we see that

the label selection with n > 1 has difficulty to converge to 1.

To find out the reason for this, we plot the average loss of unlabeled samples, i.e.,

− 1
NU

∑NU

i=1 log(z
(i) · ỹ(i)). Figure 4.4 shows that how the unlabeled samples loss

changes when the epoch increases. We see that for the selection with n > 1, the

47

0 25 50 75 100 125 150 175 200
epochs

0.75

0.80

0.85

0.90

0.95

m
ea

n
of

 m
ax

 z

τ= 0.01
τ= 0.05
τ= 0.1
τ= 0.2
τ= 0.3
n=1
n=2
n=3
n=4
n=5

Figure 4.3: Average zmax vs epochs

loss converges very quickly zero, whereas for the others (the selection with n = 1

and τ), the loss does not reach to zero at the end of the training. One reason for this

discrepancy could be that fact that to make the sum of more than one softmax outputs

easier than making only one softmax output (i.e., for n > 1 there are more than one zi

in the product z · ỹ, while for n = 1 and τ selections there is only one after a certain

value of epoch); hence log(z · ỹ) ≈ 0 for the label selection n > 1.

Now we move on next section and we employ the hyperparameters that we determine

in this section (i.e., λ = 1, n = 1, and, τ = 0.05) to discover which pseudo-labeling

method (naive labeling or competing labels) performs better in different number of

labeled samples situations.

48

0 25 50 75 100 125 150 175 200
epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

lo
ss

τ=0.01
τ=0.05
τ=0.1
τ=0.2
τ=0.3
n=1
n=2
n=3
n=4
n=5

Figure 4.4: Unlabeled loss vs epochs

4.1.5 Results

In this section, we test the performances of the two pseudo-labeling methods, namely,

the naive pseudo-labeling and competing labels under various labeled data scenarios.

Specifically, we consider four situations, namely, NL = 100, 600, 1000, 3000.

During our training on this four situations, we employ the same hyperparameters (we

find out in the previous section, i.e., delay coefficient λ = 1, and pseudo-labeling via

τ = 0.05) in all cases following the convention in [1, 19]. That is, we do not search

the optimum hyperparameters (i.e., λ, τ , and n) for each different labeled data case.

We train our model for 10 experiments for each NL by initializing the model with the

49

same weights (as done in [16]). In each experiment, we re-split the dataset into three

different datasets (NL, NU , and NV), and the two methods (i.e., naive pseudo-labeling

and competing labels) are used in exactly the same split. Therefore, we can measure

the performance of each method for the same datasets and the model initialized with

the same weights. For an experiment, we report the test accuracy of the model at the

epoch where the model has the greatest validation accuracy as performed in [20].

Table 4.2: MNIST. Average test accuracy and standard deviation of 10 experiments.
Bold number indicates the highest accuracy.

Labeled samples: 100 600 1000 3000

CNN 73.8± 1.6 91.9± 0.4 93.9± 0.1 96.3± 0.2

CNN + Naive 81.5± 5.4 94.7± 0.2 95.7± 0.3 96.8± 0.2

CNN + Competing 85.6± 2.8 95.1± 0.4 95.9± 0.2 96.9± 0.2

Table 4.2 shows the test accuracy of different methods for various number of labeled

samples. In the table, CNN row indicates that the model is trained using only labeled

samples; that is, there is no unlabeled data involved in the training. CNN + Naive and

CNN + Competing rows, on the other hand, represent that in the training the naive

and competing methods are used, respectively. When we use the pseudo-labeling

(regardless of which method we use) the test accuracy increases. However, when

comparing two methods, we see that in each case, the competing labels method is

superior over the naive method; that is the competing labels method shows better

generalization performance. Also from the same table, we observe the discrepancy

between the accuracy of two methods enlarges when the supervision weakens, i.e.,

the number of labeled samples decreases.

Since we measure the performances of two methods under the same condition (i.e.,

the same data and model parameters), we illustrate (for NL = 100) how they perform

in each experiment. As seen from Figure 4.5a, depending on the data split (i.e.,

DL, DU , DV), in each experiment, classification accuracy of both methods changes

similarly. However, the competing labels method shows better performance in almost

all the experiments compared to the naive one.

Next we adapt the mixup regularization method (that is expressed in (1.9) with the

constants a = b = 1 of the Beta distribution as used in [1]) to see if we can get

any improvement in generalization. In this mixup case, we apply mixup only to the

50

2 4 6 8 10
experiments

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

naive
competing

(a) Without Mixup

2 4 6 8 10
experiments

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

naive
competing

(b) With Mixup

Figure 4.5: Accuracy vs experiments for MNIST 100 labeled samples

51

labeled dataset in both phases in the mini batch level, and train in the after-warm-up

phase for 50 epochs.

Table 4.3 shows that when the mixup regularization method is added, test accuracy

scores of the both methods increase. Moreover, for the cases NL = 1000, 3000 where

the score difference is small, both methods reach the same score. However, when the

supervision is significantly small, the competing method with mixup performs better

in terms of generalization.

We can also illustrate how each method behaves on the same data split. To show it,

we focus on the labeled case NL = 100 where the standard deviation is the highest.

Figure 4.5b indicates that both methods’ classification accuracy changes similarly

on the same data split. However, as in the "without mixup" case, when the mixup

regularization is applied, in all the experiments, competing method performs better.

Table 4.3: MNIST (including mixup). Average test accuracy and standard deviation
of 10 experiments. Bold number indicates the highest accuracy.

Labeled samples: 100 600 1000 3000

CNN 73.8± 1.6 91.9± 0.4 93.9± 0.1 96.3± 0.2

CNN + Naive 81.5± 5.4 94.7± 0.2 95.7± 0.3 96.8± 0.2

CNN + Competing 85.6± 2.8 95.1± 0.4 95.9± 0.2 96.9± 0.2

CNN + Naive + Mixup 85.8± 4.8 96.1± 0.3 96.6± 0.2 97.3± 0.1

CNN + Competing + Mixup 90.6± 2.4 96.2± 0.1 96.6± 0.3 97.3± 0.2

Even though our training setup and the setup in [16] is quite different, we compare our

best results with the results provided in the same work. We observe from Table 4.4

that our model CNN and the author’s model DropNN show different performances

under difference labeled scenarios. Secondly, in all cases except for NL = 3000

competing labels method (i.e., CNN + Competing) performs better than the naive

method (i.e., DropNN + Naive). Finally, when we compare the best results of us

(i.e., Competing + Mixup) with the author’s (Naive + DAE), we observe that in

the first three cases, NL = 100, 600, 1000 our method has a greater generalization

performance. In the last case (NL = 3000), they both perform equally well.

Now, we move to the next section to measure the performances of two methods (naive

and competing labels) on a different dataset, namely Fashion-MNIST.

52

Table 4.4: Competing labels vs Naive labeling. Last three rows are adapted from the
work [16]. Bold number indicates the highest test accuracy.

Labeled samples: 100 600 1000 3000

CNN 73.8 91.9 93.9 96.3

CNN + Competing 85.6 95.1 95.9 96.9

CNN + Competing + Mixup 90.6 96.2 96.6 97.3

DropNN 78.1 91.4 93.4 96.3

DropNN + Naive 83.9 95.0 95.7 97.2

DropNN + Naive + DAE 89.5 96.0 96.5 97.3

4.2 Fashion-MNIST

4.2.1 Dataset

Likewise MNIST dataset, Fashion-MNIST dataset is a K = 10 class gray-scale image

dataset [22] (see Figure 4.6). It contains 60000 images for training and 10000 images

for testing purpose and each image has 28× 28 dimensions.

4.2.2 Results

In the choice of hyperparameters in Fashion-MNIST dataset, by inspiring from the

work [17], we keep the hyperparameters the same (i.e., used in the previous case,

MNIST experiment), and not "over-tweaking" those. Also, we imitate the same train-

ing procedure expressed in the previous section. However, since the competing label

and naive pseudo-labeling do not show a distinct behavior for NL = 3000 case, we

omit this case and only focus on the labeled datasets with NL = 100, 600, 1000.

Table 4.5: Average test accuracy (for 5 experiments) of the model on the completely
labeled datasets.

MNIST Fashion-MNIST KMNIST
accuracy 98.6± 0.1 89.1± 0.2 90.3± 0.3

After training (i.e., 10 experiments) we have the results in Table 4.6. Our first obser-

vation from this table is that when our model is trained on only labeled data, the test

accuracy is lower compared to the MNIST case. One possible explanation for this is

that our model is not well suited for the classification of Fashion-MNIST. Actually,

we can support this view by Table 4.5. It indicates that when our model is trained by

53

Figure 4.6: 25 Fashion-MNIST images [22]

treating all the unlabeled samples as labeled ones, it shows a lower classification per-

formance for Fashion-MNIST compared to MNIST. Also, Figure 4.7 shows that even

though the accuracy on the training set (NL = 59000) increases for Fashion-MNIST

dataset as epoch increases (the line with the label "fashion-mnist train"), the accuracy

on the validation set (NV = 1000) reaches its maximum around 20 epochs (the line

with the label "fashion-mnist val"). This can be considered as the evidence for the

fact that our model is less capable of generalizing the Fashion-MNIST data compared

to the MNIST.

Secondly, our method (competing labels) is, as similar to the previous one, is superior

to the naive one for each cases, i.e., NL = 100, 600, 1000; that is, it produces greater

test accuracy with the competing labels method (see Table 4.6). Also, we see that the

54

0 10 20 30 40 50
epoch

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ac
cu

ra
cy

mnist train
mnist val
fashion-mnist train
fashion-mnist val
kmnist train
kmnist val

Figure 4.7: Fully labeled training for MNIST, Fashion-MNIST, and KMNIST
datasets

55

naive one performs worse than the only labeled case for NL = 100.

Table 4.6: Fashion-MNIST. Average test accuracy and standard deviation of 10 ex-
periments. Bold number indicates the highest accuracy.

Labeled samples: 100 600 1000

CNN 66.5± 1.5 76.5± 0.8 78.2± 0.5

CNN + Naive 66.3± 4.4 77.1± 0.4 78.6± 0.6

CNN + Competing 68.8± 3.3 77.2± 0.8 78.7± 0.7

Once again, benefiting from the same data and model parameters, we compare two

methods experiment-wise. Figure 4.8a shows that how accuracy resulting from two

different methods changes for different experiments. We see from Figure 4.8a that

during the experiments their test accuracy fluctuations are similar. However, as sim-

ilar to MNIST dataset, in almost all the experiments the competing method has a

higher accuracy score than the naive one.

Next, we apply the mixup regularization method to our training. After applied and

trained, we obtain the test results in Table 4.7. The table shows us that when we add

the mixup factor, the accuracy for both method increases. However, for the method

competing labels, the test accuracy is greater than the naive one. And the greatest

difference occurs for the weakest supervision, i.e., NL = 100. We can also check

Table 4.7: Fashion-MNIST (including mixup). Average test accuracy and standard
deviation of 10 experiments. Bold number indicates the highest accuracy.

Labeled samples: 100 600 1000

CNN 66.5± 1.5 76.5± 0.8 78.2± 0.5

CNN + Naive 66.3± 4.4 77.1± 0.4 78.6± 0.6

CNN + Competing 68.8± 3.3 77.2± 0.8 78.7± 0.7

CNN + Naive + Mixup 67.2± 2.7 77.3± 0.9 78.6± 0.9

CNN + Competing + Mixup 69.2± 3.8 77.4± 0.7 78.7± 0.6

the behaviour of two methods during the experiments when the mixup regularization

is present. We investigate the case NL = 100, where the standard deviation is the

highest. Figure 4.8b shows that under the same data splits, both methods behave

similarly: the increase and decrease in their accuracy during the experiments are

similar. However, the competing method leads to higher generalization performance

in almost each experiment.

In the next and final section, we investigate the two methods’ performance on our

56

2 4 6 8 10
experiments

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

ac
cu

ra
cy

naive
competing

(a) Without Mixup

2 4 6 8 10
experiments

0.60

0.62

0.64

0.66

0.68

0.70

0.72

ac
cu

ra
cy

naive
competing

(b) With Mixup

Figure 4.8: Accuracy vs experiments for Fashion-MNIST 100 labeled samples

57

third dataset, namely KMNIST.

4.3 KMNIST

Figure 4.9: 25 KMNIST images [5]

4.3.1 Dataset

In our final dataset, we take into consideration KMNIST image dataset. Likewise the

previous two datasets, each image in KMNIST is K = 10 class gray-scale image, and

has 28 × 28 dimensions [5] (see Figure 4.9). Also, the training and the test dataset

sizes of KMNIST are the same with the sizes in the MNIST dataset.

58

4.3.2 Results

Just like in the Fashion-MNIST case, we use the same parameters and training pro-

cedures in MNIST. Also, we restrict our attention to the labeled datasets with NL =

100, 600, 1000.

After training for 10 times (i.e., experiments), we have the results in Table 4.8. Our

first observation from the table is that the scores for the case where only labeled

samples are used are lower than MNIST experiments. The reason might be similar to

the one in Fashion-MNIST, our model is not suitable for classification of this dataset.

Secondly, we see that for NL = 100, the test accuracy produced by the pseudo-

labeling (including both methods, naive and competing) is lower than the case where

the training includes only labeled samples. One possible explanation for this might be

the following: Since there is a weak supervision, when the warm-up phase finishes,

neither of the methods can achieve to involve the true labels in their pseudo-labeling

procedure sufficiently enough. Thus, the model encounters highly noisy training and

the performance on the test set degrades. Finally, once again for all NL, the accuracy

obtained via the competing method is greater than the naive method.

Table 4.8: KMNIST. Average test accuracy and standard deviation of 10 experiments.
Bold number indicates the highest accuracy.

Labeled samples: 100 600 1000

CNN 40.1± 1.5 60.7± 1.0 66.0± 0.7

CNN + Naive 27.6± 5.4 62.5± 1.7 67.5± 1.9

CNN + Competing 28.4± 5.5 63.8± 1.2 68.5± 1.2

When we investigate the behavior of these two methods during the experiments, we

obtain the results exhibited in Figure 4.10a. This figure indicates that in most of the

experiments, the competing method produces greater test accuracy score; in some of

them both methods produce quite similar results. And in average (as seen in Table

4.8), the competing one produces a greater test score compared to the naive one.

Lastly, we apply the mixup regularization method and the results turn out as in Table

4.9. We observe that when this regularization is adopted, the competing method is

still superior in terms of generalization of the new data compared to the naive one for

all number of labeled samples. Also, we see that after adding the regularization to the

59

2 4 6 8 10
experiments

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375
ac
cu

ra
cy

naive
competing

(a) Without Mixup

2 4 6 8 10
experiments

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ac
cu

ra
cy

naive
competing

(b) With Mixup

Figure 4.10: Accuracy vs experiments for KMNIST 100 labeled samples

60

training, the results do not get improved for NL = 100, 600.

Now we analyze both methods’ test accuracy scores during the experiments when

the mixup is provided for the labeled case with the highest standard deviation (i.e.,

NL = 100). Figure 4.10b shows that, similar to the previous cases, the accuracy

obtained by the both methods varies in a similar manner. However, in all of the

experiments, the scores produced by the competing method are greater than the naive

one’s.

Table 4.9: KMNIST (including mixup). Average test accuracy and standard deviation
of 10 experiments. Bold number indicates the highest accuracy.

Labeled samples: 100 600 1000

CNN 40.1± 1.5 60.7± 1.0 66.0± 0.7

CNN + Naive 27.6± 5.4 62.5± 1.7 67.5± 1.9

CNN + Competing 28.4± 5.5 63.8± 1.2 68.5± 1.2

CNN + Naive + Mixup 18.7± 6.1 61.5± 3.2 67.8± 0.9

CNN + Competing + Mixup 26.2± 7.4 63.2± 1.8 68.7± 1.6

61

62

CHAPTER 5

SUMMARY AND CONCLUSION

In this thesis, we have investigated multi-class image classification problem in semi-

supervised learning setting from the pseudo-label point of view. Specifically, we

have taken into consideration originally proposed pseudo-labeling method in [16] and

attempted to solve the problem of noisy training that results from the naive labeling

technique via proposing the competing labels approach.

In our approach, we have first investigated the gradient or signal vector that the model

receives and introduced a new loss function that allows us to obtain many negative

signals (see Chapter 2). Later, we have investigated how to choose pseudo-labels and

introduced two strategies namely, pseudo-labeling by fixed n and pseudo-labeling by

threshold τ (see Chapter 3).

In the fourth chapter (Chapter 4), we have tested our method and compared it with

the naive pseudo-labeling. Firstly, we have tested two methods on MNIST dataset

and have shown that the competing method, regardless of the number of labeled sam-

ples, produces a greater classification accuracy on test set compared to the naive one.

Moreover, we have observed that the discrepancy between the performances of two

methods increases in the weak supervision cases (i.e., the number of labeled samples

are 100 and 600). Furthermore, we have compared our highest scores with the best

results of the originally proposed work [16], and have shown that our method shows

a better performance for the cases of 100, 600, 1000 labeled samples.

We have also tested two methods on the datasets Fashion-MNIST and KMNIST. Al-

though our model is not well suited to classify these datasets, we have observed that

63

under the same training conditions, the competing method produces better general-

ization performance compared to the naive one for each of 100, 600, and 1000 number

of labeled samples. We have also noted that the discrepancy in terms of generaliza-

tion performance reaches to the highest value (where the competing one’s test score

is greater than the naive one’s) when the lowest supervision is present.

As a future work, to understand the efficiency of our approach better, especially its

generalization performance for the case where the labeled samples are very limited,

we plan to expand our work from the gray-scale images and to test our the method on

other datasets such as images containing three channels. Also, to test the effectiveness

of our method in terms of the number of classes of a dataset, we will consider the

datasets with a various number of class categories that is ten in the current work.

As a final comment, we think that in pseudo-labeling based approaches, the gradient

sent to the parametrized function is crucial to the performance of a model. So, it

may not be quite helpful focusing only on the labeling strategy or merely taking into

consideration the loss function because the signal vector is an outcome of the choice

of both the labeling strategy and the loss function.

64

REFERENCES

[1] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness, Pseudo-
labeling and confirmation bias in deep semi-supervised learning, in 2020 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2020.

[2] J. S. Bridle, Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition, in Neurocomputing,
pp. 227–236, Springer, 1990.

[3] O. Chapelle, B. Scholkopf, and A. Zien, Semi-supervised learning, IEEE Trans-
actions on Neural Networks, 20(3), pp. 542–542, 2009.

[4] O. Chapelle and A. Zien, Semi-supervised classification by low density sep-
aration, in International workshop on artificial intelligence and statistics, pp.
57–64, PMLR, 2005.

[5] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha,
Deep learning for classical japanese literature, arXiv preprint arXiv:1812.01718,
2018.

[6] L. Deng, The mnist database of handwritten digit images for machine learning
research, IEEE Signal Processing Magazine, 29(6), pp. 141–142, 2012.

[7] C. Doersch, A. Gupta, and A. A. Efros, Unsupervised visual representation
learning by context prediction, in Proceedings of the IEEE international con-
ference on computer vision, pp. 1422–1430, 2015.

[8] C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-learning for fast adap-
tation of deep networks, in International Conference on Machine Learning, pp.
1126–1135, PMLR, 2017.

[9] C. Haase-Schütz, R. Stal, H. Hertlein, and B. Sick, Iterative label improvement:
Robust training by confidence based filtering and dataset partitioning, in 2020
25th International Conference on Pattern Recognition (ICPR), pp. 9483–9490,
IEEE, 2021.

[10] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift, in Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning - Volume
37, ICML’15, p. 448–456, JMLR.org, 2015.

65

[11] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, Label propagation for deep semi-
supervised learning, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5070–5079, 2019.

[12] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980, 2014.

[13] S. Laine and T. Aila, Temporal ensembling for semi-supervised learning, in
ICLR (Poster), OpenReview.net, 2017.

[14] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech, and
Time Series, p. 255–258, MIT Press, Cambridge, MA, USA, 1998, ISBN
0262511029.

[15] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521(7553), pp.
436–444, 2015.

[16] D. H. Lee, Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks, in Workshop on challenges in representation
learning, ICML, volume 3, p. 896, 2013.

[17] A. Oliver, A. Odena, C. Raffel, E. D. Cubuk, and I. J. Goodfellow, Realistic eval-
uation of deep semi-supervised learning algorithms, in Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18,
p. 3239–3250, Curran Associates Inc., Red Hook, NY, USA, 2018.

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, Automatic differentiation in pytorch, in NIPS-
W, 2017.

[19] M. N. Rizve, K. Duarte, Y. S. Rawat, and M. Shah, In defense of pseudo-
labeling: An uncertainty-aware pseudo-label selection framework for semi-
supervised learning, in International Conference on Learning Representations,
2021.

[20] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa, Joint optimization frame-
work for learning with noisy labels, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5552–5560, 2018.

[21] V. Verma, K. Kawaguchi, A. Lamb, J. Kannala, A. Solin, Y. Bengio, and
D. Lopez-Paz, Interpolation consistency training for semi-supervised learning,
Neural Networks, 145, pp. 90–106, 2022.

[22] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: A novel image dataset for
benchmarking machine learning algorithms, arXiv, abs/1708.07747, 2017.

[23] B. Xu, N. Wang, T. Chen, and M. Li, Empirical evaluation of rectified activa-
tions in convolutional network, arXiv preprint arXiv:1505.00853, 2015.

66

[24] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, mixup: Beyond empiri-
cal risk minimization, in International Conference on Learning Representations,
2018.

67

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Preliminaries: Notations and Definitions

	Signal Vector
	Motivation Behind Signal Vector
	Signal Vector Analysis
	Signal Vector of Naive Pseudo-Labeling
	Obtaining More Negative Signals
	Negative Signals Experiments
	One Negative Signal
	One Sample
	Four Samples

	Two Negative Signals
	One Sample
	Four Samples

	Three Negative Signals
	One Sample
	Four Samples

	Pseudo-label Selection
	Warm-up Phase
	Pseudo-label Selection with Fixed n
	Pseudo-label Selection with Threshold

	Numerical Results and Discussion
	MNIST
	Dataset
	Model
	Training
	Hyperparameter Selection
	Results

	Fashion-MNIST
	Dataset
	Results

	KMNIST
	Dataset
	Results

	Summary and Conclusion
	REFERENCES

