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ABSTRACT

VISUAL FIELD TESTING USING FORECASTING AND VIRTUAL
REALITY

Bülbül, Emre
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

February 2022, 60 pages

The standard method for assessing a patient’s visual field is visual field testing. Many

diseases, including glaucoma, which affects more than 80 million people, require vi-

sual field testing for monitoring and diagnosis. The testing is done by sending light

to fixed locations with different luminosities while the patient is fixating at a certain

point, then the sensitivities to light at each location are determined by recording the

responses of the patient to seen stimuli. Because of their form and digital screens,

virtual reality headsets have lately begun to be utilized to conduct visual field exam-

inations. However, since the testing duration is long, it causes fatigue in patients,

which decreases cooperation and test accuracy. Also, it limits how many tests a clinic

can conduct in a day. In this thesis, using a digital screen, the number of testable point

locations is increased, and the effect of using an optimal subset of locations, which is

found by employing a reinforcement learning method to decrease test duration, is in-

vestigated. Also, the effect of using forecasted future visual field test results in testing

to the test duration is compared with standard testing strategies.
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ÖZ

ÖNGÖRÜ VE SANAL GERÇEKLİK KULLANILARAK GÖRME ALANI
TESTİ

Bülbül, Emre
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Şubat 2022 , 60 sayfa

Bir hastanın görme alanını değerlendirmenin standart yöntemi görme alanı testidir.

80 milyondan fazla insanı etkileyen glokom dahil birçok hastalık, takip ve teşhis için

görme alanı testi gerektirir. Hasta belirli bir noktaya sabitlenirken farklı parlaklıklara

sahip sabit yerlere ışık gönderilerek test yapılır, daha sonra hastanın görülen uya-

ranlara verdiği tepkiler kaydedilerek her bir lokasyondaki ışığa duyarlılıkları belirle-

nir. Sanal gerçeklik gözlükleri, formları ve dijital ekranları nedeniyle son zamanlarda

görme alanı testlerini gerçekleştirmek için kullanılmaya başlandı. Ancak test süresi-

nin uzun olması hastalarda yorgunluğa neden olmakta, bu da kooperasyonu ve test

doğruluğunu azaltmaktadır. Ayrıca, bir kliniğin bir günde kaç test yapabileceğini sı-

nırlar. Bu tezde, bir dijital ekran kullanılarak, test edilebilir nokta konumlarının sayısı

artırılmış ve takviyeli öğrenme yöntemi kullanılarak bulunan konumların optimal bir

alt kümesinin kullanılmasının test süresini kısaltmaya etkisi araştırılmıştır. Ayrıca,

testte öngörlen gelecek görme alanı test sonuçlarının kullanılmasının test süresine

etkisi standart test stratejileri ile karşılaştırılır.
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CHAPTER 1

INTRODUCTION

Perimetry or Visual Field Testing is a standard method for assessing a patient’s visual

field in ophthalmology and optometry. It measures the patient’s visual function over

their whole field of vision. Visual Field Analyzers (or Perimeters) are the equipment

that is utilized to do this examination. Perimetry is used for a variety of purposes,

including the diagnosis of pathologies, the assessment of disease state, the monitoring

of pathologies over time to identify progression or disease stability, the evaluation of

treatment efficacy, and the testing of visual capacity. The most common use case of

Visual Field Analyzers is aiding the diagnosis of glaucoma, which is estimated that by

the year 2040, it will affect more than 118 million people worldwide [17]. However,

it can be used in the diagnosis of many other diseases like brain tumors and a variety

of retinal diseases. Throughout this thesis, perimetry testing and visual field testing

are used interchangeably.

1.1 Motivation and Problem Definition

Perimetry tests are vital tools for aiding the diagnosis and monitoring of countless

diseases. However, each test can take from 3 minutes to 15 minutes per eye, depend-

ing on the type. This can be tiring for patients. Since perimetry is a subjective test that

heavily depends on patient attention and cooperation, increasing test duration impacts

the reliability of the results. This effect is more prominent in elderly patients, who

are the majority of the patients that take perimetry tests.

Conventionally, perimetry test is conducted with automated machines that have mounted

light bulbs inside a hemisphere that emit light in a given luminosity and duration de-

1



termined by an algorithm. The lowest intensity of light that can be seen by the patient

at a given point is saved as the threshold sensitivity of that location, and it is repre-

sented in decibels away from the maximum intensity.

With the developing technology, a new alternative to those conventional devices has

emerged. The alternative consists of a proprietary or commercial Virtual Reality

Headset and a software specifically tailored to the technical specifications of the de-

vice to conduct perimetry tests. Unlike the conventional devices where light bulbs are

mounted in fixed positions, VR headsets have continuous, high-resolution screens.

These high-resolution screens give the ability to test any point on the human visual

field, contrary to the fixed-positioned test points on conventional machines. Stimuli

on conventional machines are presented using light bulbs. In this thesis, this ability is

used to find new test points that have non-conventional positions to estimate the same

visual field representation with less number of points is investigated. Therefore, by

testing fewer number of locations, conducting shorter visual field tests is possible.

Another condition that affects test duration is the starting luminosity at the tested lo-

cations. The closer the starting point to the patient’s threshold sensitivity, the faster

the test duration. Recently, with the integration of convolutional filters, novel meth-

ods employing neural network models are very successful in forecasting feature VF

results by incorporating one or more past VF test results. This thesis compares the

improvement in duration by simulating a benchmark perimetry test (e.g., Full Thresh-

old) with a forecasted VF test result.

1.2 Contribution of the Thesis

In this thesis, two different ways of decreasing VF tests are proposed. The first one

is by decreasing the number of test locations. The second one is by adjusting starting

luminosities of test locations.

To decrease test duration by reducing the number of test locations, a reinforcement

learning method that extracts new and fewer points by using the continuousness of a

VR headset screen is proposed. Only a single VF test is needed from a patient for this

2



(a) Humphrey Visual Field Analyzer [1]. (b) Oculera Visual Field Analyzer [14].

Figure 1.1: Two different technologies of Visual Field Analyzers. a. Conventional. b.

VR Headset based.

method. RL agent explores new VF test positions between the conventional points

to check if multiple points can be represented by a single one in the area of replaced

points.

To decrease test duration by adjusting starting luminosities of test locations, the output

of a forecasting neural network is used. The CascadeNet neural network model is

trained using the Rotterdam VF dataset [5]. The output of the forecasting network is

used as the starting luminosities. The test duration is simulated and compared with

Full Threshold testing strategy with starting luminosities as age-normal values [3],

previous VF test, and forecasted values.

The structure of the thesis is as follows; in Chapter 2 the background information

about the common concepts of the thesis is given and in Chapter 3, literature review

is detailed. In Chapter 4, the methods that are proposed and used in simulations

and testing is documented and in Chapter 5, the results are presented and discussed.

Finally, Chapter 6 concludes the thesis.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Human Visual Field

A person’s visual field is defined as the area in which he or she can see at any given

time relative to the direction of fixation, without moving the head or eyes (i.e., it

specifies the bounds of the area beyond which nothing can be seen). The extent of

one’s visual field is an important aspect of one’s visual function since a restricted

visual field has a major detrimental influence on everyday activities, and as a result,

quality of life.

In the visual field of each eye there is an area that is called the blind spot where there

is no vision. The position of the blind spot corresponds to the optic nerve head’s

location where there are no photoreceptors. From the center of the eye, the blind spot

is 1.5° below the horizontal line and 12°-15° to the right for the right eye and vice

versa in the left eye.

Figure 2.1: Monocular visual field. [18]
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2.2 Sensitivity To Light In the Visual Field

To represent the human visual accurately, it is not enough to just test where a patient

sees but to test how a patient sees is also necessary. To describe how a patient sees at

a given moment sensitivity to light is measured in decibels with the formula below,

Threshold V alue = 10 ∗ log(Lmax/L) (2.1)

Lmax is the maximum luminance that can be displayed by the VFA and L is the lumi-

nance of the stimulus, and the resulting threshold value is the sensitivity threshold at

the given point.

Most VFAs have a representation range of 0 to 50.

2.3 Test Strategies and Test Patterns

There are many different perimetry testing strategies and test patterns. The most

common test patterns are 24-2 and 30-2. The first number represents the degree of

visual field testing from the center to a single corner, meaning 60° of the testing area

in an axis. The second point represents two extra points placed in the blind spot. 30-

2 pattern tests 76 locations and 24-2 tests 54 locations, proportionally changing test

duration with the number of tested points.

Each perimetry testing strategy, in its essence, is a ladder algorithm, changing di-

rection with the response of the patient. The Full Threshold algorithm, which is a

staircase strategy, is explained in Algorithm 1.

2.4 Representation of Test Results

Perimetry test thresholds for SAP are presented in a single page layout per eye. The

threshold values are shown in a 2D mapping where points are placed relative to the

positions they are shown during the test. All other metrics are derived from threshold

6



Algorithm 1 Full Threshold
while There are non-tested locations do

Pick a location

if Never tested before then

Test the location and record if seen or not

Record last tested luminosity value in dB

else if First reversal then

if Last answer is seen then

Test last luminosity + 4bB

else

Test last luminosity - 4bB

if Answer is not same as the last answer then

Mark as Second Reversal

else if Second Reversal then

if Last answer is seen then

Test last luminosity - 2bB

else

Test last luminosity + 2bB

Mean of the last positive and first negative patient’s reply is recorded as

threshold value.

Mark as completed

7



Figure 2.2: 24-2 and 30-2 test patterns. [18]

values and the patient’s age. Each VFA has its own result sheet and way of displaying

results. Figure 2.3 shows an example VFA result sheet.

Threshold values are the resulting light sensitivities of the eye in decibel scale. The

grayscale map is only a graphical representation to easily identify defects and de-

pressed areas. Dark portions represent the lower sensitivities, while lighter portions

represent higher sensitivities. Total deviation gives the difference between normal

values of the population categorized by age and the measured values. Pattern devia-

tion, on the other hand, removes the measurement losses that can be present because

of cataracts, uncorrected refractive error, and other unrelated eye conditions. There-

fore, local problems are highlighted in this map, and because of this, it is the one that

used in diagnosis mostly. The smaller maps right below the TD and PD maps are

statistical maps showing the probability of seeing such a result in the population of

the same age.

8



Figure 2.3: Example VFA result sheet.
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2.5 Reinforcement Learning Methods

2.5.1 Maskable Proximal Policy Optimization

As the reinforcement learning method the Maskable PPO [21] is used. Maskable PPO

is a version of the proximal policy optimization [19]. It implements an action mask

that indicates if an action is valid or not. In bigger action spaces like those used here,

eliminating invalid actions speeds up the process and increases accuracy.

The main contributions of the PPO algorithm are; the Clipped Surrogate Objective

and for each policy update, performing multiple epochs of gradient ascent. The

vanilla policy gradient approach tracks the impact of actions using the log probability

of the action. The Clipped Surrogate Objective is a simple drop-in substitute for the

vanilla policy gradient. The clipping restricts the effective change that can be made

at each step to increase stability, and the minimization allows for error correction if

the error becomes too significant.

Unlike traditional policy gradient approaches, PPO allows for numerous epochs of

gradient ascent on samples without causing destructively large policy changes due to

the Clipped Surrogate Objective function. This helps us to extract more information

from the data while also reducing sample inefficiency. PPO performs the policy with

N parallel actors, each gathering data, and then using the Clipped Surrogate Objective

function, it samples mini-batches of this data to train for K epochs. Furthermore, in

practically all continuous control environments, PPO outperforms prior approaches

such as A2C, A3C, and Vanilla PG.

2.6 Forecasting Models

2.6.1 CascadeNet

CascadeNet [13] is the main neural network model that is used in this study. More-

over, it is the most performant compared to the other networks that have been trained.

CascadeNet, in its essence, is a modified ResNet [7] model. It introduces the cascade

10



block concept. Cascade blocks are internal convolutional paths to forward knowledge

from the middle and previous ones. The number of convolutional layers is denoted by

adding a number at the end of the model name. For example, CascadeNet with five

convolutional layers is called CascadeNet-5. Figure 2.4 shows a part of the cascade

architecture.

Figure 2.4: A sample partial representation of CascadeNet model architecture. [13]
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CHAPTER 3

LITERATURE REVIEW

3.1 Decreasing Visual Field Test Duration

The duration of a Visual Field Test has always been a concern for the patients and the

doctors since the duration of the test affects the reliability of the test due to patient fa-

tigue. Also, the duration affects patient motivation and keeps them from taking their

periodic examinations. Because of the aforementioned reasons, researchers have al-

ways been looking for different methods attacking different aspects of the VF test to

decrease test duration. For example, decreasing the number of stimuli presented, de-

creasing the number of locations tested, decreasing inter-presentation times of stimuli,

and many others.

One of the main focus points for decreasing test duration in this research is using

sparse observation of points. There are similar studies that try using sparse observa-

tions to decrease test time. For example, authors in [12] used a training set to deter-

mine which locations are more prominent to reconstruct the entire VF from sparse ob-

servations and used the resulting weights in new examinations for the reconstruction

task. This method is called Sequentially Optimized Reconstruction Strategy (SORS).

It is shown that healthy eyes need fewer points for accurate testing. On the other hand,

glaucomatous eyes needed more points for similar accuracy, and while the number of

tested locations increased, the accuracy also increased in both cases. This relation can

be seen in Figure 3.1.

13



Figure 3.1: A comparison of the number of tested locations and resulting VF repre-

sentations for SORS. [12]

In [11], while taking SORS as a basis, researchers developed a patient-attentive se-

quential strategy (PASS) for VF testing. PASS is a RL based method. PASS uses

two independent networks for VF testing, a policy network and a reconstruction net-

work. In its simplest terms, reconstruction network reconstructs VFs from sparse

observations and the policy network decides which location to test after observing

the reconstructed VF.

3.2 Forecasting Future Visual Field Results

Even though there are a lot of studies that examine visual field progression [26] [27]

[10] [15], there are a handful of studies that forecast the progression. Authors in [20]

also predict visual field progression they use a 3 previous tests to forecast 3 visual

tests for different periods in the future and use those results for prediction.

In [25] researchers use nearly 25,000 VF tests to train a CascadeNet-5 neural network

model to predict future visual field tests for 1 to 5.5 years from a single test. It differs

from other methods because it only uses a single VF test and predicts with a PMAE
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Table 3.1: Different NN models that used in [25]

Layers (n) Batch Size Optimizer with learning rate Space Complexity (MB) Parameters

FullyConnected 2 32 Adam1x10-3 4 336,968

FullBN-3 10 32 Adam1x10-3 23 1,921,795

FullBN-5 16 32 Adam1x10-3 40 3,472,771

FullBN-7 22 32 Adam1x10-3 58 5,023,747

Residual-3 12 32 Adam1x10-3 27 2,332,163

Residual-5 18 32 Adam1x10-3 45 3,883,139

Residual-7 24 32 Adam1x10-3 63 5,434,115

Cascade-3 10 32 Adam1x10-3 81 6,992,086

Cascade-5 16 32 Adam1x10-3 238 20,694,754

of 2.47dB. The equation 3.1 shows the PMAE calculation, xi representing a point that

belongs to the forecasted VF for location i and yi representing a point that belongs to

the actual result for location i. n represents the number of point locations for the VF.

Figure 3.2 shows example results of the aforementioned method for different time

periods.

Also, authors compared 9 different NN models for the forecasting task. Cascade-5

was the best performing one between them and it has the highest number of trainable

parameters. Different NN models compared can be seen in Table 3.1. Results are

presented in Chapter 5.

PMAE =
1

n
Σn

i=1|xi − yi| (3.1)

Long Short-Term Memory (LSTM)[9] is a type of recurrent neural network (RNN)

that has feedback connections on previous neurons on the network. Because of this

ability, LSTM can store memory type information from previous states. Moreover,

LSTM can be used with time-series data. A different method is employed for fore-

casting in [16] with LSTM. Previous 5 VF tests are given as input to a 6-cell LSTM

network last cell only containing the duration to the forecasted test. The duration be-

tween tests are not fixed, and given to the model in days as input. Other cells contain

the TD values, reliability metrics and time displacement values. Figure 3.3 shows the

LSTM architecture being used. The method outperformed Point-wise Linear Regres-
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Figure 3.2: Two example results of the model in [25] for different glaucoma types

and time periods.

sion models. However, it still requires more number of previous VF tests than other

methods.

A second class of methods can be named as Point-wise Linear Regression models.

The method in [26] requires 5 VF tests and minimum of 10 months of prediction du-

ration. Authors, while outperforming previous linear methods, took test-retest vari-

ability into consideration. This test-retest variability is found by testing patients in

periods which no progression is possible. For example, 10 tests in 10 weeks. This

measurements provided a baseline for prediction accuracy, which showed a possible

of 3.08dB mean error. In [6] authors used least absolute shrinkage and selection op-

erator regression to decrease required number of VF tests from 5 to 3. Comparing

different linear regression techniques, authors concluded that, with Lasso regression,

prediction error varied between 2.0 and 2.2dB with 3 past VFs. Time between each

test was nearly a year.

The first class of methods, different from the second class, can predict possible non-

linear progression, since they use NN based methods. The limitation of linear pro-

gression prediction is discussed in [26].
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Figure 3.3: LSTM model in [16].
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CHAPTER 4

PROPOSED METHODS

4.1 Increasing Available Test Locations by Using VR Headset Screens to Test

Fewer Locations

VR headset screens are high resolution and this can be used in favor of Visual Field

Testing. Proposed method here is, basically, showing stimuli in locations that nor-

mally fall between the conventional locations of a 24-2 VF test to represent those

points with only a one single point. This is because, if there are similar valued points

in the same area, all the points tested in that will likely yield similar values. The

question here is whether a reinforcement learning agent learns to find those points.

To achieve this, firstly, a VF is needed to be represented in an image form. Then it is

assumed that each location in VF has a polynomial relationship with its neighboring

points. With that assumption, by up-scaling the VF image representation, label values

for training agent is generated. Now, RL agent’s job is to find optimal locations to

achieve the same VF by observing fewer points.

4.1.1 Interpolation of Missing Points

Originally, VF test points are located at specific locations in the hemisphere of a

conventional VFA represented by angle values in x and y. However, for a VR based

VFA, point locations are projected to a flat screen but, for the sake of this thesis, the

point locations will be referred by their angle positions. The X and Y values of point

locations can only be one of the unique values in,
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Figure 4.1: Flow diagram of the method.
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(a) Sample VF result represented as an image. (b) A VF result up-scaled to 28x28 by cubic inter-

polation

Figure 4.2: Sample VF result as an image and the up-scaled one with cubic interpo-

lation.

A = [−27,−21,−15,−9,−3, 3, 9, 15, 21, 27] (4.1)

for the 24-2 test pattern. The VF is represented as a 2 dimensional array like in the

Figure 4.6a. Positions of points are the index of the angle value in A for the x axis

and the inverse for y axis. Resulting matrix is a 10x10 matrix. For this method, only

the right eye’s VF result shape is used, and left VF representations are flipped. For

the right eye pattern, there is no point in the 27 degree, and in the 24-2 pattern there is

no point in -27 and 27 degrees at the y axis, so it can be represented as a 8x9 matrix.

Untested points are represented by a -1 value.
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X =



−1 −1 −1 0 10 24 22 −1 −1

−1 −1 0 18 16 20 11 21 −1

−1 0 3 23 24 22 27 24 26

0 0 10 19 0 28 0 25 29

0 0 0 27 32 31 27 0 28

−1 0 10 27 29 30 31 28 28

−1 −1 18 15 24 27 31 26 −1

−1 −1 −1 8 27 26 28 −1 −1


(4.2)

However, we want to use the continuous nature of a digital screen. Therefore, more

point locations are needed. Even though, virtually any angle value can be used, within

the limits of the specific VR headset’s capabilities of course, for the sake of simplicity,

by adding 2 more angle locations between each available angle the scaled angle array

A’ is generated.

A′ = [−27,−25,−23,−21,−19,−17,−15,−13,−11,−9,−7,

−5,−3,−1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27]

Again, to construct a matrix the index of angle values in A’ is used for x axis and the

inverse for y axis. This results in a 28x28 matrix. Since, only the 54 points coming

from the 24-2 test pattern is filled, this matrix is very sparse. Figure 4.3 shows the

locations of points that have a value other than -1.

To use the matrices for training purposes, we need to fill the empty cells. The purpose

for this operation will be clear in the following chapters of the thesis. To fill the empty

cells, multivariate interpolation techniques are used. For interpolation, a python pack-

age called scipy [23] is used. Possible options for multivariate interpolation can be

seen in Figure 4.4.
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Figure 4.3: Point locations of 24-2 shown on the sparse up-scaled matrix sized 28x28.
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Figure 4.4: Possible options for multivariate interpolation.
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Figure 4.5: Interactions of Maskable PPO Agent with the RL environment.

4.1.2 Training the Reinforcement Learning Agent

After the interpolation is done, the RL agent is trained to find the optimal points for

estimating the values of 54 points of the 24-2 test pattern, but with fewer points. The

number of points to observe is supplied to the agent at the beginning of the test.

For each patient, a single VF test is supplied to the environment. While training,

agent selects a location on the 28x28 matrix, meaning there are 784 available actions.

After each action, environment interpolates the missing points and extracts the points

that correspond to the original ones at the 24-2 test pattern. The difference between

the extracted points on the newly interpolated map, and the original points are used

to calculate RMSE as the reward. Equation 4.4 shows the RMSE calculation, xi

representing a point that belongs to the newly interpolated VF map at location i and

yi representing a point that belongs to the actual result at location i. n is the number

of locations. Used action is added to the observations array and flagged at the masked

actions array. Masked actions array is a boolean array with available actions as True
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and unavailable actions as False.

Mask = [True, True, False, ..., T rue, False, False] (4.3)

After each step, action mask, observed locations history and reward is supplied to the

agent. After the training reached to a reasonable RMSE value, training is stopped and

a validation iteration is run. The output of the final run is the optimized test locations.

Figure 4.6 shows the iterations of the algorithm while constructing the VF from the

selected points.

RMSE =

√
1

n
Σn

i=1(xi − yi)2 (4.4)

This method in its center assumes that the locations on the eye have a polynomial

relationship between them. This assumption is exploited in other studies such as

[12]. However, those studies have all used the standard 54 points of the 24-2 pattern,

but here we are using locations not on but between those points.
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(a) 10 iterations. (b) 12 iterations. (c) 15 iterations.

(d) 17 iterations. (e) 20 iterations. (f) 22 iterations.

(g) 25 iterations. (h) 30 iterations. (i) 35 iterations.

Figure 4.6: Iterations of agent estimating the VF map.

4.1.3 Gamified Environment

One of the major problems in this method is the action space size. Having a large

action space increases the time to converge to an optimal solution. To overcome this

bottleneck, a new type of environment is developed. Contrary to the previous method,

which the actions are the locations on the matrix, we reduced the action space by
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Figure 4.7: Interactions of the RL Agent with the gamified environment.

gamifying it.

What we mean by gamifying is the way the agent executes actions is changed. Rather

than picking locations on the matrix, the agent is now deciding which direction to

go and how many cells to go. Just like a maze-solving game. Agent, at each turn,

chooses the direction and length tuple, and if the tuple is valid, meaning the destined

location is not outside the grid, the destined location is marked as the next selected

point. Agent always starts at the location nearest to the blind spot since it is the most

significant point on most of the VFs due to it having the lowest luminosity threshold

in most cases. Therefore, starting the agent at the blind spot location gives it a big

starting advantage. Length of cells agent can go at once is limited to 8. Figure 4.7

show the interaction of the agent with the gamified environment.

However, gamified environment has more exception cases since it is more compli-

cated than just selecting a number as action. One additional check is, as mentioned

before, checking the validity of the action, meaning the resulting point is inside the

matrix. Another implemented additional validation is checking whether n number of

consecutive actions result in the same axis, then mark the action as invalid. This is
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Figure 4.8: A partial sample run of the gamified agent.

because, too many same axis actions will result in a sub-optimal solution.

A sample run of the gamified agent can be seen in Figure 4.8.

Even though the gamified environment is a good improvement on paper to reduce

action space and reduce conversion time, it actually limits the agent. Due to the fact

that the agent can not go cross and more than 8 cells at a time, it finds sub-optimal

solutions. There are cases in which selecting a point right across the matrix is the

action that reduces the PMAE the most at that step. The comparison of the gamified

environment and the former one is quantified in the Results section.
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4.2 Using ML Based Forecasting Techniques to Decrease Test Duration

Another way of speeding up the VF testing is to adjust starting luminosities. This

method will have significant impact on some algorithms and insignificant impact for

others. This is because, some algorithms dynamically update starting values during

testing, others not. Nevertheless, a good starting values set can be used to speed up

most of the tests in a direct or indirect way. In this section, the impact on forecasting

to find better starting points is investigated.

To use the forecasted VF values to speed up the test, first we need to forecast the VF

values according to the elapsed time after the last test.

To forecast VF values, the model and method proposed in [25] is used, which is

CascadeNet-5, since the authors had a very promising result with just a single test to

predict future VF values. However, the scale of the dataset they used is significantly

bigger than ours. Getting the same results would be a challenge but, getting results

nearly accurate will also be useful to decrease test time.

Input to the NN is a tensor with shape 8x9x2, consisting of a 8x9 matrix filled with

threshold sensitivity values of the patient as the first channel, and the second channel

is again a matrix with values all filled with the age of the patient.

Output channel is the forecasted values in the shape of the VF map which is 8x9.

4.2.1 Feature Sets Used on Forecasting

Different from the dataset used in [25], the dataset used in this thesis has other fea-

tures different from threshold values which are; intraocular pressure (IOP) and to-

tal deviation values for each point location. Total deviation values are derived from

threshold values by subtracting the age normal values. Total deviation values show

the deviation from the age normal values.

Different feature sets used to train the NN are;

• Threshold Values, Age
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Figure 4.9: CascadeNet model used, shown with a single cascade block for simplicity.
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• Threshold Values, Age, IOP

• Threshold Values, Age, Time Between Tests

• Threshold Values, Age, IOP, Time Between Tests

• Threshold Values, Age, Time Between Tests, TD values

• Threshold Values, Age, Time Between Tests, TD values, IOP

4.2.2 Simulating Against Age Normal Values and Last Visual Field Test Values

To assess the ability of the method to reduce test duration, handful of simulation

strategies are developed. A common method to prepare starting values for VF test

strategy is using age normal values. Age normal values are what people with normal

visual fields have as the luminosity threshold at each point. Age normal datasets are

prepared by conducting a clinical trial to hundreds of people from different age groups

and genders. The age normal dataset we use here is from [3], generated by testing

102 healthy patients with the Humphrey Visual Field Analyzer. Figure 5.9 shows the

age normal values categorized by age.

Using age normal values as starting points for VF testing is a great approach for

testing healthy people to check for any signs of possible illnesses like glaucoma.

However, to monitor the progression of a glaucoma patient, it is an ineffective method

since, at every test, additional stimuli presentations will be shown to the patient to

check if the tested location is healthy, which as the clinician knows a priori, it is not.

For this, using forecasted values will be a great alternative because, the forecasted

results will be closer to the real sensitivity values of the patient.

Even though, as an idea, using forecasted values looks promising, it must have a

clear lead on any naive method that comes to mind. For example, for progressing

glaucomatous patients, a naive method like using the values from the patient’s last

conducted test. Therefore, the performance on forecasting against age normal values

and previous test values should be examined.

Here we simulated aforementioned 3 methods using a computer program, simulating

the Full Threshold [22] [4] test strategy, which is a staircase based strategy. Since,
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the possible false-negative and false-positive values will affect the test duration in a

similar proportion, they are omitted.

The results of the simulation and the limitations of the method is given in the follow-

ing chapter.
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(a) 20-30 (b) 30-40

(c) 40-50 (d) 50-60

(e) 60-70 (f) 70+

Figure 4.10: Age normal values for each age group calculated in [3].
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CHAPTER 5

RESULTS

5.1 Dataset

The dataset used in NN training and RL simulations is acquired at the Rotterdam

Eye Institute (Netherlands) [5]. Dataset includes 5108 VF results from 139 patients

with glaucoma. All VFs are acquired using the 24-2 test pattern of the Humphrey

Visual Field Analyzer. Each VF consists of 54 point locations. Each patient has

taken 34.9856 tests on average. The mean period of testing is 7 years. Extra to VF

thresholds, dataset includes total deviation values, mean deviation values, intraocular

pressure and age of the patient in days.

Figure 5.1 shows the distribution of test numbers by patients. One can see from the

figure that majority of patients took more than 20 tests. Figure 5.2 shows the distri-

bution of the duration between two VF tests. Figure 5.2 is constructed by generating

test pairs which will be used for NN training in the following chapters. Each test is

paired with all possible future tests that belongs to the same patient and the same eye.

Table 5.1 summarizes the features of the dataset.

Table 5.1: Properties of Rotterdam Dataset

Property Value

Number of VFs 5108

Number of VF pairs 37577

Number of Patients 139

Available Features Thresholds, TD, IOP, MD
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Figure 5.1: Distribution of the number of tests by patient.
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Figure 5.2: Distribution of the test intervals.
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5.2 Finding Optimal Test Locations on VR Headset Screen

5.2.1 Comparison of Different Environment Types

Two types of environments are developed for RL agent to interact. In the first one, as

action, agent chooses a point on the matrix, which means agent has 28x28 options at

the start, decreasing by one at each step.

In the second one, the gamified environment, agent, at each step, chooses a direction

in 4 options and a length to travel from 1 to 8 cells, which gives the agent 32 options

as the action. However, as mentioned in the previous section, this while reducing the

action space, limits the agent’s ability to find the most optimal sequence of locations.

Both environments are simulated with the same data for 10 runs. The mean of the

RMSE and PMAE scores are recorded for 100,000 training steps and 500,000 training

steps.

Table 5.2: Simulation comparisons of standard and gamified environment for 100,000

training steps for 10 runs.

PMAE RMSE

Standard Environment 1.02 1.78

Gamified Environment 3.56 4.86

Table 5.3: Simulation comparisons of standard and gamified environment for 500,000

training steps for 10 runs.

PMAE RMSE

Standard Environment 0.99 1.75

Gamified Environment 3.43 4.36

As can be seen from Table 5.2, gamified environment has a significantly higher
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PMAE and RMSE which means it has a lower accuracy than the standard environ-

ment. To check the affect of increasing the number of training steps, same simulation

is run 10 times for 500,000 training steps. As can be seen from Table 5.3, increasing

the number of training steps did not increase the accuracy at both of the environments.

Therefore, one can conclude that, agents on both environments had no benefit from

increasing training time, and agent on gamified environment, due to the limitations

mentioned above had lower performance.

Figure 5.3: Validation error measured periodically for 2500 training steps.

Figure 5.3 shows the validation error through 100,000 training steps in 40 measure-

ments.

5.2.2 Simulations

The main promise on using such a method is to find optimal values that are less in

quantity than the original ones, but can produce the same quality as them while lever-

aging the continuousness of the VR headset screens. Moreover, the point locations

that are extracted by the algorithm should decrease the test timing on future tests

while keeping an acceptable accuracy. To verify the effectiveness on the method on

future tests, a patient’s first test on the dataset was given to the RL agent and extracted

points from the agent after training are used to estimate the VF on future tests.
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To simulate, VFs are interpolated to 28x28 images and the resulting up-scaled images

are used as the data. After the agent finds the optimal points, values corresponding to

the locations are extracted. Then the VF is reconstructed by interpolation using only

those points. That way a sub-optimal representation of the VF is acquired. By com-

paring the original 54 points at the sub-optimal and the original image, one can find

the accuracy of reconstruction. Therefore, the performance of the model is validated.

To compare representations, two metrics is used. One is the RMSE and the other is

the PMAE. Equation 4.4 shows the RMSE calculation and the Equation 3.1 shows

the PMAE calculation.

The mean number of training steps is 100.000. With a simulation setup using Intel

Core i7-9850H and 32GB of RAM, 100.000 steps of training approximately takes 1.5

hours. Due to the computational limitations, all the available data can not be used in

simulation. To validate the method, a number of patients’ first test data is simulated

and the accuracy metrics are recorded for the future tests.

Figure 5.4: The change of accuracy metrics on future tests for Study_ID 50 of the

dataset.

Figure 5.4 shows the results of one of the simulations. The data belongs to a patient

labeled with Study_ID 50 on the Rotterdam dataset. X axis shows the number of
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Figure 5.5: PMAE values of 6 patients against conducted tests spanning 10 years.

days passed after the first testing. The RL agent extracts the point locations using

the test at x=0. All the following VF maps are created using the extracted points at

x=0. Accuracy metrics show that even with using the same points of the first test,

future VFs are constructed with point-wise error of below 2.5 which in the context

of a highly subjective test is very good. The number of points extracted at the first

test is 40 which is 25% less than the 24-2 pattern, meaning a test strategy like Full

Threshold will be completed 25% faster.

Same simulation is run for 5 other Study_IDs. Both the RMSE and PMAE values

are recorded for all the tests of a single patient. Average errors for each patient are

shown. Errors are plotted against the conducted test number in Figure 5.5 and Figure

5.6.

Moreover, the different error values for different number of optimal points can be

seen in Figure 5.7. After 40 points PMAE becomes larger than 3dB.

To validate the assumption that the proposed method will reduce test duration, 6 pa-

tients and their 115 tests are simulated with the Full Threshold algorithm. For each

test, 54 points and estimated 40 points versions are used. As the starting points, age
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Figure 5.6: RMSE values of 6 patients against conducted tests spanning 10 years.

normal values are used which can be seen in Figure 5.8. To find the age-normal values

of the estimated points falling between the locations of original points, same interpo-

lation strategy is used. Figure 5.8 shows the interpolated age-normal values for the

age groups. The results of the simulation is given in Table 5.4. Since, inter-response

times are dynamically changing throughout the testing duration and depend on the

patient itself, to compare the duration number of shown stimuli is used.
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Figure 5.7: Error versus the number of points.

(a) Age 20 to 30. (b) Age 30 to 40. (c) Age 40 to 50.

(d) Age 50 to 60. (e) Age 60 to 70. (f) Age 70+.

Figure 5.8: The interpolated age-normal values for the age groups.
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MNOSS =
1

m
Σm

j=1Σ
n
i=1aji (5.1)

Equation 5.1 shows the computation of Mean Number of Stimuli Shown (MNOSS), a

metric to compare test durations as the mean of the number of total stimuli shown for

a test. m is the number of tests in the input test set, n is the number of point locations

in a VF test, aji is the number of stimuli shown at location i for test number j.

Table 5.4: Simulation comparisons of standard and gamified environment for 500,000

training steps for 10 runs.

Number of Points Mean Number of Stimuli Shown (MNOSS)

54 184.86

40 138.22

As can be seen from the results, showing less number of points directly decreases

the test duration proportionally in a deterministic test strategy like Full Threshold.

However, in real world scenarios patients make mistakes such as responding to seen

stimuli as not seen and responding to not shown stimuli as seen. This can vary the

test duration for a patient but, for a population average this variable will have an

insignificant effect.

Lastly, to justify an error of 1.5dB to 4dB as acceptable, previous studies can be exam-

ined. In [24], [8] and [2], authors calculated intertest variability for each position in

30-2 test pattern which encloses the 24-2 test pattern. Point-wise intertest variability

can take values from 2dB to 5dB.

To further validate the effectiveness of the method, a clinical trial including glauco-

matous eyes can be conducted.

44



(a) Day 261 Original (b) Day 1960 Original (c) Day 3002 Original

(d) Day 261 Estimated (e) Day 1960 Estimated (f) Day 3002 Estimated

(g) Day 3268 Original (h) Day 4200 Original (i) Day 4655 Original

(j) Day 3268 Estimated (k) Day 4200 Estimated (l) Day 4655 Estimated

Figure 5.9: Comparison of the original and estimated VFs for Study ID 50.
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5.3 Forecasting Methods for Reduction in Test Duration

5.3.1 Forecasting Model Training

To forecast future VF results, an accurate forecasting method is needed. There are

several models used in the literature, which are compared in Figure 5.10. Using the

findings in [25], we decided to use CascadeNet-5 in this thesis for forecasting task.

Figure 5.10: Comparison of different NN models for the forecasting task. [25]

To train the model, different feature sets are used which are given in Chapter 3. Train-

ing with different feature sets resulted in different forecasting accuracies. Feature sets

can be divided into two groups; fixed interval and variable interval. In fixed interval,

intertest durations are fixed and training-label tuples are constructed with a fixed time

between them, for example, half a year. In variable interval, intertest durations are

given as the 3rd channel of the input as a matrix with all values filled with the intertest

duration as days. 2nd channel is always the patient’s age as years, again in a matrix

form with all cells equal to age.

For the feature sets that do not use the "Time Between Tests" feature, the data and
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label are prepared in a way that conducted test and the test used as the label have a

fixed time between them. Therefore, each feature set used had a unique training set.

For the fixed interval feature sets, tests between t.0,75 and t.1,25 are used. For

example, for a 1 year period, pairs are constructed between 274 days and 456 days.

Table 5.5: Dataset sizes for different types of feature sets.

Time Between Pairs Number of Pairs

Variable Time 37577

0.5 Year (Fixed) 3615

1 Year (Fixed) 3632

1.5 Year (Fixed) 4143

2 Years (Fixed) 6442

For the fixed interval, the number of training pairs are low in number since, for each

interval a separate model needs to be trained. Because of that, model accuracy is

lower.

Table 5.6: Test set PMAE values of different feature sets after training for different

year constants.

Difference in Years Threshold Values Threshold Values + IOP Threshold Values + TD values Threshold Values + IOP + TD values

0.5 3.26 3.14 2.91 3.01

1.0 2.96 2.97 3.02 3.14

1.5 3.02 3.13 2.97 3.03

2.0 3.27 3.14 3.08 3.09

2.5 3.32 3.35 3.25 3.35

3.0 3.55 3.54 3.45 3.39

Table 5.6 shows the PMAE values of different models trained with pairs of different

time differences and Table 5.7 shows the RMSE values of different models trained

with pairs of different time differences. As can be seen from Table 5.6, even though

with a little difference, supplying the TD values as an extra feature gives the least

error on the test set.
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Table 5.7: Test set RMSE values of different feature sets after training for different

year constants.

Difference in Years Threshold Values Threshold Values + IOP Threshold Values + TD values Threshold Values + IOP + TD values

0.5 4.48 4.34 4.20 4.28

1.0 4.18 4.21 4.25 4.32

1.5 4.31 4.38 4.27 4.29

2.0 4.49 4.39 4.39 4.37

2.5 4.68 4.67 4.61 4.60

3.0 4.96 5.02 4.78 4.81

For the variable interval features, the number of training pairs are high in number.

This results in the amplification of the effect of other features like IOP and TD values.

For variable time training set, a single model is trained. The test set error values of

model are categorized by the difference in years between training data and labels. For

all the feature sets, limiting the difference in years to 5.5 years reduced the error on

all time difference categories. This limitation was found empirically and also authors

in [25] had the same limitation and the same effect on training error. Table 5.8 shows

the improvement of PMAE by limiting the pair test difference to 5.5.

Table 5.8: Difference of test set PMAE values comparison for time difference upper

limit and no upper limit.

Time Difference Category (Years) No Upper Limit Upper Limit of 5.5 Years

0.5 3.18 3.11

1.0 3.30 3.18

1.5 3.42 3.28

2.0 3.57 3.41

2.5 3.81 3.63

3.0 4.01 3.85

3.5 4.07 3.89

4.0 4.23 4.09

4.5 4.52 4.35

5.0 4.54 4.36

5.5 4.58 4.20

5+ 5.18

Table 5.9 shows the PMAE value of the test set for different groups of time differences

between training and label data. As can be seen from the table, feature set that yields

the lowest error value on test data is the one including Threshold Values, Intraocular

Pressure and Total Deviation values. Each feature set also includes a channel that
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Table 5.9: Test set PMAE values of different feature sets against different test pair

time difference categories.

Time Difference Category (Years) Threshold Values Threshold Values + IOP Threshold Values + TD values Threshold Values + IOP + TD values

0.5 3.11 3.08 3.00 2.98

1.0 3.18 3.15 3.08 3.04

1.5 3.28 3.25 3.17 3.12

2.0 3.41 3.44 3.30 3.27

2.5 3.63 3.64 3.49 3.45

3.0 3.85 3.86 3.65 3.65

3.5 3.89 3.87 3.72 3.69

4.0 4.09 4.09 3.93 3.90

4.5 4.35 4.30 4.19 4.15

5.0 4.36 4.35 4.20 4.11

5.5 4.20 4.19 4.07 4.00

holds the age value in years. Therefore resulting input shape is 8x9x4. By comparing

the fixed interval and variable interval results, one can conclude that variable interval

results only have a slight advantage.

5.3.2 Algorithm Simulation

To understand the advantage of using different starting values for the visual field

testing, Full Threshold algorithm is simulated with using 3 different starting values;

age-normal, previous test and forecasted values.

Simulating with age-normal values resulted in comparably worst test duration than

the other methods. Average duration of the Full Threshold test with starting values as

age-normal values is given in Table 5.4. Since, this value is comparably worse, it will

not be included in the comparison tables below. Instead of this, difference between

the simulation result of forecasted value start and last test start will be used as the

metric of comparison. Equation 5.2 gives the used metric for comparing test speed

up. fvs is the forecasted staring values and lts is the last test starting values.

Duration Improvement = lts− fvs (5.2)

All VF pairs are simulated with the 3 starting value options. Forecasted values are

obtained using fixed interval and variable interval models.The models with feature
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Figure 5.11: Scatter graph of PMAE values against Duration Improvements

sets that result in the lowest errors are used. For the variable interval model, dura-

tion improvement average is 0.74, which is not significant. However, by plotting the

duration improvement distribution we can see that some test results benefited greatly

while others not. Figure 5.11 shows the PMAE values against the duration improve-

ments. From the figure, one can see that even though at the extremity of PMAE

values duration improvement steadily gets worse, there is no clear relation between

the prediction accuracy and duration improvement.

A negative difference between two MD values shows that the light sensitivity of the

eye is getting worse. Equation 5.3 show the MD calculation. thi is the measured

threshold value of a location i and ani is the age normal value of the location i. n is
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Figure 5.12: Scatter graph of PMAE values against MD differences.

the number of locations. a is the age of the patient and it is supplied to the equation

to use the appropriate age-normal values.

MD(a) =
1

n

n∑
i=1

ani(a)− thi (5.3)

Figure 5.12 shows the PMAE values against the MD differences. One can see from

the figure that as the difference between training VF MD and label VF MD is getting

larger the PMAE value tends to get larger. However, as can be seen from the figure

this can be in any direction. Therefore, the progression direction and the prediction

error has a week correlation so the model has no information about the progression

51



direction. To exploit this, MD differences are split into 8 sub-categories and not sur-

prisingly with worsening eyes, in other words, with negative MD difference, duration

improvement is mostly positive. This is due to the fact that while the threshold values

between the last test and the new test increases, the effect of using forecasted values

becomes apparent because, the last test threshold values are no longer similar to the

real sensitivities of the eye, but the forecasted values are more similar to the real sen-

sitivities. However, after 2.5 years the effectiveness of using the forecasted values,

decrease. The results of the simulations, and the resulting duration improvements are

displayed against different MD difference groups are given in Table 5.10 and 5.11.

Table 5.10: MD difference categories against duration improvements for different

MD differences of the model with no extra features.

MD Difference Categories 0.5 1.0 1.5 2.0 2.5 3.0

-12 to -9 1.33 0.67 -2.00 -24.00

-9 to -6 19.75 15.25 5.50 5.14 6.18 -13.87

-6 to -3 5.75 5.20 7.16 5.00 4.82 -4.91

-3 to 0 2.28 2.23 1.50 2.10 0.84 -0.38

0 to 3 0.71 2.32 -1.10 2.11 -3.36 2.00

3 to 6 -3.10 3.00 -3.75 1.50 -9.53 -2.20

6 to 9 -6.00 -3.00 -5.00 -21.33 -12.83

9 to 12 1.00 -9.00 -7.00 -4.50 -6.67
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Table 5.11: MD difference categories against duration improvements for different

MD differences of the model with TD and IOP features.

MD Difference Categories 0.5 1.0 1.5 2.0 2.5 3.0

-12 to -9 5.33 2.50 -16.00 -22.10

-9 to -6 20.50 13.7 13.50 8.00 0.45 -11.67

-6 to -3 3.75 0.40 6.11 5.03 -0.03 -3.82

-3 to 0 2.49 0.83 2.22 2.16 1.38 0.37

0 to 3 1.71 4.18 2.17 1.43 2.56 3.22

3 to 6 0.20 8.50 0.92 0.05 1.83 3.77

6 to 9 -8.50 5.00 -6.00 -2.67 -4.50

9 to 12 4.00 - 9.00 -2.00 -2.00 -0.33

It is apparent from the tables that if the progression direction is known the proposed

method of using forecasted values is beneficial and can result in the decrease of up

to 20 stimuli presentations. However, predicting VF progression is not a trivial task.

On the other hand, there are numerous methods that successfully predict VF progres-

sion like in [20]. Combining any such method that predicts VF progression with the

proposed method will result in decreased VF test duration for progressing fields.
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CHAPTER 6

CONCLUSIONS

There are many approaches to decrease VF test duration. Two of those approaches

are decreasing the number of tested locations and changing the starting luminosities

of test locations. In this thesis, new methods for both approaches are proposed. For

decreasing the number of tested locations, a Reinforcement Learning approach that

uses Maskable PPO algorithm is employed. By leveraging the continuousness of the

Virtual Reality Headset screens, locations falling between the conventional 24-2 test

pattern locations made available to the model. By selecting the optimal points from

the available point locations, RL model successfully estimated the same VF with only

an average point-wise error between 1dB and 4dB and using the same points extracted

from a single VF test, estimated up to 20 future VF test with the same error margin.

For the second method of changing the starting luminosities, a convolutional neural

network based model is used to forecast future VFs up to 3 years is used as the starting

luminosity values to decrease the number of shown stimuli, and simulated using the

Full Threshold algorithm. It is shown that, for the progressing visual fields, up 20%

decrease in duration is observed compared to using the threshold values of the last

conducted test. Against age-normal values the decrease in duration is up to 40%.

In future work:

• Found optimal testing locations can be tested on real glaucomatous patients in

a clinical trial to measure real-world test duration decrease,

• Found optimal testing locations can be simulated using more state-of-the art

testing methods which due to their complexity will need their own paper,

• Combining forecasting with a progression prediction algorithm to make a frame-
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work to decrease test duration.

• Trying a lighter optimization method rather than modeling as a reinforcement

learning environment to reduce convergence time.
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