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ABSTRACT

PRIOR KNOWLEDGE GUIDED WEAKLY SUPERVISED OBJECT
DETECTION AND SEMANTIC SEGMENTATION

Baltacı, Fatih
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ramazan Gökberk Cinbiş

February 2022, 85 pages

State-of-the-art recognition models in computer vision are trained using annotated

training data. Collecting manual annotation for images is a time-consuming and te-

dious task. Annotation time and difficulty also change across computer vision tasks.

For example, object detection tasks require bounding-box annotations, which can

be difficult to annotate, particularly in complex scenes, and semantic segmentation

tasks require pixel-level annotations, which by definition requires a great amount of

effort. Weakly-supervised learning methods, typically studied for object detection

and semantic segmentation, aim to avoid such detailed annotations and instead rely

on image-level labels indicating the presence or absence of object categories. Exist-

ing results, however, indicate that weakly-supervised learning methods tend to result

in recognition models that significantly underperform their fully-supervised counter-

parts. To this end, towards reducing the performance gap between the weakly super-

vised and fully supervised approaches, this thesis explores the utilization of prior se-

mantic knowledge about object categories in improving the weakly supervised train-

ing processes. We inject prior knowledge for object categories represented in terms of

attributes or language-based class embeddings into existing weakly-supervised object

v



detection and semantic segmentation training approaches. Our experimental results

show that the proposed method can clearly improve the recognition performance in

several cases on benchmark datasets.

Keywords: weakly-supervised object detection, weakly-supervised semantic segmen-

tation, prior knowledge guidance in machine learning
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ÖZ

ÖN BİLGİ YÖNLENDİRMELİ ZAYIF GÖZETİMLİ NESNE TESPİTİ VE
ANLAMSAL BÖLÜTLEME

Baltacı, Fatih
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ramazan Gökberk Cinbiş

Şubat 2022 , 85 sayfa

Bilgisayarlı görü alanındaki en gelişmiş tanıma modelleri, etiketli eğitim verileri kul-

lanılarak eğitilmektedir. Görüntülerde el ile etiketleme yapmak genellikle zaman alan

ve zorlu bir işlemdir. Etiketleme süresi ve zorluğu da bilgisayarlı görü görevlerine

göre değişir. Örneğin, nesne tespit problemi, özellikle karmaşık sahnelerde etiketle-

mesi zor olabilen sınırlayıcı kutu etiketleri gerektirir. Anlamsal bölütleme ise, tanımı

gereği büyük miktarda çaba gerektiren piksel düzeyinde etiketler gerektirmektedir.

Tipik olarak nesne algılama ve anlamsal bölütleme için çalışılan zayıf denetimli öğ-

renme yöntemleri, bu tür ayrıntılı etiketlerden kaçınmayı ve bunun yerine nesne kate-

gorilerinin varlığını veya yokluğunu gösteren görüntü düzeyinde etiketleri kullanmayı

amaçlar. Bununla birlikte, mevcut sonuçlar, zayıf denetimli öğrenme yöntemlerinin,

tam denetimli öğrenme yöntemlerine kıyasla önemli ölçüde düşük performans gös-

terme eğiliminde olduğunu göstermektedir. Bu tezde, zayıf denetimli ve tam dene-

timli yaklaşımlar arasındaki performans farkını azaltmaya yönelik olarak zayıf de-

netimli eğitimde nesne kategorileri hakkında anlamsal ön bilgilerden yararlanmayı

amaçlamaktayız. Öznitelikler veya dil tabanlı nesne kategorileri için anlamsal ön bil-
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gileri, mevcut zayıf denetimli nesne algılama ve anlamsal bölütleme eğitim yakla-

şımlarına dahil etmekteyiz. Deneysel sonuçlarımız, önerilen yöntemin, standart veri

kümelerinde çeşitli durumlarda tanıma performansını açıkça iyileştirebileceğini gös-

termektedir.

Anahtar Kelimeler: zayıf gözetimli nesne algılama, zayıf gözetimli anlamsal bölüt-

leme, ön bilgi yönlendirmeli makine öğrenmesi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

There are various well-known computer vision problems, such as object detection,

autonomous driving, defect detection, medical imaging, person counting, semantic

segmentation. New models are constantly being proposed to improve the models’

performance. Following the success of CNNs (Convolutional Neural Networks), clas-

sification, object detection, and segmentation methods started to gain impressive suc-

cess. Particularly, in object detection, single-stage models [17, 18, 19, 20, 21, 22] and

two-stage models [23, 24, 25, 26, 27, 28] show promising performance with fully-

supervised training. Similarly, semantic segmentation methods [29, 30, 12, 31] are

used for fine-grained pixel-level predictions, and the state-of-the-are models rely on

fully-supervised training settings.

Various fully-annotated datasets have been proposed in the literature, such as [8, 3, 4,

2], to improve the training and evaluation of the state-of-the-art in object detection and

semantic segmentation. While these datasets have been greatly influential in advanc-

ing the approaches, it is inherently difficult to collect similar mid-scale or large-scale

annotated datasets in real-world scenarios where the public datasets are insufficient.

For example, the images themselves, as well as image-level labels, are required for

classification tasks, instance-level bounding box annotations are required for detec-

tion tasks, and pixel-level labels are needed for segmentation tasks to be able to utilize

the fully-supervised state-of-the-art. The difficulty of collecting such datasets can be

observed through the annotation examples shown in Figure 1.1.

It is well-known that in most practical scenarios, training accurate and reliable deep

1



Figure 1.1: Annotating image-level labels is cheaper than annotating bounding-box,

point of pixel labels. Pixel-level label annotation takes ∼ 78 sec per class for an

image [32].

learning models typically require large-scale fully-annotated datasets. To collect

datasets, therefore, careful data annotation is required, which is a labor-intensive and

tedious task. To generate large-scale datasets, some public datasets [3, 33] have uti-

lized Amazon Mechanical Turk 1 and similar interfaces to obtain distributed work-

force to annotate images. While the crowd-sourcing strategy can appear appealing,

its costs in large-scale settings can be prohibitive.

As it can visually be observed from the examples given Figure 1.1, the difficulty of

collecting annotations can vary across the annotation types. For example, annotating

an image can take around 10 seconds per instance for bounding boxes, 78 seconds per

instance for pixel-wise segmentation annotations, few seconds per class for image-

level labels [32]. Therefore, the cost of collecting image-wise labels is typically lower.

In addition, in special cases, one can find alternative practical ways to collect images

with specific labels, such as using image search engines combined with simple image

cleaning.

Motivated from the relative simplicity of collecting image-wise labels, weakly-supervised

object detection aims to build detection models from training images with only object

1 https://www.mturk.com/
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presence/absence annotations. There are various approaches for weakly-supervised

object detection problems. A commonly used recent trend is to use MIL (Multiple

Instance Learning) [34, 35, 36, 1, 37, 38, 39, 40, 41] to solve weakly-supervised

object detection problems. Images and object proposals are interpreted as bags and

instances, respectively, in MIL.

Weakly-supervised semantic segmentation is a similar problem that aims to train se-

mantic segmentation models, as opposed to object detectors, via class-level annotated

images. A commonly used recent trend is to use CAM (Class Activation Maps) [42]

or similar techniques to generate pseudo-ground-truth pixel maps [9, 43, 15, 44, 45,

46, 47]. These pseudo-ground-truth maps are then used for semantic segmentation

training. There exist also other supervision approaches for weakly-supervised se-

mantic segmentation such as bounding box [48, 49], scribbles [50], and points [32]

for training models. In this thesis, we focus on image-level labels as the weak super-

vision.

1.2 Contributions and Overview

Weakly-supervised training approaches tend to yield models with lower predictive

quality due to the relative weakness of the supervision provided by image-level labels.

Towards reducing the performance gap between weakly and fully supervised training

approaches, we propose to inject prior knowledge about object categories such as

attributes (i.e., has a nose, is metal) into the model. Our primary motivation is to (i)

increase knowledge sharing across object classes, and (ii) guide the concepts to be

learned through the prior information available about the classes.

To inject prior knowledge into weakly-supervised approaches, we integrate embedding-

driven prediction models, similar to labeled embedding techniques in zero-shot learn-

ing, into detection and segmentation models. We then train the embedding-based

models via existing weakly-supervised training schemes. To evaluate this approach,

we integrate it into the WSSDN [1] and PCL [7] models for weakly-supervised object

detection and Puzzle-CAM [9] model for weakly-supervised semantic segmentation.

The experimental results on PASCAL VOC 2007 [4] and Microsoft COCO [3] datasets

3



for object detection and PASCAL VOC 2012 [8] for semantic segmentation suggests

that the proposed methods for utilizing prior knowledge information can boost the

object detection and semantic segmentation performance, especially on some of the

object categories.

In Chapter 2 of this thesis, we present an overview the related work on object de-

tection (2.1) and semantic segmentation (2.2) in both fully-supervised and weakly-

supervised settings. In Chapter 3, we explain the datasets and metrics that are used

in this thesis for both object detection and semantic segmentation. In Chapter 4,

we explain the attributes and word embeddings as prior knowledge that are used in

the experiments. In Chapter 5, our approach is explained and compared with base-

line methods for weakly-supervised object detection. In Chapter 6, our approach is

explained and compared with baseline methods for weakly-supervised semantic seg-

mentation. In Chapter 7, our experiments on weakly-supervised object detection 7.1.1

and weakly-supervised semantic segmentation 7.2.1 are examined for Pascal VOC [4]

and COCO 2014 [3] datasets. In the last Chapter 8, we conclude our thesis.
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CHAPTER 2

LITERATURE REVIEW

This chapter focuses on the related works on object detection and semantic segmenta-

tion. We first briefly discuss object detection and semantic segmentation methods in

Section 2.1 and Section 2.2, respectively. Both methods are discussed in detail, from

Fully-supervised Methods (FS) to Weakly-supervised (WS) ones.

2.1 Object Detection

In this section, we review the literature for fully-supervised (Section 2.1.1) and weakly-

supervised (Section 2.1.2) object detection.

Object detection uses computer vision models that locate and recognize objects in

a video or image. Object detection uses bounding boxes to recognize objects and

locate them in images or videos. An example of object detection inference is shown

in Figure 2.1.

2.1.1 Fully-Supervised Object Detection

Recent studies have made great strides in object detection over the last few years.

Commonly, these works have been in two ways. One area of research has been on

proposal creation methods, intending to efficiently and accurately localize candidate

objects. These methods are designed to produce high detection recall using fewer

proposals as possible. The second area of research has been the study of training

methods to classify proposals. Each proposal can be given a label that identifies it’s

background or foreground.

5



Figure 2.1: An object detection inference example. Input (a) is given to the object

detection model. The model predicts bounding box coordinates (x, y, width, height)

as the green box, class category (motorcycle), and confidence score (98%) as output

(b). The model can be both fully-supervised and weakly-supervised.

Images can contain objects in a variety of sizes and locations. Sliding windows used

to be the most popular method for object detection shown in Figure 2.2. This is a

comprehensive search process of an object for all window sizes and locations in an

image. There are essential hyper-parameters to tune for sliding window approaches

such as window size and stride count.

The object proposals reduce the number and computational cost of object detection.

The algorithms have been shown to speed up object detection and improve it’s per-

formance significantly. The object proposal-based approaches can be beneficial in

object detection [39], which can be seen as a preprocessing technique that improves

computational efficiency and accuracy. Uijlings et al. [51] propose object proposals

by hierarchically grouping superpixels at low levels. With a recall rate of 98% on Pas-

cal VOC [2], and 92% on ImageNet [33], the number of proposals can reach around

2000. This significantly reduces the number of evaluated windows while ensuring a

high detection rate.

Modern detectors are usually made up of two components: a backbone trained on

ImageNet and a head used for predicting classes and bounding boxes shown in Figure

2.3. Examples for detection backbones include VGG [52], ResNet [53], ResNeXt [54].

The detection scheme can be designed as a one-stage or a two-stage approach. R-
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Figure 2.2: Sliding windows approach: A sliding window, in computer vision, is a

rectangular area of fixed width and length that slides across an image. An image

classifier is used to identify if each of these windows contains an object. This is a

computationally intensive approach for object detection.

CNN [55] family contains perhaps the most well-known two-stage detectors. It in-

cludes Fast R-CNN [23], Faster R-CNN [24], R-FCN [25], Cascade R-CNN [26],

Mask R-CNN [27] and Libra R–CNN [28]. RetinaNet [22], SSD [56], EfficientDet

[57] and YOLO [17, 18, 19, 20] are among the best-known models for a one-stage

detector. Inference process using these detectors are typically faster than two-stage

detectors mainly thanks to skipping the proposal generation step, however, they also

tend to perform relatively worse. To this end, more recently, anchor-free formulations

has attracted interest in one-stage detection. For example, RepPoints [58] is an exam-

ple of an anchor-free two-stage detector and CenterNet [59], CornerNet [60], DAFNe

[61], and FCOS [21] are among the best-known models for an anchor-free one-stage

detector. Noticeably, anchor optimization is not necessary with such anchor-free de-

tectors.

Both one-stage and two-stage detectors have started to achieve impressive perfor-

mance scores on Pascal VOC [2] and COCO [3] benchmarks. However, as they rely

on fully-supervised training, all training images need to be manually annotated with

the object bounding boxes, which is typically laborious, time-consuming, and can

even be subjective and/or biased. WSL approaches, discussed in the next section, aim
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Figure 2.3: Object detection architecture overview. A one-stage detector includes

input, backbone and neck, and dense prediction. A two-stage detector includes sparse

prediction in addition to the one-stage detector. The head of a network is made up of

dense and sparse predictions. Image is taken from [20].

to avoid these problems.

2.1.2 Weakly-Supervised Object Detection

Weakly-supervised object detection (WSOD) is an emerging topic the collection of

large-scale data with image-level labels is much more easier than that with bounding

box annotations, [37, 62, 41, 63, 64, 65, 66, 67, 36, 39, 40]. Chum et al. [63] initialize

object locations using visual words. Then they present an exemplar model to deter-

mine the similarity between image pairs to update locations. Lazebnik et al. [65] use

Felzenszwalb et al. [68] discriminatively trained part-based model to train a weakly-

supervised object detection model. Deselaers et al. [64] use Alexe et al. [18] object-

ness approach to initialize proposals. Shi et al. [66] use Bayesian Joint modeling for

object categories. Song et al. [67] aims to leverage discriminative regions to identify

positive object windows with a latent SVM. Wang et al. [41] iteratively train detec-

tors with relaxed multiple instance SVM (RMI-SVM) using derivable loss function.

Several other works apply end-to-end approaches for WSOD [69, 70, 71, 7, 1, 10, 38].

Most of the existing WSOD approaches rely on a object proposal (also called candi-

date window) generation algorithm, such as Selective Search [51] or Edge Box [72]

as the starting point. The goal is to find true positive instances and train an object

proposal classifier. If an image is positive, there must exist at least one instance of
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Figure 2.4: MIL (Multiple Instance Learning) approach. The images and candidate

windows are interpreted as bags and instances, respectively. The goal is to find true

positive instances and then train a window classifier. The "Car" classifier is shown in

the example. Because images include a "car" instance, (a) can be considered positive

bags. (b) is considered negative bags because the images do not contain a car instance.

the class is present by definition. If an image is negative, no instance of the class

is present. The bounding box features are expected to be similar if there are ob-

jects of the same category in two different images. Based on this principle, WSOD

methods aim to select boxes that have (discriminatively) consistent representations.

These principles naturally lead to Multiple Instance Learning (MIL) based formula-

tions [34, 35, 36, 1, 37, 38, 39, 40, 41].

In the MIL Framework, images and object proposals are interpreted as bags and in-

stances. Each image is interpreted as a bag of regions, and supervision information

specifies whether at least one example of a class is presented in the image or not,

shown in Figure 2.4.
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Figure 2.5: Standard MIL pipeline. First, candidate windows are generated with

selective search [51] or edge-box [72] algorithms from the image. Then iteratively

feed object detection model with candidate windows by re-training and re-localizing.

The goal of the MIL-WSOD is to find true positive instances and train the window

classifier. Standard MIL pipeline is shown in 2.5, which typically contains the fol-

lowing stages:

• Initialize with candidate windows

• In a loop:

– Re-train object detection model

– Re-localize objects

While MIL is a widely used framework for developing WSOD approaches, it also has

shortcomings. Two common problems are: (i) MIL training is highly dependent on

initialization and can get stuck in local optima, and (ii) MIL-based WSOD models

can unintentionally focus on only the most discriminative features, too, e.g., the head

regions instead of the entire bodies of cats. Even if the model finds the head of a cat as

a cat category, the detection is typically evaluated as a false positive due to missing out

on the remainder of the ground-truth. To reduce the local minimum problem, Cinbis

et al. [73] propose a MIL approach, based on Fisher vector image representation [74]
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for detection windows, where a multi-fold training policy aims to avoid converging

to poor local optima. Other approaches aim to MIL-based WSOD through a variety

of other techniques [75, 76, 77, 78].

Another approach that uses information from well-trained image classification mod-

els is called Weakly-Supervised Deep Detection Network (WSDDN) [1] proposed

by Bilen et al. WSDDN is the first end-to-end WSOD method and fine-tunes a pre-

trained deep network. Their main idea is to exploit the knowledge accumulated over

the CNN layers. WSDDN architecture feeds the input image into a pre-trained CNN-

based classification model and replaces the last pooling layer with spatial pyramid

pooling layer (region of interest pooling proposed in Fast R-CNN [23] is used in the

experiments) so that the model becomes image size invariant. The output of the spatial

pyramid pooling contains feature representation for each region proposal generated

by Selective Search Windows (SSW) [51] or Edge Boxes (EB) [72] algorithm. The

feature representations are then split into detection and recognition data streams. Fi-

nally, the two branches are combined and summed for each region to compute binary-

log-loss. WSDDN architecture is shown in Figure 2.6. The overall simplicity of the

formulation is one of the main advantages of WSDDN.

Singh et al. [79] investigates how common-sense information can learn detectors

for new target categories. DOCK (Detecting Objects by transferring Common-sense

Knowledge) [79] combines class similarity, attribute, spatial, and scene common-

sense with WSDDN [1] architecture for region-level learning. Therefore, if a target

class is not visually similar to any of the source classes, it’s detector can be learned

using other common-sense knowledge. The proposed method also adopts WSDDN

[1] as a base detection network, but the method uses bounding-box annotations on

source categories and image-level annotations on target categories for training.

One of the major problems in WSOD (Weakly-Supervised Object Detection) is that

the model focuses on the discriminative parts of the objects rather than the whole ob-

ject extent. To solve this problem, Tang et al. [10] proposes OICR (Online Instance

Classifier Refinement) algorithm. The top-scoring proposal only contains discrimina-

tive parts of the object, but the proposals that have high overlap with the top-scoring

proposal contain larger parts of the objects. Almost 2000 object proposals are gen-
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Figure 2.6: WSDDN (Weakly-Supervised Deep Detection Network) [1] pipeline. Im-

age and candidate windows generated with SSW [51] are fed into ROI Pooling and

then divided into two-stream architectures. The classification stream assigns each

region to a class. The localization region picks the most promising windows in an

image given a class. The figure is taken from Hakan Bilen’s CVPR’18 presentation.

erated with the Selective Search [51] method. Proposal scores are generated after

applying WSDDN [1]. These proposals and scores are used as supervision for the

first refinement branch, shown in Figure 2.7.

Different proposals address different parts of the objects. Although all these proposals

could be considered “cat”, only those with sufficient ground truth and IoU can make

correct detections, as shown in Figure 2.8.

Some top-ranking candidate boxes may be limited to locating parts of objects rather

than whole objects. The detection of objects requires that the boxes resulting from

these classifications correctly classify and localize them and have sufficient overlap

with ground truth boxes.

Proposal clusters can be created by treating ground truth bounding boxes and their

centers as cluster centers for fully-supervised object detection. The object detec-

tors can then be trained according to the proposed clusters. This solves the problem

of detectors focusing on only parts. It is impossible to generate proposal centers in
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Figure 2.7: OICR [10] architecture. Candidate proposals are generated with SSW

[51] and their scores are used as supervision for the next refinement stream. After

some refinements, the network will not discriminate only parts of the objects but the

whole extent. The figure is taken from OICR [10].

weakly-supervised object detection because ground truth bounding boxes are unavail-

able. Because these top-ranking proposals can always detect parts of objects, Tang

et al. [7] with PCL (Proposal Cluster Learning) propose to create proposal cluster

centers from proposals with high classification scores during training. This means

that first select proposals with high proposal scores for each image to become cluster

centers. Next, the proposal clusters will be generated based upon spatial overlaps

with these cluster centers. Tang et al. [7] propose a graph-based approach to find

the cluster centers. Figure 2.9 (a) represents the traditional MIL (Multiple Instance

Learning) approaches, (b) represents the proposal label assignment, and (c) represents

the proposal cluster as a bag. “0”, “1”, and “2” denotes the classes of the objects.

Kantarov et al. [38] proposes context-aware models for WSOD by introducing ad-

ditive and contrastive models that use neighbor regions to increase detection perfor-

mance by reducing the focus on discriminator regions.

There are some challenges in WSOD, including instance ambiguity, part domina-

tion, and memory consumption. Ren et al. [70] proposed instance-aware, context-

focused, and memory-efficient WSOD methods to solve these challenges. The paper

introduces multiple instance self-training (MIST), a teacher-student distillation pro-

cess to solve instance ambiguity. The paper also proposes Concrete Dropblock to

focus on context rather than object parts to solve part domination. With concrete

dropblock, discriminative object parts are discarded. They proposed Sequential back-
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Figure 2.8: Different candidate windows for "cat" category. These windows can all

be considered as "cat" classes, but only the one with the green box that indicates IoU

is sufficient is considered as "cat" for the network.

propagation to solve the high memory consumption on training a network.

The performance of weakly-supervised object detection methods has increased no-

ticeably in recent times. But the gap between fully-supervised and weakly-supervised

object detection is still very significant as fully-supervised detections performances

have also been increasing, e.g., on both the COCO test dataset [80, 81, 82, 83, 84]

and the Pascal VOC 2007 validation dataset [85, 86, 87, 88, 89].

Finally, we note that there are other weakly supervised detection approaches that do

not strictly fit into the standard WSOD setting. For example, a well-known idea

based on transfer-learning is learning a mapping between image classification and

object detection tasks and then using this mapping to generalize object detection on

instances of the test classes. Hoffman et al. proposed Large Scale Detection through

Adaptation (LSDA) [90], in which they split classes into source classes with instance-

level labels and target classes with only image-level labels. They trained a generic

classifier to detector transformation network by using the correlation between similar

source and target categories. Related to our work on this different problem, Tang et
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Figure 2.9: Comparison of PCL [7] and traditional approaches. (a) is the traditional

MIL (Multiple Instance Learning), (b) the proposal label assignment and (c) the pro-

posal cluster as a bag. The categories of the objects are indicated by the numbers "0",

"1", and "2". The figure is taken from PCL [7].

al. [91] enhances LSDA by injecting visual and semantic domain knowledge during

the classifier-to-detector process.

2.2 Semantic Segmentation

In this section, we present an overview of the literature for fully-supervised (2.2.1)

and weakly-supervised (2.2.2) semantic segmentation.

Image segmentation plays a crucial role in computer vision tasks. There are many ap-

plications for image segmentation areas, including medical imaging (tumor segmen-

tation, pneumonia parts, cell segmentation), autonomous driving (segmenting traf-

15



Figure 2.10: Example outputs of semantic (a) and instance (b) segmentation.

Turquoise, blue and red colors represent person, sheep and dog respectively in (a).

In semantic segmentation, there is no distinction on the same category objects. All

sheep colors are blue in (a). In instance segmentation, all objects with the same cate-

gory are handled separately. All sheep colors are different in (b). MSCOCO dataset

[3] contains instances segmentation annotations. The figure is taken from MSCOCO

[3].

fic lights, cars, pedestrians), augmented reality (segmenting parts of objects), video

surveillance, geo-sensing. With the improvement of deep learning algorithms, suc-

cess in segmentation has also increased.

We can formulate the image segmentation models as per-pixel contextual classifica-

tion models. We should also note the important difference between semantic and

instance segmentation methods. In semantic segmentation, the aim is to classify ev-

ery pixel with a class category such as a person, cat, dog. It treats objects in the

same category as a single object. In instance segmentation, however, the aim is to

classify every pixel with a class category and detect the objects separately. There

is a distinction between objects of the same category. An example of semantic and

instance segmentation is shown in Figure 2.10. The ground truth of images for fully-

supervised image segmentation methods is class categories for every pixel.

In the following sections, we first go over fully-supervised semantic segmentation

methods in Section 2.2.1 and then weakly-supervised semantic segmentation methods

in Section 2.2.2.
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Figure 2.11: DeConvNet [11] architecture. The left side of the network uses VGG-16

[52]. The right side of the network uses deconvolution and unpooling to generate a

segmentation map of the image. The figure is taken from DeConvNet [11].

2.2.1 Fully-Supervised Semantic Segmentation

Fully-supervised semantic segmentation requires class categories for every pixel as

ground truth. Variety of methods try to solve this problem including traditional

methods such as k-means and subtractive clustering [92], conditional random fields

[93], statistical region merge [94] and deep learning methods such as UNet [12],

DeepLabv3 [95], atrous convolution [96], PSPN (Pyramid Scene Parsing Networks)

[97].

Fully Convolutional Networks (FCN) [98] is trained end-to-end with arbitrary image

sizes, as proposed by Long et al. This network includes only convolutional layers, so

that image size can be different. Fully-connected layers are removed from CNN ar-

chitectures such as AlexNet [99] and VGGNet [52] to support arbitrary sized images.

For the limitations of FCN, it’s not suitable for real-time applications because it’s

very compute expensive and tends to focus on parts of the objects rather than global

context. To solve the global context problem, Liu et al. proposed ParseNet [100] by

extracting global feature vector with global pooling of feature map.

Most of the recent research on semantic segmentation use encoder-decoder based

algorithms. Noh et al. proposes DeConvNet [11] by introducing deconvolution oper-

ation. The first part of the network uses VGG-16 [52] as convolution layers, the later

part of the network uses deconvolution operation to match the image size. Convolu-

tion and deconvolution operations in DeConvNet are illustrated in Figure 2.11.
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SegNet [29] is a fully convolutional encoder-decoder based network, proposed by

Badrinarayanan et al. SegNet [29] is similar to DeConvNet [11] but SegNet uses

nonlinear up-sampling method on decoder part of the network.

Yuan et al. proposes HRNet [30] to solve the loss of image information on the encoder

part by keeping the high-resolution part of the features and feeding them to the last

layers.

Ronneberger et al. proposes UNet [12] that uses fully convolutional endoder-decoder

architecture for biomedical image segmentation. UNet contains contracting (encoder)

and expansive (decoder) paths. The contracting path uses typical convolutional and

max-pooling layers to grab the context in the input image. The expansive path uses

deconvolution layers to get a precise output segmentation map, which is symmetric

to the contracting path. Input image of UNet can be any size, as it is FCN (Fully

Convolutional Network) and does not contain dense layers. UNet network is shown

in Figure 2.12.

A variety of applications that uses UNet [12] architecture on different image domains

have ben published. Cicek et al. proposes 3D-UNet [31] for 3D images, Zhang et al.

[101] proposes road extraction based on UNet. Zhou et al. proposes UNet++ [102]

to increase the validation scores of UNet by redesigning skip pathways. VNet is an

another FCN based 3D image segmentation model, proposed by Milletari et al. [103].

Multi-scale and pyramid networks are commonly used in semantic segmentation. Lin

et al. proposed FPN (Feature Pyramid Networks) [13] which is mainly used by object

detection tasks but can be used on semantic segmentation as well. FPN architecture

for semantic segmentation is shown in Figure 2.13.

Learning the global context is a problem in semantic segmentation. Zhao et al. pro-

posed PSPN (Pyramid Scene Parsing Networks) [97], which learns the global context

by concatenating the initial feature layers with the last layers on different pyramids.

To get the semantic maps convolution layer is used. There are other semantic seg-

mentation methods that uses pyramid and multi-scale fashion such as APC-Net [104],

MSCI [105], salient segmentation [106].

Dilated (atrous) convolution is used to shrink the size of features by adding space
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Figure 2.12: UNet [12] architecture. The left side of the network is called contracting

(encoder) path. The right side of the network is called expansive (decoder) path. The

last layer of the expansive part is 1 × 1 convolution. The figure is taken from UNet

[12].

between the weights. Some works on real-time semantic segmentation use dilated

convolutions. Chen et al. proposes DeepLabv1 [107] and DeepLabv2 [14] which

segments images in multiple scales using (ASPP) Atrous Spatial Pyramid Pooling and

decrease the feature size by dilated convolution layers. DeepLabv2 [14] architecture

is shown in Figure 2.14. DeepLabv3 [95] was proposed by Chen et al. to increase

the validation score of semantic segmentation by introducing batch normalization and

1× 1 convolution for (ASPP) Atrous Spatial Pyramid Pooling. Chen et al. proposes

DeepLabv3++ [108], which removes batch normalization and max pooling by using

Xception [109] (depthwise separable convolutions) as backbone.

Some other works propose to handle semantic segmentation problem by using RNNs

(Recurrent Neural Network), such as ReSeg [110], ReNet [111], Graph LSTM [112].

Attention based and GAN models are on the rise for semantic segmentation prob-

lem including Attention to Scale [112], reverse attention [113], pyramid attention
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Figure 2.13: FPN (Feature Pyramid Networks) for semantic segmentation [13] archi-

tecture. MLP (Multi-Layer Perceptron) is applied to obtain the semantic masks. The

figure is taken from FPN [13].

[114], GAN methods [115, 116, 117]. Most state-of-the-art methods, however, use

the DeepLabv3++ [108] feed-forward network in their models.

2.2.2 Weakly-Supervised Semantic Segmentation

Fully-supervised semantic segmentation methods have made remarkable progress in

recent years. Weakly-supervised semantic segmentation methods aim to close the

performance gap with fully-supervised semantic segmentation methods. Weak labels

such as bounding boxes, scribbles, points, and image-level labels are used on weakly-

supervised semantic segmentation methods. In this thesis, we focus on weakly-

supervised semantic segmentation using image-level labels as supervision.

A major challenge in weakly-supervised semantic segmentation is the tendency of

the network to focus on discriminative parts such as the head of a bird instead of

the whole part. For image-label-based weakly supervised segmentation, most of the

state-of-the-art methods rely on CAM (Class Activation Map) [42] for pseudo-label

creation used as ground truth semantic masks, such as [43, 15, 44, 45, 46, 47]. How-

ever, CAM-based approaches also suffer from focusing on most discriminative re-

gions only.

Class activation maps (CAM) may not be consistent across different scales of input.
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Figure 2.14: DeepLabv2 [14] architecture. Atrous convolution is used for generating

a class score map. After bi-linear interpolation of the score map, fully connected CRF

(Conditional Random Field) is used to get the final predictions. The figure is taken

from DeepLabv2 [14].

To address this problem, Wang et al. propose SEAM [15] which reduces the differ-

ence between the different scaled inputs using a siamese network. The architecture

of SEAM [15] is shown in Figure 2.15.

Wei et al. [118] proposes Adversarial Erasing that mines discriminative regions and

erase them (head of an object) progressively over and over until the discovery of the

object’s whole body. This method is similar to concrete DropBlock, which drops

discriminative parts features, as proposed by [70] for the object detection problem.

This method, however, is a slow approach because the network needs to be trained

repeatedly to produce dense localization maps.

Similar to the fully supervised approaches, dilated (atrous) convolution is also used

by weakly-supervised semantic segmentation techniques. For example, Wei et al.

[119] proposed dilated convolutions to reduce the focus on discriminative regions

and obtain dense segmentation maps by different dilation rates. This approach does

not require repetitive training. The final activation map is obtained by a weight com-
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Figure 2.15: SEAM [15] architecture. Multi-scaled input images are fed into the

classification network and using loss for consistency between different scales. The

figure is taken from SEAM [15].

bination of activation maps of different dilation rates. The last segmentation mask

is generated from the final activation map and used for ground truth of the network.

This approach can be also used for semi-supervised learning.

Another approach in weakly-supervised semantic segmentation is to apply adversarial

attacks [120] to get the whole target object instead of parts of the target object. Lee

et al. [121] proposes to get manipulated image by finding a perturbation of the input

image to increase the classification score by move away from decision boundary.

The manipulation of image is discovered by the adversarial climbing approach. This

approach can be applied on weakly, and semi-supervised semantic segmentation and

does not require re-training the models.

The initial CAMs of weakly-supervised semantic segmentation networks may not

cover the whole target objects. Jo et al. proposes Puzzle-CAM [9] which divides

the image into tiles and generates CAMs from these tiles. The difference between

full input and tiled images is reduced with reconstruction loss. The architecture of

Puzzle-CAM is shown in Figure 2.16.

We use the state-of-the-art approach Puzzle-CAM [9] as our baseline in the weakly-

supervised semantic segmentation experiments in this thesis.
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Figure 2.16: Puzzle-CAM [9] architecture. The input image is divided into tiled parts.

CAMs are generated from tiled parts and then merged into a single CAM using the

merging module. Another CAM is also generated using the original input image. The

difference between full input and tiled images is reduced with reconstruction loss.

The figure is taken from Puzzle-CAM [9].
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CHAPTER 3

DATASETS AND METRICS

3.1 Datasets

Datasets have been a crucial part of object detection research. They serve as a critical

component of performance evaluation in comparing competing approaches and push

the research to address progressively more challenging problems. Access to large

image collections online makes it possible to create extensive datasets with different

categories. Large-scale datasets with millions of images have opened the door to

significant breakthroughs that have enabled object recognition at exceptional speeds.

In order to collect large amounts of data sets, first of all, the object categories must be

determined. Once the categories have been determined, it is necessary to collect large

quantities of videos or photos for each category. Open-source data on the internet can

be used when collecting videos and photos. If the data set needs to be collected for a

specific area, video capture may be required.

Once the photos or videos are collected, annotating is required for the determined

categories. Distributed human labor, such as Amazon Mechanical Turk, is generally

used for long and tedious labeling operations. Labeling time varies according to the

labeling type (image-level, bounding-box, pixel). After the labeling is completed,

optionally, cross-check validation can be done across human annotators. Generally,

these steps need to be completed to create a dataset.

Datasets of various sizes and domains have been collected. Mnist [122], Scenes15

[123, 124, 125], Tiny Images [126], ImageNet [33], MSCOCO [3], Pascal VOC [2,

4, 8], Sun [127], Caltech101 [128, 129], Caltech [130, 131], Open Images [132] are
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Figure 3.1: Example images from different computer vision datasets. (a) Example

images from COCO 2014 dataset [3]. (b) Example images from Pascal VOC 2012

dataset [8]. (c) Example images from ImageNet VID dataset [33]. (d) Example im-

ages from Open images dataset [132]. The images in this figure are taken from the

stated datasets.

just a few examples. Some images from different datasets are shown in Figure 3.1.

The most commonly used datasets in object detection are MSCOCO [3], Pascal VOC

[2, 4, 8] and ImagenetVID. The statistics of these datasets are shown in Table 3.1.

The Pascal VOC dataset [4] collection started in 2005 with five categories and even-

tually was enlarged to 20 categories. The categories in the dataset include objects in

daily life. The categories in the dataset are as follows: aeroplane, bicycle, bird, boat,

bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, potted-

plant, sheep, sofa, train, tvmonitor. The Pascal VOC dataset [4] contains bounding

box and pixel-level annotations for object detection and segmentation tasks.
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Table 3.1: The statistics of the most commonly used datasets in object detection prob-

lem. We can understand how many objects are in an image from the Objects / Image

column. As can be seen, there are more objects in the images in the MSCOCO dataset

[3] than in the other datasets. The dataset with the highest category (200) is Imagenet

VID dataset [33].

Dataset Total Images Categories Objects / Image

Pascal VOC 2012 [8] 11540 20 2.4

MSCOCO 2014 [3] 328000 80 7.3

Imagenet VID [33] 116159 200 2.8

The collection of the Imagenet dataset had started in 2009. In 2015, it was announced

as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [33]. Ima-

genet VID was primarily created to address the data insufficiency observed on Pas-

cal VOC and its limited number (20) of categories. There are 200 categories in the

Imagenet VID dataset. Some of the categories in the Imagenet VID dataset are as

follows: accordion, airplane, ant, antelope, apple, armadillo, artichoke, axe, baby

bed, backpack, bagel, balance beam, banana, band aid, banjo, baseball, basketball,

bathing cap, beaker, can opener, car, cart, cattle, cello, centipede, computer keyboard,

punching bag, purse, rabbit, racket, ray, red panda, refrigerator, remote control, rub-

ber eras whale, wine bottle, zebra. The Imagenet dataset [33] contains bounding box

annotations for object detection task.

Imagenet VID dataset [33] images usually contain 1 or 2 objects. These objects are

often large and located in the center of the image. Models should be able to detect

small objects in dense scenes, just as they would in real life. MSCOCO [3] was

created to bring the dataset closer to reality. MSCOCO has since become the de-facto

standard in object recognition problem.

The common class categories for the datasets of interest are shown in Figure 3.2.

In this thesis, we use Pascal VOC [4] and MSCOCO [3] datasets for the weakly-

supervised object detection experiments, and Pascal VOC [8] dataset for the weakly-

supervised semantic segmentation experiments.
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3.2 Metrics

Various evaluation metrics are used for object detection and semantic segmentation.

We summarize the mainstream object detection metrics in Section 3.2.1 and the se-

mantic segmentation metrics in Section 3.2.2.

3.2.1 Object Detection Metrics

Many competitions including Pascal VOC [4], MSCOCO [3] push towards solving

the object detection problem. Some competitions create object detection metrics for

evaluation. The most used metrics for object detection tasks are AP (average preci-

sion) and mAP (mean average precision). There are some differences in AP calcula-

tions on COCO and VOC challenges. The main goal of the object detection task is to

bring the detected objects closer to the ground truth objects.

A detection from a model typically consists of three elements: confidence score

(between 0 and 1), class category and bounding box (x, y, w, h). The closeness

between the predicted bounding box and ground truth bounding box can be measured

by IoU (Intersection Over Union) based on Jaccard index [134], or similar metrics.

Assuming that the ground truth bounding box is BBgt and predicted bounding box is

BBp, the IoU of BBgt and BBp is intersection of BBgt and BBp divided by union

of BBgt and BBp (Equation 3.1). IoU value is between 0 and 1, where 1 means a

perfect match. If there are no overlaps between bounding boxes, IoU will be zero.

An example of IoU between ground truth and predicted bounding boxes is shown in

Figure 3.3.

IOU =
area(BBgt ∩BBp)

area(BBgt ∪BBp)
(3.1)

To calculate AP (Average Precision) we need these terms:

• TP (True Positive): Prediction bounding box is correct. IoU > Threshold.

• FP (False Positive): Prediction bounding box is wrong. IoU < Threshold.
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• FN (False Negative): Ground truth bounding box is not detected.

• TN (True Negative): Not considered for object detection domain. There are

many bounding boxes that the model is not predicted and are not ground truth.

Precision is the proportion of true positive bounding boxes across all detected bound-

ing boxes. The purpose of precision is to try to find how many of the detected bound-

ing boxes are correctly classified. The precision formula is shown in Equation 3.2:

Precision =
TP

TP + FP
=

TP

All Detections
(3.2)

Recall is the proportion of true positive bounding boxes across all ground truth bound-

ing boxes. The purpose of recall is to find all ground truth bounding boxes. The recall

formula is shown in Equation 3.3:

Recall =
TP

TP + FN
=

TP

All Ground Truths
(3.3)

There is a trade-off between precision and recall. If the model predicts more bounding

boxes (high recall), the predicted bounding boxes will be less correct (low precision).

The precision value should not decrease too much when the recall increases to under-

stand a good detector.

AP (Average Precision) metric is calculated with area under the precision-recall curve

for each category. Recall is the x-axis and precision is the y-axis of the plot. An

example precision-recall plot is shown in Figure 3.4. Mean average precision (mAP)

is the average of all Average Precisions (AP) for each category.

Different challenges interpret the AP value differently. The AP values interpreted by

Pascal VOC and COCO challenges are shown in the Table 3.2. In this thesis, we

used AP with 0.5 IoU for Pascal VOC [4, 8] datasets and AP with .50:.05:.95 IoU for

COCO dataset [3].

3.2.2 Semantic Segmentation Metrics

Semantic segmentation metrics are similar to object detection metrics. Instead of cal-

culating metrics with bounding box areas, pixels are used on semantic segmentation
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Table 3.2: Different AP (Average Precision) metrics for Pascal VOC [2] and COCO

[3] challenges. AP with .50:.05:.95 IoU is the primary challenge metric for COCO.

AP with .50 IoU is equal to mAP in COCO challenge.

Metric IoU Challenge Description

AP 0.5 Pascal VOC [2]
AP is calculated with a fixed 0.5 IoU

threshold for all recall points.

mAP 0.5 Pascal VOC [2] Average of each classes AP values.

AP .50:.05:.95 MSCOCO [3]

AP is calculated with 10 different IoU

values [0.50, 0.55, 0.60, ..., 0.95] and

taking the average of them.

AP .50 MSCOCO [3]
AP is calculated with a fixed 0.50 IoU

threshold for 101 recall points.

AP .75 MSCOCO [3]
AP is calculated with a fixed 0.75 IoU

threshold for 101 recall points.

APsmall .50:.05:.95 MSCOCO [3]
AP is calculated for small objects whose

area is less than 322 pixels.

APmedium .50:.05:.95 MSCOCO [3]
AP is calculated for medium objects whose

area is between 322 and 962 pixels.

APlarge .50:.05:.95 MSCOCO [3]
AP is calculated for large objects whose

area is greater than 962 pixels.

validations.

Mean Intersection over union (mIoU) is the primarily used metric for semantic

segmentation models. IoU equation for object detection is shown in Equation 3.1.

Instead of using a bounding box for the IoU calculations, pixel-based TP, FN, FP are

used for semantic segmentation. First of all, IoU is calculated for each class and then

the average of IoUs is taken to get the mIoU values. IoU calculation for semantic

segmentation is as follows:

Jaccard = IOU =
TP

TP + FP + FN
. (3.4)

Dice coefficient [135] (F1) is first published by Sorensen et al. to measure the similar-

ities of two samples. This metric is used to evaluate semantic segmentation models.
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The Dice coefficient is equal to F1 metric. The formula of Dice is similar to IoU,

shown in Equation 3.5:

F1 = Dice =
2TP

2TP + FP + FN
(3.5)

The most commonly used metric in semantic segmentation is mIoU.

3.3 Summary

This chapter presents an overview of the datasets and methods required to evaluate ob-

ject detection and semantic segmentation models. Fully-supervised object detection

and semantic segmentation models are evaluated in terms of AP and mIoU. Weakly-

supervised object detection and semantic segmentation models are mainly evaluated

in the same way.
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Figure 3.2: The most common class categories for different datasets. All datasets

contains person category as the most. (a) Category frequency map for Pascal VOC

dataset [4]. (b) Category frequency map for MSCOCO dataset [3]. (c) Category

frequency map for Imagenet VID dataset [33]. The images in this figure are taken

from Liu et al. [133].
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Figure 3.3: An IoU (intersection over union) example. The green and red bounding

boxes indicate ground truth and prediction, respectively. (a) Intersection (overlap) of

green and red bounding boxes. (b) Union of green and red bounding boxes.

Figure 3.4: An example of Precision-Recall curve for one category. As recall in-

creases, precision decreases. The area under the blue line is Average Precision (AP)

for one category.
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CHAPTER 4

PRIOR KNOWLEDGE

4.1 Overview

In this chapter, we provide an overview of the prior knowledge sources that we utilize

for the purpose of improving weakly supervised training techniques. In particular, we

focus on class attributes and class name word embeddings as the prior knowledge on

classes of interest. In the sections following, we present their details for the PASCAL

and MSCOCO datasets.

4.2 aPascal

Farhadi et al. [16] has introduced two attribute-based recognition datasets built on

Pascal VOC dataset [4] and Yahoo Image search images. The attribute dataset col-

lected with Pascal is called aPascal, and the dataset collected with Yahoo is called

aYahoo. In this thesis, we work with aPascal attributes.

For each train and test image in Pascal VOC dataset [4], the images are annotated in

terms of 64 attributes. The annotation process was carried out by Amazon’s Mechan-

ical Turk.

The attributes are categorized into three types:

• Shape: Form of an object such as Round, 3D Boxy, 2D Boxy.

• Material: What material is it made of such as Metal, Plastic, Wool.

• Part: Visible parts of an object such as Arm, Leg, Face.
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Figure 4.1: Histogram of aPascal class categories. There are 20 classes on Pascal

VOC Dataset [4]. Person class has the maximum number of annotations.

A total of 12695 data were collected, 6340 of which were train set and 6355 were test

set on Pascal VOC dataset [4]. The histogram of aPascal classes is shown in Figure

4.1.

We calculate the average of the 12695 point features, including training and test sets

of the Pascal VOC dataset [4] based on class categories to get a 20x64 feature matrix.

This feature matrix is used by injecting into a model in our experiments.

The attribute names are as follows: 2D Boxy, 3D Boxy, Round, Vert Cyl, Horiz Cyl,

Occluded, Tail, Beak, Head, Ear, Snout, Nose, Mouth, Hair, Face, Eye, Torso, Hand,

Arm, Leg, Foot/Shoe, Wing, Propeller, Jet engine, Window, Row Wind, Wheel, Door,

Headlight, Taillight, Side mirror, Exhaust, Pedal, Handlebars, Engine, Sail, Mast,

Text, Label, Furn. Leg, Furn. Back, Furn. Seat, Furn. Arm, Horn, Rein, Saddle, Leaf,

Flower, Stem/Trunk, Pot, Screen, Skin, Metal, Plastic, Wood, Cloth, Furry, Glass,

Feather, Wool, Clear, Shiny, Vegetation, Leather.
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Figure 4.2: Attribute class heatmap based on Pascal VOC dataset [4] and aPascal at-

tributes [16]. (a) Original attributes. Some attribute values are very high. (b) Attribute

values are ℓ2 normalized along with the feature matrix for all classes.

Attribute class heat map based on Pascal VOC dataset [4] class categories is shown

in Figure 4.2. As shown in Figure 4.2 (a), some attribute values are very high. This is

damaging to the network. Because of this reason, attribute values are ℓ2 normalized

along with the feature matrix for all classes for a better convergence of the network,

shown in Figure 4.2 (b). Ablation study of the attributes normalization is examined

in Section 7.1.2.

We examine aPascal attributes in detail by calculating the distance between cate-

gories. The most similar three categories are obtained with euclidean distance algo-

rithm. Most similar 3 categories for each Pascal VOC dataset [4] category are shown

in Table 4.1. As shown in the table, aeroplane category is similar to train, bus and

car; cat category is similar to dog, cow and horse, as expected.

We use ℓ2 normalized aPascal attributes for Pascal VOC dataset [4] experiments in

this thesis.
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4.3 GloVe

Pennington et al. [5] collect a bunch of vector representations for words, including

Wikipedia, Gigaword, Common Crawl and Twitter datasets. The name of the vector

representations is Global Vectors for Word Representation (GloVe). We get the values

of word representations features for COCO dataset [3] categories to obtain 80× 300

feature matrix.

Some classes from GloVe [5] does not exist in MSCOCO 2014 dataset [3]. We

changed class names in GloVe dataset [5] compatible with MSCOCO 2014 dataset

[3]. Class names mapping is given in Table 4.2.

We use ℓ2 normalized GloVe embeddings for MSCOCO dataset [3] experiments in

this thesis.

4.4 Google-News Word2vec

Word2vec can also be used as prior knowledge in weakly-supervised object detection.

Mikolov et al. [6] has introduced google-news-300 word2vec. This work uses Google

News corpus, containing 6B tokens for word2vec training. The higher the number of

data, the higher the accuracy, but the data was limited to the 30K most frequently

used words due to the high training time. An example word2vec of country-capital is

shown in Figure 4.3.

Pascal VOC dataset [4] category word representations were selected from google-

news-300 word2vec and created a 20 × 300 feature matrix. Some categories of the

Pascal VOC dataset [4] is not present in google-news-300 word2vec, so we made

a matching between dataset and word2vec categories. This matching is shown in

Table 4.3. This feature matrix will be injected into models as prior knowledge. To

obtain google-news-300 word2vec, gensim python package [137] was used, which is

specialized in NLP (Natural Language Processing) and topic modeling.

We used google-news-300 word2vec matrix for Pascal VOC dataset [4] experiments

in this thesis.
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Figure 4.3: An example of word2vec from countries to capitals projected by PCA.

For example vector(France)−vector(Paris)+vector(Ankara) will be very close

to vector(Turkey) if the model is well trained. This figure is taken from Mikolov et

al. [136].
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Table 4.1: Most similar 3 categories for each category of Pascal VOC dataset [4].

Same type categories are similar to each other. For example car category is similar to

bus, train and aeroplane categories.

Category Most Similar Categories

aeroplane train, bus, car

bicycle motorbike, car, aeroplane

bird dog, horse, cat

boat train, aeroplane, car

bottle tvmonitor, bus, pottedplant

bus car, train, aeroplane

car bus, train, motorbike

cat dog, cow, horse

chair sofa, diningtable, boat

cow dog, cat, horse

diningtable chair, boat, sofa

dog cat, cow, horse

horse dog, cat, cow

motorbike bicycle, car, bus

person dog, cat, sheep

pottedplant bottle, diningtable, boat

sheep dog, cat, horse

sofa chair, diningtable, boat

train bus, car, aeroplane

tvmonitor boat, bus, bottle
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Table 4.2: Class Names Mapping From MSCOCO [3] to GloVe [5] dataset. Some

classes from GloVe [5] does not exist in MSCOCO 2014 dataset [3].

Class Name of COCO 2014 [3] Class Name of GloVe [5]

sports ball basketball

baseball glove mitt

pottedplant plant

tennis racket racket

Table 4.3: Class Names Mapping From Pascal VOC [4] to google-news-300 [6].

Some classes from word representations does not exist in Pascal VOC dataset [4].

Class Name of Pascal VOC [4] Class Name of google-news-300 [6]

aeroplane plane

diningtable table

pottedplant plant

tvmonitor tv
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CHAPTER 5

WEAKLY-SUPERVISED OBJECT DETECTION FROM IMAGES USING

PRIOR KNOWLEDGE

5.1 Overview

Weakly-supervised object detection models learn from binary image-level labels that

represent whether an object instance of a specific class exists in an image or not.

It reduces data preparation efforts for object detection problems by learning through

image-level labels. Since collecting image-level labels without object locations (bound-

ing boxes) is much easier than collecting bounding box annotations, weakly-supervised

object detection methods are seen as more scalable than fully-supervised object de-

tection methods, at least in principle.

The most apparent challenge in WSOD is the tendency to focus more on the discrim-

inative areas than complete object instances. These challenges can be divided into

three categories: missing instance; grouped instance; and part domination, shown in

Figure 5.1. In this chapter, we explain our technical approaches towards improving

WSOD through prior knowledge.

5.2 Approach

This thesis aims to address the WSOD weaknesses using prior knowledge of object

classes based upon their textual descriptions, attributes and taxonomies. We take the

widely-used WSDDN [1] approach as our baseline network and study prior knowl-

edge guidance for WSOD on top of the WSDDN model.
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Figure 5.1: Main challenges in WSOD. Missing instance: Network does not con-

sider distant or less salient objects. Grouped instance: Network can group instances

belonging to the same category. Part domination: Network is more concerned with

the discriminative areas such as the cat’s face than its whole body. The figure is taken

from Ren et al. [70]

In the following sections, we first summarize the WSDDN approach and then explain

our WSDDN extension for introducing prior knowledge.

5.2.1 WSDDN (Weakly-Supervised Deep Detection Networks) [1]

In WSDDN, the weakly supervised detection task is divided into two sub-parts. The

first one is the classification branch that assigns each region to a class. As a result,

class scores (ϕc(x;R)) are computed for each region, and these scores are normalized

with softmax. Normalized scores for classification stream are denoted by σclass(x
c).

The second part is the detection branch that picks the most promising windows in

an image for each class. The probability distribution ϕd(x;R) is computed to com-

pare regions over classes and normalized with softmax scores. Normalized scores

for detection stream are denoted as σdet(x
d). Detection and recognition scores are
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combined with Hadamard (element-wise) product:

xR = σclass(x
c)⊙ σdet(x

d) (5.1)

After region scores xR are computed, the sum over regions is used to calculate image-

level scores:

yc =

|R|∑
r=1

xR
cr (5.2)

which results in a value within the range [0, 1]. By treating yc as the image-level

class probability and maximizing the log probability log yc, the WSOD model is then

trained in an end-to-end manner.

5.2.2 Proposed Method

With region proposal method SSW [51], bounding boxes bi ∈ N4 and the labels yi

are generated. The representation of each box bi is denoted by ϕ(bi) ∈ RD1 . The

corresponding semantic embeddings are denoted by wj ∈ RD2 . The goal is to embed

class attributes and image features in the same space.

For the region proposal method, we use Selective Search Windows (SSW) [51] and

Multiscale Combinatorial Grouping (MCG) [138] algorithms. aPascal [16] class at-

tributes are used for weakly-supervised object detection as prior knowledge. The

training dataset has only one-hot image-level annotation as ground truth information

in our setting.

We prepare class embeddings matrix (Wj ∈ RCxD2) where C is class (category) count,

D2 is feature vector size for class embeddings. We multiply class embeddings matrix

(wj) with σclass(x
c) ∈ RRxD2 for classification stream and multiply class embed-

dings matrix (Wj) with σdet(x
d) ∈ RRxD2 for detection stream. New dimensions of

σclass(x
c) and σdet(x

d) are R× C.

Final scores of each region are obtained by taking element-wise product of σclass(x
c)

and σdet(x
d). To get image-level scores, we sum the region scores xR with Equation

5.3.

45



Figure 5.2: Our proposed method architecture for WSDDN [1] method. ϕfc8c and

ϕfc8d denotes the last fully-connected layer for classification and detection branches

respectively. We change the ϕfc8c and ϕfc8d shape from 4096×20 to 4096×64, where

64 is the aPascal [16] attributes prior feature size. We apply a matrix multiplication

with xd and W , where W is the aPascal [16] attributes prior to obtain σdet and σclass

input.

yc =

|R|∑
r=1

xR
cr (5.3)

Our proposed method architecture is shown in Figure 5.2. ϕfc8c and ϕfc8d denotes the

last fully-connected layer for classification and detection branches respectively. We

change the ϕfc8c and ϕfc8d shape from 4096×20 to 4096×64, where 64 is the aPascal

[16] attributes prior feature size. We apply a matrix multiplication with xd and Wj ,

where Wj is the aPascal [16] attributes prior to obtain σdet and σclass input. σdet is the

softmax of output of fully connected layer xd. The shape of σdet is R × C, where R

is the region proposals size, and C is the class size.

5.3 Summary

This chapter presents a modified version of Weakly-Supervised Deep Detection Net-

work [1] architecture that incorporates prior knowledge in the form of class embed-

dings. The experiments are presented in Section 7.1.
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CHAPTER 6

WEAKLY-SUPERVISED SEMANTIC SEGMENTATION FROM IMAGES

USING PRIOR KNOWLEDGE

6.1 Overview

In various problems, bounding box predictions can be too coarse and producing pixel-

level predictions can be desired. Recent fully-semantic segmentation methods achieve

remarkable progress in computer vision. However, the state-of-the-art approaches

rely on pixel-level annotations for training. In this chapter, we present our efforts

towards leveraging existing prior knowledge to improve weakly supervised semantic

segmentation models.

6.2 Baseline Method

Weakly-supervised semantic segmentation methods have emerged to reduce the anno-

tation costs by enabling training with image-level labels. Most of the state-of-the-art

methods on weakly-supervised semantic segmentation use CAM (Class Activation

Maps) [42] based formulations over trained classification models to generate pseudo-

ground truth pixel proposals to train fully-supervised semantic segmentation models

such as DeepLab [14].

We use Puzzle-CAM [9] as the baseline method in our weakly-supervised semantic

segmentation experiments. Puzzle-CAM [9] method, similar to many other methods,

uses CAM (Class Activation Maps) [42] to generate ground truth pixel maps. These

pixel maps are then used as ground truth on fully-supervised semantic segmentation

models.
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Figure 6.1: Weakly-supervised semantic segmentation models tend to focus on dis-

criminative regions such as head of a cat instead of the whole body. Objects with a

head such as person, cat, dog have this problem more because head is the most dis-

criminative region to classify from other categories. The figure is taken from Kim et

al. [139]

A main challenge in weakly-supervised segmentation is handling the tendency to

focus only on discriminative regions in images, such as the head of a bird instead of

the whole body. A typical problem is shown in Figure 6.1. To address this problem,

Puzzle-CAM splits the image into multiple tiles and computes CAMs for each tile.

The tile CAMs are then merged into a single CAM map. A second global CAM

map is also generated from the original input image. The network of Puzzle-CAM

[9] uses reconstruction loss (Lre) between merged CAM and original CAM to reduce

the dissimilarity using self-supervision. L1 loss is used for reconstruction loss. An

example of CAM generation from the original image and tiled images are shown in

Figure 6.2.

Notations of the Puzzle-CAM [9] method is as follows: In our summary of Puzzle-

CAM, we use the following notation: I denotes the input image. F denotes the

feature representation given by a ConvNet, e.g., ResNet-50 [53]. G() is the Global
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Figure 6.2: An example of Puzzle-CAM method CAM generation. (a) CAM is gen-

erated from the original image. CAM outputs do not cover the objects in the image.

(b) CAMs are generated from tiled images and then merged into a single CAM. (c)

Puzzle-CAM model CAM prediction. The figure is taken from Jo et al. [9].

Average Pooling (GAP) layer. θ is the classifier to be trained. Ac is CAM for class c.

Ac = θTc f. (6.1)

A is the concatenated CAM of class CAMs Ac. As is the CAM of the original image.

Are is the CAM of the tiled images. Y denotes one-hot encoded ground truth vector

from image-level annotations. Ŷ is the class prediction vector, given by sigmoid of

CAM for all classes. Ŷt is Ŷ for positive classes, 1 − Ŷ for negative classes, as also

shown in Equation 6.5. Ŷ s is the prediction vector for original (As) CAM using GAP

layer, as shown in Equation 6.2.

Ŷ s = G(As) (6.2)

Ŷ re is the prediction vector for tiled (Are) CAM using GAP layer, as shown in Equa-

tion 6.3.

Ŷ re = G(Are) (6.3)

Lre is the reconstruction loss between merged CAM from tiled images and CAM

from the original image, where ℓ1 loss is used. Lcls is the classification loss of the
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original image, where multilabel soft margin loss is used. Lp−cls is the classification

loss of the merged images, where again multilabel soft margin loss is used.

Input image (I) is fed into feature extractor F () to generate feature map using equa-

tion 6.4.

f = F (I). (6.4)

The CAM of a category c is generated by applying the weights of classifier θ to feature

map of a class. Concatenation of class CAMs (Ac) is final CAM (A).

Ŷt is used on loss calculations, which is a manipulation of Ŷ such that returns Ŷ for

positive classes and 1 − Ŷ for negative classes, shown in Equation 6.5. Multi-label

soft margin loss is used as classification loss shown in Equation 6.6.

Ŷt =

 Ŷ , if Y = 1

1− Ŷ , otherwise
(6.5)

ℓcls(Ŷ , Y ) = − log (Yt). (6.6)

The classification loss of the original image and merged from tiled images are calcu-

lated as Equation 6.7 and Equation 6.8 respectively.

Lcls = ℓcls(Ŷ
s, Y ) (6.7)

Lp−cls = ℓcls(Ŷ
re, Y ) (6.8)

Reconstruction loss (L1) between merged CAM from tiled images and CAM from the

original image is shown in Equation 6.9. This loss aims to reduce the dissimilarity

between reconstruction CAM and original CAM.

Lre = ∥As − Are∥1 (6.9)
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The final loss of Puzzle-CAM [9] is shown in Equation 6.10. To change the weight

of reconstruction loss (Lre), α is used.

L = Lcls + Lp−cls + αLre (6.10)

Puzzle-CAM [9] architecture is shown in 2.16.

6.3 Proposed Method

We propose adding prior knowledge as class attributes (aPascal [16]) into the classi-

fication network (θ) to increase the quality of the pixel maps.

The baseline classifier uses ResNest [140] architecture as backbone for feature ex-

traction from images. The features are then feed into 1 × 1 convolutional layer with

2048 input channels and 20 output channels (category size). The convolution layer

output is fed into global average pooling (GAP) to get 1×20 logits. The output logits

are used for classification loss with ground truth image labels.

We change the 1× 1 convolutional layer with our proposed EmbedClassifier module

which contains a 1 × 1 convolutional adaptation layer with 20 input channels (cate-

gory size) and 64 output channels (attributes size) for aPascal [16] attributes as prior

knowledge. The adaptation layer values are filled with kaiming normal initialization

[141]. aPascal [16] attributes matrix is used as the weight of the 1× 1 convolutional

adaptation layer. aPascal [16] attribute gradients are fixed which is not changed dur-

ing training the model.

6.4 Summary

Fully-supervised semantic segmentation models, such as [12, 30, 11], have gained

important success in computer vision. However, to train a fully-supervised seman-

tic segmentation model, a carefully annotated training dataset is needed. Annotating

every pixel in an image is a long and tedious operation. Weakly-supervised segmen-

tation models are trained with only image-level labels, which are easy to collect and
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annotate compared to pixel labels. However, weakly-supervised semantic segmenta-

tion models tend to focus on discriminative regions of the objects, such as a dog’s

head, because of the lack of information about categories. To solve this problem, we

propose to inject class attributes as prior knowledge into the classification network.

The experimental results are presented and discussed in Section 7.2.
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CHAPTER 7

EXPERIMENTS

This chapter includes detailed experiments and ablation studies for weakly-supervised

object detection in Section 7.1 and weakly-supervised semantic segmentation in Sec-

tion 7.2 for Pascal VOC dataset [4] and COCO 2014 dataset [3].

7.1 Weakly-supervised Object Detection From Images Using Prior Knowledge

Our approach on weakly-supervised object detection using prior knowledge is ex-

plained in Section 5.2.2. We make several experiments and ablation studies using the

proposed approach on Pascal VOC dataset [4] and COCO 2014 dataset [3] in section

7.1.1 and 7.1.2, respectively.

7.1.1 Experiments

There is still a considerable gap between fully-supervised and weakly-supervised ob-

ject detection results. This can be observed from the state-of-the-art fully supervised

and weakly supervised object detection method results for the Pascal VOC 2007 [4]

dataset shown in Table 7.1.

We start evaluation with PASCAL VOC 2007 [4] dataset and continue with MSCOCO

2014 [3] dataset during experiments. Mean Average Precision (mAP) metric is used

as the performance measure. PyTorch [148] framework is used for development. An

NVidia RTX2060 GPU is used for all the experiments.

We evaluate our model using the PASCAL VOC 2007 [4] dataset. PASCAL VOC
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Table 7.1: State-of-the-art object detection method AP50 results on Pascal VOC 2007

[4] validation dataset. The first two rows show the fully-supervised object detection

results, and the rest rows show the weakly-supervised object detection results. SSW:

Selective Search Windows. EB: Edge Boxes. RPN: Region Proposal Network.

Method Proposal mAP (0.50)

Fast R-CNN [23] SSW 0.669

Faster R-CNN [24] RPN 0.699

WSDDN [1] (Baseline) EB 0.348

OICR [10] SSW 0.412

PCL [7] (Baseline) SSW 0.435

SDCN [142] SSW 0.502

C-MIL [143] SSW 0.505

Yang et al. [144] SSW 0.515

C-MIDN [145] SSW 0.526

Pred Net [146] SSW 0.529

WSOD2 [147] SSW 0.536

Ren et al. [70] SSW 0.549

2007 [4] dataset has 20 classes. Most of the Weakly-Supervised Object Detection

(WSOD) methods [142, 90, 1] evaluate their results with the PASCAL VOC dataset

[4]. We compare our result with WSDDN [1] model, which is our baseline.

For the region proposal method, Selective Search Windows (SSW) [51] is used. Re-

gion proposals are not computed during training and test instead, pre-computed Se-

lective Search Windows (SSW) [51] region proposals are used. For the embedding

model, aPascal [16] class attributes are used.

There are 20 classes in PASCAL VOC 2007 [4] dataset. We prepare the class em-

beddings matrix (wj ∈ RCxD2) where C is 20, D2 is 64 for PASCAL VOC 2007 [4]

dataset with aPascal [16] attributes. aPascal [16] attributes’ feature dimension is 64

for all classes. We multiply class embeddings matrix (wj) with σclass(x
c) ∈ RRxD2

for classification stream and multiply class embeddings matrix (wj) with σdet(x
d) ∈

RRxD2 . New dimensions of σclass(x
c) and σdet(x

d) is RxC. We use Adam [149] op-
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Table 7.2: PASCAL VOC 2007 [4] evaluation results for WSDDN [1] and our pro-

posed method. Mean Average Precision (mAP) metric with 0.5 IoU is used.

Method mAP (0.50)

Base Network - w/o embedding [1] 0.3357

Ours - with embedding 0.3868

timizer with learning rate as 1e−5 and momentum as 0.9 and weight decay as 5e−4.

We use AlexNet [99] as backbone and initialize the model with pre-trained weights

on ImageNet [99]. Firstly, we evaluate the result with WSDDN [1] model without

embeddings. Secondly, we add embeddings to the WSDDN model. The results show

that, without embedding, model can converge up to 33%, but when we add embed-

ding to the model, model can converge up to the 38% mAP with 140000 iterations.

The results are given in Table 7.2.

We also try an experiment for zero-shot object detection with the aPascal [16] embed-

ding model. PASCAL VOC 2007 [4] dataset is used for this experiment. We select

the aeroplane class as a target category. The rest of the PASCAL VOC 2007 dataset

classes are selected as source categories. There is no supervision for aeroplane class,

including image-level labels. For the 19 source classes, image-level annotations are

used as ground truth. aPascal [16] attributes are used for source and target classes in

this experiment. The results show that with only class embeddings for target classes

and with only class-level labels for source classes, average precision (AP) of the target

category (aeroplane) increases up to 8% with 100000 iterations.

We evaluate our model with challenging MSCOCO 2014 [3] dataset. MSCOCO 2014

[3] dataset has 80 classes. MSCOCO 2014 [3] dataset is challenging because 41%

of the dataset contains small (area <322) objects. As the region proposal method,

the Multiscale Combinatorial Grouping (MCG) [138] method is selected because

MCG tends to yield better results than Selective Search Windows (SSW) [51] on the

MSCOCO [3] dataset. Pre-computed MCG proposals are used. As the embedding

model, Global Vectors for Word Representation (GloVe) [5] is used. Some classes

from GloVe do not exist in MSCOCO 2014 dataset. We change class names in GloVe

[5] dataset compatible with MSCOCO 2014 [3] dataset. Class names mapping is
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Table 7.3: Class Names Mapping From MSCOCO [3] to GloVe [5] dataset. Some

classes from GloVe does not exist in MSCOCO 2014 dataset.

Class Names of COCO 2014 [3] Class Names of GloVe [5]

sports ball basketball

baseball glove mitt

potted plant plant

tennis racket racket

Table 7.4: COCO 2014 [3] evaluation results for WSDDN [1] and our proposed

method. Mean Average Precision (mAP) metric with 0.5 IoU is used.

Method mAP (0.50)

Base Network - w/o embedding [1] 0.011

Ours - with embedding 0.12

given in Table 7.3.

We first evaluate the baseline WSDDN [1] model without embedding. Second, we

add our embeddings into the WSDDN model. The results are given in Table 7.4.

These results suggest that, without embedding, model can not converge, but when we

add embedding to the model, model can converge up to the 12% mAP with 260000

iterations.

Correct detection results are shown in Figure 7.1. Results are computed with our

proposed model on PASCAL VOC 2007 [4] test set. aPascal [16] class attributes are

normalized. Best mean average precision (mAP) is 38%. False detection results are

shown in Figure 7.2.

We now change our baseline model with PCL (Proposal Cluster Learning) [7] to

inject prior knowledge. PCL [7] model is also using WSDDN [1] architecture as the

baseline, explained in detail in section 2.1.2. Pascal VOC 2007 dataset [4] and SSW

(Selective search windows) [51] are used for training. We train the baseline network

(PCL) with the Pascal VOC 2007 dataset [4] and get 0.480 mAP score, shown in
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Figure 7.1: Examples of correct detection results with our model. Detection results

are based on PASCAL VOC 2007 [4] dataset. aPascal [16] attributes are used and L2

normalized.

Table 7.5.

We inject the aPascal [16] attributes as prior into every refinement layer for classifica-

tion and detection branches. We first train the PCL [7] model with only aPascal [16]

attributes as prior but does not pass the baseline score. Then, we concatenate aPascal

[16] attributes with Google-News word2vec and train the model for a better evalua-

tion score than the baseline. The impact of the aPascal [16] attributes and word2vec

is shown in Table 7.5.

We train the baseline network (PCL [7]) with COCO 2014 dataset [3] and get 0.2107

AP50 score. We inject GloVe [5] prior into every refinement layer for classification

and detection branches for the PCL [7] model. The comparison of the AP50 scores

of baseline and our proposed method is shown in Table 7.6.

We compare the number of parameters for the baseline method and the proposed
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Figure 7.2: Examples of false detection results with our model. Detection results are

based on PASCAL VOC 2007 [4] dataset. aPascal [16] attributes are used and L2

normalized.

method in Table 7.7. The results show that the difference in the number of parameters

between the proposed method and the baseline method is negligible.

7.1.2 Ablation Study

aPascal [16] class attributes are L2 normalized to increase model performance and

stability. aPascal [16] class attributes matrix is denoted as wj ∈ RCxD2 where C is

20, D2 is 64 for PASCAL VOC 2007 [4] dataset.

Class embeddings are L2 normalized along the feature dimensions for all classes.

Norm vector (|wj| ∈ RCxD2) of the feature vector is calculated via Equation 7.1.
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Table 7.5: Pascal VOC 2007 [4] evaluation results with PCL [7] baseline method. We

inject only aPascal [16] attributes and only Google-news word2vec as prior into the

model and does not pass the baseline score. We concatenate aPascal [16] and Google-

news word2vec and inject into the model and pass the baseline score. Mean Average

Precision (mAP) metric with 0.5 IoU is used.

Method aPascal [16] Google-news word2vec mAP

PCL [7] (Baseline) 0.480

Ours ✓ 0.404

Ours ✓ 0.471

Ours ✓ ✓ 0.481

Table 7.6: COCO 2014 dataset [3] evaluation results with PCL [7] baseline method.

We inject GloVe [5] as prior into the model. Mean Average Precision (mAP) metric

with 0.5 IoU is used.

Method AP50

PCL [7] (Baseline) 0.210

Ours 0.218

Normalized class embeddings are obtained by dividing the feature vector by the norm

vector in Equation 7.2.

|wj| =
D2∑
i

√
(wji)2 (7.1)

wj =
wj

|wj|
(7.2)

First of all, we train our model with unnormalized class embeddings. Then, we L2

normalize class embeddings to compare the results. Results are shown in Table 7.8.

Normalizing aPascal [16] class attributes improves the model performance.
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Table 7.7: Comparison of the number of parameters between baseline and our pro-

posed method. We inject aPascal [16] attributes to WSDDN [1] and PCL [7] models

and show the number of parameters.

Method Backbone Baseline Inject Prior (Proposed Method)

WSDDN [1] VGG16 138,521,424 138,881,960

PCL [7] VGG16 135,112,720 136,177,940

Table 7.8: PASCAL VOC 2007 [4] evaluation results with normalization. Mean Av-

erage Precision (mAP) metric with 0.5 IoU is used. The results are compared with

normalized embeddings factor. Normalizing aPascal [16] class attributes improves

the model performance.

Method mAP (0.50)

Embeddings Not Normalized 0.375

Embeddings Normalized 0.386

7.2 Weakly-supervised Semantic Segmentation From Images Using Prior Knowl-

edge

Our approach on weakly-supervised semantic segmentation using prior knowledge is

explained in Section 6.3. We make several experiments and ablation studies on Pascal

VOC dataset [4] in section 7.2.1 and 7.2.2, respectively, to investigate the proposed

approach.

7.2.1 Experiments

There is still a considerable gap between fully-supervised and weakly-supervised se-

mantic segmentation results. State-of-the-art semantic segmentation method results,

with fully or weakly supervised training, on Pascal VOC 2012 [8] dataset are shown

in Table 7.9. The differences highlight the performance gap.

We evaluate our proposed method with Pascal VOC 2012 [8] dataset. We follow the
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Table 7.9: State-of-the-art semantic segmentation mIoU results on Pascal VOC 2012

[8] validation dataset. The first two rows show the fully-supervised semantic seg-

mentation results, and the following rows show the weakly-supervised semantic seg-

mentation results. P : Pixel-level labels. I: Image-level labels. S: External saliency

methods.

Method Backbone Supervision mIoU

DFN [150] ResNet-101 P 80.60

ExFuse [151] ResNeXt-131 P 85.8

DSRG [46] ResNet-101 I + S 61.4

AffinityNet [43] Wide-ResNet-38 I 61.7

SeeNet [45] ResNet-101 I + S 63.1

IRNet [43] ResNet-50 I 63.5

ICD [152] ResNet-101 I 64.1

SEAM [15] Wide-ResNet-38 I 64.5

FickleNet [44] ResNet-101 I + S 64.9

Puzzle-CAM [9] (Baseline) ResNeSt-101 I 66.9

same dataset images and annotations with Puzzle-CAM [9] method. Mean Intersec-

tion over Union (mIoU) is used as a performance metric. Details of the datasets and

metrics are examined in Chapter 3. PyTorch [148] deep learning framework is used

for development. We use an NVidia Tesla A100 GPU in all experiments.

We use aPascal [16] class attributes as prior for the classification network. We apply

L2 normalization to aPascal [16] class attributes before training. Details of aPascal

[16] attributes are examined in section 4.2.

We first reproduce Puzzle-CAM [9] results by training ResNeSt-101 [140] backbone.

Jo et al. [9] achieve 66.9 mIoU on Pascal VOC 2012 [8] validation dataset using

ResNeSt-101 [140] backbone. We train with the same settings and achieve 65.4 mIoU

on Pascal VOC 2012 [8] validation dataset using ResNeSt-101 [140] backbone. As a

baseline result, 65.4 mIoU is used on the experiments.

We train the classification network with L2 normalized aPascal [16] class attributes.
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Table 7.10: PASCAL VOC 2012 [8] evaluation results with Puzzle-CAM [9] base-

line method. Mean Intersection over Union (mIoU) metric is used. Our proposed

method increases the mIoU score compared to the baseline method. We concate-

nate the identity matrix of categories to aPascal [16] class attributes (concat identity),

which increases the feature size from 64 to 84. Zero values are replaced with -0.1 on

aPascal [16] class attributes (zeros replaced with -0.1).

Method Backbone mIoU

Baseline (Puzzle-CAM [9]) ResNeSt-101 65.478

Ours (concat identity) ResNeSt-101 65.880

Ours (zeros replaced with -0.1) ResNeSt-101 66.887

Figure 7.3: Semantic segmentation results from Pascal VOC dataset [8] example im-

ages. (a) Original image. (b) Ground truth segmentation maps. (c) Baseline (Puzzle-

CAM [9]) model prediction. (d) Our proposed method model prediction. The original

images (a) are taken from Pascal VOC 2012 Dataset [8].

This training does not improve the mIoU score any further. Then, we replace zeros

with -0.1 on aPascal [16] class attributes and train the classification network. We

also concatenate category identity matrix (20× 20) with aPascal [16] class attributes

(20 × 64) to create final (20 × 84) attributes and train the classification network.

Our proposed method increases the mIoU score after both the zeros replacement and

concatenated identity matrix, shown in Table 7.10.

Semantic segmentation results from example images are shown in Figure 7.3.

We compare our method with the baseline method on category scores. Category based

IoUs are compared in Table 7.11. Our proposed method increases the IoU score for

some categories such as aeroplane, bird, boat, bus, sheep and mIoU score. However,

62



Table 7.11: Class-based comparison of PASCAL VOC 2012 [8] dataset. Class-based

scores are compared with the baseline method (Puzzle-CAM [9]). Intersection over

Union (IoU) metric is used for categories. Our proposed method increases the IoU

score compared to the baseline method for some categories. For example, bird IoU is

increased from 81.43 to 89.32 with our proposed method.

Method
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Baseline 87.20 79.53 33.58 81.43 44.40 73.46 84.77 80.05 90.93 24.77 87.94 44.40 88.20 82.42 75.17 37.74 57.35 83.59 41.56 51.32 45.12 65.47

Ours 87.64 81.76 32.48 89.31 64.76 70.86 86.44 75.80 87.37 31.04 85.55 48.57 81.75 80.53 73.33 22.51 54.80 86.75 38.05 61.81 63.42 66.88

Table 7.12: Comparison of the number of parameters between baseline and our pro-

posed method. We inject aPascal [16] attributes to Puzzle-CAM [9] model and show

the number of parameters.

Method Backbone Baseline Inject Prior (Proposed Method)

Puzzle-CAM [9] ResneSt101 25,475,200 25,565,376

some category IoU scores are decreased, such as dog, sofa, bottle, person. There is

room for improvement in our proposed method.

We generate a confusion matrix for categories to understand which category is pre-

dicted as which category. We compare all the pixel categories with the ground truth

and count the values. Person class is generally predicted as background in both the

baseline and proposed methods. The confusion matrix for the Pascal VOC dataset

[8] categories comparison is shown in Figure 7.4. Since all pixels categories for the

images are almost background class, background-background confusion value is set

to zero for a better plot.

We compare the number of parameters used in the baseline and the proposed method

in Table 7.12. The results show that the difference in the number of parameters be-

tween the two methods is negligible.

63



Table 7.13: PASCAL VOC 2012 [8] evaluation results for zeros replacements. Mean

Intersection over Union (mIoU) metric is used. Our proposed method increases the

mIoU score compared to the baseline method when we replace zeros with -0.5 in

aPascal [16] attributes. When we replace zeros with -0.5 in aPascal [16] attributes,

the mIoU is decreased.

Method Backbone mIoU

Baseline (Puzzle-CAM [9]) ResNeSt-101 65.478

Ours (zeros replaced with -0.1) ResNeSt-101 66.887

Ours (zeros replaced with -0.5) ResNeSt-101 17.483

7.2.2 Ablation Study

We replace the zeros in aPascal [16] attributes with -0.1 for a better convergence of

the model. The results are shown in Table 7.10. This method improves the mIoU

result. We replace the zeros in aPascal [16] attributes with -0.5 and the result is

not promising. The comparison of the zeros replacements is shown in Table 7.13.

Replacement with -0.5 does not give a promising result because we normalize the

aPascal [16] attributes with L2 and the network does not update the aPascal [16]

gradients, so the network may not converge with high attribute values.

7.3 Summary

In this chapter, we make several experiments for weakly-supervised object detec-

tion and weakly-supervised semantic segmentation using Pascal VOC dataset [4] and

COCO 2014 dataset [3]. We inject aPascal [16] attributes, Google-news word2vec

and GloVe [5] as prior knowledge into network.

We have obtained clear evidence that our proposed method increases the mean av-

erage precision (mAP) metric for weakly-supervised object detection using prior

knowledge. We also conduct experiments for zero-shot detection and get 8% mAP

on PASCAL VOC 2007 dataset [4] for the aeroplane class. The results for weakly-

supervised semantic segmentation show that our proposed method increases the mIoU
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score compared to the baseline method, i.e., Puzzle-CAM [9].
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Figure 7.4: Confusion matrix for Pascal VOC dataset [8] categories. (a) Confusion

matrix for baseline method (Puzzle-CAM [9]). (b) Confusion matrix for our proposed

method. Background-background confusion value is set to zero. Person class is gen-

erally predicted as background in both the baseline and proposed methods.
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CHAPTER 8

CONCLUSION

Fully-supervised object detection and semantic segmentation methods on computer

vision gained tremendous success in recent years. Training fully-supervised models

require fully annotated datasets. Annotating a dataset is a labor-intensive and tedious

task that humans do. For one instance, annotating pixels takes 78 seconds per image

[32]. Weakly-supervised methods solve this annotation problem by training models

with only weak labels such as image-level, points and scribbles annotations. How-

ever, weakly-supervised model predictions tend to focus on discriminative regions of

the objects, such as a head of a bird, which suggests that pure image-level label-based

training can be insufficient for accurate training. We propose to add prior knowledge

about object categories such as attributes (has hair, is plastic) into the model to reduce

the shortcomings of weak annotations. We evaluate our proposed method on object

detection models with Pascal VOC 2007 [4] and COCO 2014 [3] datasets and seman-

tic segmentation models with Pascal VOC 2012 [8] dataset. Experiments show that

our proposed method increases the baseline scores of weakly-supervised object detec-

tion and semantic segmentation models, with large improvements in various classes.
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