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SLAM problem has been extensively studied by researchers in the field of robotics, 

however, conventional approaches in mapping assume a static environment. The 

static assumption is valid only in a small region; it limits the application of visual 

SLAM in dynamic environments. Recently proposed state of art SLAM solutions for 

dynamic environment use different semantic segmentation methods such as Mask R-

CNN and SegNet; however, these frameworks are based on a sparse mapping 

framework (ORBSLAM). In addition, segmentation process increases the 

computational power, which makes these SLAM algorithms unsuitable for real-time 

mapping. Therefore, there is no effective dense RGB-D SLAM method for real-

world unstructured and dynamic environments. In this study, we propose a novel 

real-time dense SLAM method for dynamic environments where 3D reconstruction 

error is manipulated for identification of static and dynamic classes having 

generalized Gaussian distribution. Our proposed approach requires neither explicit 

object tracking nor object classifier, which makes it robust to any type of moving 

object and suitable for real-time mapping. Our method eliminates the repeated views 

and uses consistent data that enhance the performance of volumetric fusion. For 

completeness, we compare our proposed method using different type of high 

dynamic dataset, which are publicly available, in order to demonstrate the versatility 
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and robustness of our approach. Experiments shows that tracking performance of our 

proposed method better than other dense and dynamic SLAM approaches. 
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SLAM (Eşzamanlı Yer Belirleme ve Haritalandırma) problemi robotik alanında 

araştırmacılar tarafından sıklıkla çalışılan bir konu olmasına rağmen haritalama 

alanındaki geleneksel yaklaşımlar bulunulan ortamın durgun bir ortam olduğunu 

varsaymaktadır. Durgun ortam varsayımı sadece küçük alanlar için geçerli olmakta 

ve görsel SLAM’ın dinamik ortamdaki uygulamalarını sınırlandırmaktadır. Son 

zamanlarda dinamik ortamlar için önerilen son teknoloji SLAM çözümleri, Mask R-

CNN ve SegNet gibi farklı anlamsal bölümleme metotları kullanmaktadır ancak bu 

yazılımlar seyrek haritalama yazılım çerçevelerine (ORBSLAM) dayanmaktadır. Ek 

olarak bölümleme süreci hesaplama gücünü arttırmakta ve bu durum SLAM 

algoritmalarını gerçek zamanlı haritalama için elverişsiz kılmaktadır. Bu nedenle 

gerçek dünyanın yapılandırılmamış ve dinamik ortamı için geçerli yoğunlukta RGB-

D SLAM metodu bulunmamaktadır. Bu çalışmada; üç boyutlu (3D) yeniden 

yapılandırma hatalarının, genelleştirilmiş Gauss dağılımı kullanılarak statik ve 

dinamik sınıfların tanımlanabilmesi amacıyla manipüle edilmesi ve bu şekilde 

dinamik ortamlar için yeni bir gerçek zamanlı yoğun SLAM metodu oluşturulması 

amaçlanmıştır. Hedeflenen bu yaklaşımın belirgin obje takibi ve obje sınıflandırıcıya 

gerek duymaması, bu yaklaşımı herhangi bir hareketli objeye dayanıklı ve gerçek 

zamanlı haritalandırmaya uygun hale getirmektedir. Bu metot tekrarlanan 
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görünümleri elemekte ve hacimsel füzyon performansını geliştiren tutarlı verileri 

kullanmaktadır. Tezin son kısmında; oluşturulan yaklaşımın çok yönlülüğü ve 

dayanıklılığının ispatlanması adına, literatürden elde edilen farklı tipte yüksek 

dinamik veri setleri ile hedeflenen metot karşılaştırılmıştır. Yapılan karşılaştırmalar 

hedeflenen metodun izleme performansının diğer yoğun ve dinamik SLAM 

yaklaşımlarına nazaran daha iyi olduğunu göstermiştir. 

 

Keywords: Dinamik Haritalama; Görsel Eşzamanlı Yer Belirleme ve 

Haritalandırma; Konumlama; 3 Boyutlu Yeniden  İnşa
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CHAPTER 1  

1 INTRODUCTION  

1.1 Statement of the Problem 

Simultaneous Localization and Mapping (SLAM) is known as estimating the pose 

of a robot and the map of the scene synchronously by using noisy sensor 

measurements obtained from partially known environments and noisy distance 

sensors. In other words in SLAM, agents try to find a solution simultaneously to the 

questions of “What does the scene resemble?”, and “Where am I in the scene?” by 

using noisy range sensors. 

 

In many SLAM approaches, it is required for an agent to run autonomously for a 

long time, travelling long contoured distance away from its starting position. 

Furthermore, some applications require 3D mapping such as underwater exploration 

applications, where, the agent should collect the 3D data of ocean-floors, which is 

an example of large 3D environment to be mapped while localizing the event. 

Moreover, an accurate 3D reconstruction or exploration could be highly beneficial 

and critical such as in urban planning of large cities with high-rises. 

 

Underwater explorations are example of SLAM requiring a robot to run 

autonomously for a long time challenged by drag currents and obstacles. In addition, 

SLAM application in city exploration requires construction of an accurate 3D map 

of the entire city, crowding with close high-rises of different heights and cross 

sectional architects. In the literature, there are several papers for SLAM approaches 

to large unstructured environment; however, they are usually tested on standard 

datasets, which can be classified as structured environments. In addition, static 

environment assumption generally used in researches which become invalid with 

failing algorithms for unstructured dynamic environments such as undersea flooring. 



 

 

2 

For example, in [58][59], a stereo camera is used to extract a dense 3D mesh of the 

world and scale-invariant features are used to estimate the motion of the camera. 

This algorithm seems to work well in unstructured 6-DOF environment, however 

SIFT features should be validated in the environment in order to for achieving high 

efficiency of the algorithm. This technique does not utilize a dense data in the 

registration process therefore; error can be accumulated leading to loop closing 

errors while estimating the pose. Loop closure is a critical must for the localization 

of the agent that generally revisits previous location during exploration and mapping. 

 

Application of SLAM algorithm in real life such as underwater explorations should 

address the problem of dynamic environments because the robot which operate 

encounter a non-static world while navigating. The environment is changing, objects 

are moving. Moving object causes confusion on most algorithms because of static 

world assumptions. Dynamic objects causes either degradation of the registration 

accuracy or lead to elongated object in the resulting map generating mapping ghosts. 

SLAM in highly dynamic environments have not been addressed fully in the 

literature. In short, it is not possible to find a fully encompassing framework that 

solves SLAM in the presence of dynamic elements in environments.  

 

SLAM algorithms uses the sensor data in order to produce a consistent map of the 

environment. However, some difficulties arise in associating sensor data with map 

elements because of noise, sparse data and imprecision.  If the sensor is not noise-

free and precise, probability of generating incorrect map increases: sensors such as 

laser scanner produce ordered data set with minimum level clutter, while, vision 

sensors produces cluttered huge amount of data, which results in incorrect 

association. In addition, vision sensors have a limited resolution therefore; precision 

loss must be taken into more account, because sparse data limit point-matching 

process because of low level feature.  
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1.2 Objective and Goals of the Study 

Simultaneous Localization and Mapping is to produce a consistent map of 

environment and to estimate the pose in the map by using noisy range sensor 

measurements. SLAM has been widely studied subject by researchers in the field of 

robotics. After the appearance of Kinect, there are many solutions, which fuse the 

color image and depth map. Visual SLAM produce a sparse solution by relying on 

points matching, whereas; direct methods can produce a dense reconstruction by 

minimization of the photometric error. However, none of the above methods 

addresses the problem of dynamic objects in the environment.  

 

Conventional approaches in mapping assume static environment. Although static 

assumptions may be valid in a small region, change is inevitable when dynamic 

elements exist or large-scale mapping is necessary. By classifying dynamic content 

as outliers, a small fraction can be managed. However, SLAM problem in highly 

dynamic scenes is still not solved completely because there is no suggested 

framework found in the literature.  

 

Another biggest difficulty in robot navigation is unstructured environments. In 

unstructured environments, it is not east to find discrete geometries because of noisy 

edge or plane. Significant research has been carried out for unstructured 

environments especially in the field of autonomous navigation, and a number of 

effective approaches have been developed using laser range finder. However, there 

is no effective RGB-D SLAM method for real-world unstructured and dynamic 

environments. 

 

In real life, SLAM frameworks should address the problem of dynamic scene without 

consuming lots of computational power. Employing semantic segmentation or object 

classifier are time consuming, therefore, we avoid from using such techniques. 

Therefore, our aim is to develop a SLAM algorithm which  
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• can generate the dense model / mesh of environment 

• can handle high dynamics in environment, 

• is robust to dynamic element without requiring any type of object tracking, 

• does not need any classifier or semantic information, 

• is real-time operation compatible, 

• does not require sophisticated sensor. 

 

Considering these practical constraint, we propose a RGB-D based SLAM method 

because RGB-D cameras are specific type of sensors which can augment the image 

with depth information and this type of sensor has been extensively used in computer 

vision and computer graphics problems because of its low cost.  

 

In this study, we propose DUDMap: Dense, Unstructured and Dynamic Mapping. 

Our approach requires neither explicit object tracking nor object classifier in contrast 

to recent approaches discussed in [22] and [28], which makes it robust to any type 

of moving object. Furthermore, we assume a dynamic environment consisting of 

static and dynamic classes having generalized Gaussian distribution in order to detect 

dynamics.  

1.3 Methodology 

In order to have a dense map, we reconstruct scene geometry using Signed Distance 

Function (SDF) instead of surfels because SDF allows us to create a dense final mesh 

easily. Moreover, such representation is useful in robotic applications because it 

defines the distance to surface. 

 

The main contribution of this thesis is a novel and an effective SDF based SLAM 

algorithm that is resistant to dynamics. In addition; 
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• We directly use the SDF values for pose estimation where objective function 

is based on probabilistic camera model. 

• We identify the dynamics by using image registration residual combining 

with Gaussian Mixture Model (GMM).  

• We eliminate repeated views and use only consistent data for decreasing the 

required computational power. 

• The number of dynamic objects does not limit our approach because we do 

not employ any type of moving object detection and tracking. 

• Our method generates a final intense 3D mesh without using semantic 

information or object classifier. 

1.4 Evaluations of the Approach 

Our proposed method is able to operate in dynamic environments without requiring 

any dynamic object detection and tracking. Our experiments support our main 

claims, which are:  

 

• Robustness to dynamic elements regardless of their quantity and speed of 

change in the environment, 

• That the approach requires no explicit object tracking, and no object 

classifier  

• That  the approach generates a consistent a dense model of the environment.  

 

We compare our method with other state of art  systems using TUM dataset [1], 

together with other high dynamic dataset including Bonn, VolumeDeform [30], 

CVSSP RGB-D dataset [34] (used with permission), which are publicly available, 

showing the superior performance of our approach.  

 

TUM repository has a large dataset consisting of RGB-D data and corresponding 

ground-truth data and it is a commonly used evaluation method for benchmarking of 
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visual odometry and visual SLAM systems. Bonn RGB-D dataset has highly 

dynamic sequence with different scenario such as crowded scene, people tracking 

and obstructing box.  Moreover, this dataset is also compatible for TUM RGB-D 

dataset. VolumeDeform dataset aims to reconstruct of dynamic object whose RGB-

D data are obtained by using handheld consumer grade RGB-D sensor. It is generally 

used for evaluation of non-rigid 3D reconstruction.    

 

In order to evaluate the outdoor performance of our method, we use commercially 

available ZED camera for map generation and dynamic filtering. Experiments 

illustrates that our method produce consistent result both in indoor and outdoor 

applications. These are demonstrations of real world unstructured dynamic 

environments of our approach. 

1.5 Outline of the Thesis 

The rest of this thesis is organized as follows.  

 

Chapter 2 reviews state-of the-art visual SLAM methods that attack the problem of 

dynamic environments.  

 

Chapter 3 gives the mathematical preliminaries, RGB-D sensors. 

 

Chapter 4 is devoted to the overall methodological structure of our system, by giving 

details about proposed approaches for local key frame extraction, dynamic removal, 

3D map representation and 3D volume visualization. 

 

Chapter 5 focuses on  experiments conducted and provides evaluation results 

comparing our method against other state-of-the-art methods. 
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Chapter 6  presents the evaluation results that analyze the sensitivity of the method 

to parameter changes whereas Chapter 7 provides concluding remarks and future 

works.  
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9 

CHAPTER 2  

2 LITERATURE REVIEW 

State of art SLAM methods use probabilistic approaches by taking into account 

uncertainty information in sensor data. Common representation are classified as grid, 

raw data and feature based methods [60].  

 

Grid based techniques represent the environments with grids representing the 

probability of being occupied or not occupied, during robot navigation. For example, 

Burgard and Thrun [61] propose a grid based mapping method with an agent with 

one degree of freedom sonar scanner for constructing 2D grid maps of indoor 

environments. In order to localize the agent itself in a large environment, it must use 

complex cross correlation search algorithms, which usually generate more than one 

location as ghost presence. In addition, using maximum likelihood search algorithm 

can converge to false local optima. These two problems can be solved by using a 

particle-based localization in the map. In addition to this approach, a multi-agent grid 

based SLAM implementation is proposed in [94] and mapping of an indoor 

environment with six mobile robots is presented in this work. The most important 

flaws of grid-based mapping SLAM is cycle detection when revisiting a previously 

present location or loop closing. For a large cycle, the minimal search-space may 

become huge for real-time cross-correlation, which needs high computational time 

on the other hand; using a tight search space may lead the agent to fail detecting the 

cycles or miss loop closure. Furthermore, given a large search space for scan 

matching, the possibility of multiple correlation modes is high [95]. 

 

Raw data or featureless techniques can be applied to outdoor environments where 

feature extraction is a difficult task. Iterative closest point (ICP) algorithm, 

commonly use featureless registration approaches, as introduced in [62].  ICP 
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algorithm is used extensively in 3D object reconstruction. This algorithm takes two 

input 3D scans and tries to build a transformation matrix iteratively by minimizing 

the distance between two scans. Data association is the problem of associating 

observations from sensors to a particular area of the map being estimated within the 

SLAM algorithm. 

 

A common way of matching multiple sets of 3D points is the iterative closest point 

algorithm. In ICP, the main assumption is overlapping point sets. The distance 

between the measurement and model are minimized in a least square sense by 

determining the best homogenous transformation. The found solution for rotation 

and translation are considered as transformation between two point clouds. 

 

 In ICP algorithm, it is assumed that the point sets are overlapping. The distance 

between closest points are minimized by determining the “best” (in least squares 

sense) rotation matrix and translation vector. The final transformation are considered 

to be the registration transformation between the two point clouds that align them 

properly. ICP handles the data association problem by finding the corresponding 

points in raw data, however, it is relatively slow because of its iterative nature [63]. 

 

Feature based methods represent the environment by abstract geometric features, 

therefore such methods require a data processing algorithm for extracting those 

features and associating features with landmarks in the map of the environment [60]. 

The pioneering work for feature based method, proposed by Smith and Cheeseman 

[64] employs an Extended Kalman Filter (EKF) based SLAM method for estimating 

the posterior distribution over robot position along with the positions of landmarks 

in a disaster environment.  An initial work establishes the fact that there is a statistical 

relationship between each predetermined landmark location and the observation. 

EKF linearizes the nonlinear model and applies the conventional KF in order to 

generate an estimated state instead of working with the real state. EKF is used 

considerably for the solution of SLAM problems in the literature [65][66]. However, 
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EKF fails to guarantee convergence because of propagating mean and covariance 

due to the linear approximations of the nonlinear transformation [67]. Moreover, 

feature extraction may not be possible for initially unknown and complex 

environments. Hence, in these environments and under nonlinearities, EKF based 

SLAM solutions may not be feasible. 

 

Feature based approach takes advantage of reducing the search space, which removes 

the necessity of finding for corresponding pairs. This leads to irrelevant points not 

affecting the 3D registration process. In addition, feature based techniques do not 

need a good initial estimate or alignment of the scans. However, these methods suffer 

from a high computational complexity. 

2.1 Visual SLAM 

Parallel Tracking and Mapping (PTAM) is the first visual SLAM approach capable 

of handling thousands of 3D points in real-time [68]. This approach extracts features 

from images using a corner detection algorithm and then matching these features in 

different frames to obtain 3D positions. It also proposes a method to efficiently 

generate and store a 3D map by saving important frames into memory. However, 

this method focuses on accurate and fast mapping in small environments; therefore, 

it is not sufficient to manage large-scale maps.  

 

Following PTAM, there are several methods similar to PTAM, which use structure 

from motion method. Structure from motion (SfM) is the process of estimating the 

3-D structure of a scene from a set of 2-D images based on fundamental matrix, 

which is the relation of two images from different views.  In [69], an algorithm is 

proposed which splits mapping and tracking in order to detect loop closures and 

handle large maps. In addition to SfM methods, ORB-SLAM [3] is proposed by 

using ORB descriptor instead of FAST feature in order to improve the accuracy of 

the existing PTAM scheme. Although ORB descriptor, which is utilized in ORB-

SLAM2, may outperformed by other existing features it was found to be not as robust 
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as expected. There exists always inevitable erroneous correspondences of features. 

Besides, the location of features are not exact due to discretization artifact. These are 

important reasons for ORB-SLAM’s randomness and less accurate estimate. 

Therefore, these methods suffer from scaling drift over time.  

 

Furthermore, other types of visual SLAM methods are based on stereo and RGB-D 

cameras or with visual-inertial odometry are proposed. 

 

maplab [70] and VINS-Mono [71] have recently been introduced as inertial aided 

SLAM system. These are graph-based SLAM systems that use an IMU and a camera. 

They can generate visual maps for localization. maplab records the data during an 

open loop phase using only visual-inertial odometry, then loop closure detection, 

graph optimization and dense map reconstruction are all done offline. 

 

All method mentioned above assume that either the camera is never obstructed or 

images have enough visual features to allow tracking. In real life these assumption 

cannot be satisfied: For example, the camera of an autonomous robot can be fully 

obstructed from people passing by or it can encounter a surface without visual 

features during motion. The following visual SLAM approaches are designed to be 

more robust for these cases; however, they still cannot solve the dynamic 

environment problem: 

 

• MCPTAM [79] uses multiple cameras in order to increase the field of view 

of the system. If the visual feature can be tracked at least by one camera, then 

this proposed system can perform position tracking. 

 

• RGBDSLAMv2 [80] uses an external odometry as motion estimation. In 

addition, in order to have a more robust odometry, built-in ROS packages 

like robot localization [81] can then be augmented for sensor fusion with an 

extended Kalman filter operating on multiple odometry sources. 
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RGBDSLAMv2  generates a 3D occupancy grid map (OctoMap [82]) and a 

dense point cloud of the environment. 

 

• RTAB-Map, Real-Time Appearance-Based Mapping [83][84], has been 

introduced in order to limit the operation time during loop closure detection. 

In addition, it has a memory management module making it suitable for 

larger scale environment. Since this method can detect the loop closure 

within a fixed time limit, it is capable of online mapping for a longer period 

of runtime.   

 

ORB-SLAM2 [3] (latest version ORB-SLAM3 [37]), S-PTAM [4] and RTAB-Map 

[5] are best state of art feature based visual SLAM approaches working in static 

environments. In order to increase the performance of such feature-based method in 

dynamic environment, dynamic objects are considered generally as spurious data, 

and are removed as outliers using RANdom SAmple Consensus (RANSAC) and 

robust cost function. More recently, ProSLAM [73] has been released to provide a 

comprehensive open source package using well know visual SLAM techniques. In 

generated graph, the nodes store odometry information for each map place. They 

also contain the RGB images, depth information and visual words.  In generated 

graph, the edge stores the rigid 3D transformation between nodes. For detection of 

previously visited places, “bag of words” method is applied. The “bag-of words” 

method represents each image by visual words taken from a vocabulary which can 

be constructed either offline by using a training dataset or online and local feature 

descriptors are used for forming the visual words. For ORB-SLAM2 and S-PTAM, 

when a loop closure is detected using a special bag of words method introduced in 

DBoW2 [74] and generated map is optimized using bundle adjustment. Bundle 

adjustment describes the sum of errors between the measured pixel coordinates and 

the re-projected pixel coordinates. A separate thread runs for graph optimization after 

loop closure. In this way, it is aimed to have a higher camera tracking frame rate 

performance. ProSLAM detects the loop closures by direct comparison of 



 

 

14 

descriptors in the map. It does not use the bag-of-words approach. For all these 

approaches, the time for loop closure and graph optimization increases as the map 

grows, which can make loop closure correction realized with a significant delay 

following the detection. In addition, these approaches maintain a sparse feature map 

because of the bundle adjustment. The sparse feature map is not visually informative 

and cannot directly be used for tasks such as collision-free motion planning; 

however, sparse SLAM is often fused with other dense methods to improve 

robustness, which needs more computational power.  

 

On the other hand, targeted attempts are still being made to increase performance in 

dynamic scenes. For instance, DVO-SLAM [6] use photometric and depth errors 

instead of visual features. The joint visual odometry scene flow (VO-SF) [7] 

proposes an efficient solution to estimate camera motion. However, odometry-based 

methods  either cannot recover from inaccurate image registration or lacks loop 

closure detection approach independent of pose estimate. In addition, RGBiD-

SLAM [76], does not prefer local visual features to estimate motion, it uses 

photometric and depth errors over all pixels of the RGB-D images. This method 

performs the integration of the tracked frames into key frames, which helps to 

achieve a greater accuracy in the computation of relative camera transformation 

during loop closure. However, mean computational cost of the processes involved in 

the back-end pipeline (segmentation, tracking, loop detection and graph 

optimization) is above 600 milliseconds which is not suitable for real time operation. 

 

SDFs have long been studied in order to represent the 3D volumes in computer 

graphics [24][31][32]. Newcombe et al. [24] proposed the SDF based RGB-D 

mapping by generating precise maps in static environments. ElasticFusion (EF) [9] 

is another method based on SDF, which can work in small scenarios. CoFusion [12] 

(CF) is a contemporary method for reconstructing several moving objects however 

it works with slow camera motions only and its performance deteriorates 

significantly with increasing camera speed. StaticFusion (SF) [13] simultaneously 
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estimates the camera motion together with dynamic segmentation of image. 

However, it works only sequences without having high dynamics at the beginning. 

Furthermore, Kintinuous [77] and BundleFusion [78] uses truncated signed distance 

field (TSDF) volume for RGB-D cameras. They are capable of  reconstruct the 

environment online with very appealing surfel-based maps, however, they require 

any type of recently introduced powerful Nvidia GPU and this is not a low-cost 

solution for dynamic SLAM. For BundleFusion, global dense optimization time on 

loop closure detection increases according to the size of the environment. Palazzolo 

[14] proposes Refusion (RF) where dynamics detection is done by using the residuals 

obtained from the registration on signed distance function. This approach can create 

a consistent mesh of the environment however highly dynamical change deteriorate 

mapping performance.  

 

Some methods use consistency of motion to confirm tracked points where dynamic 

objects are segmented generally as spurious data since they conflict with the motion 

consistency of background over consecutive frames. For instance, Wang and Huang 

[15] segment dynamic objects using RGB optical flow. Nevertheless, the algorithm 

is still not robust enough for TUM high dynamic scenarios. Kim et al. [16] propose 

to use difference between depth images in order to eliminate the dynamics in the 

scene. However, this algorithm requires an optimized background estimator suitable 

for parallel processing. Azartash [17] uses the image segmentation for discriminating 

the moving region from the static background. Experimental results show that the 

accuracy remains almost same in low dynamic scenarios but in high dynamic 

accuracy deteriorates. Tan [18] uses an adaptive RANSAC for removing outliers. 

This method can work in dynamic situations with limited number of slowly moving 

object. 

 

Other methods use classifiers to identify the dynamic objects. Kitt [19] combines the 

motion estimation with object detection; however, this method requires a classifier, 

which make this method inapplicable to online explorations. Bescos [20] proposes 
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DynaSLAM, which combines a prior learning by Mask R-CNN [38] and Multi-View 

Geometry to segment dynamic content. Multi-view geometry consists of region 

growth algorithm, which makes unsuitable for real-time operation even running on 

NVIDIA Titan GPU. Mask Fusion [36] also uses Mask R-CNN for semantic 

segmentation. DS SLAM [21], RDS-SLAM [39], Semantic SLAM [40] are other 

semantic based algorithms which use the SegNet [23]. Pose Fusion [41], 

implemented on Elastic Fusion, uses Open Pose CNN [42] for human pose detection, 

which limits this method in the non-human dynamic object scenes. Flow Fusion [43] 

uses optical flow residuals with PWC-Net [44] for dynamic and static human objects.  

However, such approaches are relying heavily on prior training methods. Therefore, 

if unlearned dynamic occur in camera view, estimation results are bigger. 

Furthermore, learning based semantic information is time- consuming with heavy 

computational burden.  

 

In our work, we reconstruct our scene geometry using Signed Distance Function 

(SDF) instead of surfels in contrast to ElasticFusion and StaticFusion and therefore 

we can directly generate the mesh of the environment using such representation 

without using object tracking and object classifier. Moreover, number of dynamic 

objects or their speeds do not limit our approach. 
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CHAPTER 3  

3 PRELIMINARIES 

In order to localize the sensor and to generate consistent mesh of the environment, 

we propose a Simultaneous Localization and Mapping method. In SLAM system, 

pose estimation problem is usually formulated as nonlinear optimization or nonlinear 

least square problem where sum of squared errors are minimized. Therefore, in this 

section, we try to provide an overview of nonlinear least square optimization with 

commonly used methods.  

 

3.1 Non-Linear Least-Squares (NLS) Optimization 

For a given vector function 𝑓: 𝑅𝑚 → 𝑅𝑛 with ≥ 𝑚 , the objective is to minimize 

‖𝑓(𝑥)‖. In particular, our aim is to find  

 

 

where 

 

 

 

𝑛 residuals are defined using the vector function as 𝑓𝑖(𝑥) ∶  𝑅
𝑚 → 𝑅 and the residuals 

are usually non-linear and non-convex functions.  

 

The general form of iterations in order to solve this optimization problem is in the 

form of  

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒙𝐹(𝑥) (3.1) 

𝐹(𝑥) =∑(𝑓𝑖(𝑥))
2

𝑚

𝑖=1

=
1

2
‖𝑓(𝑥)‖2 =

1

2
𝑓(𝑥)𝑇𝑓(𝑥) (3.2) 

𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑘𝑑𝑘 

 

(3.3) 
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𝑥𝑘 and 𝑥𝑘+1 are current iteration  and next iteration. 𝑎𝑘 is the step size at iteration 𝑘 

and 𝑑𝑘 is the direction to move along at iteration, which is a descent approach. 

3.1.1 Descent Methods 

 

Definition: (Descent direction) For a given 𝑥 ∈ 𝑅𝑛, a direction 𝑑 ∈ 𝑅𝑛 is called a 

descent direction if ∃ 𝑎 > 0 such that  

 

 

Let 𝑓(𝑥 + 𝑎𝑑) = 𝑔(𝑎), then using Taylor’s expansion  

 

 

 

Since lim
𝑎→0

|𝑂(𝑎)|

𝑎
= 0, ∃ 𝑎 > 0, 

|𝑂(𝑎)|

𝑎
< |∇𝑓(𝑥)𝑇𝑑| , then  𝑓(𝑥 + 𝑎𝑑) − 𝑓(𝑥)  < 0.  

 

Hence, 𝑑 is a descent direction. 

 

 

For a given 𝑥 ∈ 𝑅𝑛, let 𝑔(𝑎) = 𝑓(𝑥 + 𝑎
𝑑

‖𝑑‖
), the rate of change of 𝑓 is  

 

 

By the Cauchy-Schwarz inequality 

Therefore, the direction with the maximum rate of decrease is along -∇𝑓(𝑥). 
 

𝑓(𝑥 + 𝑎𝑑) < 𝑓(𝑥). 
 

(3.4) 

𝑔(𝑎) = 𝑔(0) + 𝑔′(0)𝑎 + 𝑂(𝑎) 
 

(3.5) 

  

𝑓(𝑥 + 𝑎𝑑) = 𝑓(𝑥) + 𝑎∇𝑓(𝑥)𝑇𝑑 + 𝑂(𝑎) 
 

(3.6) 

𝑔′ =
≺ ∇𝑓(𝑥), 𝑑 ≻

‖𝑑‖
 

 

(3.7) 

−
1

‖𝑑‖
. ‖∇𝑓(𝑥)‖. ‖𝑑‖ ≤

≺ ∇𝑓(𝑥), 𝑑 ≻

‖𝑑‖
≤

1

‖𝑑‖
. ‖∇𝑓(𝑥)‖. ‖𝑑‖ 

 

(3.8) 
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Let us go back to general form of our iterative algorithm with 𝑑 = −∇𝑓(𝑥), then 

we get 

 

 

If {𝑥𝑘} is the sequence generated by the descent algorithm, then,  

 

 

Let 𝑔𝑘(𝑎) = 𝑓(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘)), 𝑎𝑘 minimizes this function if and only if 

 

However, using chain rule, 

 

Therefore, 

This equation implies that  𝑥𝑘+2 − 𝑥𝑘+1 is orthogonal to 𝑥𝑘+1 − 𝑥𝑘. Observe that the 

method of steepest descent moves in orthogonal steps.  

Let 𝐴 ∈ 𝑅𝑛𝑥𝑛 be symmetric matrix with real entries and let 𝑥 ∈ 𝑅𝑛𝑥1 (column 

vector),  

 

𝑥𝑘+1 = 𝑥𝑘 − 𝑎𝑘∇𝑓(𝑥𝑘) (3.9) 

𝑥𝑘+1 = 𝑥𝑘 − 𝑎𝑘∇𝑓(𝑥𝑘) (3.10) 

  

𝑥𝑘+2 = 𝑥𝑘+1 − 𝑎𝑘+1∇𝑓(𝑥𝑘+1) (3.11) 

≺ 𝑥𝑘+1 − 𝑥𝑘, 𝑥𝑘+2 − 𝑥𝑘+1 ≻= 𝑎𝑘𝑎𝑘+1 ≺ ∇𝑓(𝑥𝑘), ∇𝑓(𝑥𝑘+1) ≻ 

 
(3.12) 

𝑑𝑔𝑘
𝑑𝑎

𝑎𝑘 = 0 

 

(3.13) 

𝑑𝑔𝑘
𝑑𝑎

𝑎𝑘 =≺ −∇𝑓(𝑥𝑘), ∇𝑓(𝑥𝑘 − 𝑎𝑘∇𝑓(𝑥𝑘)  ≻=≺ −∇𝑓(𝑥𝑘), ∇𝑓(𝑥𝑘+1)  ≻ 

 

(3.14) 

≺ 𝑥𝑘+1 − 𝑥𝑘, 𝑥𝑘+2 − 𝑥𝑘+1 ≻= 0 

 
(3.15) 
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Then, 𝑄 = 𝑥𝑇𝐴𝑥 is said to be a quadratic form and the quadratic form is positive 

definite 𝑄 > 0 when 𝑥 ≠ 0. Using symmetric positive definite matrix 𝑄, we can 

form a quadratic function in the form of  

 

 

Then, the derivative of  𝑥𝑇𝐴𝑥 

 

 

If a quadratic form  𝑥𝑇𝐴𝑥 is given with 𝐴𝑇 ≠ 𝐴, then because the transposition 

of a scalar equals itself,  

 

 

we obtain 

 

Since (𝐴+𝐴𝑇)𝑇 = 𝑄𝑇 = 𝐴+𝐴𝑇 = 𝑄 

 

𝑄 = 𝑥𝑇𝐴𝑥 = [𝑥1 … 𝑥𝑛] [

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] [

𝑥1
⋮
𝑥𝑛
]. 

 

(3.16) 

𝑓(𝑥) =
1

2
𝑥𝑇𝑄𝑥 − 𝑏𝑇𝑥 

 
(3.17) 

𝐷(𝑥𝑇𝑄𝑥) = 𝑥𝑇(𝑄 + 𝑄𝑇) = 2𝑥𝑇𝑄 (3.18) 

𝐷(𝑏𝑇𝑥) = 𝑥𝑇(𝑄 + 𝑄𝑇) = 𝑏𝑇 

 
(3.19) 

(𝑥𝑇𝐴𝑥)𝑇 = 𝑥𝑇𝐴𝑇𝑥 = 𝑥𝑇𝐴𝑥 (3.20) 

𝑥𝑇𝐴𝑥 =
1

2
𝑥𝑇𝐴𝑥 + 𝑥𝑇𝐴𝑇𝑥 (3.21) 

𝑥𝑇𝐴𝑥 =
1

2
𝑥𝑇(𝐴+𝐴𝑇)𝑥 

 

(3.22) 
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Let us go back to general form of our iterative algorithm with 𝑑 = −∇𝑓(𝑥), then 

we get 

 

 

Our aim to find a 𝑎𝑘 to minimize 𝑓(𝑥𝑘+1) where  𝑓(𝑥) =
1

2
𝑥𝑇𝑄𝑥 − 𝑏𝑇𝑥.  

 

Let  

 

 

 

𝑔(𝑎) is quadratic and 𝑔(𝑎) = 𝛼𝑎2 + 𝛽𝑎 + 𝛾 and 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔(𝑎) = −
𝛾

2𝛼
 

where  

 

Finally,  

The descent algorithm (known as steepest descent) with exact line search for 

quadratic functions becomes  

 

𝑥𝑇𝐴𝑥 =
1

2
𝑥𝑇(𝐴+𝐴𝑇)𝑥 ≜

1

2
𝑥𝑇(𝑄)𝑥 

 

(3.23) 

𝑥𝑘+1 = 𝑥𝑘 − 𝑎𝑘∇𝑓(𝑥𝑘) 

 
(3.24) 

𝑔(𝑎) = 𝑓(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘)) 
 

(3.25) 

𝑔(𝑎) =
1

2
𝑓(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘))

𝑇
𝑄𝑓(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘)) − 𝑏

𝑇(𝑥𝑘 − 𝑎∇𝑓(𝑥𝑘)) 

 
(3.26) 

𝛼 =
1

2
∇𝑓𝑇(𝑥𝑘 − 𝑄∇𝑓(𝑥𝑘)) 

 

(3.27) 

𝛾 = (𝑏𝑇 − 𝑥𝑘
𝑇𝑄)∇𝑓(𝑥𝑘) = −∇𝑓

𝑇(𝑥𝑘)∇𝑓(𝑥𝑘) (3.28) 

𝑎𝑘 =
∇𝑓𝑇(𝑥𝑘)∇𝑓(𝑥𝑘)

∇𝑓𝑇(𝑥𝑘)𝑄∇𝑓(𝑥𝑘)
 

 

(3.29) 
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Rayleigh's Inequalities. 𝑃 ∈ 𝑅𝑛𝑥𝑛 with real symmetric positive definite matrix,  

Then  

 

Where 𝜆𝑚𝑖𝑛(𝑃) and 𝜆𝑚𝑎𝑥(𝑃) are respectively the smallest and largest eigenvalue of 

the 𝑃. 

 

Using Rayleigh's inequality  

 

Finally , we get,  

 

 

First order necessary condition. If 𝑥∗ is an unconstrained local minimizer of a 

differentiable function 𝑅𝑛 → 𝑅 , then we must have ∇𝑓(𝑥∗) = 0. 

𝑥𝑘+1 = 𝑥𝑘 −
∇𝑓𝑇(𝑥𝑘)∇𝑓(𝑥𝑘)

∇𝑓𝑇(𝑥𝑘)𝑄∇𝑓(𝑥𝑘)
∇𝑓(𝑥𝑘) 

 

(3.30) 

∇𝑓(𝑥𝑘) = 𝑄𝑥𝑘 − 𝑏 

 
(3.31) 

𝜆𝑚𝑖𝑛(𝑃)‖𝑥‖
2 ≤ 𝑥𝑇𝑃𝑥 ≤ 𝜆𝑚𝑎𝑥(𝑃)‖𝑥‖

2 

 
(3.32) 

 

𝜆𝑚𝑖𝑛(𝑄)∇𝑓
𝑇(𝑥𝑘)∇𝑓(𝑥𝑘) ≤ ∇𝑓

𝑇(𝑥𝑘)𝑄∇𝑓(𝑥𝑘) ≤ 𝜆𝑚𝑎𝑥(𝑄)∇𝑓
𝑇(𝑥𝑘)∇𝑓(𝑥𝑘) 

 

 

(3.33) 

∇𝑓𝑇(𝑥𝑘)𝑄
−1∇𝑓(𝑥𝑘) ≤

1

𝜆𝑚𝑖𝑛
∇𝑓𝑇(𝑥𝑘)∇𝑓(𝑥𝑘) 

 

(3.34) 

0 < 𝑎 ≤
2

𝜆𝑚𝑎𝑥(𝑄)
 

 

(3.35) 
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Proof: Consider 𝑦 ∈ 𝑅𝑛. If we define 𝑔(𝑎) = 𝑓(𝑥∗ + 𝑎𝑦) and  𝑔: 𝑅𝑛 → 𝑅. 

Using chain rule, 

 

 

Using the definition of limit  

 

Because the local optimality of 𝑥∗,  𝑓(𝑥∗ + 𝑎𝑦) ≥ 𝑓(𝑥∗). Finally we get, 

Since 𝑦 is arbitrary, if  −𝑦 is used, then 

 

This inequality implies that ∇𝑓(𝑥∗) = 0 

3.1.1.1 Newton Methods 

If Taylor’s expansion is used around the current estimate 𝑥𝑘,  we get, 

 

 

𝑑𝑔

𝑑𝑎
(𝑎) = 𝑦𝑇∇𝑓(𝑥∗ + 𝑎𝑦) 

 

(3.36) 

𝑑𝑔

𝑑𝑎
(0) = 𝑦𝑇∇𝑓(𝑥∗) 

 

(3.37) 

𝑑𝑔

𝑑𝑎
(0) = lim

𝑎→0

𝑓(𝑥∗ + 𝑎𝑦) − 𝑓(𝑥∗)

𝑎
≥ 0 

 

(3.38) 

 

𝑦𝑇∇𝑓(𝑥∗) ≥ 0. 

 

(3.39) 

 

−𝑦𝑇∇𝑓(𝑥∗) ≥ 0. 
(3.40) 

𝑦𝑇∇𝑓(𝑥∗)−𝑦𝑇∇𝑓(𝑥∗) ≥ 0 (3.41) 
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First order necessary condition implies that 𝑞(𝑥∗) = 0. Hence,  

 

 

If ∇2𝑓(𝑥𝑘) ≥ 0, then 𝑓(𝑥𝑘) is convex and hence our stationary point is a global 

optimum. Newton's method picks this point as the next iterate 

Let us show that −[∇2𝑓(𝑥𝑘)]
−1∇𝑓(𝑥𝑘) is a descent direction. Define a function ℎ(𝑎) 

 

 

 

 

If ∇𝑓(𝑥) ≠ 0 and  [∇2𝑓(𝑥)]−1 > 0, then ℎ′(0) < 0. This result shows that 

−[∇2𝑓(𝑥𝑘)]
−1∇𝑓(𝑥𝑘) is in the descent direction. 

𝑓(𝑥) ≈ 𝑓(𝑥𝑘) + ∇𝑓
𝑇(𝑥𝑘)(𝑥 − 𝑥𝑘) +

1

2
(𝑥 − 𝑥𝑘)∇

2𝑓𝑇(𝑥 − 𝑥𝑘) ≜ 𝑞(𝑥) (3.42) 

 

∇𝑓(𝑥𝑘) + ∇
2𝑓(𝑥𝑘)𝑥 + ∇

2𝑓(𝑥𝑘)𝑥𝑘 = 0 
(3.43) 

 

𝑥 = 𝑥𝑘 − [∇
2𝑓(𝑥𝑘)]

−1∇𝑓(𝑥𝑘) 

 

(3.44) 

 

𝑥𝑘+1 = 𝑥𝑘 − [∇
2𝑓(𝑥𝑘)]

−1∇𝑓(𝑥𝑘) 

 

(3.45) 

 

ℎ(𝑎) =  𝑓(𝑥 − 𝑎[∇2𝑓(𝑥)]−1∇𝑓(𝑥)) 
(3.46) 

 

ℎ′(𝑎) =  [−([∇2𝑓(𝑥)]−1∇𝑓(𝑥))]𝑇∇𝑓(𝑥 − 𝑎[∇2𝑓(𝑥)]−1∇𝑓(𝑥)) 
(3.47) 

 

ℎ′(0) =  −∇𝑓𝑇(𝑥)[∇2𝑓(𝑥)]−1∇𝑓(𝑥) 
(3.48) 
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3.1.2 Levenberg-Marquardt Modification 

Gauss-Newton method solves the optimization problem quite fast because it has 

quadratic convergence to local minimum. However, in some circumstances it can 

show a poor performance especially under poor initial parameter selection. Gradient 

Descent (GD), on the other hand,  shows slow linear convergence, but always 

decreases the function for a sufficiently small step size.  

 

If [∇2𝑓(𝑥)]−1 ≥ 0 or ∇2𝑓(𝑥) is singular, the Newton's direction may not be a 

descent direction or may not be well defined. The basic idea is to make ∇2𝑓(𝑥) 

positive defi 

In order to overcome the problem of both Gauss-Newton and Gradient Descent, the 

Levenberg-Marquardt (LM) algorithm can be used. This method smoothly switches 

between both methods through an adaptive parameter. 

 

Lemma 2. Let 𝐴 and 𝑛𝑥𝑛 matrix with eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 and let 𝜇 ∈ 𝑅. Then 

eigenvalues of 𝐴 + 𝜇𝐼 are 𝜆1 + 𝜇, 𝜆2 + 𝜇,… , 𝜆𝑛 + 𝜇 

Proof. Let 𝜆𝑖 be an eigenvalue of 𝐴 with eigenvector 𝜗𝑖  

 

 

Therefore 𝜆𝑖 + 𝜇 is an eigenvalue of 𝐴 + 𝜇𝐼. 

Levenberg-Marquardt modification is finally in the form of  

 

 

 

 

𝐴𝜗𝑖 = 𝜆𝑖𝜗𝑖 
(3.49) 

 

(𝐴 + 𝜇𝐼)𝜗𝑖 = 𝐴𝜗𝑖 + 𝜇𝜗𝑖 = 𝜆𝑖𝜗𝑖 + 𝜇𝜗𝑖 = (𝜆𝑖 + 𝜇)𝜗𝑖 
(3.50) 

𝑥𝑘+1 = 𝑥𝑘 − [∇
2𝑓(𝑥𝑘) + 𝜇𝑘𝐼]

−1∇𝑓(𝑥𝑘). (3.51) 
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For large values of 𝜇 we get short step in the steepest descent direction and for small 

values of 𝜇, we can get (almost) quadratic final convergence (regular Newton 

method). Therefore, the damping parameter influences both the direction and the size 

of the step, and choice of initial 𝜇 value should be related to 𝐴0= ∇
2𝑓(𝑥𝑘) as 

 

 

 

After having completed the rule and search direction, next step is to choose the initial 

parameters. The initial point is usually selected randomly. The final step is to choose 

the stopping criteria if we have found a local minima is found.  

 

The stopping criteria can be selected as 

 
|𝑥𝑘+1 − 𝑥𝑘| <  𝜖) Difference between iteration is small. 

‖∇𝑓(𝑥𝑘)‖ ≤ 𝜖 𝜖 > 0 is a small prescribed threshold 

|𝑥𝑘+1 − 𝑥𝑘| ≤ 𝜖(‖𝑥‖ + 𝜖) Gradual change from relative step size 𝜖 

|𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘)| <  𝜖) Improvements in function value are saturating 

𝑖 < 𝑖𝑚𝑎𝑥 Safeguard against an infinite loop 

 

3.2 Expectation–maximization (EM) algorithm 

If we have two coins: Coin 1 and Coin 2, and each has its own probability of seeing 

“Head” on any one flip. Now, select a coin at random and flip that one coin m times 

and repeat this process n times. 

 

𝑋11 ⋯ 𝑋1𝑚
⋮ ⋱ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑚

         
𝑌1
⋮
𝑌𝑛

 

 

𝜇 =  𝑚𝑎𝑥𝑖(𝐴0𝑖𝑖) (3.52) 
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The 𝑋𝑖𝑗 are Bernoulli random variables taking values in {0, 1} where  

 

 

𝑌𝑖 takes values in {1, 2} and indicate which coin was used on the nth trial. Note that 

all the X’s are independent and, in particular 

 

 

We can write out the joint probability density function of all nm + n random variables 

and formally come up with maximum likelihood estimation (MLE) for 𝑝1 and 𝑝2. If 

we call these MLEs 𝑝1̂ and 𝑝2̂. 

 

 

Now suppose that the 𝑌𝑖 are not observed but we still want MLEs for 𝑝1 and 𝑝2. The 

data set now consists of only the X’s and is “incomplete”. The goal of the EM 

Algorithm is to find MLEs for 𝑝1 and 𝑝2 in this case. Basic notation for the EM 

Algorithm for this coin example is summarized below.  

• X be observed data, generated by some distribution depending on some 

parameters. Here, X represents something high-dimensional. (In the coin 

example it is an n × m matrix.) These data may or may not be iid. (In the coin 

example it is a matrix with iid observations in each row.) X will be called an 

“incomplete data set”. 

𝑋𝑖𝑗 = {
1 𝑖𝑓 𝑗𝑡ℎ 𝑓𝑙𝑖𝑝 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑐𝑜𝑖𝑛 𝑖𝑠 𝐻𝑒𝑎𝑑
0 𝑖𝑓 𝑗𝑡ℎ 𝑓𝑙𝑖𝑝 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑐𝑜𝑖𝑛 𝑖𝑠 𝑇𝑎𝑖𝑙

 

 

(3.53) 

𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑚|𝑌𝑖 = 𝑗 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑖(𝑝𝑗) 

 

(3.54) 

𝑝1̂ =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻 𝑜𝑓 𝐶𝑜𝑖𝑛1

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑖𝑛 1 𝑓𝑙𝑖𝑝𝑝𝑒𝑑
 

 

(3.55) 

𝑝2̂ =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻 𝑜𝑓 𝐶𝑜𝑖𝑛2

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑖𝑛 2 𝑓𝑙𝑖𝑝𝑝𝑒𝑑
 

 

(3.56) 
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• Y be some “hidden” or “unobserved data” depending on some parameters. 

Here, Y can have some general dimension. (In the coin example, Y is a 

vector.) 

 

• Z = (X, Y ) represent the “complete” data set. We say that it is a “completion” 

of the data given by X. 

 

The distribution of Z depends on some parameter θ and that we can write the 

probability density function for Z as  

 

𝐿(𝜃) is usually used to denote a likelihood function and it always depends on some 

random variables which are not shown by this notation. Because there are many 

groups of random variables, 𝐿(𝜃|𝑍) or 𝐿(𝜃|𝑋) is used to denote the complete 

likelihood and incomplete likelihood functions, respectively. 

 

 

 

Jensen’s Inequality: Let 𝑋 be a random variable with mean 𝜇 = 𝐸[𝑋] and let 𝑔 be 

a convex function. Then  

To prove Jensen’s inequality, visualize the convex function 𝑔 and a tangent line at 

the point (𝜇, 𝑔(𝜇)). Let the line 𝑙(𝑥) be 

 

𝑓(𝑧|𝜃) = 𝑓(𝑥, 𝑦|𝜃) = 𝑓(𝑦|𝑥, 𝜃)𝑓(𝑥|𝜃) 

 

(3.57) 

𝐿(𝜃|𝑍) = 𝐿(𝜃|𝑋, 𝑌) = 𝑓(𝑋, 𝑌|𝜃) (3.58) 

 

𝐿(𝜃|𝑋) = 𝐿(𝜃|𝑋) 

 

 (3.59) 

𝑔(𝐸[𝑋]) ≤ 𝐸[𝑔(𝑋)] 

 

(3.60) 
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By convexity of 𝑔, the line 𝑙(𝑥) is always below 𝑔. 

 

We can rewrite this inequality using the random variable 𝑋 to get 

 

By taking the expected value of both side  

 

which is the desired result  

 

If 𝑔 is concave, then the negative of 𝑔 is convex. 

Let we have some data 𝑋 with joint probability density function 𝑓(𝑋|𝜃) and let 𝑙(𝜃) 

denote the log-likelihood.  

 

We would like to find a new 𝜃 that satisfies  

where 𝜃𝑛 is the 𝑛𝑡ℎ iteration guess. 

𝑙(𝑥) = 𝑚(𝑥 − 𝜇) + 𝑔(𝜇) 

 

(3.61) 

𝑚(𝑥 − 𝜇) + 𝑔(𝜇) ≤ 𝑔(𝑥) 

 

(3.62) 

𝑚(𝑋 − 𝜇) + 𝑔(𝜇) ≤ 𝑔(𝑋) 

 

(3.63) 

𝑔(𝜇) ≤ 𝐸[𝑔(𝑋)] 

 

(3.64) 

𝑔(𝐸[𝑋]) ≤ 𝐸[𝑔(𝑋)] 

 

(3.65) 

𝑙(𝜃) = 𝑙𝑛 𝑓(𝑋|𝜃) 

 

(3.66) 

 

𝑙(𝜃) ≥ 𝑙(𝜃𝑛) 

 

(3.67) 
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Introduce some hidden variables Y, 

{∫
𝑓(𝑋|𝑦,𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋,𝜃̂𝑛) 
𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 } is the expectation with respect to the distribution 

𝑌|𝑋, 𝜃𝑛. So, applying Jensen’s inequality, we have 

 

 

 

 

 

𝑙(𝜃) − 𝑙(𝜃𝑛) =  𝑙𝑛 𝑓(𝑋|𝜃) − 𝑙𝑛 𝑓(𝑋|𝜃𝑛) (3.68) 

 

= 𝑙𝑛 {∫𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)𝑑𝑦} − 𝑙𝑛 𝑓(𝑋|𝜃𝑛) 

 

(3.69) 

 

𝑙(𝜃) − 𝑙(𝜃𝑛) = 𝑙𝑛 {∫
𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋, 𝜃𝑛) 
𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 } − 𝑙𝑛 𝑓(𝑋|𝜃𝑛) 

 

(3.70) 

 

𝑙(𝜃) − 𝑙(𝜃𝑛) ≥  ∫ 𝑙𝑛 (
𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋, 𝜃𝑛) 
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 − 𝑙𝑛 𝑓(𝑋|𝜃𝑛) 

 

(3.71) 

= ∫𝑙𝑛(1) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 = 0 (3.72) 

𝑙(𝜃) ≥ 𝑙(𝜃𝑛) + ∫ 𝑙𝑛 (
𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋, 𝜃𝑛) 𝑓(𝑋|𝜃𝑛) 
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 (3.73) 

∫𝑙𝑛 (
𝑓(𝑋|𝑦, 𝜃𝑛) 𝑓(𝑦|𝜃𝑛)

𝑓(𝑦|𝑋, 𝜃𝑛) 𝑓(𝑋|𝜃𝑛)
)𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 (3.74) 

= ∫ 𝑙𝑛 (
𝑓(𝑋, 𝑦|𝜃𝑛) 

𝑓(𝑋, 𝑦|𝜃𝑛)
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 (3.75) 
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We have that 𝑙(𝜃𝑛) + ∫ 𝑙𝑛 (
𝑓(𝑋|𝑦,𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋,𝜃̂𝑛) 𝑓(𝑋|𝜃̂𝑛) 
)𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 is bounded 𝑙(𝜃)  and 

that it is equal to this upper bound when 𝜃 = 𝜃𝑛.  

 

If we maximize 𝑙(𝜃𝑛) + ∫ 𝑙𝑛 (
𝑓(𝑋|𝑦,𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋,𝜃̂𝑛) 𝑓(𝑋|𝜃̂𝑛) 
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦, we may improve 

towards maximizing 𝑙(𝜃). 

 

Maximizing  

 

with respect to 𝜃 is equivalent to maximizing 

 

 

So, if we could compute this expectation, maximize it with respect to 𝜃, call the 

result 𝜃𝑛+1 and iterate, we can improve towards finding the 𝜃 that maximizes the 

likelihood. These expectation and maximization steps are precisely the Expectation–

maximization (EM) algorithm. 

 

The EM Algorithm is a numerical iterative for finding an MLE of θ. The rough idea 

is to start with an initial guess for θ and to use this and the observed data X to 

“complete” the data set by using X and the guessed θ to postulate a value for Y , at 

which point we can then find an MLE for θ in the usual way. The actual idea though 

= ∫𝑙𝑛(1) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 = 0 

 

(3.76) 

∫𝑙𝑛 (
𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃)

𝑓(𝑦|𝑋, 𝜃𝑛) 𝑓(𝑋|𝜃𝑛) 
) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 

 

(3.77) 

∫𝑙𝑛𝑓(𝑋|𝑦, 𝜃) 𝑓(𝑦|𝜃) 𝑓(𝑦|𝑋, 𝜃𝑛)𝑑𝑦 (3.78) 

= 𝐸𝑌[𝑙𝑛𝑓(𝑋, 𝑌|𝜃)|𝑋𝜃
𝑛] (3.79) 
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is slightly more sophisticated. We will use an initial guess for θ and postulate an 

entire distribution for Y , ultimately averaging out the unknown Y .  

 

Let 𝜂 be maximum likelihood estimate and X be complete data , EM iteratively 

alternates between making guesses about 𝑥 , and finding the   𝜂   that maximizes 

probability 𝑝(𝑥| 𝜂 ) over 𝜃. In order to use EM, there should be given observed data 

𝑦 , density probability 𝑝(𝑦|𝜂), complete data 𝑥 and parametric density 𝑝(𝑥| 𝜂 ). 

 

It is assumed that complete data 𝑥 can be modeled by random variable 𝑋 having 

density 𝑝(𝑥| 𝜂  ) over the data set Ω (𝜂 ∈ Ω). In this case, 𝑋 is not directly observed, 

𝑦 which is realization of random vector 𝑌 is observed. 𝑌 depends on 𝑋.  

 

Given the observed data 𝑦 , our aim is to find maximum likelihood estimate (MLE) 

of 𝜂 

 

However, it is easier to calculate 𝜂 that maximizes the log-likelihood of y, because 

log() function is monotonically increasing: 

 

In some circumstances where, it is difficult to assess both likelihood, the EM 

algorithm makes a guess about the complete data and solve for 𝜂 that maximized 

log-likelihood. Then, it is easy to make better guess about complete data. EM 

algorithm consists of two steps namely E-step and M-step however let us break down 

into five steps: 

 

Step 1: Make an initial estimate 𝜂(𝑚)for 𝜂 

  

  

Step 2: Calculate the conditional probability distribution 𝑝(𝑥|𝑦, 𝜂(𝑚)) for 

completed data 𝑥 and observed data 𝑦 

𝜂̂𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜂∈Ω 𝑝(𝑦|𝜂) (3.80) 

𝜂̂𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜂∈Ω log𝑝(𝑦|𝜂) (3.81) 
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Step 3: Calculate conditional expected log-likelihood 

 ∫ 𝑙𝑜𝑔𝑝(𝑥|𝜂) 𝑝(𝑥|𝑦, 𝜂(𝑚))𝑑𝑥 = 𝐸
(𝑋|𝑦, 𝜂(𝑚))

log 𝑝(𝑋|𝜂) 

where integral is over the set 𝑋(𝑦) and 𝑋(𝑦) is assumed to be 

independent from 𝜂.  

Conditional expected log-likelihood depends on 𝜂 as a free 

parameter and current guess 𝜂(𝑚) calculated in Step 2. 

  

  

Step 4: Find the 𝜂 that maximizes conditional expected log-likelihood. 

Obtained result is 𝜂(𝑚+1) 
   

  

Step 5: Assign 𝑚 = 𝑚+ 1 and g oto Step 2. Iterate until stopping criterion 

is satisfied. 
 

Steps 2 and 3 are called the E-step for expectation, and Step 4 is called the M-step 

for maximization. 

 

Expectation Maximization algorithm is used to estimate dynamic label image with 

initial guess obtained by pose estimation solved by Levenberg Marquart method.  

3.3 RGB-D Sensors 

 

In our approach, we sequentially fuse the RGB-D info into a signed distance field 

because RGB-D cameras are specific type of sensors, which can augment the image 

with depth information. Therefore, this type of sensor has been extensively used in 

computer vision and computer graphics problems in order to find novel solutions. 

The depth information provides a extensive information to find a solution of object 

detection, semantic segmentation, shape analysis, pose estimation and 3D 

reconstruction.  
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With the appearance of Kinect in 2010 as an user input device for the gaming, many 

cheap RGB-D sensors became available on the market such as Kinect, Asus Xtion 

Pro and Intel RealSense. Most recent developed stereo RGB-D sensor is ZED camera 

and it is compatible to recently launched Jetson board of the Nvidia which makes it  

a powerful tool for applications in the field of robot vision.  Figure 3.1 shows some 

examples of RGB-D sensors. 

 

The output of these sensors is depicted in Figure 3.2. The left image in the figure is 

an RGB image, i.e., each pixel stores the color of a point in the real world. The right 

image is a depth image, i.e., each pixel stores the coordinate of that point with respect 

to the reference frame of the sensor.  

 

 
 

 

Figure 3.1: Example of RGB-D sensors. From left to right: Microsoft Kinect,  Intel 

RealSense D435. Courtesy of Microsoft and Intel Corporation. 

 

 
 

Figure 3.2: Output images of RGB-D sensors. Left: RGB image. Right: Depth 

image. The brighter a pixel is, the farther away it is from the sensor. 
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Using RGB-D sensor, measured 3D (𝑋, 𝑌, 𝑍) positions of sensed surfaces can be 

directly computed from the intrinsic RGBD camera parameters and the measured 

depth image values. The 𝑍 coordinate is directly taken as the depth value and the (𝑋, 

𝑌) coordinates are computed using the pinhole camera model. In a typical pinhole 

camera model, 3D (𝑋, 𝑌, 𝑍) points are projected to (𝑥, 𝑦) image locations, e.g., for 

the image columns the 𝑥 image coordinate is  

 

However, for a depth image, this equation is re-organized to “back-project” the depth 

into the 3D scene and recover the (𝑋, 𝑌) coordinates as shown by equation  

 

 

 

 

where 𝑍 denotes the sensed depth at image position (𝑥, 𝑦), (𝑓𝑥, 𝑓𝑦) denotes the camera 

focal length (in pixels), (𝑐𝑥, 𝑐𝑦) denotes the pixel coordinate of the image center, i.e., 

the principal point, and (𝛿𝑥, 𝛿𝑦) denote adjustments of the projected pixel coordinate 

to correct for camera lens distortion. Intrinsic camera calibration matrix 𝐾 ∈ 𝑅3 is 

written as 

 

𝑥 = 𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥 − 𝛿𝑥. 

 

(3.82) 

  

𝑋 =
𝑥 + 𝛿𝑥 − 𝑐𝑥

𝑓𝑥
𝑍 (3.83) 

𝑌 =
𝑦 + 𝛿𝑦 − 𝑐𝑦

𝑓𝑦
𝑍 

(3.84) 

𝑍 = 𝑍 
(3.85) 
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In practice, the pinhole camera model is not sufficient to fully model the behavior of 

imperfect real-world lenses. In order to remove the radial and tangential lens 

distortion, there are various closed-form approximations, While higher-degree 

approximations are more expressive, they become more difficult to calibrate and are 

often numerically unstable. The following distortion function is very common and 

effective for consumer-grade cameras.  

 

 

Here, 𝜅1, 𝜅2, … , 𝜅6 and 𝜌1, 𝜌2 are for radial and tangential distortion coefficients, and 

𝑟2 = 𝑥2 + 𝑦2 respectively. In this study, we use the following distortion model if 

the coefficients are available. This coefficient are invariant to scaling of an image.  

 

 

Studies of accuracy for the Microsoft Kinect sensor show that a Gaussian noise 

model provides a good fit to observed measurement errors on planar targets where 

the distribution parameters are mean 0 and standard deviation 𝜎𝑍 =
𝑚

2𝑓𝑥𝑏
𝑍 for depth 

measurements where 
𝑚

𝑓𝑥𝑏
= −2.85𝑥10−3 is the linearized slope for the normalized 

disparity empirically found in [3]. Since 3D the coordinates are a function of both 

the pixel location and the depth, their distributions are also known as shown below: 

𝐾 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] 

 

(3.86) 

𝜚𝑜(𝑋) =

[
 
 
 
 
 𝑥 (

1 + 𝜅1𝑟
2 + 𝜅2𝑟

4 + 𝜅3𝑟
6

1 + 𝜅4𝑟2 + 𝜅5𝑟4 + 𝜅6𝑟6
) + 2𝜌1𝑥𝑦 + 𝜌2(𝑟

2 + 2𝑥2)

𝑦 (
1 + 𝜅1𝑟

2 + 𝜅2𝑟
4 + 𝜅3𝑟

6

1 + 𝜅4𝑟2 + 𝜅5𝑟4 + 𝜅6𝑟6
) + 2𝜌2𝑥𝑦 + 𝜌1(𝑟

2 + 2𝑦2)

1 ]
 
 
 
 
 

 (3.87) 

𝜚1(𝑋) = [
𝑥(1 + 𝜅1𝑟

2 + 𝜅2𝑟
4 + 𝜅3𝑟

6) + 2𝜌1𝑥𝑦 + 𝜌2(𝑟
2 + 2𝑥2)

𝑦(𝑥(1 + 𝜅1𝑟
2 + 𝜅2𝑟

4 + 𝜅3𝑟
6)) + 2𝜌2𝑥𝑦 + 𝜌1(𝑟

2 + 2𝑦2)
1

] (3.88) 
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These equations indicate that 3D coordinate measurement uncertainty increases as a 

quadratic function of the depth for all three coordinate values. However, the 

quadratic coefficient for the (𝑋, 𝑌) coordinate standard deviation is at most half that 

in the depth direction, i.e., (𝜎𝑋 , 𝜎𝑌) ≈ 0.5𝜎𝑍 at the image periphery where 
𝑥−𝑐𝑥

𝑓𝑥
≈ 0.5, 

and this value is significantly smaller for pixels close to the optical axis. 

 

For example, consider a “standard” Primesense sensor having no lens distortion and 

typical factory-set sensor values: 𝑓𝑥 , 𝑓𝑦 = 𝑓 = 586±30 for focal length, (640; 480) 

for image (𝑥, 𝑦) dimension, and (𝑐𝑥, 𝑐𝑦) = (320; 240) for the image center. In this 

case the ratios  

 

at the image center and 

 

at the (𝑥, 𝑦) positions on the image boundary. 

𝜎𝑋 =
𝑥 + 𝛿𝑥 − 𝑐𝑥

𝑓𝑥
𝜎𝑍 =

𝑥 + 𝛿𝑥 − 𝑐𝑥
2𝑓𝑥

(2.85𝑥10−3)𝑍2 (3.89) 

𝜎𝑌 =
𝑦 + 𝛿𝑦 − 𝑐𝑦

𝑓𝑦
𝜎𝑍 =

𝑦 + 𝛿𝑦 − 𝑐𝑦

𝑓𝑦
(2.85𝑥10−3)𝑍2 (3.90) 

𝜎𝑍 =
𝑚

2𝑓𝑥𝑏
𝑍 =

(2.85𝑥10−3)𝑍2

2
 (3.91) 

(
𝑥+𝛿𝑥−𝑐𝑥

𝑓𝑥
,
𝑦+𝛿𝑦−𝑐𝑦

𝑓𝑦
) = (0,0)  

 

(3.92) 

(
𝑥+𝛿𝑥−𝑐𝑥

𝑓𝑥
,
𝑦+𝛿𝑦−𝑐𝑦

𝑓𝑦
) = (0.548 ± 0.028,0.411 ± 0.221)  

 

(3.93) 
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With this in mind, the (𝑋, 𝑌, 𝑍) coordinates of a depth image are modeled as 

measurements from a non-stationary Gaussian process whose mean is 0 at all points 

but whose variance changes based on the value of the triplet (𝑥, 𝑦, 𝑍). 
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CHAPTER 4  

4 OUR PROPOSED METHODOLOGY 

4.1 Justification of the Methodology and Novelties of Our Approach 

 

SLAM algorithms uses the sensor data in order to produce a consistent map of 

environment. In real life, SLAM frameworks should address the problem of dynamic 

scene without consuming much computational power. Employing semantic 

segmentation or object classifier are time consuming, therefore, we refrain using 

such techniques in our proposed SLAM algorithm. Our aim is to develop a SLAM 

algorithm which  

 

• can generate the dense model/mesh of environment 

• can handle high dynamics in environment, 

• is robust to dynamic element without requiring any type of object tracking, 

• does not need any classifier or semantic information, 

• is real-time operation compatible, 

• does not require sophisticated sensor. 

 

Considering these practical constraints, we propose a RGB-D based SLAM method 

because RGB-D cameras are specific type of sensors, which can augment the image 

with depth information. Moreover, this type of sensor has been extensively used in 

computer vision and computer graphics problems because of its low cost.  

 

In order to generate a dense model of environment, we use signed distance field 

(SDF) representation because such representation is useful in robotic applications 

because it defines the distance to surface. 
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Our proposed approach requires neither explicit object tracking nor object classifier 

therefore it is robust to any type of moving object. We identify the dynamic part 

using the image registration residuals, which are obtained by the pose estimation on 

the SDF using Levenberg-Marquart method.  

 

Figure 4.1 depicts the flowchart of our SDF-based RGB-D dense SLAM method. 

We start the process by obtaining the RGB-D image. Initially, we assign labels as 

static and pose as identity. We continue the process by measuring the similarity ratio 

of the consecutive images. If the image passes the similarity test, next process is the 

pose estimation. We try to solve this optimization problem by Levenberg-Marquart 

method until the pose difference is less than 0.001 or iteration number is predefined 

level. In order to measure the pose difference, we use the norm of pose vector. Using 

the calculated norm, we can calculate the image registration residuals and this is an 

initial guess for dynamic label. Then we continue the process by calculation of the 

final dynamic label or image using Expectation Maximization algorithm. We re-

perform pose estimation using this final image and this process continues until the 

last frame is processed.   

 

The Signed Distance Function (SDF), also referred to as the Signed Distance 

Transform, or simply Distance Transform has been widely applied to the processing 

or visualization of volumetric 3D data.  The SDF is usually implemented as a voxel-

based (or pixel-based in the two-dimensional case) representation, in which each cell 

contains the distance to the nearest surface in the scene. The signed part indicates 

whether the voxel (or pixel) is on the outside (positive) or inside (negative) an object. 
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Figure 4.1: Flowchart of the DUDMAP 

 

In this study, we represent the geometry using SDF. In order to reconstruct the scene, 

we fuse incrementally RGB-D data into SDF and geometry is stored in voxel grid. 

First, camera pose is estimated using SDF and SDF is updated based on newly 

computed camera pose. In the literature, most of the volumetric fusion techniques, 

for example, KinectFusion [24] uses synthetic depth images and aligns them using 

Iterative Closest Point. However, we use the camera pose directly on the SDF 

because SDF encrypts the 3D geometry of the environment.  

 

Figure 4.2 depicts the important steps of our proposed method. We first apply a depth 

filter in order to eliminate significant amounts of noise in raw depth images. In order 

to eliminate redundant data in fusion process, we trim repeated camera views by 
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measuring the similarity ratio of RGB images. We then perform pose estimation and 

continue the process by detecting the dynamic elements in the scene.  

 

The subsequent subsections provide the details of each block in our proposed system. 

Section 4.2 reviews the preliminaries for the proposed system and Section 4.3 

explains the depth smoothing process and similarity test. Section 4.4 is devoted to 

the pose estimation algorithms. Section 4.5 and Section 4.6 respectively focuses on 

3D volume visualization and dynamic detection from image registration or pose 

estimation residuals. 

 

 
 

Figure 4.2: DUDMAP scheme 

 

4.2 Preliminaries and Notations 

In our approach, we denote a 3D point as [X,Y,Z]R3, rotation of the camera as 

RSO(3), and translation as TR3 , respectively. At time t, RGB-D frame contains 

an RGB image and a depth map. The homogenous point X=(x, y, z,1)T can be 

computed by assuming a pinhole camera model with intrinsic parameters fx, fy, cx and 

cy (focal length and optical center) such as 
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𝑿 = [

𝑋
𝑌
𝑍
1

] = [
𝑥 − 𝑐𝑥
𝑓𝑥

𝑧,
𝑦 − 𝑐𝑦

𝑓𝑦
𝑧, z, 1]

𝑇

 (4.1) 

 

The 3D point corresponding to a pixel is reconstructed using following equations.  

 

𝑥 − 𝑐𝑥
𝑓𝑥

𝑧 = 𝑢 (4.2) 

 

𝑦 − 𝑐𝑦

𝑓𝑦
𝑧 = 𝑣 (4.3) 

The pixel coordinates becomes 

 

[
𝑢𝑓𝑥
𝑧
+ 𝑐𝑥,

𝑣𝑓𝑦

𝑧
+ 𝑐𝑦]

𝑇

. (4.4) 

 

In a rigid body motion, the common representation matrix is the homogenous 

transformation matrix H consisting of a 3x3 rotation matrix and 3x1 translation 

vector T is widely known to the robotics community as 

 

𝐻4𝑥4 = [
𝑅3𝑥3 𝑇3𝑥1
01𝑥3 11𝑥1

] (4.5) 

 

which is used in the transformation of a point 𝑋⃗ under motion as  

 

X′ = 𝐻4𝑥4X (4.6) 

 

The rotation matrix R has nine parameters and if we were to estimate the camera 

motion, we would have to solve these nine parameters by forming a constrained 

optimization problem, which can be very slow to implement. The Lie algebra allows 

us lower dimensional linear space for rigid body motion representation making it 

popular in computer vision problems. Actually, R is an orthonormal matrix which 
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has in fact a 3 parameter representation and these 3 parameters are in general found 

using Euler angles. 

 

We use a Lie algebra SE(3) representation as twist coordinates  as in [23] because 

the rigid motion has 6 degrees of freedom while transformation matrix T has 12 

parameters. Using the Lie algebra representation rigid body motion can be written as 

 

 = [

0 −3
3 0

2 1
−1 2

−2 1
0 0

 
0   3
0   0

]. (4.7) 

4.3 Depth Smoothing and Feature Matching 

 

Commercially available RGB-D cameras usually produce invalid depth 

measurements. In addition, there exist significant amounts of noise in raw depth 

images. Bilateral filter as indicated in [92] modifies the weighting to account for 

variation of intensity thereby effectively carrying out a robust smoothing operation. 

Depth smoothing helps to reduce the disoccluded areas, which should be filled before 

the operation. Moreover, smoothing of depth image is beneficial for avoiding holes 

in the raw depth image and for removing the sharp discontinuities from depth image. 

The most significant source of such deviation is quantization noise, which arises 

when the disparity is estimated within a finite precision. The standard deviation of 

noise in depth measurement is given as proportional to the square of the depth. In 

this study, we use a depth adaptive bilateral filtering method, which is more effective 

to smooth depth images than the bilateral filtering. 

 

Let 𝐷(𝑢) be an observed depth image where 𝑢 denotes the location of a pixel. The 

depth estimation smoothed by the depth adaptive bilateral filtering presented in [93] 

is  
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𝐷̂(𝑢) =
𝐷(𝑢)

𝑊
∑ [𝑤𝑠(𝑢 − 𝑢𝑘)𝑤𝑐(𝐷(𝑢) − 𝐷(𝑢𝑘))]

𝑁(𝑢𝑘)

 

 

(4.8) 

where 𝑤𝑐 and 𝑤𝑠 are Gaussian functions for spatial and range weighting with 

standard deviations 𝜎𝑠 and 𝜎𝑐. 𝑁(𝑢𝑘) is the the neighborhood of 𝑢. 𝑊 is used for 

normalizing factor to have a total sum of 1 over 𝑁(𝑢𝑘).  𝑤𝑐 and 𝑤𝑠 are given as  

 

𝑤𝑠 = 𝑒
−
(𝑢−𝑢𝑘)

2

2𝜎𝑠2  

 

(4.9) 

𝑤𝑐 = 𝑒
−
(𝐷(𝑢)−𝐷(𝑢𝑘))

2

2𝜎𝑐2  
(4.10) 

 

Unlike the bilateral filter, here the values of 𝜎𝑐 for the depth image are not fixed but 

vary with the depths. It can be approximated as 

 

𝜎𝑐 = 𝛼𝐷(𝑢)
2 (4.11) 

 

where 𝛼 is constant and its value depends on the camera parameters. In our 

experiments, 𝛼 is set to be 12 and 𝜎𝑠 is 4 (in pixels). Figure 4.3 show the original 

input image and result of a depth image with adaptive bilateral filter, respectively. 

 

We can see that depth adaptive bilateral filter for the depth image is more effective 

to remove the noise. Foreground are appropriately smoothed while preserving depth 

discontinuity features since the proposed filter is adaptive to the variation of depth. 

After filtering, invalid measurements due to out-of-range measurement or reflecting 

surfaces are tried to be eliminated using depth smoothing filter and the resulting 

image is depicted in also Figure 4.3.  

 

In this study, we use a depth adaptive bilateral filtering method because it modifies 

the weighting to account for variation of intensity. Figure 4.4 depicts the original 
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depth image, smoothed and filtered image respectively. In addition, we change the 

zero values in the original depth images by neighboring 5x5 pixel mean value in the 

smoothing process. 

 

 

   

 

Input depth image 

 

Adaptive bilateral filter 

result 

 

Handling of invalid 

measurement  

 

Figure 4.3: Original input image , result of a depth image with adaptive bilateral 

filter and , invalid measurements handling 

 

SDF fusion is an averaging process therefore, it is important not to use redundant 

data in the fusion process because small error renders the SDF model unclear. In 

order to eliminate redundant camera views, we perform similarity ratio test based on 

feature matching. A typical feature matcher consists of the following steps: 

extracting local feature, matching features by using nearest-neighbor approach and 

selecting good correspondences.  

 

In the literature, Scale Invariant Feature Transform (SIFT) is being proposed for 

extracting keypoints and is widely used in different applications. SIFT feature-

matching works well for scaled images but fails  for some cases such as faces with 

pose changes [8]. Application of feature matching method FLANN with SIFT 

descriptor overcomes such disadvantages of SIFT. In similarity analysis, we use 

FLANN based feature matching with SIFT descriptor and we use RATIO [2] to 

select good correspondences that compares the lowest feature distance and the 
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second lowest feature distance for recognizing good ones. Similarity ratio of the 

VolumeDeform “boxing”sequence is depicted in Figure 4.5. Since the ratio is not 

high, which indicates low degree of similarity, all the frames are included in the 

mapping process. 

 

 

 

Figure 4.4: a) Original image  b) Final image 

 

 

 

Figure 4.5: VolumeDeform boxing sequence similarity ratio 

On the other hand, BONN dataset “crowd2” sequence is a high dynamic sequence 

having 895 frames. Figure 4.6 illustrates the BONN “crowd2” sequence similarity 
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ratio with respect to threshold value. If 80% similarity threshold is utilized, 106 

frames are skipped, which results in 11.8% decrease in computational time. Absolute 

translational error increases only 2.2%, while rotational relative pose error increases 

by 0.3%. In low dynamic sequences, the number of similar frames is higher, which 

decreases the unnecessary computational power. This is the novel enhancement in 

this thesis we provide to existing methods in the literature for the betterment of the 

performance. We use the 84% similarity threshold because our aim is to have 5% 

decrease in computational cost.  

 

On the other hand, BONN dataset “crowd2” sequence is a high dynamic sequence 

having 895 frames. Figure 4.6 illustrates the BONN “crowd2” sequence similarity 

ratio with respect to threshold value. If 80% similarity threshold is utilized, 106 

frames are skipped, which results in 11.8% decrease in computational time. Absolute 

translational error increases only 2.2%, while rotational relative pose error increases 

by 0.3%. In low dynamic sequences, the number of similar frames is higher, which 

decreases the unnecessary computational power. This is the novel enhancement in 

this thesis we provide to existing methods in the literature for the betterment of the 

performance. We use the 84% similarity threshold because our aim is to have 5% 

decrease in computational cost.  

 

4.4 Pose Estimation 

The Signed Distance Function (SDF), also referred as simply Distance Transform 

has been widely applied to the processing or visualization of volumetric 3D data. 

Commonly used in the field of computer graphics as an acceleration structure for 

speeding up ray-casting operations [16] it can also be used as a 3D model 

representation. Other application area where SDF is widely used include collision 

detection and haptic feedback. 
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Figure 4.6: BONN “crowd2” sequence similarity ratio with respect to threshold 

value. 

 

The SDF is usually implemented as a voxel-based representation, in which each cell 

contains the distance to the nearest surface in the scene. The signed part indicates 

whether the voxel is on the outside (positive) or inside (negative) an object. 

 

Let 𝜓 be a function  𝜓(𝑥): 𝑅𝑁 → 𝑅 which maps the N-dimensional space to a scalar 

value. For example, let N=2 and consider the circle equation  𝑥2 + 𝑦2 = 𝑟2 or more 

consistent form ‖𝑥‖2
2 = 𝑟2.  

 

The circle equation is equivalent to ‖𝑥‖2 − 𝑟 = 0. ‖. ‖2 is the L2-norm (Euclidean 

distance). If we focus on the first term of the equation and plot , the obtained plot is 

a smoothly varying gradient that becomes lighter (higher-valued) further away from 

the origin, in every direction. If we now subtract 𝑟 from ‖𝑥‖2, we get the the distance 

is relative to the edge of the circumference. It is a positive value whenever outside, 

negative whenever inside and zero exactly on the edge of the circle. This means that 
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the common definition for a circle conforms precisely to the definition of a signed 

distance function.  

 

SDF represent a surface, where we have to test in order to determine where a given 

ray intersects this surface . Given a ray,  

 

𝛼𝜌 = 𝛼 [

𝜌1
𝜌2
𝜌3
] 

 

(4.12) 

where 𝜌 is a unit-norm vector and 𝛼 a scalar. We want to find a scalar 𝜓(𝛼∗𝜌) = 0. 

This process is known as sphere tracing. In this technique, a ray is iteratively rescaled 

by adding the current value of the SDF to 𝛼 and it is similar to successive 

approximation of roots by Secant Method.  

 

SDF is defined as the distance to the nearest surface, each step along the ray can be 

thought of as, moving to the edge of the largest sphere that fits the current point in 

space. An illustration of the algorithm is given in Figure 4.7. When searching in this 

way, for a surface, it is practical to have an early stopping condition at some smallest 

allowed step-size is set. This early stopping (at a positive value) can speed up 

rendering, but can also be used to dilate objects, making them appear arbitrarily 

thicker. Conversely, late stopping can be used to make objects thinner. 

 

SDF represents the distance to the nearest surface, however, it has some drawbacks 

with its original form. It could not encode the surfaces with high geometric details. 

SDF is dependents on heavily on normal vector. For an SDF with a analytical 

expression, the components of the normal vector are simply obtained by partial 

derivatives of the SDF with respect to each spatial dimension. 
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Figure 4.7: Sphere tracing. The dots represent the points at which the function 

𝜓(𝛼∗𝜌) is evaluated and the blue lines represent the scalar value returned by 

the function 𝜓(𝛼∗𝜌) 

 

𝜂(𝑥) = ∇𝑥𝜓(𝑥)
𝑇 =

[
 
 
 
 
 
 
𝜕𝜓(𝑥)

𝜕𝑥1
𝜕𝜓(𝑥)

𝜕𝑥2
𝜕𝜓(𝑥)

𝜕𝑥3 ]
 
 
 
 
 
 

 

 

(4.13) 

An explicit expression will often not be available and the gradient vector can be 

found by finite differences in such cases.  

 

The first derivative of the SDF with respect to position produces the gradient toward 

the surface, and second derivative produces  the curvature which is a measure of how 

this gradient changes with position: 

 

𝐶𝑢𝑟𝑣(𝑥) = ∇2𝑥𝑥𝜓(𝑥) (4.14) 
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∇2𝑥𝑥𝜓(𝑥) =
𝜕2𝜓(𝑥)

𝜕𝑥12
+
𝜕2𝜓(𝑥)

𝜕𝑥22
+
𝜕2𝜓(𝑥)

𝜕𝑥32
 

 

(4.15) 

Finite-difference approach to evaluating gradients requires several memory look-

ups. An approximation that gives an indication of curvature, and also has the benefit 

of being normalized in the range [0; 1] is the projection of adjacent gradient vectors 

onto each-other: 

 

∇2𝑥,𝑖𝜓(𝑥) ≈ 1 −
𝜂(𝑥 + 𝑑𝑖)

𝑇𝜂(𝑥)

‖𝜂(𝑥 + 𝑑𝑖)‖2 ∙ ‖𝜂(𝑥)‖2
 

 

(4.16) 

Where 𝜂(𝑥) is the surface normal at 𝑥, 𝑑𝑖 is the displacement vector having all zeros 

except component denoted by the subscript.  This equation implies that if two nearby 

points in space have gradients oriented in different directions, the measure of 

curvature will be high. 

 

We have defined SDF with its properties, now we can continue on method that can 

be used for calculation of SDF from raw depth images. The input is the depth data 

information obtained by RGB-D sensor and is usually an ordinary gray-scale image. 

Each pixel in a depth image stores a numeric value that corresponds to the distance 

at which a surface was measured along.  Figure 4.8 shows a depth and color image 

of an office. The images are part of a publicly available dataset [96]. 

 

In order to create a SDF from a depth image, we first initialize a discrete voxel grid 

(x,y,z) in 3D  with resolution of 𝜏  where each voxel represents a cube in space, each 

cube measuring  𝜏 meters in length, width and height.  
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Figure 4.8: Depth and color images of the same office desk 

 

 

Let 𝜋: 𝑅3 → 𝑅 be a (vector-valued) function that perspective-projects 3D points to 

the image plane, or formally 

 

𝜋(𝑢, 𝑣, 𝑧) [
𝑢𝑓𝑥
𝑧
+ 𝑐𝑥,

𝑣𝑓𝑦

𝑧
+ 𝑐𝑦]

𝑇

 

 

(4.17) 

The spatial coordinates to the center of each voxel are then perspective projected 

using 𝜋 into the image plane, which is illustrated in Figure 4.9.  

 

The difference between this value and the distance to the voxel (measured along the 

view axis) is then computed. The resulting difference is stored in the voxel itself. 

Since SDF represents a surface, this produces values that are positive, zero or 

negative depending on whether the center of the voxel is outside, on or behind 

surfaces, respectively.  

 

By interpolating between voxels as shown Figure 4.10 and we can get a surface at 

the boundary between positive and negative values (Figure 4.11). In order to avoid 

false surface, we truncate the values that can be written into the voxel grid at a small 

positive value 𝐷𝑚𝑎𝑥 and a small negative value 𝐷𝑚𝑖𝑛. This approach helps us to 
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allow local changes without the need for updating distance values in remote voxels. 

Note that the negative and positive limits can be unsymmetric around zero. Choosing 

large positive limit improves collision avoidance; however, minimum value 

determines the minimum thickness of the reconstructed object.   

 

 

 

 

Figure 4.9: The coordinates of each voxel center is projected into the image plane. 

Note that not every projection will fall within the subset of the plane where the 

depth image is defined. 

 

In addition, new depth value obtained by distance sensor in the form of video stream 

affect the data used to represent signed distance function 𝜓(𝑥). Instead of putting the 

new values, it is common to use a weighted average of those depth values.  
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Figure 4.10: Voxels are updated with the difference between the depth image value 

and the distance to the respective voxel from the sensor, along the viewing direction. 

 

Let 𝑊(𝑤) be a function with 𝑤 = (𝑤1, 𝑤2, 𝑤3)
𝑇 representing the weight of the data 

stored in truncated signed distance function and let 𝜓𝑡(𝑥) be the tri-linear 

interpolation between the nearest 8 values if 𝑥 is within the boundary. The update of 

a single element using 𝜓𝑡(𝑥) and 𝑊(𝑤) is done by  

 

𝜓𝑡(𝑥)𝑛+1 =
𝜓𝑡(𝑥)𝑛𝑊(𝑤)𝑛 + 𝜓𝑡(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 (4.18) 

 

𝑊(𝑤)𝑛+1 = min (𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1,𝑊𝑚𝑎𝑥) 

 
(4.19) 

𝑊(𝑤) can be calculated using the error model 𝑒𝑟𝑟(𝑍) of distance sensor.  

 

𝑊(𝑤) =
𝑐𝑜𝑠𝜃

𝑒𝑟𝑟(𝑍)
 

 

(4.20) 
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For structured light sensors, we are certain about measurements perpendicular to 

surfaces that are close to the sensor and that error increases based on an error model 

for the sensor that varies with distance. 

 

 

 

Figure 4.11: Surface at the boundary between positive and negative values 

 

 

 

However , calculation of  𝑊(𝑤) is computational extensive because of calculation 

of  𝑐𝑜𝑠𝜃 and estimation of surface normals. We set to  𝑊 = 1  and this causes 

weigthed update to a rolling average due to saturation of  𝑊𝑚𝑎𝑥.  

 

In order to use color information directly for pose estimation, we store color values 

for each voxel. The color values are updated for each RGB channel by using same 

rolling average process as  

 

𝑅(𝑥)𝑛+1 =
𝑅(𝑥)𝑛𝑊(𝑤)𝑛 + 𝑅(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 (4.21) 
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𝐺(𝑥)𝑛+1 =
𝐺(𝑥)𝑛𝑊(𝑤)𝑛 + 𝐺(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 

 

(4.22) 

𝐵(𝑥)𝑛+1 =
𝐵(𝑥)𝑛𝑊(𝑤)𝑛 + 𝐵(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 

 

(4.23) 

 

where 𝑅(𝑥), 𝐺(𝑥), 𝐵(𝑥) are red, green and blue values of color, respectively, 

 

Algorithm for SDF initialization and SDF update with rolling average are given 

below.  

 

 

Algorithm 1.   SDF initialization and SDF update  

Input : Integer coordinates of each voxel (x), maximum truncation distance, w 

1: for all integer coordinates x  

2: Assign maximum truncation distance  

𝜓𝑡(𝑥) ← 𝑑𝑚𝑎𝑥 

3: end for  

4: for all w 

5: Assign w as zero 

𝑊(𝑤) ← 0 

6: end for 

7: for all  integer coordinates x 

 Assign w as integer coordinates and initial weigth as 1 

𝑤 ← 𝑥       𝑤𝑒𝑖𝑔𝑡ℎ ← 1 

 Update of a single element of 𝜓𝑡(𝑥) 

𝜓𝑡(𝑥)𝑛+1 ←
𝜓𝑡(𝑥)𝑛𝑊(𝑤)𝑛 + 𝜓𝑡(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
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 Update of a single element of 𝑊(𝑤) 

𝑊(𝑤)𝑛+1 ← min (𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1,𝑊𝑚𝑎𝑥) 

 Update red, green and blue channel 

𝑅(𝑥)𝑛+1 =
𝑅(𝑥)𝑛𝑊(𝑤)𝑛 + 𝑅(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 

 

𝐺(𝑥)𝑛+1 =
𝐺(𝑥)𝑛𝑊(𝑤)𝑛 + 𝐺(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 

 

𝐵(𝑥)𝑛+1 =
𝐵(𝑥)𝑛𝑊(𝑤)𝑛 + 𝐵(𝑥)𝑛+1𝑊(𝑤)𝑛+1

𝑊(𝑤)𝑛 +𝑊(𝑤)𝑛+1
 

 

8: end for 

 

Representing surfaces using signed distance function is extremely easy because it 

provides an efficient mechanism in consistent surface estimation.  However, there 

exists some special case where using TSDF for surface representation is limited or 

special requirements exist. For example, surface representation using TSDF is 

memory intensive because required memory for TSDF volume scales cubically and 

it depends on the grid resolution. For example, a voxel grid of resolution 5123 

covering a bounded volume of about 4 m3. In order to solve this memory 

requirement, we use Voxel Hashing method proposed by Nießner [10] which is 

memory and computational power efficient. In this technique, surface data is stored 

only densely where the measurements are observed and data can be exchanged easily 

efficiently through hash table in both ways. We do not need memory constrained 

voxel grid  using this voxel hashing method and this supports real-time performance 

without giving up finer quality reconstruction. 

 

TSDF has intensive calculations. Fusing new data, all pixels are projected to 3D 

coordinates which requires 640 x 480 = 307200 operations for a VGA resolution. 
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Furthermore, during TSDF update and rendering, each pixel requires 
|𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛|

𝜏
 

operations. |𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛| is the maximum ray length and 𝜏 is the voxel size. 

Therefore, ray casting is known as the most computationally intensive operation in 

any type of dense RGB-D SLAM system. Since each pixel is independent from each 

other, GPU can be utilized in parallel to have a real time performance. However, 

TSDF operations can be split into independent task for parallel processing.  

 

TSDF can encode surface at sub-voxel accuracy by interpolation, however, it can 

fail at sharp corners and edges. Therefore, such type of structures requires special 

effort or selecting a suitable voxel element size and truncation distance. Truncation 

distance expresses a prior information about the average thickness of object in the 

environment. If our interest are tables, chairs or objects like that, it is easy to decide 

the truncation distance, however, it is not easy to know which type of object 

encountered for. In our experiments  choosing larger value results less accurate 

reconstruction, while, smaller distance value leads to more accurate construction 

with more detail.  

 

Studies of accuracy for the Kinect sensor show that assuming a Gaussian noise model 

for the normalized disparity provides good fits to observed measurement errors on 

planar targets.  

 

𝑝(𝑧𝑜𝑏𝑠|𝑧𝑡𝑟𝑢𝑒) ∝ 𝑒𝑥𝑝
[−
(𝑧𝑡𝑟𝑢𝑒−𝑧𝑜𝑏𝑠)

2

𝜎2
]
 (4.24) 

 

In principle, the noise of the any disparity based distance sensors is quadratically 

proportional to the distance, σ ∝ 𝑑𝑒𝑝𝑡ℎ𝑡𝑟𝑢𝑒
2
(Equation 3.164). However, in our 

current implementation, we assume a fixed σ over all pixels. Assuming independent 

and identical distributed pixels with Gaussian noise in depth values , the likelihood 

of observing a depth image 𝐷 from the pose of the camera (𝑅𝑥𝑖,𝑗 + 𝑇) becomes  
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𝑝(𝐷|(𝑅, 𝑇)) =∏𝑝(𝐷𝑖,𝑗|(𝑅, 𝑇))

𝑖,𝑗

=∏𝑒
(
−𝜓(𝑅𝑥𝑖,𝑗+𝑇)

2

𝜎2
)

𝑖,𝑗

 

 

(4.25) 

Our aim is to find a camera rotation 𝑅∗ and translation 𝑇∗, which maximize the 

likelihood of observing a depth image.   

 

(𝑅∗, 𝑇∗) =  
argmax
𝑅, 𝑇   ∏𝑒

(
−𝜓(𝑅𝑥𝑖,𝑗+𝑇)

2

𝜎2
)

𝑖,𝑗

 
(4.26) 

 

In order to find the camera poses that maximizes this likelihood, we define a pose 

error function 𝐸(𝑅, 𝑇)  by taking the negative logarithm of (4.26) in order to simplify 

the calculation we define the error function 𝐸(𝑅, 𝑇) as 

 

𝐸(𝑅, 𝑇) =∑𝜓(𝑅𝑥𝑖,𝑗 + 𝑇)
2

𝑖,𝑗

 (4.27) 

 

A rigid-body motion can be described in Lie algebra with the 6-dimensional twist 

coordinates  = (1,2,3,1,2,3). If we rewrite the error function (7) then it 

becomes 

 

𝐸𝑝() =∑𝜓𝑖,𝑗(𝜉)
2

𝑖,𝑗

 
(4.28) 

 

𝜓𝑖,𝑗() = 𝜓(𝑅𝑥𝑖,𝑗 + 𝑇). 
(4.29) 

 

 

The vector  = (1,2,3,1,2,3) can be converted to into the corresponding Lie 

group SE(3) by computing 𝑇 = 𝑒𝑥𝑝, where: 
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 = [

0 −3
3 0

2 1
−1 2

−2 1
0 0

 
0   3
0   0

]. 

 

(4.30) 

If image registration is correct with the 3D model, the projected colors should be 

consistent as well. We incorporate this color consistency condition by adding color 

error function 𝐸𝑐(), which we define in (4.31). Since there is no absolute reference 

of the image for comparison, color values stored in the voxels are used.  Using color 

intensities of the pixels 𝐼(𝑝𝑖) and corresponding voxels 𝑉𝐼(𝜉), then the error function 

becomes 

 

𝐸𝑐() =∑(𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))
2

.

𝑖,𝑗

 (4.31) 

  

Then , we define the joint error function is given in (4.32) with 𝑤  being the intensity 

contribution with respect to the depth 

 

𝐸() = 𝐸𝑝(𝜉) + 𝑤𝐸𝑐(𝜉) (4.32) 

 

and  we start by linearizing 𝜓 around the initial pose estimate 𝜉 using the Jacobian 

matrix. The values of the Jacobian indicate the change of the error when translating 

along or rotating around the respective component of . In addition, the Jacobian 

matrix is the derivative of our signed distance function with respect to rigid body 

transformation parameters  = (1,2,3,1,2,3). We can compute the gradient 

of SDF with respect  to parameters as 

 

∇𝑥𝜓(x) =
𝜕𝜓(x)

𝜕𝑥
= [

𝜕

𝜕𝑥1
𝜓(x)

𝜕

𝜕𝑥2
𝜓(x)

𝜕

𝜕𝑥3
𝜓(x)] 

 

(4.33) 
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This gradient can be calculated by numerically differentiating 𝜓(x) using central 

difference over 𝑥1, 𝑥2 and 𝑥3. However, this term does not include any derivation 

with respect to . In order to have a complete expression for Jacobian of pose error 

 𝐽𝑝(), we use the chain rule:   

 

 

Equation (4.34) needs for an expression how the position of given point change with 

our transformation parameters  = (1,2,3,1,2,3) and this can be obtained by 

analyzing 𝜉 = 𝑒∆t𝑥 with respect to .  For a given point 𝜉, then we have;  

 

 

In (4.34), 
𝜕𝜓𝑖,𝑗(𝜉̂)

𝜕𝜉̂
 is computed numerically by evaluating the gradient. We compute 

the derivatives using a 3x3 Sobel-Feldman operator, which is a discrete 

differentiation operator . Equation 3.33 is the example of the derivative filter. 

 

 

 

We compute the Jacobian for color error term  𝐽𝑐() as 

 𝐽𝑝() =
𝜕𝜓𝑖,𝑗(𝜉)

𝜕̂
=
𝜕𝜓𝑖,𝑗(𝜉)

𝜕𝜉

𝜕(𝜉)

𝜕
 (4.34) 

𝜕(𝜉)

𝜕
= [

0 3
−3 0
2 −1

−2 1
1 0
0 0

0 0
1 0
0 1

]. 

 

(4.35) 

𝑆𝑜𝐹𝑒 ∈ 𝑅3 = [1 0 −1] ∗ [
1
2
1
] = [

1 0 −1
2 0 −2
1 0 −1

] 

 

(4.36) 

𝑆𝑜𝐹𝑒 ∈ 𝑅3 = [
1
0
−1
] ∗ [1 2 1] = [

1 0 −1
2 0 −2
1 0 −1

] 

 

(4.37) 
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We have already derive the joint error function as 

 

 

We adopt to use the Levenberg Marquardt algorithm because Gauss-Newton cannot 

calculate the best optimal estimate, resulting in non-minimum function value. 

Levenberg-Marquardt algorithm can handle this problem in standard form of   

 

 

where 𝜆 is the non-negative correction factor updated at each iteration. Levenberg-

Marquart method solves Equation (4.40) using Jacobian as 

 

 

In our case, we want to try to find the pose that minimizes the combination of pose 

and color error in Equation (4.32). After we compute the Jacobians, we write the 

matrix 𝐽𝑇𝐽 and the vector 𝐽𝑇𝑓  

 

 𝐽𝑐() =
𝜕𝜓𝑖,𝑗 (∑ (𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))

2

𝑖,𝑗 )

𝜕𝜉

𝜕(𝜉)

𝜕
 

(4.38) 

  

 

𝜕(𝜉)

𝜕
= [

0 3
−3 0
2 −1

−2 1
1 0
0 0

0 0
1 0
0 1

]. 

 

 

(4.39) 

𝐸() =∑𝜓𝑖,𝑗(𝜉)
2

𝑖,𝑗⏟      
𝐸𝑝()

+ 𝑤∑(𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))
2

𝑖,𝑗⏟            
𝐸𝑐()

 

 

(4.40) 

[𝐴 + 𝜆𝐼]Δ = −b (4.41) 

(𝐽𝑇𝐽 + 𝜆(𝐽𝑇𝐽))𝛿 = 𝐽𝑇𝑓 (4.42) 
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Algorithm 2 summarizes the pose estimation process we just elaborated.   

 

 

Algorithm 2.   Pose estimation algorithm  

Input : Joint error function 

Output : Pose  

1: begin 

2:  Initialize parameters 𝑐𝑥, 𝑐𝑦, 𝑓𝑥, 𝑓𝑦 

3:  Calculate Jacobian  

 𝐽𝑝() =
𝜕𝜓𝑖,𝑗(𝜉)

𝜕𝜉

𝜕(𝜉)

𝜕
 

 𝐽𝑐() =
𝜕𝜓𝑖,𝑗 (∑ (𝑉𝐼(𝜉) − 𝐼(𝑝𝑖))

2

𝑖,𝑗 )

𝜕𝜉

𝜕(𝜉)

𝜕
 

 

4:  Initialize non-negative correction factor as Gramian of Jacobian  

5: while (pose difference) > 0.001 or iteration # <5  do 

6:  Find 𝛿 increment  for  (𝐽𝑇𝐽 + 𝜆(𝐽𝑇𝐽))𝛿 = 𝐽𝑇𝑓 

7:  Update pose with increment 

8:  if  objective function is minimum  

9:   return pose 

10:  else 

11:    Update correction factor if needed 

12:   Increment iteration number 

13: end  

 

𝐽𝑇𝐽 =∑ 𝐽𝑝,𝑖
𝑇 𝐽𝑝,𝑖

𝑖

+ 𝑤∑ 𝐽𝑐,𝑖
𝑇 𝐽𝑐,𝑖

𝑖

 

𝐽𝑇𝑓 =∑ 𝐽𝑝,𝑖 𝜓𝑖,𝑗(𝜉)

𝑖

+ 𝑤 ∑ 𝐽𝑐,𝑖 (𝑉𝐼(𝜉) − 𝐼(𝑝𝑖)) 

𝑖

 

(4.43) 
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We solve (4.42) iteratively until difference (𝜉(𝑘 + 1) − 𝜉(𝑘)) is small enough or the 

maximum iteration number is reached. In order to increase real time  performance, 

we conduct all calculations on the GPU in parallel since the matrix 𝐽𝑇𝐽 and the vector 

𝐽𝑇𝑓 are independent of each other. Even though, a maximum iteration number are 

performed or optimization parameters yields values below the pre-defined threshold, 

in order to improve the convergence probability, we select to scale the contribution 

of new data based on a weighting function. To improve the basin of convergence for 

the solution, we scale the contribution of each measurement, based on a weighing 

function. This produces the standard iteratively reweighed least-squares algorithm. 

As a weighting function a possible choice are either Huber estimator or the Tukey’s 

estimator. Huber and Tukey’s estimator are given respectively as 

 

 

Here, ρℎ and ρ𝑡 are small constants typically  smaller than a tenth of the size of voxel. 

We use Huber estimator because of computational advantage. Furthermore, Huber 

estimator produces small residuals and is convex in contrast to the Tukey function, 

which Huber estimator does not cause new local minima [90][91]. Finally, the matrix 

𝐽𝑇𝐽 become 

 

 

 

ρℎ(x) = {
1.0 𝑖𝑓 |𝑥| ≤ ρℎ
ρℎ
|𝑥|

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(4.44) 

ρ𝑡(x) = {
[1 − (

𝑥

ρ𝑡
)
2

]

2

𝑖𝑓 |𝑥| ≤ ρ𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

 

(4.45) 

𝐽𝑇𝐽 = ρ (𝜓(𝜉))∑  𝐽𝑝,𝑖
𝑇 𝐽𝑝,𝑖

𝑖

+ 𝑤ρ (𝜓(𝜉))∑ 𝐽𝑐,𝑖
𝑇 𝐽𝑐,𝑖

𝑖

 (4.46) 
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In Equation (4.41), 𝜆 is a non-negative regularization term and 𝐼 is the identity 

matrix. For 𝜆, initial value is usually selected as 1/10 of the voxel size, however, in 

order to select the Huber and regularization term, sensitivity analysis is performed. 

Table 4.1 shows the obtained absolute trajectory error by using the BONN moving 

obstructing box dataset. In this analysis, a voxel size of 0.01 m is used. The best 

value of trajectory error is 0.298 m which is obtained when Huber constant and 

regularization term is 0.02 and 0.1 respectively.  

 

Table 4.1: BONN moving obstructing box  dataset – change of translational ATE 

(RMSE cm) with respect to Regularization and Huber constant 

 

Absolute Translation 

Error (RMSE meter) 

Regularization 

0.002 0.005 0.02 0.1 

Huber 

0.005 0.504 0.503 0.493 0.476 

0.002 0.737 0.320 0.600 0.554 

0.02 0.323 0.320 0.322 0.298 

0.01 0.335 0.400 0.410 0.362 

 

 

SDF calculation and update process are independent for each voxel and most of the 

calculation in registration is done for each pixel in the depth image. The matrix 𝐽𝑇𝐽 

and the vector 𝐽𝑇𝑓 are the results of sums over all the pixels. In order to increase the 

speed of solution and avoid from local minima, a coarse to fine iteration level of 

detail is used. We compute the derivatives of SDF while constructing the Jacobians. 

In order to increase the iteration number capability, we use a sub-sampling ¼ of the 

𝐽𝑇𝑓 = ρ (𝜓(𝜉))∑ 𝐽𝑝,𝑖 𝜓𝑖,𝑗(𝜉)

𝑖

+ 𝑤 ρ (𝜓(𝜉))∑ 𝐽𝑐,𝑖 (𝑉𝐼(𝜉) − 𝐼(𝑝𝑖)) 

𝑖

 

 

(4.47) 
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pixels. If we use ¼ downsampled image and original image, absolute trajectory error 

almost the same level. Table 4.2 shows the absolute trajectory error obtained by 

BONN moving obstructing box dataset original and downsampled image. Using this 

technique, we can process larger number of  inexpensive calculation without 

changing the convergence. However, increasing the iteration number from 2 to 3, 

which leads to increase in computational cost, also increases absolute trajectory 

error.  

 

Table 4.2: BONN moving obstructing box Dataset – comparison of translational 

ATE (RMSE cm) with  changing Iteration Number and Downsample option 

 

ATE (rmse) m 
Iteration Number 

1 2 3 6 

Original  0.312 0.265 0.308 0.293 

¼ Downsample 0.313 0.263 0.306 0.293 

 

4.5 SDF Representation, 3D Reconstruction and Volume Visualizations 

With the appearance of 3D sensor such as laser scanners, 3D reconstruction has 

received high degree of attention. This enables today indoor building model as well 

as outdoor navigation and geometry aware inspection. However, generally sensors 

produce large data of 3D point and, therefore, processing and visualization of 3D 

data become a challenging task. Many 3D reconstruction algorithm in robotics 

process data on an iterative manner by accessing the sample in order to generate the 

observed surface. Accessing a given point defined by 3D coordinate system becomes 

a challenging job because amount of sample in the scene or database which affects 

the complexity of the overall system. Most common approach to handle data is to 

group them on a grid and store in a array in order to access them quickly. However, 

memory requirements depend on the cube of size, which hinder large scale 

reconstruction. For example, representing a scene in the form cube 10x10x10 m3 at 
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1 cm resolution, would require 3.7 GB memory, assuming 4 byte for each grid.  

Common remedy for this problem is to use octree for representing the occupied cells 

[45][46]. An octree is a tree data structure where each internal node can have at most 

8 children, as shown in  Figure 4.12. 

 

 

The main drawback of the octree representation of 3D object in visualization is that 

there exists only a single primitive element, cube, therefore the precision heavily 

depends on the size of this cube. Figure 4.13 illustrates the different levels of an 

octree-based model. Each picture shows a deeper level of the octree compared to the 

previous one, i.e., in each successive picture the voxels are two times smaller. 

 

 
 

 

Figure 4.12: Octree structure. In each successive picture the voxels are two times 

smaller. 

 

In addition to the primitive element size, it is necessary to navigate the full octree 

when an arbitrary voxel information is requested. Virtual memory or paging is 

introduced by Bridson [47], which enables significant reduction in memory 
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requirements as well as data to be stored on external storage. However, memory 

overhead is still a significant problem.  In [48], it is proposed to encode the location 

of voxel with a hash function in order to enable large scene to be managed with 

limited memory. Nießner [10] proposes a new voxel hashing scheme which is 

memory and computational power efficient. In this technique, surface data are stored 

only where the measurements are observed and data can be exchanged easily 

efficiently through hash table in both ways.  

 

 
 

Figure 4.13: Different levels of an octree-based model, in each successive picture 

the voxels are two times smaller 

 

 

In order to decrease the memory requirement and large scale mapping, we use a 

voxel hashing scheme similar to [10]. In this way, only voxels corresponding to 

surfaces or obstacles are indexed.  
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Figure 4.14 illustrates our voxel hashing data structure. The idea is to grid the 

environment with small voxel blocks composed of  8x8x8 voxels. Each voxels stores 

SDF, color and weight as  

  

struct Voxel          { 

  float sdf; /** Signed distance function */ 

uchar3 color;  /** Color */ 

unsigned char weight; /**SDF weight*/ 
}      

 

Using GPU accelerated hash table, voxels blocks can be retrieved quickly. 

Coordinates of a 3D point is calculated by multiplication and rounding operation. 

Mapping from world coordinate to hash value is done using the following hashing 

function.  

 

 

where p1 , p2 , and p3 are large prime numbers (in our case 73856093, 19349669, 

83492791 respectively, based on  [48], M is the number of buckets,  ⊕ is the logical 

XOR operator, and mod is the modulo operator. In small hash table, there exists 

collisions, however, even with large hash tables and excellent hash functions, 

collisions are inevitable. Using large prime numbers reduces the risk of collision. 

 

Volume visualization is an important field of computer science, which provides key 

elements in order to discover and explore unseen structures of a volumetric data and 

allow users to get visual insight of complex datasets. History of volume visualization 

begins in 1970’s , when primary use of volumetric data in 3D medical imaging.  

 

H(x,y,z)=(x·p1 ⊕y·p2 ⊕z·p3) mod M 

 

(4.48) 
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Figure 4.14: Hash table , voxel blocks 

 

 

 

Volume visualization pipeline consist of data acquisition, enhancement of the data, 

reconstruction of the 3D voxel model and shading of the 2D projection. An object 

with volumetric data is represented by a voxels which are counterpart of pixel in 3D. 

It can store numeric value of associated independent  variables such as density, color, 

material, deformation of real objects. The data reference for a voxel can be a discrete 

sample of medical imaging or synthetic computational model such as fluid dynamic 

analysis. Independent from the source of data, volume can be stored by using 

primitive models ranging from 1-D element such as point or particles to 2-D polygon 

meshes or curved surface as well as 3-D  volume elements voxels [51]. 

 

In order to extract the primitives from the volume several methods are available. For 

example, cuberille method where space is meshed into equal cubes by three 

orthogonal set of equally spaced parallel planes [52]. In addition, cloud of points  can 

be formed by the dividing cubes algorithm [53] which subdivides the voxels into 
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smaller cubes that lie on the surface of the object and projects the intensity calculated 

for each cube onto the viewing plane, forming a gradient shaded representation of 

the three-dimensional object Figure 4.15. 

 

  
 

Figure 4.15: Gradient shaded representation of the three-dimensional in dividing 

cube algorithm  [56] 

 

 

 

In addition, fine polygon mesh can be generated by marching cubes algorithm which 

is originally described by Lorensen and Cline [54] which, takes as its input a regular 

scalar volumetric data set that has a scalar value residing at each lattice point of a 

rectilinear lattice in 3D space. This algorithm uses a volume unit called a cell and a 

look up table of possible polygon shape. Each of the vertices of a cell can be marked 

as free or occupied, therefore there exists (256) 28 possible configurations. However, 

possible configuration decreases to 15 if reflection and symmetric constraints are 

considered. Illustration of reflective and symmetric conditions are depicted in Figure 

4.16. The 15 unique cube–isosurface intersection scenarios result when considering 

both of these symmetries are shown in Figure 4.17. Furthermore, Cases 11 and 14 
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are considered as mirror symmetric, use of all three conditions (reflective, symmetric 

and mirror symmetric) in union results in 14 basic topologies. 

 

In order to have more accurate surfaces, the final value is obtained by interpolating 

between the voxels connected to the edge where the surface might be. For instance, 

consider the Case 1 in Figure 4.17, if the voxel values are stored in a range [0,255] 

and surface threshold is 128. Also, suppose that value stored in the bottom left voxel 

is 150 and the bottom right voxel has a value of 100, then linear interpolation yields 

 

 

 

 
 

Figure 4.16: Illustration of reflective, original and rotational symmetric condition 

 

 

150 − 128

200 − 100
= 0.32 

Hence, the vertex is placed at a fraction of 0.32 between voxels. This step results in 

a better fit of the surface. 

 

In short, we use the discrete voxel grid in order to represent the SDF. Signed distance 

value is calculated by trilinear interpolation of eight neighboring pixels. We project 

each voxel onto the image plane instead of ray casting because this process is suitable 

for parallel processing since each voxel is independent of its neighbors. Since the 

operation has to be carried out for each voxel, GPU is used for this operation. Finally, 

we implement marching cubes algorithm [25] in order to extract the triangle mesh. 

In RGB-D mapping approaches, storing the SDF in a 3D grid requires large amount 
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memory. Therefore, we use a special memory allocation technique proposed by 

Nießner in [10]. In this technique, we only allocate the voxels in required areas, 

which, enables scanning the large areas with limited memory. 

 

 

 
 

Figure 4.17: The 15 basic intersection topologies [55] 

 

 

4.6 Dynamic Detection 

Let 𝐼𝑚 and 𝐼𝑠 be the instantaneous image of generated model and source respectively, 

The error in color map denoted by 𝑒𝑐 as 
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𝑒𝑐 = |𝐼𝑠←𝑚 − 𝐼𝑠| (4.49) 

 

If the images 𝐼𝑚 and 𝐼𝑠 are  not accurately registered and if there is change in the 

geometry, the resulting error would not be zero (Figure 4.18). In general, minimizing 

(4.47) results in a sufficient image registration. SDF represents the distance to nearest 

surface and therefore we select to use SDF as an error function. The error in the depth 

can be written as   

 

𝑒𝑝(𝜉) =∑‖𝜓𝑖(𝜉)) ‖
2.

𝑁

𝑖=1

 (4.50) 

  

 

 

 

Figure 4.18: Inconsistency map of two images (EPFL RGB-D Pedestrian Dataset 

sequence frame 250 and 278) 
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In Equation (4.48),  N is pixel number, 𝜓 is the signed distance function  and 𝜉 is the 

matrix exponential multiplied by the 3D point corresponding to the 𝑖𝑡ℎ pixel 𝑝𝑖 

computed using homogenous point equation in (4.1). 

 

After performing an initial registration using Equation (4.48), we compute for each 

pixel, its residual as defined in (4.49). 

 

𝑟𝑖 = ‖𝜓𝑖(𝜉)) ‖
2 (4.51) 

  

The residual obtained after image registration is used as for dynamic detection. Our 

aim is to compute the binary labeling for each element according to occurred 

changes. For example, 𝑙𝑖 = 0 indicates consistency and 𝑙𝑖 = 1 shows the presence 

of change in corresponding voxel 𝑖. 

 

If ℎ(𝑑) is the histogram of the image, our problem is in the form of binary 

classification problem using a dynamic label threshold. Then, the probability density 

function can be defined as the combination of two density functions related class 

label as 

𝑝(𝐷) =∑𝑃𝑖

2

𝑖=1

𝑝𝑖(𝐷|𝑙𝑖) (4.52) 

 

using class conditional densities and prior probabilities. In order to calculate an 

estimate of dynamic change, we maximize 𝑝(𝑙|𝐷) 

 

𝑙∗ =        𝑙
𝑎𝑟𝑔𝑚𝑎𝑥 {𝐿(𝐷|𝑙)} (4.53) 

  

where 𝐿(𝐷|𝑙) is the log likelihood of the two-component mixture and it can be 

written as  
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𝐿(𝐷, 𝑙) = ∑ℎ(𝑑) ln 𝑝(𝐷|𝑙) .

𝐿−1

𝑥=0

 (4.54) 

 

The final log-likelihood function is in the form of 

𝐿(𝐷, 𝑈, 𝑙) =∑∑ℎ(𝑑)𝑢𝑖(𝑑)l

𝐿−1

𝑑=0

n

2

𝑖=1

{𝑃𝑖𝑝𝑖(𝑑|𝑙𝑖)} 

  

(4.55) 

𝑝(𝑑|𝑙) = 𝐻(𝑦)
2

𝜌𝑐√2𝜋
𝑒
−
𝑦2

2𝜌𝑐2 (4.56) 

  

In (4.53)  𝑢𝑖(𝑑) is the indication of static or dynamic component. 

 

 

After dynamic label identification and updating the label grid (Algorithm 2), a 

second pose estimation and registration are performed using the newly obtained label 

set (Algorithm 3). However, we must filter out dynamic labels that originated from 

noise (Figure 4.19). In order to that, we compare the SDF value of new observation 

with the previous static reconstruction and compute the difference𝛿𝐿. Applying a 

threshold 𝜃, we obtain the label grid such that 

 

 𝑙𝑖 = 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 if δL > θ. (4.57) 
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Figure 4.19: RGB image b) Reconstruction error c) Dynamic label image 
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Algorithm 3. Dynamic labelling algorithm 

Input : Depth image, prior segmentation from residual error, initial label class  

Output : Segmented depth image with label 

1: Initialize parameters 

2: Find maximal cliques 

3: Construct k-neighborhoods 

4: Partition into parallel threads 

5: do each EM iteration 

6:  for  each neighborhood of the subgraph do in parallel 

7:   E-step  

8: M-step  

9:         end for 

10:  Update parameters 

11: while  Likelihood increment < threshold 

12: return Label set 
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Algorithm 4. DUDMAP  

Input : Depth image, RGB image 

Output : Artificial camera view, mesh (optional)   

1: Initialize parameters for sensor, camera tracking, SDF 

2: if frame number = initial frame  

3:  Initialize poses as identity 

4:  for i  N (number of pixel) 

5:   Initialize labels as static 

6:  end for 

7:  Pose estimation using matrix exponential 

8: else  

9:  RGB similarity check  

10:  Pose estimation using matrix exponential  

11:  Generate label set  

12:  Re-pose estimation using matrix exponential with label set  

13: Volume integration  

14:  Update parameters 

15: while  Frame number < total number of frame 

16: Extract mesh 

17: return Final mesh 
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CHAPTER 5  

5 EXPERIMENTAL RESULTS AND DISCUSSIONS 

Our proposed method is able to operate in dynamic environments without requiring 

any dynamic object detection and tracking. Our experiments support our main 

claims, which are:  

 

• Robustness to dynamic elements regardless of their quantity and speed of 

change in the environment, 

• That the approach requires no explicit object tracking, and no object 

classifier  

• That  the approach generates a consistent a dense model of the environment.  

 

The experiments were conducted on a workstation computer Intel i7 running at 3.20 

GHz and a GeForce 1070 GPU using Ubuntu 16.04. Our default parameters have 

been determined empirically so that a sensitivity analysis is performed on changes 

of parameters the system is sensitive to. Our experiments demonstrate many 

evaluation scenarios.  

 

1. In order to evaluate the consistent final mesh generating performance, a static 

environment is used with ground truth selected as repository datasets namely 

ICL NUIM and CoRBS (Section 5.1).  

 

2. In real life, there are a lot of dynamic movements (e.g., of cars, people, 

animals) that affect the visual odometry calculations. In order to evaluate the 

performance of our proposed algorithm in dynamic environment, we 

compare our method with other state of art repositories using TUM dataset 

[1], together with other high dynamic dataset including Bonn [14], 
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VolumeDeform [30], CVSSP RGB-D dataset [34] (used with permission), 

which are publicly available in order to show the superior performance of our 

approach (Section 5.2).  

 

3. In addition, outdoor performances of our method are also evaluated using 

commercially available ZED camera for map generation and dynamic 

filtering (Section 5.3). 

5.1 Static Environment 

The focus of this part is to show that our proposed approach can generate 3D mesh 

of scene in static environment because this is the key part of mapping algorithms. 

Two datasets which are ICL NUIM and CoRBS are used in this part.  

 

5.1.1 ICL NUIM Dataset 

 

The ICL-NUIM dataset provides a benchmarking environment for RGB-D, Visual 

Odometry and SLAM algorithms. In addition, all data contained by ICL NUIM 

dataset are compatible with the evaluation tool provided by the TUM RGB-D 

dataset. There are two different sequences, living room and office room scene with 

a corresponding ground truth. Since the living room has 3D surface ground truth 

together, it is a perfect tool for evaluation of camera trajectory and reconstruction of 

SLAM performance. Figure 5.1 illustrates the sample RGB image of ICL-NUIM  

living room dataset containing  a chair, a table and another type common object used 

in daily life. We use “living_room_traj2_frei” sequence, which has 882 frames for 

30 sec for 3D mesh generation.  Table 5.1 shows the comparison of surface 

reconstruction accuracy of the SLAM algorithms and Figure 5.2 illustrates the 

resulting dense 3D model. Our proposed method (DUDMAP) achieves 0.004 m 

mean value which is half of the Elastic Fusion (Figure 5.4). In addition, Figure 5.4 

also shows that among 4782720 element, the maximum absolute distance error is 
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0.045 m and average error is 0.004 m. Surface reconstruction quality is measured 

using CloudCompare program and frequency of residual of the reconstruction error 

is given in Figure 5.3. The other successful methods including Kintinuous and RGB-

D SLAM have slightly higher accuracy value 0.009 m and 0.031 m respectively. 

Therefore, our proposed methodology have a superior performance in 3D 

reconstruction of standardized static environment. 

 

 

  
 

 

Figure 5.1: ICL-NUIM  living room dataset containing  chair, table and other type 

common object. 

 

Table 5.1: Comparison of surface reconstruction accuracy (mean value) 

 
DVO SLAM 0.119 m 

RGB-D SLAM 0.031 m 

MRSMap 0.098 m 

Kintinuous 0.009 m 

ElasticFusion 0.008 m 

DUDMAP 0.004 m 
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Figure 5.2: Dense 3D model of the scene obtained by our proposed methodology 

 

 

 

 

Figure 5.3: Reconstructions of the objects in living room - 2 scene including error 

value (blue 0.025 m, green 0.045 m) 
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Figure 5.4: Frequency of residual of the reconstruction error.  

 

 

Figure 5.5 shows the obtained trajectory of the ICL NUIM dataset-living room 2 

sequence. The resulting absolute translational error is 0.004 m in RMS. The 

translational and rotational error are 0.007 m and 0.149 deg both in RMS. 

 
 

Figure 5.5: ATE RMSE of  synthetic ICL-NUIM dataset 
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5.1.2 CoRBS 

 

Comprehensive RGB-D Benchmark for SLAM (CoRBS) dataset is the combination 

of real depth and color data together with a ground truth trajectory. This dataset 

allows the user to independently evaluate the localization as well as the mapping 

portion of RGB-D SLAM systems using real data. In addition, it provides ground 

truth for the trajectory  obtained by using an external motion capture system for the 

scene geometry via an external 3D scanner, yielding a sub-millimeter precision. In 

order to evaluate the 3D volume reconstruction and trajectory estimation 

performance of our proposed methodology in static environment, we use the D1 

(Desk) sequence (Figure 5.6). It has 611 frames obtained by Kinect V2 camera with 

a resolution of  640x480 pixels. The duration of sequence is 23.4 sec. The average 

translation/rotational velocity in the sequence is 0.24 m/s and 35 deg/s with 

maximum of 0.6 m/s and 80 deg/s. The total bounding box of the 3D scene is 1.18 × 

2.32 × 0.76 [m x m x m].  

 

  
 

Figure 5.6: CORBS Desk1  dataset containing  desk, computer, book, monitor and 

other types common object of everyday. 

 

 

Figure 5.7 shows the obtained ATE / RPE plot of the D1 sequence. The resulting 

absolute translational error is 0.007061 m in RMS. The translational and rotational 

error are 0.015041 m and 0.914027 deg both in RMS. Figure 5.8 and  Figure 5.9 
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illustrates the surface reconstruction capability of the our method. In Figure 5.9  both 

the ground truth model and resulting mesh is shown. We generate successfully the 

mesh of the environment with the consistent color of the objects. However, there 

exists some distortion because of the selected voxel size.   

 

We compare against the state-of-the- art algorithm DVO as well as ICP which is 

used e.g. in KinectFusion,  Elastic Fusion and other modern SLAM systems. We 

include DNA-SLAM, which is Dense Noise Aware Simultaneous Localization 

because this method is referred to its high accurately estimation. It uses a 

sophisticated weighting scheme for reducing noise characteristics in dense motion 

estimation and this weighting approach decreases the drift compared to DVO. Table 

5.2 depicts the  RMSE of the translational and rotational drift (RPE) in m/s and deg/s 

respectively for different sequences of the CoRBS dataset. The best results are 

depicted in bold. The trajectories estimated with ICP, DVO and DNA-SLAM exhibit 

a lower accuracy than our method (DUDMAP). Compared to other methods,  the 

relative translational as well as the rotational error are substantially reduced in most 

sequences. For the sequences D1 and E1, we achieve the best accuracy.In all 

sequences, out method is closer to the ground truth  than other methods. In summary, 

our method is seen to outperform in most of the sequences especially in rotational 

aspect because of the direct pose estimation and joint error weighting scheme for 

pose and intensity.  

Table 5.2: RMSE of the translational and rotational drift (RPE) in m/s and deg/s 

respectively. 

 D1 sequence E1 sequence 

Algorithm Etrans Erot Etrans Erot 

ICP [88] 0,04 2,08 0,08 4,42 

DVO [87] 0,06 2,54 0,03 1,59 

DNA-SLAM [89] 0,03 0,97 0,03 1,42 

DUDMAP 0,02 0,91 0,01 0,68 
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Figure 5.7: ATE RMSE of  synthetic CoRBS dataset (Desk sequence) 

 

 

 

 
 

 

Figure 5.8: Dense 3D model of the scene obtained by our proposed methodology 
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Figure 5.9: Dense 3D model of the scene obtained by our proposed methodology 

(Close up view) 

 

5.2 Dynamic Environment 

5.2.1 TUM RGB-D Dataset 

In this dataset, there is a person sitting moving his/her arms: thus the sitting sequence 

has a relatively low dynamics. Whereas walking sequences are  highly dynamic and 

complex because moving objects cover almost all camera views. In this dataset, the 

evaluation is performed through the metrics proposed in [1] as translational, 

rotational relative pose error (RPE)  and  translational absolute trajectory error 

(ATE). The obtained results of dense visual SLAM methods are listed in Table 5.4 

– Table 5.6. In the TUM dataset, the ground-truth trajectory is obtained from a high-

accuracy motion-capture system with eight high-speed tracking cameras  (100 Hz). 

Therefore, a quantitative evaluation is possible regarding the accuracy of pose 

estimation. However, the TUM dataset has no exact 3D model of the environment, 

therefore we can evaluated the 3D reconstruction  performance results of our method 

qualitatively. Qualitative results are shown in Figure 5.11, Figure 5.13 and Figure 
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5.14. Figure 5.12 also shows the scene reconstruction result of fr3/walking xyz 

sequence obtained by using Elastic Fusion, DynaSLAM and DS-SLAM.  

 

In TUM dataset, fr3 denotes that the dataset sequence it belongs to, is freiburg3; 

sitting and walking represent two different character states, sitting is low dynamics 

example while walking is a high dynamics example; xyz, rpy, static, and half 

halfsphere stand for four types of camera ego-motions.  For example, sit means that 

the person is sitting, and xyz means the camera moves along the x-y-z-axis. Basic 

properties of the sequences which used in evaluation is listed below.  

 

• ‘freiburg3_sitting static’ sequence has a duration of 23.64 sec and average  

translational velocity is  0.011 m/s while and average angular velocity is 

1.699 deg/s. 

 

• ‘freiburg3_sitting xyz’ sequence has a duration of 42.51 sec and average  

translational velocity is 0.132 m/s while and average angular velocity is 

3.562deg/s. 

 

• ‘freiburg3_walking_static’ sequence has a duration of 24.83s sec and average  

translational velocity is 0.282 m/s while and average angular velocity is 1.388 

deg/s. 

 

• ‘freiburg3_walking_xyz’ sequence has a duration of 28.84 sec and average  

translational velocity is  0.208 m/s while and average angular velocity is 

5.490 deg/s. 

 

• ‘freiburg3 walking halfsphere’ sequence has a duration of 35.82 sec and 

average  translational velocity is 0.221 m/s while and average angular 

velocity is 18.267 deg/s. 
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It is noted that, since only part of the human body is moving in the low dynamic 

dataset, when the visual odometry is tracking, the static part of the human body still 

provides pose estimation information. While the ultimate goal of this section is to 

further construct a static map by eliminating the influence of dynamic objects, our 

focus is on the end effect of static mapping. 

 

As shown in Table 5.4, our proposed scheme achieves an average translation RPE 

error of 0.045 m/s, that is considerably lower than other dense methods  such as 

VOSF, Elastic Fusion, Static Fusion and Mask Fusion. Our aim is to develop a dense 

RGB-D SLAM algorithm without using high computational power in dynamic 

environments. According to Table 5.4 – Table 5.6, our method achieves smaller 

relative and translational error than other dense method. For all high dynamic 

sequences, our method reaches the lowest RPE errors except for the “fr3/walk stat” 

sequence. In highly dynamic scene, our proposed method produces better results for 

the following reasons: 

 

ElasticFusion is not capable of dynamics in the sequences. Hence, dynamic object 

deteriorates the 3D mesh and pose estimation. CoFusion works well for slow camera 

motions but its performance deteriorates noticeably when the speed of the camera 

increases. StaticFusion works sequences with limited dynamics at the beginning and 

therefore, it produces large errors on highly dynamic environment. In general, 

existing high dynamic in the scene leads to blurry motion in the image, resulting 

inconsistent mesh. 

 

In addition, according to Table 5.4 till Table 5.6, we conclude that undoubtedly the 

semantic based Visual SLAM methods have better results based on ATE and RPE 

criteria. However, such methods do not provide a dense model and are relying 

heavily on the semantic segmentation prior result from the learning techniques. If an 

unlearned condition or object exists in the camera view, the estimation result is 

highly influenced.  
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Table 5.3 compares the execution time of our proposed method with semantic based 

SLAM algorithms. Semantic SLAM methods in Table 5.3 use either SegNet or Mask 

R-CNN. Mask R-CNN is a Convolutional Neural Network (CNN) and state-of-the-

art in terms of image segmentation. SegNet, is designed to be an efficient architecture 

for pixel-wise semantic segmentation. It is primarily motivated by road scene 

understanding applications which require the ability to model appearance (road, 

building), shape (cars, pedestrians) and understand the spatial-relationship (context) 

be- tween different classes such as road and side-walk. 

 

Segmentation stage takes 34 ms on average, however, Mask R-CNN require longer 

time about 200 ms. All semantic method except Mask Fusion are based on 

ORBSLAM, therefore it is included in timing analysis. Figure 5.14, Figure 5.15 and 

Figure 5.16  show that DynaSLAM has a satisfactory tracking performance. The 

addition of the multi-view geometry stage based on region growth algorithm and 

background inpainting process in DynaSLAM introduce a delay, makes this method 

unsuitable for real time operation. Table 5.3 also compares the CPU and GPU 

performance of the SegNet. If SegNet is run on CPU instead of GPU, segmentation 

process takes 2582 ms which is almost 68 times longer than GPU. If a lightweight 

semantic segmentation such as Seg.Net is used, as in DS-SLAM and RDS-SLAM,  

the required time for per frame for segmentation decreases from 200 ms to 30 ms. 

However, an unlearned dynamics in the camera field of view results in pose error, 

leading to moving object to be mapped as static object. Our method without using 

any semantic label criteria runs almost at constant rate regardless of the moving 

object type and speed without requiring high end graphics unit.  

 

Figure 5.14 shows that a person remains in the model, because, the model built has 

an artifact in the “walking xyz” sequences. This situation also occurs in “walking 

halfsphere” (Figure 5.13) and “walking static”(Figure 5.10) sequences because the 

camera is tracking a person initially and finally the camera never look again, hence, 

it is not possible to identify voxels free.  
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Figure 5.17 also confirms such a case. It is clear that the translational error is higher 

at the beginning when the camera tracks the person. Because of the high dynamic 

initially, the translational error is above 0.3 m. One second later the translational 

error is as low as 0.03 m, however, a new high dynamical motion results in an 

increase in the translational error. Thus, the high translational error results in a 

artifact in the resulting mesh of the environment.  

 

Figure 5.15 and Figure 5.16 shows- the estimated trajectories of of TUM fr3/walking 

xyz sequence of SLAM systems. In Figure 5.15, it is clear that ORBSLAM has the  

worst trajectory estimation in sparse SLAM systems. The performance of our 

proposed method differs from RDS-SLAM, Semantic SLAM, RDS-SLAM, 

DynaSLAM and DS-SLAM especially at coordinate point (-0.8 m, -3.3 m) and at 

the triangle area with corner points (-0.8 m, -3.0 m) , (-0.75m, -2.75 m) and (-0.7 m, 

-2.85 m). In Figure 5.16, it is clear that VO-SF and Elastic Fusion cannot estimate 

the trajectory successfully. Although, Flow Fusion and Pose Fusion use the semantic 

segmentation method, their performances are not as good as those shown in Figure 

5.15. Since Flow Fusion and Pose Fusion are built on Elastic Fusion, performance 

of combination of Elastic Fusion with semantic methods is not better that 

ORBSLAM based semantic systems.    

 

According to Figure 5.15 and Figure 5.16, among all dense, non-semantic SLAM 

system, DUDMap provides the most consistent trajectory estimation, which is 

consistent with result of Table 5.6. If scene generation capability given in Figure 

5.14 is considered, sparse and semantic SLAM systems such as DynaSLAM and DS-

SLAM generate a blurry model of the environment, however our proposed method 

provides a clear model. In short, semantic SLAM systems have the best trajectory 

estimate with blurry 3D model, however, dense method have more clear 3D model 

with less accurate trajectory.  
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Table 5.3: TUM Dataset – Execution Time 

 

Method Semantic GPU 
Dynamic 

Label 

Time for per frame 

(ms) 

ORBSLAM3 - - - 22 – 30 

DS-SLAM SegNet 

P4000 38 ms 

Feature extraction >  

9.3 

Consistency check >  

29 

Segmentation>  38 

Total >  75 ms 

Intel i7-8750 

CPU only 
2582 ms Total >  2600 ms [21] 

DynaSLAM 
Mask  

R-CNN 
Tesla M40 200 ms 

Multi-view geometry > 

200 

Background inpaint> 

120 
 

RDS-SLAM SegNet RTX 2080Ti 30 ms Total>300 ms 

DUDMap - GTX 1070 8.4 ms 

Similarity Check:< 7.1   

Pose Estimation< 10.3 

Dynamic Label< 8.4 

Total < 50 ms 

Elastic 

Fusion 
- GTX 780Ti - <66 ms 

Mask Fusion 
Mask  

R-CNN 
GTX TitanX 200 ms <60 ms 

 

 

Figure 5.15 and Figure 5.16 illustrate the estimated trajectory result of fr3/walking 

xyz sequence obtained by state of art visual SLAM system. Trajectory results is 

consistent with the Table 5.4 – Table 5.6. Semantic based Visual SLAM methods 

except Pose Fusion and Flow Fusion have better results in ATE and RPE criteria. 
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Our proposed method can compete with Semantic SLAM and RDS-SLAM, 

however, DynaSLAM and DS-SLAM have the best estimate. However, our method 

have the best result among the dense and CNN-free method.  

 

Table 5.4, Table 5.5 and Table 5.6 illustrate the translational RPE (RMSE cm/s), 

translational RPE (RMSE deg/s) and Translational ATE (RMSE cm) of the TUM fr3 

dataset. Among the dense methods, all of them show similar performance in low 

dynamic dataset except Elastic Fusion. Elastic Fusion provides an average 1.25 cm/s 

translation RPE, 0.45 deg/s translational RPE and 1.5 cm translational ATE in low 

dynamic sequences. The error values for second best method , Co Fusion , are 1.35 

cm/s translation RPE, 0.7 deg/s translational RPE and 1.9 cm translational ATE.Our 

method provides an average 2.6 cm/s translation RPE, 0.9 deg/s translational RPE 

and 1.8 cm translational ATE in low dynamic sequences. However, high dynamic 

deteriorates the performance of Elastic Fusion and CoFusion. In high dynamics, our 

proposed method is the best by providing 4.6 cm/s translation RPE, 1.4 deg/s 

translational RPE and 4 cm translational ATE. Refusion takes the second place with 

5.2 cm/s translation RPE, 2.2 deg/s translational RPE and 5.4 cm translational ATE.   

Mask Fusion the third method attained with 5.8 cm/s translation RPE, 1.6 deg/s 

translational RPE and 5.9 cm translational ATE. For all dense method, walk/xyz and 

walk/half are the most challenging sequences.  

 

All sparse SLAM method illustrated in Table 5.4, Table 5.5 and Table 5.6 give the 

superior results than our proposed method. In low dynamic, sparse SLAM methods 

show similar performance as ORBSLAM because these methods are based on 

ORBSLAM. Addition of segmentation step increases the dynamic mapping 

performance. A similar case can be seen in Mask Fusion which is based on Elastic 

Fusion and addition of segmentation process Mask R-CNN increases the 

performance of Mask Fusion.  
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Figure 5.10: ATE / RPE of TUM fr3/walking static sequence 

 

 

Figure 5.11: Mesh of TUM fr3/walking static sequence 
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Figure 5.12: ATE / RPE of TUM fr3/walking halfsphere sequence 

 

 

 

Figure 5.13: Mesh of TUM fr3/walking halfsphere sequence 
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Method Elastic Fusion DUDMap 

SLAM type Dense Dense 

front 

view 

  

top 

view 

  

   

Method DynaSLAM DS-SLAM 

SLAM type Sparse Sparse 

front 

view 

  

top 

view 

  

 

Figure 5.14: Scene reconstruction of fr3/walking xyz sequence 
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Table 5.4: TUM Dataset – Translational RPE (RMSE cm/s) 
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Table 5.5:  TUM Dataset – Translational RPE (RMSE deg/s) 
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Table 5.6: TUM Dataset – Translational ATE (RMSE cm) 
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Figure 5.15: Comparison of estimated trajectories of of TUM fr3/walking xyz 

sequence 

 

 

  

DynaSLAM  

Sparse, Mask R-CNN 

DS-SLAM   

Sparse, SegNet CNN 

  

RDS-SLAM  

Sparse, Mask R-CNN / SegNet 

ORBSLAM3  

Sparse, No CNN 

 
 

Semantic SLAM  

Sparse, BlitzNet CNN 

DUDMAP 

Dense, No CNN 
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Figure 5.16: Comparison of estimated trajectories of of TUM fr3/walking xyz 

sequence (continued) 

 

 

 

  

Elastic Fusion  

Dense, No CNN 

Pose Fusion  

 Dense, Open Pose CNN 

 
 

Refusion  

Dense , No CNN 

Static Fusion  

Dense, No CNN 

 
 

Flow Fusion  

Dense, Pwc.Net CNN 

VO-SF  

Dense, No CNN 
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Figure 5.17: Relative translational error (walking-xyz) of our method 

 

5.2.2 Bonn RGB-D Dynamic Dataset 

In order to further evaluate the accuracy of camera pose tracking, we compare our 

approach with the three state of the art SLAM systems namely, DynaSLAM, 

Refusion and Static Fusion on the dynamic scenes of Bonn dataset published in [14]. 

Results are obtained by running available open source implementations for each 

method This dataset has  24 dynamic sequences, where people perform different 

tasks, such as manipulating boxes or playing with balloons. When an robot is moved 

to an arbitrary location and if is can’t locate itself against the map, then this situation 

known as “kidnapped robot problem”. For example, “moving_obstructing_box (see 

Figure 5.18) ” scene assesses the kidnapped camera problem, where the camera is 

moved to a different location whereas “balloon_tracking” has uniformly colored 

balloon having no features on it. These tasks often obstruct the camera, creating 

particularly challenging situation when mapping. For each sequence, there exists the 

ground truth pose of the sensor, recorded with an Optitrack Prime 13 motion capture 
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system. In addition, the sequences are in the same format as the TUM RGB-D 

Dataset. 

 

Table 5.7 shows that in balloon tracking DynaSLAM outperforms the other methods. 

However, it has poor performance on the obstructing box scene. Since DynaSLAM 

is the combination of neural network and geometric approach, the available semantic 

information on the scene helps to increase the performance. DynaSLAM with the 

combined neural network and geometric approach performs best in the sequence 

with people and known object. This is due to the heavy bias of having people in 

sequence, therefore the segmentation of people always helps the DynaSLAM 

achieving better results. In obstruction box sequence, on the other hand, our proposed 

method performs best because our method does not employ any type of object 

classifier or tracking. If a voxel is empty in enough time, then we mark it as free. The 

speed of  dynamic elements becomes important, because, it allows us to capture the 

static part of environment in the first frames.  

 

  
 

Figure 5.18: Bonn RGB-D Dynamic dataset containing  desk, chair and moving 

obstructing box 

 

 

Figure 5.19 shows the resulting mesh of BONN moving obstructing box sequence 

and the camera view is often obstructed by the box which creates particularly 

challenging situations for mapping approaches. However, it is clear that our method 
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can generate the 3D model of the environment without having to track of the box or 

walking people.  

 

 

 

Figure 5.19: Mesh of BONN moving obstructing box sequence 

 

 

Table 5.7: BONN Dataset – Translational RPE - (RMSE cm/s) 

Dynamic Sequence 
RF 

[14] 

SF 

[13] 

DynaSLAM 

[20] 
DUDMAP 

High 
balloon 

tracking2 
0,32 0,37 0,19 0,27 

High 
obstruction 

box 
0,34 0,33 0,54 0,17 
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5.2.3 VolumeDeform Dataset 

VolumeDeform  is a RGB-D dataset for the purpose of real-time non-rigid 

reconstruction and is used for evaluation of the non-rigid object reconstruction 

algorithms at real-time rates [30]. Since dynamic data sets for evaluating RGB-D 

SLAM method with exact trajectory are limited, this dataset is used to measure the 

elimination capability of our method to handle dynamic parts in the scene. Results 

of pose error and trajectory error are listed in Table 5.8 and Figure 5.20. Obtained 

results using boxing, sunflower and frame sequences are illustrated Figure 5.21 and  

Figure 5.22. 

 

Table 5.8: VolumeDeform Dataset results 

Dynamic Sequence  

Trans,  

RPE 

RMSE  

(cm/s) 

Trans,  

RPE  

RMSE  

(deg/s) 

Trans,  

ATE 

RMSE 

(cm) 

High boxing 0,32 0,37 0,19 

High sunflower 0,34 0,33 0,54 

 

  
 

Figure 5.20: Estimated trajectories of of Volume Deform boxing and sunflower 

sequence 
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 Frame 2 Frame 100 Frame 200 

 

RGB 

Image 

   

 

Depth 

Image 

   

Mesh 

   
 

Figure 5.21: RGB-D image pair and 3D dense model of VolumeDeform sunflower 

sequence obtained by  our proposed method 

 

5.2.4 CVSSP RGB-D Dataset  

 

“CVSSP Dynamic RGBD dataset has RGBD sequences of general dynamic scenes 

captured using the Kinect V1/V2 as well as two synthetic sequences”[33]. This 

dataset is designed for non-rigid reconstruction. “dog” sequence is selected because 

there exists little clearly distinct geometry in the environment with non-rigid 

dynamic object. In this sequence , the dynamic part is the movement of the arm of 

the person and the head of the dog. The exact value of the trajectory and reference 

3D model of the environment are not provided, therefore we evaluated the 3D mesh 

result, qualitatively. As the frame number increases, our proposed method 

successfully eliminates dynamic in the frame (Figure 5.23).   
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 Frame 2 Frame 100 Frame 200 

 

RGB 

Image 

   

 

Depth 

Image 

   

Mesh 

   
 

Figure 5.22:RGB-D image pair and 3D dense model of VolumeDeform boxing 

sequence obtained by  our proposed method 

 

Frame 

# 
0 75 113 162 

RGB 

    

Depth 

    

 

  
 Mesh @ 2. frame Mesh @ 180. frame 

 

Figure 5.23: RGB-D image and final mesh of the CVSSP “dog” sequence 
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5.2.5 Outdoor Mapping Performance  

 

We used the ZED camera [35] in hand-held setup for acquiring RGB-D images. We 

captured frame in resolution of 1280x720 with rate of 30 fps. In order to measure the 

3D mapping performance of our proposed approach, default camera properties and 

standard settings are used without calibration or lens distortion correction. 0.01 m 

voxel size with minimum 0.3 m depth sensor setting is used. Our method 

successfully created the mesh of the environment with some distortions. For 

instance, 0.01 mm voxel size results in coarse map especially in missing wire grid 

fence and part of the fence door (Figure 5.24) 

  

 

 

 

Figure 5.24: RGB-D image and final mesh of the “outdoor-1” sequence 
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Figure 5.25: outdoor-1 sequence grid fence mapping result 

 

Using smaller voxel size increases the mapping performance helps to maintain grid 

fence as in Figure 5.25. If an autonomous robot is flying around thin branches, 

telephone lines or chain link fencing, an detailed map is required in order to avoid 

from the collision because those are the main collision areas for outdoor autonomous 

drones.  

 

In the second sequence, we captured frame in resolution of 1280x720 with rate of 10 

fps using default camera properties. 0.02 m voxel size and 16 m maximum depth 

settings are used in this sequence. As can be seen from the Figure 5.26, the final 

mesh has no artifact of the walking person in the scene. However, result of Elastic 

Fusion has traces of the walking person.  
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Figure 5.26: RGB-D image and final mesh of the “outdoor-2 ” sequence  a) 

DUDMap  b) Elastic Fusion 
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CHAPTER 6  

6 SENSITIVITY ANALYSIS 

In order to systematically measure the effect the input parameters to SLAM tracking 

performance, a design of experiments study is conducted because it is an efficient 

method for studying the relationship between multiple input variables and key output 

variables. In addition, it is a structured approach for collecting data and making 

discoveries.  

 

In order to limit the memory requirement, the voxel size is the most important 

parameter because representing a scene in the form of cube 10 x10 x 10 m3 in size at 

1 cm resolution, would require 7.4 GB memory, storing 8 byte for each grid. Our 

aim is to limit the memory size to 4 GB maximum, we represent the environment in 

the form of a rectangular prism of size 10 x10 x 5 m3 at 1 cm resolution, which is the 

most detailed version. For voxel size, we use 0.01 m, 0.02 m and 0.05 m, which uses 

3.7 GB, 0.5 GB, and 0.03 GB memory, respectively. 

 

Levenberg-Marquart method is the combination of Gradient Descent and Gauss 

Newton. For example, if we select regularization constant or damping parameter as 

zero, then we get regular Newton method. Using large values of regularization 

constant tends to dampen the solution and it is important once the solution is close 

to optimal. 

 

Huber function is a penalty method, which is dependent on the residual. Using Huber 

function, errors close to zero (small errors) are scaled quadratically, while the large 

values will be scaled linearly. This allows us better adjustment when image is close 

to its correct alignment. 
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If image registration is correct with the 3D model, the projected colors should be 

consistent as well. We incorporate this color consistency condition by adding color 

error function. Therefore, weight ratio, which is the contribution of the intensity with 

respect to the depth, is also important.  

 

In this section, the sensitivity of the proposed methodology to voxel size, 

regularization constant, color intensity contribution with respect to the depth, Huber 

constant will be examined. Moreover, the required computational time is measured 

while changing the voxel size. In order to assess the performance of the our method  

fr3/walking xyz dataset is selected for the error and timing analysis because, in this 

sequence, camera is tracking a person at the beginning and finally camera never 

revisits again, which results in artifact in resulting mesh. In addition, most of the 

state art system use this sequence for performance analysis. 

6.1 Design of Experiments 

In order to systematically measure the effect the input parameters (voxel size, 

regularization constant, color intensity contribution with respect to the depth, Huber 

constant) to SLAM tracking performance, a design of experiments study is 

conducted. In this study, 4 factors and 3 levels design of experiment which is 3×4 

factorial design with 81 treatment combinations are considered because this factorial 

design allows us to discover the main effects and interactions. 

 

For Huber constant, the general use is the 1/5 of the voxel grid, therefore we use 

0.005, 0.025 and 0.01 Huber constant levels.  Regularization level is selected using 

Gramian of Jacobian as 0.002, 0.02 and 0.01, respectively. The resulting 

performance index which is Absolute Tracking Error (ATE [m] in rms) are tabulated 

in Table 6.1 and main effects plot is illustrated in Figure 6.1 shows. Comparing all 

changes in Table 6.1 and Figure 6.1, it is clear that using smaller voxel helps to 

improve the tracking, however, we know that using smaller voxels increases the 
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memory requirements and computational complexity. In addition, the 0.1 weight 

ratio seems to be the best.   

 

Main effects plots shows the effects of one independent variable on the dependent 

variable and it is useful when we have several categorical variables. Figure 6.1 shows 

the main effect, which displays the means for each group within a categorical 

variable. According to Figure 6.1, we should select Huber constant as 0.01, 

Regularizarion constant is 0.02, voxel size as 0.01 m and weight as 0.1. These values 

are consistent with  Table 6.1 because the minimum tracking error 0.08 m which is 

obtained when Huber constant, regularization constant, voxel size and weight are 

0.01,0.02, 0.01 and 0.1, respectively.  

 

 

 

Figure 6.1: Main effects plot: Variation of Absolute Trajectory Error to voxel size, 

regularization constant, color intensity contribution with respect to the depth, 

Huber constant 

 

Figure 6.2 illustrates the interaction plot, which shows how the relationship between 

one categorical factor and a continuous response depends on the value of the second 

categorical factor. This is opposed to the “main effect” which is the action of a single 

independent variable on the dependent variable. In Figure 6.2, the levels of variable 

is displayed on horizontal axis and line represent the means of each level of other 
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variable. As an example, let us analyze the greyscale subplot, which shows the voxel 

size – Huber constant interaction in the tracking error. We have 3 levels of input for 

voxel size and Huber constant which are (0.01,0.02,0.05) and (0.025, 0.01, 0.005), 

respectively. According to this subplot, it is clear that tracking error always decreases 

with decreasing the voxel size except Huber constant is 0.025. The same scenario 

exists in voxel size-weight interaction. If weight is not selected as 0.025, using 

smaller voxels improves the tracking performance.  

 

In Huber constant-regularization interaction, using 0.01 or 0.02 produces almost 

same result. Huber constant- voxel size have the similar tracking performance if 

voxel size is not equal to 0.05. In addition, Figure 6.2 shows that interaction of Huber 

constant for other variables is minimum for 0.01 Huber constant.  

 

The interaction of weight - regularization is almost same if 0.01 or 0.02 

regularization constant is used. Weight-Huber constant interaction has minimum if 

0.1 weight and 0.01 Huber constant are selected, however, it has a strange properties  

because response of tracking error are completely complement when 0.025 and 0.05 

Huber constant is selected. In weight-voxel size interaction, using large value of 

voxel produce minimum error when the weight is 0.01 however, this minimum error 

value is still larger than error in other voxel sizes.  

 

The regularization-voxel size interaction shows that using smaller voxel size leads 

to minimum tracking error and 0.01 m and 0.02 m voxel size produces the similar 

result.  In regularization-Huber constant plot, 0.01 Huber constant is the best and it 

has similar trend with 0.005 Huber value however, 0.005 Huber has a poor 

performance when regularization is 0.01 or 0.02. In general, using interaction plots, 

we can conclude 0.01 Huber constant, 0.02 regularization are the best choice without 

doubt.  
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Table 6.1: TUM Dataset fr3/walking xyz – Translational ATE (RMS Error m) 

 

  

weight 

0.025 0.1 0.175 

Huber 

Constant 

0.005 

Regularization  

0.002 

Voxel 0.01 m 0.098 0.096 0.102 

Voxel 0.02 m 0.101 0.096 0.113 

Voxel 0.05 m 0.102 0.116 0.171 

Regularization  

0.02 

Voxel 0.01 m 0.095 0.091 0.097 

Voxel 0.02 m 0.099 0.093 0.108 

Voxel 0.05 m 0.102 0.109 0.165 

Regularization  

0.01 

Voxel 0.01 m 0.097 0.093 0.100 

Voxel 0.02 m 0.100 0.093 0.109 

Voxel 0.05 m 0.102 0.104 0.170 

Huber 

Constant 

0.01 

Regularization  

0.002 

Voxel 0.01 m 0.110 0.083 0.092 

Voxel 0.02 m 0.105 0.086 0.094 

Voxel 0.05 m 0.092 0.108 0.097 

Regularization  

0.02 

Voxel 0.01 m 0.108 0.080 0.088 

Voxel 0.02 m 0.105 0.085 0.092 

Voxel 0.05 m 0.092 0.094 0.114 

Regularization  

0.01 

Voxel 0.01 m 0.108 0.085 0.089 

Voxel 0.02 m 0.105 0.094 0.093 

Voxel 0.05 m 0.092 0.081 0.112 

Huber 

Constant 

0.025 

Regularization  

0.002 

Voxel 0.01 m 0.118 0.104 0.090 

Voxel 0.02 m 0.101 0.107 0.097 

Voxel 0.05 m 0.365 0.095 0.101 

Regularization  

0.02 

Voxel 0.01 m 0.117 0.103 0.090 

Voxel 0.02 m 0.101 0.106 0.096 

Voxel 0.05 m 0.100 0.096 0.102 

Regularization  

0.01 

Voxel 0.01 m 0.117 0.104 0.089 

Voxel 0.02 m 0.101 0.106 0.097 

Voxel 0.05 m 0.107 0.094 0.102 
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Figure 6.2: Interaction plot: Variation of Absolute Trajectory Error to voxel size, 

regularization constant, color intensity contribution with respect to the depth, 

Huber constant 

 

Using the Table 6.1, we can find the minimum tracking error as 0.08 m and it is 

obtained when Huber constant, regularization constant, voxel size and weight are 

0.01,0.02, 0.01 and 0.1, respectively. In main effect plot, we can easily see that the 

minimum tracking error is obtained when the weight is 0.1. However, in order to 

find the best value for weight, a detailed investigation is performed for weight value 

between 0.1 and 0.175.  Table 6.2 shows the absolute tracking error for weight value 

between 0.1 and 0.175. In this analysis, Huber constant, regularization constant, 

voxel size are 0.01,0.02, 0.01, respectively. The minimum error is obtained when 

weigth is 0.1325. Therefore , we select to use 0.01,0.02, 0.01 and 0.1325 values for 

parameters. 
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Weight = 0.175
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0.12
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Regularization
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Regularization = 0.02
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0.12

0.14
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Table 6.2: Change of Translational ATE (RMS m) with respect to weight 

(regularization constant, Huber constant and voxel size is constant) 

 

weight 
absolute translational error 

(RMS Error [m]) 

0.1 0.0800 

0.11 0.0764 

0.12 0.0739 

0.125 0.0731 

0.1275 0.0734 

0.13 0.0729 

0.1325 0.0727 

0.14 0.0731 

0.15 0.0797 

0.175 0.0880 

 

 

 

 

Figure 6.3: Change of Translational ATE (RMS Error [m]) with respect to weight 

(regularization constant, Huber constant and voxel size is constant) 
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In order to consider the constant, linear, interaction, and squared terms, a quadratic 

model is formed. We used MATLAB rstool to examine relationship in full quadratic 

mode. Figure 6.4 shows the response of the given input (X1, X2, X3, X4) and output 

(Y1).  (X1, X2, X3, X4) denote Huber constant, regularization constant, voxel size 

and weight and (Y1) represents the tracking error. Using this quadratic model, we 

can choose (0.015,0.01,0.01,0.124) for minimum value 0.071 m. However, if we use 

the these values, the resulting error is 0.089 m, which is not consistent therefore, we 

use the  vales (0.01,0.02, 0.01 and 0.1325) for Huber constant, regularization 

constant, voxel size and weight. 

 

In this section, in addition to  the sensitivity of the proposed methodology to the 

voxel size , the contribution weight of the intensity with respect to the depth, Huber 

constant and regularization constant,  the required time for per image is also analyzed 

(see Table 6.3).  

 

According to Table 6.3, in all case, using larger voxel, dramatically decreases the 

required calculation time which makes that the proposed scheme more suitable for 

real-time applications. However , using larger voxel, increases the absolute 

translational error.  Using larger ratio of the intensity information with respect to the 

depth information decreases the RMSE error , however, such situation is not valid 

for all cases. Therefore, utilization of application specific constant increases the 

performance of the proposed scheme. 
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Figure 6.4: Quadratic model of the sensitivity analysis 

 

Table 6.3:  TUM “fr3/walking static” Sequence Translational ATE Error (RMS Error 

[cm] ) 

 

Voxel Size 

(m) 
weight () 

Translational ATE 

Error (cm) 

Mean Time 

for per frame 

(ms) 

0.005 0.01 1.05 230 

0.01 0.01 1.77 116 

0.02 0.01 1.67 76 

0.05 0.01 2.16 62 

0.005 0.025 0.74 231 

0.01 0.025 0.79 116 

0.02 0.025 1.06 77 

0.05 0.025 0.90 62 

0.005 0.04 0.69 230 

0.01 0.04 0.81 115 

0.02 0.04 0.77 76 

0.05 0.04 0.95 62 

    

0.01 0.015 0.02

0.075

0.08

0.085

0.09

0.095

0.005 0.01 0.015 0.02 0.03 0.04 0.04 0.06 0.08 0.1 0.12 0.14 0.16

X1

0.01582

X2

0.01

X3

0.01

X4

0.12392

0.070671

Predicted Y1

Export

Full Quadratic

Close
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CHAPTER 7  

7 CONCLUSION 

SLAM techniques estimate jointly a map of an unknown environment and the robot 

pose within such map, only from the data streams of its on-board sensors. Visual 

SLAM, where the main sensor is a camera, have received high-level attention in 

recent years. The basic configuration is monocular camera which has practical 

advantages however it has also several drawbacks such as the depth estimation and 

scale uncertainty. With the appearance of Kinect in 2010, there are many advanced 

RGB-D SLAM systems which use the depth images or fuse the color and depth 

information. Using complicated setups like RGB-D cameras, such issues are solved 

and the robustness of visual SLAM systems can be greatly improved.  However, 

most visual methods perform poorly in dynamic environments. In these techniques, 

dynamic objects are considered typically as spurious data and removed as outliers 

using RANSAC and robust cost function. Dynamic environments, on the other hand, 

are widespread characteristics of many robotic applications.  

 

Conventional approaches in mapping assume that the environment is static. 

Although, the static assumption holds true in a single mapping run in small scale 

scenarios, change is inevitable when dynamic elements exist or large-scale mapping 

necessary. This approach generally succeeds in ignoring moving objects by setting 

their corresponding key points and the use of distant key frames. However, when 

dealing with dynamic environments, the system becomes less accurate as the objects, 

that have remained static in several key frames, are mapped in the reconstruction.  

 

Another biggest issues in robot navigation is unstructured environments. In 

unstructured environments, it is not easy to find discrete geometries because of noisy 

edge or plane. Significant research has been carried out for unstructured 
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environments especially in the field of autonomous navigation, and a number of 

effective approaches have been developed. However, there is no effective RGB-D 

SLAM method for real-world unstructured and dynamic environments. 

 

In summary, the research community has addressed SLAM from many different 

angles. However, the vast majority of the approaches and datasets assume a static 

environment. Consequently, they can only manage small fractions of dynamic 

content by classifying them as outliers. Although the static assumption holds for 

some robotic applications, it limits the applicability of visual SLAM in many 

relevant cases, such as intelligent autonomous systems operating in populated real-

world environments over long periods. By classifying dynamic content as outliers, a 

small fraction can be managed. However, SLAM problem in highly dynamic scenes 

is still not solved completely because there is no suggested framework found in the 

literature.  

 

In our work, we reconstruct our scene geometry using Signed Distance Function 

(SDF) and therefore we can directly generate the mesh of the environment using such 

representation without using object tracking and object classifier. Moreover, number 

of dynamic objects or their speeds do not limit our approach. 

 

Our proposed method, dense SDF-based dynamic mapping approach, can operate in 

environments where high dynamics exist without depending on moving objects. In 

addition, if a static object moves, the corresponding voxels are removed successfully 

from the mesh. After performing a complete evaluation of our proposed method for 

several sequences of the TUM, Bonn and VolumeDeform dataset, our method has 

demonstrated to have an improved pose estimation capability even though there 

exists dynamic elements in the scene. In addition, in order to evaluate the outdoor 

performance of our method, we use commercially available ZED camera for map 

generation and dynamic filtering. Experiments illustrate that our method produce 

consistent result without generating an artifact of dynamic object both in indoor and 
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outdoor applications. These are demonstrations of real world dynamic environments 

of our approach. 

 

User-friendliness and the unconstrained aspect of our method is seen in representing 

surfaces using truncated signed distance function which is extremely easy and it 

provides an efficient mechanism in consistent surface estimation. However, surface 

representation using TSDF is memory intensive because required memory for TSDF 

volume scales cubically and it depends on the grid resolution. Hence, special care 

has to be taken for efficient memory usage considering the performance. In addition, 

TSDF has intensive calculations. For example, for fusing a data in VGA format, it 

requires basically 0.3 million operations. However, since each pixel is independent 

from each other, GPU can be utilized in parallel to have a real time performance. 

7.1 Future Works 

If a voxel is empty in enough time, then we mark it as free voxel. The speed of 

dynamic elements becomes important because, the environment should allow us to 

capture the static part of scene in the first frames. Therefore, it is so challenging to 

generate the static part of environments having very high dynamics at the beginning. 

We compare our method with other state of art systems using repositories which are 

available in the literature. These RGB-D datasets have no build-in tool to evaluate 

the dynamic handling capability of state of art SLAM systems. However, there 

should be limit for dynamic, which can be handled by our proposed method. This 

limit can be instantaneous rotation or translation of moving object or any type of 

metric, which should be identified.  

 

Our proposed method can operate in environments where high dynamics exist 

without depending on moving objects. We find a dynamic label image from the 

image registration residuals. Actually, we have a silhouette of the moving object and 

using this information, it is possible to extract the dynamic object and to find the 
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some properties of dynamic elements such as speed. These open questions can be 

taken as a guideline for further work on the approach for visual SLAM methods. 

 

In addition, the SDF can encode surface interfaces at sub-voxel accuracy through 

interpolation, however, it can fail at sharp corners and edges, therefore they are not 

straightforward to extract from a SDF representation and such type of structures 

requires special effort such as selecting a suitable voxel element size and truncation 

distance. Truncation distance expresses a prior information about the average 

thickness of object in the environment. Using a feature-preserving algorithm with 

adaptive variable voxel size can improve the surface extraction on sharp corners; 

however, it is left as a future work.  

 

Visual SLAM allows robots to find the location of itself with reference to its 

surrounding environment. With the help of this technology, a device can capable of 

geographical understanding, for example, it can determine the shape of an area. Such 

property is an important feature for Augmented Reality applications because it 

enables pairing of RGB image and allows autonomous objects such as automobiles 

and quadrotors to track the environment. Moreover, Visual SLAM overcomes the 

problem of GPS limitation and finally RGB-D sensor becomes no longer as camera, 

it turns into an artificial eye that can measure the distance to surface and pair the 

images with Visual SLAM technology. 

 

Visual SLAM is a foundation to get truly AR because localizing the object in the 

map or capturing 3D scene is not sufficient, however, using deep learning and cloud 

computing, we have next level of adoption. In short, Visual SLAM can localize the 

object, however we need the semantic information about the object derived from the 

artificial intelligence.  

 

If we load a device with Visual SLAM technology, then we can get the user 

experience by the real time application of augmented reality. Integration of Visual 
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SLAM with Augmented Reality helps us to combine global location with digital 

elements producing in real time. For example, imagine if you are walking and 

passing a restaurant. We could use our smartphone or smart device such as glasses 

to view menus about the restaurant by combining the street where the restaurant is 

located with AR. Moreover, we could get the 3D video content of any store. This is 

the new opportunity for marketing and it can be easily adopted to shopping and 

entertainment.  

 

Metaverse is used to represent the hypothetical synthetic environment which is the 

combination of “transcending (meta)” and the “universe (verse)”. It is a link between 

the digital world and physical system. This phenomena “metaverse” is evolving and 

better results are obtained by introduction of newly portable devices. This is the 

truest form of the technology: It is intuitive, offering a plethora of possibilities for 

developers and users of tomorrow. Even though, state of art visual SLAM system 

including our proposed method, DUDMAP, already provide a foundation for three-

dimensional recognition, the metaverse requires more understandings about more 

complex environments for integration of digital object and real life. HoloLens and 

Oculus has already special product in order to have basics of virtual reality 

technology to explore the potential of mixed reality interaction. Apple announced 

ARKit for 3D keypoints tracking. In metaverse, the virtual universe in constructed 

by acquiring the 3D structure of a scene and this information helps us to build digital 

twin construction, which is an important role for connecting artificial intelligence to 

get conversion with the physical world. Therefore, it is very vital to ensure the 

accuracy of object registration, and the interaction with the physical world in the 

metaverse. Therefore, it is expected to have more precise and computationally 

effective SLAM algorithms in the metaverse. 

 

In the metaverse, human and their digital twins or representatives called as avatars 

will connect and co-exist. In order to form a proper connection between physical and 

digital environments, a deep understanding of both world is necessary. In real world, 

our eyes provides us spatial information and we can built a 3D reconstruction with 

https://www.xrtoday.com/virtual-reality/how-does-virtual-reality-work/
https://www.xrtoday.com/virtual-reality/how-does-virtual-reality-work/
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knowing the exact location of each object. Likewise, the metaverse needs to correct 

3D reconstruction of the scene. In order to achieve this goal, Visual SLAM allows 

us to create 3D structure of an unknown environment and it should solve 

simultaneously the challenging problems of unknown space, uncontrollable camera 

motion and camera drift in real-time.  Therefore, it is clear that a new RGB-D dataset 

containing fast and slow camera motions and varying degrees of dynamic elements 

would be greatly appreciated by researchers if made available. 
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APPENDICES 

A. Mathematical Preliminaries  

The vec operator that stacks all the columns of an M ×N matrix to form a MN ×1 

vector  

The cross product operator [. ]× maps a 3 × 1 vector to skew-symmetric matrix :  

 

The inverse cross product operator [.]∨ is the inverse of the cross product as: 

 

B. Rigid Body Motion 

In 3D reconstruction, the main aim is to capture the geometry and appearance of the 

objects. In rigid bodies, poses of moving rigid bodies are related point by point with 

changing location and orientation between poses. In rigid body motion, the distance 

between any two points remains the same and orientation of the body is conserved.  

Two particular groups 𝑆𝑂(3) and 𝑆𝐸(3) are particularly interested in robotics 

society. 𝑆𝑂(3)  is the special orthogonal group that represents rotations and SE(3)  

is the special Euclidean group that represents rigid body motions. 

 

𝑣𝑒𝑐 ([
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

]) =

[
 
 
 
 
 
𝑎
𝑏
𝑐
𝑑
𝑒
𝑓]
 
 
 
 
 

 

 

(A.1) 

 

𝜔 = [
𝑥
𝑦
𝑧
]       [𝜔]× = [

0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

] 
 

(A.2) 

 

 

[
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

]

⋎

= [
𝑥
𝑦
𝑧
] 

 

(A.3) 
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In rigid body motion,  two reference frames which are body frame and inertial frame 

are used. Body frame remains fixed to the body whereas the inertial frame is fixed. 

For example, let us consider the a point p on the rigid body after the body undergoes 

a rotation of angle α about the inertial z-axis. The relation between the initial 

coordinates and final coordinates is the rotation matrix. Similarly rotate the frame 

about the new y and z axes with angles  𝛽 and 𝜃, we have a net orientation 𝑅 (𝛼, 𝛽, 

𝜃) and the angles (𝛼, 𝛽, 𝜃) is used to represent the rotation sequence. The angles 

(𝛼,𝛽,𝜃) are known as the ZYZ Euler angles. Since all rotations performed about the 

principal axes of the moving frame, elementary rotations are defines as 

  

𝑅𝑥(𝛼) = [

1 0 0
0 cos (𝛼) −𝑠𝑖𝑛(𝛼)
0 𝑠𝑖𝑛(𝛼) 𝑐os (𝛼)

] 
 

(A.4) 

  

𝑅𝑦(𝛽) = [
cos (𝛽) 0 𝑠𝑖𝑛(𝛽)
0 1 0

−𝑠𝑖𝑛(𝛽) 0 cos (𝛽)
] 

 

(A.5) 

  

𝑅𝑧(𝜃) = [
cos (𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) cos (𝜃) 0
0 0 1

] 

 

 

(A.6) 

If we first rotate the B frame about the z-axis of frame B by an angle α, then rotating 

about the (new) y-axis of frame B by an angle β, and then rotating about the (once 

again, new) z-axis of frame B by an angle γ. Then the final form becomes 

 

𝑅𝐵𝐴 = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾) (A.7) 

 

𝑅𝐵𝐴

= [
cos(𝛼) − sin(𝛼) 0
sin(𝛼) cos(𝛼) 0
0 0 1

] [
cos(𝛽) 0 sin(𝛽)
0 1 0

− sin(𝛽) 0 cos(𝛽)
] [
cos(𝛾) − sin(𝛾) 0

sin(𝛾) cos(𝛾) 0
0 0 1

] 

 

(A.8) 
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where 𝑐𝛼 and  𝑠𝛼 denotes cos(𝛼) and sin(𝛼), respectively and similarly for the other 

terms. 

 

𝑆𝑂(3)   is Special Orthogonal Group which is defined as 

 

 

where 𝑅 is rotational matrix, 𝐼 is identity matrix and  det(.) is the determinant.  

 

If we have a rotation R ∈ 𝑆𝑂(3)  , the Euler angles can be calculated by solving 

equation (3.10) for α, β, and γ. If  sin(𝛽) ≠ 0, the solutions become  

 

 

where 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) uses the sign of both 𝑥 and 𝑦 to determine the quadrant. ZYZ 

Euler angles are an example of a local parameterization of 𝑆𝑂(3). 

 

The equivalent axis representation, the singularities in the parameterization occur at 

R = I, the identity rotation. In particular, we note that (α, β, γ) of the form (α, 0,−α) 

yields (α, 0,−α) = I. The singularities are referred as the absence of solution to the 

inverse problem of finding the Euler angles. Therefore, there are infinitely many 

representations of the identity rotation in the ZYZ. In order to overcome this 

𝑅𝐵𝐴 = [

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

−𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽
]=[

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] (A.9) 

𝑆𝑂(3)   = {𝑅 ∈ 𝑅3𝑥3|𝑅𝑇𝑅 = 𝑅𝑅𝑇 = 𝐼, det(𝑅) = 1} (A.10)  

𝛽 = 𝑎𝑡𝑎𝑛2(√𝑟312 + 𝑟322, 𝑟33) 

 

(A.11)  

𝛼 = 𝑎𝑡𝑎𝑛2(
𝑟23
𝑠𝛽
,
𝑟13
𝑠𝛽
) 

 

(A.12)  

γ = 𝑎𝑡𝑎𝑛2(
𝑟32
𝑠𝛽
,
−𝑟31
𝑠𝛽
) 

 

(A.13)  
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problem, another Euler angle sequence such as ZYX and YZX Euler angle 

parameterizations can be utilized because they have the advantage of not having a 

singularity at the identity, R = I. However, they have singularities at other, different, 

orientations. As an example , in ZYX Euler angles, the  singularity occurs when θ = 

−π/2. This situation is a fundamental topological fact that singularities can never be 

eliminated in any 3-dimensional representation of 𝑆𝑂(3)  . 

 

The  Lie-algebra of 𝑆𝑂(3)  is termed 𝑠𝑜(3)  and is defined by 

 

 

 

 

In robotics, any rotation of a body about a given axis is a common motion. If 𝜔 ∈ 𝑅3 

be a unit vector which specifies the direction of rotation and 𝜃 ∈ 𝑅 be the angle of 

rotation in radians. It is clear that every rotation corresponds to 𝑅 ∈ 𝑆𝑂(3). Now, 

consider the point on the rotating body which has constant unit velocity about axit 

𝜔. Then the velocity of the point, 𝑞̇, can be defined as  

 

Since this equation is a time-invariant linear differential equation, then  

 

where 𝑞(0) is the initial position and 𝑒[𝜔]×𝑡 is the matrix exponential and it can be 

written as 

 

𝑠𝑜(3) = {𝐴 = [𝜔𝑥] = [
0 −𝑧 𝑦
𝑧 0 −𝑥
−𝑦 𝑥 0

] |𝐴𝑇 = −𝐴} (A.14) 

𝑞̇(𝑡) = 𝜔 × 𝑞(𝑡) = [𝜔]×𝑞(𝑡)  

 

(A.15) 

𝑞(𝑡) = 𝑒[𝜔]×𝑡 𝑞(0) 

 

(A.16) 

𝑒[𝜔]×𝑡 = 𝐼 + [𝜔]×𝑡 +
([𝜔]×𝑡)

2

2!
+
([𝜔]×𝑡)

3

3!
+ ⋯ 

 

(A.17) 
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Then, if the point is rotated about the axis 𝜔 with an unit velocity for 𝜃 units of time, 

then final rotation becomes 

 

Equation (3.19) is not useful from because it is an infinite series and, hence, it 

requires high computational power. 

 

Lemma 1 : Given [𝜔]× 𝜖 𝑠𝑜(3), following equations are valid and higher powers of 

[𝜔]× can be calculated.  

 

 

Using this lemma  with ‖𝜔‖ = 1, then 

Therefore  

 

This formula (3.23) is known as Rodrigues’ formula and it is an efficient method for 

computing matrix exponential. Indeed, this equation verify that 𝑒[𝜔]×𝜃 is indeed a 

rotation matrix. 

 

𝑅(𝜔, 𝜃) = 𝑒[𝜔]×𝜃 

 

(A.18) 

 

([𝜔]×)
2 = 𝜔𝜔𝑇 − ‖𝜔‖2𝐼 

(A.19) 

 

([𝜔]×)
3 = −‖𝜔‖2[𝜔]× 

 

(A.20) 

 

𝑒[𝜔]×𝜃 = 𝐼 + (𝜃 −
𝜃3

3!
+
𝜃5

5!
− ⋯) [𝜔]× + (

𝜃2

2!
−
𝜃4

4!
+
𝜃6

6!
⋯) [𝜔]×

2
 

 

(A.21) 

 

𝑒[𝜔]×𝜃 = 𝐼 + [𝜔]× sin(𝜃) + [𝜔]×
2
(1 − cos (𝜃)) 

 

(A.22) 
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Let  𝑅 = 𝑒[𝜔]×𝜃 and [𝜔]× 𝜖 𝑠𝑜(3) , using Rodrigues’ formula we get 

 

This equation implies that 𝑅𝑇 = 𝑅−1 , it is then easy to show that 𝑅𝑇𝑅 = 𝐼 and 

det(𝑅) = 1. Then we can conclude that given a skew-symmetric matrix, 

exponentials of skew symmetric matrix are orthogonal.  

 

Equation (3.25) indicate that the exponential map converts skew symmetric matrices 

into orthogonal matrices. The skew symmetric matrix is a representation of an axis 

of rotation and this map generates a rotation about a given axis by a given or specified 

amount 𝜃. This is the relationship between skew-symmetric matrices and orthogonal 

matrices. 

 

Each rotation matrix can be represented by a matrix exponential of some skew-

symmetric matrix. In other words, the mapping exp : 𝑠𝑜(3) → 𝑆𝑂(3) is surjective  

 

Let 𝑅 ∈  𝑆𝑂(3), then there exist ω ∈  𝑅3, ‖𝜔‖ = 1 and θ ∈ 𝑅 such that 𝑅 = 𝑒[𝜔]×𝜃 

 

Proposition 

 

This statement declares that the exponential map is surjective onto 𝑆𝑂(3). 

 

 

[𝑒[𝜔]×𝜃]−1 = 𝑒−[𝜔]×𝜃 = 𝑒[𝜔]×
𝑇𝜃 = [𝑒[𝜔]×𝜃]𝑇 

 

(A.23) 

 

𝑒[𝜔]×𝜃 𝜖 𝑆𝑂(3) 
(A.24) 

𝑅 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] = 𝑒[𝜔]×𝜃 (A.25) 

 

𝑒[𝜔]×𝜃 = 𝐼 + [𝜔]× sin(𝜃) + [𝜔]×
2
(1 − cos (𝜃)) 

(A.26) 
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𝑒[𝜔]×𝜃

= [

1 − (1 − cos(θ))(𝜔2
2+𝜔3

2) 𝜔1𝜔2(1 − cos(θ)) − 𝜔3 sin(𝜃) 𝜔1𝜔3(1 − cos(θ)) + 𝜔2 sin(𝜃)

𝜔1𝜔2(1 − cos(θ)) + 𝜔3 sin(𝜃) 1 − (1 − cos(θ))(𝜔1
2+𝜔3

2) 𝜔2𝜔3(1 − cos(θ)) − 𝜔1 sin(𝜃)

𝜔1𝜔3(1 − cos(θ)) − 𝜔2 sin(𝜃) 𝜔2𝜔3(1 − cos(θ)) + 𝜔1 sin(𝜃) 1 − (1 − cos(θ))(𝜔1
2+𝜔2

2)

] 

 

 

= [

𝜔1
2(1 − cos(θ)) + cos(θ) 𝜔1𝜔2(1 − cos(θ)) − 𝜔3sin (𝜃) 𝜔1𝜔3(1 − cos(θ)) + 𝜔2sin (𝜃)

𝜔1𝜔2(1 − cos(θ)) + 𝜔3sin (𝜃) 𝜔2
2(1 − cos(θ)) + cos(θ) 𝜔2𝜔3(1 − cos(θ)) − 𝜔1sin (𝜃)

𝜔1𝜔3(1 − cos(θ)) − 𝜔2sin (𝜃) 𝜔2𝜔3(1 − cos(θ)) + 𝜔1sin (𝜃) 𝜔3
2(1 − cos(θ)) + cos(θ)

] 

 

 

In order to verify that this equation has a solution, we use the property that trace of 

𝑅 is equal to the sum of its eigenvalues. Since 𝑅 preserves lengths and det R = +1, 

its eigenvalues have magnitude 1 and occur in complex conjugate pairs. Then, 

 

 

𝜃 ∓ 2𝜋𝑛 or −𝜃 ∓ 2𝜋𝑛 could be chosen in order to avoid ambiguity. Equating the 

off-diagonal terms, then we get 

 

 

 

𝑡𝑟𝑎𝑐𝑒(𝑒[𝜔]×𝜃) = 𝑡𝑟𝑎𝑐𝑒(𝑅) 

(A.27) 

 

𝑟11 + 𝑟22 + 𝑟33 = 2 cos(𝜃) + 1 
(A.28) 

 

−1 ≤ 𝑡𝑟𝑎𝑐𝑒(𝑅) ≤ 3 
(A.29) 

 

𝜃 = cos−1
𝑡𝑟𝑎𝑐𝑒(𝑅) − 1

2
 

(A.30) 

 

𝑟32 − 𝑟23 = 2𝜔1sin (𝜃) 
(A.31) 

 (A.32) 
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Choosing 𝜃 ≠ 0,  

 

If 𝜃 + 2𝜋 is selected, the rotation axis would have been 𝜔 and the exponential map 

is a many  to one map from 𝑅3 onto 𝑆𝑂(3). For example, if 𝑅 = 𝐼, then 𝑡𝑟𝑎𝑐𝑒(𝑅)=3 

, 𝜃 = 0 and 𝜔 is arbitrary. If 𝑅 ≠ 𝐼, the above construction shows that there are two 

distinct 𝜔. This proves that the exponential map is surjective onto 𝑆𝑂(3). 

 

Rigid body motion representation forms a Special Euclidean group 𝕊𝔼(𝟑), which is 

also known as Lie group [49]. A Euclidean transformation in 3D consists of a 

translation and rotation. There exist two main advantage of using Lie algebra for 

describing the rigid body motion. They allow us to have global description without 

suffering from singularities. Such type of singularities are unavoidable if Euler angle 

is chosen to represent the rotation. The second advantage is that Lie algebra provides 

a geometric description of rigid body motion which simplifies the analysis of 

mechanism of rigid body motion. 

C. Transformation Matrices in Robotic Representation 

Special Euclidean 𝕊𝔼(3) group is defined as a noncommutative product of 3D 

rotations and 3D translations. The commonly used approach is to use 4x4 

transformation matrix 𝑇𝐴
𝐵 in order to transform a 3D point from one coordinate frame 

𝑟21 − 𝑟12 = 2𝜔3sin (𝜃) 

 

 

𝑟13 − 𝑟31 = 2𝜔2sin (𝜃) 
(A.33) 

 

𝜔 = [

𝜔1
𝜔2
𝜔3
] =

1

2sin (𝜃)
[

𝑟32 − 𝑟23
𝑟13 − 𝑟31
𝑟21 − 𝑟12

] 

 

(A.34) 
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A to  into another coordinate frame B.  Special Euclidean group 𝕊𝔼(3) is formally 

defined as follows: 

 

 

where 𝑡 is a 3D translation vector and 𝑅 is rotation matrix that belongs to the Special 

Orthogonal group 𝕊𝕆(3). We can write the full homogenous transformation matrix 

𝑇𝐴
𝐵 from frame A to frame B and the respective inverse transformation 𝑇𝐵

𝐴 which 

maps back from frame B to frame A, as  

This matrix representation allows to easily transform a 3D point 𝑝𝐴 in frame A to the 

respective 3D point 𝑝𝐵in coordinate frame B: 

 

 

Consider the motion of a rigid body rotated about a line in the z direction, through 

the point (0, p, 0). If we let 𝜃 denote the amount of rotation, then the new orientation 

and the new coordinates for the origin become 

 

 

 

 

 

𝕊𝔼(3) = {  [
𝑅 𝑡
0 1

] |𝑅 ∈ 𝕊𝕆(3), 𝑡 ∈ 𝑅3 } 
(A.35) 

 

𝑇𝐵
𝐴 = [𝑇𝐴

𝐵]−1 = [𝑅𝐴
𝐵𝑇 −𝑅𝐴

𝐵𝑇𝑡𝐴
𝐵

0 1
] 

(A.36) 

 

𝑝𝐵 = 𝑅𝐴
𝐵𝑝𝐴 + 𝑡𝐴

𝐵  
(A.37) 

𝑅𝑧(𝜃) = [
cos (𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) cos (𝜃) 0
0 0 1

] (A.38) 



 

 

150 

 

The homogeneous representation of the configuration of the rigid body is given by  

 

 

 

For this case, when the angle 𝜃 = 0, 𝑇𝐵
𝐴 gives that the relative displacement between 

the two frames is a pure translation along the y-axis. In addition, successive 

transformation can be written as,  

 

 

The notion of the exponential mapping introduced for SO(3) can be generalized to 

the Euclidean group, SE(3). If 𝜔 ∈ 𝑅3 be a unit vector which specifies the direction 

of rotation and let 𝜃 ∈ 𝑅 be the angle of rotation in radians.  If the link rotates with 

unit velocity, then the velocity of the tip point p(t) can be written as  

 

Where 𝑞  is a point on the axis of rotation. If this equation is converted to 

homogeneous coordinates using 𝜁 

𝑃𝑧(𝜃) = [
0
𝑝
0
] (A.39) 

 

𝑇𝐵
𝐴 = [

cos (𝜃) −𝑠𝑖𝑛(𝜃)
𝑠𝑖𝑛(𝜃 cos (𝜃)

0 0
0 𝑝

0 0
0 0

1 0
0 1

] 
(A.40) 

 

𝑇𝐴
𝐶 = 𝑇𝐵

𝐶𝑇𝐴
𝐵 

(A.41) 

 

𝑝̇(𝑡) = 𝜔 × (𝑝(𝑡) − 𝑞) 

 

(A.42) 

 

𝜁 = [
[𝜔]×  𝑣 
0 0

]  
(A.43) 
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Equation 𝑝̇(𝑡) can then be rewritten as 

The solution of the differential equation is  

where 𝑝(0) is the initial position of the point and 𝑒𝜁𝑡 is the matrix exponential and 

it can be written as 

 

If prismatic joint with unit velocity 𝑣 is modeled, then the velocity of a point is  

 

Then the solution of this equation is  

 

where 

The 4 × 4  matrix  𝜁  given in equations  () and () represents the generalization of the 

skew-symmetric matrix 𝜁 ∈ 𝑠𝑜(3) . 

𝑣 = − 𝜔 × 𝑞 (A.44) 

 

[
𝑝̇
0
] = [

[𝜔]× − 𝜔 × 𝑞
0 1

] [
𝑝
1
] =  𝜁 [

𝑝
1
]
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑝̇ =  𝜁𝑝 

 

(A.45) 

 

𝑝(𝑡) = 𝑒𝜁𝑡 𝑝(0) 

 

(A.46) 

 

𝑒𝜁𝑡 = 𝐼 + 𝜁𝑡 +
(𝜁𝑡)2

2!
+
(𝜁𝑡)3

3!
+ ⋯ 

(A.47) 

 

𝑝̇(𝑡) = 𝑣 
(A.48) 

𝑝(𝑡) = 𝑒𝜁𝑡 𝑝(0) (A.49) 

 

𝜁 = [
0  𝑣 
0 0

]  

 

(A.50) 
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If 𝜔 = 0, then the homogeneous coordinates 𝜁 becomes  

Then, it is easy to show that  

So that,  

Therefore,  

This equation show that 𝑒𝜁𝜃 ∈ 𝑆𝐸(3) 

 

If 𝜔 ≠ 0  and ‖𝜔‖ = 1  , let us use a rigid transformation in the form of 

 

Using the calculation of Lemma 1, we get  

 

 

 

 

𝜁 = [
[𝜔]×  𝑣 
0 0

] = [
0  𝑣 
0 0

]  

 

(A.51) 

 

𝜁2 = 𝜁3 = ⋯ = 0 
(A.52) 

 

𝑒𝜁𝜃 = 𝐼 + 𝜁𝜃 
(A.53) 

 

𝑒𝜁𝜃 = [
𝐼  𝑣𝜃 
0 𝐼

]  𝑖𝑓 𝜔 = 0 

 

(A.54) 

ℎ = [
𝐼  𝜔 × 𝑣 
0 𝐼

] 

 

(A.55) 

ℎ−1𝜁ℎ = [
𝐼 −𝜔 × 𝑣 
0 𝐼

] [
[𝜔]×  𝑣 
0 0

] [
𝐼  𝜔 × 𝑣 
0 𝐼

] 

 

(A.56) 

ℎ−1𝜁ℎ = [
[𝜔]× 𝜔𝜔𝑇𝑣 
0 0

] (A.57) 
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Now, we can use the identity and cross product operator 

 

 

 

which is an element of SE(3). 

 

Finally, The Lie algebra of SE(3) is given by  

 

 

 

The exponential map of  𝕊𝔼(3), 𝕤𝕖(3) → 𝕊𝔼(3)), is  given by  

 

 

where  

 

 

and 𝑒𝜔is given by the Rodriguez’ formula, 

 

𝑒𝜁̂𝜃 = 𝑒ℎ(𝜁̂𝜃)ℎ
−1
= ℎ𝑒(𝜁̂𝜃)ℎ−1  and [𝜔]× 𝜔 = 𝜔 × 𝜔 = 0 

 

(A.58) 

𝑒𝜁𝜃 = [𝑒
𝜔𝜃 (𝐼 − 𝑒[𝜔]×𝜃)(𝜔 × 𝑣) + 𝜔𝜔𝑇𝑣 𝜃

0 1
] 

 

(A.59) 

𝑠𝑒(3) = {  [
𝜔 𝑣
0 0

] |𝜔 ∈ 𝑠𝑜(3), 𝑣 ∈ 𝑅3 } and 𝜔 = [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] (A.60) 

𝑒
([
𝜔 𝑣
0 0

])
= ([

𝑒𝜔 𝐴𝑣
0 1

]) (A.61) 

𝐴 = 𝐼 +
1 − 𝑐𝑜𝑠‖𝜔‖

‖𝜔‖2
𝜔 +

𝜔 − 𝑠𝑖𝑛‖𝜔‖

‖𝜔‖3
𝜔2 (A.62) 

exp(𝜔) = 𝐼 +
𝑠𝑖𝑛‖𝜔‖

‖𝜔‖
𝑤 +

1 − 𝑐𝑜𝑠‖𝜔‖

‖𝜔‖2
𝜔2 (A.63) 
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Lie Group algebra is an  minimal representation for 3D transformations and is highly 

suitable for numerical optimization because it uses 6 parameters so-called twist 

coordinates 𝜉 ∈  𝑅6 for 6 DOF (3 rotation and 3 translation) 

 

 

where 𝑣𝑇 = [1 2 3]𝑇 denotes the linear velocity and 𝑇 = [1 2 3]𝑇 

encodes the angular velocity. Using the cross product operator [.]X ; the twist can be 

represented as  

 

 

The logarithm and the exponential map transform elements from a Lie group to its 

associated Lie algebra using a transformation matrix 𝑇 ∈ SE(3), and its twist  ∈

se(3) as 

 

 

 

Small motions with  ≈ 0 , exponential map can be approximated as T ≈ I + ̂ . 

Closed form solution can be calculated using Rodriguez’ formula. The logarithm 

map for obtaining the twist  = [𝑣𝑇 ,𝑇]𝑇 has the following closed form 

representation: 

 = [1 2 3 1 2 3]𝑇  ∈  𝑅6 (A.64) 

̂ = [
[𝜔]× 

0 0
] = [

0 −3
3 0

2 1
−1 2

−2 1
0 0

 
0     3
0    0

] 

 

(A.65) 

𝑇 = exp() ∶  𝑠𝑒(3)  → 𝑆𝐸(3) (A.66) 

  

 = log(T) ∶   𝑆𝐸(3)  → 𝑠𝑒(3)  (A.67) 

𝜃 = ‖‖ = acos (
𝑡𝑟(𝑅) − 1

2
) (A.68) 

  

log(𝑅) =
𝜃

2𝑠𝑖𝑛𝜃
(𝑅 − 𝑅𝑇) (A.69) 
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where the vee operator (. )∨, is the inverse of the cross product, which extracts the 

3D vector from a skew symmetric matrix. 

  

 = log(𝑅)∨ (A.70) 

  

𝑣 =

(

 
 
 
 

𝐼 −
1

2
[𝜔]× +

1 −
𝜃cos (

𝜃
2)

2sin (
𝜃
2
)

𝜃2
[𝜔]×

2

)

 
 
 
 

𝑡 (A.71) 
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