

REAL TIME DENSE SLAM IN UNSTRUCTURED DYNAMIC CLUTTERED

3D ENVIRONMENTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGÜR HASTÜRK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

ELECTRICAL AND ELECTRONIC ENGINEERING

FEBRUARY 2022

Approval of the thesis:

REAL TIME DENSE SLAM IN UNSTRUCTURED DYNAMIC

CLUTTERED 3D ENVIRONMENTS

submitted by ÖZGÜR HASTÜRK in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Electrical and Electronic Engineering, Middle

East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy

Head of the Department, Electrical and Electronics

Engineering

Prof. Dr. Aydan Müşerref Erkmen

Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Umut Orguner

Electrical and Electronics Engineering, METU

Prof. Dr. Aydan Müşerref Erkmen

Electrical and Electronics Engineering, METU

Prof. Dr. A. Aydın Alatan

Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Yakup Özkazanç

Electrical and Electronics Engineering, Hacettepe University

Assist. Prof. Dr. Oğuzhan Çifdalöz

Electrical and Electronics Engineering, Çankaya University

Date: 03.02.2022

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Özgür, Hastürk

Signature :

v

ABSTRACT

REAL TIME DENSE SLAM IN UNSTRUCTURED DYNAMIC

CLUTTERED 3D ENVIRONMENTS

Hastürk, Özgür

Doctor of Philosophy, Electrical and Electronic Engineering

Supervisor : Prof. Dr. Aydan M. Erkmen

February 2022, 158 pages

SLAM problem has been extensively studied by researchers in the field of robotics,

however, conventional approaches in mapping assume a static environment. The

static assumption is valid only in a small region; it limits the application of visual

SLAM in dynamic environments. Recently proposed state of art SLAM solutions for

dynamic environment use different semantic segmentation methods such as Mask R-

CNN and SegNet; however, these frameworks are based on a sparse mapping

framework (ORBSLAM). In addition, segmentation process increases the

computational power, which makes these SLAM algorithms unsuitable for real-time

mapping. Therefore, there is no effective dense RGB-D SLAM method for real-

world unstructured and dynamic environments. In this study, we propose a novel

real-time dense SLAM method for dynamic environments where 3D reconstruction

error is manipulated for identification of static and dynamic classes having

generalized Gaussian distribution. Our proposed approach requires neither explicit

object tracking nor object classifier, which makes it robust to any type of moving

object and suitable for real-time mapping. Our method eliminates the repeated views

and uses consistent data that enhance the performance of volumetric fusion. For

completeness, we compare our proposed method using different type of high

dynamic dataset, which are publicly available, in order to demonstrate the versatility

vi

and robustness of our approach. Experiments shows that tracking performance of our

proposed method better than other dense and dynamic SLAM approaches.

Keywords: Dynamic Mapping; Visual SLAM; Localization; 3D Reconstruction

vii

ÖZ

YAPILANDIRILMAMIŞ DAĞINIK DİNAMİK 3 BOYUTLU

ORTAMLARDA GERÇEK ZAMANLI YOĞUN ANLIK KONUMLAMA VE

HARİTALAMA

Hastürk, Özgür

Doktora, Elektrik ve Elektronik Mühendisliği

Tez Yöneticisi: Prof. Dr. Aydan M. Erkmen

Şubat 2022, 158 sayfa

SLAM (Eşzamanlı Yer Belirleme ve Haritalandırma) problemi robotik alanında

araştırmacılar tarafından sıklıkla çalışılan bir konu olmasına rağmen haritalama

alanındaki geleneksel yaklaşımlar bulunulan ortamın durgun bir ortam olduğunu

varsaymaktadır. Durgun ortam varsayımı sadece küçük alanlar için geçerli olmakta

ve görsel SLAM’ın dinamik ortamdaki uygulamalarını sınırlandırmaktadır. Son

zamanlarda dinamik ortamlar için önerilen son teknoloji SLAM çözümleri, Mask R-

CNN ve SegNet gibi farklı anlamsal bölümleme metotları kullanmaktadır ancak bu

yazılımlar seyrek haritalama yazılım çerçevelerine (ORBSLAM) dayanmaktadır. Ek

olarak bölümleme süreci hesaplama gücünü arttırmakta ve bu durum SLAM

algoritmalarını gerçek zamanlı haritalama için elverişsiz kılmaktadır. Bu nedenle

gerçek dünyanın yapılandırılmamış ve dinamik ortamı için geçerli yoğunlukta RGB-

D SLAM metodu bulunmamaktadır. Bu çalışmada; üç boyutlu (3D) yeniden

yapılandırma hatalarının, genelleştirilmiş Gauss dağılımı kullanılarak statik ve

dinamik sınıfların tanımlanabilmesi amacıyla manipüle edilmesi ve bu şekilde

dinamik ortamlar için yeni bir gerçek zamanlı yoğun SLAM metodu oluşturulması

amaçlanmıştır. Hedeflenen bu yaklaşımın belirgin obje takibi ve obje sınıflandırıcıya

gerek duymaması, bu yaklaşımı herhangi bir hareketli objeye dayanıklı ve gerçek

zamanlı haritalandırmaya uygun hale getirmektedir. Bu metot tekrarlanan

viii

görünümleri elemekte ve hacimsel füzyon performansını geliştiren tutarlı verileri

kullanmaktadır. Tezin son kısmında; oluşturulan yaklaşımın çok yönlülüğü ve

dayanıklılığının ispatlanması adına, literatürden elde edilen farklı tipte yüksek

dinamik veri setleri ile hedeflenen metot karşılaştırılmıştır. Yapılan karşılaştırmalar

hedeflenen metodun izleme performansının diğer yoğun ve dinamik SLAM

yaklaşımlarına nazaran daha iyi olduğunu göstermiştir.

Keywords: Dinamik Haritalama; Görsel Eşzamanlı Yer Belirleme ve

Haritalandırma; Konumlama; 3 Boyutlu Yeniden İnşa

ix

To Zeynep and Tarçın,

x

ACKNOWLEDGMENTS

I would like to thank firstly my supervisor Professor Aydan Müşerref Erkmen for

her support, guidance and friendship. It was a great honor and experience to work

with her for the graduation. I wish to express my deepest gratitude her helpful

criticism, never ending guidance, patience, advice and support in the progress and

preparation of this thesis. I would also like to thank Professor Umut Orguner and

Assistant Professor Yakup Özkazanç for their guidance in the thesis monitoring

committee meetings which help me very much. In addition, I would like to thank my

thesis jury members Professor Abdullah Aydın Alatan and Assistant Professor

Oğuzhan Çifdalöz for their comments and suggestions, which help us very much

while editing this thesis.

I would like to thank my dear family for their help and support not only during my

thesis preparation but also throughout my life.

Finally, I would like to thank Zeynep Özden Yaşa Hastürk for her great support every

second of my effort while writing this thesis though thanking her is not sufficient.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xiv

LIST OF FIGURES ... xv

LIST OF ABBREVIATIONS .. xviii

LIST OF SYMBOLS ... xix

CHAPTERS

1 INTRODUCTION ... 1

1.1 Statement of the Problem ... 1

1.2 Objective and Goals of the Study .. 3

1.3 Methodology .. 4

1.4 Evaluations of the Approach .. 5

1.5 Outline of the Thesis .. 6

2 LITERATURE REVIEW .. 9

2.1 Visual SLAM ... 11

3 PRELIMINARIES ... 17

3.1.1 Non-Linear Least-Squares (NLS) Optimization 17

3.1.2 Expectation–maximization (EM) algorithm .. 26

3.2 RGB-D Sensors .. 33

xii

4 OUR PROPOSED METHODOLOGY ... 39

4.1 Justification of the Methodology and Novelties of Our Approach 39

4.2 Preliminaries and Notations .. 42

4.3 Depth Smoothing and Feature Matching ... 44

4.4 Pose Estimation ... 48

4.5 SDF Representation, 3D Reconstruction and Volume Visualizations 67

4.6 Dynamic Detection .. 74

5 EXPERIMENTAL RESULTS AND DISCUSSIONS 81

5.1 Static Environment .. 82

5.1.1 ICL NUIM Dataset .. 82

5.1.2 CoRBS ... 86

5.2 Dynamic Environment ... 89

5.2.1 TUM RGB-D Dataset .. 89

5.2.2 Bonn RGB-D Dynamic Dataset .. 104

5.2.3 VolumeDeform Dataset ... 107

5.2.4 CVSSP RGB-D Dataset .. 108

5.2.5 Outdoor mapping performance .. 110

6 SENSITIVITY ANALYSIS .. 113

7 CONCLUSION ... 123

7.1 Future Works ... 125

REFERENCES .. 129

APPENDICES ... 141

A. Mathematical Preliminaries ... 141

B. Rigid Body Motion .. 141

xiii

C. Transformation Matrices in Robotic Representation 148

CURRICULUM VITAE .. 157

xiv

LIST OF TABLES

TABLES

Table 4.1: BONN moving obstructing box dataset – change of translational ATE

(RMSE cm) with respect to Regularization and Huber constant 66

Table 4.2: BONN moving obstructing box Dataset – comparison of translational

ATE (RMSE cm) with changing Iteration Number and Downsample option 67

Table 5.1: Comparison of surface reconstruction accuracy (mean value) 83

Table 5.2: RMSE of the translational and rotational drift (RPE) in m/s and deg/s

respectively. ... 87

Table 5.3: TUM Dataset – Execution Time .. 94

Table 5.4: TUM Dataset – Translational RPE (RMSE cm/s) 99

Table 5.5: TUM Dataset – Translational RPE (RMSE deg/s) 100

Table 5.6: TUM Dataset – Translational ATE (RMSE cm) 101

Table 5.7: BONN Dataset – Translational RPE - (RMSE cm/s) 106

Table 5.8: VolumeDeform Dataset results .. 107

Table 6.1: TUM Dataset fr3/walking xyz – Translational ATE (RMS Error m) .. 117

Table 6.2: Change of Translational ATE (RMS m) with respect to weight

(regularization constant, Huber constant and voxel size is constant) 119

Table 6.3: TUM “fr3/walking static” Sequence Translational ATE Error (RMS

Error [cm]) .. 121

xv

LIST OF FIGURES

FIGURES

Figure 3.1: Example of RGB-D sensors. From left to right: Microsoft Kinect, Intel

RealSense D435. Courtesy of Microsoft and Intel Corporation. 34

Figure 3.2: Output images of RGB-D sensors. Left: RGB image. Right: Depth

image. The brighter a pixel is, the farther away it is from the sensor. 34

Figure 4.1: Flowchart of the DUDMAP ... 41

Figure 4.2: DUDMAP scheme .. 42

Figure 4.3: Original input image , result of a depth image with adaptive bilateral

filter and , invalid measurements handling ... 46

Figure 4.4: a) Original image b) Final image .. 47

Figure 4.5: VolumeDeform boxing sequence similarity ratio 47

Figure 4.6: BONN “crowd2” sequence similarity ratio with respect to threshold

value. ... 49

Figure 4.7: Sphere tracing. The dots represent the points at which the function 51

Figure 4.8: Depth and color images of the same office desk 53

Figure 4.9: The coordinates of each voxel center is projected into the image plane.

Note that not every projection will fall within the subset of the plane where the

depth image is defined. ... 54

Figure 4.10: Voxels are updated with the difference between the depth image value

and the distance to the respective voxel from the sensor, along the viewing

direction. ... 55

Figure 4.11: Surface at the boundary between positive and negative values 56

Figure 4.12: Octree structure. In each successive picture the voxels are two times

smaller. .. 68

Figure 4.13: Different levels of an octree-based model, in each successive picture

the voxels are two times smaller ... 69

Figure 4.14: Hash table , voxel blocks .. 71

xvi

Figure 4.15: Gradient shaded representation of the three-dimensional in dividing

cube algorithm [56] .. 72

Figure 4.16: Illustration of reflective, original and rotational symmetric condition73

Figure 4.17: The 15 basic intersection topologies [55] ... 74

Figure 4.18: Inconsistency map of two images (EPFL RGB-D Pedestrian Dataset

sequence frame 250 and 278) .. 75

Figure 4.19: RGB image b) Reconstruction error c) Dynamic label image 78

Figure 5.1: ICL-NUIM living room dataset containing chair, table and other type

common object. ... 83

Figure 5.2: Dense 3D model of the scene obtained by our proposed methodology 84

Figure 5.3: Reconstructions of the objects in living room - 2 scene including error

value (blue 0.025 m, green 0.045 m) ... 84

Figure 5.4: Frequency of residual of the reconstruction error. 85

Figure 5.5: ATE RMSE of synthetic ICL-NUIM dataset 85

Figure 5.6: CORBS Desk1 dataset containing desk, computer, book, monitor and

other types common object of everyday. ... 86

Figure 5.7: ATE RMSE of synthetic CoRBS dataset (Desk sequence) 88

Figure 5.8: Dense 3D model of the scene obtained by our proposed methodology 88

Figure 5.9: Dense 3D model of the scene obtained by our proposed methodology

(Close up view) .. 89

Figure 5.10: ATE / RPE of TUM fr3/walking static sequence 96

Figure 5.11: Mesh of TUM fr3/walking static sequence ... 96

Figure 5.12: ATE / RPE of TUM fr3/walking halfsphere sequence 97

Figure 5.13: Mesh of TUM fr3/walking halfsphere sequence 97

Figure 5.14: Scene reconstruction of fr3/walking xyz sequence 98

Figure 5.15: Comparison of estimated trajectories of of TUM fr3/walking xyz

sequence .. 102

Figure 5.16: Comparison of estimated trajectories of of TUM fr3/walking xyz

sequence (continued) ... 103

Figure 5.17: Relative translational error (walking-xyz) of our method 104

xvii

Figure 5.18: Bonn RGB-D Dynamic dataset containing desk, chair and moving

obstructing box .. 105

Figure 5.19: Mesh of BONN moving obstructing box sequence 106

Figure 5.20: Estimated trajectories of of Volume Deform boxing and sunflower

sequences .. 107

Figure 5.21: RGB-D image pair and 3D dense model of VolumeDeform sunflower

sequence obtained by our proposed method .. 108

Figure 5.22:RGB-D image pair and 3D dense model of VolumeDeform boxing

sequence obtained by our proposed metho .. 109

Figure 5.23: RGB-D image and final mesh of the CVSSP “dog” sequence 109

Figure 5.24: RGB-D image and final mesh of the “outdoor-1” sequence 110

Figure 5.25: outdoor-1 sequence grid fence mapping result 111

Figure 5.26: RGB-D image and final mesh of the “outdoor-2 ” sequence a)

DUDMap b) Elastic Fusion ... 112

Figure 6.1: Main effects plot: Variation of Absolute Trajectory Error to voxel size,

regularization constant, color intensity contribution with respect to the depth,

Huber constant .. 115

Figure 6.2: Interaction plot: Variation of Absolute Trajectory Error to voxel size,

regularization constant, color intensity contribution with respect to the depth,

Huber constant .. 118

Figure 6.3: Change of Translational ATE (RMS Error [m]) with respect to weight

(regularization constant, Huber constant and voxel size is constant) 119

Figure 6.4: Quadratic model of the sensitivity analysis 121

xviii

LIST OF ABBREVIATIONS

ABBREVIATIONS

SDF : Signed Distance Function

ATE : Absolute Trajectory Error

ORB : Oriented FAST and Rotated BRIEF

FAST : Features from Accelerated Segment Test

BRIEF : Binary Robust Independent Elementary Features

PTAM : Parallel Tracking and Mapping

MCPTAM : Multi-Camera Parallel Tracking and Mapping

RTABMap : Real-Time Appearance-Based Mapping

RANSAC : RANdom SAmple Consensus

SIFT : Scale-Invariant Feature Transform

GPU : Graphics Processing Unit

xix

LIST OF SYMBOLS

SYMBOLS

𝑐𝛼 : cos(𝛼)

 𝑠𝛼 : sin(𝛼)

[.]× : cross product operator

[.]⋎ : inverse of the cross product

𝑅𝑥(𝛼) : rotation matrix about the x-axis with angles 𝛼

𝑅𝐵𝐴 : rotation matrix of frame A to frame B

𝑇𝐴
𝐵 : homogenous transformation matrix from frame A to frame B

𝑞̇(𝑡) : velocity of the point

𝑡𝑟(𝑅) : trace of matrix R

𝜉 : twist coordinates

𝑛 : linear velocity

𝑛 : angular velocity

𝑎𝑘 : step size at iteration 𝑘

𝑑𝑘 : the direction to move along at iteration 𝑘

𝑄 : symmetric positive definite matrix

𝑃 : real symmetric positive definite matrix

𝜆𝑚𝑖𝑛(𝑃) : smallest eigenvalue of the 𝑃,

𝜆𝑚𝑎𝑥(𝑃) : largest eigenvalue of the 𝑃,

𝑖𝑚𝑎𝑥 : maximum iteration number

𝑋𝑖𝑗 : Bernoulli random variables taking values in {0, 1}

𝐿(𝜃) : likelihood function

𝜂 : maximum likelihood estimate

𝑓𝑥, 𝑓𝑦 : camera focal length (in pixels)

𝑐𝑥, 𝑐𝑦 : the pixel coordinate of the image center

 𝛿𝑥, 𝛿𝑦 : projected pixel coordinate

𝐾 : Intrinsic camera calibration matrix

𝜅𝑛 : radial distortion coefficient

xx

𝜌𝑛 : tangential distortion coefficient

𝜓 : signed distance function.

𝜌 : unit-norm vector

𝜂(𝑥) : surface normal at 𝑥

𝑑𝑖 : all zeros vector except component denoted by the subscript

𝜓𝑡(𝑥) : truncated signed distance function

𝑧𝑜𝑏𝑠 : observed depth measurement

𝑤 : Color intensity contribution with respect to the depth

∇𝑥𝜓(x) : gradient of signed distance function

 𝐽𝑝() : Jacobian of pose error with respect to 

𝜆 : non-negative regularization factor

ρℎ : Huber constant

ρ𝑡 : Tukey’s constant

𝐼𝑠 : instantaneous image of source

𝐼𝑚 : instantaneous image of generated model

𝑒𝑐 : error in color map

𝑒𝑝 : error in the pose registration

ℎ(𝑑) : histogram of the image

𝐿(𝐷|𝑙) : log likelihood of the two-component mixture

𝐷(𝑢) : observed depth image

𝑤𝑐 : Gaussian functions for spatial weighting

𝑤𝑠 : Gaussian functions for range weighting

𝜎𝑠 : standard deviation for spatial weighting function

𝜎𝑐 : standard deviation for range weighting function

𝑁(𝑢𝑘) : neighborhood of pixel location 𝑢

𝑊 : normalizing factor

𝜏 : voxel size

1

CHAPTER 1

1 INTRODUCTION

1.1 Statement of the Problem

Simultaneous Localization and Mapping (SLAM) is known as estimating the pose

of a robot and the map of the scene synchronously by using noisy sensor

measurements obtained from partially known environments and noisy distance

sensors. In other words in SLAM, agents try to find a solution simultaneously to the

questions of “What does the scene resemble?”, and “Where am I in the scene?” by

using noisy range sensors.

In many SLAM approaches, it is required for an agent to run autonomously for a

long time, travelling long contoured distance away from its starting position.

Furthermore, some applications require 3D mapping such as underwater exploration

applications, where, the agent should collect the 3D data of ocean-floors, which is

an example of large 3D environment to be mapped while localizing the event.

Moreover, an accurate 3D reconstruction or exploration could be highly beneficial

and critical such as in urban planning of large cities with high-rises.

Underwater explorations are example of SLAM requiring a robot to run

autonomously for a long time challenged by drag currents and obstacles. In addition,

SLAM application in city exploration requires construction of an accurate 3D map

of the entire city, crowding with close high-rises of different heights and cross

sectional architects. In the literature, there are several papers for SLAM approaches

to large unstructured environment; however, they are usually tested on standard

datasets, which can be classified as structured environments. In addition, static

environment assumption generally used in researches which become invalid with

failing algorithms for unstructured dynamic environments such as undersea flooring.

2

For example, in [58][59], a stereo camera is used to extract a dense 3D mesh of the

world and scale-invariant features are used to estimate the motion of the camera.

This algorithm seems to work well in unstructured 6-DOF environment, however

SIFT features should be validated in the environment in order to for achieving high

efficiency of the algorithm. This technique does not utilize a dense data in the

registration process therefore; error can be accumulated leading to loop closing

errors while estimating the pose. Loop closure is a critical must for the localization

of the agent that generally revisits previous location during exploration and mapping.

Application of SLAM algorithm in real life such as underwater explorations should

address the problem of dynamic environments because the robot which operate

encounter a non-static world while navigating. The environment is changing, objects

are moving. Moving object causes confusion on most algorithms because of static

world assumptions. Dynamic objects causes either degradation of the registration

accuracy or lead to elongated object in the resulting map generating mapping ghosts.

SLAM in highly dynamic environments have not been addressed fully in the

literature. In short, it is not possible to find a fully encompassing framework that

solves SLAM in the presence of dynamic elements in environments.

SLAM algorithms uses the sensor data in order to produce a consistent map of the

environment. However, some difficulties arise in associating sensor data with map

elements because of noise, sparse data and imprecision. If the sensor is not noise-

free and precise, probability of generating incorrect map increases: sensors such as

laser scanner produce ordered data set with minimum level clutter, while, vision

sensors produces cluttered huge amount of data, which results in incorrect

association. In addition, vision sensors have a limited resolution therefore; precision

loss must be taken into more account, because sparse data limit point-matching

process because of low level feature.

3

1.2 Objective and Goals of the Study

Simultaneous Localization and Mapping is to produce a consistent map of

environment and to estimate the pose in the map by using noisy range sensor

measurements. SLAM has been widely studied subject by researchers in the field of

robotics. After the appearance of Kinect, there are many solutions, which fuse the

color image and depth map. Visual SLAM produce a sparse solution by relying on

points matching, whereas; direct methods can produce a dense reconstruction by

minimization of the photometric error. However, none of the above methods

addresses the problem of dynamic objects in the environment.

Conventional approaches in mapping assume static environment. Although static

assumptions may be valid in a small region, change is inevitable when dynamic

elements exist or large-scale mapping is necessary. By classifying dynamic content

as outliers, a small fraction can be managed. However, SLAM problem in highly

dynamic scenes is still not solved completely because there is no suggested

framework found in the literature.

Another biggest difficulty in robot navigation is unstructured environments. In

unstructured environments, it is not east to find discrete geometries because of noisy

edge or plane. Significant research has been carried out for unstructured

environments especially in the field of autonomous navigation, and a number of

effective approaches have been developed using laser range finder. However, there

is no effective RGB-D SLAM method for real-world unstructured and dynamic

environments.

In real life, SLAM frameworks should address the problem of dynamic scene without

consuming lots of computational power. Employing semantic segmentation or object

classifier are time consuming, therefore, we avoid from using such techniques.

Therefore, our aim is to develop a SLAM algorithm which

4

• can generate the dense model / mesh of environment

• can handle high dynamics in environment,

• is robust to dynamic element without requiring any type of object tracking,

• does not need any classifier or semantic information,

• is real-time operation compatible,

• does not require sophisticated sensor.

Considering these practical constraint, we propose a RGB-D based SLAM method

because RGB-D cameras are specific type of sensors which can augment the image

with depth information and this type of sensor has been extensively used in computer

vision and computer graphics problems because of its low cost.

In this study, we propose DUDMap: Dense, Unstructured and Dynamic Mapping.

Our approach requires neither explicit object tracking nor object classifier in contrast

to recent approaches discussed in [22] and [28], which makes it robust to any type

of moving object. Furthermore, we assume a dynamic environment consisting of

static and dynamic classes having generalized Gaussian distribution in order to detect

dynamics.

1.3 Methodology

In order to have a dense map, we reconstruct scene geometry using Signed Distance

Function (SDF) instead of surfels because SDF allows us to create a dense final mesh

easily. Moreover, such representation is useful in robotic applications because it

defines the distance to surface.

The main contribution of this thesis is a novel and an effective SDF based SLAM

algorithm that is resistant to dynamics. In addition;

5

• We directly use the SDF values for pose estimation where objective function

is based on probabilistic camera model.

• We identify the dynamics by using image registration residual combining

with Gaussian Mixture Model (GMM).

• We eliminate repeated views and use only consistent data for decreasing the

required computational power.

• The number of dynamic objects does not limit our approach because we do

not employ any type of moving object detection and tracking.

• Our method generates a final intense 3D mesh without using semantic

information or object classifier.

1.4 Evaluations of the Approach

Our proposed method is able to operate in dynamic environments without requiring

any dynamic object detection and tracking. Our experiments support our main

claims, which are:

• Robustness to dynamic elements regardless of their quantity and speed of

change in the environment,

• That the approach requires no explicit object tracking, and no object

classifier

• That the approach generates a consistent a dense model of the environment.

We compare our method with other state of art systems using TUM dataset [1],

together with other high dynamic dataset including Bonn, VolumeDeform [30],

CVSSP RGB-D dataset [34] (used with permission), which are publicly available,

showing the superior performance of our approach.

TUM repository has a large dataset consisting of RGB-D data and corresponding

ground-truth data and it is a commonly used evaluation method for benchmarking of

6

visual odometry and visual SLAM systems. Bonn RGB-D dataset has highly

dynamic sequence with different scenario such as crowded scene, people tracking

and obstructing box. Moreover, this dataset is also compatible for TUM RGB-D

dataset. VolumeDeform dataset aims to reconstruct of dynamic object whose RGB-

D data are obtained by using handheld consumer grade RGB-D sensor. It is generally

used for evaluation of non-rigid 3D reconstruction.

In order to evaluate the outdoor performance of our method, we use commercially

available ZED camera for map generation and dynamic filtering. Experiments

illustrates that our method produce consistent result both in indoor and outdoor

applications. These are demonstrations of real world unstructured dynamic

environments of our approach.

1.5 Outline of the Thesis

The rest of this thesis is organized as follows.

Chapter 2 reviews state-of the-art visual SLAM methods that attack the problem of

dynamic environments.

Chapter 3 gives the mathematical preliminaries, RGB-D sensors.

Chapter 4 is devoted to the overall methodological structure of our system, by giving

details about proposed approaches for local key frame extraction, dynamic removal,

3D map representation and 3D volume visualization.

Chapter 5 focuses on experiments conducted and provides evaluation results

comparing our method against other state-of-the-art methods.

7

Chapter 6 presents the evaluation results that analyze the sensitivity of the method

to parameter changes whereas Chapter 7 provides concluding remarks and future

works.

8

9

CHAPTER 2

2 LITERATURE REVIEW

State of art SLAM methods use probabilistic approaches by taking into account

uncertainty information in sensor data. Common representation are classified as grid,

raw data and feature based methods [60].

Grid based techniques represent the environments with grids representing the

probability of being occupied or not occupied, during robot navigation. For example,

Burgard and Thrun [61] propose a grid based mapping method with an agent with

one degree of freedom sonar scanner for constructing 2D grid maps of indoor

environments. In order to localize the agent itself in a large environment, it must use

complex cross correlation search algorithms, which usually generate more than one

location as ghost presence. In addition, using maximum likelihood search algorithm

can converge to false local optima. These two problems can be solved by using a

particle-based localization in the map. In addition to this approach, a multi-agent grid

based SLAM implementation is proposed in [94] and mapping of an indoor

environment with six mobile robots is presented in this work. The most important

flaws of grid-based mapping SLAM is cycle detection when revisiting a previously

present location or loop closing. For a large cycle, the minimal search-space may

become huge for real-time cross-correlation, which needs high computational time

on the other hand; using a tight search space may lead the agent to fail detecting the

cycles or miss loop closure. Furthermore, given a large search space for scan

matching, the possibility of multiple correlation modes is high [95].

Raw data or featureless techniques can be applied to outdoor environments where

feature extraction is a difficult task. Iterative closest point (ICP) algorithm,

commonly use featureless registration approaches, as introduced in [62]. ICP

10

algorithm is used extensively in 3D object reconstruction. This algorithm takes two

input 3D scans and tries to build a transformation matrix iteratively by minimizing

the distance between two scans. Data association is the problem of associating

observations from sensors to a particular area of the map being estimated within the

SLAM algorithm.

A common way of matching multiple sets of 3D points is the iterative closest point

algorithm. In ICP, the main assumption is overlapping point sets. The distance

between the measurement and model are minimized in a least square sense by

determining the best homogenous transformation. The found solution for rotation

and translation are considered as transformation between two point clouds.

 In ICP algorithm, it is assumed that the point sets are overlapping. The distance

between closest points are minimized by determining the “best” (in least squares

sense) rotation matrix and translation vector. The final transformation are considered

to be the registration transformation between the two point clouds that align them

properly. ICP handles the data association problem by finding the corresponding

points in raw data, however, it is relatively slow because of its iterative nature [63].

Feature based methods represent the environment by abstract geometric features,

therefore such methods require a data processing algorithm for extracting those

features and associating features with landmarks in the map of the environment [60].

The pioneering work for feature based method, proposed by Smith and Cheeseman

[64] employs an Extended Kalman Filter (EKF) based SLAM method for estimating

the posterior distribution over robot position along with the positions of landmarks

in a disaster environment. An initial work establishes the fact that there is a statistical

relationship between each predetermined landmark location and the observation.

EKF linearizes the nonlinear model and applies the conventional KF in order to

generate an estimated state instead of working with the real state. EKF is used

considerably for the solution of SLAM problems in the literature [65][66]. However,

11

EKF fails to guarantee convergence because of propagating mean and covariance

due to the linear approximations of the nonlinear transformation [67]. Moreover,

feature extraction may not be possible for initially unknown and complex

environments. Hence, in these environments and under nonlinearities, EKF based

SLAM solutions may not be feasible.

Feature based approach takes advantage of reducing the search space, which removes

the necessity of finding for corresponding pairs. This leads to irrelevant points not

affecting the 3D registration process. In addition, feature based techniques do not

need a good initial estimate or alignment of the scans. However, these methods suffer

from a high computational complexity.

2.1 Visual SLAM

Parallel Tracking and Mapping (PTAM) is the first visual SLAM approach capable

of handling thousands of 3D points in real-time [68]. This approach extracts features

from images using a corner detection algorithm and then matching these features in

different frames to obtain 3D positions. It also proposes a method to efficiently

generate and store a 3D map by saving important frames into memory. However,

this method focuses on accurate and fast mapping in small environments; therefore,

it is not sufficient to manage large-scale maps.

Following PTAM, there are several methods similar to PTAM, which use structure

from motion method. Structure from motion (SfM) is the process of estimating the

3-D structure of a scene from a set of 2-D images based on fundamental matrix,

which is the relation of two images from different views. In [69], an algorithm is

proposed which splits mapping and tracking in order to detect loop closures and

handle large maps. In addition to SfM methods, ORB-SLAM [3] is proposed by

using ORB descriptor instead of FAST feature in order to improve the accuracy of

the existing PTAM scheme. Although ORB descriptor, which is utilized in ORB-

SLAM2, may outperformed by other existing features it was found to be not as robust

12

as expected. There exists always inevitable erroneous correspondences of features.

Besides, the location of features are not exact due to discretization artifact. These are

important reasons for ORB-SLAM’s randomness and less accurate estimate.

Therefore, these methods suffer from scaling drift over time.

Furthermore, other types of visual SLAM methods are based on stereo and RGB-D

cameras or with visual-inertial odometry are proposed.

maplab [70] and VINS-Mono [71] have recently been introduced as inertial aided

SLAM system. These are graph-based SLAM systems that use an IMU and a camera.

They can generate visual maps for localization. maplab records the data during an

open loop phase using only visual-inertial odometry, then loop closure detection,

graph optimization and dense map reconstruction are all done offline.

All method mentioned above assume that either the camera is never obstructed or

images have enough visual features to allow tracking. In real life these assumption

cannot be satisfied: For example, the camera of an autonomous robot can be fully

obstructed from people passing by or it can encounter a surface without visual

features during motion. The following visual SLAM approaches are designed to be

more robust for these cases; however, they still cannot solve the dynamic

environment problem:

• MCPTAM [79] uses multiple cameras in order to increase the field of view

of the system. If the visual feature can be tracked at least by one camera, then

this proposed system can perform position tracking.

• RGBDSLAMv2 [80] uses an external odometry as motion estimation. In

addition, in order to have a more robust odometry, built-in ROS packages

like robot localization [81] can then be augmented for sensor fusion with an

extended Kalman filter operating on multiple odometry sources.

13

RGBDSLAMv2 generates a 3D occupancy grid map (OctoMap [82]) and a

dense point cloud of the environment.

• RTAB-Map, Real-Time Appearance-Based Mapping [83][84], has been

introduced in order to limit the operation time during loop closure detection.

In addition, it has a memory management module making it suitable for

larger scale environment. Since this method can detect the loop closure

within a fixed time limit, it is capable of online mapping for a longer period

of runtime.

ORB-SLAM2 [3] (latest version ORB-SLAM3 [37]), S-PTAM [4] and RTAB-Map

[5] are best state of art feature based visual SLAM approaches working in static

environments. In order to increase the performance of such feature-based method in

dynamic environment, dynamic objects are considered generally as spurious data,

and are removed as outliers using RANdom SAmple Consensus (RANSAC) and

robust cost function. More recently, ProSLAM [73] has been released to provide a

comprehensive open source package using well know visual SLAM techniques. In

generated graph, the nodes store odometry information for each map place. They

also contain the RGB images, depth information and visual words. In generated

graph, the edge stores the rigid 3D transformation between nodes. For detection of

previously visited places, “bag of words” method is applied. The “bag-of words”

method represents each image by visual words taken from a vocabulary which can

be constructed either offline by using a training dataset or online and local feature

descriptors are used for forming the visual words. For ORB-SLAM2 and S-PTAM,

when a loop closure is detected using a special bag of words method introduced in

DBoW2 [74] and generated map is optimized using bundle adjustment. Bundle

adjustment describes the sum of errors between the measured pixel coordinates and

the re-projected pixel coordinates. A separate thread runs for graph optimization after

loop closure. In this way, it is aimed to have a higher camera tracking frame rate

performance. ProSLAM detects the loop closures by direct comparison of

14

descriptors in the map. It does not use the bag-of-words approach. For all these

approaches, the time for loop closure and graph optimization increases as the map

grows, which can make loop closure correction realized with a significant delay

following the detection. In addition, these approaches maintain a sparse feature map

because of the bundle adjustment. The sparse feature map is not visually informative

and cannot directly be used for tasks such as collision-free motion planning;

however, sparse SLAM is often fused with other dense methods to improve

robustness, which needs more computational power.

On the other hand, targeted attempts are still being made to increase performance in

dynamic scenes. For instance, DVO-SLAM [6] use photometric and depth errors

instead of visual features. The joint visual odometry scene flow (VO-SF) [7]

proposes an efficient solution to estimate camera motion. However, odometry-based

methods either cannot recover from inaccurate image registration or lacks loop

closure detection approach independent of pose estimate. In addition, RGBiD-

SLAM [76], does not prefer local visual features to estimate motion, it uses

photometric and depth errors over all pixels of the RGB-D images. This method

performs the integration of the tracked frames into key frames, which helps to

achieve a greater accuracy in the computation of relative camera transformation

during loop closure. However, mean computational cost of the processes involved in

the back-end pipeline (segmentation, tracking, loop detection and graph

optimization) is above 600 milliseconds which is not suitable for real time operation.

SDFs have long been studied in order to represent the 3D volumes in computer

graphics [24][31][32]. Newcombe et al. [24] proposed the SDF based RGB-D

mapping by generating precise maps in static environments. ElasticFusion (EF) [9]

is another method based on SDF, which can work in small scenarios. CoFusion [12]

(CF) is a contemporary method for reconstructing several moving objects however

it works with slow camera motions only and its performance deteriorates

significantly with increasing camera speed. StaticFusion (SF) [13] simultaneously

15

estimates the camera motion together with dynamic segmentation of image.

However, it works only sequences without having high dynamics at the beginning.

Furthermore, Kintinuous [77] and BundleFusion [78] uses truncated signed distance

field (TSDF) volume for RGB-D cameras. They are capable of reconstruct the

environment online with very appealing surfel-based maps, however, they require

any type of recently introduced powerful Nvidia GPU and this is not a low-cost

solution for dynamic SLAM. For BundleFusion, global dense optimization time on

loop closure detection increases according to the size of the environment. Palazzolo

[14] proposes Refusion (RF) where dynamics detection is done by using the residuals

obtained from the registration on signed distance function. This approach can create

a consistent mesh of the environment however highly dynamical change deteriorate

mapping performance.

Some methods use consistency of motion to confirm tracked points where dynamic

objects are segmented generally as spurious data since they conflict with the motion

consistency of background over consecutive frames. For instance, Wang and Huang

[15] segment dynamic objects using RGB optical flow. Nevertheless, the algorithm

is still not robust enough for TUM high dynamic scenarios. Kim et al. [16] propose

to use difference between depth images in order to eliminate the dynamics in the

scene. However, this algorithm requires an optimized background estimator suitable

for parallel processing. Azartash [17] uses the image segmentation for discriminating

the moving region from the static background. Experimental results show that the

accuracy remains almost same in low dynamic scenarios but in high dynamic

accuracy deteriorates. Tan [18] uses an adaptive RANSAC for removing outliers.

This method can work in dynamic situations with limited number of slowly moving

object.

Other methods use classifiers to identify the dynamic objects. Kitt [19] combines the

motion estimation with object detection; however, this method requires a classifier,

which make this method inapplicable to online explorations. Bescos [20] proposes

16

DynaSLAM, which combines a prior learning by Mask R-CNN [38] and Multi-View

Geometry to segment dynamic content. Multi-view geometry consists of region

growth algorithm, which makes unsuitable for real-time operation even running on

NVIDIA Titan GPU. Mask Fusion [36] also uses Mask R-CNN for semantic

segmentation. DS SLAM [21], RDS-SLAM [39], Semantic SLAM [40] are other

semantic based algorithms which use the SegNet [23]. Pose Fusion [41],

implemented on Elastic Fusion, uses Open Pose CNN [42] for human pose detection,

which limits this method in the non-human dynamic object scenes. Flow Fusion [43]

uses optical flow residuals with PWC-Net [44] for dynamic and static human objects.

However, such approaches are relying heavily on prior training methods. Therefore,

if unlearned dynamic occur in camera view, estimation results are bigger.

Furthermore, learning based semantic information is time- consuming with heavy

computational burden.

In our work, we reconstruct our scene geometry using Signed Distance Function

(SDF) instead of surfels in contrast to ElasticFusion and StaticFusion and therefore

we can directly generate the mesh of the environment using such representation

without using object tracking and object classifier. Moreover, number of dynamic

objects or their speeds do not limit our approach.

17

CHAPTER 3

3 PRELIMINARIES

In order to localize the sensor and to generate consistent mesh of the environment,

we propose a Simultaneous Localization and Mapping method. In SLAM system,

pose estimation problem is usually formulated as nonlinear optimization or nonlinear

least square problem where sum of squared errors are minimized. Therefore, in this

section, we try to provide an overview of nonlinear least square optimization with

commonly used methods.

3.1 Non-Linear Least-Squares (NLS) Optimization

For a given vector function 𝑓: 𝑅𝑚 → 𝑅𝑛 with ≥ 𝑚 , the objective is to minimize

‖𝑓(𝑥)‖. In particular, our aim is to find

where

𝑛 residuals are defined using the vector function as 𝑓𝑖(𝑥) ∶ 𝑅
𝑚 → 𝑅 and the residuals

are usually non-linear and non-convex functions.

The general form of iterations in order to solve this optimization problem is in the

form of

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒙𝐹(𝑥) (3.1)

𝐹(𝑥) =∑(𝑓𝑖(𝑥))
2

𝑚

𝑖=1

=
1

2
‖𝑓(𝑥)‖2 =

1

2
𝑓(𝑥)𝑇𝑓(𝑥) (3.2)

𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑘𝑑𝑘

(3.3)

18

𝑥𝑘 and 𝑥𝑘+1 are current iteration and next iteration. 𝑎𝑘 is the step size at iteration 𝑘

and 𝑑𝑘 is the direction to move along at iteration, which is a descent approach.

3.1.1 Descent Methods

Definition: (Descent direction) For a given 𝑥 ∈ 𝑅𝑛, a direction 𝑑 ∈ 𝑅𝑛 is called a

descent direction if ∃ 𝑎 > 0 such that

Let 𝑓(𝑥 + 𝑎𝑑) = 𝑔(𝑎), then using Taylor’s expansion

Since lim
𝑎→0

|𝑂(𝑎)|

𝑎
= 0, ∃ 𝑎 > 0,

|𝑂(𝑎)|

𝑎
< |∇𝑓(𝑥)𝑇𝑑| , then 𝑓(𝑥 + 𝑎𝑑) − 𝑓(𝑥) < 0.

Hence, 𝑑 is a descent direction.

For a given 𝑥 ∈ 𝑅𝑛, let 𝑔(𝑎) = 𝑓(𝑥 + 𝑎
𝑑

‖𝑑‖
), the rate of change of 𝑓 is

By the Cauchy-Schwarz inequality

Therefore, the direction with the maximum rate of decrease is along -∇𝑓(𝑥).

𝑓(𝑥 + 𝑎𝑑) < 𝑓(𝑥).

(3.4)

𝑔(𝑎) = 𝑔(0) + 𝑔′(0)𝑎 + 𝑂(𝑎)

(3.5)

𝑓(𝑥 + 𝑎𝑑) = 𝑓(𝑥) + 𝑎∇𝑓(𝑥)𝑇𝑑 + 𝑂(𝑎)

(3.6)

𝑔′ =
≺ ∇𝑓(𝑥), 𝑑 ≻

‖𝑑‖

(3.7)

−
1

‖𝑑‖
. ‖∇𝑓(𝑥)‖. ‖𝑑‖ ≤

≺ ∇𝑓(𝑥), 𝑑 ≻

‖𝑑‖
≤

1

‖𝑑‖
. ‖∇𝑓(𝑥)‖. ‖𝑑‖

(3.8)

19

Let us go back to general form of our iterative algorithm with 𝑑 = −∇𝑓(𝑥), then

we get

If {𝑥𝑘} is the sequence generated by the descent algorithm, then,

Let 𝑔𝑘(𝑎) = 𝑓(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘)), 𝑎𝑘 minimizes this function if and only if

However, using chain rule,

Therefore,

This equation implies that 𝑥𝑘+2 − 𝑥𝑘+1 is orthogonal to 𝑥𝑘+1 − 𝑥𝑘. Observe that the

method of steepest descent moves in orthogonal steps.

Let 𝐴 ∈ 𝑅𝑛𝑥𝑛 be symmetric matrix with real entries and let 𝑥 ∈ 𝑅𝑛𝑥1 (column

vector),

𝑥𝑘+1 = 𝑥𝑘 − 𝑎𝑘∇𝑓(𝑥𝑘) (3.9)

𝑥𝑘+1 = 𝑥𝑘 − 𝑎𝑘∇𝑓(𝑥𝑘) (3.10)

𝑥𝑘+2 = 𝑥𝑘+1 − 𝑎𝑘+1∇𝑓(𝑥𝑘+1) (3.11)

≺ 𝑥𝑘+1 − 𝑥𝑘, 𝑥𝑘+2 − 𝑥𝑘+1 ≻= 𝑎𝑘𝑎𝑘+1 ≺ ∇𝑓(𝑥𝑘), ∇𝑓(𝑥𝑘+1) ≻

(3.12)

𝑑𝑔𝑘
𝑑𝑎

𝑎𝑘 = 0

(3.13)

𝑑𝑔𝑘
𝑑𝑎

𝑎𝑘 =≺ −∇𝑓(𝑥𝑘), ∇𝑓(𝑥𝑘 − 𝑎𝑘∇𝑓(𝑥𝑘) ≻=≺ −∇𝑓(𝑥𝑘), ∇𝑓(𝑥𝑘+1) ≻

(3.14)

≺ 𝑥𝑘+1 − 𝑥𝑘, 𝑥𝑘+2 − 𝑥𝑘+1 ≻= 0

(3.15)

20

Then, 𝑄 = 𝑥𝑇𝐴𝑥 is said to be a quadratic form and the quadratic form is positive

definite 𝑄 > 0 when 𝑥 ≠ 0. Using symmetric positive definite matrix 𝑄, we can

form a quadratic function in the form of

Then, the derivative of 𝑥𝑇𝐴𝑥

If a quadratic form 𝑥𝑇𝐴𝑥 is given with 𝐴𝑇 ≠ 𝐴, then because the transposition

of a scalar equals itself,

we obtain

Since (𝐴+𝐴𝑇)𝑇 = 𝑄𝑇 = 𝐴+𝐴𝑇 = 𝑄

𝑄 = 𝑥𝑇𝐴𝑥 = [𝑥1 … 𝑥𝑛] [

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] [

𝑥1
⋮
𝑥𝑛
].

(3.16)

𝑓(𝑥) =
1

2
𝑥𝑇𝑄𝑥 − 𝑏𝑇𝑥

(3.17)

𝐷(𝑥𝑇𝑄𝑥) = 𝑥𝑇(𝑄 + 𝑄𝑇) = 2𝑥𝑇𝑄 (3.18)

𝐷(𝑏𝑇𝑥) = 𝑥𝑇(𝑄 + 𝑄𝑇) = 𝑏𝑇

(3.19)

(𝑥𝑇𝐴𝑥)𝑇 = 𝑥𝑇𝐴𝑇𝑥 = 𝑥𝑇𝐴𝑥 (3.20)

𝑥𝑇𝐴𝑥 =
1

2
𝑥𝑇𝐴𝑥 + 𝑥𝑇𝐴𝑇𝑥 (3.21)

𝑥𝑇𝐴𝑥 =
1

2
𝑥𝑇(𝐴+𝐴𝑇)𝑥

(3.22)

21

Let us go back to general form of our iterative algorithm with 𝑑 = −∇𝑓(𝑥), then

we get

Our aim to find a 𝑎𝑘 to minimize 𝑓(𝑥𝑘+1) where 𝑓(𝑥) =
1

2
𝑥𝑇𝑄𝑥 − 𝑏𝑇𝑥.

Let

𝑔(𝑎) is quadratic and 𝑔(𝑎) = 𝛼𝑎2 + 𝛽𝑎 + 𝛾 and 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔(𝑎) = −
𝛾

2𝛼

where

Finally,

The descent algorithm (known as steepest descent) with exact line search for

quadratic functions becomes

𝑥𝑇𝐴𝑥 =
1

2
𝑥𝑇(𝐴+𝐴𝑇)𝑥 ≜

1

2
𝑥𝑇(𝑄)𝑥

(3.23)

𝑥𝑘+1 = 𝑥𝑘 − 𝑎𝑘∇𝑓(𝑥𝑘)

(3.24)

𝑔(𝑎) = 𝑓(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘))

(3.25)

𝑔(𝑎) =
1

2
𝑓(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘))

𝑇
𝑄𝑓(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘)) − 𝑏

𝑇(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘))

(3.26)

𝛼 =
1

2
∇𝑓𝑇(𝑥𝑘 − 𝑄∇𝑓(𝑥𝑘))

(3.27)

𝛾 = (𝑏𝑇 − 𝑥𝑘
𝑇𝑄)∇𝑓(𝑥𝑘) = −∇𝑓

𝑇(𝑥𝑘)∇𝑓(𝑥𝑘) (3.28)

𝑎𝑘 =
∇𝑓𝑇(𝑥𝑘)∇𝑓(𝑥𝑘)

∇𝑓𝑇(𝑥𝑘)𝑄∇𝑓(𝑥𝑘)

(3.29)

22

Rayleigh's Inequalities. 𝑃 ∈ 𝑅𝑛𝑥𝑛 with real symmetric positive definite matrix,

Then

Where 𝜆𝑚𝑖𝑛(𝑃) and 𝜆𝑚𝑎𝑥(𝑃) are respectively the smallest and largest eigenvalue of

the 𝑃.

Using Rayleigh's inequality

Finally , we get,

First order necessary condition. If 𝑥∗ is an unconstrained local minimizer of a

differentiable function 𝑅𝑛 → 𝑅 , then we must have ∇𝑓(𝑥∗) = 0.

𝑥𝑘+1 = 𝑥𝑘 −
∇𝑓𝑇(𝑥𝑘)∇𝑓(𝑥𝑘)

∇𝑓𝑇(𝑥𝑘)𝑄∇𝑓(𝑥𝑘)
∇𝑓(𝑥𝑘)

(3.30)

∇𝑓(𝑥𝑘) = 𝑄𝑥𝑘 − 𝑏

(3.31)

𝜆𝑚𝑖𝑛(𝑃)‖𝑥‖
2 ≤ 𝑥𝑇𝑃𝑥 ≤ 𝜆𝑚𝑎𝑥(𝑃)‖𝑥‖

2

(3.32)

𝜆𝑚𝑖𝑛(𝑄)∇𝑓
𝑇(𝑥𝑘)∇𝑓(𝑥𝑘) ≤ ∇𝑓

𝑇(𝑥𝑘)𝑄∇𝑓(𝑥𝑘) ≤ 𝜆𝑚𝑎𝑥(𝑄)∇𝑓
𝑇(𝑥𝑘)∇𝑓(𝑥𝑘)

(3.33)

∇𝑓𝑇(𝑥𝑘)𝑄
−1∇𝑓(𝑥𝑘) ≤

1

𝜆𝑚𝑖𝑛
∇𝑓𝑇(𝑥𝑘)∇𝑓(𝑥𝑘)

(3.34)

0 < 𝑎 ≤
2

𝜆𝑚𝑎𝑥(𝑄)

(3.35)

23

Proof: Consider 𝑦 ∈ 𝑅𝑛. If we define 𝑔(𝑎) = 𝑓(𝑥∗ + 𝑎𝑦) and 𝑔: 𝑅𝑛 → 𝑅.

Using chain rule,

Using the definition of limit

Because the local optimality of 𝑥∗, 𝑓(𝑥∗ + 𝑎𝑦) ≥ 𝑓(𝑥∗). Finally we get,

Since 𝑦 is arbitrary, if −𝑦 is used, then

This inequality implies that ∇𝑓(𝑥∗) = 0

3.1.1.1 Newton Methods

If Taylor’s expansion is used around the current estimate 𝑥𝑘, we get,

𝑑𝑔

𝑑𝑎
(𝑎) = 𝑦𝑇∇𝑓(𝑥∗ + 𝑎𝑦)

(3.36)

𝑑𝑔

𝑑𝑎
(0) = 𝑦𝑇∇𝑓(𝑥∗)

(3.37)

𝑑𝑔

𝑑𝑎
(0) = lim

𝑎→0

𝑓(𝑥∗ + 𝑎𝑦) − 𝑓(𝑥∗)

𝑎
≥ 0

(3.38)

𝑦𝑇∇𝑓(𝑥∗) ≥ 0.

(3.39)

−𝑦𝑇∇𝑓(𝑥∗) ≥ 0.
(3.40)

𝑦𝑇∇𝑓(𝑥∗)−𝑦𝑇∇𝑓(𝑥∗) ≥ 0 (3.41)

24

First order necessary condition implies that 𝑞(𝑥∗) = 0. Hence,

If ∇2𝑓(𝑥𝑘) ≥ 0, then 𝑓(𝑥𝑘) is convex and hence our stationary point is a global

optimum. Newton's method picks this point as the next iterate

Let us show that −[∇2𝑓(𝑥𝑘)]
−1∇𝑓(𝑥𝑘) is a descent direction. Define a function ℎ(𝑎)

If ∇𝑓(𝑥) ≠ 0 and [∇2𝑓(𝑥)]−1 > 0, then ℎ′(0) < 0. This result shows that

−[∇2𝑓(𝑥𝑘)]
−1∇𝑓(𝑥𝑘) is in the descent direction.

𝑓(𝑥) ≈ 𝑓(𝑥𝑘) + ∇𝑓
𝑇(𝑥𝑘)(𝑥 − 𝑥𝑘) +

1

2
(𝑥 − 𝑥𝑘)∇

2𝑓𝑇(𝑥 − 𝑥𝑘) ≜ 𝑞(𝑥) (3.42)

∇𝑓(𝑥𝑘) + ∇
2𝑓(𝑥𝑘)𝑥 + ∇

2𝑓(𝑥𝑘)𝑥𝑘 = 0
(3.43)

𝑥 = 𝑥𝑘 − [∇
2𝑓(𝑥𝑘)]

−1∇𝑓(𝑥𝑘)

(3.44)

𝑥𝑘+1 = 𝑥𝑘 − [∇
2𝑓(𝑥𝑘)]

−1∇𝑓(𝑥𝑘)

(3.45)

ℎ(𝑎) = 𝑓(𝑥 − 𝑎[∇2𝑓(𝑥)]−1∇𝑓(𝑥))
(3.46)

ℎ′(𝑎) = [−([∇2𝑓(𝑥)]−1∇𝑓(𝑥))]𝑇∇𝑓(𝑥 − 𝑎[∇2𝑓(𝑥)]−1∇𝑓(𝑥))
(3.47)

ℎ′(0) = −∇𝑓𝑇(𝑥)[∇2𝑓(𝑥)]−1∇𝑓(𝑥)
(3.48)

25

3.1.2 Levenberg-Marquardt Modification

Gauss-Newton method solves the optimization problem quite fast because it has

quadratic convergence to local minimum. However, in some circumstances it can

show a poor performance especially under poor initial parameter selection. Gradient

Descent (GD), on the other hand, shows slow linear convergence, but always

decreases the function for a sufficiently small step size.

If [∇2𝑓(𝑥)]−1 ≥ 0 or ∇2𝑓(𝑥) is singular, the Newton's direction may not be a

descent direction or may not be well defined. The basic idea is to make ∇2𝑓(𝑥)

positive defi

In order to overcome the problem of both Gauss-Newton and Gradient Descent, the

Levenberg-Marquardt (LM) algorithm can be used. This method smoothly switches

between both methods through an adaptive parameter.

Lemma 2. Let 𝐴 and 𝑛𝑥𝑛 matrix with eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 and let 𝜇 ∈ 𝑅. Then

eigenvalues of 𝐴 + 𝜇𝐼 are 𝜆1 + 𝜇, 𝜆2 + 𝜇,… , 𝜆𝑛 + 𝜇

Proof. Let 𝜆𝑖 be an eigenvalue of 𝐴 with eigenvector 𝜗𝑖

Therefore 𝜆𝑖 + 𝜇 is an eigenvalue of 𝐴 + 𝜇𝐼.

Levenberg-Marquardt modification is finally in the form of

𝐴𝜗𝑖 = 𝜆𝑖𝜗𝑖
(3.49)

(𝐴 + 𝜇𝐼)𝜗𝑖 = 𝐴𝜗𝑖 + 𝜇𝜗𝑖 = 𝜆𝑖𝜗𝑖 + 𝜇𝜗𝑖 = (𝜆𝑖 + 𝜇)𝜗𝑖
(3.50)

𝑥𝑘+1 = 𝑥𝑘 − [∇
2𝑓(𝑥𝑘) + 𝜇𝑘𝐼]

−1∇𝑓(𝑥𝑘). (3.51)

26

For large values of 𝜇 we get short step in the steepest descent direction and for small

values of 𝜇, we can get (almost) quadratic final convergence (regular Newton

method). Therefore, the damping parameter influences both the direction and the size

of the step, and choice of initial 𝜇 value should be related to 𝐴0= ∇
2𝑓(𝑥𝑘) as

After having completed the rule and search direction, next step is to choose the initial

parameters. The initial point is usually selected randomly. The final step is to choose

the stopping criteria if we have found a local minima is found.

The stopping criteria can be selected as

|𝑥𝑘+1 − 𝑥𝑘| < 𝜖) Difference between iteration is small.

‖∇𝑓(𝑥𝑘)‖ ≤ 𝜖 𝜖 > 0 is a small prescribed threshold

|𝑥𝑘+1 − 𝑥𝑘| ≤ 𝜖(‖𝑥‖ + 𝜖) Gradual change from relative step size 𝜖

|𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘)| < 𝜖) Improvements in function value are saturating

𝑖 < 𝑖𝑚𝑎𝑥 Safeguard against an infinite loop

3.2 Expectation–maximization (EM) algorithm

If we have two coins: Coin 1 and Coin 2, and each has its own probability of seeing

“Head” on any one flip. Now, select a coin at random and flip that one coin m times

and repeat this process n times.

𝑋11 ⋯ 𝑋1𝑚
⋮ ⋱ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑚

𝑌1
⋮
𝑌𝑛

𝜇 = 𝑚𝑎𝑥𝑖(𝐴0𝑖𝑖) (3.52)

27

The 𝑋𝑖𝑗 are Bernoulli random variables taking values in {0, 1} where

𝑌𝑖 takes values in {1, 2} and indicate which coin was used on the nth trial. Note that

all the X’s are independent and, in particular

We can write out the joint probability density function of all nm + n random variables

and formally come up with maximum likelihood estimation (MLE) for 𝑝1 and 𝑝2. If

we call these MLEs 𝑝1̂ and 𝑝2̂.

Now suppose that the 𝑌𝑖 are not observed but we still want MLEs for 𝑝1 and 𝑝2. The

data set now consists of only the X’s and is “incomplete”. The goal of the EM

Algorithm is to find MLEs for 𝑝1 and 𝑝2 in this case. Basic notation for the EM

Algorithm for this coin example is summarized below.

• X be observed data, generated by some distribution depending on some

parameters. Here, X represents something high-dimensional. (In the coin

example it is an n × m matrix.) These data may or may not be iid. (In the coin

example it is a matrix with iid observations in each row.) X will be called an

“incomplete data set”.

𝑋𝑖𝑗 = {
1 𝑖𝑓 𝑗𝑡ℎ 𝑓𝑙𝑖𝑝 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑐𝑜𝑖𝑛 𝑖𝑠 𝐻𝑒𝑎𝑑
0 𝑖𝑓 𝑗𝑡ℎ 𝑓𝑙𝑖𝑝 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑐𝑜𝑖𝑛 𝑖𝑠 𝑇𝑎𝑖𝑙

(3.53)

𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑚|𝑌𝑖 = 𝑗 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑖(𝑝𝑗)

(3.54)

𝑝1̂ =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻 𝑜𝑓 𝐶𝑜𝑖𝑛1

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑖𝑛 1 𝑓𝑙𝑖𝑝𝑝𝑒𝑑

(3.55)

𝑝2̂ =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻 𝑜𝑓 𝐶𝑜𝑖𝑛2

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑖𝑛 2 𝑓𝑙𝑖𝑝𝑝𝑒𝑑

(3.56)

28

• Y be some “hidden” or “unobserved data” depending on some parameters.

Here, Y can have some general dimension. (In the coin example, Y is a

vector.)

• Z = (X, Y) represent the “complete” data set. We say that it is a “completion”

of the data given by X.

The distribution of Z depends on some parameter θ and that we can write the

probability density function for Z as

𝐿(𝜃) is usually used to denote a likelihood function and it always depends on some

random variables which are not shown by this notation. Because there are many

groups of random variables, 𝐿(𝜃|𝑍) or 𝐿(𝜃|𝑋) is used to denote the complete

likelihood and incomplete likelihood functions, respectively.

Jensen’s Inequality: Let 𝑋 be a random variable with mean 𝜇 = 𝐸[𝑋] and let 𝑔 be

a convex function. Then

To prove Jensen’s inequality, visualize the convex function 𝑔 and a tangent line at

the point (𝜇, 𝑔(𝜇)). Let the line 𝑙(𝑥) be

𝑓(𝑧|𝜃) = 𝑓(𝑥, 𝑦|𝜃) = 𝑓(𝑦|𝑥, 𝜃)𝑓(𝑥|𝜃)

(3.57)

𝐿(𝜃|𝑍) = 𝐿(𝜃|𝑋, 𝑌) = 𝑓(𝑋, 𝑌|𝜃) (3.58)

𝐿(𝜃|𝑋) = 𝐿(𝜃|𝑋)

 (3.59)

𝑔(𝐸[𝑋]) ≤ 𝐸[𝑔(𝑋)]

(3.60)

29

By convexity of 𝑔, the line 𝑙(𝑥) is always below 𝑔.

We can rewrite this inequality using the random variable 𝑋 to get

By taking the expected value of both side

which is the desired result

If 𝑔 is concave, then the negative of 𝑔 is convex.

Let we have some data 𝑋 with joint probability density function 𝑓(𝑋|𝜃) and let 𝑙(𝜃)

denote the log-likelihood.

We would like to find a new 𝜃 that satisfies

where 𝜃𝑛 is the 𝑛𝑡ℎ iteration guess.

𝑙(𝑥) = 𝑚(𝑥 − 𝜇) + 𝑔(𝜇)

(3.61)

𝑚(𝑥 − 𝜇) + 𝑔(𝜇) ≤ 𝑔(𝑥)

(3.62)

𝑚(𝑋 − 𝜇) + 𝑔(𝜇) ≤ 𝑔(𝑋)

(3.63)

𝑔(𝜇) ≤ 𝐸[𝑔(𝑋)]

(3.64)

𝑔(𝐸[𝑋]) ≤ 𝐸[𝑔(𝑋)]

(3.65)

𝑙(𝜃) = 𝑙𝑛 𝑓(𝑋|𝜃)

(3.66)

𝑙(𝜃) ≥ 𝑙(𝜃𝑛)

(3.67)

30

Introduce some hidden variables Y,

{∫
𝑓(𝑋|𝑦,𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋,𝜃̂𝑛)
𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 } is the expectation with respect to the distribution

𝑌|𝑋, 𝜃𝑛. So, applying Jensen’s inequality, we have

𝑙(𝜃) − 𝑙(𝜃𝑛) = 𝑙𝑛 𝑓(𝑋|𝜃) − 𝑙𝑛 𝑓(𝑋|𝜃𝑛) (3.68)

= 𝑙𝑛 {∫𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)𝑑𝑦} − 𝑙𝑛 𝑓(𝑋|𝜃𝑛)

(3.69)

𝑙(𝜃) − 𝑙(𝜃𝑛) = 𝑙𝑛 {∫
𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋, 𝜃𝑛)
𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 } − 𝑙𝑛 𝑓(𝑋|𝜃𝑛)

(3.70)

𝑙(𝜃) − 𝑙(𝜃𝑛) ≥ ∫ 𝑙𝑛 (
𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋, 𝜃𝑛)
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 − 𝑙𝑛 𝑓(𝑋|𝜃𝑛)

(3.71)

= ∫𝑙𝑛(1) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 = 0 (3.72)

𝑙(𝜃) ≥ 𝑙(𝜃𝑛) + ∫ 𝑙𝑛 (
𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋, 𝜃𝑛) 𝑓(𝑋|𝜃𝑛)
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 (3.73)

∫𝑙𝑛 (
𝑓(𝑋|𝑦, 𝜃𝑛) 𝑓(𝑦|𝜃𝑛)

𝑓(𝑦|𝑋, 𝜃𝑛) 𝑓(𝑋|𝜃𝑛)
)𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 (3.74)

= ∫ 𝑙𝑛 (
𝑓(𝑋, 𝑦|𝜃𝑛)

𝑓(𝑋, 𝑦|𝜃𝑛)
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 (3.75)

31

We have that 𝑙(𝜃𝑛) + ∫ 𝑙𝑛 (
𝑓(𝑋|𝑦,𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋,𝜃̂𝑛) 𝑓(𝑋|𝜃̂𝑛)
)𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 is bounded 𝑙(𝜃) and

that it is equal to this upper bound when 𝜃 = 𝜃𝑛.

If we maximize 𝑙(𝜃𝑛) + ∫ 𝑙𝑛 (
𝑓(𝑋|𝑦,𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋,𝜃̂𝑛) 𝑓(𝑋|𝜃̂𝑛)
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦, we may improve

towards maximizing 𝑙(𝜃).

Maximizing

with respect to 𝜃 is equivalent to maximizing

So, if we could compute this expectation, maximize it with respect to 𝜃, call the

result 𝜃𝑛+1 and iterate, we can improve towards finding the 𝜃 that maximizes the

likelihood. These expectation and maximization steps are precisely the Expectation–

maximization (EM) algorithm.

The EM Algorithm is a numerical iterative for finding an MLE of θ. The rough idea

is to start with an initial guess for θ and to use this and the observed data X to

“complete” the data set by using X and the guessed θ to postulate a value for Y , at

which point we can then find an MLE for θ in the usual way. The actual idea though

= ∫𝑙𝑛(1) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 = 0

(3.76)

∫𝑙𝑛 (
𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋, 𝜃𝑛) 𝑓(𝑋|𝜃𝑛)
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦

(3.77)

∫𝑙𝑛𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 (3.78)

= 𝐸𝑌[𝑙𝑛𝑓(𝑋, 𝑌|𝜃)|𝑋𝜃
𝑛] (3.79)

32

is slightly more sophisticated. We will use an initial guess for θ and postulate an

entire distribution for Y , ultimately averaging out the unknown Y .

Let 𝜂 be maximum likelihood estimate and X be complete data , EM iteratively

alternates between making guesses about 𝑥 , and finding the 𝜂 that maximizes

probability 𝑝(𝑥| 𝜂) over 𝜃. In order to use EM, there should be given observed data

𝑦 , density probability 𝑝(𝑦|𝜂), complete data 𝑥 and parametric density 𝑝(𝑥| 𝜂).

It is assumed that complete data 𝑥 can be modeled by random variable 𝑋 having

density 𝑝(𝑥| 𝜂) over the data set Ω (𝜂 ∈ Ω). In this case, 𝑋 is not directly observed,

𝑦 which is realization of random vector 𝑌 is observed. 𝑌 depends on 𝑋.

Given the observed data 𝑦 , our aim is to find maximum likelihood estimate (MLE)

of 𝜂

However, it is easier to calculate 𝜂 that maximizes the log-likelihood of y, because

log() function is monotonically increasing:

In some circumstances where, it is difficult to assess both likelihood, the EM

algorithm makes a guess about the complete data and solve for 𝜂 that maximized

log-likelihood. Then, it is easy to make better guess about complete data. EM

algorithm consists of two steps namely E-step and M-step however let us break down

into five steps:

Step 1: Make an initial estimate 𝜂(𝑚)for 𝜂

Step 2: Calculate the conditional probability distribution 𝑝(𝑥|𝑦, 𝜂(𝑚)) for

completed data 𝑥 and observed data 𝑦

𝜂̂𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜂∈Ω 𝑝(𝑦|𝜂) (3.80)

𝜂̂𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜂∈Ω log𝑝(𝑦|𝜂) (3.81)

33

Step 3: Calculate conditional expected log-likelihood

 ∫ 𝑙𝑜𝑔𝑝(𝑥|𝜂) 𝑝(𝑥|𝑦, 𝜂(𝑚))𝑑𝑥 = 𝐸
(𝑋|𝑦, 𝜂(𝑚))

log 𝑝(𝑋|𝜂)

where integral is over the set 𝑋(𝑦) and 𝑋(𝑦) is assumed to be

independent from 𝜂.

Conditional expected log-likelihood depends on 𝜂 as a free

parameter and current guess 𝜂(𝑚) calculated in Step 2.

Step 4: Find the 𝜂 that maximizes conditional expected log-likelihood.

Obtained result is 𝜂(𝑚+1)

Step 5: Assign 𝑚 = 𝑚+ 1 and g oto Step 2. Iterate until stopping criterion

is satisfied.

Steps 2 and 3 are called the E-step for expectation, and Step 4 is called the M-step

for maximization.

Expectation Maximization algorithm is used to estimate dynamic label image with

initial guess obtained by pose estimation solved by Levenberg Marquart method.

3.3 RGB-D Sensors

In our approach, we sequentially fuse the RGB-D info into a signed distance field

because RGB-D cameras are specific type of sensors, which can augment the image

with depth information. Therefore, this type of sensor has been extensively used in

computer vision and computer graphics problems in order to find novel solutions.

The depth information provides a extensive information to find a solution of object

detection, semantic segmentation, shape analysis, pose estimation and 3D

reconstruction.

34

With the appearance of Kinect in 2010 as an user input device for the gaming, many

cheap RGB-D sensors became available on the market such as Kinect, Asus Xtion

Pro and Intel RealSense. Most recent developed stereo RGB-D sensor is ZED camera

and it is compatible to recently launched Jetson board of the Nvidia which makes it

a powerful tool for applications in the field of robot vision. Figure 3.1 shows some

examples of RGB-D sensors.

The output of these sensors is depicted in Figure 3.2. The left image in the figure is

an RGB image, i.e., each pixel stores the color of a point in the real world. The right

image is a depth image, i.e., each pixel stores the coordinate of that point with respect

to the reference frame of the sensor.

Figure 3.1: Example of RGB-D sensors. From left to right: Microsoft Kinect, Intel

RealSense D435. Courtesy of Microsoft and Intel Corporation.

Figure 3.2: Output images of RGB-D sensors. Left: RGB image. Right: Depth

image. The brighter a pixel is, the farther away it is from the sensor.

35

Using RGB-D sensor, measured 3D (𝑋, 𝑌, 𝑍) positions of sensed surfaces can be

directly computed from the intrinsic RGBD camera parameters and the measured

depth image values. The 𝑍 coordinate is directly taken as the depth value and the (𝑋,

𝑌) coordinates are computed using the pinhole camera model. In a typical pinhole

camera model, 3D (𝑋, 𝑌, 𝑍) points are projected to (𝑥, 𝑦) image locations, e.g., for

the image columns the 𝑥 image coordinate is

However, for a depth image, this equation is re-organized to “back-project” the depth

into the 3D scene and recover the (𝑋, 𝑌) coordinates as shown by equation

where 𝑍 denotes the sensed depth at image position (𝑥, 𝑦), (𝑓𝑥, 𝑓𝑦) denotes the camera

focal length (in pixels), (𝑐𝑥, 𝑐𝑦) denotes the pixel coordinate of the image center, i.e.,

the principal point, and (𝛿𝑥, 𝛿𝑦) denote adjustments of the projected pixel coordinate

to correct for camera lens distortion. Intrinsic camera calibration matrix 𝐾 ∈ 𝑅3 is

written as

𝑥 = 𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥 − 𝛿𝑥.

(3.82)

𝑋 =
𝑥 + 𝛿𝑥 − 𝑐𝑥

𝑓𝑥
𝑍 (3.83)

𝑌 =
𝑦 + 𝛿𝑦 − 𝑐𝑦

𝑓𝑦
𝑍

(3.84)

𝑍 = 𝑍
(3.85)

36

In practice, the pinhole camera model is not sufficient to fully model the behavior of

imperfect real-world lenses. In order to remove the radial and tangential lens

distortion, there are various closed-form approximations, While higher-degree

approximations are more expressive, they become more difficult to calibrate and are

often numerically unstable. The following distortion function is very common and

effective for consumer-grade cameras.

Here, 𝜅1, 𝜅2, … , 𝜅6 and 𝜌1, 𝜌2 are for radial and tangential distortion coefficients, and

𝑟2 = 𝑥2 + 𝑦2 respectively. In this study, we use the following distortion model if

the coefficients are available. This coefficient are invariant to scaling of an image.

Studies of accuracy for the Microsoft Kinect sensor show that a Gaussian noise

model provides a good fit to observed measurement errors on planar targets where

the distribution parameters are mean 0 and standard deviation 𝜎𝑍 =
𝑚

2𝑓𝑥𝑏
𝑍 for depth

measurements where
𝑚

𝑓𝑥𝑏
= −2.85𝑥10−3 is the linearized slope for the normalized

disparity empirically found in [3]. Since 3D the coordinates are a function of both

the pixel location and the depth, their distributions are also known as shown below:

𝐾 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]

(3.86)

𝜚𝑜(𝑋) =

[

 𝑥 (

1 + 𝜅1𝑟
2 + 𝜅2𝑟

4 + 𝜅3𝑟
6

1 + 𝜅4𝑟2 + 𝜅5𝑟4 + 𝜅6𝑟6
) + 2𝜌1𝑥𝑦 + 𝜌2(𝑟

2 + 2𝑥2)

𝑦 (
1 + 𝜅1𝑟

2 + 𝜅2𝑟
4 + 𝜅3𝑟

6

1 + 𝜅4𝑟2 + 𝜅5𝑟4 + 𝜅6𝑟6
) + 2𝜌2𝑥𝑦 + 𝜌1(𝑟

2 + 2𝑦2)

1]

 (3.87)

𝜚1(𝑋) = [
𝑥(1 + 𝜅1𝑟

2 + 𝜅2𝑟
4 + 𝜅3𝑟

6) + 2𝜌1𝑥𝑦 + 𝜌2(𝑟
2 + 2𝑥2)

𝑦(𝑥(1 + 𝜅1𝑟
2 + 𝜅2𝑟

4 + 𝜅3𝑟
6)) + 2𝜌2𝑥𝑦 + 𝜌1(𝑟

2 + 2𝑦2)
1

] (3.88)

37

These equations indicate that 3D coordinate measurement uncertainty increases as a

quadratic function of the depth for all three coordinate values. However, the

quadratic coefficient for the (𝑋, 𝑌) coordinate standard deviation is at most half that

in the depth direction, i.e., (𝜎𝑋 , 𝜎𝑌) ≈ 0.5𝜎𝑍 at the image periphery where
𝑥−𝑐𝑥

𝑓𝑥
≈ 0.5,

and this value is significantly smaller for pixels close to the optical axis.

For example, consider a “standard” Primesense sensor having no lens distortion and

typical factory-set sensor values: 𝑓𝑥 , 𝑓𝑦 = 𝑓 = 586±30 for focal length, (640; 480)

for image (𝑥, 𝑦) dimension, and (𝑐𝑥, 𝑐𝑦) = (320; 240) for the image center. In this

case the ratios

at the image center and

at the (𝑥, 𝑦) positions on the image boundary.

𝜎𝑋 =
𝑥 + 𝛿𝑥 − 𝑐𝑥

𝑓𝑥
𝜎𝑍 =

𝑥 + 𝛿𝑥 − 𝑐𝑥
2𝑓𝑥

(2.85𝑥10−3)𝑍2 (3.89)

𝜎𝑌 =
𝑦 + 𝛿𝑦 − 𝑐𝑦

𝑓𝑦
𝜎𝑍 =

𝑦 + 𝛿𝑦 − 𝑐𝑦

𝑓𝑦
(2.85𝑥10−3)𝑍2 (3.90)

𝜎𝑍 =
𝑚

2𝑓𝑥𝑏
𝑍 =

(2.85𝑥10−3)𝑍2

2
 (3.91)

(
𝑥+𝛿𝑥−𝑐𝑥

𝑓𝑥
,
𝑦+𝛿𝑦−𝑐𝑦

𝑓𝑦
) = (0,0)

(3.92)

(
𝑥+𝛿𝑥−𝑐𝑥

𝑓𝑥
,
𝑦+𝛿𝑦−𝑐𝑦

𝑓𝑦
) = (0.548 ± 0.028,0.411 ± 0.221)

(3.93)

38

With this in mind, the (𝑋, 𝑌, 𝑍) coordinates of a depth image are modeled as

measurements from a non-stationary Gaussian process whose mean is 0 at all points

but whose variance changes based on the value of the triplet (𝑥, 𝑦, 𝑍).

39

CHAPTER 4

4 OUR PROPOSED METHODOLOGY

4.1 Justification of the Methodology and Novelties of Our Approach

SLAM algorithms uses the sensor data in order to produce a consistent map of

environment. In real life, SLAM frameworks should address the problem of dynamic

scene without consuming much computational power. Employing semantic

segmentation or object classifier are time consuming, therefore, we refrain using

such techniques in our proposed SLAM algorithm. Our aim is to develop a SLAM

algorithm which

• can generate the dense model/mesh of environment

• can handle high dynamics in environment,

• is robust to dynamic element without requiring any type of object tracking,

• does not need any classifier or semantic information,

• is real-time operation compatible,

• does not require sophisticated sensor.

Considering these practical constraints, we propose a RGB-D based SLAM method

because RGB-D cameras are specific type of sensors, which can augment the image

with depth information. Moreover, this type of sensor has been extensively used in

computer vision and computer graphics problems because of its low cost.

In order to generate a dense model of environment, we use signed distance field

(SDF) representation because such representation is useful in robotic applications

because it defines the distance to surface.

40

Our proposed approach requires neither explicit object tracking nor object classifier

therefore it is robust to any type of moving object. We identify the dynamic part

using the image registration residuals, which are obtained by the pose estimation on

the SDF using Levenberg-Marquart method.

Figure 4.1 depicts the flowchart of our SDF-based RGB-D dense SLAM method.

We start the process by obtaining the RGB-D image. Initially, we assign labels as

static and pose as identity. We continue the process by measuring the similarity ratio

of the consecutive images. If the image passes the similarity test, next process is the

pose estimation. We try to solve this optimization problem by Levenberg-Marquart

method until the pose difference is less than 0.001 or iteration number is predefined

level. In order to measure the pose difference, we use the norm of pose vector. Using

the calculated norm, we can calculate the image registration residuals and this is an

initial guess for dynamic label. Then we continue the process by calculation of the

final dynamic label or image using Expectation Maximization algorithm. We re-

perform pose estimation using this final image and this process continues until the

last frame is processed.

The Signed Distance Function (SDF), also referred to as the Signed Distance

Transform, or simply Distance Transform has been widely applied to the processing

or visualization of volumetric 3D data. The SDF is usually implemented as a voxel-

based (or pixel-based in the two-dimensional case) representation, in which each cell

contains the distance to the nearest surface in the scene. The signed part indicates

whether the voxel (or pixel) is on the outside (positive) or inside (negative) an object.

41

Figure 4.1: Flowchart of the DUDMAP

In this study, we represent the geometry using SDF. In order to reconstruct the scene,

we fuse incrementally RGB-D data into SDF and geometry is stored in voxel grid.

First, camera pose is estimated using SDF and SDF is updated based on newly

computed camera pose. In the literature, most of the volumetric fusion techniques,

for example, KinectFusion [24] uses synthetic depth images and aligns them using

Iterative Closest Point. However, we use the camera pose directly on the SDF

because SDF encrypts the 3D geometry of the environment.

Figure 4.2 depicts the important steps of our proposed method. We first apply a depth

filter in order to eliminate significant amounts of noise in raw depth images. In order

to eliminate redundant data in fusion process, we trim repeated camera views by

42

measuring the similarity ratio of RGB images. We then perform pose estimation and

continue the process by detecting the dynamic elements in the scene.

The subsequent subsections provide the details of each block in our proposed system.

Section 4.2 reviews the preliminaries for the proposed system and Section 4.3

explains the depth smoothing process and similarity test. Section 4.4 is devoted to

the pose estimation algorithms. Section 4.5 and Section 4.6 respectively focuses on

3D volume visualization and dynamic detection from image registration or pose

estimation residuals.

Figure 4.2: DUDMAP scheme

4.2 Preliminaries and Notations

In our approach, we denote a 3D point as [X,Y,Z]R3, rotation of the camera as

RSO(3), and translation as TR3 , respectively. At time t, RGB-D frame contains

an RGB image and a depth map. The homogenous point X=(x, y, z,1)T can be

computed by assuming a pinhole camera model with intrinsic parameters fx, fy, cx and

cy (focal length and optical center) such as

43

𝑿 = [

𝑋
𝑌
𝑍
1

] = [
𝑥 − 𝑐𝑥
𝑓𝑥

𝑧,
𝑦 − 𝑐𝑦

𝑓𝑦
𝑧, z, 1]

𝑇

 (4.1)

The 3D point corresponding to a pixel is reconstructed using following equations.

𝑥 − 𝑐𝑥
𝑓𝑥

𝑧 = 𝑢 (4.2)

𝑦 − 𝑐𝑦

𝑓𝑦
𝑧 = 𝑣 (4.3)

The pixel coordinates becomes

[
𝑢𝑓𝑥
𝑧
+ 𝑐𝑥,

𝑣𝑓𝑦

𝑧
+ 𝑐𝑦]

𝑇

. (4.4)

In a rigid body motion, the common representation matrix is the homogenous

transformation matrix H consisting of a 3x3 rotation matrix and 3x1 translation

vector T is widely known to the robotics community as

𝐻4𝑥4 = [
𝑅3𝑥3 𝑇3𝑥1
01𝑥3 11𝑥1

] (4.5)

which is used in the transformation of a point 𝑋⃗ under motion as

X′ = 𝐻4𝑥4X (4.6)

The rotation matrix R has nine parameters and if we were to estimate the camera

motion, we would have to solve these nine parameters by forming a constrained

optimization problem, which can be very slow to implement. The Lie algebra allows

us lower dimensional linear space for rigid body motion representation making it

popular in computer vision problems. Actually, R is an orthonormal matrix which

44

has in fact a 3 parameter representation and these 3 parameters are in general found

using Euler angles.

We use a Lie algebra SE(3) representation as twist coordinates  as in [23] because

the rigid motion has 6 degrees of freedom while transformation matrix T has 12

parameters. Using the Lie algebra representation rigid body motion can be written as

 = [

0 −3
3 0

2 1
−1 2

−2 1
0 0

0 3
0 0

]. (4.7)

4.3 Depth Smoothing and Feature Matching

Commercially available RGB-D cameras usually produce invalid depth

measurements. In addition, there exist significant amounts of noise in raw depth

images. Bilateral filter as indicated in [92] modifies the weighting to account for

variation of intensity thereby effectively carrying out a robust smoothing operation.

Depth smoothing helps to reduce the disoccluded areas, which should be filled before

the operation. Moreover, smoothing of depth image is beneficial for avoiding holes

in the raw depth image and for removing the sharp discontinuities from depth image.

The most significant source of such deviation is quantization noise, which arises

when the disparity is estimated within a finite precision. The standard deviation of

noise in depth measurement is given as proportional to the square of the depth. In

this study, we use a depth adaptive bilateral filtering method, which is more effective

to smooth depth images than the bilateral filtering.

Let 𝐷(𝑢) be an observed depth image where 𝑢 denotes the location of a pixel. The

depth estimation smoothed by the depth adaptive bilateral filtering presented in [93]

is

45

𝐷̂(𝑢) =
𝐷(𝑢)

𝑊
∑ [𝑤𝑠(𝑢 − 𝑢𝑘)𝑤𝑐(𝐷(𝑢) − 𝐷(𝑢𝑘))]

𝑁(𝑢𝑘)

(4.8)

where 𝑤𝑐 and 𝑤𝑠 are Gaussian functions for spatial and range weighting with

standard deviations 𝜎𝑠 and 𝜎𝑐. 𝑁(𝑢𝑘) is the the neighborhood of 𝑢. 𝑊 is used for

normalizing factor to have a total sum of 1 over 𝑁(𝑢𝑘). 𝑤𝑐 and 𝑤𝑠 are given as

𝑤𝑠 = 𝑒
−
(𝑢−𝑢𝑘)

2

2𝜎𝑠2

(4.9)

𝑤𝑐 = 𝑒
−
(𝐷(𝑢)−𝐷(𝑢𝑘))

2

2𝜎𝑐2
(4.10)

Unlike the bilateral filter, here the values of 𝜎𝑐 for the depth image are not fixed but

vary with the depths. It can be approximated as

𝜎𝑐 = 𝛼𝐷(𝑢)
2 (4.11)

where 𝛼 is constant and its value depends on the camera parameters. In our

experiments, 𝛼 is set to be 12 and 𝜎𝑠 is 4 (in pixels). Figure 4.3 show the original

input image and result of a depth image with adaptive bilateral filter, respectively.

We can see that depth adaptive bilateral filter for the depth image is more effective

to remove the noise. Foreground are appropriately smoothed while preserving depth

discontinuity features since the proposed filter is adaptive to the variation of depth.

After filtering, invalid measurements due to out-of-range measurement or reflecting

surfaces are tried to be eliminated using depth smoothing filter and the resulting

image is depicted in also Figure 4.3.

In this study, we use a depth adaptive bilateral filtering method because it modifies

the weighting to account for variation of intensity. Figure 4.4 depicts the original

46

depth image, smoothed and filtered image respectively. In addition, we change the

zero values in the original depth images by neighboring 5x5 pixel mean value in the

smoothing process.

Input depth image

Adaptive bilateral filter

result

Handling of invalid

measurement

Figure 4.3: Original input image , result of a depth image with adaptive bilateral

filter and , invalid measurements handling

SDF fusion is an averaging process therefore, it is important not to use redundant

data in the fusion process because small error renders the SDF model unclear. In

order to eliminate redundant camera views, we perform similarity ratio test based on

feature matching. A typical feature matcher consists of the following steps:

extracting local feature, matching features by using nearest-neighbor approach and

selecting good correspondences.

In the literature, Scale Invariant Feature Transform (SIFT) is being proposed for

extracting keypoints and is widely used in different applications. SIFT feature-

matching works well for scaled images but fails for some cases such as faces with

pose changes [8]. Application of feature matching method FLANN with SIFT

descriptor overcomes such disadvantages of SIFT. In similarity analysis, we use

FLANN based feature matching with SIFT descriptor and we use RATIO [2] to

select good correspondences that compares the lowest feature distance and the

47

second lowest feature distance for recognizing good ones. Similarity ratio of the

VolumeDeform “boxing”sequence is depicted in Figure 4.5. Since the ratio is not

high, which indicates low degree of similarity, all the frames are included in the

mapping process.

Figure 4.4: a) Original image b) Final image

Figure 4.5: VolumeDeform boxing sequence similarity ratio

On the other hand, BONN dataset “crowd2” sequence is a high dynamic sequence

having 895 frames. Figure 4.6 illustrates the BONN “crowd2” sequence similarity

0 50 100 150 200 250 300 350

Frame number

20

30

40

50

60

70

80

S
im

ila
ri
ty

 p
e
rc

e
n

ta
g
e

48

ratio with respect to threshold value. If 80% similarity threshold is utilized, 106

frames are skipped, which results in 11.8% decrease in computational time. Absolute

translational error increases only 2.2%, while rotational relative pose error increases

by 0.3%. In low dynamic sequences, the number of similar frames is higher, which

decreases the unnecessary computational power. This is the novel enhancement in

this thesis we provide to existing methods in the literature for the betterment of the

performance. We use the 84% similarity threshold because our aim is to have 5%

decrease in computational cost.

On the other hand, BONN dataset “crowd2” sequence is a high dynamic sequence

having 895 frames. Figure 4.6 illustrates the BONN “crowd2” sequence similarity

ratio with respect to threshold value. If 80% similarity threshold is utilized, 106

frames are skipped, which results in 11.8% decrease in computational time. Absolute

translational error increases only 2.2%, while rotational relative pose error increases

by 0.3%. In low dynamic sequences, the number of similar frames is higher, which

decreases the unnecessary computational power. This is the novel enhancement in

this thesis we provide to existing methods in the literature for the betterment of the

performance. We use the 84% similarity threshold because our aim is to have 5%

decrease in computational cost.

4.4 Pose Estimation

The Signed Distance Function (SDF), also referred as simply Distance Transform

has been widely applied to the processing or visualization of volumetric 3D data.

Commonly used in the field of computer graphics as an acceleration structure for

speeding up ray-casting operations [16] it can also be used as a 3D model

representation. Other application area where SDF is widely used include collision

detection and haptic feedback.

49

Figure 4.6: BONN “crowd2” sequence similarity ratio with respect to threshold

value.

The SDF is usually implemented as a voxel-based representation, in which each cell

contains the distance to the nearest surface in the scene. The signed part indicates

whether the voxel is on the outside (positive) or inside (negative) an object.

Let 𝜓 be a function 𝜓(𝑥): 𝑅𝑁 → 𝑅 which maps the N-dimensional space to a scalar

value. For example, let N=2 and consider the circle equation 𝑥2 + 𝑦2 = 𝑟2 or more

consistent form ‖𝑥‖2
2 = 𝑟2.

The circle equation is equivalent to ‖𝑥‖2 − 𝑟 = 0. ‖. ‖2 is the L2-norm (Euclidean

distance). If we focus on the first term of the equation and plot , the obtained plot is

a smoothly varying gradient that becomes lighter (higher-valued) further away from

the origin, in every direction. If we now subtract 𝑟 from ‖𝑥‖2, we get the the distance

is relative to the edge of the circumference. It is a positive value whenever outside,

negative whenever inside and zero exactly on the edge of the circle. This means that

37.1

20.8

11.8
9.4

7.6 4.9

4.7
2.7 1.6

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

74 76 78 80 82 84 86 88 90 92

Si
m

ila
ri

ty
 R

at
io

Threshold

50

the common definition for a circle conforms precisely to the definition of a signed

distance function.

SDF represent a surface, where we have to test in order to determine where a given

ray intersects this surface . Given a ray,

𝛼𝜌 = 𝛼 [

𝜌1
𝜌2
𝜌3
]

(4.12)

where 𝜌 is a unit-norm vector and 𝛼 a scalar. We want to find a scalar 𝜓(𝛼∗𝜌) = 0.

This process is known as sphere tracing. In this technique, a ray is iteratively rescaled

by adding the current value of the SDF to 𝛼 and it is similar to successive

approximation of roots by Secant Method.

SDF is defined as the distance to the nearest surface, each step along the ray can be

thought of as, moving to the edge of the largest sphere that fits the current point in

space. An illustration of the algorithm is given in Figure 4.7. When searching in this

way, for a surface, it is practical to have an early stopping condition at some smallest

allowed step-size is set. This early stopping (at a positive value) can speed up

rendering, but can also be used to dilate objects, making them appear arbitrarily

thicker. Conversely, late stopping can be used to make objects thinner.

SDF represents the distance to the nearest surface, however, it has some drawbacks

with its original form. It could not encode the surfaces with high geometric details.

SDF is dependents on heavily on normal vector. For an SDF with a analytical

expression, the components of the normal vector are simply obtained by partial

derivatives of the SDF with respect to each spatial dimension.

51

Figure 4.7: Sphere tracing. The dots represent the points at which the function

𝜓(𝛼∗𝜌) is evaluated and the blue lines represent the scalar value returned by

the function 𝜓(𝛼∗𝜌)

𝜂(𝑥) = ∇𝑥𝜓(𝑥)
𝑇 =

[

𝜕𝜓(𝑥)

𝜕𝑥1
𝜕𝜓(𝑥)

𝜕𝑥2
𝜕𝜓(𝑥)

𝜕𝑥3]

(4.13)

An explicit expression will often not be available and the gradient vector can be

found by finite differences in such cases.

The first derivative of the SDF with respect to position produces the gradient toward

the surface, and second derivative produces the curvature which is a measure of how

this gradient changes with position:

𝐶𝑢𝑟𝑣(𝑥) = ∇2𝑥𝑥𝜓(𝑥) (4.14)

52

∇2𝑥𝑥𝜓(𝑥) =
𝜕2𝜓(𝑥)

𝜕𝑥12
+
𝜕2𝜓(𝑥)

𝜕𝑥22
+
𝜕2𝜓(𝑥)

𝜕𝑥32

(4.15)

Finite-difference approach to evaluating gradients requires several memory look-

ups. An approximation that gives an indication of curvature, and also has the benefit

of being normalized in the range [0; 1] is the projection of adjacent gradient vectors

onto each-other:

∇2𝑥,𝑖𝜓(𝑥) ≈ 1 −
𝜂(𝑥 + 𝑑𝑖)

𝑇𝜂(𝑥)

‖𝜂(𝑥 + 𝑑𝑖)‖2 ∙ ‖𝜂(𝑥)‖2

(4.16)

Where 𝜂(𝑥) is the surface normal at 𝑥, 𝑑𝑖 is the displacement vector having all zeros

except component denoted by the subscript. This equation implies that if two nearby

points in space have gradients oriented in different directions, the measure of

curvature will be high.

We have defined SDF with its properties, now we can continue on method that can

be used for calculation of SDF from raw depth images. The input is the depth data

information obtained by RGB-D sensor and is usually an ordinary gray-scale image.

Each pixel in a depth image stores a numeric value that corresponds to the distance

at which a surface was measured along. Figure 4.8 shows a depth and color image

of an office. The images are part of a publicly available dataset [96].

In order to create a SDF from a depth image, we first initialize a discrete voxel grid

(x,y,z) in 3D with resolution of 𝜏 where each voxel represents a cube in space, each

cube measuring 𝜏 meters in length, width and height.

53

Figure 4.8: Depth and color images of the same office desk

Let 𝜋: 𝑅3 → 𝑅 be a (vector-valued) function that perspective-projects 3D points to

the image plane, or formally

𝜋(𝑢, 𝑣, 𝑧) [
𝑢𝑓𝑥
𝑧
+ 𝑐𝑥,

𝑣𝑓𝑦

𝑧
+ 𝑐𝑦]

𝑇

(4.17)

The spatial coordinates to the center of each voxel are then perspective projected

using 𝜋 into the image plane, which is illustrated in Figure 4.9.

The difference between this value and the distance to the voxel (measured along the

view axis) is then computed. The resulting difference is stored in the voxel itself.

Since SDF represents a surface, this produces values that are positive, zero or

negative depending on whether the center of the voxel is outside, on or behind

surfaces, respectively.

By interpolating between voxels as shown Figure 4.10 and we can get a surface at

the boundary between positive and negative values (Figure 4.11). In order to avoid

false surface, we truncate the values that can be written into the voxel grid at a small

positive value 𝐷𝑚𝑎𝑥 and a small negative value 𝐷𝑚𝑖𝑛. This approach helps us to

54

allow local changes without the need for updating distance values in remote voxels.

Note that the negative and positive limits can be unsymmetric around zero. Choosing

large positive limit improves collision avoidance; however, minimum value

determines the minimum thickness of the reconstructed object.

Figure 4.9: The coordinates of each voxel center is projected into the image plane.

Note that not every projection will fall within the subset of the plane where the

depth image is defined.

In addition, new depth value obtained by distance sensor in the form of video stream

affect the data used to represent signed distance function 𝜓(𝑥). Instead of putting the

new values, it is common to use a weighted average of those depth values.

55

Figure 4.10: Voxels are updated with the difference between the depth image value

and the distance to the respective voxel from the sensor, along the viewing direction.

Let 𝑊(𝑤) be a function with 𝑤 = (𝑤1, 𝑤2, 𝑤3)
𝑇 representing the weight of the data

stored in truncated signed distance function and let 𝜓𝑡(𝑥) be the tri-linear

interpolation between the nearest 8 values if 𝑥 is within the boundary. The update of

a single element using 𝜓𝑡(𝑥) and 𝑊(𝑤) is done by

𝜓𝑡(𝑥)𝑛+1 =
𝜓𝑡(𝑥)𝑛𝑊(𝑤)𝑛 + 𝜓𝑡(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 (4.18)

𝑊(𝑤)𝑛+1 = min (𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1,𝑊𝑚𝑎𝑥)

(4.19)

𝑊(𝑤) can be calculated using the error model 𝑒𝑟𝑟(𝑍) of distance sensor.

𝑊(𝑤) =
𝑐𝑜𝑠𝜃

𝑒𝑟𝑟(𝑍)

(4.20)

56

For structured light sensors, we are certain about measurements perpendicular to

surfaces that are close to the sensor and that error increases based on an error model

for the sensor that varies with distance.

Figure 4.11: Surface at the boundary between positive and negative values

However , calculation of 𝑊(𝑤) is computational extensive because of calculation

of 𝑐𝑜𝑠𝜃 and estimation of surface normals. We set to 𝑊 = 1 and this causes

weigthed update to a rolling average due to saturation of 𝑊𝑚𝑎𝑥.

In order to use color information directly for pose estimation, we store color values

for each voxel. The color values are updated for each RGB channel by using same

rolling average process as

𝑅(𝑥)𝑛+1 =
𝑅(𝑥)𝑛𝑊(𝑤)𝑛 + 𝑅(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 (4.21)

57

𝐺(𝑥)𝑛+1 =
𝐺(𝑥)𝑛𝑊(𝑤)𝑛 + 𝐺(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1

(4.22)

𝐵(𝑥)𝑛+1 =
𝐵(𝑥)𝑛𝑊(𝑤)𝑛 + 𝐵(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1

(4.23)

where 𝑅(𝑥), 𝐺(𝑥), 𝐵(𝑥) are red, green and blue values of color, respectively,

Algorithm for SDF initialization and SDF update with rolling average are given

below.

Algorithm 1. SDF initialization and SDF update

Input : Integer coordinates of each voxel (x), maximum truncation distance, w

1: for all integer coordinates x

2: Assign maximum truncation distance

𝜓𝑡(𝑥) ← 𝑑𝑚𝑎𝑥

3: end for

4: for all w

5: Assign w as zero

𝑊(𝑤) ← 0

6: end for

7: for all integer coordinates x

 Assign w as integer coordinates and initial weigth as 1

𝑤 ← 𝑥 𝑤𝑒𝑖𝑔𝑡ℎ ← 1

 Update of a single element of 𝜓𝑡(𝑥)

𝜓𝑡(𝑥)𝑛+1 ←
𝜓𝑡(𝑥)𝑛𝑊(𝑤)𝑛 + 𝜓𝑡(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1

58

 Update of a single element of 𝑊(𝑤)

𝑊(𝑤)𝑛+1 ← min (𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1,𝑊𝑚𝑎𝑥)

 Update red, green and blue channel

𝑅(𝑥)𝑛+1 =
𝑅(𝑥)𝑛𝑊(𝑤)𝑛 + 𝑅(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1

𝐺(𝑥)𝑛+1 =
𝐺(𝑥)𝑛𝑊(𝑤)𝑛 + 𝐺(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1

𝐵(𝑥)𝑛+1 =
𝐵(𝑥)𝑛𝑊(𝑤)𝑛 + 𝐵(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1

8: end for

Representing surfaces using signed distance function is extremely easy because it

provides an efficient mechanism in consistent surface estimation. However, there

exists some special case where using TSDF for surface representation is limited or

special requirements exist. For example, surface representation using TSDF is

memory intensive because required memory for TSDF volume scales cubically and

it depends on the grid resolution. For example, a voxel grid of resolution 5123

covering a bounded volume of about 4 m3. In order to solve this memory

requirement, we use Voxel Hashing method proposed by Nießner [10] which is

memory and computational power efficient. In this technique, surface data is stored

only densely where the measurements are observed and data can be exchanged easily

efficiently through hash table in both ways. We do not need memory constrained

voxel grid using this voxel hashing method and this supports real-time performance

without giving up finer quality reconstruction.

TSDF has intensive calculations. Fusing new data, all pixels are projected to 3D

coordinates which requires 640 x 480 = 307200 operations for a VGA resolution.

59

Furthermore, during TSDF update and rendering, each pixel requires
|𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛|

𝜏

operations. |𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛| is the maximum ray length and 𝜏 is the voxel size.

Therefore, ray casting is known as the most computationally intensive operation in

any type of dense RGB-D SLAM system. Since each pixel is independent from each

other, GPU can be utilized in parallel to have a real time performance. However,

TSDF operations can be split into independent task for parallel processing.

TSDF can encode surface at sub-voxel accuracy by interpolation, however, it can

fail at sharp corners and edges. Therefore, such type of structures requires special

effort or selecting a suitable voxel element size and truncation distance. Truncation

distance expresses a prior information about the average thickness of object in the

environment. If our interest are tables, chairs or objects like that, it is easy to decide

the truncation distance, however, it is not easy to know which type of object

encountered for. In our experiments choosing larger value results less accurate

reconstruction, while, smaller distance value leads to more accurate construction

with more detail.

Studies of accuracy for the Kinect sensor show that assuming a Gaussian noise model

for the normalized disparity provides good fits to observed measurement errors on

planar targets.

𝑝(𝑧𝑜𝑏𝑠|𝑧𝑡𝑟𝑢𝑒) ∝ 𝑒𝑥𝑝
[−
(𝑧𝑡𝑟𝑢𝑒−𝑧𝑜𝑏𝑠)

2

𝜎2
]
 (4.24)

In principle, the noise of the any disparity based distance sensors is quadratically

proportional to the distance, σ ∝ 𝑑𝑒𝑝𝑡ℎ𝑡𝑟𝑢𝑒
2
(Equation 3.164). However, in our

current implementation, we assume a fixed σ over all pixels. Assuming independent

and identical distributed pixels with Gaussian noise in depth values , the likelihood

of observing a depth image 𝐷 from the pose of the camera (𝑅𝑥𝑖,𝑗 + 𝑇) becomes

60

𝑝(𝐷|(𝑅, 𝑇)) =∏𝑝(𝐷𝑖,𝑗|(𝑅, 𝑇))

𝑖,𝑗

=∏𝑒
(
−𝜓(𝑅𝑥𝑖,𝑗+𝑇)

2

𝜎2
)

𝑖,𝑗

(4.25)

Our aim is to find a camera rotation 𝑅∗ and translation 𝑇∗, which maximize the

likelihood of observing a depth image.

(𝑅∗, 𝑇∗) =
argmax
𝑅, 𝑇 ∏𝑒

(
−𝜓(𝑅𝑥𝑖,𝑗+𝑇)

2

𝜎2
)

𝑖,𝑗

(4.26)

In order to find the camera poses that maximizes this likelihood, we define a pose

error function 𝐸(𝑅, 𝑇) by taking the negative logarithm of (4.26) in order to simplify

the calculation we define the error function 𝐸(𝑅, 𝑇) as

𝐸(𝑅, 𝑇) =∑𝜓(𝑅𝑥𝑖,𝑗 + 𝑇)
2

𝑖,𝑗

 (4.27)

A rigid-body motion can be described in Lie algebra with the 6-dimensional twist

coordinates  = (1,2,3,1,2,3). If we rewrite the error function (7) then it

becomes

𝐸𝑝() =∑𝜓𝑖,𝑗(𝜉)
2

𝑖,𝑗

(4.28)

𝜓𝑖,𝑗() = 𝜓(𝑅𝑥𝑖,𝑗 + 𝑇).
(4.29)

The vector  = (1,2,3,1,2,3) can be converted to into the corresponding Lie

group SE(3) by computing 𝑇 = 𝑒𝑥𝑝, where:

61

 = [

0 −3
3 0

2 1
−1 2

−2 1
0 0

0 3
0 0

].

(4.30)

If image registration is correct with the 3D model, the projected colors should be

consistent as well. We incorporate this color consistency condition by adding color

error function 𝐸𝑐(), which we define in (4.31). Since there is no absolute reference

of the image for comparison, color values stored in the voxels are used. Using color

intensities of the pixels 𝐼(𝑝𝑖) and corresponding voxels 𝑉𝐼(𝜉), then the error function

becomes

𝐸𝑐() =∑(𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))
2

.

𝑖,𝑗

 (4.31)

Then , we define the joint error function is given in (4.32) with 𝑤 being the intensity

contribution with respect to the depth

𝐸() = 𝐸𝑝(𝜉) + 𝑤𝐸𝑐(𝜉) (4.32)

and we start by linearizing 𝜓 around the initial pose estimate 𝜉 using the Jacobian

matrix. The values of the Jacobian indicate the change of the error when translating

along or rotating around the respective component of . In addition, the Jacobian

matrix is the derivative of our signed distance function with respect to rigid body

transformation parameters  = (1,2,3,1,2,3). We can compute the gradient

of SDF with respect to parameters as

∇𝑥𝜓(x) =
𝜕𝜓(x)

𝜕𝑥
= [

𝜕

𝜕𝑥1
𝜓(x)

𝜕

𝜕𝑥2
𝜓(x)

𝜕

𝜕𝑥3
𝜓(x)]

(4.33)

62

This gradient can be calculated by numerically differentiating 𝜓(x) using central

difference over 𝑥1, 𝑥2 and 𝑥3. However, this term does not include any derivation

with respect to . In order to have a complete expression for Jacobian of pose error

 𝐽𝑝(), we use the chain rule:

Equation (4.34) needs for an expression how the position of given point change with

our transformation parameters  = (1,2,3,1,2,3) and this can be obtained by

analyzing 𝜉 = 𝑒∆t𝑥 with respect to . For a given point 𝜉, then we have;

In (4.34),
𝜕𝜓𝑖,𝑗(𝜉̂)

𝜕𝜉̂
 is computed numerically by evaluating the gradient. We compute

the derivatives using a 3x3 Sobel-Feldman operator, which is a discrete

differentiation operator . Equation 3.33 is the example of the derivative filter.

We compute the Jacobian for color error term 𝐽𝑐() as

 𝐽𝑝() =
𝜕𝜓𝑖,𝑗(𝜉)

𝜕̂
=
𝜕𝜓𝑖,𝑗(𝜉)

𝜕𝜉

𝜕(𝜉)

𝜕
 (4.34)

𝜕(𝜉)

𝜕
= [

0 3
−3 0
2 −1

−2 1
1 0
0 0

0 0
1 0
0 1

].

(4.35)

𝑆𝑜𝐹𝑒 ∈ 𝑅3 = [1 0 −1] ∗ [
1
2
1
] = [

1 0 −1
2 0 −2
1 0 −1

]

(4.36)

𝑆𝑜𝐹𝑒 ∈ 𝑅3 = [
1
0
−1
] ∗ [1 2 1] = [

1 0 −1
2 0 −2
1 0 −1

]

(4.37)

63

We have already derive the joint error function as

We adopt to use the Levenberg Marquardt algorithm because Gauss-Newton cannot

calculate the best optimal estimate, resulting in non-minimum function value.

Levenberg-Marquardt algorithm can handle this problem in standard form of

where 𝜆 is the non-negative correction factor updated at each iteration. Levenberg-

Marquart method solves Equation (4.40) using Jacobian as

In our case, we want to try to find the pose that minimizes the combination of pose

and color error in Equation (4.32). After we compute the Jacobians, we write the

matrix 𝐽𝑇𝐽 and the vector 𝐽𝑇𝑓

 𝐽𝑐() =
𝜕𝜓𝑖,𝑗 (∑ (𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))

2

𝑖,𝑗)

𝜕𝜉

𝜕(𝜉)

𝜕

(4.38)

𝜕(𝜉)

𝜕
= [

0 3
−3 0
2 −1

−2 1
1 0
0 0

0 0
1 0
0 1

].

(4.39)

𝐸() =∑𝜓𝑖,𝑗(𝜉)
2

𝑖,𝑗⏟
𝐸𝑝()

+ 𝑤∑(𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))
2

𝑖,𝑗⏟
𝐸𝑐()

(4.40)

[𝐴 + 𝜆𝐼]Δ = −b (4.41)

(𝐽𝑇𝐽 + 𝜆(𝐽𝑇𝐽))𝛿 = 𝐽𝑇𝑓 (4.42)

64

Algorithm 2 summarizes the pose estimation process we just elaborated.

Algorithm 2. Pose estimation algorithm

Input : Joint error function

Output : Pose

1: begin

2: Initialize parameters 𝑐𝑥, 𝑐𝑦, 𝑓𝑥, 𝑓𝑦

3: Calculate Jacobian

 𝐽𝑝() =
𝜕𝜓𝑖,𝑗(𝜉)

𝜕𝜉

𝜕(𝜉)

𝜕

 𝐽𝑐() =
𝜕𝜓𝑖,𝑗 (∑ (𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))

2

𝑖,𝑗)

𝜕𝜉

𝜕(𝜉)

𝜕

4: Initialize non-negative correction factor as Gramian of Jacobian

5: while (pose difference) > 0.001 or iteration # <5 do

6: Find 𝛿 increment for (𝐽𝑇𝐽 + 𝜆(𝐽𝑇𝐽))𝛿 = 𝐽𝑇𝑓

7: Update pose with increment

8: if objective function is minimum

9: return pose

10: else

11: Update correction factor if needed

12: Increment iteration number

13: end

𝐽𝑇𝐽 =∑ 𝐽𝑝,𝑖
𝑇 𝐽𝑝,𝑖

𝑖

+ 𝑤∑ 𝐽𝑐,𝑖
𝑇 𝐽𝑐,𝑖

𝑖

𝐽𝑇𝑓 =∑ 𝐽𝑝,𝑖 𝜓𝑖,𝑗(𝜉)

𝑖

+ 𝑤 ∑ 𝐽𝑐,𝑖 (𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))

𝑖

(4.43)

65

We solve (4.42) iteratively until difference (𝜉(𝑘 + 1) − 𝜉(𝑘)) is small enough or the

maximum iteration number is reached. In order to increase real time performance,

we conduct all calculations on the GPU in parallel since the matrix 𝐽𝑇𝐽 and the vector

𝐽𝑇𝑓 are independent of each other. Even though, a maximum iteration number are

performed or optimization parameters yields values below the pre-defined threshold,

in order to improve the convergence probability, we select to scale the contribution

of new data based on a weighting function. To improve the basin of convergence for

the solution, we scale the contribution of each measurement, based on a weighing

function. This produces the standard iteratively reweighed least-squares algorithm.

As a weighting function a possible choice are either Huber estimator or the Tukey’s

estimator. Huber and Tukey’s estimator are given respectively as

Here, ρℎ and ρ𝑡 are small constants typically smaller than a tenth of the size of voxel.

We use Huber estimator because of computational advantage. Furthermore, Huber

estimator produces small residuals and is convex in contrast to the Tukey function,

which Huber estimator does not cause new local minima [90][91]. Finally, the matrix

𝐽𝑇𝐽 become

ρℎ(x) = {
1.0 𝑖𝑓 |𝑥| ≤ ρℎ
ρℎ
|𝑥|

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.44)

ρ𝑡(x) = {
[1 − (

𝑥

ρ𝑡
)
2

]

2

𝑖𝑓 |𝑥| ≤ ρ𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

(4.45)

𝐽𝑇𝐽 = ρ (𝜓(𝜉))∑ 𝐽𝑝,𝑖
𝑇 𝐽𝑝,𝑖

𝑖

+ 𝑤ρ (𝜓(𝜉))∑ 𝐽𝑐,𝑖
𝑇 𝐽𝑐,𝑖

𝑖

 (4.46)

66

In Equation (4.41), 𝜆 is a non-negative regularization term and 𝐼 is the identity

matrix. For 𝜆, initial value is usually selected as 1/10 of the voxel size, however, in

order to select the Huber and regularization term, sensitivity analysis is performed.

Table 4.1 shows the obtained absolute trajectory error by using the BONN moving

obstructing box dataset. In this analysis, a voxel size of 0.01 m is used. The best

value of trajectory error is 0.298 m which is obtained when Huber constant and

regularization term is 0.02 and 0.1 respectively.

Table 4.1: BONN moving obstructing box dataset – change of translational ATE

(RMSE cm) with respect to Regularization and Huber constant

Absolute Translation

Error (RMSE meter)

Regularization

0.002 0.005 0.02 0.1

Huber

0.005 0.504 0.503 0.493 0.476

0.002 0.737 0.320 0.600 0.554

0.02 0.323 0.320 0.322 0.298

0.01 0.335 0.400 0.410 0.362

SDF calculation and update process are independent for each voxel and most of the

calculation in registration is done for each pixel in the depth image. The matrix 𝐽𝑇𝐽

and the vector 𝐽𝑇𝑓 are the results of sums over all the pixels. In order to increase the

speed of solution and avoid from local minima, a coarse to fine iteration level of

detail is used. We compute the derivatives of SDF while constructing the Jacobians.

In order to increase the iteration number capability, we use a sub-sampling ¼ of the

𝐽𝑇𝑓 = ρ (𝜓(𝜉))∑ 𝐽𝑝,𝑖 𝜓𝑖,𝑗(𝜉)

𝑖

+ 𝑤 ρ (𝜓(𝜉))∑ 𝐽𝑐,𝑖 (𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))

𝑖

(4.47)

67

pixels. If we use ¼ downsampled image and original image, absolute trajectory error

almost the same level. Table 4.2 shows the absolute trajectory error obtained by

BONN moving obstructing box dataset original and downsampled image. Using this

technique, we can process larger number of inexpensive calculation without

changing the convergence. However, increasing the iteration number from 2 to 3,

which leads to increase in computational cost, also increases absolute trajectory

error.

Table 4.2: BONN moving obstructing box Dataset – comparison of translational

ATE (RMSE cm) with changing Iteration Number and Downsample option

ATE (rmse) m
Iteration Number

1 2 3 6

Original 0.312 0.265 0.308 0.293

¼ Downsample 0.313 0.263 0.306 0.293

4.5 SDF Representation, 3D Reconstruction and Volume Visualizations

With the appearance of 3D sensor such as laser scanners, 3D reconstruction has

received high degree of attention. This enables today indoor building model as well

as outdoor navigation and geometry aware inspection. However, generally sensors

produce large data of 3D point and, therefore, processing and visualization of 3D

data become a challenging task. Many 3D reconstruction algorithm in robotics

process data on an iterative manner by accessing the sample in order to generate the

observed surface. Accessing a given point defined by 3D coordinate system becomes

a challenging job because amount of sample in the scene or database which affects

the complexity of the overall system. Most common approach to handle data is to

group them on a grid and store in a array in order to access them quickly. However,

memory requirements depend on the cube of size, which hinder large scale

reconstruction. For example, representing a scene in the form cube 10x10x10 m3 at

68

1 cm resolution, would require 3.7 GB memory, assuming 4 byte for each grid.

Common remedy for this problem is to use octree for representing the occupied cells

[45][46]. An octree is a tree data structure where each internal node can have at most

8 children, as shown in Figure 4.12.

The main drawback of the octree representation of 3D object in visualization is that

there exists only a single primitive element, cube, therefore the precision heavily

depends on the size of this cube. Figure 4.13 illustrates the different levels of an

octree-based model. Each picture shows a deeper level of the octree compared to the

previous one, i.e., in each successive picture the voxels are two times smaller.

Figure 4.12: Octree structure. In each successive picture the voxels are two times

smaller.

In addition to the primitive element size, it is necessary to navigate the full octree

when an arbitrary voxel information is requested. Virtual memory or paging is

introduced by Bridson [47], which enables significant reduction in memory

69

requirements as well as data to be stored on external storage. However, memory

overhead is still a significant problem. In [48], it is proposed to encode the location

of voxel with a hash function in order to enable large scene to be managed with

limited memory. Nießner [10] proposes a new voxel hashing scheme which is

memory and computational power efficient. In this technique, surface data are stored

only where the measurements are observed and data can be exchanged easily

efficiently through hash table in both ways.

Figure 4.13: Different levels of an octree-based model, in each successive picture

the voxels are two times smaller

In order to decrease the memory requirement and large scale mapping, we use a

voxel hashing scheme similar to [10]. In this way, only voxels corresponding to

surfaces or obstacles are indexed.

70

Figure 4.14 illustrates our voxel hashing data structure. The idea is to grid the

environment with small voxel blocks composed of 8x8x8 voxels. Each voxels stores

SDF, color and weight as

struct Voxel {

 float sdf; /** Signed distance function */

uchar3 color; /** Color */

unsigned char weight; /**SDF weight*/
}

Using GPU accelerated hash table, voxels blocks can be retrieved quickly.

Coordinates of a 3D point is calculated by multiplication and rounding operation.

Mapping from world coordinate to hash value is done using the following hashing

function.

where p1 , p2 , and p3 are large prime numbers (in our case 73856093, 19349669,

83492791 respectively, based on [48], M is the number of buckets, ⊕ is the logical

XOR operator, and mod is the modulo operator. In small hash table, there exists

collisions, however, even with large hash tables and excellent hash functions,

collisions are inevitable. Using large prime numbers reduces the risk of collision.

Volume visualization is an important field of computer science, which provides key

elements in order to discover and explore unseen structures of a volumetric data and

allow users to get visual insight of complex datasets. History of volume visualization

begins in 1970’s , when primary use of volumetric data in 3D medical imaging.

H(x,y,z)=(x·p1 ⊕y·p2 ⊕z·p3) mod M

(4.48)

71

Figure 4.14: Hash table , voxel blocks

Volume visualization pipeline consist of data acquisition, enhancement of the data,

reconstruction of the 3D voxel model and shading of the 2D projection. An object

with volumetric data is represented by a voxels which are counterpart of pixel in 3D.

It can store numeric value of associated independent variables such as density, color,

material, deformation of real objects. The data reference for a voxel can be a discrete

sample of medical imaging or synthetic computational model such as fluid dynamic

analysis. Independent from the source of data, volume can be stored by using

primitive models ranging from 1-D element such as point or particles to 2-D polygon

meshes or curved surface as well as 3-D volume elements voxels [51].

In order to extract the primitives from the volume several methods are available. For

example, cuberille method where space is meshed into equal cubes by three

orthogonal set of equally spaced parallel planes [52]. In addition, cloud of points can

be formed by the dividing cubes algorithm [53] which subdivides the voxels into

72

smaller cubes that lie on the surface of the object and projects the intensity calculated

for each cube onto the viewing plane, forming a gradient shaded representation of

the three-dimensional object Figure 4.15.

Figure 4.15: Gradient shaded representation of the three-dimensional in dividing

cube algorithm [56]

In addition, fine polygon mesh can be generated by marching cubes algorithm which

is originally described by Lorensen and Cline [54] which, takes as its input a regular

scalar volumetric data set that has a scalar value residing at each lattice point of a

rectilinear lattice in 3D space. This algorithm uses a volume unit called a cell and a

look up table of possible polygon shape. Each of the vertices of a cell can be marked

as free or occupied, therefore there exists (256) 28 possible configurations. However,

possible configuration decreases to 15 if reflection and symmetric constraints are

considered. Illustration of reflective and symmetric conditions are depicted in Figure

4.16. The 15 unique cube–isosurface intersection scenarios result when considering

both of these symmetries are shown in Figure 4.17. Furthermore, Cases 11 and 14

73

are considered as mirror symmetric, use of all three conditions (reflective, symmetric

and mirror symmetric) in union results in 14 basic topologies.

In order to have more accurate surfaces, the final value is obtained by interpolating

between the voxels connected to the edge where the surface might be. For instance,

consider the Case 1 in Figure 4.17, if the voxel values are stored in a range [0,255]

and surface threshold is 128. Also, suppose that value stored in the bottom left voxel

is 150 and the bottom right voxel has a value of 100, then linear interpolation yields

Figure 4.16: Illustration of reflective, original and rotational symmetric condition

150 − 128

200 − 100
= 0.32

Hence, the vertex is placed at a fraction of 0.32 between voxels. This step results in

a better fit of the surface.

In short, we use the discrete voxel grid in order to represent the SDF. Signed distance

value is calculated by trilinear interpolation of eight neighboring pixels. We project

each voxel onto the image plane instead of ray casting because this process is suitable

for parallel processing since each voxel is independent of its neighbors. Since the

operation has to be carried out for each voxel, GPU is used for this operation. Finally,

we implement marching cubes algorithm [25] in order to extract the triangle mesh.

In RGB-D mapping approaches, storing the SDF in a 3D grid requires large amount

74

memory. Therefore, we use a special memory allocation technique proposed by

Nießner in [10]. In this technique, we only allocate the voxels in required areas,

which, enables scanning the large areas with limited memory.

Figure 4.17: The 15 basic intersection topologies [55]

4.6 Dynamic Detection

Let 𝐼𝑚 and 𝐼𝑠 be the instantaneous image of generated model and source respectively,

The error in color map denoted by 𝑒𝑐 as

75

𝑒𝑐 = |𝐼𝑠←𝑚 − 𝐼𝑠| (4.49)

If the images 𝐼𝑚 and 𝐼𝑠 are not accurately registered and if there is change in the

geometry, the resulting error would not be zero (Figure 4.18). In general, minimizing

(4.47) results in a sufficient image registration. SDF represents the distance to nearest

surface and therefore we select to use SDF as an error function. The error in the depth

can be written as

𝑒𝑝(𝜉) =∑‖𝜓𝑖(𝜉)) ‖
2.

𝑁

𝑖=1

 (4.50)

Figure 4.18: Inconsistency map of two images (EPFL RGB-D Pedestrian Dataset

sequence frame 250 and 278)

76

In Equation (4.48), N is pixel number, 𝜓 is the signed distance function and 𝜉 is the

matrix exponential multiplied by the 3D point corresponding to the 𝑖𝑡ℎ pixel 𝑝𝑖

computed using homogenous point equation in (4.1).

After performing an initial registration using Equation (4.48), we compute for each

pixel, its residual as defined in (4.49).

𝑟𝑖 = ‖𝜓𝑖(𝜉)) ‖
2 (4.51)

The residual obtained after image registration is used as for dynamic detection. Our

aim is to compute the binary labeling for each element according to occurred

changes. For example, 𝑙𝑖 = 0 indicates consistency and 𝑙𝑖 = 1 shows the presence

of change in corresponding voxel 𝑖.

If ℎ(𝑑) is the histogram of the image, our problem is in the form of binary

classification problem using a dynamic label threshold. Then, the probability density

function can be defined as the combination of two density functions related class

label as

𝑝(𝐷) =∑𝑃𝑖

2

𝑖=1

𝑝𝑖(𝐷|𝑙𝑖) (4.52)

using class conditional densities and prior probabilities. In order to calculate an

estimate of dynamic change, we maximize 𝑝(𝑙|𝐷)

𝑙∗ = 𝑙
𝑎𝑟𝑔𝑚𝑎𝑥 {𝐿(𝐷|𝑙)} (4.53)

where 𝐿(𝐷|𝑙) is the log likelihood of the two-component mixture and it can be

written as

77

𝐿(𝐷, 𝑙) = ∑ℎ(𝑑) ln 𝑝(𝐷|𝑙) .

𝐿−1

𝑥=0

 (4.54)

The final log-likelihood function is in the form of

𝐿(𝐷, 𝑈, 𝑙) =∑∑ℎ(𝑑)𝑢𝑖(𝑑)l

𝐿−1

𝑑=0

n

2

𝑖=1

{𝑃𝑖𝑝𝑖(𝑑|𝑙𝑖)}

(4.55)

𝑝(𝑑|𝑙) = 𝐻(𝑦)
2

𝜌𝑐√2𝜋
𝑒
−
𝑦2

2𝜌𝑐2 (4.56)

In (4.53) 𝑢𝑖(𝑑) is the indication of static or dynamic component.

After dynamic label identification and updating the label grid (Algorithm 2), a

second pose estimation and registration are performed using the newly obtained label

set (Algorithm 3). However, we must filter out dynamic labels that originated from

noise (Figure 4.19). In order to that, we compare the SDF value of new observation

with the previous static reconstruction and compute the difference𝛿𝐿. Applying a

threshold 𝜃, we obtain the label grid such that

 𝑙𝑖 = 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 if δL > θ. (4.57)

78

Figure 4.19: RGB image b) Reconstruction error c) Dynamic label image

79

Algorithm 3. Dynamic labelling algorithm

Input : Depth image, prior segmentation from residual error, initial label class

Output : Segmented depth image with label

1: Initialize parameters

2: Find maximal cliques

3: Construct k-neighborhoods

4: Partition into parallel threads

5: do each EM iteration

6: for each neighborhood of the subgraph do in parallel

7: E-step

8: M-step

9: end for

10: Update parameters

11: while Likelihood increment < threshold

12: return Label set

80

Algorithm 4. DUDMAP

Input : Depth image, RGB image

Output : Artificial camera view, mesh (optional)

1: Initialize parameters for sensor, camera tracking, SDF

2: if frame number = initial frame

3: Initialize poses as identity

4: for i  N (number of pixel)

5: Initialize labels as static

6: end for

7: Pose estimation using matrix exponential

8: else

9: RGB similarity check

10: Pose estimation using matrix exponential

11: Generate label set

12: Re-pose estimation using matrix exponential with label set

13: Volume integration

14: Update parameters

15: while Frame number < total number of frame

16: Extract mesh

17: return Final mesh

81

CHAPTER 5

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

Our proposed method is able to operate in dynamic environments without requiring

any dynamic object detection and tracking. Our experiments support our main

claims, which are:

• Robustness to dynamic elements regardless of their quantity and speed of

change in the environment,

• That the approach requires no explicit object tracking, and no object

classifier

• That the approach generates a consistent a dense model of the environment.

The experiments were conducted on a workstation computer Intel i7 running at 3.20

GHz and a GeForce 1070 GPU using Ubuntu 16.04. Our default parameters have

been determined empirically so that a sensitivity analysis is performed on changes

of parameters the system is sensitive to. Our experiments demonstrate many

evaluation scenarios.

1. In order to evaluate the consistent final mesh generating performance, a static

environment is used with ground truth selected as repository datasets namely

ICL NUIM and CoRBS (Section 5.1).

2. In real life, there are a lot of dynamic movements (e.g., of cars, people,

animals) that affect the visual odometry calculations. In order to evaluate the

performance of our proposed algorithm in dynamic environment, we

compare our method with other state of art repositories using TUM dataset

[1], together with other high dynamic dataset including Bonn [14],

82

VolumeDeform [30], CVSSP RGB-D dataset [34] (used with permission),

which are publicly available in order to show the superior performance of our

approach (Section 5.2).

3. In addition, outdoor performances of our method are also evaluated using

commercially available ZED camera for map generation and dynamic

filtering (Section 5.3).

5.1 Static Environment

The focus of this part is to show that our proposed approach can generate 3D mesh

of scene in static environment because this is the key part of mapping algorithms.

Two datasets which are ICL NUIM and CoRBS are used in this part.

5.1.1 ICL NUIM Dataset

The ICL-NUIM dataset provides a benchmarking environment for RGB-D, Visual

Odometry and SLAM algorithms. In addition, all data contained by ICL NUIM

dataset are compatible with the evaluation tool provided by the TUM RGB-D

dataset. There are two different sequences, living room and office room scene with

a corresponding ground truth. Since the living room has 3D surface ground truth

together, it is a perfect tool for evaluation of camera trajectory and reconstruction of

SLAM performance. Figure 5.1 illustrates the sample RGB image of ICL-NUIM

living room dataset containing a chair, a table and another type common object used

in daily life. We use “living_room_traj2_frei” sequence, which has 882 frames for

30 sec for 3D mesh generation. Table 5.1 shows the comparison of surface

reconstruction accuracy of the SLAM algorithms and Figure 5.2 illustrates the

resulting dense 3D model. Our proposed method (DUDMAP) achieves 0.004 m

mean value which is half of the Elastic Fusion (Figure 5.4). In addition, Figure 5.4

also shows that among 4782720 element, the maximum absolute distance error is

83

0.045 m and average error is 0.004 m. Surface reconstruction quality is measured

using CloudCompare program and frequency of residual of the reconstruction error

is given in Figure 5.3. The other successful methods including Kintinuous and RGB-

D SLAM have slightly higher accuracy value 0.009 m and 0.031 m respectively.

Therefore, our proposed methodology have a superior performance in 3D

reconstruction of standardized static environment.

Figure 5.1: ICL-NUIM living room dataset containing chair, table and other type

common object.

Table 5.1: Comparison of surface reconstruction accuracy (mean value)

DVO SLAM 0.119 m

RGB-D SLAM 0.031 m

MRSMap 0.098 m

Kintinuous 0.009 m

ElasticFusion 0.008 m

DUDMAP 0.004 m

84

Figure 5.2: Dense 3D model of the scene obtained by our proposed methodology

Figure 5.3: Reconstructions of the objects in living room - 2 scene including error

value (blue 0.025 m, green 0.045 m)

85

Figure 5.4: Frequency of residual of the reconstruction error.

Figure 5.5 shows the obtained trajectory of the ICL NUIM dataset-living room 2

sequence. The resulting absolute translational error is 0.004 m in RMS. The

translational and rotational error are 0.007 m and 0.149 deg both in RMS.

Figure 5.5: ATE RMSE of synthetic ICL-NUIM dataset

86

5.1.2 CoRBS

Comprehensive RGB-D Benchmark for SLAM (CoRBS) dataset is the combination

of real depth and color data together with a ground truth trajectory. This dataset

allows the user to independently evaluate the localization as well as the mapping

portion of RGB-D SLAM systems using real data. In addition, it provides ground

truth for the trajectory obtained by using an external motion capture system for the

scene geometry via an external 3D scanner, yielding a sub-millimeter precision. In

order to evaluate the 3D volume reconstruction and trajectory estimation

performance of our proposed methodology in static environment, we use the D1

(Desk) sequence (Figure 5.6). It has 611 frames obtained by Kinect V2 camera with

a resolution of 640x480 pixels. The duration of sequence is 23.4 sec. The average

translation/rotational velocity in the sequence is 0.24 m/s and 35 deg/s with

maximum of 0.6 m/s and 80 deg/s. The total bounding box of the 3D scene is 1.18 ×

2.32 × 0.76 [m x m x m].

Figure 5.6: CORBS Desk1 dataset containing desk, computer, book, monitor and

other types common object of everyday.

Figure 5.7 shows the obtained ATE / RPE plot of the D1 sequence. The resulting

absolute translational error is 0.007061 m in RMS. The translational and rotational

error are 0.015041 m and 0.914027 deg both in RMS. Figure 5.8 and Figure 5.9

87

illustrates the surface reconstruction capability of the our method. In Figure 5.9 both

the ground truth model and resulting mesh is shown. We generate successfully the

mesh of the environment with the consistent color of the objects. However, there

exists some distortion because of the selected voxel size.

We compare against the state-of-the- art algorithm DVO as well as ICP which is

used e.g. in KinectFusion, Elastic Fusion and other modern SLAM systems. We

include DNA-SLAM, which is Dense Noise Aware Simultaneous Localization

because this method is referred to its high accurately estimation. It uses a

sophisticated weighting scheme for reducing noise characteristics in dense motion

estimation and this weighting approach decreases the drift compared to DVO. Table

5.2 depicts the RMSE of the translational and rotational drift (RPE) in m/s and deg/s

respectively for different sequences of the CoRBS dataset. The best results are

depicted in bold. The trajectories estimated with ICP, DVO and DNA-SLAM exhibit

a lower accuracy than our method (DUDMAP). Compared to other methods, the

relative translational as well as the rotational error are substantially reduced in most

sequences. For the sequences D1 and E1, we achieve the best accuracy.In all

sequences, out method is closer to the ground truth than other methods. In summary,

our method is seen to outperform in most of the sequences especially in rotational

aspect because of the direct pose estimation and joint error weighting scheme for

pose and intensity.

Table 5.2: RMSE of the translational and rotational drift (RPE) in m/s and deg/s

respectively.

 D1 sequence E1 sequence

Algorithm Etrans Erot Etrans Erot

ICP [88] 0,04 2,08 0,08 4,42

DVO [87] 0,06 2,54 0,03 1,59

DNA-SLAM [89] 0,03 0,97 0,03 1,42

DUDMAP 0,02 0,91 0,01 0,68

88

Figure 5.7: ATE RMSE of synthetic CoRBS dataset (Desk sequence)

Figure 5.8: Dense 3D model of the scene obtained by our proposed methodology

89

Figure 5.9: Dense 3D model of the scene obtained by our proposed methodology

(Close up view)

5.2 Dynamic Environment

5.2.1 TUM RGB-D Dataset

In this dataset, there is a person sitting moving his/her arms: thus the sitting sequence

has a relatively low dynamics. Whereas walking sequences are highly dynamic and

complex because moving objects cover almost all camera views. In this dataset, the

evaluation is performed through the metrics proposed in [1] as translational,

rotational relative pose error (RPE) and translational absolute trajectory error

(ATE). The obtained results of dense visual SLAM methods are listed in Table 5.4

– Table 5.6. In the TUM dataset, the ground-truth trajectory is obtained from a high-

accuracy motion-capture system with eight high-speed tracking cameras (100 Hz).

Therefore, a quantitative evaluation is possible regarding the accuracy of pose

estimation. However, the TUM dataset has no exact 3D model of the environment,

therefore we can evaluated the 3D reconstruction performance results of our method

qualitatively. Qualitative results are shown in Figure 5.11, Figure 5.13 and Figure

90

5.14. Figure 5.12 also shows the scene reconstruction result of fr3/walking xyz

sequence obtained by using Elastic Fusion, DynaSLAM and DS-SLAM.

In TUM dataset, fr3 denotes that the dataset sequence it belongs to, is freiburg3;

sitting and walking represent two different character states, sitting is low dynamics

example while walking is a high dynamics example; xyz, rpy, static, and half

halfsphere stand for four types of camera ego-motions. For example, sit means that

the person is sitting, and xyz means the camera moves along the x-y-z-axis. Basic

properties of the sequences which used in evaluation is listed below.

• ‘freiburg3_sitting static’ sequence has a duration of 23.64 sec and average

translational velocity is 0.011 m/s while and average angular velocity is

1.699 deg/s.

• ‘freiburg3_sitting xyz’ sequence has a duration of 42.51 sec and average

translational velocity is 0.132 m/s while and average angular velocity is

3.562deg/s.

• ‘freiburg3_walking_static’ sequence has a duration of 24.83s sec and average

translational velocity is 0.282 m/s while and average angular velocity is 1.388

deg/s.

• ‘freiburg3_walking_xyz’ sequence has a duration of 28.84 sec and average

translational velocity is 0.208 m/s while and average angular velocity is

5.490 deg/s.

• ‘freiburg3 walking halfsphere’ sequence has a duration of 35.82 sec and

average translational velocity is 0.221 m/s while and average angular

velocity is 18.267 deg/s.

91

It is noted that, since only part of the human body is moving in the low dynamic

dataset, when the visual odometry is tracking, the static part of the human body still

provides pose estimation information. While the ultimate goal of this section is to

further construct a static map by eliminating the influence of dynamic objects, our

focus is on the end effect of static mapping.

As shown in Table 5.4, our proposed scheme achieves an average translation RPE

error of 0.045 m/s, that is considerably lower than other dense methods such as

VOSF, Elastic Fusion, Static Fusion and Mask Fusion. Our aim is to develop a dense

RGB-D SLAM algorithm without using high computational power in dynamic

environments. According to Table 5.4 – Table 5.6, our method achieves smaller

relative and translational error than other dense method. For all high dynamic

sequences, our method reaches the lowest RPE errors except for the “fr3/walk stat”

sequence. In highly dynamic scene, our proposed method produces better results for

the following reasons:

ElasticFusion is not capable of dynamics in the sequences. Hence, dynamic object

deteriorates the 3D mesh and pose estimation. CoFusion works well for slow camera

motions but its performance deteriorates noticeably when the speed of the camera

increases. StaticFusion works sequences with limited dynamics at the beginning and

therefore, it produces large errors on highly dynamic environment. In general,

existing high dynamic in the scene leads to blurry motion in the image, resulting

inconsistent mesh.

In addition, according to Table 5.4 till Table 5.6, we conclude that undoubtedly the

semantic based Visual SLAM methods have better results based on ATE and RPE

criteria. However, such methods do not provide a dense model and are relying

heavily on the semantic segmentation prior result from the learning techniques. If an

unlearned condition or object exists in the camera view, the estimation result is

highly influenced.

92

Table 5.3 compares the execution time of our proposed method with semantic based

SLAM algorithms. Semantic SLAM methods in Table 5.3 use either SegNet or Mask

R-CNN. Mask R-CNN is a Convolutional Neural Network (CNN) and state-of-the-

art in terms of image segmentation. SegNet, is designed to be an efficient architecture

for pixel-wise semantic segmentation. It is primarily motivated by road scene

understanding applications which require the ability to model appearance (road,

building), shape (cars, pedestrians) and understand the spatial-relationship (context)

be- tween different classes such as road and side-walk.

Segmentation stage takes 34 ms on average, however, Mask R-CNN require longer

time about 200 ms. All semantic method except Mask Fusion are based on

ORBSLAM, therefore it is included in timing analysis. Figure 5.14, Figure 5.15 and

Figure 5.16 show that DynaSLAM has a satisfactory tracking performance. The

addition of the multi-view geometry stage based on region growth algorithm and

background inpainting process in DynaSLAM introduce a delay, makes this method

unsuitable for real time operation. Table 5.3 also compares the CPU and GPU

performance of the SegNet. If SegNet is run on CPU instead of GPU, segmentation

process takes 2582 ms which is almost 68 times longer than GPU. If a lightweight

semantic segmentation such as Seg.Net is used, as in DS-SLAM and RDS-SLAM,

the required time for per frame for segmentation decreases from 200 ms to 30 ms.

However, an unlearned dynamics in the camera field of view results in pose error,

leading to moving object to be mapped as static object. Our method without using

any semantic label criteria runs almost at constant rate regardless of the moving

object type and speed without requiring high end graphics unit.

Figure 5.14 shows that a person remains in the model, because, the model built has

an artifact in the “walking xyz” sequences. This situation also occurs in “walking

halfsphere” (Figure 5.13) and “walking static”(Figure 5.10) sequences because the

camera is tracking a person initially and finally the camera never look again, hence,

it is not possible to identify voxels free.

93

Figure 5.17 also confirms such a case. It is clear that the translational error is higher

at the beginning when the camera tracks the person. Because of the high dynamic

initially, the translational error is above 0.3 m. One second later the translational

error is as low as 0.03 m, however, a new high dynamical motion results in an

increase in the translational error. Thus, the high translational error results in a

artifact in the resulting mesh of the environment.

Figure 5.15 and Figure 5.16 shows- the estimated trajectories of of TUM fr3/walking

xyz sequence of SLAM systems. In Figure 5.15, it is clear that ORBSLAM has the

worst trajectory estimation in sparse SLAM systems. The performance of our

proposed method differs from RDS-SLAM, Semantic SLAM, RDS-SLAM,

DynaSLAM and DS-SLAM especially at coordinate point (-0.8 m, -3.3 m) and at

the triangle area with corner points (-0.8 m, -3.0 m) , (-0.75m, -2.75 m) and (-0.7 m,

-2.85 m). In Figure 5.16, it is clear that VO-SF and Elastic Fusion cannot estimate

the trajectory successfully. Although, Flow Fusion and Pose Fusion use the semantic

segmentation method, their performances are not as good as those shown in Figure

5.15. Since Flow Fusion and Pose Fusion are built on Elastic Fusion, performance

of combination of Elastic Fusion with semantic methods is not better that

ORBSLAM based semantic systems.

According to Figure 5.15 and Figure 5.16, among all dense, non-semantic SLAM

system, DUDMap provides the most consistent trajectory estimation, which is

consistent with result of Table 5.6. If scene generation capability given in Figure

5.14 is considered, sparse and semantic SLAM systems such as DynaSLAM and DS-

SLAM generate a blurry model of the environment, however our proposed method

provides a clear model. In short, semantic SLAM systems have the best trajectory

estimate with blurry 3D model, however, dense method have more clear 3D model

with less accurate trajectory.

94

Table 5.3: TUM Dataset – Execution Time

Method Semantic GPU
Dynamic

Label

Time for per frame

(ms)

ORBSLAM3 - - - 22 – 30

DS-SLAM SegNet

P4000 38 ms

Feature extraction >

9.3

Consistency check >

29

Segmentation> 38

Total > 75 ms

Intel i7-8750

CPU only
2582 ms Total > 2600 ms [21]

DynaSLAM
Mask

R-CNN
Tesla M40 200 ms

Multi-view geometry >

200

Background inpaint>

120

RDS-SLAM SegNet RTX 2080Ti 30 ms Total>300 ms

DUDMap - GTX 1070 8.4 ms

Similarity Check:< 7.1

Pose Estimation< 10.3

Dynamic Label< 8.4

Total < 50 ms

Elastic

Fusion
- GTX 780Ti - <66 ms

Mask Fusion
Mask

R-CNN
GTX TitanX 200 ms <60 ms

Figure 5.15 and Figure 5.16 illustrate the estimated trajectory result of fr3/walking

xyz sequence obtained by state of art visual SLAM system. Trajectory results is

consistent with the Table 5.4 – Table 5.6. Semantic based Visual SLAM methods

except Pose Fusion and Flow Fusion have better results in ATE and RPE criteria.

95

Our proposed method can compete with Semantic SLAM and RDS-SLAM,

however, DynaSLAM and DS-SLAM have the best estimate. However, our method

have the best result among the dense and CNN-free method.

Table 5.4, Table 5.5 and Table 5.6 illustrate the translational RPE (RMSE cm/s),

translational RPE (RMSE deg/s) and Translational ATE (RMSE cm) of the TUM fr3

dataset. Among the dense methods, all of them show similar performance in low

dynamic dataset except Elastic Fusion. Elastic Fusion provides an average 1.25 cm/s

translation RPE, 0.45 deg/s translational RPE and 1.5 cm translational ATE in low

dynamic sequences. The error values for second best method , Co Fusion , are 1.35

cm/s translation RPE, 0.7 deg/s translational RPE and 1.9 cm translational ATE.Our

method provides an average 2.6 cm/s translation RPE, 0.9 deg/s translational RPE

and 1.8 cm translational ATE in low dynamic sequences. However, high dynamic

deteriorates the performance of Elastic Fusion and CoFusion. In high dynamics, our

proposed method is the best by providing 4.6 cm/s translation RPE, 1.4 deg/s

translational RPE and 4 cm translational ATE. Refusion takes the second place with

5.2 cm/s translation RPE, 2.2 deg/s translational RPE and 5.4 cm translational ATE.

Mask Fusion the third method attained with 5.8 cm/s translation RPE, 1.6 deg/s

translational RPE and 5.9 cm translational ATE. For all dense method, walk/xyz and

walk/half are the most challenging sequences.

All sparse SLAM method illustrated in Table 5.4, Table 5.5 and Table 5.6 give the

superior results than our proposed method. In low dynamic, sparse SLAM methods

show similar performance as ORBSLAM because these methods are based on

ORBSLAM. Addition of segmentation step increases the dynamic mapping

performance. A similar case can be seen in Mask Fusion which is based on Elastic

Fusion and addition of segmentation process Mask R-CNN increases the

performance of Mask Fusion.

96

Figure 5.10: ATE / RPE of TUM fr3/walking static sequence

Figure 5.11: Mesh of TUM fr3/walking static sequence

97

Figure 5.12: ATE / RPE of TUM fr3/walking halfsphere sequence

Figure 5.13: Mesh of TUM fr3/walking halfsphere sequence

98

Method Elastic Fusion DUDMap

SLAM type Dense Dense

front

view

top

view

Method DynaSLAM DS-SLAM

SLAM type Sparse Sparse

front

view

top

view

Figure 5.14: Scene reconstruction of fr3/walking xyz sequence

99

Table 5.4: TUM Dataset – Translational RPE (RMSE cm/s)

100

Table 5.5: TUM Dataset – Translational RPE (RMSE deg/s)

101

Table 5.6: TUM Dataset – Translational ATE (RMSE cm)

102

Figure 5.15: Comparison of estimated trajectories of of TUM fr3/walking xyz

sequence

DynaSLAM

Sparse, Mask R-CNN

DS-SLAM

Sparse, SegNet CNN

RDS-SLAM

Sparse, Mask R-CNN / SegNet

ORBSLAM3

Sparse, No CNN

Semantic SLAM

Sparse, BlitzNet CNN

DUDMAP

Dense, No CNN

103

Figure 5.16: Comparison of estimated trajectories of of TUM fr3/walking xyz

sequence (continued)

Elastic Fusion

Dense, No CNN

Pose Fusion

 Dense, Open Pose CNN

Refusion

Dense , No CNN

Static Fusion

Dense, No CNN

Flow Fusion

Dense, Pwc.Net CNN

VO-SF

Dense, No CNN

104

Figure 5.17: Relative translational error (walking-xyz) of our method

5.2.2 Bonn RGB-D Dynamic Dataset

In order to further evaluate the accuracy of camera pose tracking, we compare our

approach with the three state of the art SLAM systems namely, DynaSLAM,

Refusion and Static Fusion on the dynamic scenes of Bonn dataset published in [14].

Results are obtained by running available open source implementations for each

method This dataset has 24 dynamic sequences, where people perform different

tasks, such as manipulating boxes or playing with balloons. When an robot is moved

to an arbitrary location and if is can’t locate itself against the map, then this situation

known as “kidnapped robot problem”. For example, “moving_obstructing_box (see

Figure 5.18) ” scene assesses the kidnapped camera problem, where the camera is

moved to a different location whereas “balloon_tracking” has uniformly colored

balloon having no features on it. These tasks often obstruct the camera, creating

particularly challenging situation when mapping. For each sequence, there exists the

ground truth pose of the sensor, recorded with an Optitrack Prime 13 motion capture

0 5 10 15 20 25 30

Time [sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
ra

n
s
la

ti
o

n
a

l
e

rr
o

r
[m

]

105

system. In addition, the sequences are in the same format as the TUM RGB-D

Dataset.

Table 5.7 shows that in balloon tracking DynaSLAM outperforms the other methods.

However, it has poor performance on the obstructing box scene. Since DynaSLAM

is the combination of neural network and geometric approach, the available semantic

information on the scene helps to increase the performance. DynaSLAM with the

combined neural network and geometric approach performs best in the sequence

with people and known object. This is due to the heavy bias of having people in

sequence, therefore the segmentation of people always helps the DynaSLAM

achieving better results. In obstruction box sequence, on the other hand, our proposed

method performs best because our method does not employ any type of object

classifier or tracking. If a voxel is empty in enough time, then we mark it as free. The

speed of dynamic elements becomes important, because, it allows us to capture the

static part of environment in the first frames.

Figure 5.18: Bonn RGB-D Dynamic dataset containing desk, chair and moving

obstructing box

Figure 5.19 shows the resulting mesh of BONN moving obstructing box sequence

and the camera view is often obstructed by the box which creates particularly

challenging situations for mapping approaches. However, it is clear that our method

106

can generate the 3D model of the environment without having to track of the box or

walking people.

Figure 5.19: Mesh of BONN moving obstructing box sequence

Table 5.7: BONN Dataset – Translational RPE - (RMSE cm/s)

Dynamic Sequence
RF

[14]

SF

[13]

DynaSLAM

[20]
DUDMAP

High
balloon

tracking2
0,32 0,37 0,19 0,27

High
obstruction

box
0,34 0,33 0,54 0,17

107

5.2.3 VolumeDeform Dataset

VolumeDeform is a RGB-D dataset for the purpose of real-time non-rigid

reconstruction and is used for evaluation of the non-rigid object reconstruction

algorithms at real-time rates [30]. Since dynamic data sets for evaluating RGB-D

SLAM method with exact trajectory are limited, this dataset is used to measure the

elimination capability of our method to handle dynamic parts in the scene. Results

of pose error and trajectory error are listed in Table 5.8 and Figure 5.20. Obtained

results using boxing, sunflower and frame sequences are illustrated Figure 5.21 and

Figure 5.22.

Table 5.8: VolumeDeform Dataset results

Dynamic Sequence

Trans,

RPE

RMSE

(cm/s)

Trans,

RPE

RMSE

(deg/s)

Trans,

ATE

RMSE

(cm)

High boxing 0,32 0,37 0,19

High sunflower 0,34 0,33 0,54

Figure 5.20: Estimated trajectories of of Volume Deform boxing and sunflower

sequence

108

 Frame 2 Frame 100 Frame 200

RGB

Image

Depth

Image

Mesh

Figure 5.21: RGB-D image pair and 3D dense model of VolumeDeform sunflower

sequence obtained by our proposed method

5.2.4 CVSSP RGB-D Dataset

“CVSSP Dynamic RGBD dataset has RGBD sequences of general dynamic scenes

captured using the Kinect V1/V2 as well as two synthetic sequences”[33]. This

dataset is designed for non-rigid reconstruction. “dog” sequence is selected because

there exists little clearly distinct geometry in the environment with non-rigid

dynamic object. In this sequence , the dynamic part is the movement of the arm of

the person and the head of the dog. The exact value of the trajectory and reference

3D model of the environment are not provided, therefore we evaluated the 3D mesh

result, qualitatively. As the frame number increases, our proposed method

successfully eliminates dynamic in the frame (Figure 5.23).

109

 Frame 2 Frame 100 Frame 200

RGB

Image

Depth

Image

Mesh

Figure 5.22:RGB-D image pair and 3D dense model of VolumeDeform boxing

sequence obtained by our proposed method

Frame

0 75 113 162

RGB

Depth

 Mesh @ 2. frame Mesh @ 180. frame

Figure 5.23: RGB-D image and final mesh of the CVSSP “dog” sequence

110

5.2.5 Outdoor Mapping Performance

We used the ZED camera [35] in hand-held setup for acquiring RGB-D images. We

captured frame in resolution of 1280x720 with rate of 30 fps. In order to measure the

3D mapping performance of our proposed approach, default camera properties and

standard settings are used without calibration or lens distortion correction. 0.01 m

voxel size with minimum 0.3 m depth sensor setting is used. Our method

successfully created the mesh of the environment with some distortions. For

instance, 0.01 mm voxel size results in coarse map especially in missing wire grid

fence and part of the fence door (Figure 5.24)

Figure 5.24: RGB-D image and final mesh of the “outdoor-1” sequence

111

Figure 5.25: outdoor-1 sequence grid fence mapping result

Using smaller voxel size increases the mapping performance helps to maintain grid

fence as in Figure 5.25. If an autonomous robot is flying around thin branches,

telephone lines or chain link fencing, an detailed map is required in order to avoid

from the collision because those are the main collision areas for outdoor autonomous

drones.

In the second sequence, we captured frame in resolution of 1280x720 with rate of 10

fps using default camera properties. 0.02 m voxel size and 16 m maximum depth

settings are used in this sequence. As can be seen from the Figure 5.26, the final

mesh has no artifact of the walking person in the scene. However, result of Elastic

Fusion has traces of the walking person.

112

20 160 280

RGB

Dept

h

a)

b)

Figure 5.26: RGB-D image and final mesh of the “outdoor-2 ” sequence a)

DUDMap b) Elastic Fusion

113

CHAPTER 6

6 SENSITIVITY ANALYSIS

In order to systematically measure the effect the input parameters to SLAM tracking

performance, a design of experiments study is conducted because it is an efficient

method for studying the relationship between multiple input variables and key output

variables. In addition, it is a structured approach for collecting data and making

discoveries.

In order to limit the memory requirement, the voxel size is the most important

parameter because representing a scene in the form of cube 10 x10 x 10 m3 in size at

1 cm resolution, would require 7.4 GB memory, storing 8 byte for each grid. Our

aim is to limit the memory size to 4 GB maximum, we represent the environment in

the form of a rectangular prism of size 10 x10 x 5 m3 at 1 cm resolution, which is the

most detailed version. For voxel size, we use 0.01 m, 0.02 m and 0.05 m, which uses

3.7 GB, 0.5 GB, and 0.03 GB memory, respectively.

Levenberg-Marquart method is the combination of Gradient Descent and Gauss

Newton. For example, if we select regularization constant or damping parameter as

zero, then we get regular Newton method. Using large values of regularization

constant tends to dampen the solution and it is important once the solution is close

to optimal.

Huber function is a penalty method, which is dependent on the residual. Using Huber

function, errors close to zero (small errors) are scaled quadratically, while the large

values will be scaled linearly. This allows us better adjustment when image is close

to its correct alignment.

114

If image registration is correct with the 3D model, the projected colors should be

consistent as well. We incorporate this color consistency condition by adding color

error function. Therefore, weight ratio, which is the contribution of the intensity with

respect to the depth, is also important.

In this section, the sensitivity of the proposed methodology to voxel size,

regularization constant, color intensity contribution with respect to the depth, Huber

constant will be examined. Moreover, the required computational time is measured

while changing the voxel size. In order to assess the performance of the our method

fr3/walking xyz dataset is selected for the error and timing analysis because, in this

sequence, camera is tracking a person at the beginning and finally camera never

revisits again, which results in artifact in resulting mesh. In addition, most of the

state art system use this sequence for performance analysis.

6.1 Design of Experiments

In order to systematically measure the effect the input parameters (voxel size,

regularization constant, color intensity contribution with respect to the depth, Huber

constant) to SLAM tracking performance, a design of experiments study is

conducted. In this study, 4 factors and 3 levels design of experiment which is 3×4

factorial design with 81 treatment combinations are considered because this factorial

design allows us to discover the main effects and interactions.

For Huber constant, the general use is the 1/5 of the voxel grid, therefore we use

0.005, 0.025 and 0.01 Huber constant levels. Regularization level is selected using

Gramian of Jacobian as 0.002, 0.02 and 0.01, respectively. The resulting

performance index which is Absolute Tracking Error (ATE [m] in rms) are tabulated

in Table 6.1 and main effects plot is illustrated in Figure 6.1 shows. Comparing all

changes in Table 6.1 and Figure 6.1, it is clear that using smaller voxel helps to

improve the tracking, however, we know that using smaller voxels increases the

115

memory requirements and computational complexity. In addition, the 0.1 weight

ratio seems to be the best.

Main effects plots shows the effects of one independent variable on the dependent

variable and it is useful when we have several categorical variables. Figure 6.1 shows

the main effect, which displays the means for each group within a categorical

variable. According to Figure 6.1, we should select Huber constant as 0.01,

Regularizarion constant is 0.02, voxel size as 0.01 m and weight as 0.1. These values

are consistent with Table 6.1 because the minimum tracking error 0.08 m which is

obtained when Huber constant, regularization constant, voxel size and weight are

0.01,0.02, 0.01 and 0.1, respectively.

Figure 6.1: Main effects plot: Variation of Absolute Trajectory Error to voxel size,

regularization constant, color intensity contribution with respect to the depth,

Huber constant

Figure 6.2 illustrates the interaction plot, which shows how the relationship between

one categorical factor and a continuous response depends on the value of the second

categorical factor. This is opposed to the “main effect” which is the action of a single

independent variable on the dependent variable. In Figure 6.2, the levels of variable

is displayed on horizontal axis and line represent the means of each level of other

0.005 0.01 0.025

Huber Constant

0.095

0.1

0.105

0.11

0.115

A
b

s
o

lu
te

 T
ra

je
c
to

ry
 E

rr
o

r

0.002 0.01 0.02

Regularization

0.01 0.02 0.05

Voxel Size (m)

0.025 0.1 0.175

Weight

116

variable. As an example, let us analyze the greyscale subplot, which shows the voxel

size – Huber constant interaction in the tracking error. We have 3 levels of input for

voxel size and Huber constant which are (0.01,0.02,0.05) and (0.025, 0.01, 0.005),

respectively. According to this subplot, it is clear that tracking error always decreases

with decreasing the voxel size except Huber constant is 0.025. The same scenario

exists in voxel size-weight interaction. If weight is not selected as 0.025, using

smaller voxels improves the tracking performance.

In Huber constant-regularization interaction, using 0.01 or 0.02 produces almost

same result. Huber constant- voxel size have the similar tracking performance if

voxel size is not equal to 0.05. In addition, Figure 6.2 shows that interaction of Huber

constant for other variables is minimum for 0.01 Huber constant.

The interaction of weight - regularization is almost same if 0.01 or 0.02

regularization constant is used. Weight-Huber constant interaction has minimum if

0.1 weight and 0.01 Huber constant are selected, however, it has a strange properties

because response of tracking error are completely complement when 0.025 and 0.05

Huber constant is selected. In weight-voxel size interaction, using large value of

voxel produce minimum error when the weight is 0.01 however, this minimum error

value is still larger than error in other voxel sizes.

The regularization-voxel size interaction shows that using smaller voxel size leads

to minimum tracking error and 0.01 m and 0.02 m voxel size produces the similar

result. In regularization-Huber constant plot, 0.01 Huber constant is the best and it

has similar trend with 0.005 Huber value however, 0.005 Huber has a poor

performance when regularization is 0.01 or 0.02. In general, using interaction plots,

we can conclude 0.01 Huber constant, 0.02 regularization are the best choice without

doubt.

117

Table 6.1: TUM Dataset fr3/walking xyz – Translational ATE (RMS Error m)

weight

0.025 0.1 0.175

Huber

Constant

0.005

Regularization

0.002

Voxel 0.01 m 0.098 0.096 0.102

Voxel 0.02 m 0.101 0.096 0.113

Voxel 0.05 m 0.102 0.116 0.171

Regularization

0.02

Voxel 0.01 m 0.095 0.091 0.097

Voxel 0.02 m 0.099 0.093 0.108

Voxel 0.05 m 0.102 0.109 0.165

Regularization

0.01

Voxel 0.01 m 0.097 0.093 0.100

Voxel 0.02 m 0.100 0.093 0.109

Voxel 0.05 m 0.102 0.104 0.170

Huber

Constant

0.01

Regularization

0.002

Voxel 0.01 m 0.110 0.083 0.092

Voxel 0.02 m 0.105 0.086 0.094

Voxel 0.05 m 0.092 0.108 0.097

Regularization

0.02

Voxel 0.01 m 0.108 0.080 0.088

Voxel 0.02 m 0.105 0.085 0.092

Voxel 0.05 m 0.092 0.094 0.114

Regularization

0.01

Voxel 0.01 m 0.108 0.085 0.089

Voxel 0.02 m 0.105 0.094 0.093

Voxel 0.05 m 0.092 0.081 0.112

Huber

Constant

0.025

Regularization

0.002

Voxel 0.01 m 0.118 0.104 0.090

Voxel 0.02 m 0.101 0.107 0.097

Voxel 0.05 m 0.365 0.095 0.101

Regularization

0.02

Voxel 0.01 m 0.117 0.103 0.090

Voxel 0.02 m 0.101 0.106 0.096

Voxel 0.05 m 0.100 0.096 0.102

Regularization

0.01

Voxel 0.01 m 0.117 0.104 0.089

Voxel 0.02 m 0.101 0.106 0.097

Voxel 0.05 m 0.107 0.094 0.102

118

Figure 6.2: Interaction plot: Variation of Absolute Trajectory Error to voxel size,

regularization constant, color intensity contribution with respect to the depth,

Huber constant

Using the Table 6.1, we can find the minimum tracking error as 0.08 m and it is

obtained when Huber constant, regularization constant, voxel size and weight are

0.01,0.02, 0.01 and 0.1, respectively. In main effect plot, we can easily see that the

minimum tracking error is obtained when the weight is 0.1. However, in order to

find the best value for weight, a detailed investigation is performed for weight value

between 0.1 and 0.175. Table 6.2 shows the absolute tracking error for weight value

between 0.1 and 0.175. In this analysis, Huber constant, regularization constant,

voxel size are 0.01,0.02, 0.01, respectively. The minimum error is obtained when

weigth is 0.1325. Therefore , we select to use 0.01,0.02, 0.01 and 0.1325 values for

parameters.

Weight

Weight = 0.025

Weight = 0.1

Weight = 0.175

0.01 0.02 0.050.002 0.01 0.020.005 0.01 0.025

0.1

0.12

0.14

0.1

0.12

0.14

Voxel Size (m)

Voxel Size (m) = 0.01

Voxel Size (m) = 0.02

Voxel Size (m) = 0.05

0.1

0.12

0.14

0.1

0.12

0.14

Regularization

Regularization = 0.002

Regularization = 0.01

Regularization = 0.02

0.1

0.12

0.14

0.025 0.1 0.175

0.1

0.12

0.14

0.01 0.02 0.050.002 0.01 0.02

Huber Constant
Huber Constant = 0.005

Huber Constant = 0.01

Huber Constant = 0.025

119

Table 6.2: Change of Translational ATE (RMS m) with respect to weight

(regularization constant, Huber constant and voxel size is constant)

weight
absolute translational error

(RMS Error [m])

0.1 0.0800

0.11 0.0764

0.12 0.0739

0.125 0.0731

0.1275 0.0734

0.13 0.0729

0.1325 0.0727

0.14 0.0731

0.15 0.0797

0.175 0.0880

Figure 6.3: Change of Translational ATE (RMS Error [m]) with respect to weight

(regularization constant, Huber constant and voxel size is constant)

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

Weight
w

(Color intensity contribution with respect to the depth)

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

A
b

s
o

lu
te

 T
ra

je
c
to

ry
 E

rr
o

r

Huber constant : 0.01

Regularization : 0.02

Voxel size : 0.01 m

120

In order to consider the constant, linear, interaction, and squared terms, a quadratic

model is formed. We used MATLAB rstool to examine relationship in full quadratic

mode. Figure 6.4 shows the response of the given input (X1, X2, X3, X4) and output

(Y1). (X1, X2, X3, X4) denote Huber constant, regularization constant, voxel size

and weight and (Y1) represents the tracking error. Using this quadratic model, we

can choose (0.015,0.01,0.01,0.124) for minimum value 0.071 m. However, if we use

the these values, the resulting error is 0.089 m, which is not consistent therefore, we

use the vales (0.01,0.02, 0.01 and 0.1325) for Huber constant, regularization

constant, voxel size and weight.

In this section, in addition to the sensitivity of the proposed methodology to the

voxel size , the contribution weight of the intensity with respect to the depth, Huber

constant and regularization constant, the required time for per image is also analyzed

(see Table 6.3).

According to Table 6.3, in all case, using larger voxel, dramatically decreases the

required calculation time which makes that the proposed scheme more suitable for

real-time applications. However , using larger voxel, increases the absolute

translational error. Using larger ratio of the intensity information with respect to the

depth information decreases the RMSE error , however, such situation is not valid

for all cases. Therefore, utilization of application specific constant increases the

performance of the proposed scheme.

121

Figure 6.4: Quadratic model of the sensitivity analysis

Table 6.3: TUM “fr3/walking static” Sequence Translational ATE Error (RMS Error

[cm])

Voxel Size

(m)
weight ()

Translational ATE

Error (cm)

Mean Time

for per frame

(ms)

0.005 0.01 1.05 230

0.01 0.01 1.77 116

0.02 0.01 1.67 76

0.05 0.01 2.16 62

0.005 0.025 0.74 231

0.01 0.025 0.79 116

0.02 0.025 1.06 77

0.05 0.025 0.90 62

0.005 0.04 0.69 230

0.01 0.04 0.81 115

0.02 0.04 0.77 76

0.05 0.04 0.95 62

0.01 0.015 0.02

0.075

0.08

0.085

0.09

0.095

0.005 0.01 0.015 0.02 0.03 0.04 0.04 0.06 0.08 0.1 0.12 0.14 0.16

X1

0.01582

X2

0.01

X3

0.01

X4

0.12392

0.070671

Predicted Y1

Export

Full Quadratic

Close

122

123

CHAPTER 7

7 CONCLUSION

SLAM techniques estimate jointly a map of an unknown environment and the robot

pose within such map, only from the data streams of its on-board sensors. Visual

SLAM, where the main sensor is a camera, have received high-level attention in

recent years. The basic configuration is monocular camera which has practical

advantages however it has also several drawbacks such as the depth estimation and

scale uncertainty. With the appearance of Kinect in 2010, there are many advanced

RGB-D SLAM systems which use the depth images or fuse the color and depth

information. Using complicated setups like RGB-D cameras, such issues are solved

and the robustness of visual SLAM systems can be greatly improved. However,

most visual methods perform poorly in dynamic environments. In these techniques,

dynamic objects are considered typically as spurious data and removed as outliers

using RANSAC and robust cost function. Dynamic environments, on the other hand,

are widespread characteristics of many robotic applications.

Conventional approaches in mapping assume that the environment is static.

Although, the static assumption holds true in a single mapping run in small scale

scenarios, change is inevitable when dynamic elements exist or large-scale mapping

necessary. This approach generally succeeds in ignoring moving objects by setting

their corresponding key points and the use of distant key frames. However, when

dealing with dynamic environments, the system becomes less accurate as the objects,

that have remained static in several key frames, are mapped in the reconstruction.

Another biggest issues in robot navigation is unstructured environments. In

unstructured environments, it is not easy to find discrete geometries because of noisy

edge or plane. Significant research has been carried out for unstructured

124

environments especially in the field of autonomous navigation, and a number of

effective approaches have been developed. However, there is no effective RGB-D

SLAM method for real-world unstructured and dynamic environments.

In summary, the research community has addressed SLAM from many different

angles. However, the vast majority of the approaches and datasets assume a static

environment. Consequently, they can only manage small fractions of dynamic

content by classifying them as outliers. Although the static assumption holds for

some robotic applications, it limits the applicability of visual SLAM in many

relevant cases, such as intelligent autonomous systems operating in populated real-

world environments over long periods. By classifying dynamic content as outliers, a

small fraction can be managed. However, SLAM problem in highly dynamic scenes

is still not solved completely because there is no suggested framework found in the

literature.

In our work, we reconstruct our scene geometry using Signed Distance Function

(SDF) and therefore we can directly generate the mesh of the environment using such

representation without using object tracking and object classifier. Moreover, number

of dynamic objects or their speeds do not limit our approach.

Our proposed method, dense SDF-based dynamic mapping approach, can operate in

environments where high dynamics exist without depending on moving objects. In

addition, if a static object moves, the corresponding voxels are removed successfully

from the mesh. After performing a complete evaluation of our proposed method for

several sequences of the TUM, Bonn and VolumeDeform dataset, our method has

demonstrated to have an improved pose estimation capability even though there

exists dynamic elements in the scene. In addition, in order to evaluate the outdoor

performance of our method, we use commercially available ZED camera for map

generation and dynamic filtering. Experiments illustrate that our method produce

consistent result without generating an artifact of dynamic object both in indoor and

125

outdoor applications. These are demonstrations of real world dynamic environments

of our approach.

User-friendliness and the unconstrained aspect of our method is seen in representing

surfaces using truncated signed distance function which is extremely easy and it

provides an efficient mechanism in consistent surface estimation. However, surface

representation using TSDF is memory intensive because required memory for TSDF

volume scales cubically and it depends on the grid resolution. Hence, special care

has to be taken for efficient memory usage considering the performance. In addition,

TSDF has intensive calculations. For example, for fusing a data in VGA format, it

requires basically 0.3 million operations. However, since each pixel is independent

from each other, GPU can be utilized in parallel to have a real time performance.

7.1 Future Works

If a voxel is empty in enough time, then we mark it as free voxel. The speed of

dynamic elements becomes important because, the environment should allow us to

capture the static part of scene in the first frames. Therefore, it is so challenging to

generate the static part of environments having very high dynamics at the beginning.

We compare our method with other state of art systems using repositories which are

available in the literature. These RGB-D datasets have no build-in tool to evaluate

the dynamic handling capability of state of art SLAM systems. However, there

should be limit for dynamic, which can be handled by our proposed method. This

limit can be instantaneous rotation or translation of moving object or any type of

metric, which should be identified.

Our proposed method can operate in environments where high dynamics exist

without depending on moving objects. We find a dynamic label image from the

image registration residuals. Actually, we have a silhouette of the moving object and

using this information, it is possible to extract the dynamic object and to find the

126

some properties of dynamic elements such as speed. These open questions can be

taken as a guideline for further work on the approach for visual SLAM methods.

In addition, the SDF can encode surface interfaces at sub-voxel accuracy through

interpolation, however, it can fail at sharp corners and edges, therefore they are not

straightforward to extract from a SDF representation and such type of structures

requires special effort such as selecting a suitable voxel element size and truncation

distance. Truncation distance expresses a prior information about the average

thickness of object in the environment. Using a feature-preserving algorithm with

adaptive variable voxel size can improve the surface extraction on sharp corners;

however, it is left as a future work.

Visual SLAM allows robots to find the location of itself with reference to its

surrounding environment. With the help of this technology, a device can capable of

geographical understanding, for example, it can determine the shape of an area. Such

property is an important feature for Augmented Reality applications because it

enables pairing of RGB image and allows autonomous objects such as automobiles

and quadrotors to track the environment. Moreover, Visual SLAM overcomes the

problem of GPS limitation and finally RGB-D sensor becomes no longer as camera,

it turns into an artificial eye that can measure the distance to surface and pair the

images with Visual SLAM technology.

Visual SLAM is a foundation to get truly AR because localizing the object in the

map or capturing 3D scene is not sufficient, however, using deep learning and cloud

computing, we have next level of adoption. In short, Visual SLAM can localize the

object, however we need the semantic information about the object derived from the

artificial intelligence.

If we load a device with Visual SLAM technology, then we can get the user

experience by the real time application of augmented reality. Integration of Visual

127

SLAM with Augmented Reality helps us to combine global location with digital

elements producing in real time. For example, imagine if you are walking and

passing a restaurant. We could use our smartphone or smart device such as glasses

to view menus about the restaurant by combining the street where the restaurant is

located with AR. Moreover, we could get the 3D video content of any store. This is

the new opportunity for marketing and it can be easily adopted to shopping and

entertainment.

Metaverse is used to represent the hypothetical synthetic environment which is the

combination of “transcending (meta)” and the “universe (verse)”. It is a link between

the digital world and physical system. This phenomena “metaverse” is evolving and

better results are obtained by introduction of newly portable devices. This is the

truest form of the technology: It is intuitive, offering a plethora of possibilities for

developers and users of tomorrow. Even though, state of art visual SLAM system

including our proposed method, DUDMAP, already provide a foundation for three-

dimensional recognition, the metaverse requires more understandings about more

complex environments for integration of digital object and real life. HoloLens and

Oculus has already special product in order to have basics of virtual reality

technology to explore the potential of mixed reality interaction. Apple announced

ARKit for 3D keypoints tracking. In metaverse, the virtual universe in constructed

by acquiring the 3D structure of a scene and this information helps us to build digital

twin construction, which is an important role for connecting artificial intelligence to

get conversion with the physical world. Therefore, it is very vital to ensure the

accuracy of object registration, and the interaction with the physical world in the

metaverse. Therefore, it is expected to have more precise and computationally

effective SLAM algorithms in the metaverse.

In the metaverse, human and their digital twins or representatives called as avatars

will connect and co-exist. In order to form a proper connection between physical and

digital environments, a deep understanding of both world is necessary. In real world,

our eyes provides us spatial information and we can built a 3D reconstruction with

https://www.xrtoday.com/virtual-reality/how-does-virtual-reality-work/
https://www.xrtoday.com/virtual-reality/how-does-virtual-reality-work/

128

knowing the exact location of each object. Likewise, the metaverse needs to correct

3D reconstruction of the scene. In order to achieve this goal, Visual SLAM allows

us to create 3D structure of an unknown environment and it should solve

simultaneously the challenging problems of unknown space, uncontrollable camera

motion and camera drift in real-time. Therefore, it is clear that a new RGB-D dataset

containing fast and slow camera motions and varying degrees of dynamic elements

would be greatly appreciated by researchers if made available.

129

REFERENCES

[1] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark

for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS), 2012, pp. 573– 580.

[2] D.G. Lowe, ”Distinctive image features from scale-invariant keypoints,”

Gonput.Vis. 60(2), pp. 91-110, 2004

[3] Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An open-source slam system for

monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 2017, 33, 1255–1262

[4] Pire, T., Fischer, T., Castro, G., De Cristoforis, P., Civera, J., and Jacobo Berlles,

J. (2017). S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and

Autonomous Systems, 27-42.

[5] Labbe, M. and Michaud, F. (2013). Appearance-based loop closure detection for

online large-scale and long-term operation. IEEE Transactions on Robotics,

29,734-745.

[6] Kerl, C., Sturm, J., and Cremers, D. (2013). Dense visual SLAM for RGB-D

cameras. In Proceedings, IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2100- 2106.

[7] M. Jaimez, C. Kerl, J. Gonzalez-Jimenez, and D. Cremers, “Fast odometry and

scene flow from RGB-D cameras based on geometric clustering,” in IEEE Intl.

Conf. on Robotics and Automation (ICRA), 2017, pp. 3992–3999.

[8] Diaz-Chito, Katerine, Aura Hernez-Sabatnd Antonio M. L. ”A reduced feature

set for driver head pose estimation.” Applied Soft Computing 45, pp. 98-107,

2016.

[9] Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison, A. J., and Leutenegger,

S. (2016). ElasticFusion: Real-time dense SLAM and light source estimation.

The International Journal of Robotics Research, 35, 1697-1716.

130

[10] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3D

Reconstruction at Scale using Voxel Hashing. Proc. of the SIGGRAPH Asia,

32(6), 2013.

[11] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison,

“ElasticFusion: Dense SLAM without a pose graph,” Robotics: Science and

Systems (RSS), 2015.

[12] M. Runz and L. Agapito, “Co-fusion: Real-time segmentation, tracking and

fusion of multiple objects,” in IEEE Intl. Conf. on Robotics and Automation

(ICRA), 2017, pp. 4471–4478.

[13] R. Scona, M. Jaimez, Y.R. Petillot, M. Fallon, and D. Cremers., Staticfusion:

Background reconstruction for dense RGB-D SLAM in dynamic environments.

In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018.

[14] E. Palazzolo, J. Behley, P. Lottes, P. Gigue`re, and C. Stachniss. “Refusion:

3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting

Residuals”. CoRR, abs/1905.02082, 2019

[15] Y. Wang and S. Huang, “Motion segmentation based robust RGB-D SLAM,”

in WCICA, pp. 3122–3127, IEEE, 2014.

[16] H. Kim and J. H. Kim, “Effective background model-based RGB-D dense

visual odometry in a dynamic environment,” IEEE Transaction on Robotics, vol.

32, no. 6, pp. 1565–1573, 2016.

[17] H. Azartash, K.-R. Lee, and T. Q. Nguyen, “Visual odometry for RGB-D

cameras for dynamic scenes,” in Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 1280–1284.

[18] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, “Robust monocular SLAM

in dynamic environments,” in Mixed and Augmented Reality (ISMAR), 2013

IEEE International Symposium on. IEEE, 2013, pp. 209–218.

131

[19] Kitt, F. Moosmann, and C. Stiller, “Moving on to dynamic environments:

Visual odometry using feature classification,” in Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010, pp. 5551–

5556.

[20] B. Bescos, J. M. Facil, J. Civera, and J. Neira, “Dynslam: Tracking, mapping

and inpainting in dynamic scenes,” arXiv preprint arXiv:1806.05620, 2018.

[21] Wu Y, Luo L, Yin S, Yu M, Qiao F, Huang H, Shi X, Wei Q, Liu X. An FPGA

Based Energy Efficient DS-SLAM Accelerator for Mobile Robots in Dynamic

Environment. Applied Sciences. 2021; 11(4):1828.

https://doi.org/10.3390/app11041828

[22] C.; Liu, Z.; Liu, X.-J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A

semantic visual slam towards dynamic environments. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Madrid, Spain, 1–5 October 2018; pp. 1168–1174.

[23] Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional

encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.

Mach. Intell. 2017, 39, 2481–2495.

[24] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An Invitation to 3D Vision: From

Images to Geometric Models. Springer Verlag, 2003.

[25] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A.J. Davison,

P. Kohli, J. Shotton, S. Hodges, and A.W. Fitzgibbon. KinectFusion: Real-time

dense surface mapping and tracking. In ISMAR, pages 127–136, 2011.

[26] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution

3D surface construction algorithm. Computer Graphics, 21(4):163–169, 1987.

[27] J. W. Li, W. Gao, and Y. H. Wu, “Elaborate scene reconstruction with a

consumer depth camera,” International Journal of Automation and Computing,

pp. 1–11, 2018.

132

[28] A. Taneja, L. Ballan and M. Pollefeys, "Geometric change detection in urban

environments using images", IEEE transactions on pattern analysis and machine

intelligence, vol. 37, no. 11, pp. 2193-2206, 2015.

[29] Martin Rünz, Maud Buffier, and Lourdes Agapito. “MaskFusion: Real-time

Recognition, Tracking and Reconstruction of Multiple Moving Objects”. In

Proceedings of the Inter- national Symposium on Mixed and Augmented Reality

[30] T. Bagautdinov, F. Fleuret, and P. Fua. Probability occupancy maps for

occluded depth images. In Computer Vision and Pattern Recognition (CVPR),

2015. https://www.epfl.ch/labs/cvlab/data/data-rgbd-pedestrian/

[31] Innmann M., Zollhöfer M., Nießner M., Theobald C., Stamminger M.:

VolumeDeform: "Real-Time Volumetric Non-rigid Reconstruction” 14th

European Conference on Computer Vision (ECCV) doi: 10.1007/978-3-319-

46484-8_22 https://cloud9.cs.fau.de/index.php/s/46qcNZSNePHx08A

[32] F. Steinbrücker, J. Sturm and D. Cremers, "Volumetric 3D mapping in real-

time on a CPU," 2014 IEEE International Conference on Robotics and

Automation (ICRA), Hong Kong, 2014, pp. 2021-2028, doi:

10.1109/ICRA.2014.6907127.

[33] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and

Christian Theobalt. 2017. BundleFusion: Real-Time Globally Consistent 3D

Reconstruction Using On-the-Fly Surface Reintegration. ACM Trans. Graph. 36,

3, Article 24 (June 2017), 18 pages. DOI:https://doi.org/10.1145/3054739

[34] C. Malleson, J. Guillemaut and A. Hilton, "Hybrid Modeling of Non-Rigid

Scenes From RGBD Cameras," in IEEE Transactions on Circuits and Systems

for Video Technology, vol. 29, no. 8, pp. 2391-2404, Aug. 2019, doi:

10.1109/TCSVT.2018.2863027.

[35] https://www.stereolabs.com

https://www.stereolabs.com/

133

[36] M. Runz, M. Buffier and L. Agapito, "MaskFusion: Real-Time Recognition,

Tracking and Reconstruction of Multiple Moving Objects," 2018 IEEE

International Symposium on Mixed and Augmented Reality (ISMAR), Munich,

Germany, 2018, pp. 10-20, doi: 10.1109/ISMAR.2018.00024.

[37] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós,

“ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial

and Multi-Map SLAM,” jul 2020 [Online]. Available:

http://arxiv.org/abs/2007.11898

[38] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," 2017 IEEE

International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp.

2980-2988, doi: 10.1109/ICCV.2017.322.

[39] Y. Liu and J. Miura, "RDS-SLAM: Real-Time Dynamic SLAM Using

Semantic Segmentation Methods," in IEEE Access, vol. 9, pp. 23772-23785,

2021, doi: 10.1109/ACCESS.2021.3050617.

[40] Y. Fan et al., "Semantic SLAM With More Accurate Point Cloud Map in

Dynamic Environments," in IEEE Access, vol. 8, pp. 112237-112252, 2020, doi:

10.1109/ACCESS.2020.3003160.

[41] T. Zhang, Y. Nakamura, “PoseFusion: Dense RGB-D SLAM in Dynamic

Human Environments.” Xiao J.; Kröger T.; Khatib O. Proceedings of the 2018

International Symposium on Experimental Robotics, pp.772-780, 2018. hal-

01893144

[42] Z. Cao, G. Hidalgo, T. Simon, S. -E. Wei and Y. Sheikh, "OpenPose: Realtime

Multi-Person 2D Pose Estimation Using Part Affinity Fields," in IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp.

172-186, 1 Jan. 2021, doi: 10.1109/TPAMI.2019.2929257.

[43] T. Zhang, H. Zhang, Y. Li, Y. Nakamura and L. Zhang, "FlowFusion:

Dynamic Dense RGB-D SLAM Based on Optical Flow," 2020 IEEE

International Conference on Robotics and Automation (ICRA), Paris, France,

2020, pp. 7322-7328, doi: 10.1109/ICRA40945.2020.9197349.

134

[44] D. Sun, X. Yang, M. Liu and J. Kautz, "PWC-Net: CNNs for Optical Flow

Using Pyramid, Warping, and Cost Volume," 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp.

8934-8943, doi: 10.1109/CVPR.2018.00931.

[45] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones, “Adaptively

sampled distance fields: A general representation of shape for computer

graphics,” 2000.

[46] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachiss, and W. Burgard,

“OctoMap: An efficient probabilistic 3D mapping framework based on octrees,”

Autonomous Robots, 2013.

[47] R. E. Bridson, Compuational Aspects of Dynamic Surfaces. PhD thesis,

Standford, CA, USA, 2003.

[48] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross,

“Optimized spatial hashing for collision detection of deformable objects,”

Proceedings of Vision, Modeling, Visualization (VMV 2003), pp. 47–54, 2003.

[49] Blanco, J. (2012). A tutorial on SE(3) transformation parameterizations and

on-manifold optimization.

[50] Ivancevic, Vladimir & Ivancevic, Tijana. (2011). Lecture Notes in Lie Groups.

[51] Shirley, P. and Neeman, H., "Volume Visualization at the Center for

Supercomputing Research and Development", Proceedings of the Chapel Hill

Workshop on Volume Visualization, Chapel Hill, NC, May 1989, 17-20.

[52] X Choi, Y. K., & Hahn, J. K. (2007). Shrink-wrapped isosurface from cross

sectional images. IEICE transactions on information and systems, E90-D(12),

2070–2076. https://doi.org/10.1093/ietisy/e90-d.12.2070

https://doi.org/10.1093/ietisy/e90-d.12.2070

135

[53] Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R. and Teeter, B. C.,

"Two Algorithms for the Three-Dimensional Reconstruction of Tomograms",

Medical Physics, 15, 3 (May/June 1988), 320-327.

[54] Lorensen W, Cline H. Marching cubes: a high resolution 3D surface

construction algorithm. Computer Graphics 1987;21(4):163–9.

[55] Timothy S. Newman, Hong Yi, A survey of the marching cubes algorithm,

Computers & Graphics, Volume 30, Issue 5, 2006, Pages 854-879, ISSN 0097-

8493, https://doi.org/10.1016/j.cag.2006.07.021.

[56] Lorensen, W. E., "Extracting Surfaces from Medical Volumes," SIGGRAPH

94

[57] David B. Kirk and Wen-mei W. Hwu. 2010. Programming Massively Parallel

Processors: A Hands-on Approach (1st. ed.). Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA.

[58] S. Se, D. Lowe, and J. Little. Mobile Robot Localization and Mapping with

Uncertainty using Scale-Invariant Visual Landmarks. International Journal of

Robotics Research, 21(8), August 2002.

[59] S. Se, H. Ng, P. Jasiobedzki, and T. Moyung. Vision based Modeling and

Localization for Planetary Exploration Rovers. In International Astronautical

Congress. Proceedings IAC 2004., October 2004.

[60] Weingarten, J. Feature-based 3D SLAM. PhD Thesis, Swiss Federal Institute

of Technology Lausanne, EPFL, no 3601, Dir.: Roland Siegwart,(2006).

[61] W. Burgard, A.B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz, W.

Steiner, and S. Thrun. Experiences with an interactive museum tour-guide robot.

Artificial Intelligence, 114(1-2):3–55, 1999.

[62] Besl, P. and McKay, N. D. (1992). A method for registration of 3-d shapes.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239256.

https://doi.org/10.1016/j.cag.2006.07.021

136

[63] T. Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor

Environments. PhD thesis, Univ. of Sydney, 2002.

[64] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial

relationships in robotics”, Autonomous Robot Vehicles, Springer, Germany, pp.

167–193, 1990.

[65] A. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba,

“A Solution to the Simultaneous Localization and Map Building Problem”. IEEE

Transaction on Robotic and Automation, vol. 17, pp. 229–241, 2001.

[66] H. F. Durrant-Whyle, and T. Bailey, ”Simultaneous Localization and

Mapping: Part I“. IEEE Robotic Automation Magazine, vol. 13, pp. 99– 108,

2006.

[67] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A

factoredsolution to the simultaneous localization and mapping problem”, in

Proceedings of the National Conference on Artificial Intelligence, Edmonton,

Canada, pp. 593–598, August 2002.

[68] W. Burgard, A.B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz, W.

Steiner, and S. Thrun. Experiences with an interactive museum tour-guide robot.

Artificial Intelligence, 114(1-2):3–55, 1999.

[69] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige. Double window

optimisation for constant time visual SLAM. In IEEE International Conference

on Computer Vision (ICCV), 2011.

[70] Schneider, T., Dymczyk, M., Fehr, M., Egger, K., Lynen, S., Gilitschenski, I.,

and Siegwart, R. (maplab: An open framework for research in visual-inertial

mapping and localization. IEEE Robotics and Automation Letters, 3:1418- 1425.

[71] Yi, L., Fei, G., Tong, Q., Wenliang, G., Tianbo, L., William, W., Zhenfei, Y.,

and Shaojie, S. (2017). Autonomous aerial navigation using monocular visual-

inertial fusion. Journal of Field Robotics, 35 :23-51.

137

[72] Pire, T., Fischer, T., Castro, G., De Cristoforis, P., Civera, J., and Jacobo

Berlles, J. (2017). S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and

Autonomous Systems, 27-42.

[73] Schlegel, D., Colosi, M., and Grisetti, G. (2017). ProSLAM: Graph SLAM

from a programmer's perspective.

[74] Galvez-Lopez, D. and Tardos, J. D. (2012). Bags of binary words for fast place

recognition in image sequences.IEEE Transactions on Robotics, 28,1188-1197

[75] Kerl, C., Sturm, J., and Cremers, D. (2013). Dense visual SLAM for RGB-D

cameras. In Proceedings, IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2100- 2106.

[76] Gutierrez-Gomez, D., Mayol-Cuevas, W., and Guerrero, J. J. (2016). Dense

RGB-D visual odometry using inverse depth. Robotics and Autonomous

Systems, 75:571-583.

[77] Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard, J. J., and

McDonald, J. (2015). Real-time large-scale dense RGB-D SLAM with

volumetric fusion. The International Journal of Robotics Research, 34, 598-626.

[78] Dai, A., Niener, M., Zollofer, M., Izadi, S., and Theobalt, C. (2017).

Bundlefusion: Real-time globally consistent 3D reconstruction using on the fly

surface reintegration. ACM Transactions on Graphics.

[79] Harmat, A., Trentini, M., and Sharf, I. (2015). Multi-camera tracking and

mapping for unmanned aerial vehicles in unstructured environments. Journal of

Intelligent & Robotic Systems, 78, 291-317.

[80] Endres, F., Hess, J., Sturm, J., Cremers, D., and Burgard, W. (2014). 3-D

mapping with an RGB-D camera. IEEE Transactions on Robotics, 30,177-187.

138

[81] Moore, T. and Stouch, D. (2014). A generalized extended Kalman lter

implementation for the Robot Operating System. In Proceedings International

Conference on Intelligent Autonomous Systems. Springer.

[82] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W.

(2013). Octomap: An efficient probabilistic 3D mapping framework based on

octrees. Autonomous Robots, 34,189- 206.

[83] Labbe, M. and Michaud, F. (2013). Appearance-based loop closure detection

for online large-scale and long-term operation. IEEE Transactions on Robotics,

29,734-745.

[84] Labbe, M. and Michaud, F. (2014). Online global loop closure detection for

large-scale multi-session graph based SLAM. In Proceedings IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 2661-2666.

[85] O. Wasenmüller, M. Meyer and D. Stricker, "CoRBS: Comprehensive RGB-

D benchmark for SLAM using Kinect v2," 2016 IEEE Winter Conference on

Applications of Computer Vision (WACV), 2016, pp. 1-7, doi:

10.1109/WACV.2016.7477636.

[86] A. Handa, T. Whelan, J. McDonald and A. J. Davison, "A benchmark for

RGB-D visual odometry, 3D reconstruction and SLAM," 2014 IEEE

International Conference on Robotics and Automation (ICRA), 2014, pp. 1524-

1531, doi: 10.1109/ICRA.2014.6907054.

[87] Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In:

International Conference on Intelligent Robot Systems (IROS). (2013)

[88] Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-

DL tentative, International Society for Optics and Photonics (1992) 586–606

[89] Wasenmüller O., Ansari M.D., Stricker D. (2017) DNA-SLAM: Dense Noise

Aware SLAM for ToF RGB-D Cameras. In: Chen CS., Lu J., Ma KK. (eds)

Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in

Computer Science, vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-

319-54407-6_42

https://doi.org/10.1007/978-3-319-54407-6_42
https://doi.org/10.1007/978-3-319-54407-6_42

139

[90] R.A. Newcombe, S. Lovegrove, and A.J. Davison. DTAM: Dense tracking and

mapping in real-time. In Proc. of the Intl. Conference on Computer Vision

(ICCV), pages 2320– 2327, 2011.

[91] M.Werlberger,W. Trobin, T. Pock, A.Wedel, D. Cremers, and H. Bischof.

Anisotropic Huber-L1 Optical Flow. In Proc. of the British Machine Vision

Conference (BMVC), September 2009.

[92] J. W. Li, W. Gao, and Y. H. Wu, “Elaborate scene reconstruction with a

consumer depth camera,” International Journal of Automation and Computing,

pp. 1–11, 2018.

[93] C. Tomasi, R. Manduchi. Bilateral filtering for gray and color images. In

Proceedings of the 6th International Conference on Computer Vision, IEEE,

Bombay, India, pp. 839– 846, 1998.

[94] Birk, A., & Carpin, S. (2006). Merging occupancy grids from multiple robots.

Proceedings of the IEEE, 94(7), 1384–1397.

[95] T. Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor

Environments. PhD thesis, Univ. of Sydney, 2002.

[96] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Bur- gard,

D. Cremers, and R. Siegwart. Towards a benchmark for rgb-d slam evaluation.

In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth Cameras

at Robotics: Science and Systems Conf. (RSS), June 2011

 

140

141

APPENDICES

A. Mathematical Preliminaries

The vec operator that stacks all the columns of an M ×N matrix to form a MN ×1

vector

The cross product operator [.]× maps a 3 × 1 vector to skew-symmetric matrix :

The inverse cross product operator [.]∨ is the inverse of the cross product as:

B. Rigid Body Motion

In 3D reconstruction, the main aim is to capture the geometry and appearance of the

objects. In rigid bodies, poses of moving rigid bodies are related point by point with

changing location and orientation between poses. In rigid body motion, the distance

between any two points remains the same and orientation of the body is conserved.

Two particular groups 𝑆𝑂(3) and 𝑆𝐸(3) are particularly interested in robotics

society. 𝑆𝑂(3) is the special orthogonal group that represents rotations and SE(3)

is the special Euclidean group that represents rigid body motions.

𝑣𝑒𝑐 ([
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

]) =

[

𝑎
𝑏
𝑐
𝑑
𝑒
𝑓]

(A.1)

𝜔 = [
𝑥
𝑦
𝑧
] [𝜔]× = [

0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

]

(A.2)

[
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

]

⋎

= [
𝑥
𝑦
𝑧
]

(A.3)

142

In rigid body motion, two reference frames which are body frame and inertial frame

are used. Body frame remains fixed to the body whereas the inertial frame is fixed.

For example, let us consider the a point p on the rigid body after the body undergoes

a rotation of angle α about the inertial z-axis. The relation between the initial

coordinates and final coordinates is the rotation matrix. Similarly rotate the frame

about the new y and z axes with angles 𝛽 and 𝜃, we have a net orientation 𝑅 (𝛼, 𝛽,

𝜃) and the angles (𝛼, 𝛽, 𝜃) is used to represent the rotation sequence. The angles

(𝛼,𝛽,𝜃) are known as the ZYZ Euler angles. Since all rotations performed about the

principal axes of the moving frame, elementary rotations are defines as

𝑅𝑥(𝛼) = [

1 0 0
0 cos (𝛼) −𝑠𝑖𝑛(𝛼)
0 𝑠𝑖𝑛(𝛼) 𝑐os (𝛼)

]

(A.4)

𝑅𝑦(𝛽) = [
cos (𝛽) 0 𝑠𝑖𝑛(𝛽)
0 1 0

−𝑠𝑖𝑛(𝛽) 0 cos (𝛽)
]

(A.5)

𝑅𝑧(𝜃) = [
cos (𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) cos (𝜃) 0
0 0 1

]

(A.6)

If we first rotate the B frame about the z-axis of frame B by an angle α, then rotating

about the (new) y-axis of frame B by an angle β, and then rotating about the (once

again, new) z-axis of frame B by an angle γ. Then the final form becomes

𝑅𝐵𝐴 = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾) (A.7)

𝑅𝐵𝐴

= [
cos(𝛼) − sin(𝛼) 0
sin(𝛼) cos(𝛼) 0
0 0 1

] [
cos(𝛽) 0 sin(𝛽)
0 1 0

− sin(𝛽) 0 cos(𝛽)
] [
cos(𝛾) − sin(𝛾) 0

sin(𝛾) cos(𝛾) 0
0 0 1

]

(A.8)

143

where 𝑐𝛼 and 𝑠𝛼 denotes cos(𝛼) and sin(𝛼), respectively and similarly for the other

terms.

𝑆𝑂(3) is Special Orthogonal Group which is defined as

where 𝑅 is rotational matrix, 𝐼 is identity matrix and det(.) is the determinant.

If we have a rotation R ∈ 𝑆𝑂(3) , the Euler angles can be calculated by solving

equation (3.10) for α, β, and γ. If sin(𝛽) ≠ 0, the solutions become

where 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) uses the sign of both 𝑥 and 𝑦 to determine the quadrant. ZYZ

Euler angles are an example of a local parameterization of 𝑆𝑂(3).

The equivalent axis representation, the singularities in the parameterization occur at

R = I, the identity rotation. In particular, we note that (α, β, γ) of the form (α, 0,−α)

yields (α, 0,−α) = I. The singularities are referred as the absence of solution to the

inverse problem of finding the Euler angles. Therefore, there are infinitely many

representations of the identity rotation in the ZYZ. In order to overcome this

𝑅𝐵𝐴 = [

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

−𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽
]=[

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] (A.9)

𝑆𝑂(3) = {𝑅 ∈ 𝑅3𝑥3|𝑅𝑇𝑅 = 𝑅𝑅𝑇 = 𝐼, det(𝑅) = 1} (A.10)

𝛽 = 𝑎𝑡𝑎𝑛2(√𝑟312 + 𝑟322, 𝑟33)

(A.11)

𝛼 = 𝑎𝑡𝑎𝑛2(
𝑟23
𝑠𝛽
,
𝑟13
𝑠𝛽
)

(A.12)

γ = 𝑎𝑡𝑎𝑛2(
𝑟32
𝑠𝛽
,
−𝑟31
𝑠𝛽
)

(A.13)

144

problem, another Euler angle sequence such as ZYX and YZX Euler angle

parameterizations can be utilized because they have the advantage of not having a

singularity at the identity, R = I. However, they have singularities at other, different,

orientations. As an example , in ZYX Euler angles, the singularity occurs when θ =

−π/2. This situation is a fundamental topological fact that singularities can never be

eliminated in any 3-dimensional representation of 𝑆𝑂(3) .

The Lie-algebra of 𝑆𝑂(3) is termed 𝑠𝑜(3) and is defined by

In robotics, any rotation of a body about a given axis is a common motion. If 𝜔 ∈ 𝑅3

be a unit vector which specifies the direction of rotation and 𝜃 ∈ 𝑅 be the angle of

rotation in radians. It is clear that every rotation corresponds to 𝑅 ∈ 𝑆𝑂(3). Now,

consider the point on the rotating body which has constant unit velocity about axit

𝜔. Then the velocity of the point, 𝑞̇, can be defined as

Since this equation is a time-invariant linear differential equation, then

where 𝑞(0) is the initial position and 𝑒[𝜔]×𝑡 is the matrix exponential and it can be

written as

𝑠𝑜(3) = {𝐴 = [𝜔𝑥] = [
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

] |𝐴𝑇 = −𝐴} (A.14)

𝑞̇(𝑡) = 𝜔 × 𝑞(𝑡) = [𝜔]×𝑞(𝑡)

(A.15)

𝑞(𝑡) = 𝑒[𝜔]×𝑡 𝑞(0)

(A.16)

𝑒[𝜔]×𝑡 = 𝐼 + [𝜔]×𝑡 +
([𝜔]×𝑡)

2

2!
+
([𝜔]×𝑡)

3

3!
+ ⋯

(A.17)

145

Then, if the point is rotated about the axis 𝜔 with an unit velocity for 𝜃 units of time,

then final rotation becomes

Equation (3.19) is not useful from because it is an infinite series and, hence, it

requires high computational power.

Lemma 1 : Given [𝜔]× 𝜖 𝑠𝑜(3), following equations are valid and higher powers of

[𝜔]× can be calculated.

Using this lemma with ‖𝜔‖ = 1, then

Therefore

This formula (3.23) is known as Rodrigues’ formula and it is an efficient method for

computing matrix exponential. Indeed, this equation verify that 𝑒[𝜔]×𝜃 is indeed a

rotation matrix.

𝑅(𝜔, 𝜃) = 𝑒[𝜔]×𝜃

(A.18)

([𝜔]×)
2 = 𝜔𝜔𝑇 − ‖𝜔‖2𝐼

(A.19)

([𝜔]×)
3 = −‖𝜔‖2[𝜔]×

(A.20)

𝑒[𝜔]×𝜃 = 𝐼 + (𝜃 −
𝜃3

3!
+
𝜃5

5!
− ⋯) [𝜔]× + (

𝜃2

2!
−
𝜃4

4!
+
𝜃6

6!
⋯) [𝜔]×

2

(A.21)

𝑒[𝜔]×𝜃 = 𝐼 + [𝜔]× sin(𝜃) + [𝜔]×
2
(1 − cos (𝜃))

(A.22)

146

Let 𝑅 = 𝑒[𝜔]×𝜃 and [𝜔]× 𝜖 𝑠𝑜(3) , using Rodrigues’ formula we get

This equation implies that 𝑅𝑇 = 𝑅−1 , it is then easy to show that 𝑅𝑇𝑅 = 𝐼 and

det(𝑅) = 1. Then we can conclude that given a skew-symmetric matrix,

exponentials of skew symmetric matrix are orthogonal.

Equation (3.25) indicate that the exponential map converts skew symmetric matrices

into orthogonal matrices. The skew symmetric matrix is a representation of an axis

of rotation and this map generates a rotation about a given axis by a given or specified

amount 𝜃. This is the relationship between skew-symmetric matrices and orthogonal

matrices.

Each rotation matrix can be represented by a matrix exponential of some skew-

symmetric matrix. In other words, the mapping exp : 𝑠𝑜(3) → 𝑆𝑂(3) is surjective

Let 𝑅 ∈ 𝑆𝑂(3), then there exist ω ∈ 𝑅3, ‖𝜔‖ = 1 and θ ∈ 𝑅 such that 𝑅 = 𝑒[𝜔]×𝜃

Proposition

This statement declares that the exponential map is surjective onto 𝑆𝑂(3).

[𝑒[𝜔]×𝜃]−1 = 𝑒−[𝜔]×𝜃 = 𝑒[𝜔]×
𝑇𝜃 = [𝑒[𝜔]×𝜃]𝑇

(A.23)

𝑒[𝜔]×𝜃 𝜖 𝑆𝑂(3)
(A.24)

𝑅 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] = 𝑒[𝜔]×𝜃 (A.25)

𝑒[𝜔]×𝜃 = 𝐼 + [𝜔]× sin(𝜃) + [𝜔]×
2
(1 − cos (𝜃))

(A.26)

147

𝑒[𝜔]×𝜃

= [

1 − (1 − cos(θ))(𝜔2
2+𝜔3

2) 𝜔1𝜔2(1 − cos(θ)) − 𝜔3 sin(𝜃) 𝜔1𝜔3(1 − cos(θ)) + 𝜔2 sin(𝜃)

𝜔1𝜔2(1 − cos(θ)) + 𝜔3 sin(𝜃) 1 − (1 − cos(θ))(𝜔1
2+𝜔3

2) 𝜔2𝜔3(1 − cos(θ)) − 𝜔1 sin(𝜃)

𝜔1𝜔3(1 − cos(θ)) − 𝜔2 sin(𝜃) 𝜔2𝜔3(1 − cos(θ)) + 𝜔1 sin(𝜃) 1 − (1 − cos(θ))(𝜔1
2+𝜔2

2)

]

= [

𝜔1
2(1 − cos(θ)) + cos(θ) 𝜔1𝜔2(1 − cos(θ)) − 𝜔3sin (𝜃) 𝜔1𝜔3(1 − cos(θ)) + 𝜔2sin (𝜃)

𝜔1𝜔2(1 − cos(θ)) + 𝜔3sin (𝜃) 𝜔2
2(1 − cos(θ)) + cos(θ) 𝜔2𝜔3(1 − cos(θ)) − 𝜔1sin (𝜃)

𝜔1𝜔3(1 − cos(θ)) − 𝜔2sin (𝜃) 𝜔2𝜔3(1 − cos(θ)) + 𝜔1sin (𝜃) 𝜔3
2(1 − cos(θ)) + cos(θ)

]

In order to verify that this equation has a solution, we use the property that trace of

𝑅 is equal to the sum of its eigenvalues. Since 𝑅 preserves lengths and det R = +1,

its eigenvalues have magnitude 1 and occur in complex conjugate pairs. Then,

𝜃 ∓ 2𝜋𝑛 or −𝜃 ∓ 2𝜋𝑛 could be chosen in order to avoid ambiguity. Equating the

off-diagonal terms, then we get

𝑡𝑟𝑎𝑐𝑒(𝑒[𝜔]×𝜃) = 𝑡𝑟𝑎𝑐𝑒(𝑅)

(A.27)

𝑟11 + 𝑟22 + 𝑟33 = 2 cos(𝜃) + 1
(A.28)

−1 ≤ 𝑡𝑟𝑎𝑐𝑒(𝑅) ≤ 3
(A.29)

𝜃 = cos−1
𝑡𝑟𝑎𝑐𝑒(𝑅) − 1

2

(A.30)

𝑟32 − 𝑟23 = 2𝜔1sin (𝜃)
(A.31)

 (A.32)

148

Choosing 𝜃 ≠ 0,

If 𝜃 + 2𝜋 is selected, the rotation axis would have been 𝜔 and the exponential map

is a many to one map from 𝑅3 onto 𝑆𝑂(3). For example, if 𝑅 = 𝐼, then 𝑡𝑟𝑎𝑐𝑒(𝑅)=3

, 𝜃 = 0 and 𝜔 is arbitrary. If 𝑅 ≠ 𝐼, the above construction shows that there are two

distinct 𝜔. This proves that the exponential map is surjective onto 𝑆𝑂(3).

Rigid body motion representation forms a Special Euclidean group 𝕊𝔼(𝟑), which is

also known as Lie group [49]. A Euclidean transformation in 3D consists of a

translation and rotation. There exist two main advantage of using Lie algebra for

describing the rigid body motion. They allow us to have global description without

suffering from singularities. Such type of singularities are unavoidable if Euler angle

is chosen to represent the rotation. The second advantage is that Lie algebra provides

a geometric description of rigid body motion which simplifies the analysis of

mechanism of rigid body motion.

C. Transformation Matrices in Robotic Representation

Special Euclidean 𝕊𝔼(3) group is defined as a noncommutative product of 3D

rotations and 3D translations. The commonly used approach is to use 4x4

transformation matrix 𝑇𝐴
𝐵 in order to transform a 3D point from one coordinate frame

𝑟21 − 𝑟12 = 2𝜔3sin (𝜃)

𝑟13 − 𝑟31 = 2𝜔2sin (𝜃)
(A.33)

𝜔 = [

𝜔1
𝜔2
𝜔3
] =

1

2sin (𝜃)
[

𝑟32 − 𝑟23
𝑟13 − 𝑟31
𝑟21 − 𝑟12

]

(A.34)

149

A to into another coordinate frame B. Special Euclidean group 𝕊𝔼(3) is formally

defined as follows:

where 𝑡 is a 3D translation vector and 𝑅 is rotation matrix that belongs to the Special

Orthogonal group 𝕊𝕆(3). We can write the full homogenous transformation matrix

𝑇𝐴
𝐵 from frame A to frame B and the respective inverse transformation 𝑇𝐵

𝐴 which

maps back from frame B to frame A, as

This matrix representation allows to easily transform a 3D point 𝑝𝐴 in frame A to the

respective 3D point 𝑝𝐵in coordinate frame B:

Consider the motion of a rigid body rotated about a line in the z direction, through

the point (0, p, 0). If we let 𝜃 denote the amount of rotation, then the new orientation

and the new coordinates for the origin become

𝕊𝔼(3) = { [
𝑅 𝑡
0 1

] |𝑅 ∈ 𝕊𝕆(3), 𝑡 ∈ 𝑅3 }
(A.35)

𝑇𝐵
𝐴 = [𝑇𝐴

𝐵]−1 = [𝑅𝐴
𝐵𝑇 −𝑅𝐴

𝐵𝑇𝑡𝐴
𝐵

0 1
]

(A.36)

𝑝𝐵 = 𝑅𝐴
𝐵𝑝𝐴 + 𝑡𝐴

𝐵
(A.37)

𝑅𝑧(𝜃) = [
cos (𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) cos (𝜃) 0
0 0 1

] (A.38)

150

The homogeneous representation of the configuration of the rigid body is given by

For this case, when the angle 𝜃 = 0, 𝑇𝐵
𝐴 gives that the relative displacement between

the two frames is a pure translation along the y-axis. In addition, successive

transformation can be written as,

The notion of the exponential mapping introduced for SO(3) can be generalized to

the Euclidean group, SE(3). If 𝜔 ∈ 𝑅3 be a unit vector which specifies the direction

of rotation and let 𝜃 ∈ 𝑅 be the angle of rotation in radians. If the link rotates with

unit velocity, then the velocity of the tip point p(t) can be written as

Where 𝑞 is a point on the axis of rotation. If this equation is converted to

homogeneous coordinates using 𝜁

𝑃𝑧(𝜃) = [
0
𝑝
0
] (A.39)

𝑇𝐵
𝐴 = [

cos (𝜃) −𝑠𝑖𝑛(𝜃)
𝑠𝑖𝑛(𝜃 cos (𝜃)

0 0
0 𝑝

0 0
0 0

1 0
0 1

]
(A.40)

𝑇𝐴
𝐶 = 𝑇𝐵

𝐶𝑇𝐴
𝐵

(A.41)

𝑝̇(𝑡) = 𝜔 × (𝑝(𝑡) − 𝑞)

(A.42)

𝜁 = [
[𝜔]× 𝑣
0 0

]
(A.43)

151

Equation 𝑝̇(𝑡) can then be rewritten as

The solution of the differential equation is

where 𝑝(0) is the initial position of the point and 𝑒𝜁𝑡 is the matrix exponential and

it can be written as

If prismatic joint with unit velocity 𝑣 is modeled, then the velocity of a point is

Then the solution of this equation is

where

The 4 × 4 matrix 𝜁 given in equations () and () represents the generalization of the

skew-symmetric matrix 𝜁 ∈ 𝑠𝑜(3) .

𝑣 = − 𝜔 × 𝑞 (A.44)

[
𝑝̇
0
] = [

[𝜔]× − 𝜔 × 𝑞
0 1

] [
𝑝
1
] = 𝜁 [

𝑝
1
]
𝑦𝑖𝑒𝑙𝑑𝑠
→ 𝑝̇ = 𝜁𝑝

(A.45)

𝑝(𝑡) = 𝑒𝜁𝑡 𝑝(0)

(A.46)

𝑒𝜁𝑡 = 𝐼 + 𝜁𝑡 +
(𝜁𝑡)2

2!
+
(𝜁𝑡)3

3!
+ ⋯

(A.47)

𝑝̇(𝑡) = 𝑣
(A.48)

𝑝(𝑡) = 𝑒𝜁𝑡 𝑝(0) (A.49)

𝜁 = [
0 𝑣
0 0

]

(A.50)

152

If 𝜔 = 0, then the homogeneous coordinates 𝜁 becomes

Then, it is easy to show that

So that,

Therefore,

This equation show that 𝑒𝜁𝜃 ∈ 𝑆𝐸(3)

If 𝜔 ≠ 0 and ‖𝜔‖ = 1 , let us use a rigid transformation in the form of

Using the calculation of Lemma 1, we get

𝜁 = [
[𝜔]× 𝑣
0 0

] = [
0 𝑣
0 0

]

(A.51)

𝜁2 = 𝜁3 = ⋯ = 0
(A.52)

𝑒𝜁𝜃 = 𝐼 + 𝜁𝜃
(A.53)

𝑒𝜁𝜃 = [
𝐼 𝑣𝜃
0 𝐼

] 𝑖𝑓 𝜔 = 0

(A.54)

ℎ = [
𝐼 𝜔 × 𝑣
0 𝐼

]

(A.55)

ℎ−1𝜁ℎ = [
𝐼 −𝜔 × 𝑣
0 𝐼

] [
[𝜔]× 𝑣
0 0

] [
𝐼 𝜔 × 𝑣
0 𝐼

]

(A.56)

ℎ−1𝜁ℎ = [
[𝜔]× 𝜔𝜔𝑇𝑣
0 0

] (A.57)

153

Now, we can use the identity and cross product operator

which is an element of SE(3).

Finally, The Lie algebra of SE(3) is given by

The exponential map of 𝕊𝔼(3), 𝕤𝕖(3) → 𝕊𝔼(3)), is given by

where

and 𝑒𝜔is given by the Rodriguez’ formula,

𝑒𝜁̂𝜃 = 𝑒ℎ(𝜁̂𝜃)ℎ
−1
= ℎ𝑒(𝜁̂𝜃)ℎ−1 and [𝜔]× 𝜔 = 𝜔 × 𝜔 = 0

(A.58)

𝑒𝜁𝜃 = [𝑒
𝜔𝜃 (𝐼 − 𝑒[𝜔]×𝜃)(𝜔 × 𝑣) + 𝜔𝜔𝑇𝑣 𝜃

0 1
]

(A.59)

𝑠𝑒(3) = { [
𝜔 𝑣
0 0

] |𝜔 ∈ 𝑠𝑜(3), 𝑣 ∈ 𝑅3 } and 𝜔 = [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] (A.60)

𝑒
([
𝜔 𝑣
0 0

])
= ([

𝑒𝜔 𝐴𝑣
0 1

]) (A.61)

𝐴 = 𝐼 +
1 − 𝑐𝑜𝑠‖𝜔‖

‖𝜔‖2
𝜔 +

𝜔 − 𝑠𝑖𝑛‖𝜔‖

‖𝜔‖3
𝜔2 (A.62)

exp(𝜔) = 𝐼 +
𝑠𝑖𝑛‖𝜔‖

‖𝜔‖
𝑤 +

1 − 𝑐𝑜𝑠‖𝜔‖

‖𝜔‖2
𝜔2 (A.63)

154

Lie Group algebra is an minimal representation for 3D transformations and is highly

suitable for numerical optimization because it uses 6 parameters so-called twist

coordinates 𝜉 ∈ 𝑅6 for 6 DOF (3 rotation and 3 translation)

where 𝑣𝑇 = [1 2 3]𝑇 denotes the linear velocity and 𝑇 = [1 2 3]𝑇

encodes the angular velocity. Using the cross product operator [.]X ; the twist can be

represented as

The logarithm and the exponential map transform elements from a Lie group to its

associated Lie algebra using a transformation matrix 𝑇 ∈ SE(3), and its twist  ∈

se(3) as

Small motions with  ≈ 0 , exponential map can be approximated as T ≈ I + ̂ .

Closed form solution can be calculated using Rodriguez’ formula. The logarithm

map for obtaining the twist  = [𝑣𝑇 ,𝑇]𝑇 has the following closed form

representation:

 = [1 2 3 1 2 3]𝑇 ∈ 𝑅6 (A.64)

̂ = [
[𝜔]× 

0 0
] = [

0 −3
3 0

2 1
−1 2

−2 1
0 0

0 3
0 0

]

(A.65)

𝑇 = exp() ∶ 𝑠𝑒(3) → 𝑆𝐸(3) (A.66)

 = log(T) ∶ 𝑆𝐸(3) → 𝑠𝑒(3) (A.67)

𝜃 = ‖‖ = acos (
𝑡𝑟(𝑅) − 1

2
) (A.68)

log(𝑅) =
𝜃

2𝑠𝑖𝑛𝜃
(𝑅 − 𝑅𝑇) (A.69)

155

where the vee operator (.)∨, is the inverse of the cross product, which extracts the

3D vector from a skew symmetric matrix.

 = log(𝑅)∨ (A.70)

𝑣 =

(

𝐼 −
1

2
[𝜔]× +

1 −
𝜃cos (

𝜃
2)

2sin (
𝜃
2
)

𝜃2
[𝜔]×

2

)

𝑡 (A.71)

157

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Hastürk, Özgür

Nationality: Turkish (TC)

Date and Place of Birth: 18 March 1986, Ankara

Marital Status: Married

Phone: +90 530 067 77 47

email: ozgurhasturk@gmail.com

EDUCATION

Degree Institution Year of

Graduation

MS METU Electrical and Electronics

Enginering

2011

BS METU Mechanical Engineering 2008

WORK EXPERIENCE

Year Place Enrollment

2008-Present ROKETSAN System Algorithms

Design Engineer

2007 July ROKETSAN Intern Eng. Student

2007 August ASELSAN Intern Eng. Student

FOREIGN LANGUAGES

Advanced English, Intermediate German

PUBLICATIONS

1. Hastürk Ö., "Applications of slider chain inversion in control actuation

systems," 2016 IEEE International Conference on Advanced Intelligent

Mechatronics (AIM), 2016, pp. 1579-1584, doi:

10.1109/AIM.2016.7576995.

2. A. Aydogan and O. Hasturk, "Adaptive LQR stabilization control of reaction

wheel for satellite systems," 2016 14th International Conference on Control,

Automation, Robotics and Vision (ICARCV), 2016, pp. 1-6, doi:

10.1109/ICARCV.2016.7838849.

158

3. Aydogan A., Hasturk O. and Rogers E. (2018) Dynamic modeling and

computed torque control ol flexure jointed TVC systems. Proceedings of the

ASME Dynamic Systems and Control Conference, vol. 3, Atlanta, USA.

4. A. Aydogan, O. Hasturk, E. Rogers, Robust H∞ Computed Torque Control

of Flexible Joint TVC Systems, IFAC-PapersOnLine, Volume 52, Issue 12

2019, Pages 454-459, https://doi.org/10.1016/j.ifacol.2019.11.285.

5. Hastürk Ö, Erkmen, A.M., DUDMap: 3D RGB-D mapping for dense,

unstructured, and dynamic environment. International Journal of Advanced

Robotic Systems. May 2021. doi:10.1177/17298814211016178

6. Hastürk Ö., "A novel electromechanical actuator for missile jet vane thrust

control," 2015 IEEE International Conference on Advanced Intelligent

Mechatronics (AIM), 2015, pp. 1298-1302, doi:

10.1109/AIM.2015.7222718.

7. Hastürk, Ö.; Erkmen, A.M.; Erkmen, I. ; Proxy-Based Sliding Mode

Stabilization of a Two-Axis Gimbaled Platform. In Proceedings of the World

Congress on Engineering and Computer Science, San Francisco, CA, USA,

19–21 October 2011.

https://doi.org/10.1016/j.ifacol.2019.11.285

