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ABSTRACT

SOUND VELOCITY IN DENSE MATTER SUCH AS NEUTRON STARS

Oğurol, Leyla

M.S., Department of Physics

Supervisor: Prof. Dr. Bayram Tekin

February 2022, 78 pages

Properties of matter at ultra-high density, called dense matter, is an important subject

that has been studied theoretically and experimentally in recent years. In a very dense

system, a composite matter consisting of nucleons, pions, hadrons would overlap,

so the new form of matter constituting quarks and gluons would occur at a baryon

density of around ten times the ordinary nuclear density. Such a transition could

have appeared in the early universe during the first microsecond of the Big Bang,

in the core of a Neutron Star, or during high energy collisions of massive nuclei

in terrestrial particle accelerators. In this thesis, we will analyze some approaches

addressing the equation of state (EoS) of dense matter. Specifically, the speed of

sound, which is a complicated function of state functions such as density and pressure

in dense matter, will be studied within various approaches by considering the fact that

the speed of sound should not exceed the speed of light, which puts a constraint on

possible equations of state.

Keywords: Speed of Sound, Dense Matter, Compact Stars, Equation of State, Rela-

tivistic Fluid Systems, Quantum Chromodynamics, Quark-Gluon Plasma
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ÖZ

NÖTRON YILDIZLARI GİBİ YOĞUN MADDELERDE SES HIZI

Oğurol, Leyla

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Bayram Tekin

Şubat 2022 , 78 sayfa

Yoğun madde olarak adlandırılan yüksek yoğunluktaki maddelerin özellikleri teorik

ve deneysel olarak son zamanlarda ele alınan önemli bir konudur. Normal nükleer

yoğunluğunun yaklaşık on katı kadar baryon yoğunluğunun olduğu çok yoğun bir

sistemde, nukleonlardan, pionlardan, hadronlardan oluşan kompozit madde birbiri üs-

tüne çökmesi sonucu quark ve gluonlardan oluşan yeni bir madde formu oluşabilir.

Bu geçiş, evrenin oluşumu sırasında büyük patlamanın ilk mikrosaniyesinde, Nötron

yıldızının çekirdek kısmında veya parçacık hızlandırıcılarında kütleli çekirdeklerin

çok yüksek enerjide çarpıştırılması sırasında görülebilir. Bu tezde, yoğun maddenin

hal denklemini ele almak için bazı yaklaşımları analiz edeceğiz. Bu yaklaşımlar doğ-

rultusunda ses hızının ışık hızını aşmaması gerekliliği göz önünde bulundurularak yo-

ğun maddede yoğunluk ve basınçla ilişkili olan ses hızı hesaplanacak. Diğer taraftan,

bahsedilen bu gereklilik yoğun maddenin olası hal denklemleri için bir sınırlandırma

getirir.

Anahtar Kelimeler: Ses Hızı, Yoğun Madde, Kompakt Yıldızlar, Hal Denklemi, Gö-
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receli Akışkan Sistemler, Kuantum Kromodinamiği, Kuark-Gluon Plazma
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CHAPTER 1

INTRODUCTION

The speed of sound problem was initially posed by Isaac Newton in his book Prin-

cipia, and he calculated it with a difference of almost twenty percent between theo-

retical and experimental values [1]. The reason for this discrepancy is that Newton

did not realize heat in compression and that the sound vibrations took place so fast

that this caused increasing local temperature and pressure. Laplace made the correla-

tion by considering the adiabatic process rather than isothermal which was Newton’s

assumption. The known equation of state of a system (EoS) that is the relationship be-

tween pressure and energy density, allows one to find the speed of sound (vs), which

means matter itself plays an essential role in determining vs whose value in dense

media is one of the debated questions recently.

There are a variety of ways to describe dense and cold nuclear matter. In this thesis,

we will examine some models in a particular order to understand the dense matter by

considering Neutron Stars, the most valuable arena for this purpose. Before going

on to these approaches, the background will be given in the first three chapters. The

definition of the speed of sound in the aspect of fluid dynamics is given in this chapter.

In Chapter 2, we will study the story of the compact stars as degenerate fermion

systems.

In Chapter 3, the Relativistic Mean Field Theory (RMF) will be used for the descrip-

tion of compact star’s matter up to the critical density of the phase transition to quark

matter. The RMF theory describes an interaction between nucleons in the matter

along the two mesons called the scalar σ and vector w, so the model is also named as

(σ−w) model or nuclear field theory whose extensions are suitable for the description

of neutron star matter. After constructing the Lagrangian density which should be a
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Lorentz scalar, one can calculate the partition function using mathematical tools such

as Grassmann variables. The EoS and vs for this model can be obtained by following

the relationship between thermodynamic properties and partition functions. Then, to

check the result of the theory, the bulk nuclear properties which are binding energy,

saturation density, incompressible modulus and effective nucleon will be used. If the

results do not match with the bulk properties, one can add cubic and quadratic terms

to the Lagrangian density to explain the known qualities of nuclear matter.

In Chapter 4, the fundamental theory of quarks and gluons or quantum chromody-

namics (QCD) will be studied. The aim of this chapter is to find the EoS of QCD

plasma for the One-Loop level. To do this, the functional integral representation

of the partition function (Z) containing ghosts will be constructed first. Then, the

perturbated thermodynamical potential (Ω) up to the α2 lnα in which α represents

gauge parameter will be calculated by using the relation between Z and Ω, where the

renormalization group is used in order to improve the expansion by letting α to be a

function of the temperature and chemical potential. Finally, the EoS and vs can be

found by using the thermodynamical quantities associated with Ω. In Chapter 5, an

other approach examined for dense matter is Quark-Gluon plasma (QGP) by consid-

ering the MIT Bag Model, meaning that the effect of confining vacuum structure is

going to be included.

In chapter 6, the neutron core is assumed as a perfect fluid, and the speed of sound

in a static homogeneous relativistic fluid will be calculated by using the fundamental

equations of the relativistic hydrodynamics. In the fluid approach, there are more

assumptions such that the neutron star’s core is a mixture including both dark matter

and ordinary nuclear matter. This dark matter admixed with neutron star model can be

considered in some different perspectives such that dark matter is assumed to be free

Fermi gas or mirror dark matter [2, 3]. Its effect on neutron star’s properties like mass-

radius relation by solving two-fluid Tolman-Oppenheimer-Volkoff equations can be

observed, which enables one to present the mass-radius diagram. The mass, amount

of the dark matter, and the interaction between them can also be taken into account

[4]. In some cases, the dark matter can be considered as mirror baryons and present

modified mass-radius relation in the existence of a percent mirror baryons can be

obtained by using the minimal parity symmetry extension of the standard model [5].
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The effect of the asymmetric behavior of the dark matter on the mixed neutron stars

can give us the opportunity to compare the mass or radius of it with the ordinary

neutron stars [6, 7]. The properties of the mixed neutron stars made up of quark

matter and fermionic dark matter are also analyzed by getting mass-radius relation

from TOV equations for two fluids [8].

Lastly, one of the exciting approaches being searched recently is related to the Gravi-

tational waves (GWs), which should be mentioned here, although it is not included as

a separate title in the thesis. The above-mentioned quark-gluon plasma situation may

occur in the hyper-massive neutron stars, which take shape in the aftermath of the

merger of two neutron stars and exist for a short while before collapsing into a black

hole [9]. The key signatures of the features of neutron stars’ core and the hot dense

matter equation of state are carried by GWs emitted during the last few cycles of neu-

tron star inspiral and the ringdown of the remnant. In a binary system, a neutron star

can tidally deform its companion, causing the system to inspiral and combine more

quickly. For neutron stars with larger radii, or cores with stiffer equations of state,

such as hadronic matter, the tidal deformation is stronger. Unbounded quark matter

cores, on the other hand, will have smaller radii and be more difficult to deform, so

tidal effects will have less of an impact on orbital evolution. Tidal effects are di-

rectly stored in the radiated GWs; however, they appear at the fifth-post-Newtonian

order. Furthermore, the (initially) extremely deformed hyper-massive neutron star

could produce GW emission during the post-merger period; the spectral characteris-

tics of the produced signal can be directly mapped to the equation of state of ’hot’

dense matter, including probable phase transitions [10, 11].

1.1 Speed of Sound

1.1.1 Conservation Laws and Constitutive Equations of Fluid Dynamics

Gas and liquids are considered as a continuum in the fluid dynamics. The fluid motion

can be delineated by the conservation laws of mass, momentum and energy applied

to an elementary fluid particles [12, 13]. The mass conservation law in differential

form is

3



∂ρ

∂t
+

∂(viρ)

∂xi

= m, (1.1)

where vi is the flow velocity at position xi and time t, ρ is the fluid density. The

momentum conservation law in differential form or Euler equation is,

∂(viρ)

∂t
+

∂(Pij + vivjρ)

∂xj

= fi +mvi, (1.2)

where is fi is an external force density such as gravitational force and Pij is the minus

the fluid stress tensor relating to the viscous stress tensor τij and the pressure p, that

is, Pij = pδij − τij .

After substituting the mass conservation into momentum conservation, one gets

ρ
∂vi
∂t

+
∂Pij

∂xj

+ ρvj
∂vi
∂xj

= fi. (1.3)

The viscous stresses related to the deformation rate of the fluid element can be ig-

nored in most of the applications. As long as this relation is linear, It is possible to

mention about the Newtonian fluid, so Navier-Stokes equation as the conservation of

the momentum. By assuming the Stoke’s hypothesis, the thermodynamic pressure

and the pressure are equal to the each other for fluid in LTE (Local Thermodynamic

Equilibrium). In this situation, one gets constitutive the equation.

τij = ξ

(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
ξ

(
∂vk
∂xk

)
δij, (1.4)

where ξ is the dynamic viscosity relying on the pressure and temperature. The energy

conservation law in differential form or internal energy equation is

∂

∂t
ρ(e+

1

2
v2) +

∂

∂xi

ρvi(e+
1

2
v2) = − ∂

∂xi

pvi −
∂qi
∂xi

+
∂(τijvj)

∂xi

+ fivi, (1.5)

where q is the heat flux, e is the internal energy per unit of mass and v = |v⃗|. The rela-

tionship between heat flux and heat conductivity K(p, T ) can be set up with Fourier’s
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law

q = −K∇T. (1.6)

The equation for the entropy can be obtained by using the fundamental law of ther-

modynamics for a reversible process and the equation for mechanical energy, so

(
∂s

∂t
+

∂s

∂xi

vi

)
Tρ = τij

∂vj
∂xi

− ∂qi
∂xi

, (1.7)

where s is the entropy per unit of mass. The flow is isentropic if heat conduction and

viscous dissipation are ignored, so entropy of a fluid particle stays constant;

∂s

∂t
+ v · ∇s = 0. (1.8)

The equation of state can be designated as p = p(ρ, s), and the differential form of it

is

dp = (
∂p

∂ρ
)sdρ+ (

∂p

∂s
)ρds, (1.9)

One can get the c2 = (∂p
∂ρ
)s which relates the wave speed with the rate of change of

pressure with the density.

1.1.2 Formalization of the Speed of Sound

Newton who was the first to formalize the rate of change of pressure with density

supposed that the temperature stay the same. He presumed that the conduction of

heat from one region to the another so fast that the temperature remained unchanged,

that is, the process is the isothermal. The correction comes from Laplace who suppose

that the pressure and temperature alter adiabatically in a sound wave. Thus, one can

get the relation in the adiabatic variation

5



PV γ = constant,

where V is volume. The density is inversely proportional to the volume, so the relation

becomes

P = const.ργ,

Thus, the speed of sound takes the final form as

c2s = γ
P

ρ
. (1.10)

where γ is the adiabatic index.
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CHAPTER 2

DEGENERATE FERMION SYSTEMS

In accordance with Pauli’s exclusion principle, two or more fermions cannot occupy

the same quantum state, which determines the distribution probability of identical

fermion particles. Identical particles can reach the same energy at the different states

combinations called degeneracy, whose pressure determines the stellar evolution by

comparing with gravitational pressure. Here, the pressing important question is what

the critical density or degeneracy pressure preventing compact stars like neutron stars

from collapsing is or what the critical radius, or mass of the stars is to determine

whether gravitational collapse occurs or not. The EoS of cold dense matter determines

the radii and masses of neutron stars by using Tolman-Oppenheimer-Volkov (TOV)

[14, 15] relativistic stellar structure equations. Moreover, the EoS can be found from

the observed mass and radius of the neutron stars by using the TOV equations which

is the bridge between the microphysics described by EoS and macroscopic properties

of the neutron stars [16, 17].

2.1 TOV equations

For a static and spherically symmetric spacetime, the metric is

ds2 = −e2Φ(r)dt2 + e2γ(r)dr2 + r2dθ2 + r2 sin θ2dϕ2. (2.1)

By using the Einstein tensor

Gµν = Rµν −
1

2
Rgµν = 8πGTµν , (2.2)

7



Φ(r) and γ(r) will be solved. Christoffel symbols

Γη
µν =

1

2
gηα(∂µgνα + ∂νgαν − ∂αgµν) (2.3)

can be computed to be

Γt
tr = Φ

′
Γr
tt = Φ

′
e2(Φ−γ) Γr

rr = γ
′

Γθ
rθ = r−1 Γr

θθ = −re−2Φ Γϕ
rϕ = r−1

Γr
ϕϕ = −re−2γ sin2 θ Γθ

ϕϕ = −sin 2θ

2
Γϕ
θϕ = cot θ

where prime represents derivation with respect to the r. Substituting these into Rie-

mann tensor formula

Rρ
αµν = ∂µΓ

ρ
να − ∂νΓ

ρ
µα + Γρ

µηΓ
η
να − Γρ

νηΓ
η
µα, (2.4)

the nonvanishing terms can be calculated to be

Rt
rtr = −(Φ

′′
+ (Φ

′
)2) + Φ

′
γ

′
, Rt

θtθ = −rΦ
′
e−2γ,

Rt
ϕtϕ = −rΦ

′
sin2 θe−2γ, Rr

θrθ = rγ
′
e−2γ,

Rr
ϕrϕ = rγ

′
sin2 θe−2γ, Rθ

ϕθϕ = − sin2 θ(e−2γ − 1).

Then, using the Ricci tensor defined as

Rνµ = Rµν = Rη
µην , (2.5)

one finds

8



Rtt = e2(Φ−γ)(Φ
′′
+ (Φ

′
)2 − Φ

′
γ

′
+

2

r
Φ

′
),

Rrr = −Φ
′′ − (Φ

′
)2 + Φ

′
γ

′
+

2

r
γ

′
,

Rθθ = 1− e−2γ(r(Φ
′ − γ

′
)),

Rϕϕ = sin2 θRθθ.

The Ricci scalar defined by

R = Rµ
µ = gµνRµν , (2.6)

can be obtained by inserting Ricci tensor into it

R = −2e−2γ

(
Φ

′′
+ (Φ

′
)2 − Φ

′
γ

′ − 2

r
(γ

′ − Φ
′
)− (e2γ − 1)

)
. (2.7)

The Einstein tensor (2.2) has the following components

Gtt = r−2e2(Φ−γ)(2rγ
′
+ e2γ − 1) = 8πGTtt,

Grr = r−2(2rΦ
′ − e2γ + 1) = 8πGTrr,

Gθθ = r2e−2γ

(
Φ

′′
+ (Φ

′
)2 − Φ

′
γ

′ − r−1(γ
′ − Φ

′
)

)
= 8πGTθθ,

Gϕϕ = sin2 θGθθ = 8πGTϕϕ.

(2.8)

Now, the right side of the Einstein equation needs to be calculated. The star is con-

sidered as the perfect fluid with the energy momentum tensor

Tµν = (p+ ρ)uµuν + pgµν , (2.9)

where the four velocity is taken as

uµ = (eΦ, 0, 0, 0). (2.10)

9



for a static perfect fluid one. Hence, the components of the energy momentum tensor

are

Tµν =


ρe2Φ(r) 0 0 0

0 pe2γ(r) 0 0

0 0 r2p 0

0 0 0 r2p sin2 θ

 . (2.11)

Finally, the Einstein equations are

r−2e−2γ(2rγ
′
+ e2γ − 1) = 8πGρ,

r−2e−2γ(2rΦ
′ − e2γ + 1) = 8πGp,

e−2γ

(
Φ

′′
+ (Φ

′
)2 − Φ

′
γ

′ − r−1(γ
′ − Φ

′
)

)
= 8πGp.

(2.12)

It’s not necessary to write the ϕϕ component being proportional to the θθ component.

Since Rtt and Rrr vanish independently, it is possible to write

0 = Rtte
−2(Φ−γ) +Rrr

= 2r−1(Φ
′
+ γ

′
) → Φ = −γ,

(2.13)

where constant coming from integral is taken as zero. Rθθ = 0 gives

e−2γ(2rγ
′
+ 1) = 1,

∂r(re
2γ) = 1,

(2.14)

e2γ =

(
1− RS

r

)−1

, (2.15)

where RS = 2GM is called the Schwarzschild radius. After rewriting,

e2γ =

(
1− 2Gm(r)

r

)−1

, (2.16)

10



substituting the last one into rr component of the Einstein equation, one gets

Φ
′
=

m(r)G+ 4πr3Gp

r2 − 2Gm(r)r
. (2.17)

From the conservation of the energy momentum tensor,

∇µT
µν = 0,

∇µ

(
(p+ ρ)uµuν + pgµν

)
= 0,

uνu
µ∇µ(ρ+ p) + (ρ+ p)uµ∇µuν + (ρ+ p)uν∇µu

µ +∇νp = 0,

uνu
µ∇µ(ρ+ p) + (ρ+ p)uµ∂µuν − (ρ+ p)uµΓλ

µνuλ+

(ρ+ p)uνg
−1/2∂µ(g

1/2uµ) + ∂νp = 0.

(2.18)

Nonvanishing terms are

−(p+ ρ)uµΓλ
µνuλ + ∂νp = 0,

−(p+ ρ)utΓt
trut + ∂rp = 0,

(p+ ρ)∂rΦ + ∂rp = 0.

(2.19)

Thus, one has

dp

dr
= −(p+ ρ)

dΦ

dr
. (2.20)

Here, pressure is the relativistic correction to the Newtonian expression of Gravita-

tional Potential that is the reason why Φ is used at the beginning of the story. Inserting

the equation (2.17) into last one gets

dp

dr
= −(p+ ρ)(4πr3pG+m(r)G)

r2 − 2GRm(r)
, (2.21)

which is known as Tolman-Oppenheimer-Volkoff (TOV) equation. The relationships
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between the mass and radius in rough calculation,

ρ(r) =

ρ0, r < R,

0, r > R,

and

m(r) =


4
3
πr3ρ0, r < R,

4
3
πR3ρ0 = M, r > R.

TOV equation for r < R becomes

p(r) = ρ0

(
(1− 2GMr2/R3)1/2 − (1− 2GM/R)1/2

3(1− 2GM/R)1/2 − (1− 2GMr2/R3)1/2

)
. (2.22)

At r = 0, the dominator is

3(1− 2GM

R
)1/2 = 1 → R =

9

4
GM, (2.23)

where M = 4
3
πR3ρ0.

2.2 Polytropes and White Dwarfs

Newtonian physics describe the most of the stars, which helps one to both get the

limiting cases for more exotic objects like neutron star, black hole and to understand

the properties of these objects. By considering the properties of the Newtonian stellar

structure physics such as the internal energy and pressure are much less than the rest

mass density (nmN ≫ e, p), the gravitational potential is small everywhere (2MG
r

≪
1), TOV equation can be reduced to

d

dr

r2

ρ(r)
p′(r) = −4πGr2ρ(r). (2.24)

In the polytropic picture, the equation of state is

p = Kρ(r)1+
1
n . (2.25)
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By introducing the dimensionless radius ζ and function ϑ(ζ),

r = bζ,

ρ(r) = ρcϑ(ζ)
n,

(2.26)

where

b = (
(n+ 1)Kρ

1
n
−1

c

4πG
)1/2,

ρc = ρc(r = 0).

(2.27)

(2.24) can be transformed into dimensionless form named Lane-Emden equation

1

ζ

d

dζ
(ζ2

dϑ(ζ)

dζ
) = −ϑn, (2.28)

by using the boundary conditions at center (ϑ(0) = 1, ϑ′
(0) = 0), M(r) and R are

computed to be respectively

M(r) = 4πb3ρc

∫ ζ1

0

ζ2ϑndζ

= 4π

(
(n+ 1)K

4πG

)3/2

ρ
3−n
2n

c ζ21 |ϑ
′
(ζ1)|

R =

(
(n+ 1)K

4πG

)1/2

ρ
1−n
2n

c ζ1

(2.29)

leaving alone ρc from R, then substituting into M(r) gives relation between M and

R

M = 4πR
3−n
1−n

(
(n+ 1)K

4πG

) n
n−1

ζ
n−3
1−n

1 ζ21 |ϑ
′
(ζ)|. (2.30)

The energy density, pressure and number density can be written respectively by sum-

ming over the occupied states [18]
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n =
g

2π2ℏ3

∫ kF

0

k2dk =
k3
F

3π2ℏ3
,

p =
1

3

g

2π2ℏ3

∫ kF

0

k2

√
k2 +m2

k2dk

=
1

12π2ℏ3
(kF

√
m2 + k2

F

(2k2
F − 3m2)

2
) +

3

2
m4 ln(

k2
F +

√
k2 +m2

m
),

ϵ =
g

2π2ℏ3

∫ kF

0

k2
√
k2 +m2dk

=
1

4π2ℏ3
(k2

F (
m2 + 2k2

F

2
)
√
m2 + k2

F − m4

2
ln(

k2
F +

√
k2 +m2

m
),

(2.31)

ρ = nmNη. (2.32)

where g is the degeneracy factor formulated as g = 2s + 1 and its value is 2 for

fermions because of having spin 1
2
. The pressure of an electron is calculated for an

isotropic distribution of momenta, so the factor 1
3

in front of the pressure formula

arises from isotropy. Also, η is the number of nucleons per electron; η is approx-

imately equal to the 2 for stars having exhausted their hydrogen. The maximum

momenta can be found by using the number density and the mass density formulas;

kF = ℏ

(
3π2ρ

mNη

)1/3

. (2.33)

The EoS can be reduced to the polytrope in two cases which are ρc ≫ ρ and ρ ≫ ρc,

where ρc is the critical density coming from kF = me, so

ρc =
mNηme

3

3π2ℏ3
≈ 1× 106η g/cm3. (2.34)

For the relativistic limit k ≫ m and ρ ≫ ρc , the pressure and energy density becomes

respectively

p ≈ 1

12π2ℏ3
(k4

F +
3m4

2
ln

2kF
m

), (2.35)

14



ϵ ≈ 1

4π2ℏ3
(k4

F − m4

2
ln

2kF
m

). (2.36)

The logarithmic terms can be ignored since they are small compared to k4 in the

ultrarelativistic limit, so the equation of the state is

ϵ → 3p ≈ (3π2n)
4
3

4π2
. (2.37)

The speed of sound for the degenerate ideal fermion gas can be calculated by using

the EoS

v2s =
dp

dϵ
=

1

3
. (2.38)

By using kF , the relation between pressure and mass density gives the polytrope case

p =
ℏ3

12π2

(
3π2

mNη

)4/3

ρ4/3, (2.39)

where γ = 4
3

and K = ℏ3
12π2

(
3π2

mNη

)4/3

. The radius and the mass of the white dwarf

can be calculated by considering the critical density and pluging the above equations

into (2.29) and (2.30) equations, respectively

R =
ℏ3/2

2

(
3π

cGm2
em

2
nη

)1/2(
ρc
ρ(0)

)1/3

(6.89685)

= 5.3× 104

(
ρc
ρ(0)

)1/3

η−1km,

M =
(3π)1/2

2

(
ℏc

Gm
4/3
N η4/3

)3/2

(2.01824) = 5.87η−2M⊙,

(2.40)

where ζ and −ζ21θ
′(ζ1) are 6.89685 and 2.01824, respectively.

Also, the last part of the (2.40) is the maximum mass for white dwarfs, which is

called as the Chandrasekhar limit. A white dwarf against gravitational collapse by
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the pressure of cold degenerate electrons cannot be stable once its mass exceeds the

Chandrasekhar limit.

2.3 Neutron Stars

Neutron stars having probably with large fraction of neutrons are compact stars con-

taining matter of the supranuclear density in their interiors [19, 20]. Neutron stars’s

mass M ∼ 1.4 M⊙ is close to the solar mass M⊙ = 1.989 × 1033 g while their radius

R ∼ 10 km are ∼ 105 times smaller than the solar radius R⊙ =6.96×105 km. Their

average mass density is

ρ ≃ M
4
3
πR3

≃ 7× 1014gcm−3 ∼ (2− 3)ρ0 (2.41)

where ρ0 = 2.8 × 1014gcm−3 is the normal nuclear density. Indeed, the central

density of neutron stars can reach (10− 20)ρ0, which means neutron stars are the

most compact stars known in the universe. While a white dwarf is supported by

the degeneracy electron pressure, neutron star is supported by degeneracy neutron

pressure against gravitational collapse. Thus, total energy density and pressure of an

ideal Fermi gas consisting of neutrons can respectively be written as

ϵn = g
4π

(2πℏ3)

∫ kF

0

√
(k2 +m2

n)k
2dk = 3ρc

∫ kF /mn

0

(z2 + 1)1/2z2dz, (2.42)

pn = g
4π

(2πℏ3)

∫ kF

0

k2√
(k2 +m2

n)
k2dk = ρ

∫ kF /mn

0

(z2 + 1)−1/2z4dz, (2.43)

where the critical density for neutrons is

ρc =
8πc3m4

n

3(2πℏ3)
= 6.1× 1015g/cm3. (2.44)

For relativistic approach kF ≫ mn and ρ(0) ≫ ρc, the total energy and pressure

becomes
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ϵn =
3ρc
4

(
kF
mn

)5, pn =
ρc
4
(
kF
mn

)5,

p =
ϵ

3
. (2.45)
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CHAPTER 3

RELATIVISTIC MEAN FIELD THEORY

So far, a simple Fermi gas model of dense matter has been discussed. Relativistic

Mean Field Theory (RMF) is an extension that contains interaction of the baryons

along the mean fields of certain mesons. The ground state in both circumstances is a

degenerate state composing of all particle momentum levels filled to Fermi momen-

tum. The model called Walecka whose background given in the Appendix A is based

on four particles fields which are nucleons, a scalar meson σ and omega vector me-

son ω. The reason of using these two mesons instead of the others such as pion and

kaon is that the mean values of them in the normal ground state do not vanish in the

approximation in which we work.

3.1 Walecka Model

In accordance with the model, the partition function can be calculated after construct-

ing the Lagrangian density. The partition function (Appendix A) is

Z =

∫
[Dφ̄][Dφ][Dσ][Dω] exp

∫ β

0

dτ

∫
d3xL (3.1)

where the Lagrangian density is

L = µnφ
†
nφn + µpφ

†
pφp + LW

= φ̄(iγµ∂µ −mN)φ+
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

4
ωµνω

µν

+
1

2
m2

ωωµω
µ + (gσφ̄σφ− gωφ̄γ

µωµφ) + µnφ
†
nφn + µpφ

†
pφp,

(3.2)
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where φ =

φn

φp

 with the φn neutron spinor and the φp proton spinor, φ̄ = φ†γ0,

the first term in LW is the free nucleon Lagrangian density and 2nd, 3th, 4th comes

from free mesonic Lagrangian density. The last two terms of the LW is the interaction

Lagrangian with Yukawa interaction between mesons and nucleons. Also, the chem-

ical potential of the neutron (µn) and proton (µp) are taken as equal each one because

of considering symmetry matter, which means µn = µp = µ. In the meson equations,

nucleons behaves as sources, which suppose that a net baryon density create vector

and meson condensates, so σ and ω can have nonzero expectation values

σ → σ̄ + σ′,

ωµ → δµ0ω̄0 + ω′
µ,

(3.3)

where the bar indicates average value of the fields whereas prime represents the fluc-

tuations. If the fluctuations are ignored, the mean field approximation is obtained.

When the equation (3.3) is substituted into the equation (3.2) and then removed all

derivative terms of the mesons, the Lagrangian density becomes

L =

(
φ̄(iγµ∂µ −m∗

N + µ ∗ γ0)φ− 1

2
m2

σσ̄
2 +

1

2
m2

ωω̄0
2

)
, (3.4)

where

m∗
N = mN − σ̄gσ,

µ∗ = µ− ω̄0gω,
(3.5)

whereas µ is the actual chemical potential related to the nucleon number, the new

effective chemical potential µ has the physical meaning because of determining the

Fermi energy. After inserting Lagrange density into partition function (3.1), one gets

Z = (exp
V

T
(
1

2
m2

σσ̄
2 +

1

2
m2

ωω̄0
2))

∫
[Dφ̄][Dφ]

× exp

∫ β

0

dτ

∫
d3xφ̄(iγµ∂µ −m∗

N + µ∗γ0)φ.

(3.6)
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Introducing the Fourier transforms

φ(x) =
1

V
1
2

∑
p

e−ip.xφ(p), φ̄(x) =
1

V
1
2

∑
p

e−ip.xφ̄(p),

where p = (−iωn,p), x = (−iτ,x) and p = p0x0 − p · x = −(ωnτ + p · x) with

frequencies ωn = (2n+ 1)πT . After taking integral in the exponential,

Z = (exp
V

T
(
1

2
m2

σσ̄
2 +

1

2
m2

ωω̄0
2))

∫
[Dφ†][Dφ] exp

(
−
∑
p

φ†(p)
H−1(p)

T
φ(p)

)
,

(3.7)

where the inverse nucleon propagator is

H−1(p) = −γµpµ − γ0µ
∗ +m∗

N ,

by using the functional integral over the Grassmann variables, Z becomes

Z = (exp
V

T
(
1

2
m2

σσ̄
2 +

1

2
m2

ωω̄0
2)) det

H−1(p)

T
, (3.8)

where the momentum space, the Dirac space and the neutron proton space are taken

into account in determinant. To obtain pressure, log of the the partition function must

be taken, so

lnZ =
V

T

(
1

2
m2

σσ̄
2 +

1

2
m2

ωω̄0
2

)
+ 4V

∫
d3p

(2π)3

(
Ep

T
+ ln(1 + e−

Ep−µ∗

T ) + ln(1 + e−
Ep+µ∗

T )

) (3.9)

where

Ep =
√
p2 + (m∗

N)
2.
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and PFG is the Fermi nucleon pressure and the factor 4 is the sum of the two spin

degrees of freedom and the two baryon (proton and neutron) degrees of freedom.

Then, the pressure is

P (µ, T ) =
T

V
lnZ = PFG(µ

∗, T ) +
1

2
m2

σσ̄
2 +

1

2
m2

ωω̄0
2, (3.10)

By maximizing the pressure, the meson condensate can be found and substituted into

the above equation (3.10)

0 =
∂P (µ, T )

∂σ̄
= −m2

σσ̄ − gσ
∂PFG

∂m∗
N

,

0 =
∂P (µ, T )

∂ω̄
= m2

ωω̄ − gω
∂PFG

∂µ∗ .

(3.11)

By using LW , the Euler-Lagrange equations in the presence of the interactions are

(∂µ∂
µ +m2

σ)σ(x) = gσφ̄(x)φ(x),

(∂µ∂
µ +m2

ω)ωµ(x)− ∂µ∂
νων(x) = gωφ̄(x)γµφ(x),(

γµ(i∂
µ − gωω

µ(x))− (m− gσσ(x))

)
φ(x) = 0.

(3.12)

These can be reduced to the simple equations by considering the mean field approxi-

mations;

m2
σ⟨σ⟩ = gσ⟨φ̄φ⟩,

m2
ω⟨ω0⟩ = gω⟨φ†φ⟩,

m2
ω⟨ων⟩ = gω⟨φ̄γνφ⟩,

(3.13)

where ”⟨⟩” represents average. When the equations (3.11) are substituted into the

equations (3.13), one gets the baryon and scalar densities
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nB = ⟨φ†φ⟩ = ∂PFG

∂µ∗

= 4

∫
d3p

(2π)3

(
1

eβ(E∗−µ∗) + 1
+

1

eβ(E∗+µ∗) + 1

)
,

(3.14)

nS = ⟨φ̄φ⟩ = −∂PFG

∂m∗
N

= 4

∫
d3p

(2π)3
m∗

N

E∗

(
1

eβ(E∗−µ∗) + 1
+

1

eβ(E∗+µ∗) + 1

)
,

(3.15)

where E∗ =
√

p2 +m∗2
N . The relationship between average mesons and baryon-

scalar densities is

σ̄ =
gσ
m2

σ

nS, (3.16)

ω̄ =
gω
m2

ω

nB. (3.17)

Equation (3.5) can be rewritten in terms of the effective mass

m∗
N = mN − g2σ

m2
σ

nS. (3.18)

When the zero temperature limit is taken as T ≪ µ,mN and by using basic thermo-

dynamics identity, equation (3.10) becomes

P =
1

4π2

(
(
2

3
p2F −m∗2

N )E∗
FpF +m∗4

N ln
pF + E∗

F

m∗
N

)
+

g2ω
2m2

ω

n2
B − g2σ

2m2
σ

n2
S,

(3.19)

where EF = µ∗ =
√
p2F +m∗2

N . To find the equation of the state, the energy density

need also to be found. As mentioned earlier, the actual potential related to the baryon

number nB is µ, which means the pressure can be written as P = −ϵ + µnB at zero
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temperature. The first term of the pressure equation (3.10) arises from ϵ0+µ∗nB. That

is,

PN = −ϵ0 + µ∗nB = −ϵ0 + µnB − gωnBω̄0

= −ϵ0 + µnB − g2ω
m2

ω

n2
B,

where the effective chemical potential (3.5) and the vector meson condensate (3.18)

are substituted into the above PN equation. After this equation is replaced with the

first term of the equation (3.10), one gets

P = −
(
ϵ0 +

g2ω
2m2

ω

n2
B +

g2σ
2m2

σ

n2
S

)
+ µnB. (3.20)

Thus, by using P = −ϵ+ µnB, energy density becomes

ϵ = ϵ0 +
g2ω
2m2

ω

n2
B +

g2σ
2m2

σ

n2
S, (3.21)

which yields

ϵ =
1

4π2

(
(2p2F +m∗2

N )E∗
FpF −m∗4

N ln
pF + E∗

F

m∗
N

)
+

g2ω
2m2

ω

n2
B +

g2σ
2m2

σ

n2
S,

(3.22)

where

nB =
2p3F
3π2

,

nS =
m∗

NpFEF

π2
− m∗2

N

π2
ln

(
E∗

F + pF
m∗

N

)
. (3.23)

Before finding the relationship between the pressure P and the energy density ϵ, the

pressure and energy density will be analyzed for both at low and high densities. At

low density pF → 0, the quantities become
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P =
2

15π2

p5F
mN

, (3.24)

ϵ = (mN +
3

10

p2F
mN

)nB. (3.25)

At high density, pF → ∞

P = ϵ =
1

2
(
g2ω
m2

ω

)n2
B, (3.26)

Finally, the speed of sound c2s =
∂P
∂ϵ

approaches the speed of light at very high density.

3.1.1 Some Properties of Nuclear Matter

Nuclear matter is a saturated systems whose density at which pressure is zero and at

which matter would stay static unless disturbed, because of the short range of the nu-

clear force, strong repulsion and Pauli principle. Even if more nucleons are inserted

into the saturated nuclear matter, the density of the central region stays the same, as

n0 =
2p3F
3π2 = 0.153 fm−3. The nuclear matter of the saturation density per nucleon is

stable at zero pressure, so the density-dependent binding energy per nucleon is min-

imal and its value is E0 = ( ϵ
nB

−mN)n0 = −16.3 MeV. The saturation density and

the binding energy per nucleon enable one to determine the coupling constants as

g2ω/4π = 14.717 and g2σ/4π = 9.537. The other associated parameter is the incom-

pressible modulus K measuring the stiffness of nuclear matter at saturation. Its value

in the given model is K = p2F
∂2(ϵ/nB)

∂p2F
≈ 550 MeV about two times larger than the

experimental value which is K ≈ 250 MeV. The effective nucleon mass in matter is

the other relevant property playing role like incompressible modulus K because of

the high density behavior of EOS. Its value in the Walecka model is m∗
N = 0.57mN

which is smaller than the empirical range m∗
N ≈ 0.7 − 0.8mN . On the other hand,

the Landau mass mL is more useful than the mass parameter mN∗ because it is an

effective mass for fermions at the Fermi surface where the location of all low energy

excitations is, which makes the Landau mass more accessible than the effective nu-

cleon mass. The Landau mass is described as mL = pF/vF where vF = (∂EF

∂p
)p=pF
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and its value is mL = 0.83mN . Consequently, the given model is not expected to

extrapolate well enough to high density in symmetric or asymmetric matter of neu-

tron stars because incompressible modulus and the effective nucleon mass do not

match with empirical values whereas saturation density and binding energy remains

the same with experimental results.

3.1.2 The Walecka Model with the Scalar Interaction

In the relativistic mean field theory, the scalar interaction will be inserted into the

model by adding the cubic and quadratic terms to explain the known qualities of

nuclear matter. Besides this necessity, this model will be renormalizable by inserting

these terms into the Lagrange density. The pressure and the effective nucleon mass

can be rewritten respectively as

P = −1

2
m2

σσ̄
2 − 1

2
m2

ωω̄
2 − 1

3
bmN(gσσ̄)

3 − 1

4
c(gσσ̄)

4 + PN , (3.27)

m∗
N = mN − nS

g2σ
m2

σ

+
g2σ
m2

σ

(
bmN(mN −m∗

N)
2 + c(mN −m∗

N)
3

)
, (3.28)

where b and c are the new dimensionless constants and σ3, σ4 represent a three-body

and four-body interactions respectively. While σ3 is necessary to define the bound

nuclear matter in non-relativistic potential approach, σ4 does not have more informa-

tion on it. The experimental values can be fitted with the Walecka model by choosing

g2σ/(4π) =6.003, g2ω/(4π)=5.948, b = 7.950 × 10−3 and c = 6.952 × 10−4. Adding

the scalar interaction to the model has an important impact on the behaviour at large

density.

3.1.3 Hyperons

In the core of the compact stars, densities can be higher several times than nuclear sat-

uration density, which leads to presenting baryons with hyperons whose lowest states

are the baryon octet consisting of n, p,Ξ−,Ξ0,Σ−,Σ0,Σ+,Λ. To calculate EOS, the
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hyperons will be incorporated into the given model. In the RMF approximation, the

new model includes protons and neutrons in beta equilibrium which interact via the

exchange of ω, σ and ρ. The reason of adding ρ meson is to recreate the nuclear

matter’s measured charge-symmetry energy. Also, the spin 1/2 six hyperons and the

vector meson ϕ will be included in the model. The ϕ couples to the the hyperons

and symbolizes vector repulsion among them. In accordance with these situations,

the Lagrange density can be rewritten as

L =
∑
j

φ̄j(iσ
µ∂µ −mj + gσjω − gωjσ

µωµ − gϕjγ
µϕµ − gρjγ

µρaµTa)φj

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

3
bmN(gσσ)

3 − 1

4
c(gσσ)

4

− 1

4
ωµνωµν +

1

2
m2

ωωµω
µ − 1

4
ϕµνϕµν +

1

2
m2

ϕϕµϕ
µ

− 1

4
ρµνa ρaµν +

1

2
m2

ρρ
a
µρ

µ
a ,

(3.29)

where j represents baryon species and T a is the isospin generator. From this Lagrange

density, the effective baryon masses and the effective baryon chemical potential are

respectively

m∗
j = mj − gσjσ̄

µ∗
j = µj − gwjω̄ − gϕjϕ̄− I3jgρj ρ̄

3
0,

(3.30)

where I3j is the 3th component of the isospin of the jth baryon. There are relationships

between particle density and fermi momenta, also the fermi momenta are associated

with the effective chemical potential by respectively

nj =
p3Fj

3π2
,

µ∗
j =

√
m∗

j + p2Fj.

In compact stars, the matter is electrically neutral and has chemical equilibrium in

accordance the weak interactions. The conditions in the case of the hyperons are
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µp = µn − µe, µΛ = µn,

µΣ+ = µn − µe, µΣ0 = µn,

µΣ− = µn + µe, µΞ0 = µn,

µΞ− = µn + µe.

Then, the constraint of the electric neutrality can be given as

np = nΣ+ = ne + nµ + nΣ− + nΞ, (3.31)

It is possible to say that hyperons can be interpolated to the Walecka model and they

seem for large densities since baryon chemical potential gives sufficiently a non-

vanishing Fermi momentum. The total pressure and energy density with muon can

be calculated the same way which used in the Walecka model, so

P = PFG(µe,me) + PFG(µµ) +
∑
j

PFG(µ
∗
j ,m

∗
j)

− 1

2
m2

σσ̄
2 +

1

2
m2

ωω̄
2
0 +

1

2
m2

ϕϕ̄
2
0 +

1

2
m2

ρ(ρ̄0
3)2

− 1

3
bmN(gσσ̄)

3 − 1

4
c(gσσ̄)

4

ϵ = ϵFG(µe,me) + ϵFG(µµ,mµ) +
∑
j

, ϵFG(µ
∗
j ,m

∗
j)

+
1

2
m2

σσ̄
2 +

1

2
m2

ωω̄
2
0 +

1

2
m2

ϕϕ̄
2
0 +

1

2
m2

ρ(ρ̄0
3)2

+
1

3
bmN(gσσ̄)

3 +
1

4
c(gσσ̄)

4.

(3.32)

The mean value of the vector fields can be expressed as

m2
ωω̄0 =

∑
j

gωjnj,

m2
ϕϕ̄0 =

∑
j

gϕjnj,

m2
ρρ̄

3
0 =

∑
j

I3jgρjnj.

(3.33)

The mean value of the scalar field need to be obtained numerically from the condition
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∑
j

gσjn
S
j = m2

σσ̄ + bmNg
3
σN σ̄

2 + cg4σN σ̄
3, (3.34)

where nS
j represents the scalar density of the jth baryon. After determining suitable

constants, the equation of the state (P versus ϵ) can be plotted for electrically nuclear

dense matter. The pressure of non-interacting nucleons at low density is greater than

interacting one since attractive interactions decrease the pressure. Indeed, the pres-

sure becomes zero at the saturation density of isospin-symmetric nuclear matter. This

situation changes vice versa for the high density, which means repulsive interactions

including vector mesons lead to rise in the pressure. When hyperons are counted in

nuclear matter, the pressure decreases, and so obtained EoS is soft.
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CHAPTER 4

QCD PLASMA

When the energy density exceeds a certain hadronic value (∼ 1GeV/fm3)[21], mat-

ter no longer made up of separate hadrons, but of their fundamantal constitutents,

quarks and gluons. We can call this phase of matter the QCD (or quark-gluon) plasma

because of the apparent connection with analogous events in atomic physics. Thus,

the EoS of QCD plasma phase with the help of the thermodynamical potentials up to

the order O(α2 lnα2) will be calculated.

4.1 Partition Function

In non-gauge many body theories, all thermodynamic quantities can be found by

using the partition function

Tr exp[−β(H − µ ·N)]. (4.1)

In gauge theories, the definition of this function relies on which gauge is used [22].

The reason for this is the existence of nonphysical particles in some gauges. The

way to avoid this problem is either to evaluate the partition function only in physical

gauge which does not include non-physical states or take into account only the phys-

ical states for trace. The calculations can be easy if one can find a Lorentz and gauge

covariant computational scheme which depend on Feynman’s path integral formula-

tion of statistical mechanics [22].Thus, the partition function [23] can be written as a

functional integral over whole fields φ
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Z = N(β)

∫
[φ] exp i

∫ −iβ

0

dx0

∫
d3xLeff (φ(x), ∂µφ(x);µ) (4.2)

where N(β) is the normalization factor. In QCD, the ghost field named Faddeev-

Popov appear in order to remove the effect of studying on unphysical gauges. These

are nonphysical spin-zero particles that have a fermionlike minus sign for loops. Ap-

proximately [24],

Z ≈
∫

[Aµ][ϕ][ϕ̄][W ][W̄ ] expSeff (4.3)

where Aµ is a periodic boson and ϕ is an antiperiodic fermion

Seff =

∫ β

0

dτ

∫
d3x

(
− 1

4
F a
µν

2 − 1

2α
(∂µA

µ
a) + ∂µW̄a∂µWa

+ gfabc∂µW̄aA
b
µW

c +
∑
f

ϕ̄f (i��D + µfγ
0 −mf )ϕf

)
,

(4.4)

where the field tensor F and the covariant derivative D can be described respectively

F µν
a = ∂µAν

a − ∂νAµ
a − gfabcA

µ
bA

ν
c ,

Dµ = ∂µ + igAµ,
(4.5)

and α is the gauge fixing parameter. ϕ, A and W are the fermion, gluon and ghost

fields, respectively. One can derive the finite temperature Feynman rules by substi-

tuting external forces into the partition function and dividing the Lagrangian into an

integration part and a kinetic part shown as L = L0 + LI .Thus,

Z[jµ, ...] ≈
∫

[Aµ][ϕ][ϕ̄][W̄ ][W ] exp

(
dτ

∫
d3xLI(Aµ, ...)

− 1

2
Aµ[gµν∂

2 − (1− 1

α
)∂µ∂ν ]A

ν − jµA
µ + ...

)
,

(4.6)

where the dots represent fermions and ghosts terms.When one converts the above

equation into the momentum space, the finite size of the space in the τ directions
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together with the periodic/antiperiodic boundry conditions causes the energy Fourier

series. One gets

Z[jµ, ..] ≈
∫

[Aµ][ϕ][ϕ̄][W̄ ][W ] expSI(
−iδ

δjµ
, ..)

× exp

(
− T

∑
n

∫
d3p

(2π)3

(
1

2
Aµ(n, k̄)(kµkν − k2gµν)A

ν(n, k̄)

+ jµ(n, k̄)A
µ(n, k̄) + ..

)
,

(4.7)

Z ≈ expSI(−i
δ

δJµ
, ..) exp

(
T
∑
n

∫
d3k

(2π)3
× (

1

2
jµ(n, k̄)∆

µνjν(n, k̄))

)
, (4.8)

where ∆µν is the Feynman propagator and k0 = 2πniT . Hence, the finite temperature

Feynman rules are the same as the T = µ = 0 rules with the substitution

∫
d4k

(2π)4
→ iT

∑
k0

∫
d3k

(2π)3
(4.9)

where

k0 = 2nπiT, (bosons, ghosts)

= (2n+ 1)πiT + µ, (fermions)

(2π)4δ(4)(k1 + ...kN) →
−i

T
(2π)3δk01+...k0N

δ3(k̄1 + ...k̄N).

In order to perform the frequency shown in the above equation, they can be converted

to the contour integrals (Appendix B)

4.2 Thermodynamic Potential in One-Loop Level

4.2.1 Ideal Gas of Quarks and Gluons

The calculation of the thermodynamic potential in the perturbation theory up to the

few lowest orders can be found using the partition function. By applying the Gaussian
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integration to the equation (4.14) and considering g = 0 for the ideal gas limit, the

integration becomes

Ωideal = −T

V
ln

(
det−1/2(∂2gµνδab) det(∂2δab)Πf det(i[γ

0(∂τ−µf )+ γ̄.∇)]−mf )

)
(4.10)

where the determinants come from the gauge, the ghost and fermion fields, respec-

tively. Π represents the polarization tensor (Appendix C). The polarization tensor

Whereas the fermion determinant will be evaluated on the space of antiperiodic func-

tions, the gauge and ghost determinants will be evaluated on the space of periodic

functions. By using the method shown in the Appendix B and Appendix C, one can

get in the momentum space

Ωideal = −π2(N2 − 1)

45β
− N

3π2

∑
f

∫ ∞

0

dp
p4

Ep

(
1

eβ(Ep−µf ) + 1
+

1

eβ(Ep+µf ) + 1

)
.

(4.11)

For the ultrarelativistic limit(m = 0),

Ωideal
(m=0) = − π2

45β4

[
− 1 +N2 +

7NNf

4
+ 15N

∑
f

(
µ2
fβ

2

2π2
(1 +

µ2
fβ

2

2π2
)

)]
. (4.12)

4.2.2 The Exchange Energy

In order to consider the perturbative correction to the above ideal gas formula, one

can differentiate Ω with respect to the coupling constant.

Ω(g) = Ω(0) +

∫ g

0

∂Ω

∂g′ dg
′
. (4.13)

The derivation of it can be written in the form [25]
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∂Ω

∂g
=

T

2g

∑
k0

∫
d3k

(2π)3

(
T

6

∑
q0

∫
d3q

(2π)3
Γabc
0µνα(k, q,−k − q)Dµµ′

aa′ (k)

Dνν′

bb′ (q)D
αα′

cc′ (k + q)Γa′b′c′

µ′ν′α′(−k,−q, k + q) +

(
Πµν

ab (k)D
ab
µν(k)

−
∑
f

Sf (k)
∑
f

(k)−G(k)
∑
G

(k)

))
,

(4.14)

where Π is the polarization tensor calculated in the Appendix B; (k), Sf (k) and G(k)

are respectively exact gauge, fermion and ghost propagators.
∑

f and
∑

G are respec-

tively the self-energies of the fermion and ghost. Γ and Γ0 are the exact-three point

and bare functions. To get the first perturbative correction O(g2), the exact propaga-

tors and vertex function are replaced with the bare ones. Thermodynamic potential

with the correction is

Ωexch =
g2N(N2 − 1)T 4

144
+

(N2 − 1)g2T 2

24π2

∑
f

∫ ∞

0

p2np

Ep

dp

+ (N2 − 1)
g2

32π5

∑
f

∫ ∞

0

p2q2

EpEq

dqdp

(
(n+

p n
+
q + n−

p n
−
q )

× (
m2

f

qp
ln

EpEq −m2
f − qp

EpEq −m2
f + qp

+ 2)

+ (n+
p n

+
q + n−

p n
−
q )(

m2
f

qp
ln

EpEq +m2
f + qp

EpEq +m2
f − qp

+ 2)

)
.

(4.15)

For the massless limit,

Ωexch
m=0 =

q2T 4(N2 − 1)

144

(
5Nf

4
+N + g

∑
f

(
µ2
f

2π2T 2
(1 +

µ2
f

2π2T 2
)

))
. (4.16)

4.2.3 Correlation Correction

In the case of perturbative calculation up to the three loop level intead of two loop

level which is evaluated at the previous section, one encounters infrared singularities.
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The exact gluon propagator in equation (5.14) will be extended in a relative to the

polarization tensor and the bare propagator in accordance with

D = D0

∞∑
n=0

(−
∏

D0)n. (4.17)

Directly, the thermodynamic potential can be written in the simpler form for a zero-

mass limit

Ωplasma
m=0 =

T 4(1−N2)

12π

(
N +Nf

6
+

1

2π2T 2

∑
f

µ2
f

)3/2

g3

+
T 4(N −N3)

32π2

(
N +Nf

6
+

1

2π2T 2

∑
f

µ2
f

)
g4 ln g +O(g4).

(4.18)

4.3 Thermodynamic Quantities and EoS of QCD in One-Loop Level

Finally, the pressure is obtained by using the total thermodynamic potential getting

up to O(g4 ln g) by summing the above results for arbitrary mf and µf .

p = −ΩTotal

= −(Ωideal
m=0 + Ωexchange

m=0 + Ωplasma
m=0 )

=
π2T 4

45

(
(N2 − 1 +

7

4
NNf ) +

15

T 4

∑
f

(T 2ϑ2
f + ϑ4

f )

)
+

(1−N2)

144
g2T 4

(
N +

5

4
Nf +

9

T 4

∑
f

(T 2ϑ2
f + ϑ4

f )

)

+
(N2 − 1)

12π
g3T 3

(
1

6
(2N +Nf ) +

1

T 2

∑
f

ϑ2
f

)3/2

+
N(N2 − 1)

32π2
T 4g4 ln g

(
1

6
(2N +Nf ) +

1

T 2

∑
f

ϑ2
f

)
+O(g4),

(4.19)

where ϑ2
f = µ2

f/2π
2. To improve the calculation, one needs take into account the

renormalization group that is improved coupling constant α( T
ΛQCD

, µ
ΛQCD

).The chem-

ical potential can be ignored for simplicity, and so have for massless QCD [26],
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Nα(T )

π
=

Ng2(T )

4π2
. (4.20)

The thermodynamic potential perturbatively calculated in the previous chapter is not

analytic in the α coupling constant. However, it has contributions of both nonana-

lytic terms like α(n+1)/2 and logarithmic type αn/2 lnα. Thus, the pressure can be

expressed as

p = T 4

(
a+

∞∑
n=0

bn(α/π)
1+n/2 +

∞∑
n=0

cn(α/π)
2+n/2(lnα)/π

)
. (4.21)

The coefficients a, bo, b1 and c0 are known for QCD. When one put N = 3, take

u,d and s quarks as massless and disregards the contribution of the heavier flavors in

equation (4.19) and comparing with the equation (4.21), one obtains

p = π2T 4

(
19

36
− 3α

2π
−
√
96(

α

π
)3/2 + 6(

α

π
)2 lnα/π +O(α2)

)
. (4.22)

By using the equation

ε = T 2 ∂

∂T
(
p

T
). (4.23)

The equation of the state can be found

ε = 3p+ π2T 4

(
27

4
(
α

π
)2 − 18

√
6(
α

π
)5/2 − 54(

α

π
)3 ln

α

π

)
+O(α3), (4.24)

and so the speed of sound is

v2s =
dp

dε
=

1

3
− 81

19
(
α

π
)2 +

216
√
6

19
(
α

π
)5/2 +

648

19
(
α

π
)3 ln

α

π
+O(α3). (4.25)
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CHAPTER 5

QUARK-GLUON PLASMA

Here, hadron is pictured as a small domain in the new phase with quark and gluon,

which is called the bag. The field equations of QCD carry out the dynamics of the

quark-gluon fields inside the bag. Thus, the following consideration is going to be

limited to the lowest order perturbation term connect with the vacuum term B.

5.1 The Fermi and Bose Quantum States

The grand partition function of the quantum static approach for a particle of mass m

and degeneracy g by including the existence of antiparticles can be shown[27]

lnZF,B = ±gV

∫
d3p

(2π)3

(
ln (1± αΛe−βε) + ln (1± αΛ−1e−βε))

)
, (5.1)

where β = 1/T , ε =
√

p2 +m2, α is related with the number of members of the

ensemble and Λ is called the fugacity factor associated with the number of particles,

written as

Λ = eµ/T . (5.2)

By adding the different gas fractions f

lnZ =
∑
f

lnZf , (5.3)

the equation (5.1) becomes
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lnZF,B = ±gF,BV

∫
d3p

(2π)3

(
ln (1± αΛe−βε)] + ln (1± αΛ−1e−βε)

)
, (5.4)

where gF = gsgc, gs = 2s + 1 = 2 for spin 1/2 degeneracy and gc = 3 for color. By

using

fF,B = − 1

β

∂

∂ε
lnZF,B, (5.5)

the single particle distribution functions for fermions and antifermions are

fF,F̄ =
1

α−1eβ(ε∓µ) + 1
, (5.6)

for bosons and antibosons

fB,B̄ =
1

α−1eβ(ε∓µ) − 1
. (5.7)

In short-hand notation,

f±
F,B = fF,B ± f̄F,B. (5.8)

The particle densities and energy density can be calculated respectively

ρF,B =
NF,B

V
=

1

V
Λ

d

dΛ
lnZF,B = gF,B

∫
d3p

(2π)3
f−
F,B, (5.9)

ρg =
N

V
=

1

V
lim
Λ→1

Λ
d

dΛ
lnZg = gg

∫
d3p

(2π)3
fg, (5.10)

ϵ = − 1

V

∂

∂β
lnZF,B = gF,B

∫
d3p

(2π)3
εf+

F,B, (5.11)

ϵg = gg

∫
d3p

(2π)3
εfg. (5.12)
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Total energy density is

ϵ =
∑
j

= ϵj, (5.13)

where ρg and ϵg represents particle density and energy density for gluons respectively.

5.2 The Relativistic Phase Space Integral

To analyze the features of ideal relativistic gases, the relativistic momentum integral

encountered with all phase space integrals in a similar form need to be evaluated by

considering the Bessel function,

Kυ(z) =
(z/2)υ

√
π

Γ(υ + 1
2
)

∫ ∞

1

(t2 − 1)υ−
1
2 e−ztdt, Rev > −1/2 (5.14)

valid for |argz| < π/2. After substituting

t →
√
p2 +m2/2, z → βm,

into the Kυ, one gets

Kυ(βm) = (
β

2m
)υ

√
π

Γ(υ + 1
2
)

∫ ∞

0

p2υ

ε
e−βεdp. (5.15)

5.3 EoS of the QGP

The quantum nature of the massless, relativistic quark-gluon gases need to be consid-

ered in the deconfined QGP. The integral part of the lnZF,B becomes

±
∫

d3p

(2π)3
ln (1± αΛe−βϵ) =

β

3

∫
d3p

(2π)3
p2

ε
fF,B. (5.16)
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Pressure comes from

P =
1

β

∂

∂V
lnZF +

1

β

∂

∂V
lnZB

=
gF
3

∫
d3p

(2π)3
p2

ε
(fF + f̄F )−

gB
3

∫
d3p

(2π)3
p2

ε
(fB + f̄B)

= gF

∫
d3p

(2π)3
(ε− m2

ε
)f+

F + gB

∫
d3p

(2π)3
(ε− m2

ε
)f+

B .

(5.17)

By considering energy density, the total pressure can be rewritten

ϵ− 3P = gF

∫
d3p

(2π)3
m2

ε
f+
F + gB

∫
d3p

(2π)3
m2

ε
f+
B . (5.18)

The Boltzmann term of the equation with antiparticle by using Bessel function

ϵ− 3P =
gT 4

π2
x3K1(x). (5.19)

where x = m/T . The relativistic EOS for high temperature relative to the mass

3P → ϵ, βm → 0. (5.20)

More precisely,

lnZTotal = lnZq + lnZg + lnZvac, (5.21)

which can be demonstrated as Figure 5.1.

Thus, the partition functions can be written

lnZF |m=0 =
gFV β−3

6π2

(
π2

2
ln2 Λ +

1

4
ln4 Λ +

7π4

60

)
, (5.22)

by including interaction between them
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Figure 5.1: Feynmann diagrams that contribute to the EoS of the Quark-Gluon Plasma

in order αs. Gluons, Quarks and Ghost substruction of non physical dof are repre-

sented by wavy lines, solid lines and dashed lines, respectively.

lnZq(β,Λ) =
gqV

12π2β3

(
(1− 2αs

π
)(π2 ln2 Λ +

1

2
ln4 Λ) + (1− 50αs

21π
)
7π4

30

)
, (5.23)

where gq = nsncnf = (2s + 1) × 3 × 2(u, d) = 12 and Λ3
q = Λ = eµq/T since each

quark has 1/3 baryon numbers and µ = 3µq due to the conservation of the baryon

numbers.The gluons contribution

lnZg(β,Λ) =
8π2V

45β3
(1− 15αs

4π
), (5.24)

and the vacuum term

lnZvac = −BβV. (5.25)

So, the total partition function with respect to µ and T

lnZTotal(µ, T ) =
2V T 3

π2

(
(1− 2αs

π
)(
1

4
(
µ

3T
)4 +

π2

2
(
µ

3T
)2) + (1− 50αs

21π
)
7π4

60

)
+

8π2V

45
T 3(1− 15αs

4π
)−BV T−1.

(5.26)
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The pressure and energy density can be obtained respectively

P =
T

V
lnZTotal =

2T 4

π2

(
(1− 2αs

π
)(
1

4
(
µ

3T
)4 +

π2

2
(
µ

3T
)2) + (1− 50αs

21π
)
7π4

60

)
+

8π2

45
T 4(1− 15αs

4π
)−B,

(5.27)

ϵ = − 1

V

d

dβ
lnZTotal =

6T 4

π2

(
(1− 2αs

π
)(
1

4
(
µ

3T
)4 +

π2

2
(
µ

3T
)2) + (1− 50αs

21π
)
7π4

60

)
+

8π2

15
T 4(1− 15αs

4π
) +B.

(5.28)

Thus, the relationship between them is

P =
1

3
(ϵ− 4B). (5.29)

The baryon number density and entropy density are respectively

n =
2

3π2

(
(1− 2αs

π
)((πT )2

µ

3
+ (

µ

3
)3
)
, (5.30)

s =
2

π2
(1− 2αs

π
)
µ3

3
(πT ) +

4

15π
(1− 50αs

21π
)(πT )3 +

32

45π
(1− 15αs

4π
)(πT )3. (5.31)

When finite massless quarks are included, the EOS of the QGP shown above is

slightly modified.
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CHAPTER 6

FLUID APPROACH

6.1 Relativistic Hydrodynamics

Many macroscopic systems like neutron stars can be regarded as a perfect fluid. Each

point has a velocity v and a moving observer with this velocity sees the fluid around

itself as isotropic. This case occurs when lmean ≪ dobserver, which means the scale

of the length used by observer is bigger than the mean free path between collisions

of the fluid elements. Suppose that the fluid is in a momentarily co-moving reference

frame (MCRF), so the energy momentum tensor becomes [20, 28]

T̃ ij = pδij,

T̃ i0 = T 0i = 0,

T̃ 00 = ϵ,

(6.1)

where p is the pressure and ϵ is the proper energy density. In the lab frame, Tαβ can

directly be written as

Tαβ = Λα
σΛ

β
δ
˜T σδ, (6.2)

where Λα
σ is constant and described as Λ0

0 = (1−v2)
−1
2 = γ, Λi

0 = vi(1−v2)
−1
2 = viγ.

The above equation can be written in components as;
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T ij = pδij − (p+ ϵ)
vivj

v2 − 1
,

T i0 = −(p+ ϵ)
vi

v2 − 1
,

T 00 = −(ϵ+ pv2)

v2 − 1
.

(6.3)

These equations can be reduced to a single equation;

T σα = pησα + wuσuα, (6.4)

where w = ϵ+ p is the heat function per volume, uσ is the velocity four-vector

u =
dx
dτ

= γv, u0 =
dx0

dτ
= γ, (6.5)

so the equations of conservation of energy-momentum tensor is;

∂T σα

∂xα
=

∂p

∂xσ

+
∂(wuσuα)

∂xα
= 0. (6.6)

To get the Euler equation;

0 =
∂p

∂xi

+
∂

∂x0
[wuiu0] +

∂

∂xj

[wuiuj],

0 =
∂p

∂xi

+
∂

∂x0
[wviγ2] +

∂

∂xj

[wγ2vivj],

0 =
∂p

∂xi

+ γ2vi∂tw + wvi∂tγ
2 + wγ2∂tv

i + γ2vivj∂jw + wγ2∂j(v
ivj) + wvivj∂jγ

2.

(6.7)

Now, let’s multiply equation (6.7) by vi after rewritting it for σ = 0, then

0 =
∂p

∂x0

+
∂

∂x0
[wu0u0] +

∂

∂xj
[wu0uj]

0 = −vi
∂p

∂t
+ vi

∂

∂t
[wγ2] + vi

∂

∂xj
[wγ2vj]

0 = −vi
∂p

∂t
+ viγ2∂tw + viw∂tγ

2 + vivjw∂jγ
2 + vivjw∂jγ

2 + viγ2vj∂jw

(6.8)
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When the equation (6.8) is substracted from equation (6.7),

0 =
∂p

∂xi

+�����:1
γ2vi∂tw +�����:2

wvi∂tγ
2 + wγ2∂tv

i +������:3
γ2vivj∂jw + wγ2∂j(v

ivj) +������:4
wvivj∂jγ

2

+ vi
∂p

∂t
−�����:1

viγ2∂tw −�����:2
viw∂tγ

2 −������:4
vivjw∂jγ

2 − vivjw∂jγ
2 −������:3

viγ2vj∂jw

0 =
∂p

∂xi

+ wγ2∂tv
i + wγ2∂j(v

ivj) + vi
∂p

∂t
− vivjw∂jγ

2

(6.9)

γ2w(∂tv
i + vj∂jv

i) = − ∂p

∂xi
− vi

∂p

∂t
, (6.10)

w

v2 − 1

(
∂v

∂t
+ (v ·∇)v

)
= ∇p+ v

∂p

∂t
. (6.11)

which is the relativistic version of Euler equation. In order to obtain fluid equations,

the conservation of particle numbers is also needed. In MCRF, the particle current

four vector;

ñi = 0 ñ0 = n, (6.12)

where the time component is the number density of the particles and its three spatial

components are the three dimensional particle current vector. In the lab frame, the

particle current four vector is related to the four-velocity;

ni = Λi
α(v)ñ

α = vin(1− v2)
−1
2 , (6.13)

no = Λ0
α(v)ñ

α = n(1− v2)
−1
2 , (6.14)

explicitly,

nβ = nuβ. (6.15)

The equation of conservation of particle number is;

47



∂Nβ

∂xβ
=

∂(nuβ)

∂xβ
=

∂(nu0)

∂x0
+

∂(nui)

∂xi
, (6.16)

so, the continuity equation is obtained

∂(γn)

∂t
+∇ · (nγv) = 0. (6.17)

To find the scalar equation, multiply equation of conservation energy-momentum with

uσ

0 = uσ
∂p

∂xσ

+ uσ
∂

∂xα
(wuσα)

0 = uσ
∂p

∂xσ

+ uσu
σ ∂

∂xα
wuα + uσu

αw
∂uσ

∂xα

0 = uα ∂p

∂xα
− w

∂uα

∂xα
− uα ∂w

∂xα
,

(6.18)

when (6.16) is inserted into the second term of (6.18)

0 = uα(
∂p

∂xα
+

w

n

∂n

∂xα
− ∂w

∂xα
)

0 = uα(
∂p

∂xα
− n

∂

∂xα
(
w

n
))

0 = −nuα(− 1

n

∂p

∂xα
+

∂

∂xα
(
ρ

n
) +

∂

∂xα
(
p

n
))

0 = −nuα(
∂

∂xα
(
ρ

n
) + p

∂

∂xα
(
1

n
)).

(6.19)

Substituting the 2nd law thermodynamics

kTds = p
∂

∂xα
(
1

n
) +

∂

∂xα
(
ρ

n
), (6.20)

into the (6.19)

0 = −nuα(kT
∂s

∂xα
)

0 = uα(kT
∂s

∂xα
) = u0 ∂s

∂x0
+ ui ∂s

∂xi
,

(6.21)
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which gives the energy equation

∂s

∂t
+ (v ·∇)s = 0. (6.22)

The Euler equations (6.11), the continuity equation (6.17), the energy equation (6.22)

and together with the equation of state that related p and ϵ in terms of n and s are the

fundamental equations of the relativistic hydrodynamics.

6.2 EoS for Simple a Gas of Point Particles

To obtain EoS for fluid composing of structureless point particles, energy-momentum

tensor for a system of particles with energy momentum four vectors pαn(t) is

Tαβ =
∑
N

pαNp
β
N

EN

δ3(x− xN), (6.23)

and its MCFR has the isotropic form (6.1). Thus, while the particle number density is

n =
∑
N

δ3(x− xN), (6.24)

pressure and the energy density are

p =
1

3

3∑
i=1

T ii =
1

3

∑
N

p2N
EN

δ3(x− xN), (6.25)

ϵ = T 00 =
∑
N

p0Np
0
N

EN

δ3(x− xN) =
∑
N

ENδ
3(x− xN), (6.26)

in this frame. Generally,

0 ≤ p ≤ ϵ

3
. (6.27)

For a non-relativistic gas, the energy is approximately

EN ≃ m+
p2N
2m

. (6.28)
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If the above equation is substituted into the equation (6.26), the energy density be-

comes

ϵ ≃
∑
N

(m+
p2N
2m

)δ3(x− xN) ≃ nm+
3p

2
. (6.29)

For extremely relativistic gas, energy is

EN ≃ |pN | ≫ m. (6.30)

After substituting this equation into (6.26), energy density is

ϵ ≃
∑
N

pNδ
3(x− xN) ≃ 3p ≫ nm, (6.31)

so, the above two energy density equations can be combined into a single one;

ϵ− nm ≃ p

γ − 1
, (6.32)

where

γ =

 5/3 nonrelativistic ,

4/3 extreme relativistic .
(6.33)

If the energy density (6.32) is substituted into the second law of thermodynamics

which is

kTds = pd(
1

n
) + d(

ϵ

n
), (6.34)

the law takes the form

kTds =
nγ−1

γ − 1
d(

p

nγ
). (6.35)

In accordance with above equation, the energy equation (6.22) is

∂

∂t
(
p

nγ
) + (v · ∇)(

p

nγ
) = 0. (6.36)

50



6.3 The Speed of Sound in a Static Homogeneous Relativistic Fluid

In the unperturbed state, terms n0, ϵ0, p0 and s0 showing fluid properties are constant

in space-time and v0 = 0. Whereas the sound wave creates slight changes n1,ϵ1,p1,v1

in unperturbated state, s0 stays the same. When these are substituted into the Euler

equations (6.11) and the Continuity equation (6.17), they becomes respectively;

∂v1

∂t
= − ∇p1

ϵ+ p
, (6.37)

∂n1

∂t
+ n∇ · v1 = 0, (6.38)

and the second law of thermodynamics (6.34) with ds = 0 reads

ϵ1 =
(p+ ϵ)n1

n
. (6.39)

By using p = p(ϵ), it is possible to write p1 = ϵ1(
∂p
∂ϵ
)s. Then, if substituting this

relationship between pressure and energy density into Euler equation (6.37), one gets;

∂v1

∂t
= − 1

(ϵ+ p)
(
∂p

∂ϵ
)s∇ϵ1, (6.40)

where v2s = (∂p
∂ϵ
)s. Collecting the equations (6.39) and (6.40) into one equation;

∂v1

∂t
= −v2s

n
∇n1. (6.41)

Eventually, when the above equation is substituted into the continuity equation (6.38),

a wave equation is obtained

[
∂2

∂t2
− v2s∇2]n1 = 0, (6.42)

showing that sound waves travel with the speed vs. By using the relationship between

pressure and energy density for extremely relativistic gas (6.31), the speed of sound
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can be found as

vs =
1√
3
. (6.43)
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CHAPTER 7

CONCLUSIONS AND FINAL REMARKS

In this thesis, the sound velocity in dense matter is examined within various models

where each of model brings different approaches to matter by considering some re-

strictions arising from known properties such as Pauli Exclusion Principle, saturation

density, strong interactions, etc. We first focus on describing the dense media itself

since the speed of sound is directly related to it. As the density increases, description

of matter takes a new form according to the structure of the atom and the properties

of particles that make it.

The Neutron Stars’ cold and ultra-dense cores are natural laboratories to understand

the dense matter. One of the most significant aims of mass-radius measurements is

to constrain the EoS of the dense matter. The TOV equations, which reveal the direct

connection between astronomical observations and nuclear physics, relate the micro-

physics described by the EoS to the macroscopic qualities of the neutron stars. The

EoS of a White Dwarf as a Newtonian Star in the polytropic picture can be found as

p = ϵ
3

first by taking the TOV equations into account and considering occupied states

for degenerate electrons. If the occupied states are rearranged for the Neutron Stars

consisting of degenerate neutrons, one can reach the same EoS as p = ϵ
3
. Thus, the

speed of sound for these degenerate systems is 1√
3
, i.e. smaller than the speed of light.

The density in the core of a Neutron Star can reach ∼ 10ρsat. The neutrons overlap at

∼ 4ρsat where the matter may include a wide variety of hadronic degrees of freedom

together with the nucleons. As the overlap between nucleons increases, transition to

the non-nucleonic states of matter is expected. At this point, Relativistic Mean Field

Theory which states that the interaction between nucleons mediated by the scalar σ

and the vector mesons w can be taken into account since meson condensations can
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occur at higher densities. In accordance with this theory or (σ − w) model, the pres-

sure and energy density is equal to each other which means that the speed of sound

approaches the speed of light at a very high density. However, the known bulk nuclear

matter properties such as incompressible modulus and the effective nucleon mass as-

sociated stiffness of nuclear matter at saturation do not match with the experimental

results. Thus, the new EoS can be obtained when the discrepancy is removed after

adding the cubic and quadratic terms to the defined Lagrangian density, which causes

the speed of sound to be smaller than the speed of light.

At high enough density, the ordinary matter is subjected to a transition into a phase

composed of quarks and gluons instead of separated hadrons. This phase of matter

can be called the QCD plasma, whose EoS in the form p = p(ϵ) is obtained by cal-

culating the perturbative thermodynamical potentials up to the O(α2 lnα), keeping

the fermions’s masses arbitrary. Thus, the sound velocity is calculated as a dependent

gauge fixing parameter. The Quark-Gluon plasma is also evaluated by considering

the MIT Bag Model, where quark is regarded as confined in the bag, so the vacuum

structure of strong interactions is considered. In the process of summing all contri-

butions of gas, lnZvac(β) = −βBV should be added to the lnZq and lnZg. This

vacuum term, including the bag constant, reflects on calculating pressure and energy

density such that the energy density inside the bag is positive (+B) while the pres-

sure exerted on the surface of the bag is negative (−B). Thus, the EoS of this model

becomes p = 1
3
(ϵ− 4B) and sound velocity are still smaller than the speed of light.

The assumption that the Neutron Star is composed of a perfect fluid is another ap-

proach to work on dense matter. In accordance with the fundamental equations of Rel-

ativistic Hydrodynamics, which are Relativistic Euler, Continuity and Energy equa-

tions, the speed of sound in a static homogeneous relativistic fluid can be computed

to be 1√
3

arising from v2s = (∂p
∂ϵ
)σ.

To sum up, the speed of sound calculated by following the EoS of the dense matter in

all analyzed models is always smaller than the speed of light as expected.
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Appendix A

BACKGROUND FOR THE RELATIVISTIC MEAN FIELD THEORY

A.1 Lagrangian Formalism

The dynamics of the classical relativistic theory depending on a number of fields

φi is determined through a Lagrangian density L[φ(x), ∂µφ(x)], where x ≡ xµ =

(t, x, y, z). In accordance with the variation principle,

δS = δ

∫ t2

t1

d4xL[φ(x), ∂µφ(x)]

=

∫ t2

t1

d4x(
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
)δφ(x)

= 0

. (A.1)

After taking the variations of the fields as arbitrary, one gets the Euler-Lagrange equa-

tion for the field φ(x);

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
= 0. (A.2)

The Lagrangian density is a Lorentz scalar since it is only constucted by scalar func-

tions of the fields and their derivatives. Thus, the equation of the motion of it is

Lorentz covariant, which means the Lagrangian be scalar L′(x′) = L(x). To assemble

the sensible Lagrangians, the certain symmetries can be used [29, 30, 31].
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A.2 Symmetries

There are symmetries called as external related to the spacetime and internal symme-

tries like phase transformations. For first one, Lagrangian has fixed spacetime sym-

metries or invariances like translation of the spacetime coordinates because physical

theories in flat spacetime should be Lorentz covariant and so Lagrange density have to

be a Lorentz scalar. The change in L(x) for an infinitesimal translation x′µ = xµ+ ξµ

L = L[φ(x), ∂µφ(x)]

δL = L[φ(xν + ξν), ∂µφ(x
ν + ξν)]− L[φ(xν), ∂µφ(x

ν)]

= ξν∂
νL.

(A.3)

where Taylor expansion is applied and then kept first order of ξ. L variation depending

on scalar φ and ∂µφ is

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

=
∂L
∂φ

ξν∂
νφ+

∂L
∂(∂µφ)

ξν∂µ∂
νφ

= (
∂L
∂φ

∂νφ+
∂L

∂(∂µφ)
∂µ∂

νφ)ξν .

(A.4)

By using Euler-Lagrange equation for the first term,

δL = ∂µ(
∂L

∂(∂µφ)
∂νφ)ξν . (A.5)

Equating two obtained Lagrangian variations (A.3) and (A.5), one gets

∂µ(
∂L

∂(∂µφ)
∂νφ)ξν = ξν∂

νL = ξνη
µν∂µL, (A.6)

∂µ(
∂L

∂(∂µφ)
∂νφ− ηµνL)ξν = 0. (A.7)

ξ is the arbitrary translation, so
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∂µT
µν = 0. (A.8)

where

T µν ≡ ∂L
∂(∂µφi)

∂νφi − ηµνL. (A.9)

is the energy-momentum tensor. The sum on φ represent all boson and fermion fields.

There are four conserved four currents and they are related to the charges. The canon-

ical momentum and Hamiltonian density for the field are,

π(x) =
∂L

∂(∂0φi)
, (A.10)

H = π∂0φ− L

= ∂(∂0φi)∂
0φ− L

= T 00.

(A.11)

Taking its integral over three-space gives Hamiltonian and its value is the energy E as

one of the four constants of (A.9);

H =

∫
V

drT 00, (A.12)

the spacelike components are

P j =

∫
V

drT 0j, (A.13)

Thus, one has the Lorentz scalar

PµP
µ = E2 − P 2 = M2 = invariant. (A.14)
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For the second one, symmetries called as internal global symmetries, one consider an

internal, infinitesimal and continuous transformation;

φ
′

i = φi(x) + ζjF
j
i [φ1(x), ..., φn(x)],

whereas ζj are infinitesimal parameters which are spacetime independent, F repre-

sents the transformation. Assume a L is invariant to a continuous symmetry transfor-

mation described by a certain set of F j
i , so its variation have to vanish.In the formal

expression,

δL =
∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi), (A.15)

by using δφi = ζjF
j
i , δ(∂µφi) = ζj∂µF

j
i and Euler-Lagrange equation step by step

δL = (
∂L
∂φi

F j
i +

∂L
∂(∂µφi)

∂µF
j
i )ζj

= (F j
i ∂µ

∂L
∂(∂µφi)

+
∂L

∂(∂µφi)
∂µF

j
i )ζj

= ∂µ(
∂L

∂(∂µφi)
F j
i )ζj

= 0.

(A.16)

ζj is arbitrary, so the set of n four vectors is

Jµ
j ≡ ∂L

∂(∂µφi)
F j
i , (A.17)

which satisfies

∂µJ
µ
j = 0(j = 1, 2, ....n), (A.18)

which are referred to as Noether currents.

0 = ∂µJ
µ =

∂J0

∂t
+∇.J, (A.19)
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which is the continuity equation. By integrating the above equation over three-space

and using Gauss’s theorem, one gets

∂

∂t

∫
V

J0dr = −
∫
V

∇ · Jdr

= −
∫
S

JdS.

(A.20)

The surface integral goes to zero, so left hand side of the above equation is zero and

one gets the conserved charges

Qj =

∫
V

J0
j dr, (A.21)

which means that invariance of the L to continuous internal symmetries refers to the

existence of the conserved charges.

A.2.1 Transition amplitudes for bosons

In the field theory, the eigenstates of the Schrödinger picture field operator φ̂(x, 0)

and its conjugate momentum operator π̂(x, 0) satisfy respectively

φ̂(x, 0)|φ⟩ = φ(x)|φ⟩

π̂(x, 0)|π⟩ = π(x)|π⟩

where φ(x) and π(x) are the eigenvalues of the operators. The completeness and

orthogonality conditions for each one are

∫
dφ(x)|φ⟩⟨φ| = 1, ⟨φa|φb⟩ =

∏
x

δ(φa(x)− φb(x)),

∫
dπ(x)

2π
|π⟩⟨π| = 1 ⟨πa|πb⟩ =

∏
x

δ(πa(x)− πb(x)).
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To pass from the field space to the conjugate space,

⟨φ|π⟩ = exp(i

∫
d3xφ(x)π(x))

The dynamics of the field theory needs a Hamiltonian function

H =

∫
d3xH(π̂, φ̂)

The state of the system which is φa at t = 0 becomes at the e−iHtf |φa⟩ after a time tf

and when passing from φa to the φb after tf the transition amplitude is ⟨φa|e−iHtf |φb⟩.
The aim of this title for followings is to find where the system goes back to the its

original state after tf . To get the useful transition amplitude, one can divide time

interval into N equal steps of duration, meaning ∆t =
tf
N

. by inserting a complete set

of state into each time, one gets

⟨φa|e−iHtf |φa⟩ = lim
N→∞

∫
(

N∑
i=1

dπidφi

2π
)

× ⟨φa|πN⟩⟨πN |e−iH∆t|φN⟩⟨φN |πN−1⟩

× ⟨πN−1|e−iH∆t|φN−1⟩..

× ⟨φ2|π1⟩⟨π1|e−iH∆t|φ1⟩⟨φ1|φa⟩.

(A.22)

Because ∆t → 0, the transition amplitude becomes

⟨πi|e−iHi∆t|φi⟩ ≈ ⟨πi|(1− iHi∆t)|φi⟩

= (1− iHi∆t) exp(−i

∫
d3xφ(x)π(x)).

Thus, by using the completeness and the orthogonality properties, equation (A.22)

becomes
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⟨φa|e−iHtf |φa⟩ = lim
N→∞

∫
(

N∑
i=1

dπidφ

2π
)δ(φ1 − φa)

× exp

{
− i∆t

N∑
j=1

∫
d3x

H(πj, φj)− πj(φj+1 − φj)

∆t

} (A.23)

where φN+1 = φa = φ1. One can get the final result by taking the continuum limit of

the above equation;

⟨φa|e−iHtf |φa⟩ =
∫

[Dπ]

∫ φa(x)

φa(x)

[Dφ]

× exp

{
i

∫ tf

0

∫
d3x

(
π(x, t)

∂φ(x, t)

∂t
−H(π(x, t), φ(x, t))

)}
,

(A.24)

where D[π] and D[φ] are the functional integral measures.

A.2.2 Partition Functon for Bosons

Basically, partition function is

Z = Tr exp−β(H − µiN̂i) =
∑
a

∫
dφa⟨φa| exp−β(H − µiN̂i)|φa⟩ (A.25)

and this can be rewritten as an integral over fields and their conjugate momentum

in accordance with equation (A.24) by introducing the imaginary time τ = it. In

addition to this, if the system accepts a conserved charge, the replacement have to be

taken

H(π, φ) = H(π, φ)− µN (π, φ)

where N is the conserved charge density and µ is a Lagrange multiplier called the

chemical potential. Thus, the partition function becomes
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Z =

∫
[Dπ]

∫
periodic

[Dφ]× exp

[ ∫ β

0

dτ

∫
d3x

(
iπ

∂φ

∂τ
−H(π, φ) + µN (π, φ)

)]
.

(A.26)

.

A.3 Bosonic Field

Lagrangian density can be written for the complex scalar field φ with mass m and

coupling constant η without including the chemical potential

L = ∂µφ
∗∂µφ−m2|φ|2 − η|φ|4 (A.27)

To introduce the chemical potential associated with the conserved charge, one must

describe the conserved current related to the Lagrangian density’s symmetry. L is

invariant under rotations of the field

φ → e−iβφ

so the Noether current becomes

Jµ =
∂L

∂(∂µφ)

δφ

δβ
+

∂L
∂(∂µφ∗)

δφ∗

δβ

= i(φ∗∂µφ− φ∂µφ∗),

by using ∂µJ
µ = 0, the conserved charge density is

J0 = i(φ∗∂0φ− φ∂0φ∗),

which is related to the chemical potential µ and in order to write the Lagrangian

density with µ, the partition function (A.26) will be used. In that equation, the charge

density is N = J0.
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A.4 Fermionic Field

To define a system of fermions in the absence of the interactions, we take the La-

grangian density

L = φ̄(iγµ∂µ −m)φ, (A.28)

where φ̄ = φ†γ0 and the Dirac matrices are defined as

γ0 =

1 0,

0 −1

 γ =

 0 σ,

−σ 0


here 1 represents the unit 2 × 2 matrix and σ implies the triplet of Pauli matrices.

Rewritten the Lagrangian density is

L = φ†γ0

(
iγ0 ∂

∂t
+ iγ · ∇ −m

)
φ, (A.29)

which has the global symmetry, that is Lagrangian is invariant for φ → e−iαφ. Thus,

in accordance with the Noether’s theorem, there is a conserved current related to this

symmetry;

Jµ =
∂L

∂(∂µφ)

δφ

δα
= φ̄γµφ, (A.30)

J0 = φ†φ. (A.31)

π =
∂L

∂(∂0φ)
= iφ† (A.32)

H = π∂0φ− L = φ̄(−iγ.∇+m)φ. (A.33)
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The last three equations are the conserved charge, the conjugate momentum and

Hamiltonian respectively. Thus, the partition function is

Z = Tr†e−β(Ĥ−µN̂)

=

∫
anti−periodic

[Dφ†][Dφ] exp

(
−
∫

dτ

∫
d3x(H− µN − iπ∂τφ)

)
=

∫
anti−periodic

[Dφ†][Dφ] exp

(
−
∫

dτ

∫
d3xφ̄(−γ0∂τ − iγ.∇+ γ0µ−m)φ

)
(A.34)

In this case, it is not convenient to evaluate the integral by separating conjugate mo-

mentum from the field and one should work in the (p, ωn) space instead of the (x, τ)

space. Also, φ and φ† are independent fields that have to be integrated independently.

By introducing the Fourier-transformed fields

φ(x) =
1√
V

∑
p

e−ip.xφ(p),

φ̄(x) =
1√
V

∑
p

e−ip.xφ̄(p),

where p.x = −(ωnτ + p.x). For anti-periodicity, φ(0, x) = −φ(β, x) suggests

eiωnβ = −1, so ωn = (2n + 1)πT . By using the Fourier decomposition, the term

in the exponential becomes

−
∫

dτ

∫
d3xφ̄(−γ0∂τ − iγ.∇+ γ0µ−m)φ = −

∑
p

φ†(p)
G−1(p)

T
φ(p). (A.35)

where

G−1(p) = −γµpµ − γ0µ+m

By introducing the integrals over the Grassmann variables rule
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∫
dη†1dη1....dη

†
NdηNe

η†Dη = detD (A.36)

Thus, the partition function becomes

Z = det
G−1(p)

T
= det

1

T

−(p0 + µ) +m −σ · p
σ · p (p0 + µ) +m

 (A.37)

lnZ =
∑
k

ln(
E2

p − (p0 + µ)2

T 2
)2, (A.38)

with p0 = −iωn

lnZ =
∑
p

ln

(
E2

p + (ωn + iµ)2

T 2

)2

=
∑
p

(
ln

E2
p + (ωn + iµ)2

T 2
+ ln

E2
p + (−ωn + iµ)2

T 2

)
=
∑
p

(
ln

ω2
n + (Ep − µ)2)

T 2
+ ln

ω2
n + (Ep + µ)2)

T 2

)
,

(A.39)

where

∑
n

ln
ω2
n + (Ep − µ)2

T 2
=

(Ep − µ)

T
+ 2 ln(1 + e−

(Ep−µ)

T ) + constant

which is going to be used in Walecka model for calculations.
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Appendix B

EVALUATION OF THE FREQUENCY SUMS

If the function f(z) which vanish fast at infinity does not have singularities on the

imaginary axis, one can have

T
∑
n

f(2nπiT ) =

∫ +i∞

−i∞

dp0
2πi

f(p0) +

∫ −i∞+ε

−i∞+ε

f(p0) + f(−p0)

exp (βp0)− 1

dp0
2πi

(B.1)

If f(z) does not have other singularities than simple poles at the z = wb′ , the equation

takes the form

T =
∑
n

f(2nπiT ) =

∫ +i∞

−i∞

dp0
2πi

f(p0)−
∑

Re(wb)>0

1

exp(wb/T )− 1
Res(p0 = wb)f(p0)

+
∑

Re(wb)

1

exp(−wb/T )− 1
Res(p0 = wb)f(p0)

(B.2)

For the fermions

T
∑
n

f [(2n+ 1)πiT + µ] =

∫ +i∞

−i∞

dk0
2πi

f(k0) +

∮
C

dk0
2πi

f(k0)∫ +i∞+µ+ε

−i∞+µ+ε

dk0
2πi

f(k0)

exp (k0 − µ)/T + 1∫ −i∞+µ−ε

−i∞+µ−ε

dk0
2πi

f(k0)

exp (µ− p0)/T + 1

(B.3)

The following way of the the contour C on the k0 plane is

µ− i∞ → µ+ i∞ → 0 + i∞ → 0− i∞ → µ− i∞
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Figure B.1: Contour C appearing in the equation (B.3)

and represented by Figure B.1.

While integral over the contour C disappears when µ → 0, the last two terms of the

integral vanish at T = 0. In the simple poles case, the form can be simplified as

T
∑
n

f [(2n+ 1)πiT + µ] =

∫ +i∞

−i∞

dk0
2πi

f(k0)+∑
Re(wb>0)

1

exp (wb − µ)/T + 1
Resk0=wb

f(k0)−

∑
Re(wb<0)

1

exp(−wb + µ)/T + 1
Resk0=wb

f(k0)

(B.4)
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Appendix C

POLARIZATION TENSOR

C.1 Tensor Structure

The polarization tensor is described by the Dyson equation

Dµν = D0
µν − D0

µαΠ
αβDβν (C.1)

where Dµν , D0
µν , Παβ are the exact, bare gluon propagators and the polarization tensor,

respectively. The polarization tensor can be defined by four independent symmetric

O(3) which can be chosen as tensors [24, 32, 33]

A00 = A0i = Ai0 = O,

Aij = δij −
kikj
k2

,

Bµν =
kµkν
k2

− gµν − Aµν ,

Cµν =
1

21/2|k̄|

(
(gµ0 −

kµk0
k2

)kν + kµ(gν0 −
k0kν
k2

)

)
,

Dµν =
kµkν
k2

.

(C.2)

By using the Dyson equation and the Ward identity that is

kµkνDµν = −α. (C.3)

Πµν takes form
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Πµν = (m− k2)Aµν + (n− k2)Bµν + sCµν +
s2

2n
Dµν , (C.4)

where m, n and s are the functions of the variables k0 and k̄.

C.2 Polarization Tensor in One-Loop Level at T̸= 0

The polarization tensor for the one-loop level is

Πµν = ΠV acuum
µν +∆ΠQuark

µν +∆ΠGluon
µν , (C.5)

where the vacuum part is

Πvac
µν (k) = (k2gµν − kµkν)Π

vac(k2), (C.6)

arising from the constraint

kµΠ
µν(k) = 0. (C.7)

The vacuum part can be written in the massless limit [34]

ΠMOM
µν =

g2

96π2
(k2gµν − kµkν)

(
4Nf + (−13 + 3α)

)
ln (

k2

−M2
E

), (C.8)

where −M2 is the Euclidean subtraction point. The contribution of the quark loop is

represented in Figure C.1 (i).

It reads

∆ΠQ
µν = −2g2

∑
f

T
∑
p0

∫
d3p

(2π)3

(
2pµpν + (kµpν + kνpµ)− (p2 + kp−m2)gµν

(m2 − p2)(m2 − (k + p)2)

)
− ΠQ(vac)

µν

(C.9)
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Figure C.1: The polarization tensor for one-loop level. (i) quark loop, (ii,iii) gauge

loops, (iv) ghost loop, (v) counterterm

The gluon part of the polarization tensor is the non-abelian contribution coming from

the (Figure C.1 (ii),(iii),(iv)). The form of it is [24, 35, 25]

∆ΠG
µν =

1

2
Ng2T

∑
q0

∫
d3q

(2π)3

(
4(qµkν + kµqν)− 2(kνkµ − 4qνqµ)

(q + k)2q2

−4gµν(q
2 + 2k.q)

(q + k)2q2
− (α− 1)

4gµν [2(k.q)
2 + q2k.q − q2k2/2]

(q + k)2q4

− (α− 1)
2kµkνq

2 + 4qµqνk
2 − 2(kµqν + kνqµ)(q

2 + 3k.q)

(q + k)2q4

+ (α− 1)2
qνqµk

4 − k2k.q(kµqν + qµkν) + (q.k)2kµkν
(q + k)4q4

)
− ΠG(vac)

µν .

(C.10)

For simplicity, one can work in the Feynman gauge (α = 1) and the sum and integral

can be evaluated over the angle variables. The polarization can be written the form as

∆Πµν(k) = (kµkν − gµνk2)
∆Π00

k̄2
+

Aµν

2
(3∆Π00 +∆Πµ

µ

k̄2

k2
) (C.11)

where ∆Π00(k0, k̄) and ∆Πµ
µ(k0, k̄) can be expressed at the set of imaginary values

k0 = 2πinT , respectively [23]
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∆Π00 =
g2

2π2

∑
f

∫ ∞

0

p2dp
np

Ep

(
1 +

4E2
p − a2

8pw
× ln

(a2 + 2πw)2 + b2E2
p

(a2 − 2pw)2 + b2E2
p

− 2πnTEp

wp
tan−1 4pwb

a4 + b2E2
p − 4p2w2

)
+

g2N

π2

∫ ∞

0

qdqnq(
1 +

4g2 − w2 − a2

8wq
× ln

(a2 + 2wq)2 + q2b2

(a2 − 2wq)2 + q2b2

− b

2w
tan−1 b2wq2

a2 + q2b2 − 4q2w2

)
,

(C.12)

∆Πµ
µ =

g2

π2

∑
f

∫ ∞

0

p2dp
np

Ep

(
1 +

2m2
f − a2

4pw
× ln

(a2 + 2pw)2 + E2
pb

2

(a2 − 2pw)2 + E2
pb

2

)
+

Ng2

π2

∫ ∞

0

qdqnq

(
2− 5a2

8qw
× ln

(a2 + 2wq)2 + q2b2

(a2 − 2qw)2 + q2b2

)
,

(C.13)

where

np = n+
p + n−

p =
1

exp (Ep − µ)/T + 1
+

1

exp (Ep + µ)/T + 1
,

nq =
1

exp (q/T )− 1
, Ep = (p2 +m2

f )
1/2, n =

k0
2πiT

,

w = |k̄|, a2 = w2 + (2πnT )2, b = 4nπT.

C.3 Polarization Tensor in One-Loop Level at T=0

At T = 0, one needs to rewrite the polarization tensors for q0 = iq̃, where q̃0 is

continous and real. The use of the Euclidean metric here is more convenient than the

Minkowski metric. By using the Euclidian polar coordinates, one can get

q =

√
q̃0

2 + q̄2,

φ = tan−1(
|q̄|
q̃0

).
(C.14)
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Thus, the equations (C.12) and (C.13) take the form associated with q, φ, µ, respec-

tively

∆Π00 =
g2

2π2

∑
f

∫ √
µ2
f−m2

f

0

p2

Ep

dp

(
1−

q2/8− E2
p/2

qp sinφ

× ln
(q + 2p sinφ)2 + 4E2

p cos
2 φ

(q − 2p sinφ)2 + 4E2
p cos

2 φ

− Ep cotφ

p
tan−1 4pEp sin 2φ

q2 + 4(E2
p cos

2 φ− p2 sin2 φ)

)
.

(C.15)

∆Πµ
µ =

g2

π2

∑
f

∫ √
µ2
f−m2

f

0

p2

Ep

dp

(
1−

q2/8−m2
f/4

pq sinφ

× ln
(q + 2p sinφ)2 + 4E2

p cos
2 φ

(q − 2p sinφ)2 + 4E2
p cos

2 φ

)
.

(C.16)

After evaluating the integral in a closed form, the polarization tensors can be rewritten

in the case of the ultrarelativistic limit (m = 0), respectively

∆Π00 =
g2

π2

∑
f

(
µ
4µ2 − 3q2

24q sinφ
ln

4µ2 cos2 φ+ (2
√
µ2 −m2 sinφ+ q)2

4µ2 cos2 φ+ (2
√
µ2 −m2 sinφ− q)2

+
2

3
µ
√

(µ2 −m2)− 1

6
q2 sin2 φ ln

1

m
(µ+

√
µ2 −m2)

− cotφ

2
(µ2 − q2

2 sin2 φ+ 1

12
)× tan−1(

µ
√
µ2 −m2 sin 2φ

q2/4 +m2 sin2 φ+ µ2 cos 2φ

ln
µ2(q2 + 2m2)−m2/2(q2 + 4m2 sin2 φ)− µq

√
(q2 + 4m2)(µ2 −m2)

µ2(q2 + 2m2)−m2/2(q2 + 4m2 sin2 φ) + µq
√
(q2 + 4m2)(µ2 −m2)

(2m2 − q2)
√

4m2 + q2
sin2 φ

24q
+)

)
.

(C.17)
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∆Π00(m = 0) =
g2

2π2

∑
f

(
cotφ(q2

3− 2 cos2 φ

24
− µ2

2
) tan−1(

sin 2φ

cos 2φ+ q2/4µ2
)

× (4µ3 − 3q2µ)

24q sinφ
ln

1 + (tanφ+ q secφ/2µ)2

1 + (tanφ+ q secφ/2µ)2
+

2µ2

3

− q2

24
sin2 φ ln (1 +

16µ4

q4
+

8µ2

q2
cos 2φ)

)
(C.18)

∆Πµ
µ =

q2

2π2

∑
f

(
2m2 − q2

4q

(
− tan−1(

µ
√

µ2 −m2 sin 2φ

(m2 + µ2) sin2 φ+ q2
)q cotφ

+ µ cscφ ln
1 + (µ−1 tanφ

√
µ2 −m2 + (2µ)−1q secφ)2

1 + (µ−1 tanφ
√
µ2 −m2 − (2µ)−1q secφ)2

+

√
q2 + 4m2

2

× ln
2µ2(q2 + 2m2)−m2(q2 + 4m2 sin2 φ)− 2qµ

√
(µ2 −m2)(q2 + 4m2)

2µ2(q2 + 2m2)−m2(q2 + 4m2 sin2 φ) + 2qµ
√

(µ2 −m2)(q2 + 4m2)

)
+ µ
√
µ2 −m2 − q2

2
ln(

µ

m
+

√
µ2

m2
− 1)

)
.

(C.19)

∆Πµ
µ(m = 0) =

g2

2π2

∑
f

(
µ2 − qµ cscφ ln

1 + (tanφ+ µq/2 secφ)2

1 + (tanφ− µq/2 secφ)2

+
q2 cotφ

4
tan−1(

1

cot 2φ+ q2

4
csc 2φ

)− q2

8
ln(

q4 + 8µ2q2 cos 2φ+ 16µ4

q4
)

)
.

(C.20)

For the zero momentum limit of the polarization,

∆Π00 =
g2

2π2

∑
f

(
µ
√

µ2 −m2 − tan−1(

√
µ2 −m2

µ cotφ
)µ2 cotφ

)
, (C.21)

∆Πµ
µ =

g2

2π2

∑
f

(
µ
√

µ2 −m2 − tan−1(

√
µ2 −m2

µ cotφ
)m2 cotφ

)
. (C.22)
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