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ABSTRACT

COMPUTATIONAL MODELING OF FRONTAL POLYMERIZATION

Kaya, Koray

M.S., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Serdar Göktepe

February 2022, 112 pages

Polymer-based composites are widely applied in high-tech areas such as aerospace,

automotive, marine, and energy industries where high performance under extreme

conditions is crucial. However, the traditional methods used to manufacture poly-

meric materials are energy-inefficient, time-consuming, complex, and costly pro-

cesses. Frontal polymerization, an alternative curing method, is based on a self-

propagating, self-sustained exothermic reaction front that transforms liquid monomers

into cured polymers where the disadvantages of traditional polymerization techniques

are minimized. Furthermore, frontal polymerization opens up new possibilities for

many new manufacturing concepts such as on-demand manufacturing, on-site, shape-

less production, 3-D printing, and resin-infusion. Despite the intensive studies on the

chemothermal aspects of frontal polymerization, the impact of the chemical shrink-

age, the sharp temperature gradients, the temperature distribution, and the front ve-

locity on the mechanical behavior of frontally produced polymers, especially on the

development of the stress accumulations, remains unexamined to a great extent. This

thesis, therefore, aims to develop novel constitutive models furnished with robust

computational tools to describe the coupled process of frontal polymerization and the

behavior of polymeric materials produced by frontal polymerization. To this end, the
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thermodynamically consistent incremental framework of finite elasticity coupled with

the inherent chemothermal fields is developed. In turn, this multi-field coupling al-

lows us to calculate the accumulated stresses due to the chemically induced shrinkage

and thermal expansion. Undoubtedly, the quantitative prediction of stress accumula-

tions is of key importance to optimize the process of frontal polymerization towards

the production of mechanically stronger and tougher polymer composites.

Keywords: Frontal Polymerization, Chemo-Thermo-Mechanical Model, Computa-

tional Modeling, Stress Accumulations
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ÖZ

CEPHESEL POLİMERLEŞMENİN HESAPLAMALI MODELLENMESİ

Kaya, Koray

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Serdar Göktepe

Şubat 2022 , 112 sayfa

Polimer bazlı kompozitler zorlu koşullar altında yüksek performansın çok önemli ol-

duğu havacılık, otomotiv, denizcilik ve enerji endüstrileri gibi yüksek teknolojili alan-

larında yaygın olarak kullanılmaktadır. Öte yandan polimerik malzemeleri üretmek

için kullanılan geleneksel yöntemler, enerji açısından verimsiz, zaman alıcı, karmaşık

ve maliyetli tekniklerdir. Alternatif bir kürleme yöntemi olan cephesel polimerleşme,

sıvı monomerleri polimerlere dönüştürürken geleneksel polimerleşme yöntemlerinin

dezavantajlarını en aza indiren, reaksiyon cephesinin kendi kendine ilerleyip, kendi

kendine devam eden ekzotermik tepkimeyi temel alan bir yöntemdir. Buna ek ola-

rak, cephesel polimerleşme, talebe bağlı üretim, yerinde üretim, kalıpsız üretim, 3B

baskı ve reçine infüzyonu gibi birçok yeni üretim yöntem olanakları sunmaktadır.

Cephesel polimerizasyonun kemotermal yönleri üzerine yapılan yoğun çalışmalara

rağmen, kimyasal büzülmenin, keskin sıcaklık gradyanlarının, sıcaklık dağılımının

ve tepkime cephesinin hızının üretilen polimerlerin mekanik davranışı özellikle de

gerilme birikimlerinin oluşumu üzerine etkisi hala büyük ölçüde incelenmemiştir. Bu-

radan hareketle bu tez çalışması polimerleşmenin bağlaşık sürecini ve bu yöntem ile

üretilen polimerik malzemelerin davranışını açıklamak için sağlam hesaplama araç-
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ları ile donanmış yeni bünye denklemleri geliştirmeyi amaçlamaktadır. Bu amaçla,

polimerleşmenin doğası gereği var olan kemotermal reaksiyonlar ile birleştirilmiş,

artımlı çerçevede, termodinamik olarak tutarlı doğrusal olmayan elastik bir model

geliştirilmiştir. Buna karşılık, bu çok alanlı bağlaşıklık kimyasal büzülme ve ısıl gen-

leşme nedeniyle oluşan birikmiş gerilmeleri hesaplanmasına olanak sağlamaktadır.

Kuşkusuz, mekanik olarak daha güçlü ve daha sağlam polimer kompozitlerin üreti-

mini sağlayan cephesel polimerleşme işlemini eniyilemek için bu gerilmelerin nicel

kestirimi kilit öneme sahiptir.

Anahtar Kelimeler: Cephesel Polimerizasyon, Kemo-Termo-Mekanik Model, Hesap-

lamalı Modelleme, Gerilme Birikimleri
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives of Study

The frontal polymerization technique offers a cheaper, faster, and energy-efficient op-

tion for polymer-composite industries through a highly localized and self-propagating

exothermic reaction zone where monomers polymerize into macromolecules [1].

Figure 1.1: The examples of the polymer frontally cured [1]

Polymer-based composites are widely applied materials in many industries thereby

allowing engineers to build strikingly impressive structures that were once unimagin-

able. For instance, SpaceX® has recently demonstrated the largest carbon fiber rein-

forced polymer fuel tank that has ever been manufactured for spacecraft. These mate-

rials offer new opportunities to keep the weight down while maintaining the strength

at a level adequate to resist the internal pressure. It is an extremely challenging task

to build a spaceship of this huge size. One of the challenges building such a giant

structure monolithically made up of polymer-composite through traditional methods

is that there exist no sufficiently big autoclave in the world to fit the tank spacecraft to

attain the best quality of production. Hence, frontal polymerization is a breakthrough

solution for these types of production owing to the self-sustained, self-propagating

fast front driven by the exothermic reaction of polymerization.
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It is now well-known that the climate change and environmental problems are among

the most important challenges in the world. The main reason for these problems is

the industrial processes [1]. For example, the curing of a small section of carbon

fiber fuselage of the Boeing 787® requires about 350 giga Joules during an eight-hour

cure cycle. Furthermore, it produces more than 80 tons of carbon dioxide. However,

these materials can be produced with less energy, less cost, and reduced environmen-

tal impact using frontal polymerization. Also, according to Sottos and co-workers

[4], the energy savings of polymer produced through frontal polymerization is up to

10 orders of magnitude as compared with the traditinal techniques of polymerization.

Moreover, the resulting polymer composites have similar mechanical properties to

those produced conventionally. Thus, these materials are practically widely applica-

ble to various industries such as aerospace, automotive, energy to mention a few.

The frontal polymerization technique is based on useful autocatalytic reaction that

rapidly transforms monomer to polymer upon a small thermal initiator [5]. Thus,

there are possible advantages of using the frontal polymerization technique over the

conventional methods of polymerization. The major ones being the speed at which

a sample can be cured, the avoidance of autoclave and charring from thermal run

away. However, there are some limitations associated with frontal polymerization.

The limited pot life of the system is one of the principal issues. In addition, only the

chemical, thermomechanical, and front propagation properties of the frontal poly-

merization technique have been studied until now. For example, Goli et al. [3]

have studied the frontal polymerization of neat resins analytically and Goldfeder and

Volpert [6] have estimated the rate of conversion of monomer and front velocity in

an adiabatic system. However, there are several missing aspects in the literature re-

garding frontal polymerization. The development of a constitutive model accounting

for chemo-thermo-mechanical coupling throughout the continuous curing process for

frontally polymerized material is probably one of the most important and challenging

aspects remained unstudied in the literature.

This thesis work, therefore, aims to develop novel constitutive models furnished with

robust computational tools to describe the process of frontal polymerization and the

behavior of polymeric materials produced by frontal polymerization. To this end, the

incremental models of finite elasticity coupled with the inherent thermal and chemical
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effects for the frontally polymerized materials are proposed. To our best knowledge,

this is the first study where the coupled chemo-thermo-mechanical aspects of frontal

polymerization are accounted for an aging (phase changing: monomer to polymer)

material in the thermodynamically consistent framework and incremental setting. In

turn, this multi-field coupling allows us to predict the accumulation of stresses due

to the chemically induced shrinkage and thermal volume changes. Undoubtedly, the

quantitative prediction of these stress accumulations of key importance to optimize

the process of frontal polymerization towards the production of mechanically stronger

and tougher polymer composites.

1.2 Polymerization and Manufacturing Techniques

Before we overview the literature on the experimental and analytical studies on frontal

polymerization, it is worth summarizing the basic techniques of polymerization [7].

There are four different main techniques of polymerization. These conventional meth-

ods are commonly used for commercial production as summarized below.

Figure 1.2: Polymerization technique schematic [2]

• Bulk Polymerization. It is a simple and homogeneous reaction system used

to obtain the polymer. The reaction of polymerization is initiated by heating
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monomer or exposing it to a light source. When the ingredients in the solution

is further polymerized, the viscosity of the final product increases and mixing

operation becomes a very difficult process. The product obtained from this

polymerization type is called the pure polymer.

The advantages of bulk polymerization:

- It is simple technique.

- The final product is pure.

- It will be used for large casting directly.

- The distribution of molecular weight can be changed with the help of a chain

transfer agent.

The disadvantages of bulk polymerization:

- The broad molecular weight distribution in the polymer product is obtained.

- The diffusion of a growing polymer chain is limited.

- The termination gets difficult due to the less amount of collisions.

- The uncontrolled exothermic reaction due to the increase of the rate of poly-

merization and active radical accumulation lead to eruption.

• Solution Polymerization. The monomer polymerizes in a suitable inert solvent

with the chain transfer agents. Unlike the solvent medium, the free radical

initiator can be suspended or dissolved for an ionic and coordination catalyst.

The advantages of the solution polymerization:

- It enables to temperature control thanks to facilitating heat transfer of poly-

merization.

- The removal of polymer from the reactor is easily done by solvent.

- It enables to easy stirring by decrasing viscosity of mixture.

The disadvantages of the solution polymerization:

-It is very challenging to obtain products with the high molecular weight.
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-The complete solvent removal and isolation from the solution by evaporation

and precipitation is extremely difficult.

• Suspension Polymerization. Unlike the bulk polymerization, suspension poly-

merization controls the enormous amount of heat release. Only water insoluble

monomers are suitable for this technique. The suspended monomer is in the

form of fine droplets in water and surface active agents. These are fixed and

prevented from combining with suitable water soluble protective colloids. Ag-

itators are employed in the aqueous phase to maintain a droplet size and dis-

persion. Heat is transferred between the droplets and water, which has huge

amount of heat capacity and low viscous property. Isolation of the materials is

easy.

The advantages of suspension polymerization:

- It is cheaper method due to involving only water.

- The change in the viscosity is minor so it is unimportant.

- Similar to solution polymerization, temperature control is easy for this tech-

nique.

- The final product can be separated and purified.

The drawbacks of suspension polymerization:

- It cannot be used for polymers whose polymerization temperature is greater

than glass transition temperature.

- Agitation sensitivity is very high.

- It is difficult to determine polymer size.

• Emulsion Polymerization. The monomer is spread in an aqueous phase as fine

droplets which are then emulsified by surface active agents, protective colloids

and also by certain buffers in emulsion polymerization. The initiators should be

water soluble. The surfactants are used in order to reduce the surface tension

at interface between monomer and water and facilitate emulsification of the

monomer. When the monomer is added to system and provoked, emulsification

starts. Emulsion systems use a water soluble initiators such as persulfate or

hydrogen peroxide. It is the most widely used industrial technique.
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The advantages of emulsion polymerization:

- It creates high molecular weight polymers.

- It has very fast polymerization rate.

- The heat is easily removed from system.

The shortcomings of emulsion polymerization:

- Additional cleanup and purification may be required for polymer.

- It is difficult to remove entrenched coagulants, emulsifiers, surfactants.

1.3 Literature Review

Although frontal polymerization is an active area of research in the self-autonomous

material literature, the pioneering studies on frontal polymerization can be traced

back to 1970s. Frontal polymerization was first discovered in Russia by Chechilo

and Enikolopyan from the Institute of Chemical Physics and the Branch of the Insti-

tute of Chemical Physics of the Soviet Union Academy of Sciences in 1972, see [8].

They have studied the frontal polymerization of poly methyl methacrylate (PMMA)

to determine the effect of initiator type than with traditional homogeneous methods

and the concentration of initiator on front velocity because the rapid motion of front

prevented sedimentation of pressure. The scientific fundamentals were researched for

the technological development of the implementation of continuous frontal polymer-

ization on the foundation basis of accumulated experience, see Davtyan et al. [9]. The

most beneficial factor of frontal polymerization is that continuous reactors in laminar

and particularly turbulent flows are used to complete the process from the implemen-

tation point of view. After 1991, Prof. J. Pojman of Mississippi State University,

USA participated in the research and the first work was published by J.Pojman in

1991 [10]. Undoubtedly, frontal polymerization is currently a highly active area of

research for many researchers due to Pojman’s extensive efforts.

Sottos and coworkers claim that the properties of the frontal ring-opening meathesis

polymerization (FROMP) of dicyclopentadiene (DCPD) are comparable to conven-

tionally manufactured polymer, and energy savings of these materials are up to ten
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orders of magnitude, see Dean et al. [4]. On the other hand, the mechanical properties

of the rapidly manufactured robust elastomers using frontal polymerization could not

achieve the sufficient capacity for being used as commercial rubbers. However, Dean

et al. [4] have put forward a novel method, which is based on the co-polymerization of

1,5-cyclooctadiene (COD) with a norbornene derivative, to terminate crystallization

and achieve a polymer that has a wider range of thermomechanical properties. They

have worked on the FROMP of comonomer mixtures of COD and DCPD. Further-

more, the DCPD monomer with two reactive sites has enabled the formation of chem-

ical cross-links. They have used the swelling tests and dynamic mechanical analysis

(DMA) to observe that DCPD fraction increased by the degree of cross-linking in

copolymers produced by FROMP.

According to another viewpoint, the complexity of the dynamic control of frontal

polymerization causes it to be inefficiently utilized on the manufacturing side despite

of its efficiency and reduced environmental effect.Geubelle and coworkers, see Gao et

al. [11], immersed the phase-changing poly-caprolactone particles into DCPD resin.

Thus, they clarify the control and patterning of the front propagation in a DCPD resin.

Predictive and designed patterning shows that the velocity, temperature, and propa-

gation path of the polymerization front between two different interaction regimes are

governed by the exothermic chemical reaction, the interplay between endothermic

phase transition, and heat exchange. The manufacturing methodology that is based

on frontal polymerization and characterized by the self-propagating exothermic poly-

merization provides a rapid, environmentally friendly, and energy-saving alternative

to the conventional autoclave-based curing techniques involving elevated tempera-

tures and complex pressure cycles that are both energy- and time-consuming. As

opposed to the latter, frontal polymerization has been utilized in the one-step fab-

rication of homogeneous polymeric parts where no secondary procedures such as

deposition, etching, layer-by-layer assembly, or the introduction of a second phase is

needed until now. The polymerization front controlled dynamically affects the pat-

terns and properties of the polymeric product obtained by one-step manufacturing of

parts. For instance, the mechanical, chemical, morphological, and chemical patterns

in the polymer are greatly affected by the sharp variation in the frontal temperature

spontaneously.

7



The other important issue regarding the manufacturing through frontal polymeriza-

tion is the propagation of polymerization front, see Goli et al. [3]. The front of

polymerization spreads in a steady-state fashion in most production cases. However,

the instabilities of front affect the qualification of the composite under different condi-

tions. Geubelle and coworkers [3] have developed a coupled thermo-chemical model

and an adaptive nonlinear finite element solver to simulate the instabilities driven

by frontal polymerization in dicyclopentadiene (DCPD) and in carbon-fiber DCPD-

matrix composites computationally. They have investigated the effect of initial tem-

perature and the carbon fiber volume fraction on the wavelength and amplitude of the

thermal instabilities with the help of one-dimensional transient computations. The ef-

fect of convective heat loss on the frontal polymerization-driven instabilities in both

neat resin and composite cases has been also emphasized in this precise study.

The influence of the chemical and physical properties of the resin on the evolution of

frontal polymerization has also been investigated by Frulloni et al. [12]. In classical

bulk polymerization, heat is uniformly distributed during the course of an entire cur-

ing process on the whole surface of the reactive monomers. Hence, it promotes their

reaction. In frontal polymerization, however, the local increase in temperature for a

short time interval triggers the polymerization of the monomers (or reactants). The

reaction front propagates in the rest of monomers through the heat released by the

curing process where the generated heat is dissipated eventually to surroundings. The

degree of curing of a final product produced by frontal polymerization is relatively

high.While the reaction is controlled by the reactor temperature during bulk polymer-

ization, the chemical and physical properties of the reacting system (front) govern the

reaction process in frontal polymerization.

In spite of various advantages of frontal polymerization compared to bulk polymeriza-

tion, there are some drawbacks that need to be addressed, see Goldfeder and Volpert

[6]. One of the downsides is that the conversion tends to be incomplete. Thus, the

greater amounts of initiator should be used in order to overcome this issue that in

turn leads to a large number of undesirably short polymer chains. Another potential

problem is concerned with the heat loss and the extinction limit. The excessive heat

losses beyond a certain critical value may cease the propagation of the front.
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It has been shown by Davtyan et al. [9] that the heat loss during frontal polymerization

could considerably affect the properties of the final polymeric material. In particu-

lar, the temperature measurements conducted using the thermo-couples installed in

the central and peripheral regions of the solidifying samples indicate uneven distribu-

tion of temperature throughout the sample. Since the polymerization is a thermally

activated process, the non-uniform distribution of temperature may result in hetero-

geneities in the properties of the product such as the molecular weight characteristics,

the residual stress level, and the monolithic structure of the resulting polymer mate-

rials. Therefore, the effect of the factors such as heat loss and the cooling of reaction

ampoules after polymerization at arbitrary rates on the properties of polymer materi-

als produced by frontal polymerization have to be taken into account carefully.

Up to this point, the studies on the chemical, thermomechanical, and front propaga-

tion characteristics of frontal polymerization have been reviewed. Since there is no

study on the mechanics of frontally polymerized polymers, we will review several

studies that are concerned with the development of phenomenological constitutive

models to simulate the thermal and cure-dependent deformations in polymer com-

posites manufactured through conventional methods.

A remarkable study in this direction has been conducted by Höfer and Lion [13]. They

have developed a finite thermo-viscoelastic model to represent an exothermal phase

transformation from a viscous fluid to a viscoelastic solid. The deformation gradient

has been multiplicatively decomposed into the thermal, chemical, and mechanical

parts. The concept of intrinsic time [14] has been used to account for the viscous

rate-dependency. The evolution of the viscoelastic properties of the material has been

considered to be governed by the degree of curing. The model accounts for the phase

transformation through the volume fraction changes.

Since monomer behaves as a deformable viscous liquid, it is only capable of sus-

taining hydrostatic load in practice. When the curing reactions continue, polymer

chains are also connected to each other through cross-links. The viscosity of the liq-

uid resin and its molecular weight increase as time evolves. The heat generated due

to the formation of the polymer network results in a temperature increase since the

cross-linking is an exothermal reaction. This causes some initial viscosity decrease,
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see Hossain et al. [15]. The temperature- and shrinkage-induced deformations may

give rise to the accumulations of stresses and strains or warping phenomena signifi-

cantly. It is claimed that the warpage due to the curing-induced residual stresses has

long been a major obstacle for reducing the cost of the manufacture of composites.

Hossain et al. [15] developed a phenomenological model in order to represent the cur-

ing behaviour of thermosets within the geometrically linear setting where they have

investigated the temporal evolution of shear modulus and relaxation time.

Steinman and coworkers [16] have extended their previous study to the finite strain

regime. The main assumption of this study is that the existing chains between cross-

links are deformed when the strain is applied. When the new cross-links are created,

these are integrated to already deformed structure and they are never affected by pre-

vious deformation. This means that they meet the expectation for the incremental

formulation. However, their approach holds only for materials in the state beyond

being gel. They have been also interested in the temporal evolution of material prop-

erties simultaneously. In the follow-up work, they have taken their studies one step

further by adding the intrinstic time approach of Höfer and Lion [17] in the viscoleas-

tic model and focused on shrinkage effects [18].

Recently, Rajagopal and coworkers [19] have proposed a thermodynamic frame-

work based on their previous work [20] of rubber within the framework of finite

viscoelasticity involving the constitutive modeling of vulcanization chemical reac-

tions. They have also used fused deposition modeling for the amorphous polymers.

They have made predictions for the residual stresses and the accompanying distor-

tion of the geometry of the printed part. They used the four ribbons of polymeric

melt stacked on top of each other by extruding through a flat nozzle to show the use-

fulness and efficacy of the constitutive model. Similarly, Sain and coworkers [21]

have also been interested in the residual stress and warpage in the glassy polymers.

They proposed a model which is thermodynamically consistent, frame-indifferent,

chemo–thermo–mechanical coupled constitutive framework for cured glassy poly-

mers. The residual stresses due to the volume shrinkage accompanied by curing

cause the cracks, interfacial delamination and warpage. It has been shown that the

careful selection of processing parameters is of vital importance in order to decrease

warpage and failure dramatically. The heat generated due to the curing can cause
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uneven curing of the component, so a constitutive model which describes the coupled

chemo–thermo-mechanical process is essential.

N’Guyen and coworkers [22] have contributed the literature by adding two points that

are concerned with the new form of the chemical potential energy and the chemical

evolution associated to this potential. They have developed a model for the thermo-

chemo-mechanical behavior of polymer at large strains. Although material processing

and curing may involve completely different phenomena, they require a rigorous ther-

modynamical framework. They have also used the thermal, chemical, and mechanical

decomposition of the deformation gradient.

Another eye-opening study has been conducted by Saito and workers [23]. They

have obtained the degree of curing dependent macroscopic viscoelastic properties,

the macroscopic coefficients of thermal expansion (CTE), and the coefficient of cure

shrinkage (CCS) from the relaxation curves obtained by the numerical material test

(NMT) results and have also assumed that the orthotropic version of the model can

be used to simulate the macroscopic mechanical behavior of fiber-reinforced plastics

(FRP) for the resin. They have contributed to the literature by introducing a new

configuration of the rheology elements. They also formulate the macroscopic CTE

and CCS in the generalized Maxwell model for both equilibrium and non-equilibrium

parts. In other words, they have proposed a viscoelastic analysis method of two-scale

decoupling of unidirectional FRP subjected to the curing. To do so, they formulated

continuum level constitutive functions whose material parameters depend on both the

degree of curing and ambient temperature.

Yamanaka and coworkers [24] have had a different perspective with a different formu-

lation. They have developed an incremental variational formulation for the thermo-

mechanical coupled problem of curing resin. The dual dissipation potential is com-

bined with viscoelasticity for the cure state. Thanks to the incremental variational

formulation, they optimize the change of energy concerning an internal variable to

obtain the instantaneous total equilibrium states of an inelastic continuum body.They

have also discussed the existence and uniqueness of solutions and computational ef-

ficiency while strictly maintaining present formulation. They claim that this study is

the first model proposed for thermo-mechanical analysis of thermosetting polymers.
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However, finite strain and shrinkage effects have not been taken into account.

1.4 Contributions and Novelties

As outlined above, the experimental and computational studies on frontal polymer-

ization have focused only on the chemical, thermo-mechanical, and the front velocity

properties of the frontal polymerization so far. To this end, in this contribution, we

develop novel constitutive models furnished with robust computational tools to de-

scribe the process of frontal polymerization and the behavior of polymeric materials

produced by frontal polymerization. In particular,

• the incremental models of finite elasticity coupled with the inherent thermal

and chemical aspects for the frontally polymerized materials are developed,

• the coupled chemo-thermo-mechanical constitutive models are constructed in a

new thermodynamically consistent framework,

• the continuous evolution of material properties (aging) is accounted for in the

incremental setting,

• the robust computational tools furnished with stable and efficient algorithms

are developed to incorporate chemothermal, thermomechanical, and chemome-

chanical couplings,

• the developed multi-field coupled model is used to conduct numerical analysis

to predict the accumulation of stresses due to the chemically induced shrink-

age and thermal volume changes. Undoubtedly, the far-reaching goal of the

developed computational models is the optimum design of frontal polymer-

ization manufacturing technique to towards mechanically stronger and tougher

polymer products and composites that have a broad spectrum of high-tech ap-

plications.

1.5 Outline of Thesis

This thesis is organized as follows:
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In Chapter 2, the fundamental equations of the coupled boundary-value problem of

chemo-thermo-mechanics for frontal polymerization are derived using the tools of

continuum thermomechanics.

In Chapter 3, the kinematic and constitutive equations of the chemo-thermo-mechanical

model are specified.

Chapter 4 is devoted to the finite element formulation of the coupled problem. The

expressions of the residual vectors and the associated tangent matrices are derived

consistently with the employed staggered solution strategy.

The representative numerical examples addressing chemo-thermo-mechanical cou-

plings in frontal polymerization are presented in Chapter 5. In particular, these ex-

amples are designed to illustrate the effects of different types of material behavior,

various boundary conditions on the evolution of the stress accumulations during the

course of frontal polymerization.

In Chapter 6, the concluding remarks and outlook are given.
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CHAPTER 2

THERMODYNAMICAL FRAMEWORK

In this chapter, we introduce the fundamental equations of the chemo-thermo-mechanical

coupled boundary-value problem to set the thermodynamical framework for the frontally

polymerized thermoset materials at finite strains. A similar study was done by N’Guyen

and his coworkers [22], but in our study, we will discuss the framework for materials

produced with a different polymerization method (frontal polymerization). Thus, we

describe the principal equations of the fundamental maps, the fundamental balance

equations of solid body, and the stress measures. For more detailed description the

reader is referred to studies [25, 26, 27, 28, 29].

2.1 The Motion, Fundamental Geometric Maps and Deformation Measures

A solid body B is composed of infinitely many material points P ∈ B which also

indicate positions in the Eucledian space R3. The geometry of the body B in R3 in

(2.1) at time t is expressed by a bijective nonlinear deformation map as shown in

Figure 2.1 and described mathematically in (2.1).

X t :=

 B → Bt ∈ R3

P ∈ B 7→ xt = X t(P ) ∈ Bt,
(2.1)
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B

χt(P ) R3

xt

P

Bt

Figure 2.1: The map from the material space to the Euclidean space

The motion of a body can then be considered as a group of location parameterized

by time. Thus, in a motion, the particle P occupies a sequence of places xt in space.

The position of the material points at t0 X = χto(P ) ∈ B is named as the Reference

Configuration that is generally assumed to be an undeformed state. Likewise, the

Spatial / Eulerian Configuration of the body at time t is indicated by x = χt(P ) ∈
S as shown in Figure 2.2:

B

X t0(P )

φt(X) := X toX−1
t0
(X)

φX(t)

X t(P )

P

S

Figure 2.2: The nonlinear deformation map φ(X) from the referential configuration

to the spatial configuration

In this manner, the deformation map φt(X) can be defined between χt0(P ) and

χt(P ) to illustrate the motion of the body in the Euclidean space with the one-to-one

relation in (2.2).

φt :=

B → S

X 7→ x = φt(X)
(2.2)

It is also possible to find the position of Euclidean point in the reference configuration
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thanks to bijectivity of deformation map. The inverse deformation map is represented

in (2.3).

φ−1
t :=

S → B

x 7→ X = φ−1
t (x)

(2.3)

The differential geometry of material and spatial curves on the geometry of the body

as depicted in Figure 2.3 is described by tangent vectors. Beside, χ0(Θ) and χt(Θ)

which are material and spatial curves respectively are parameterized by variable Θ

∈ R as shown in Figure 2.3.

B

φX(t)

S

t
T

Θ

F = ∇Xφt(X)

X
x

TXB
TxS

χt0(Θ) χt(Θ)

Figure 2.3: The mapping between the material space and the Euclidean space

The tangent vector is a useful tool for the calculation of the stretch, and the defor-

mation gradient so the referential and spatial tangent vectors are calculated in (2.4),

respectively.

T :=
d(χt0(Θ))

dΘ
∈ TXB and t :=

d(χt(Θ))

dΘ
∈ TxS (2.4)

We use the chain rule operation in the tangent vector calculation for the spatial curves,

and we found the relation in (2.5).

t =
d(χt(Θ))

dΘ
= ∇Xφt(X)

d(χto(Θ))

dΘ
(2.5)

It is obvious that the deformation gradient F is none other than the first term in the

right hand side of (2.5).

F = ∇Xφt(X) and T =
dχto(Θ)

dΘ
(2.6)

According to the result in (2.5), we can write the relation between the referential and

spatial tangent vectors as shown in (2.7).

t = FT (2.7)
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Then, the map of the referential tangent vectors to the spatial counter parts described

by the tensor called the deformation gradient (F ) is expressed mathematically in

(2.8).

F (X, t) :=

TXB → TxS,

T 7→ t = FT
(2.8)

Each spatial tangent vector dx is identified as the tangent map of its material coun-

terpart as described in (2.9).

dx = F dX (2.9)

Then, we define the Jacobi map through the conventional coordinate free definition

of the determinant of a second-order tensor of the deformation gradient. The volume

map J is restricted to positive numbers R+ to ensure the function bijectivity. We use

dV and dv to describe the infinitesimal volume elements of parallelepipeds as given

in (2.10) and (2.11).

The volume in material space is introduced as shown in (2.10) and depicted in Figure

2.4:

dV := dX3 · (dX2 × dX1) (2.10)

The spatial counterpart of (2.10) is described in (2.11) and shown in Figure 2.4:

dv := dx3 · (dx2 × dx1) (2.11)

where dxi = F dX i for i =1,2,3.

If we put the relation in (2.9) into (2.11), we observe that det(F ) is the map of the

volume in spatial space to the material counterpart as specified in (2.12).

dv = (F dX3) · (F dX2 × F dX1)

= det(F ) dX3 · (dX1 × dX2)
(2.12)

When we compare (2.12) with (2.11), we obtained the Jacobi mapping J in (2.13)

which is one-to-one relation and restricted to positive real numbers to satisfy the

impenetrability of matter.

dv = JdV (2.13)
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B

F , J = det(F )

S

dX2

dX1

dV
φ(X) dv

dx2

dx1X x

dX3 dx3

Figure 2.4: The volume (Jacobian) map

The other transformation is area map that transformed the normals of material sur-

faces onto the normals of spatial surfaces which is depicted in Figure 2.5. To make it

clear, the reference and spatial areas have to be calculated as the cross product of two

non-colinear tangent vectors as defined in (2.14).

B

F , cof(F )

S

dX2

dX1

dA

NdA = dX1 × dX2
φ(X)

ndA = dx1 × dx2

dadx2

dx1X x

Figure 2.5: The illustration regarding the mapping between normal spaces

NdA = dX1 × dX2

nda = dx1 × dx2

(2.14)

When we consider the relation dxi = F dX i for i =1,2,3 in (2.9) and using the Jacobi

map (2.13), we arrive at,

dx3 · nda = JdX3 ·NdA (2.15)

Then, we solve (2.15) for nda for an arbitrary tangent vector dX , the co-factor of the

deformation gradient comes out as in (2.16).

nda = cof(F )NdA where cof(F ) := JF−T (2.16)

The tensorial quantity carrying out the map in (2.17) is F−T , so F−T should be

considered as the normal map transforming the reference normals N onto the spatial
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normals n belonging to the respective co-tangent (normal) spaces T ∗
XB and T ∗

x S as

depicted in Figure 2.6.

F−T :=

T ∗
XB → T ∗

x S

N 7→ n = F−TN
(2.17)

TXB

F

F−T

Lagrangian

t
T

x

X x

Eulerian

T ∗
XB

T ∗
x S

TxS

Normal Spaces

Tangent Spaces

X

N

n

Figure 2.6: The map of the material normal to the spatial normal in the commutative

diagram

At this point, we have to introduce the right and left Cauchy-Green tensors. Thus, first

of all, the reference B and spatial S configurations of a body are locally furnished by

coordinate systems in the neighborhood of the reference coordinates XA=1,2,3 and the

spatial coordinates xa=1,2,3 . These coordinates systems are generally non-orthogonal

but equipped with the reference G = GAB and spatial g = gab metrics, respectively.

The both metric tensors reduce to Kronecker’s delta (δij) G = δAB and g = δab in

the case of Cartesian coordinate systems.

To make the geometric meaning of the right and left Cauchy-Green tensors more

transparent, it is neccessary to utilize these metric tensors as the mappings from the

tangent spaces to the normal spaces of the Lagrangian and Eulerian configurations as

defined in (2.18).

G : TXB −→ T ∗
XB

g : TxS −→ T ∗
xS

(2.18)
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The right and left Cauchy-Green tensors are introduced as shown in (2.19):

C := φ∗(g) = F TgF with CAB = FaAgabFbB

b := φ∗(G
−1) = FG−1F T with bab = FaAG

−1
ABFbB

(2.19)

The pull-back operation is defined as C := φ∗(g) and is represented in the commu-

tative diagram in Figure 2.7:

TXB

F

F−T

Lagrangian

g

t
T

C = φ∗(g) = F TgF

x

X x

Eulerian

T ∗
XB

T ∗
x S

TxS

Normal Spaces

Tangent Spaces

X

Figure 2.7: The right Cauchy-green tensor and pull-back operation diagram

The push-forward operation is described by b−1 := φ∗(G) and is demonstrated com-

mutative diagram as shown in Figure 2.8:

TXB

F

F−T

Lagrangian

G

t
T

b−1 = φ∗(G) = F−TGF−1

x

X x

Eulerian

T ∗
XB

T ∗
x S

TxS

Normal Spaces

Tangent Spaces

X

Figure 2.8: The inverse left Cauchy-Green tensor and push-forward operation dia-

gram
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Cauchy’s Theorem : The theorem states that σ(x, t) is a unique second-order tensor

to satisfy (2.20).

t(x, t,n) = σ(x, t)n with ta = σabnb (2.20)

where σ is the Cauchy stress tensor which is a symmetric spatial tensor field. The

relation in (2.20) is the transformation between the traction vector t and σ. The

prompt result of (2.20) is

t(x, t,n) = −t(x, t,−n) (2.21)

The relation in (2.21) is none other than the Newton’s third law of action and reaction.

The Cauchy stress can be shown as a mapping of the normal vector n ∈ T ∗S onto

the tangent vector t ∈ T ∗S as described in (2.22).

σ(x, t) :=

T ∗
x S → TxS

n 7→ t = σn
(2.22)

2.2 Balance Equations

2.2.1 Balance of Mass

In a closed system, we assume that mass cannot be produced or destroyed: similarly,

N’Guyen and coworkers [22] assumed that neither mass creation nor destruction of

mass is accepted. Thus, the mass M of a body is a conserved quantity.

B ∂Bp

BP φt(X)

F := ∇Xφt(X)

S

Sp

∂Sp

X x

Figure 2.9: The cut out parts Bp ⊂ B and Sp ⊂ S in Lagrangian and Eulerian

configuration, respectively

We define the mass of cut out Sp ∈ S in (2.23). The both cut out parts are depicted in
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Figure 2.9.

MSp =

∫
Sp

ρ(x, t) dv =

∫
dm > 0 (2.23)

where ρ(x, t) is the spatial mass density (continuous scalar field).

Since the mass is conserved:

d

dt
(MSp) = 0 −→ d

dt
(dm) =

d

dt
(ρdv) = 0 (2.24)

The balance of mass requires that the mass of the cut out Bp is the same as that of Sp.

In other words, it is obvious that MSp is equal to MBp .

where

MBp =

∫
Bp

ρ0(X, t) dV > 0 (2.25)

Therefore, we have

∫
Sp

ρ(x, t) dv =

∫
Bp

ρ0(X, t) dV (2.26)

Then, we obtain in (2.27) which is valid for any cut out part of Bp by subtracting

the mass in the Eulerian configuration from the Lagrangian counterpart and using a

jacobian map of the volume elements dv = JdV .∫
Bp

(Jρ− ρ0) dV = 0 (2.27)

The identity in (2.27) is valid for any section of Bp, we arrive the transformation

locally with Jacobi map J in (2.28).

ρ0(X, t) = J(X, t)ρ(x, t) (2.28)

Since the reference mass density should not be changed with respect to time in closed

systems, so we generalize in (2.24) as shown in (2.29):

dρ0(X)

dt
= ρ̇0(X, t) = 0 (2.29)
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Then, we put (2.29) into (2.24), and the relation in (2.30) is obtained.

dMSp

dt
=

d

dt

∫
Sp

ρ dv =
d

dt

∫
Bp

ρJ dV = 0 (2.30)

Due to time dependency of the domain of integration, we use the time derivation

through integrand of the Lagrangian integral. Then, we find

dMBp

dt
=

∫
Bp

d(ρJ)

dt
dV =

∫
Bp

[ρ̇J + J̇ρ] dV = 0 (2.31)

We arrived the relation in (2.32) as the integral identity of (2.31) holds for any Bp.

[ρ̇J + J̇ρ] = 0 (2.32)

The result in (2.32) is valid for any Bp. The time derivative of Jacobian can be derived

as in (2.33).

J̇ = ∂FJ : Ḟ = cof(F ) : Ḟ

= JF−T : Ḟ = J1 : (Ḟ F−1)︸ ︷︷ ︸
l

= J tr(l) = J∇x(v) : 1

= J div(v)

(2.33)

Then, we insert (2.33) into (2.32), and we arrive

ρ̇+ ρ div(v) = 0 (2.34)

2.2.2 Balance of Linear Momentum

We have two types of forces which are the body forces (mass specific ) γ(x, t) due to

the action of other bodies at a distance and the surface forces (traction vectors) t due

to the action at a vicinity. The balance of linear momentum states that the time rate

of change of linear momentum LBp of Bp ∈ B is equal to the sum of the these forces

FBp . We arrange this phenomena for the referential and spatial space as shown in

Figure 2.10.

The linear momentum can be described mathematically in (2.35).

LSp :=

∫
Sp

v dm =

∫
Sp

ρv dv (2.35)
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∂Bp

BP

φt(X)

F ,F−T

Sp

∂Sp

X x

NT

n

t

γ

Figure 2.10: Surface and body forces acting on cut out parts Bp and Sp

The forces acting on body mentioned above are given in (2.36).

FSp =

∫
∂Sp

t da︸ ︷︷ ︸
traction forces

+

∫
Sp

γ dm︸ ︷︷ ︸
body forces

(2.36)

To make it clearer, the change of linear momentum with per unit time is equal to total

forces which are mass-specific body forces and traction forces which is described in

(2.37) as mathematically.
d

dt
(LSp) = FSp (2.37)

If we put (2.35) and (2.36) into (2.37), we arrive at

d

dt

∫
Sp

ρv dV =

∫
Sp

ργ dv +

∫
∂Sp

t da (2.38)

Then, we focus on the left hand side of (2.39), and take a time derivative.

d

dt

∫
Sp

ρv dv =

∫
Sp

v̇ρ dv +

∫
Sp

v
d

dt
(ρ dv) (2.39)

Due to the balance of mass, the last term in the right hand side of the equality in (2.39)

should be zero. ∫
dSp

d

dt
(ρdv) = 0 (2.40)

The other side of the equality in (2.38) can be derived as follows by using Cauchy

stress theorem as explained in (2.22):∫
∂Sp

t da =

∫
∂Sp

σn da =

∫
Sp

div(σ) dv (2.41)

As a result, we can find the most famous conservation of linear momentum expression

in (2.42). ∫
Sp

ρv̇ dV =

∫
Sp

ργ dv +

∫
Sp

div(σ) dv (2.42)
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For the local form of the balance of linear momentum in the Eulerian setting is given

in (2.43):

ρa = ργ + div(σ) (2.43)

where a is the acceleration.

2.2.3 Balance of Angular Momentum

The conservation of the angular momentum is defined by equating the rate of moment

of momentum to the net moment formed by total forces acting on body. The angular

momentum of Sp is described as

DSp :=

∫
Sp

x× v dm =

∫
Sp

x× vρ dv (2.44)

The resultant moment generated by forces acting on Sp is derived in (2.45)

MSp :=

∫
Sp

ρx× γ dv =

∫
∂Sp

x× t da (2.45)

DSp and MSp are considered with respect to the fixed origin in the space so this

notation is used in (2.44), (2.45). The balance of angular momentum equation can be

described as shown in (2.46):

d

dt
(DSp) = MSp (2.46)

The meaning of the mathematical expression in (2.46) is the time change of the angu-

lar momentum DSp of Sp ∈ S is identical to the sum of the moment MSp generated

by the forces acting on Sp as in (2.47).

d

dt

∫
Sp

x× ρv dv︸ ︷︷ ︸
T2

=

∫
Sp

x× ργ dv +

∫
∂Sp

x× t da︸ ︷︷ ︸
T1

(2.47)

The last term (T1) on the right hand side of the equality in (2.47) can be written as

follows:∫
∂Sp

x× t da =

∫
∂Sp

ϵijkxjtk da
Cauchy’s theorem

=

∫
∂Sp

ϵijkxjσklnl da

Gauss Theorem
=

∫
Sp

∂(ϵijkxjσkl)

∂xl

dv =

∫
Sp

(ϵijk
∂xj

∂xl

σkl + ϵijkxj
∂σkl

∂xl

) dv

=

∫
Sp

(ϵijkσkl) dv +

∫
Sp

x× div(σ) dv

(2.48)
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The other term (T2) on the left hand side of the equality in (2.47) can be derived as

follow:

d

dt

∫
Sp

x× ρv dv =

∫
Sp

v × ρv dv︸ ︷︷ ︸
0

+

∫
Sp

v × ρa dv +

∫
Sp

v × ρv
d

dt
(ρdv)︸ ︷︷ ︸

0 due to (2.29)

=

∫
Sp

(x× ρa) dv

(2.49)

We end up with∫
Sp

(x× ρa) dv =

∫
Sp

x× ργ dv +

∫
Sp

ϵijkσkj dv +

∫
Sp

x× div(σ) dv (2.50)

If we rearrange the relation in (2.50), we arrive at∫
Sp

(x× (ρa− ργ − div(σ)) dv︸ ︷︷ ︸
0︸︷︷︸

due to the balance of linear momentum

=

∫
Sp

ϵijkσkj dv
(2.51)

Due to the balance of linear momentum equation in (2.43), we obtain equality in

(2.52): ∫
Sp

ϵijkσkj dv = 0 (2.52)

If we localize the integral domain Sp to a point, we find the expression in (2.53).

ϵijkσkj = 0 (2.53)

To make the equation in (2.53) more transparent, the relations are expressed as

i = 1 7→ ϵ123σ32 + ϵ132σ23 = σ32 − σ23 = 0

i = 2 7→ ϵ231σ13 + ϵ213σ31 = σ13 − σ31 = 0

i = 3 7→ ϵ312σ21 + ϵ312σ12 = σ21 − σ12 = 0

(2.54)

According to the results in (2.54), the Cauchy stress tensor is symmetric. Thus, this

implies the symmetry of the second Piola Kirchhoff stress tensor S and the Kirchhoff

stress tensor τ as described in (2.55).

σ = σT , S = ST , τ = τ T (2.55)
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2.2.4 Balance of Energy (The First Law of Thermodynamics)

The energy equation is a result of the energy balance postulate of the first law of

thermodynamics. The rate of change of kinetic energy (K) and internal potential

energy (E) of spatial cut out body is equal to the summation of thermal (Q) and

mechanical power (P) as expressed in (2.56).

d

dt
(K + E) = P +Q (2.56)

The external traction forces and the body forces act on the body Sp and the rate of

this action is called the external mechanical power as shown in (2.57).

Pext =

∫
∂Sp

t · v da+

∫
Sp

ργ · v dv (2.57)

On the other hand, the outward heat flux acts on the boundary of the body ∂Sp and

the internal heat source per unit volume r acts on the cut out body. The sum of these

actions is the thermal power (Q) defined as in (2.58).

Q = −
∫
∂Sp

q · n da+

∫
Sp

ρr dv (2.58)

The kinetic energy is described in (2.59).

K =

∫
Sp

1

2
ρv · v dv (2.59)

Similarly, the internal potential energy is also defined as (2.60).

E =

∫
Sp

ρe dv (2.60)

where e is the mass-specific internal energy density.

We take some derivation and arrange the mechanical power expression as shown in
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(2.61).

Pext =

∫
∂Sp

t · v da+

∫
Sp

ργ · v dv

=

∫
∂Sp

(σijnj)vi da+

∫
Sp

ργivi dv

=

∫
Sp

∂(σijvi)

∂xj

dv +

∫
Sp

ργivi dv

=

∫
Sp

(
∂σij

∂xj

+ γi)vi dv +

∫
Sp

σij
∂vi
∂xj︸︷︷︸
lij

dv

=

∫
Sp

ρv̇ivi dv +

∫
Sp

σijlij dv

=

∫
Sp

ρv̇ · v dv +

∫
Sp

σ : l dv

(2.61)

When we use the l = d+w by using the rate of deformation and spin tensors concept,

we rearrange the result in (2.61) to obtain

Pext = =
d

dt

∫
Sp

1

2
ρv · v dv +

∫
Sp

σ : d dv (2.62)

Moreover, we deal with the thermal power part in (2.58):

Q = −
∫
∂Sp

qini da+

∫
Sp

ρr dv

= −
∫
Sp

∂qi
∂xi

dv +

∫
Sp

ρr dv

= −
∫
Sp

div(q) dv +

∫
Sp

ρr dv

(2.63)

If we insert (2.62), (2.63), (2.59) and (2.60) into (2.56), we get

d

dt

∫
Sp

(
1

2
ρv.v + ρe) dv =

d

dt

∫
Sp

1

2
ρv · v dv +

∫
Sp

σ : d dv

+

∫
Sp

(ρr − div(q)) dv

(2.64)

When we rearrange the (2.64), we arrive at∫
Sp

(ρė+ div(q)− σ : d− ρr) dv = 0 (2.65)

In addition to (2.65), the local form of the balance of energy in the Eulerian setting is

given in (2.66) by localizing the result in (2.65):

ρė+ div(q)− σ : d− ρr = 0 (2.66)
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2.2.5 Balance of Entropy (The Second Law of Thermodynamics)

The first law of thermodynamics specifies the conservation of energy but it does not

determine the direction of a process restriction. There is a preferred direction of the

process. For instance, the preferred direction of the heat flow between two systems at

different temperatures is always from the warmer to cooler one, when thermal phe-

nomena are considered. It will be expressed as an inequality stating that the internal

entropy production rate is always non-negative and is positive for an irreversible pro-

cess.

Ṡ =

∫
Sp

ρr

θ
dv −

∫
∂Sp

q · n
θ

da (2.67)

where θ is absolute temperature and r is the internal heat supply per unit mass.

The rate of entropy change is given by

Ḣ =
d

dt

∫
Sp

ρη dv (2.68)

The second law can be regenerated as form in (2.69):

d

dt

∫
Sp

ρη dv ≥
∫
Sp

ρ
r

θ
dv −

∫
∂Sp

q · n
θ

da (2.69)

We can rewrite the above inequality as in (2.70) alternatively.

Γ :=

∫
Sp

ργ dv :=
d

dt

∫
Sp

ρη dv −
∫
Sp

ρ
r

θ
dv +

∫
∂Sp

q · n
θ

da ≥ 0 (2.70)

where Γ is the total rate of entropy production, and γ is the mass specific spatial rate

of entropy production.

We transform the second law inequality equation above into a totaly volume integral.∫
∂Sp

q · n
θ

da =

∫
∂Sp

qini

θ
da =

∫
Sp

∂

∂xi

(
qi
θ
) dv

=

∫
Sp

1

θ

∂qi
∂xi

dv −
∫
Sp

1

θ2
qi
∂θ

∂xi

dv

=

∫
Sp

1

θ
div(q) dv −

∫
Sp

1

θ2
q · ∇xθ dv

(2.71)

If we put (2.71) into (2.70), we obtain the rearranged the relation as shown in (2.72).∫
Sp

ργ dv =

∫
Sp

ρη̇ dv −
∫
Sp

ρr

θ
dv +

∫
Sp

div(q)

θ
dv −

∫
Sp

1

θ2
q · ∇xθ dv ≥ 0

(2.72)
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Then, the local form known Clausius-Duhem inequality (CDI) equation is given in

(2.73) :

ργ = ρη̇ − ρ
r

θ
+

div(q)

θ
− 1

θ2
q · ∇xθ ≥ 0 (2.73)

We introduce the dissipation equation per unit deformed volume as (2.74):

ρD = ρθγ = σ : d− ρė+ ρθη̇ − 1

θ2
q · ∇xθ ≥ 0 (CDI) (2.74)

We decompose the Clausius-Duhem Inequality (CDI) equation into two parts namely,

the local Clausius-Planck Inequality (CPI) and the conductive Fourier Inequality (FI)

as shown in (2.75).

ρDloc = σ : d− ρė+ ρθη̇ ≥ 0 (CPI)

ρDcon = − 1

θ2
q · ∇xθ ≥ 0 (FI)

(2.75)

The first inequality in (2.75) is in local terms and responsible for internal dissipation,

on the other hand, the latter in (2.75) is responsible for dissipation due to conduction.

2.3 Theory of Frontal Polymerization and Polymerized Material Behavior

In this subsection, we consider the chemical, thermal and mechanical coupling phe-

nomena in order to demonstrate the behavior of frontally cured polymers. A coupled

problem of frontal polymerization thermo-mechanics is formulated in terms of three

primary field variables, specifically the deformation map φ, the temperature θ and the

degree of curing α.

Therefore, a chemo-thermo-mechanical state of a material point X at time t is defined

as

State(X, t) := {φ(X, t), θ(X, t), α(X, t)} (2.76)

The basic set of equations required to solve the initial-boundary value problem (IBVP)

of chemo-thermo-mechanics are the balance of linear momentum, the conservation of

energy, and the chemical evolution equation for the degree of curing. Therefore, we

introduce the differential equations that govern the evolution of the state variables.

In what follows, we consider a certain spatial body S closed by the boundary ∂S as

shown in Figure 2.1. The following linear momentum equation recalled from (2.43)
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in order to represent the quasi-static stress equilibrium:

div(σ) +B = 0 (2.77)

where B is equal to ργ.

It governs the evolution of the deformation field φ(X, t) along with the Dirichlet and

Neumann boundary conditions.

In the thermo-chemo-mechanics problem, we also utilize the Helmholtz free energy

to characterize the thermodynamic state as described in (2.78).

Ψ := e− θη (2.78)

The first law of thermodynmamics states the power equilibrium as described in (2.79).

ρė+ div(q)− σ : d− ρr = 0 (2.79)

In other words, the equality in (2.79) describes the rate of energy balance in terms

of the volume-specific internal energy e, the internal stress power σ : d, and the

externally supplied thermal power comprised of the outward heat flux vector q and

the given volume-specific external heat source ρr.

However, the first law does not place any restriction on the direction of a process. The

preferred direction of the heat flow due to the thermal heating defined at beginning of

the problem in between two systems is always from the warmer to cooler one. Thus,

we need the preferred direction in order to simulate correct behavior of material na-

ture. This limitation will be expressed below mathematically as an inequality stating

that the internal entropy production rate is always non-negative and is positive for an

irreversible process.

When we take a time derivative of the Helmholtz free energy function, and rearrange

them, we obtain

ė = Ψ̇ + θ̇η + θη̇ (2.80)

We put (2.80) into (2.79), and can be expressed as in (2.81).

ρθη̇ = σ : d− ρΨ̇− ρθ̇η︸ ︷︷ ︸
ρDloc

− div(q) + ρr︸ ︷︷ ︸
Q

(2.81)
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where, ρDloc is the local dissipation, and Q accounts for the local thermal power. We

can also rewrite the Clausius-Planck Inequality by inserting (2.80) into first relation

in (2.75) in Eulerian setting.

ρDloc = σ : d− ρΨ̇− ρθ̇η ≥ 0 in S (2.82)

The Lagrangian counterpart is

ρ0Dloc = S :
1

2
Ċ − ρ0Ψ̇− ρ0θ̇η ≥ 0 in B (2.83)

The right Cauchy-Green tensor in (2.84) is introduced to use in the functional form

of the free energy function. The functional form of the free energy function can be

written as

Ψ = Ψ(C, θ, α) with C = F TF (2.84)

Then, we can rewrite the expression in (2.83) with help of functional form of the free

energy function in (2.84) as shown in (2.85).

ρ0Dloc = [S − 2ρ0∂CΨ] :
1

2
Ċ − ρ0[η + ∂θΨ]θ̇ − ρ0∂αΨα̇ ≥ 0 (2.85)

At this point, we use the Coleman’s exploitaiton method [30] to satisfy the thermody-

namical consistency. Thus, it implies the particular form of the constitutive equations

described in (2.86).
S = 2ρ0∂CΨ

η = −∂θΨ
(2.86)

Therefore, the local dissipation reduces to the expression in (2.87).

ρ0Dred
loc = −ρ0∂αΨα̇ ≥ 0 (2.87)

We define the chemical driving force by using the relation in (2.87), and we obtain

ρ0Dred
loc = Aαα̇ ≥ 0 where Aα := −ρ0∂αΨ(C, θ, α) (2.88)

We can describe the chemical part as the main dissipative mechanism for the frontal

polymerization which is highly exothermic. Aα and α are energy conjugate variables

since the chemical driving force (Aα) is the partial derivative with respect to degree

of curing (α) as shown in (2.88). Due to the minor coupling with deformation, the

chemical driving force (Aα) can be considered to be a function of temperature (θ) and

the degree of curing (α) as expressed in (2.89).

Aα = Aα(θ, α) (2.89)
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Thanks to this observation and thermally activated polymerization process, we pos-

tulate general form of the evolution equation for the degree of curing (α) in (2.90).

α̇ = f(θ, α) (2.90)

where f is defined as an Arhenius and Prout-Tompkins type equation dependent on θ

and α. It is explained in more detail in Chapter 3.

It is obvious that α̇ is always positive, so the thermodynamical consistency depends

on Aα. In other words, when the Aα is positive, the thermodynamical consistency is

satisfied.

2.3.1 Transient Heat Conduction Equation

The energy equation is a result of the energy balance postulate of the first law of

thermodynamics. Loeffel and Anand [31] develops the energy balance equations with

inertial effects but they neglect the kinetic energy. The same methodology are used

in our study, and the conservation of energy equation in (2.79) recalled as shown in

(2.91).

ρė+ div(q)− σ : d− ρr (2.91)

where r is the heat source per unit mass.

We used the Piola transformation to transform the flux action on a spatial surface onto

their material counterpart as described in (2.92).

Q ·NdA := q · nda︸︷︷︸
JF−TNdA

with Q = JqF−T
(2.92)

We can write the identity in (2.93) by using (2.92).

J div(q) = DIV(Q) (2.93)

Therefore, we multiply (2.91) with Jacobi map (J) and rearrange some terms accord-

ing to derivations in (2.92) and (2.93) to extend the conservation of energy equation

into the Lagrangian setting as expressed in (2.94).

ρ0ė = S :
1

2
Ċ + ρ0rb −DIV(Q) (2.94)
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If we insert (2.80) which is time derivative of (2.78) into (2.91), and then express the

relation as in (2.95).

ρ0η̇θ = S :
1

2
Ċ + ρ0rb −DIV(Q)− ρ0Ψ̇− ρ0ηθ̇ (2.95)

We rearrange the (2.95), and we arrive

ρ0η̇θ = S :
1

2
Ċ − ρ0Ψ̇− ρ0ηθ̇︸ ︷︷ ︸

ρ0Dloc

+ ρ0rb −DIV(Q)︸ ︷︷ ︸
Q

(2.96)

Then, we can obtain the time derivative of entropy in (2.97) by using functional free

energy relation in (2.86).

η̇ = − ˙
∂θΨ(C, θ, α)

= −∂2Ψ

∂θ2
θ̇ − ∂2Ψ

∂α∂θ
α̇− 2

∂2Ψ

∂C∂θ
:
1

2
Ċ

(2.97)

The specific heat capacity is derived as shown in (2.98).

c := −θ
∂2Ψ

∂θ2
(2.98)

If we can simplify (2.96), we obtain

ρ0cθ̇ = ρ0Dloc + ρ0θ∂
2
αθΨα̇ + ρ0θ∂

2
CθΨ : Ċ +Q (2.99)

We group the terms in (2.99), and they are named as shown in (2.100).

ρ0cθ̇ = (Aα − θ∂θAα)α̇︸ ︷︷ ︸
chemical heating Hc

+ θ∂θS :
1

2
Ċ︸ ︷︷ ︸

thermoelastic heating

+ Q︸︷︷︸
He

(2.100)

To make the meaning of (2.100) more clear, we focus on the terms in (2.44) in depth.

During the polymerization, exothermic energy is released. This energy is measured

with the help of differential scanning calorimetry experiment. We assume that there

is a linear relationship between degree of curing and main dissipation mechanism.

Thus, we continue by considering that this released energy is equal to Aα − θ∂θAα.

The second term on the right hand side in (2.100) (θ∂θS : 1
2
Ċ) is the thermoelastic

heating and is negligible compared to other terms. We can reexpress the relation in

(2.100) as in (2.101):

ρ0cθ̇ = Hc +He (2.101)
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After finalizing all derivations regarding the balance laws, we have three differential

equations to evaluate. These differential equations are tabulated in Table 2.1.

Table 2.1: The summary of primary field, governing equation and initial-boundary

conditions

Field Problem Equation # BC’s/IC’s

φ(X, t) Mechanical div(σ) + B = 0 (2.77) φ = φ̄ on ∂Sφ

σn = t on ∂St

θ(X, t) Thermal ρ0cθ̇ = Hc +He (2.101) θ = θ on ∂Bθ

Q ·N = Hθ on ∂BH

θ0(X) = θ(X, t = 0) in B
α(X, t) Chemical α̇ = f(α, θ) (2.90) α0(X) = α(X, t = 0) in B
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CHAPTER 3

CONSTITUTIVE EQUATIONS

The governing differential equations of the chemo-thermo-mechanical problem of

frontal polymerization, given in Table (2.1), are coupled through the constitutive

equations for the stress tensor σ in (2.77), the chemical equation in (2.90), and the

transient heat conduction equation in (2.101). Moreover, we need to define the chemi-

cal driving force Aα and the heat flux vector q in (2.101) in the theoretical foundation

for curing of polymer. Thus, we aim to develop the constitutive models in this section.

3.1 Curing and Growth in Rigidity and Strength

The polymerization process should be modeled in order to make precise predic-

tion in the mechanical properties, defect and shape etc. of the final product by us-

ing chemo-thermo-mechanical tools. Therefore, chemo-thermo-mechanical coupled

models have been studied and proposed previously in literature such as [17, 22]. Thus,

we also need to advance the computational model for the initiation and propagation

of a polymerization front in polymer, so we developed the chemo-thermo-mechanical

model based on the coupled system of differential equation studied by Sottos and

coworkes [3]. Furthermore, the classical Prout-Tompkins autocatalytic model de-

pended on the degree of curing α(θ, t) and the temperature θ(t) [3] is used for the

chemical heating in (3.1).

The evolution of the degree of curing is described as in (3.1).

∂α

∂t
= f(α, θ) (3.1)

The degree of curing α characterizing the chemical state is an essential field variable
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representing the growth of rigidity and strength of frontally polymerized material.

This body is shown as a closed system that mass exchange with outside of the system

is not permissible, and the degree of curing is considered as a thermodynamical inter-

nal state variable whose thermally activated evolution is governed by an Arrhenius-

type equation.

The modeling of the curing evolution is essential for an accomplished manufacturing

process which satisfies the conversion of the liquid monomer to robust polymer in

both mechanical and thermal settings. Thus, we can focus on more transparent the

degree of curing evolution equation in (3.2).

f(α, θ) = A exp(− E

Rθ
)(1− α)nαm 1

1 + exp[C(α− αc)]
(3.2)

where θ is the absolute temperature. A and E are the pre-exponential factor and

the activation energy, respectively. C and αc are constant parameters capturing the

diffusion at higher temperature. Moreover, n,m are parameters denoting the order of

the reactions.

Sottos and coworkers [3] deal with the optimization of the nonlinear fitting for the

cure rate evolution obtained from the Differential Scanning Calorimetry experiment

to specify the cure kinetic parameters which are A,E, n,m,C and αc.

We deal with the the ordinary differential equation (ODE) problem of the degree

of curing evolution with the help of the experiment result obtained by Sottos and

coworkers [1]. The evolution of the degree of curing depends on temperature and

polymerization degree at a quadrature point. Hence, it is solved as an internal variable

by discretizing governing equation in time. In turn, we apply the Backward Euler time

integration scheme to the governing ordinary differential equation in (3.2). Then, we

linearize the equation and apply the iterative Newton-Raphson method.

α = αn +∆tα̇ with α̇ = f(θ, α)

α = αn +∆tf(θ, α)
(3.3)

Given the temperature, we form the residual of the curing evolution equation in (3.4).

r(α, θ) = α− αn −∆tf(θ, α) (3.4)
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Then, we linearize the residual term in (3.5).

Lin(r(α, θ))|α=ᾱ = r̄ + ā(α− ᾱ)

where

r̄ = r(ᾱ, θ) and ā :=
∂r

∂α
|θ,ᾱ

(3.5)

Consequently, we try to solve the linearized equation by iterating for α in (3.6).

α = ᾱ− ā−1r̄(α, θ) (3.6)

There is a missing term in the transient heat conduction equation in (2.101), and we

obtain this term by using consistency condition. Hence, we also derive the derivative

of the curing evolution equation residual (r) with respect to temperature θ as shown

in (3.7).
dr̄(α, θ)

dθ
=

∂r

∂θ
|α +

∂r

∂α︸︷︷︸
ā

|θ ·
∂α

∂θ
= 0

∂α

∂θ
= −ā−1 · ∂r̄

∂θ
|α

(3.7)

We used the staggered solution scheme to decrease the computation time. In the stag-

gered solution scheme, we used the nodal temperature values at the previous time step

in order to obtain the chemical heating part. Recall the chemical evolution equation in

(3.2) to explain the staggered solution approach application with our chemo-thermal

problem.

f(α, θn) = A exp(− E

Rθn
)(1− α)nαm 1

1 + exp[C(α− αc)]
(3.8)

where θn is the nodal temperature values at the previous time step.

The evolution of the degree of curing depends on temperature and polymerization rate

at a quadrature point as seen in (3.8). The temperature value in (3.8) is taken from

previous thermal solution step. Then, the derivative of degree of curing with respect

to temperature in (3.7) is removed from the thermal heating source part.

The curing induced polymer strength is modeled through the reaction conversion ex-

pressions that evaluate the mechanical properties in terms of degree of curing. We

consider the following relation for the evolution of mechanical properties with the
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curing progress in (3.9):

Λ = Λf − (Λf − Λi) tanh(
αn − 0.04

−Tf

)

µ = µf − (µf − µi) exp(
αn

−Tf

)

αθ = αθf − (αθf − αθi) exp(
αn

−Tf

)

ξc = ξcf − (ξcf − ξci) exp(
αn

−Tf

)

(3.9)

where Λf is the Lamé constant of polymer. Λi is the Lamé constant of monomer. µf

is the ground shear modulus of polymer. µi is the ground shear modulus of monomer.

αθf is the thermal expansion coefficient of polymer. αθi is the thermal expansion

coefficient of monomer. ξcf is the chemical shrinkage coefficient of polymer. ξci is

the chemical shrinkage coefficient of monomer. Tf is a constant in switch function.

Hereby, the evolution of the mechanical and thermal properties are enhanced when

the degree of curing completed, or the polymer is fully cured.

3.2 Thermal Conductivity and Chemical Heating

In this subsection, we introduce the constitutive relation for the thermal conductivity

and chemical heating part of the polymerization process which is essential to simulate

the initiation and propagation of a polymerization front. We solve the coupled system

of partial differential equations depended on degree of curing α and temperature θ

[3].

First of all, recall the relation in (2.101), and we derive the evolution and conduction

relations for thermal part

ρ0cθ̇ = Hc +He (3.10)

where Hc indicates the chemical heating due to the curing process, and He indicates

the sum up of the internal heat source and heat flux.
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293

θ[K]

Figure 3.1: The simulation of the carbon fiber reinforced composite frontally cured

The initiation, propagation, and chemical heating, as shown in numerical simulation

in Figure 3.1, are modeled through the differential equation in (3.11). Therefore, the

differential equation in (3.11) is a basic relation for modeling of the frontal polymer-

ization.

ρ0cθ̇ = Aαα̇ + ρ0rb −DIV(Q) (3.11)

The relation in (3.11) is responsible for the local energy storage for changing tem-

perature. Also, the first term in the right hand side of (3.11) denotes the chemical

heating. It is specific for the polymerization type, so this term denotes the reaction

enthalpy obtained by the experiments and parameter fitting studies conducted by the

Sottos and coworkers [1]. To make it clearer, we encapsulate Sottos and coworkers’

experiments and their findings briefly. First of all, Sottos, Geubelle and coworkers

[1] carry out the Differential Scanning Calorimetry (DSC) experiments to determine

the enthalphy of reaction by integrating the heat flow over the exothermic reaction.

Thus, the enthalpy of reaction depends on heat but our relation in the right hand side

of (2.101) seems to depend on only the degree of curing α. However, the degree of

curing α intrinsically depends on temperature which is described in (3.2). The final

term is related to thermal conduction and internal heat source. Thanks to Fourier’s

Law, we derive the inequality in (3.12):

− 1

θ2
Q · ∇Xθ ≥ 0 where Q = −K∇Xθ (3.12)

If we put more apparent flux term into (3.12), we obtain

1

θ2
K : (∇Xθ ⊗∇Xθ) ≥ 0 (3.13)
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According to the relation in (3.13), the heat flux is proportional to the change of the

temperature with respect to space and heat is conducted from hot part to cold part of

the body for the conductivity tensor (K) positive definite. We use the isotropic con-

duction in our study, but it is possible to extend the directional conduction according

to composite manufacturing.

3.3 Chemo-Thermo-Mechanic Elasticity

In this subsection, we develop the Neo-Hooken elasticity model for the stress and

consistent tangent moduli derivation.

TXB
F c F θ

F c−T F θ−T

Lagrangian

T

S C

T ∗
XB

X
Fm

Fm−T

t
x

x

Eulerian

T ∗
x S

TxS

X

Sm Cm gτ

Figure 3.2: Schematic representation of the commutative diagram

Moreover, the deformation gradient is assumed to be decomposed into product of

mechanical, thermal and chemical parts which was firstly studied by Höfer and Lion

[17] as shown in (3.14) and depicted in the commutative diagram in Figure 3.2.

F = FmF θF c where F θ = J
1/3
θ 1,F c = J1/3

α 1 (3.14)

We use the volumetric and isochoric split terms in our finite strain derivation. The

commutative diagram of the multiplicative decomposition is depicted in Figure 3.3.

Then, the mechanical deformation gradient is expressed as (3.15).

Fm = FF c−1F θ−1 (3.15)
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TXB

F−T
vol

Reference configuration

T

SisoC

T ∗
XB

X

t
x

Current configuration

T ∗
x S

TxS

X

S̄,H iC̄ g τ̄ ,hi

F vol F̄

F̄
−T

x

X̄

X̄

T̄ ∗
X̄
B

T̄X̄B

Intermediate configuration

T̄

N
N̄

n

= J−1/31

= J1/31 = J−1/3F

= J1/3F−T

Figure 3.3: Commutative diagram of the isochoric-volumetric split approach

According to the decomposition of the deformation gradient in (3.15), we obtain the

right Cauchy-Green tensor for mechanical part as expressed in (3.16)

Cm = ξC with ξ = J
−2/3
θ J−2/3

α
(3.16)

The free energy function is formulated as in (3.17) to provide the consistent stress

response derivation.

Ψ(C, θ, α) := Ψm(C, θ, α) + Ψθ(θ) + Ψα(α, θ) (3.17)

We are interested in only mechanical free energy function in this section and we split

the free energy function into the two parts such as volumetric and isocohoric free

energy functions as shown in (3.18).

Ψm(C, θ, α) = U(Jm) + Ψ̄m(Īm
1 )

where J2
m = det(Cm), Īm

1 = tr(C̄
m
)

(3.18)

where U(J) and Ψ̄(Īm
1 ) are the volumetric free energy function and the isochoric free

energy function, respectively.

Moreover, the mechanical part of F split into volumetric and isochoric part. Owing

to multiplicative split, an intermediate configuration TXB and T ∗
XB are introduced as

expressed in (3.19)

Fm = J1/3
m F̄

m
, F̄

m
= J−1/3

m Fm

C̄
m
:= F̄

mT
F̄

m
= J−2/3

m Cm

Īm
1 = tr(C̄

m
)

(3.19)
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We conduct the necessary derivation in Lagrange setting for the Lagrangian stress

and tangent moduli. Then, we applied the push-forward operation to obtain Eulerian

counterpart for the finite element formulation.

The isochoric part of the mechanical right Cauchy-Green tensor shown in the first

relation in (3.20) is differentiated with respect to the mechanical right Cauchy-Green

tensor in the second relation in (3.20) and we obtained the deviatoric projection.

C̄
m
= J−2/3

m Cm

∂CmC̄
m
= J−2/3

m I− −2

3
J (−2/3−1)
m Cm ⊗ Jm

2
C−1

m

= J−2/3
m [I− 1

3
Cm ⊗Cm−1]

(3.20)

We derive the volumetric stress response in (3.21) in the following part of the this

chapter by using derivation in (3.20).

Volumetric Response:

We calculate the stress term directly using the free energy function. Thus, we take a

derivative of the free energy function with respect to right Cauchy-Green tensor Cm

as described in (3.21) for the volumetric stress response.

Sm
vol = 2∂CmU(Jm) = U′(Jm)2∂CmJm

Sm
vol = P(Jm)JmC

m−1
(3.21)

where P(Jm) is totally equal to U′(Jm).

The consistent tangent moduli are calculated by evaluating the material parameters to

stimulate the curing process of polymer. Then, the moduli are calculated as described

in (3.22).

C
m
vol = 2∂CmS

m

= [P′(Jm) + P(Jm)]C
m−1 ⊗ JmC

m−1 − 2P(Jm)JmICm−1

= Jm[P
′(Jm) + P(Jm)]C

m−1 ⊗Cm−1 − 2P(Jm)JmICm−1

(3.22)

We derived the incremental stress equation as shown in (3.23) after completing the

evolution of the tangent moduli.

∆Sm
vol = C

m
vol :

1

2
∆Cm

Sm
vol = (Sm

vol)n +∆Sm
vol

(3.23)
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However, the stress relation in (3.23) is responsible for only mechanical part, so we

extend it to total stress term. We derive the relation between total stress and mechani-

cal stress as shown in (3.24). It is none other than the multiplication mechanical stress

tensor with constant term devoted for thermal and chemical effects.

Svol = Sm
vol : ∂CC

m = Sm
vol : ξ(α, θ)I = ξSm

vol
(3.24)

Then, we take the derivative of mechanical stress term with respect to right Cauchy-

Green tensor, and we arrive the updated consistent tangent moduli as expressed in

(3.25).

Cvol = 2∂CS
m
vol = 2∂Cm(Sm

volξ) : ∂CC
m = ξ2Cm

vol
(3.25)

Bazant [32], Lackner and Mang [33] claim that the new elements of the concrete

formed by new bonds within the micro-structure already formed which are initially

in the load-free state can participate in carrying the load. The same analogy is also

studied by Höfer and Lion [17]. Thus, based on the knowledge from the above studies

[32, 17], we think that the new polymers formed do not directly participate in carrying

the load since it will create an inconsistency with the second law of thermodynamics.

Thus, we decided to use the incremental formula summarized in (3.26).

The incremental part for the volumetric response is :

∆Sm
vol = C

m
vol :

1

2
∆Cm

vol

Sm
vol = (Sm

vol)n +∆Sm
vol

Svol = ξSm
vol

Cvol = ξ2Cm
vol

(3.26)

Isochoric Response:

We proceed with the derivation similar to the volumetric response. The only dif-

ference is that this part is responsible for the isochoric stress evolution. Thus, we

take the derivative of isochoric free energy function with respect to mechanical right

Cauchy-Green tensor as described in (3.27).

S̄
m
iso = 2∂C̄mΨ̄(Īm) (3.27)
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If we rewrite relation in (3.28), we end up with

Sm
iso = 2sm1 J

−2/3
m 1 : [I− 1

3
Cm ⊗Cm−1]

= 2sm1 J
−2/3
m [1− 1

3
tr(Cm)Cm−1]

(3.28)

where sm1 := ∂Im1 Ψ̄ = µ
2

Thus, we consider sm1 as a constant in the subsequent derivation. Then, we need

to update the consistent tangent moduli, so we take a derivative of isochoric stress

response with respect to mechanical right Cauchy-Green tensor as in (3.28).

C
m
iso = 2∂CmSm

iso = 4sm1 [1− 1

3
tr(Cm)Cm−1]⊗−2

3
J(−2/3−1)
m

Jm

2
Cm−1

+ 4sm1 J
−2/3
m [−1

3
Cm−1 ⊗ 1+

1

3
tr(Cm)ICm−1 ]

(3.29)

When we rewrite the expressions in (3.29), we arrive at

C
m
iso =

4

3
sm1 J

−2/3
m [

1

3
tr(Cm)Cm−1 ⊗Cm−1

− (1⊗Cm−1 +Cm−11) + tr(Cm)ICm−1 ]

(3.30)

Then, we derive the total isochoric stress response as expressed in (3.31).

Siso = 2sm1 1 : J−2/3
m [I− 1

3
Cm ⊗Cm−1] : ξI

= 2ξsm1 J
−2/3
m [1− 1

3
tr(Cm)Cm−1]

= 2sm1 J
−2/3[1− 1

3
tr(C)C−1]

(3.31)

We summarize the derivation regarding the stress and tangent moduli for isochoric

part as described in (3.32).

Siso = 2∂CmΨm
iso : ∂CC

m

Siso = ξSm
iso

Ciso = 4∂2
CΨ

m
iso = ∂CSiso = ∂CmξSm

iso : ∂CC
m

Ciso = ξ2Cm
iso

(3.32)

where ξ(α, θ) = ∂CC
m
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The incremental parts for the isochoric response are summarized in (3.33):

∆Sm
iso = C

m
iso :

1

2
∆Cm

iso

Sm
iso = (Sm

iso)n +∆Sm
iso

Siso = ξSm
iso

Ciso = ξ2Cm
iso

(3.33)

We have finalized all necessary derivation for incremental formulation, at this point

we derive the incremental part by combining volumetric and isochoric stress parts as

shown in (3.34):

∆Sm = Cm :
1

2
∆Cm

Sm = (Sm)n +∆Sm

S = ξSm

C = ξ2Cm

(3.34)

For the specific consistent mechanical tangent moduli of curing polymer:

C
m
vol = Jm(−2(

Λ(α)

2
Jm − (µ(α) +

Λ(α)

2
)J−1

m )ICm−1

+ [(
Λ(α)

2
+ (µ(α) +

Λ(α)

2
)J−2

m )Jm

+
Λ(α)

2
Jm − (µ(α) +

Λ(α)

2
)J−1

m ]Cm−1 ⊗Cm−1)

C
m
iso =

2

3
µ(α)J−2/3

m [
1

3
tr(Cm)Cm−1 ⊗Cm−1

− (1⊗Cm−1 +Cm−1 ⊗ 1) + tr(Cm)ICm−1 ]

(3.35)

We derive the stress and tangent moduli in Eulerian setting by using push-forward op-

eration to satisfy the consistency with finite element formulation explained in Chapter

4.

Recalling that the Kirchhoff stress tensor τ is the push forward of the second Piola-

Kirchhoff stress tensor in (3.36) by using the relation τ = φ∗(S) = FSF T as

depicted in Figure 3.4.
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TXB

F

F−T

Lagrangian

T

S = F−1τF−T

N
n

T ∗
XB

X

t

x

x

Eulerian

T ∗
x S

TxS

X

τ = FSF T

Figure 3.4: Geometric interpretation of the Lagrangian and Eulerian stress tensors on

the commutative diagram

The push forward operation is applied on the volumetric stress response:

τ vol = φ∗(Svol) = FSvolF
T

= F ((
Λ(α)

2
− (µ(α) +

Λ(α)

2
)J−1

m )JmC
−1)F T

= (
Λ(α)

2
− (µ(α) +

Λ(α)

2
)J−1

m )Jmg
−1

(3.36)

The push forward operation is applied on the isochoric stress response:

τ iso = φ∗(Siso) = FSisoF
T

= F (2
µ(α)

2
J−2/3
m [1− 1

3
tr(C)C−1])F T

= µ(α)J−2/3
m [b− 1

3
tr(b)g−1]

(3.37)

Starting from the definition of the material tangent moduli C, given in (3.35) and

incorporating the push forward operation, we obtain the relation between the Eule-

rian and Lagrangian moduli as shown in (3.38), (3.39) by separating volumetric and
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isochoric, respectively. For volumetric tangent moduli:

cvol = 2∂gτ vol

= Jm[
Λ(α)

2
+ (µ(α) +

Λ(α)

2
)J−2

m +
Λ(α)

2
Jm

− (µ(α) +
Λ(α)

2
)J−1

m ]g−1 ⊗ g−1

− 2(
Λ(α)

2
Jm − (µ(α) +

Λ(α)

2
)J−1

m )JmIg−1

(3.38)

For isochoric tangent moduli:

ciso = 2∂gτ iso

=
2

3
µ(α)J−2/3

m [
1

3
tr(g)g−1 ⊗ g−1

− (1⊗ g−1 + g−1 ⊗ 1) + tr(g)Ig−1 ]

(3.39)
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Table 3.1: Algorithmic Box: Elastic Response for the Chemo-Thermo-Mechanical

Coupled Problem

• Given database: History variables Cn, θn, αn, Sm
n and the current deformation

gradient F n+1 and temperature θn+1

• Compute Jacobian

Jθ and Jα −→ ξ(α, θ) = J
−2/3
θ J

−2/3
α

• Compute Right Cauchy-Green Tensor

C = F TF and Cm = ξC

C−1
m and (IC−1

m
)ABCD := 1

2
(Cm−1

AC Cm−1
BD + Cm−1

AD + Cm−1
BC )

• Compute material parameters with curing

Λ = Λf − (Λf − Λi) tanh(
αn−0.04
−Tf

)

µ = µf − (µf − µi) exp(
αn

−Tf
)

αθ = αθf − (αθf − αθi) exp(
αn

−Tf
)

ξc = ξcf − (ξcf − ξci) exp(
αn

−Tf
)

• Compute moduli

C
m
vol = Jm[P

′(Jm) + P(Jm)]C
m−1 ⊗Cm−1 − 2P(Jm)JmICm−1

C
m
iso = 4

3
sm1 J

−2/3
m [1

3
tr(Cm)Cm−1 ⊗ Cm−1 − (1 ⊗ Cm−1 + Cm−1 ⊗ 1) +

tr(Cm)ICm−1 ]

• Compute increment

(∆Cm)n+1 = (Cm)n+1 − (Cm)n

∆Sm
vol = C

m
vol :

1
2
∆Cm

∆Sm
iso = C

m
iso :

1
2
∆Cm

• Compute stress and modulus

∆Sm = C
m : 1

2
∆Cm

Sm = (Sm)n +∆Sm

S = ξSm

C = ξ2Cm

• Update the history and push forward the stress and moduli.
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CHAPTER 4

DISCRETIZATION AND FINITE ELEMENT IMPLEMENTATION OF

COUPLED PROBLEM

In this section, we work on the weak forms of the governing differential equations

with the help of their strong forms are tabulated in Table 2.1. We used the finite

element and finite difference methods to discretize the body in space and time for

the respective cases. The set of nonlinear equations that arise from discretization is

solved by using the iterative Newton technique for the nodal degrees of freedom.

4.1 3-D Finite Element Formulation at Large Strain in Eulerian Setting

The balance of linear momentum equation and the transient heat conduction equation

are solved numerically in this part of the thesis. The strong forms of the govern-

ing differential equations are multiplied with the corresponding square integrable test

functions (δφ and δθ) as shown in (4.2), (4.6) to derive the weak form of the equa-

tion set. The essential boundary conditions φ = φ̄ on ∂Bφ and θ = θ̄ on ∂Bθ are

satisifed by selecting the appropriate test functions. We set the weak forms of the

coupled differential equations by using the Galerkin finite element method. All con-

structed equation sets are integrated over the body and are formed as in (4.1) for the

mechanical, thermal problems, respectively.

Gφ(δφ;φ, θ) = Gφ
int(δφ;φ, θ) − Gφ

ext(δφ;φ, θ) = 0

Gθ(δθ;φ, θ) = Gθ
int(δθ;φ, θ) − Gθ

ext(δθ; θ) = 0
(4.1)

The strong form of the balance of linear momentum equation multiplied by test func-

tion is given in (4.2). ∫
B
−δφ[J div(J−1τ ) +B] dV in B (4.2)
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Then, we derive the Galerkin functional as in (4.3).

Gφ(δφ;φ, θ) =

∫
B
δφ[J div(

τ

J
) +B] dV in B

= −
∫
S
div(δφσ) dv +

∫
S
∇xδφ : σ dv −

∫
B
δφ ·B dV

= −
∫
∂S

δφ(σn) da+

∫
S
∇xδφ : σ dv −

∫
B
δφ ·B dV

(4.3)

The relation in (4.3) can be reexpressed as shown in (4.4).

Gφ(δφ;φ, θ) = −
∫
∂Bφ

δφ · T dA+

∫
B
∇xδφ : τ dV −

∫
B
δφ ·B dV (4.4)

The Galerkin equation sets in (4.1) has been derived with help of (4.4).

Gφ
int(δφ;φ, θ) =

∫
B
∇xδφ : τ dV

Gφ
ext(δφ;φ, θ) =

∫
∂Bφ

δφ · T dA+

∫
B
δφ ·B dV

(4.5)

Similarly, the strong form of the conservation of the energy equation in (2.101) is

multiplied by the corresponding test function as expressed in (4.6).∫
B
δθ(ρ0cθ̇ −He −Hc) dV in B (4.6)

The Galerkin function is expressed as (4.7) for the chemo-thermal part.

Gθ(δθ;φ, θ) =

∫
B
δθ(ρ0cθ̇ −Hc −He) dV (4.7)

The Galerkin functional for thermal part can also be writen explicitly as in (4.8).

Gθ(δθ;φ, θ) =

∫
B
δθ(ρ0cθ̇ + J div(J−1q̃)︸ ︷︷ ︸

T1

−Hc − ρ0rb) dV (4.8)

where q̃ := Jq and J div(q) = DIV(Q) as we know from (2.93).

We focus on the last term named as T1 in the right hand side of (4.8).∫
B
δθJ div(J−1q̃) dV =

∫
S
δθ div(J−1q̃) dv (4.9)

We apply the integration by parts to the relation in (4.9) and obtain,∫
S
δθ div(J−1q̃) dv =

∫
S
(div(δθJ−1q̃)−∇δθJ−1q̃) dv

=

∫
∂Bh

δθh̃θ dA−
∫
B
∇δθ · q̃ dV

(4.10)
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Then, we put the relation in (4.10) into (4.8).

Gθ(δθ;φ, θ) =

∫
B
δθ(ρ0cθ̇ −Hc − ρ0rb)−∇δθ · q̃ dV

+

∫
∂Bh

δθh̃θ dA
(4.11)

For Gθ(δθ; θ, α) gets form :

Gθ
int(δθ;φ, θ) =

∫
B
δθρ0cθ̇ −∇xδθ · q̃ dV

Gθ
ext(δθ; θ) =

∫
B
δθ(Hc + ρ0rb) dV −

∫
∂Bh

δθh̃θ dA
(4.12)

The relations in (4.5) and (4.12) obtained by Galerkin method are nonlinear functions

of the field variables due to the gradient operators and non-linear constitutive models.

Thus, we linearize these equation sets with respect to field variables to utilize the

Newton-type iteration schemes within the implicit finite element framework.

LinGφ(δφ,φ, θ)|φ̄,θ̄ :=Gφ(δφ, φ̄, θ̄) +∆Gφ(δφ, φ̄, θ̄; ∆φ,∆θ) = 0

LinGθ(δθ,φ, θ)|θ̄ :=Gθ(δθ, φ̄, θ̄) +∆Gθ(δθ, φ̄, θ̄; ∆φ,∆θ) = 0
(4.13)

The incremental terms obtained by the Gateaux derivative are expressed in the de-

composed form in (4.14).

∆Gφ = ∆Gφ
int −∆Gφ

ext

∆Gθ = ∆Gθ
int −∆Gθ

ext

(4.14)

Then, we define the incremental terms of the linearized Galerkin functional responsi-

ble for the mechanical part in (4.5) as shown in (4.15).

∆Gφ
int(δφ,∆φ,φ, θ) =

∫
B
∆(∇x(δφ)) : τ dV +

∫
B
∇x(δφ) : ∆τ dV (4.15)

The incremental term (∇x(δφ)) is derived as in (4.16).

∆(∇x(δφ)) = ∆(∇XδφF−1) = ∇xδφ∆(F−1)

= ∇Xδφ(−F−1∆FF−1) = −∇xδφ∇x∆φ
(4.16)

where ∇x∆φ := ∆FF−1.

The incremental stress term is derived as in (4.17).

∆τ = L∆φτ +∇x(∆φ)τ + τ (∇T
x∆φ) + Cφθ∆θ

= c :
1

2
L∆φg +∇x(∆φ)τ + τ (∇T

x∆φ) + Cφθ∆θ
(4.17)
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where c = 2∂gτ , Cφθ = ∂θτ ,
1
2
L∆φg = sym(g∇x(∆φ))

Insertion of (4.16)-(4.17) into (4.18) yields the form:

∆Gφ
int(δφ,φ, θ) =

∫
B
−∇x(δφ)∇x(∆φ) : τ dV

+

∫
B
∇x(δφ)[C : ∇x(∆φ) +∇x(∆φ)τ + τ∇T

x(∆φ)] dV

=

∫
B
∇x(δφ) : C : (g∇x(∆φ)) dV︸ ︷︷ ︸

Material Part

+

∫
B
∇x(δφ) : (∇x(∆φ)τ ) dV︸ ︷︷ ︸

Geometric Part

+

∫
B
∇x(δφ) : (Cφθ∆θ) dV

(4.18)

The external incremental term ∆Gφ
ext is zero since neither the body force B nor the

traction force acting on domain is deformation-dependent.

Then, we derive the incremental terms of the linearized Galerkin functional for the

thermal part in (4.13) as shown in (4.19).

∆Gθ
int(δθ, θ) =

∫
B
δθρ0c

∆θ

∆t
−∆(∇xδθ) · q̃ −∇xδθ ·∆q̃ (4.19)

Similar to (4.16), the linearization of the ∇x(δθ) leads to

∆(∇xδθ) = −∇x(δθ)∇x(∆φ) (4.20)

Then, we derive the incremental thermal flux terms in (4.19) based on the definiton

of the spatial thermal flux.

∆q̃ = L∆φq̃ +∇x(∆φ) · q̃ + K̃ · ∇x(∆θ) (4.21)

where L∆φ is the Lie derivative of the potential heat flux.

L∆φq̃ = Cθφ :
1

2
L∆φg = Cθφ : (g∇x(∆φ)) (4.22)

We define the second-order conduction tensor which is also dependent on deformation

and third-order mixed moduli as expressed in (4.23).

K := −∂∇xθq̃, Cθφ := 2∂gq̃ (4.23)
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Then, we put (4.20) and (4.21) into (4.19) and we obtain,

∆Gθ
int(δθ,φ, θ) =

∫
B
δθρ0c

∆θ

∆t
+∇x(δθ) ·K · ∇x(∆θ)

+∇x(δθ) · Cθφ : (g∇x(∆φ)) dV

(4.24)

Unlike the mechanical external Galerkin function increment Gφ
ext, the incremental ex-

ternal term in the linearized thermal Galerkin function depends on the field variables

with external heat source term and chemical heating term. Then, we obtain

∆Gθ
ext(δθ; θ) =

∫
B
δθ(∆Hc +∆(ρ0rb)) dV (4.25)

with the increment of the chemical and thermal heating,

∆Hc = ∂θHc∆θ and ∆(ρ0rb) = 0 (4.26)

To this end, we discretize our domain B into element subdomain Bh
e in element level

as shown in (4.27). Then, we applied the interpolation and and respective weight

functions through the element domain with the discrete nodal values and shape func-

tions.

φh
e =

n

Σ
i=1

N ide
i

θhe =
n

Σ
i=1

N iT e
i

δφh
e =

n

Σ
i=1

N iδde
i

∆φh
e =

n

Σ
i=1

N i∆de
i

δθhe =
n

Σ
i=1

N iδϕe
i

∇xδφ
h
e =

n

Σ
i=1

δde
i ⊗∇xN

i

∇x∆φh
e =

n

Σ
i=1

∆de
i ⊗∇xN

i

∇xδθ
h
e =

n

Σ
i=1

δT e
i ∇xN

i

∇x∆θhe =
n

Σ
i=1

∆T e
i ∇xN

i

(4.27)

We derived the residual and consistent tangent expressions to conduct the Newton-

type iterative algorithm as described in (4.28) and (4.29) in the staggered solution

scheme. Thus, we omit the coupled terms before proceeding with the residual and
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tangent expressions.

Rφ
I =

nel

A
e=1

{∫
Bh
e

∇xN
iτ dV −

∫
Bh
e

N iB dV −
∫
∂Be

t

N iT dA
}

Rθ
J =

nel

A
e=1

{∫
Bh
e

N jρ0c
∆θ

∆t
dV −

∫
Bh
e

∇xN
j.q̃ dV −

∫
Bh
e

N j(fθ +Hc) dV
} (4.28)

Similarly, we construct the tangent matrices coming from the linearization of the

residual vectors in (4.29).

Kφφ
IJ−mat =

nel

A
e=1

{∫
∂Be

t

∇xN
i · Cφφ · ∇xN

j dV
}

Kφφ
IJ−geo =

nel

A
e=1

{
{
∫
∂Be

t

∇xN
i · (∇xN

jτ ) dV
}

Kθθ
IJ =

nel

A
e=1

{∫
Be
θ

∇xN
i ∂q̃

∂∇xθ
∇xN

j dV −
∫
Be
θ

N iρ0c

dt
N j dV

−
∫
Be
θ

N i(∂θHc)N
i dV

}
(4.29)

In the staggered solution scheme approach, the values of the temperature values are

taken from the previous time step for the solution of the displacement field as depicted

in Figure 4.1. Then, the solution algorithm is conducted one by one.

dn+2dn+1dn

tn tn+1 tn+2

T n T n+1 T n+2

First

Second

First

Second

Figure 4.1: The illustration of the staggered solution methodology
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Therefore, the coupled terms are set to zero as shown in (4.30).

Kφθ = 0, Kθφ = 0 (4.30)

Then, after constructed residual and consistent tangent moduli, we solve linear alge-

bra problem by using the Newton-Raphson iteration scheme.

D = D −Kφφ−1 ·Rφ

T = T −Kθθ−1 ·Rθ
(4.31)
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CHAPTER 5

NUMERICAL EXAMPLES

In this chapter, we illustrate representative numerical examples regarding the chem-

ical, thermal and mechanical properties of frontally polymerized material under dif-

ferent chemical and thermal conditions. We start to verify our approach by perform-

ing spatial and temporal convergence analyses in Section 5.1. Then, the planar and

non-planar examples are illustrated under different chemo-thermal conditions. Poj-

man and coworkers [11] have examined composite systems created using metal strips

which are benchmark examples in the literature. In these studies, they examine how

the front speed changes with the system size and the effects of a metal strip on front

velocity, shape and width. However, the studies in the literature are not limited to

the effect of a metal strip, carbon fibers are also used in the experimental analysis.

Thus, we investigate the polymerization front, rate and behavior of the chemical and

thermal coupled problems with carbon fiber and without carbon fiber. In addition,

numerical examples similar to Sottos and coworkers’s paper [1, 3] are conducted for

the optimum amount of carbon fiber.

We exemplify the thermodynamic model we have developed with the problem in

Geubelle’s studies [3] and validate our model with spatial and temporal convergence

studies. Then, we study four different examples which are planar front examples, non-

planar front examples, planar examples with two sides heating and chemo-thermo-

mechanical examples.

The main aim of the example in Section 5.2.1 is description of the planar front prop-

agation, chemical heating and the degree of polymerization. We present the result of

the temperature and the degree of curing profile and also 2D model view.
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The example in Section 5.2.2 is about the evolution of the fiber reinforced composite

where we examine how the front and polymerization change with different amounts

of fiber. We show that there should be an optimum fiber ratio for polymerization by

examining our results as in Geubelle and coworkers’ study [3].

The example in Section 5.2.3 is the planar frontal polymerization with the heating

on two opposite sides. The main motivation for this study is to investigate how the

polymerization and frontal characteristics would change in this case and how much

the polymerization time would decrease.

The examples in Section 5.3 are devoted to chemo-thermo-mechanical boundary-

value problems. We propose a new, incremental finite elasticity coupled with the

chemo-thermal fields and material properties evolution with the degree of curing for

the first time so it is the main section of our thesis. We observe how the mechanical

and thermal properties of the frontally polymerized material change by examining our

results. Moreover, we examine evolution of the stress accumluations that may lead to

a strength loss in the final product. We also investigate the expansion and contraction

of the material frontally polymerized.

For the model problem, we apply the thermal heating on a certain side of the do-

main during the trigger period. During heating, the other sides of the domain are

insulated, i.e. in the flux-free state. Once the heating is completed, the heated side

is also insulated. We use computational models based on the results obtained from

the convergence studies described in Section 5.1. Moreover, the chemo-thermal cou-

pled problem is solved with help of the staggered scheme approach. To make it

clear, the temperature values calculated in the previous step are used to the chem-

ical heating part in solution of the chemo-thermal coupled problem. The solution

time of the problem is significantly reduced thanks to this technique. For the chemo-

thermo-mechanical model problem, we also use identical thermal and chemical con-

ditions with the chemo-thermal problem. Besides using the staggered approach in

the chemo-thermal part, we also use the same approach in the solution of the chemo-

thermal-mechanical problem. In this approach, we use the temperature nodal values

from the previous time step in the solution of the mechanical problem. Thus, we can

increase the computational efficiency within acceptable tolerance limits.
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5.1 Convergence Analysis

In this section, we examine the effect of the spatial and temporal discretization we

have used in our model on the convergence of solution. Thus, we have conducted

the spatial and temporal discretization convergence analysis to determine the opti-

mum values by using FEAP© v8.5 FEM solver [34]. For the chemo-thermal model

problem, we choose a square domain with the dimensions 7.5 mm × 7.5 mm as in

Geubelle and coworkers’ study [3] and as shown in Figure 5.1.

a

b

y

x

Figure 5.1: The domain size for the 2D model problem. a = 7.5 mm, b = 7.5 mm

We summarize the initial and boundary conditions of the chemo-thermal problem in

(5.1).

θ(x, y, 0) = 293 K,

α(x, y, 0) = 0.05,

θ(0, y, t) = 453 K for 0 ≤ t ≤ ttrig,

∇θ|(0,y,t) = 0 for t > ttrig,

∇θ|(x,0,t) = 0 for t ≥ 0,

∇θ|(7.5,y,t) = 0 for t ≥ 0,

∇θ|(x,7.5,t) = 0 for t ≥ 0.

(5.1)

We also tabulate the material properties that we use in the following examples in

Table 5.1:
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Table 5.1: The summary of the chemo-thermal material properties used in simulations

Material Parameters Unit Definition Value

κ [ W
m·K ] Thermal conductivity 9.30× 100

Carbon Fiber ρ [ kg
m3 ] Density 18.00× 102

Cp [ J
kg·K ] Specific heat 75.36× 101

κ [ W
m·K ] Thermal conductivity 2.20× 10−2

PSU Foam ρ [ kg
m3 ] Density 32.50× 100

Cp [ J
kg·K ] Specific heat 14.53× 102

κ [ W
m·K ] Thermal conductivity 1.50× 10−1

ρ [ kg
m3 ] Density 98.00× 101

Cp [ J
kg·K ] Specific heat 16.00× 102

A [1s ] Pre-exponential factor 8.22× 1015

Monomer E [ kJ
mol ] Activation energy 11.07× 101

(DPCD) Hr [ J
g ] Total enthalpy of reaction 35.00× 101

n [-] Orders of reaction 1.72× 100

m [-] Orders of reaction 7.70× 10−1

C [-] Diffusion constant 14.48× 100

αc [-] Diffusion constant 4.10× 10−1

R [ J
mol·K ] Universal gas constant 83.14× 10−1

5.1.1 Spatial Discretization Convergence Analysis

The sharp gradient in the temperature profile with the advancing front complicates

the solution of the problem and requires a minimum mesh size in moving front of

the polymerization. Moreover, the size of meshes affects the approximation quality

and precision of the finite element approach. Also, we used the time-discretization

adaptivity tool of FEAP© in the spatial convergence analysis so the maximum time

step of ∆t = 10−3 s and minimum time step of ∆t = 10−5 s.
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We discretize our model domain into 50, 100, 230, and 300 4-node quadrilateral

elements in each direction. In other words, we have specified four different element

sizes, h = 0.15 mm, h = 0.075 mm, h = 0.033 mm, and h = 0.025 mm. In turn, we

have examined their convergence status by using these mesh sizes.

(a) (b)

(c) (d)

500
θ [K]

293

Figure 5.2: The spatial convergence analyzes of the 2D model domain. a) h = 0.15

mm, b) h = 0.075 mm, c) h = 0.033 mm, d) h = 0.025 mm at t = 3.5 s

The temperature results of the analyses for the mesh sizes of h = 0.15 mm, h = 0.075

mm, h = 0.033 mm and h = 0.025 mm are presented in Figure 5.2.

1.00.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Position [mm]

300

250

Te
m

pe
ra

tu
re

[K
]

350

400

450

500

550
h = 0.15 mm

h = 0.075 mm

h = 0.033 mm

h = 0.025 mm

Figure 5.3: The spatial convergence analyses of the 2D model domain
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In these examples, heating is applied from the left side of the domain up to 453 K

as shown in Figure 5.9 during ttrig = 1 s. Afterwards, the heat source is removed and

this side is isolated. We observe that for the coarser mesh sizes front move slower

and diverge from the general convergence trend. We also present our results for the

analyzes of four different mesh sizes which are h = 0.15 mm, h = 0.075 mm, h =

0.033 mm and h = 0.025 mm graphically in Figure 5.3.

We observe that the spatial discretization converges when the element size is de-

creased. Thus, we get closer by fitting the position between x = 2.2 mm and x = 3

mm in Figure 5.3 to examine the results better. The result is presented in Figure 5.4:

h = 0.15 mm

h = 0.075 mm

h = 0.033 mm

h = 0.025 mm

2.52.3 3.0

501.0

500.8

Te
m

pe
ra

tu
re

[K
]

501.2

501.4

501.6

501.8

502.0

502.2

2.2

Position [mm]

2.4 2.6 2.7 2.8 2.9

Figure 5.4: Close up view for position fitting between x = 2.2 mm and x = 3 mm,

(Arrow direction shows convergent behavior)

It can be seen that the results are close to each other in the direction indicated by

the arrow in Figure 5.4. Thus, the direction of the arrow denotes better convergence

performance of the corresponding mesh size.

According to the results presented in Figure 5.4, we observe that the convergence per-

formance improves as the mesh size gets smaller. The reducing the size after a certain

point does not have much effect on the precision of the solution, but it increases the

cost of the computation and reduces the efficiency. Thus, we have performed the spa-

tial convergence analysis to choose an optimal size. Especially, there is no significant

convergence performance difference between mesh sizes h = 0.033 mm and h = 0.025
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mm as seen from the graph in Figure 5.4. However, we know that the h = 0.033 mm

mesh size deviates from the reference solution (solution corresponding to h = 0.025

mm), but we observe that the results are within the acceptable error tolerance limits.

As a result, we use the value of h = 0.033 mm as the mesh size in the following 2D

analyses.

Especially in the composite study in the non-planar examples discussed in detail in

Section 5.2.2, we find that the front shape is affected by the mesh size a lot. We

realize that the numerical results deviated from the experimental studies. Moreover,

we observe stair-like patterns in the front shape in coarser meshes as shown in Figure

5.5. This phenomenon shows the another importance of the spatial discretization

convergence analysis.

(a) (b)

500
θ [K]

293

Figure 5.5: The mesh size analysis of the 2D model domain. a) h = 0.15 mm, b) h =

0.033 mm at t = 0.5 s.

5.1.2 Temporal Convergence Analysis

Similar to the spatial convergence analysis, the temporal convergence also affects the

computation performance of our thermodynamical model. We conduct the temporal

convergence analysis for the four different time steps of ∆t = 4× 10−3 s, ∆t = 10−3

s, ∆t = 5×10−4 s, ∆t = 10−4 s to calibrate the time step required to overcome this

sharp gradient and stiff problem.

We have used the adaptive time-step module of FEAP© to increase the computation

speed. In the time adaptive module, we used the the maximum time step of ∆tmax =

4 × 10−3 s, ∆tmax = 10−3 s, ∆tmax = 5 × 10−4 s, ∆tmax = 10−4 s, respectively and

minimum time step is taken as ∆tmin = 10−5 s. In turn, the finite element analyses are

conducted for different time steps. We present the results of the analyses in Figure
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5.6.

As it can be seen from the contour plots in Figure 5.6, the larger time increments result

in a polymerization front that moves faster and diverges from the general convergence

trend.
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Figure 5.6: The temporal discretization convergence performance for a) ∆t = 4×
10−3 s, b) ∆t = 10−3 s, c) ∆t = 5× 10−4 s, d) ∆t = 10−4 s at t = 3.5 s,

We observe that temporal discretization converges when the time step is decreased.

Thus, we get closer by fitting the position between x = 3.7 mm and x = 4.4 mm in

Figure 5.7 to examine the results better as shown in Figure 5.8: It can be seen that
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Figure 5.7: The temporal discretization convergence performance for a) ∆t = 4×
10−3 s, b) ∆t = 10−3 s, c) ∆t = 5× 10−4 s, d) ∆t = 10−4 s at t = 3.5 s,
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the results are close to each other in the direction indicated by the arrow in Figure 5.8.

Therefore, the direction of the arrow represents a better convergence performance for

the corresponding time steps.

3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4

Position [mm]

485

480

Te
m

pe
ra

tu
re

[K
]

490

495

500

505

510
∆t = 4× 10−3 s

∆t = 10−3 s

∆t = 5× 10−4 s

∆t = 10−4 s

Figure 5.8: The temporal discretization convergence performance for a) ∆t = 4×
10−3 s, b) ∆t = 10−3 s, c) ∆t = 5 × 10−4 s, d) ∆t = 10−4 s at t = 3.5 s, (Arrow

direction shows convergent behavior)

The results of the temporal convergence analysis indicate that ∆t = 10−3 s is a

reasonable time step as shown the results in Figure 5.8. Thus, we used time step of

∆t = 10−3 s in the subsequent simulations.

5.2 Chemo-Thermal Numerical Examples

In this section, the chemo-thermal analyses are conducted to examine the character-

istics of the front, polymerization and temperature variation. We investigate three

examples, namely the planar front, the non-planar front, and the planar front heating

on two opposite sides. We use the material properties in Table 5.1 in the following

examples:
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5.2.1 Planar Front

In this example, the problem is very stiff and highly nonlinear due to the sharp gra-

dients of temperature and the degree of curing in the vicinity of the front. We apply

the thermal heating on the left side of the domain for t = ttrig = 1 s as depicted in

Figure 5.9. Then, we investigate the chemical and thermal evolution in the material.

The domain size is 7.5 mm x 7.5 mm and we used 4-node quadrilateral elements of

size h = 0.033 mm. The time increment ∆t = 10−3 s is used in the simulation.

q · n = 0

q · n = 0

q · n = 0

θ = θtrig q · n = 0

q · n = 0

q · n = 0

q · n = 0

t ≤ ttrig t > ttrig

y
x

Figure 5.9: Boundary condition for the 2D model problem

We summarize the initial and boundary conditions in (5.2).

θ(x, y, 0) = 293 K,

α(x, y, 0) = 0.05,

θ(0, y, t) = 453 K for 0 ≤ t ≤ ttrig,

∇θ|(0,y,t) = 0 for t > ttrig,

∇θ|(x,0,t) = 0 for t ≥ 0,

∇θ|(7.5,y,t) = 0 for t ≥ 0,

∇θ|(x,7.5,t) = 0 for t ≥ 0.

(5.2)

We present the temperature distribution in Figure 5.10 at different times of frontal

polymerization.
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Figure 5.10: The temperature distribution at, a) t = 1 s, b) t = 2 s, c) t = 3 s, d) t = 4 s

The comparison between our numerical simulations and the results of the experiment

conducted by Sottos and coworkers [3], indicates that we have obtained qualitatively

similar results as shown in Figure 5.11.
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Figure 5.11: The comparison between the experimental result [3] and numerical result

We present the temperature and the degree of curing curves corresponding to the sim-

ulations given in Figure 5.10 in Figure 5.12. According to our analyses, we observe

that temperature variation is between about 500 K and 293 K.
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Figure 5.12: The temperature variation with respect to position

The degree of curing variation with respect to position is presented in Figure 5.13. As

seen in Figure 5.12 and Figure 5.13, the temperature and the degree of curing have a

similar propagation trend with respect to position.
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Figure 5.13: The evolution of the degree of curing with respect to position

5.2.2 Non-Planar Front in Composites

In this example, we investigate the behavior of the fiber reinforced polymer composite

which is frontally polymerized. Similar to planar front examples, the problem is also
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very stiff and highly nonlinear due to the sharp gradient temperature and the degree

of curing in the vicinity of the front. The thermal conduction property of the fiber is

greater than that of the monomer, so the fiber is used in the frontal polymerization

process to increase the propagation of the polymerization front. Therefore, we inves-

tigate the effect of carbon fiber and the amount of carbon fiber on the shape and speed

of the front for the frontal polymerization process quantitatively.

q · n = 0

q · n = 0

q · n = 0

θ = θtrig q · n = 0

q · n = 0

q · n = 0

q · n = 0

t ≤ ttrig t > ttrig

PSU

Monomer

Fiber

PSU

Monomer

Fiber

Figure 5.14: Boundary condition for the 2D model problem

We applied the thermal heating on the left side of the domain for t ≤ ttrig = 1

s as depicted in Figure 5.14. The polymerization is initiated when the heat source

contact with monomer and it does not contact with the fiber. Then, we investigate the

chemical and thermal evolution in the material. The domain size is 7.5 mm × 7.5

mm and we use 4-node quadrilateral elements of mesh size of h = 0.033 mm. The

time increment ∆t = 10−3 s is used in the simulation. We consider the four different

amounts of fiber which are 0.25 mm × 7.5 mm, 0.50mm × 7.5 mm, 0.75 mm × 7.5

mm and 1.0 mm × 7.5 mm in our simulations.

Table 5.2: The summary of the thickness variation in composite samples

Simulation a b c d f

1 7.50 mm 7.50 mm 1.00 mm 6.25 mm 0.25 mm

2 7.50 mm 7.50 mm 1.00 mm 6.00 mm 0.50 mm

3 7.50 mm 7.50 mm 1.00 mm 5.75 mm 0.75 mm

4 7.50 mm 7.50 mm 1.00 mm 5.50 mm 1.00 mm

We tabulate the dimensions of the components in Table 5.2 where a and b denotes
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for domain size, c, d and f represents thickness of the glass, monomer, and fiber,

respectively and as depicted in Figure 5.15.

PSU c

d

f
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b

Monomer

Fiber
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x

Figure 5.15: Dimension of the 2-D geometry forthe composite model problem

We summarize the initial and boundary conditions in (5.3).

θ(x, y, 0) = 293 K,

α(x, y, 0) = 0.05,

θ(0, y, t) = 453 K for 0 ≤ t ≤ ttrig where y = [f, f + d],

∇θ|(0,y,t) = 0 for t > ttrig,

∇θ|(x,0,t) = 0 for t ≥ 0,

∇θ|(7.5,y,t) = 0 for t ≥ 0,

∇θ|(x,7.5,t) = 0 for t ≥ 0.

(5.3)

The contour plots in Figure 5.16 show the temperature distribution according to the

fiber ratio which increase from top to bottom. The contour plots are placed from

left to right according to the progression of time. It can be seen that the temperature

diffusion accelerates in proportion to the fiber ratio. The distinct change from flat to

the conical front shape is observed at t = 4 s in Figure 5.16. This is consistent with

the experiment results in [1].
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Figure 5.16: Temperature variation in the composite with distinct fiber fractions and

at different times

When we compare our numerical simulations with the experiment conducted by Sot-

tos and coworkers [3], we observed that we have obtained qualitatively compatible

results as shown in Figure 5.17. Because of the symmetry, we have modeled only

half of the experimental sample in our analysis.
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Figure 5.17: The comparison between the experimental result [3] and numerical result

We have extracted sections from 0.25 mm above the fiber for the temperature and the

degree of curing simulation in Figures 5.18 and 5.19.
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Figure 5.18: Temperature variation in the composite at t = 1 s, where f represents

the fiber thickness.

According to result in Figure 5.18, we observe that the temperature diffusion is faster

in resin that has a higher fiber ratio at t = 1 s compared with the other composites.
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Figure 5.19: The evolution of the degree of curing at t = 1 s, where f represents the

fiber thickness.

Similarly, it can be seen that the curing propagation is also higher in the resin that has

a higher fiber ratio at t = 1 s as shown in Figure 5.19. .
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Figure 5.20: Temperature variation in the composite at t = 2 s, where f represents

the fiber thickness.

We also obtain similar results for temperature distribution and polymerization evo-

lution at t = 2 s as shown in Figure 5.20. However, the temperature diffusion in

the composite that has low fiber content almost captures the temperature profile in

composite that has the highest fiber ratio.
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Figure 5.21: The evolution of the degree of curing at t = 2 s, where f represents the

fiber thickness.

We also observe similar behavior for the degree of curing at t = 2 s as shown in Figure
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5.21. The front propagation speed of the composite with the lowest fiber reaches the

speed of the composite with the highest fiber ratio.
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Figure 5.22: Temperature variation in the composite at t = 3 s, where f represents

the fiber thickness.

Surprisingly, after t = 3 s, the temperature diffusion with the lowest fiber content

composite moves faster than the with the highest fiber content one as shown in Figure

5.22.
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Figure 5.23: The evolution of degree of curing at t = 3 s, where f represents the fiber

thickness.
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In Figure 5.23, the curing propagation of the composite that has the lowest fiber also

moves faster than with the one with the greatest fiber content.
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Figure 5.24: Temperature variation in the composite at t = 4 s, where f represents

the fiber thickness.

After the t = 4 s, it becomes clear that the temperature distribution in the compos-

ite with low fiber is moving faster than in the composite with high fiber content as

depicted in Figure 5.24.
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Figure 5.25: The evolution of degree of curing at t = 4 s, where f represents the fiber

thickness.
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We observe that the degree of curing has also a similar trend as temperature. The

curing propagation comparisons in terms of carbon fiber are presented in Figure 5.25.

The reason for the behavior of the material depicted in Figure 5.25 is that the thermal

diffusion rate increased at an optimum rate of fiber activates the chemical reaction

and prevents the direct diffusion. Then, the polymerization reaction release heat, and

more heat is transferred to the next monomer thanks to the fiber. It can prove the

increase in thermal diffusion. Also, if we had excluded the heat source from our

simulations suddenly, we would have obtained similar results because the chemical

reaction is the main governing mechanism for this problem. Thus, it will be a very

critical study to find the optimum fiber ratio that will provide the conduction to prop-

agate polymerization properly.

As explained above, we have kept the domain size fixed in our simulations to compare

the results of analyses consistently. In other words, as we increased the amount of

fiber, we decreased the same amount of monomer. Therefore, we could not observe

that the propagation of the polymerization moves faster in the composite that has a

lower amount of fiber. We think that if the amount of monomer were fixed and only

the amount of fiber changed, this difference could be observed more clearly.

Sottos and coworkers [3] notice a similar observation regarding the relation between

temperature and curing propagation with fiber ration in the composite. Moreover,

Sottos and coworkers claim that if the amount of fiber is increased, the analytical

and modeling results diverge from each other due to the increasing thermal diffusion

with higher fiber fractions. Therefore, this situation leads to an optimization problem

between carbon fiber amount and polymerization. Also, Sottos and coworkers [3]

state that the maximum temperature reached by the chemical reaction decreased with

increasing carbon ratio. We also obtain the same result qualitatively as depicted in

Figure 5.24.

As a result of our analysis, we observe that

- the sample with a fiber content of 0.25 mm thickness achieved optimum polymer-

ization, compared to the others,

- temperature variations and the degree of polymerization evolution have the same
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propagation trend,

- maximum reaction temperature is obtained in the polymer composite has the lowest

fiber content.

5.2.3 Planar Front Propagation for Two Opposite Side Heating

In this example, we investigate the behavior of frontally polymerized material which

is subjected to two opposite-side heating as shown in Figure 5.26. The behavior of

this problem is slightly different from the previous examples. Thus, we investigate

the chemical and thermal evolution in the material. The domain size is 7.5 mm × 7.5

mm and we used the 4-node quadrilateral elements of size h = 0.033 mm. The time

increment ∆t = 10−4 s is used in the simulation.

q · n = 0

q · n = 0

θ = θtrig q · n = 0

q · n = 0

q · n = 0

q · n = 0

t ≤ ttrig t > ttrig

θ = θtrig

y
x

Figure 5.26: Boundary condition for the 2D model problem

We summarize the initial and boundary conditions in (5.4).

θ(x, y, 0) = 293 K,

α(x, y, 0) = 0.05,

θ(0, y, t) = 453 K for 0 ≤ t ≤ ttrig,

θ(7.5, y, t) = 453 K for 0 ≤ t ≤ ttrig,

∇θ|(0,y,t) = 0 for t > ttrig,

∇θ|(x,0,t) = 0 for t ≥ 0,

∇θ|(7.5,y,t) = 0 for t > ttrig,

∇θ|(x,7.5,t) = 0 for t ≥ 0.

(5.4)

We present the simulations of the two-side heating in Figure 5.27.
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Figure 5.27: Temperature variation at a) t = 1.0 s, b) t = 2.0 s, c) t = 2.5 s

In this example, since we apply identical heating from both sides, the polymerization

is completed in a half of the time of the one-sided heating. We take the section from

the middle of the material and the thermal variation and chemical evolution of these

sections are presented in Figure 5.28 and 5.29
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Figure 5.28: Temperature variation in composite at a) t = 1.0 s, b) t = 2.0 s, c)

t = 2.5 s

As can be seen from Figure in 5.28, it has been observed that there is a temperature

overshoot at the points where the temperatures converge. If the polymerization is

allowed to continue in this way, severe degradation may be observed in this merging

fronts of temperature as explained in [1].
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Figure 5.29: Degree of curing evolution with respect to position at a) t = 1.0 s, b)

t = 2.0 s, c) t = 2.5 s

5.3 Chemo-Thermo-Mechanical Examples

In this section, we represent the behavior of the polymer and reinforced composite

which are frontally polymerized. The problem is also very stiff and highly nonlinear

due to the sharp temperature gradient and the degree of curing in the vicinity of the

front for thermal and chemical part. Due to the formation of high expansion and

chemical shrinkage, the mechanical part is also highly stiff.

We apply the thermal heating on the left side of the domain. Then, we investigate the

chemical, thermal and mechanical evolution in the material. The domain size is 3.0

mm × 3.0 mm and we use the 4-node quadrilateral elements of size h = 0.033 mm.

The time increment of ∆t = 10−4 s is used in the simulation. The material parameters

which are used in the simulations are tabulated in Table 5.3.

Note that we also summarize material properties which we used in the following

examples in Table 5.3:
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Table 5.3: The summary of the material chemical, thermal and mechanical properties

used in simulations

Material Parameters Unit Definition Value

Λ [MPa] Lamé constant 30.36× 104

µ [MPa] Shear modulus 15.65× 104

Fiber αθ [ 1
K ] Thermal expansion coefficient 4.10× 10−7

κ [ W
m·K ] Thermal conductivity 9.30× 100

ρ [ kg
m3 ] Density 18.00× 102

Cp [ J
kg·K ] Specific heat 75.36× 101

Λ [MPa] Lamé constant 12.60× 100

µ [MPa] Shear modulus 6.15× 100

PSU Foam αθ [ 1
K ] Thermal expansion coefficient 5.00× 10−5

κ [ W
m·K ] Thermal conductivity 2.20× 10−2

ρ [ kg
m3 ] Density 32.50× 100

Cp [ J
kg·K ] Specific heat 14.53× 102

Λ [MPa] Lamé constant 6.21× 100

µ [MPa] Shear modulus 6.9× 10−1

Monomer αθ [ 1
K ] Thermal expansion coefficient 79.00× 10−6

(DPCD) ξc [%] Chemical shrinkage coefficient −6.00× 10−2

κ [ W
m·K ] Thermal conductivity 1.50× 10−1

ρ [ kg
m3 ] Density 98.00× 101

Cp [ J
kg·K ] Specific heat 16.00× 102

A [1s ] Pre-exponential factor 8.22× 1015

E [ kJ
mol ] Activation energy 11.07× 101

A [1s ] Pre-exponential factor 8.22× 1015

82



Hr [ J
g ] Total enthalpy of reaction 35.00× 101

Monomer n [] Orders of reaction 1.72× 100

(DPCD) m [] Orders of reaction 7.70× 10−1

C [] Diffusion constant 14.48× 100

αc [] Diffusion constant 4.10× 10−1

R [ J
mol·K ] universal gas constant 83.14× 10−1

Λ [MPa] Lamé constant 6.21× 103

µ [MPa] Shear modulus 6.90× 102

Polymer αθ [ 1
K ] Thermal expansion coefficient 79.00× 10−9

(DPCD) ξc [%] Chemical shrinkage coefficient −6.00× 10−3

κ [ W
m·K ] Thermal conductivity 15.00× 10−2

ρ [ kg
m3 ] Density 98.00× 101

Cp [ K
kg·K ] Specific heat 16.00× 102

The mechanical material properties are adopted from [1] for mono-poly/mer. The

chemical shrinkage coefficient and thermal expansion coefficient of mono-poly/mer

are adopted from [35], [36], respectively. Besides, the thermal and mechanical prop-

erties of fiber and polyisocyanurate foam are borrowed from [37] and [38], respec-

tively.

Λ = Λf − (Λf − Λi) tanh(
αn − 0.04

−Tf

)

µ = µf − (µf − µi) exp(
αn

−Tf

)

αθ = αθf − (αθf − αθi) exp(
αn

−Tf

)

ξc = ξcf − (ξcf − ξci) exp(
αn

−Tf

)

(5.5)

The curing-induced growth of polymer in rigidity is modeled through the reaction

conversion expressions that evaluate the mechanical properties in terms of the degree

of curing as explained in Chapter 3. This behavior is modeled by the switch functions

as shown in (5.5).

We present the evolution of the material properties in Figures 5.30, 5.31, 5.32 and
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5.33. The Lamé constant (Λ) of polymer is 6.21 × 103 MPa. On the other hand, the

Lamé constant (Λ) of monomer is 6.21× 100 MPa as depicted in Figure 5.30.
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Figure 5.30: The evolution of the Lamé constant with respect to the degree of curing

In Figure 5.31, the evolution of the shear modulus evolution is presented. The shear

modulus of polymer is 6.9×102 MPa and the shear modulus of monomer is 6.9×10−1

MPa.
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Figure 5.31: The evolution of the shear modulus with respect to the degree of curing

The thermal expansion coefficient is evaluated with the degree of curing as shown in
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Figure 5.32. The thermal expansion coefficient of polymer is 7.96×10−9 1/K and the

thermal expansion coefficient of monomer is 7.96 × 10−6 1/K. We observe that the

thermal expansion coefficient has a decreasing trend in the reasoning to the degree of

curing.
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Figure 5.32: The evolution of the thermal expansion coefficient with respect to the

degree of curing

The chemical shrinkage coefficient of polymer is −6×10−3 and −6×10−2 is obtained

for monomer as shown in Figure 5.33.
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Figure 5.33: The evolution of the chemical shrinkage coefficient with respect to the

degree of curing
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Similar to the thermal expansion coefficient, the chemical shrinkage coefficient also

has a decreasing trend with respect to curing.

5.3.1 2D Planar Front

In this example, we investigate the mechanical behavior of frontally polymerized ma-

terial which is subjected to heating from right side of the domain as shown in Figure

5.34. The domain size is 3.0 mm × 3.0 mm and we used 4-node quadrilateral ele-

ments size of h = 0.033 mm. Time increment is used ∆t = 10−4 s in the simulation.

q · n = 0

q · n = 0

θ = θtrig q · n = 0

q · n = 0

q · n = 0

q · n = 0q · n = 0

t ≤ ttrig t > ttrig

y
x

Figure 5.34: Boundary conditions for chemo-thermo-mechanical problem

The initial and boundary conditions for thermal problem are described in (5.6).

θ(x, y, 0) = 293 K,

α(x, y, 0) = 0.05,

θ(0, y, t) = 453 K for 0 ≤ t ≤ ttrig,

∇θ|(0,y,t) = 0 for t > ttrig,

∇θ|(x,0,t) = 0 for t ≥ 0,

∇θ|(3,y,t) = 0 for t ≥ 0,

∇θ|(x,3,t) = 0 for t ≥ 0,

(5.6)
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The boundary conditions for mechanical problem are described in (5.7).

ux|(3,0,t) = 0,

uy|(3,0,t) = 0,

ux|(3,3,t) = 0,

uy|(3,3,t) = 0,

uy|(0,3,t) = 0.

(5.7)

The temperature distribution in this example, which has a similar trend to that of

the chemo-thermal simulation, presented in Figure 5.35 since we assumed that the

mechanical part has a little effect on the thermal and chemical part.

(a) (b)

500
θ [K]

293
(c) (d)

Figure 5.35: Thermal variation of chemo-thermo-mechanical coupled problem, a)

t = 0.5 s, b) t = 1.0 s, c) t = 1.5 s, d) t = 2.0 s

We have also described how the temperature distribution propagate in the x-axis di-

rection in Figure 5.36.
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Figure 5.36: The variation of temperature variation with respect to position and time

Similarly, the polymerization propagation shows the same characteristic with chemo-

thermal problem as shown in Figure 5.37.
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Figure 5.37: The evolution of the degree of curing with respect to position and time

In Figure 5.38, it is observed that there is expansion in the places where initially

the heat is applied. However, it is apparent that shrinkage starts at the edges with

the effect of polymerization and this propagates with the polymerization front. An

asymmetric behavior has occurred due to the mechanical boundary conditions.
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Figure 5.38: Displacement simulation u1 for material frontally polymerized at a)

t = 0.5 s, b) t = 1.0 s, c) t = 1.5 s, d) t = 2.0 s

Similarly, we observe a downward deformation at the upper edge and an upward

deformation at the lower edge due to the boundary conditions as shown in Figure

5.39. On the right edge, we observe an outward expansion of the sample.
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Figure 5.39: Displacement simulation u2 for material frontally polymerized at a)

t = 0.5 s, b) t = 1.0 s, c) t = 1.5 s, d) t = 2.0 s

From the stress point of view, the stress is appeared in the region of the front of

polymerization and moving along with as shown in Figure 5.40.
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Figure 5.40: σ11 simulation for material frontally polymerized at a) t = 0.5 s, b)

t = 1.0 s, c) t = 1.5 s, d) t = 2.0 s

Although these stresses do not accumulate in the inner regions due to the boundary

conditions, it is observed that they remain at a significant amount in the side regions.

This causes a loss of strength at the edges of the material because stress accumulations

may act as imperfection, so it is a very crucial problem as these regions are in direct

contact with the outside.
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Figure 5.41: σ22 simulation for material frontally polymerized at a) t = 0.5 s, b)

t = 1.0 s, c) t = 1.5 s, d) t = 2.0 s

If we look at the stress view in σ22 direction, we observe that they accumulate on the

right and left boundaries due to the boundary conditions as seen in Figure 5.41. A

large amount of stress accumulation is observed on the sides of the domain.
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Figure 5.42: σ12 simulation for material frontally polymerized at a) t = 0.5 s, b)

t = 1.0 s, c) t = 1.5 s, d) t = 2.0 s

In terms of shear stress, we obtain compatible results with the stress axial stress. Ac-

cording to these results, it is observed that the material tries to rotate counterclockwise

direction in accordance with the boundary conditions. Thus, shear stress accumula-

tions are observed in Figure 5.42.

According to the results obtained, the deformations and stresses that will occur during

the manufacturing of the polymer are described computationally. These strains can

also be determined experimentally using methods such as the digital image correlation

(DIC).

The serious accumulation of stresses is observed according to the results of analy-

ses, although the magnitude of stress that will affect the strength of the material is

relatively small concerning the strength of the final product. These stresses may dif-

fer according to manufacturing conditions and material properties used in composite

structures, and they may cause serious strength losses.

5.3.2 2D Non-Planar Front

In this example, we investigate the mechanical behavior of a frontally polymerized

fiber-reinforced composite material which is subjected to heating from left side of

the domain as shown in Figure 5.43. The domain size is 3.0 mm × 3.0 mm and we

used 4-node quadrilateral elements of size h = 0.033 mm. The time increment is used
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∆t = 10−4 s in the simulation. Moreover, the thicknesses of the fiber and glass are

0.5 mm and 0.75 mm, respectively.

The initial and boundary conditions for the thermal problem are shown in Figure 5.43

(a) and described in (5.8).

θ(x, y, 0) = 293 K,

α(x, y, 0) = 0.05,

θ(0, y, t) = 453 K for 0 ≤ t ≤ ttrig where y = [0.5, 2.25],

∇θ|(0,y,t) = 0 for t > ttrig,

∇θ|(x,0,t) = 0 for t ≥ 0,

∇θ|(3,y,t) = 0 for t ≥ 0,

∇θ|(x,3,t) = 0 for t ≥ 0.

(5.8)

Also, the boundary conditions for the mechanical part are depicted in Figure 5.43 (b)

and defined as in (5.9)
ux|(x,0,t) = 0,

uy|(x,0,t) = 0,

ux|(x,3,t) = 0,

uy|(x,3,t) = 0

(5.9)
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x
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Figure 5.43: Boundary conditions for the chemo-thermo-mechanical coupled 2D

problem a)thermal boundary conditions, b) for mechanical boundary conditions.
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The temperature distribution in this example, which has a similar trend to that of

the chemo-thermal simulation of the fiber reinforced composite example in Section

5.2.1, is presented in Figure 5.44 since we assumed that the mechanical part has no

effect on the thermal and chemical parts. We can observe the polymerization front

characteristic changing from flat to conical shape.

(a) (b)

500
θ [K]

293
(c) (d)

Figure 5.44: Temperature propagation of chemo-thermo-mechanical coupled prob-

lem for composite sample at a) t = 0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s.

We have extracted sections from 0.25 mm above the fiber in the materials we used in

the simulations above for the temperature and the degree of curing curves presented

in Figures 5.45 and 5.46.

It is observed that the temperature diffusion was much faster in the composite struc-

ture compared to the planar front sample discussed in Section 5.3.1.
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Figure 5.45: Temperature distribution with respect to position and time

Similarly, the polymerization propagation shows the same characteristic as temper-

ature as shown in Figure 5.46. Also, we can observe that the polymerization prop-

agation in a composite structure is faster than the planar front sample discussed in

Section 5.3.1. The use of fiber is important for manufacturing, since this will both

accelerate the polymerization and allow the next monomer to react without diffusing

the heat released from the previous reaction.
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Figure 5.46: Degree of curing evaluation with respect to position and time
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Figure 5.47: Displacement u1 simulation for material frontally polymerized at a) t =

0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4s.

In the deformation part, we observe that high amount of shrinkage occurs in regions

for the junction of the fiber and the monomer due to polymerization. On the other

hand, it is observed that serious expansion is formed in the region between PSU foam

and monomer as well due to the shrinkage of the monomer.
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Figure 5.48: Displacement simulation u2 for material frontally polymerized at a) t =

0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4s.

In the y − y direction, an upward deformation occurred between the monomer and

the fiber as shown in Figure 5.48. The fiber tries to stretch with temperature increase

whereas polymer shrinks due to the polymerization. The monomer expands due to

temperature, but when we compare the expansion and contraction values, it is seen

that the contraction dominates.
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Figure 5.49: σ11 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

In Figure 5.49, huge stress jump occurs between the fiber and the monomer in the x-x

direction.

2.55
σ22 [MPa]

-14.27

(a) (b)

2

1

2

1

(c) (d)

Figure 5.50: σ22 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

Similar to the displacement results, while the fiber expands with temperature, the

monomer shrinks with polymerization and both materials apply the restriction to each

other. Thus, it is observed that compressive stresses (σ11) occur in the fiber and tensile

stresses (σ11) in the monomer. Moreover, it is important to note that it reaches a

relatively large value on Figure 5.49 as about 9 MPa at the corners.
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Figure 5.51: σ12 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

In y-y direction, we can observe that stresses occur between the monomer and the

fiber. There are also stresses around the polymerization front.

Shear stress accumulation is observed in the supports as shown in Figure 5.51. It has

been detected that there are small shear stresses around the front in the inner regions.

According to the results of the analyses, the deformations and stresses that will occur

during the manufacturing of the fiber reinforced composite are examined computa-

tionally. We observe the serious stress accumulations in the composite material, al-

though the magnitude of stress that will affect the strength of the material is relatively

small concerning the strength of the final product similar to planar front example.

However, we observe the stresses between the fiber and the monomer, and it may

cause a severe loss of the strength in the final product. Therefore, this interface will

have a significant effect on the strength of the composite product.

5.3.3 3D Planar Front Examples

In this example, we investigate the behavior of frontally polmerized matieral which

is subjected to heating from left side of the domain as shown in Figure 5.52. Then,

we investigate the chemical, thermal and mechanical evolution in the material. The

domain size is 3.0 mm × 3.0 mm × 1.0 mm and we used the mesh size of h = 0.033

mm. Time increment ∆t = 10−4 s is used in the simulation.

97



q · n = 0

q · n = 0

θ = θtrig

t ≤ ttrig t > ttrig

q · n = 0

q · n = 0q · n = 0

y

z

x

Figure 5.52: Boundary conditions for the 3D chemo-thermo-mechanical coupled

problem.

The boundary conditions for mechanical problem are described in (5.10).

ux|(0,0,z,t) = 0,

uy|(0,0,z,t) = 0,

ux|(0,3,z,t) = 0,

uy|(0,3,z,t) = 0,

uy|(0,3,z,t) = 0.

(5.10)

The initial and boundary conditions for thermal problem are described in (5.11).

θ(x, y, z, 0) = 293 K,

α(x, y, z, 0) = 0.05,

θ(0, y, z, t) = 453 K for 0 ≤ t ≤ ttrig,

∇θ|(0,y,z,t) = 0 for t > ttrig,

∇θ|(x,0,z,t) = 0 for t ≥ 0,

∇θ|(3,y,z,t) = 0 for t ≥ 0,

∇θ|(x,3,z,t) = 0 for t ≥ 0,

∇θ|(x,y,0,t) = 0 for t ≥ 0,

∇θ|(x,y,1,t) = 0 for t ≥ 0,

(5.11)

We have also compression-only springs through the bottom part of the domain in

order to observe the upward displacements properly.

The temperature distribution of this problem, has a similar trend to that of previous

planar front simulations, presented in Figure 5.53.
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Figure 5.53: Temperature propagation of chemo-thermo-mechanical 3D coupled

problem at a) t = 0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s.

We have also depicted the temperature distribution propagation in thr x-axis direction

in Figure 5.54. The section is taken through the midpoint of the domain.
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Figure 5.54: Temperature propagation of chemo-thermo-mechanical 3D coupled

problem at a) t = 0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s.

Similarly, the polymerization propagation shows the similar graphical characteristic

with the temperature profile as shown in Figure 5.55.

99



0.5 1.00.0

Position [mm]

0.0

0.1

D
eg

re
e

of
C

ur
in

g

1.5 2.0 2.5 3.0

0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8
t = 0.2 s
t = 0.6 s
t = 1.0 s
t = 1.4 s

Figure 5.55: The polymerization propagation of chemo-thermo-mechanical 3D cou-

pled problem at a) t = 0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s.

In Figure 5.56, we observe that the top of the domain displaces the reverse direction

of 1-1 due to shrinkage and boundary conditions. On the other hand, it is observed

that the inside and bottom of the domain move the the direction of 1-1. Moreover, the

shrinkage deformations also progress with the propagation of the polymerization.
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Figure 5.56: Displacement u1 simulation for material frontally polymerized at a) t =

0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4s.

In 2-2 direction, the inward displacements around the boundary are observed due to

the shrinkage and boundary conditions as shown in Figure 5.57.
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Figure 5.57: Displacement simulation u2 for material frontally polymerized at a) t =

0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4s.

Also, it is observed that the material is trying to move upwards direction. On the other

hand, the left edge of the domain moves to downward direction due to the boundary

conditions as shown in Figure 5.58.
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Figure 5.58: Displacement simulation u3 for material frontally polymerized at a) t =

0.2 s, b) t = 0.6 s, c) t = 1.0 s, d) t = 1.4s.

In the stress point of view, stresses are accumulated more on the left and right side of

the domain due to the boundary conditions. Moreover, we observe the stress accumu-

lations in the inner side of the domain as shown in Figure 5.59.
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Figure 5.59: σ11 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

In the 2-2 direction, we also observe the stress accumulations on the left and right side

of the domain but the stress values are not as much as high in the 1-1 direction. The

stress accumulations are dependent on the boundary conditions as shown in Figure

5.60.
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Figure 5.60: σ22 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

In the 3-3 direction, the stress accumulations are observed the regions similar to the

1-1 and 2-2 directions as shown in Figure 5.61. They are also dependent on the

boundary conditions.
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Figure 5.61: σ33 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

Based on the results of analyses, we have also shear stress accumulations which are

represented in Figure 5.62, 5.63, 5.64.
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Figure 5.62: σ12 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

For σ23 accumulations:
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Figure 5.63: σ23 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

For σ13 accumulations:

(a) (b)

1.05

σ13 [MPa]

−2.40

(c) (d)

2

3

1

2

3

1

Figure 5.64: σ13 simulation for material frontally polymerized at a) t = 0.2 s, b)

t = 0.6 s, c) t = 1.0 s, d) t = 1.4 s

According to the results of the analysis, we observe that the stress accumulations

on the left and right sides of the domain due to the boundary conditions. These

stress accumulations act as imperfections, so they lead to strength loss. The material

produced by frontal polymerization is used in the high-performance required area.

Therefore, they make the importance of the prediction of these stress accumulation

even more pronounced.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Summary and Conclusions

In this thesis, the thermodynamical constitutive framework and computational model

have been developed for the frontally polymerized materials. Frontal polymerization

is an alternative curing method based on a self-propagating, self-sustained exothermic

reaction front that transforms liquid monomers into cured polymers. Recently, it has

been at the forefront of studies on the literature regarding self-autonomous materials.

Therefore, many researchers have worked on the thermal and chemical aspects of this

emerging curing method. However, until now, to our best knowledge nobody has

conducted a study on the thermomechanical aspects of frontal polymerization in the

literature. Thus, there is a gap in the scientific literature regarding this issue. In this

thesis, a computational model has been developed for the chemo-thermal, and then

the chemo-thermo-mechanical coupled problem with the motivation of being the first

work to account for the thermo-mechanical coupling.

In Chapter 1, we have overviewed for milestone studies regarding the chemical, ther-

mal, and mechanical aspects of polymerization in the literature. We have examined

the thermodynamical settings of each study and paid attention to their mechanical

approach during the polymerization process. Then, we have reviewed the papers in-

vestigating the chemical and thermal states of frontal polymerization, and we notice

that Sottos, Geubelle, and coworkers have recently done remarkable studies in this

field. Thus, we have developed our model based on their studies [3].

The thermodynamical framework for frontal polymerization technique has been de-

veloped by satisfying thermodynamical restrictions in Chapter 2. We have introduced
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the governing differential equations for the solution of the chemo-thermo-mechanical

problem of frontal polymerization. Then, we have worked on the theory of frontal

polymerization technique and polymerized material behavior.

We have developed an incremental constitutive modeling approach to the chemo-

thermo-mechanical coupling for material whose properties evolve through curing in

Chapter 3. We have worked on the ordinary differential equation regarding the chem-

ical evolution of curing with the help of the Newton-Raphson method. The contri-

bution of the term that arises from the chemical heating part into the thermal tangent

term is removed by using a staggered solution approach. Thanks to this method, the

capability of algorithm and computational efficiency are increased. Then, we have

developed the incremental elastic model to predict the stress accumulations that accu-

mulates and evolves due to the chemical shrinkage and thermal expansion. Moreover,

the thermoelastic model also allows the material properties to evolve with curing, and

this satisfies the thermodynamical consistency mentioned in the study conducted by

Höfer and Lion [13]. The whole derivation is arranged in the Lagrangean setting and

then they are transformed to Eulerian counterparts by push forward operation for the

finite element discretization.

In Chapter 4, the finite element method has been developed for the solution of the cou-

pled governing differential equations. Since the staggered solution method has been

used, the coupled terms were eliminated and the chemo-thermo-mechanical coupled

problem was solved as two independent problems at a time step. During this solution,

the temperature values have been taken from the previous time step, and the chemical

shrinkage and thermal expansion values have been calculated using this value. Then,

the corresponding stress terms have been obtained.

We have considered representative numerical examples for the chemo-thermal and

chemo-thermo-mechanical aspects of frontal polymerization in Chapter 5. First we

have performed spatial and temporal convergence studies to show the accuracy of our

model, and as a result of these studies, we have obtained the optimum size of mesh

and time step. Then, we have worked on chemo-thermal numerical examples. These

examples are concerned with the case of a planar front, a non-planar front for a com-

posite structure, and a planar front with two-side heating. We have examined that
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the chemical and thermal properties of frontal polymerization with these examples.

We have concluded that there must be an optimum fiber ratio for the polymerization

to be effective for composite structures through our studies. Then, we have calcu-

lated and simulated the stress accumulations in the material using our chemo-thermo-

mechanical model analyses and the obtained results have revealed that a significant

amount of accumulated stresses may lead to a strength loss in the final product poly-

merized with this method. Furthermore, it has been found that the nature and latent

of the stress accumulations depends on both mechanical and thermal boundary con-

ditions. Another important factor has strong effect on the stress accumulations in the

internal constraints that are introduced by the composite structure of polymers and

the uneven distribution of the degree of polymerization in the product.

6.2 Challenges

The nature of the problem requires a small mesh size and a small time step around the

sharp gradient in temperature and the degree of curing front. This situation increased

the computational cost of the solution to this problem. In addition, since there was no

study in the literature in which both incremental and decomposed deformation gradi-

ents, it was a challenging task how to calculate stress. Also, the limited experiments

on this field related to stress-strain made it difficult to evaluate the importance of the

problem in practice.

The shrinkage of the material due to polymerization after being exposed to very high

temperatures caused stability and convergence problems in the solution method.

6.3 Future Studies

The thermodynamical framework that we have developed allows for an incremen-

tal elastic material analysis. In future studies, this can be extended to viscoelastic

and viscoplastic material models. Moreover, one can work on optimization studies

for the ideal polymerization process with different fiber types and ratios and heating

protocols. In addition, a model can be developed that considers the evolution mate-
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rial properties with respect to the glass transition temperature. These are the studies

planned to be conducted in the future.

108



REFERENCES

[1] I. D. Robertson, M. Yourdkhani, P. J. Centellas, J. E. Aw, D. G. Ivanoff, E. Goli,

E. M. Lloyd, L. M. Dean, N. R. Sottos, P. H. Geubelle, J. S. Moore, and S. R.

White, “Rapid energy-efficient manufacturing of polymers and composites via

frontal polymerization,” Nature, vol. 557, p. 223227, 2018.

[2] P. Sikdar, M. M. Uddin, T. Dip, S. Islam, M. S. Hoque, A. Dhar, and S. Wu,

“Recent advances in smart hydrogels synthesis,” Materials Advances, 2021.

[3] E. Goli, N. Parikh, M. Yourdkhani, N. Hibbard, J. Moore, N. Sottos, and

P. Geubelle, “Frontal polymerization of unidirectional carbon-fiber-reinforced

composites,” Composites Part A: Applied Science and Manufacturing, vol. 130,

p. 105689, 2020.

[4] L. M. Dean, Q. Wu, O. Alshangiti, J. S. Moore, and N. R. Sottos, “Rapid syn-

thesis of elastomers and thermosets with tunable thermomechanical properties,”

ACS Macro Letters, vol. 9, no. 6, 2020.

[5] I. Robertson, L. Dean, G. Rudebusch, N. Sottos, S. White, and J. Moore, “Alkyl

phosphite inhibitors for frontal ring-opening metathesis polymerization greatly

increase pot life,” ACS Macro Letters, vol. 6, pp. 609–612, 2017.

[6] P. M. Goldfeder and V. A. Volpert, “A model of frontal polymerization using

complex initiation,” Mathematical Problems in Engineering, vol. 5, p. 745605,

1999.

[7] W. Callister and D. Rethwisch, Materials Science and Engineering. 2011.

[8] Y. Chekanov, D. Arrington, G. Brust, and J. A. Pojman, “Frontal curing of epoxy

resins: Comparison of mechanical and thermal properties to batch-cured mate-

rials,” Journal of Applied Polymer Science, vol. 66, no. 6, pp. 1209–1216, 1997.

[9] S. Davtyan, A. Berlin, and A. Tonoyan, “Advances and problems of frontal poly-

merization processes,” Review Journal of Chemistry, vol. 1, pp. 56–92, 2011.

109



[10] J. Pojman, R. Craven, A. Khan, and W. West, “Convective instabilities in travel-

ing fronts of addition polymerization,” Journal of Physical Chemistry, vol. 96,

pp. 7466–7472, 1992.

[11] Y. Gao, F. Shaon, A. Kumar, S. Bynum, D. Gary, D. Sharp, J. A. Pojman, and

P. H. Geubelle, “Rapid frontal polymerization achieved with thermally conduc-

tive metal strips,” Chaos: An Interdisciplinary Journal of Nonlinear Science,

vol. 31, no. 7, p. 073113, 2021.

[12] E. Frulloni, M. Salinas, L. Torre, A. Mariani, and J. Kenny, “Numerical model-

ing and experimental study of the frontal polymerization of the diglycidyl ether

of bisphenol a/diethylenetriamine epoxy system,” Journal of Applied Polymer

Science, vol. 96, pp. 1756 – 1766, 2005.

[13] P. Höfer and A. Lion, “On the phenomenological representation of curing phe-

nomena in continuum mechanics,” Archive of Mechanics, vol. 59, p. 5989, 2007.

[14] P. Haupt and A. Lion, “On finite linear viscoelasticity of incompressible

isotropic materials,” Acta Mechanica, vol. 159, pp. 87–124, 2002.

[15] M. Hossain, G. Possart, and P. Steinmann, “A small-strain model to simulate the

curing of thermosets,” Computational Mechanics, vol. 43, p. 769779, 2009.

[16] M. Hossain, G. Possart, and P. Steinmann, “A finite strain framework for the

simulation of polymer curing. part i: elasticity,” Computational Mechanics,

vol. 44, p. 621630, 2009.

[17] A. Lion and P. Höfer, “On the phenomenological representation of curing phe-

nomena in continuum mechanics1,” Archives of Mechanics, vol. 59, 2007.

[18] M. Hossain, G. Possart, and P. Steinmann, “A finite strain framework for the

simulation of polymer curing. part ii. viscoelasticity and shrinkage,” Computa-

tional Mechanics, vol. 46, p. 363375, 2009.

[19] P. Sreejith, K. Kannan, and K. Rajagopal, “A thermodynamic framework for ad-

ditive manufacturing, using amorphous polymers, capable of predicting residual

stress, warpage and shrinkage,” International Journal of Engineering Science,

p. 103412, 2021.

110



[20] K. Rajagopal and A. Srinivasa, “A thermodynamic frame work for rate type

fluid models,” Journal of Non-Newtonian Fluid Mechanics, vol. 88, pp. 207–

227, 2000.

[21] T. Sain, K. Loeffel, and S. Chester, “A thermo-chemo-mechanically coupled

constitutive model for curing of glassy polymers,” Journal of the Mechanics

and Physics of Solids, vol. 116, 2018.

[22] T. N’Guyen, S. Lejeunes, D. Eyheramendy, and A. Boukamel, “A thermody-

namical framework for the thermo-chemo-mechanical couplings in soft materi-

als at finite strain,” Mechanics of Materials, vol. 95, 2016.

[23] R. Saito, Y. Yamaguchi, S. Matsubara, S. Moriguchi, Y. Mihara, T. Kobayashi,

and K. Terada, “Decoupled two-scale viscoelastic analysis of frp in considera-

tion of dependence of resin properties on degree of cure,” International Journal

of Solids and Structures, vol. 190, pp. 199–215, 2020.

[24] Y. Yamanaka, S. Matsubara, R. Saito, S. Moriguchi, and K. Terada, “Thermo-

mechanical coupled incremental variational formulation for thermosetting resins

subjected to curing process,” International Journal of Solids and Structures,

vol. 216, pp. 30–42, 2021.

[25] E. Tadmor, R. Miller, and R. Elliott, “Continuum mechanics and thermodynam-

ics,” Continuum Mechanics and Thermodynamics, 2011.

[26] M. Silhavy, The Mechanics and Thermodynamics of Continuous Media. 2002.

[27] A. Munjiza, E. Rougier, and E. Knight, Large Strain Finite Element Method: A

Practical Course. 2014.

[28] N. Ottosen and M. Ristinmaa, The Mechanics of Constitutive Modeling. 2005.

[29] P. Haupt, Continuum Mechanics and Theory of Materials, vol. 55. 2002.

[30] B. Coleman and M. Gurtin, “Thermodynamics with internal state variables,”

The Journal of Chemical Physics, vol. 47, pp. 597–613, 1967.

[31] K. Loeffel and L. Anand, “A chemo-thermo-mechanically coupled theory for

elastic–viscoplastic deformation, diffusion, and volumetric swelling due to a

111



chemical reaction,” International Journal of Plasticity, vol. 27, pp. 1409–1431,

2011.

[32] Z. Bazant, “Thermodynamics of solidifying or melting viscoelastic material,”

Journal of the Engineering Mechanics Division, vol. 105, pp. 933–952, 1979.

[33] R. Lackner and H. Mang, “Chemoplastic material model for the simulation of

early-age cracking: From the constitutive law to numerical analyses of massive

concrete structures,” Cement and Concrete Composites, vol. 26, pp. 551–562,

2004.

[34] R. Taylor and S. Govindjee, “FEAP-finite element analysis program,” 2017.
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