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ABSTRACT

COMPARISION OF ENTROPY AND ENSEMBLE BASED FEATURE SELECTION
THROUGH NETWORKANALYSIS OF ALZHEIMERS DISEASEASSOCIATED
VARIANTS

Rafatov, Sevda
MSc., Bioinformatics
Supervisor: Assist.Prof. Dr.Yek m Ay dén Son

February2022,120 pages

Al zhei mer 6s Disease (AD) is a c¢ompthax, progr e
slowly destroys memory and thinking skills and eventulaibes theability to do daily
tasks. Our group is currently develog in-silico AD models in which genotyping and
phenotyping data are integratéd the differential diagnoss LateOn-Set AD (LOAD)
cases Metaanalysis of four differentOAD data sets provided by ADNI and dbGAP,
which includes the genotyping data of mdnart 5000LOAD patients is done In this
study, we provided the biological interpretation tife variantsselectedthrough wo
different approaoks, namely entrop and ensemblemodeling First, the LOAD-
associated variantare annotated for their genomic location, consequegese and
protein products, andiological pathwaysThe proteircoding variants prioritized were
selected for experimental validatidrased on theirelationship with LOADrelated
biological pathways aftenetwork, PPI, and enrichment analysior 32 variants,
pyrosequencin@rimers weredesigred,and sequencing primers were optimiz&s a part

of the studya casecontrol groupwith 43 LOAD diagnosed and 38 healthy participants
wereformed and genotypig for the prioritized variants was complet¥de have show
that machine learningmodels capture hidden, newand informative patterns by
consideringnonlinear interactions where multiple variants determine the Fskher
aralysis of interconnectedetworlks for selected genes and protegoa identifyaffected
biological pathways underlying the molecular etiology #D susceptibility.
Understanding theffected molecular pathways can reveal potential causative variants
thatleadto novel preventativéherapeutics for AD.

Keywords: Alzheimer's Diseas®iological networks, functional enrichment analysis
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CHAPTER 1

1. INTRODUCTION

The most widespread form of neurodegenerative dememtlatisimers diseasanarked

by progressive memory losaa cognitive, problensolving, andlanguage deficits
(Cuyvers & Sleegers, 2016lateOn s et Al zhei mer 6s Di sease
common type of dementia in the aging populatwraracterized byjnemory deterioration

and other cognitive domains.

The epistatic nature dflzheimer's diseasand he complex genetic etiology of LOAD is

still unclear, which restrains the early and differential diagnosis of LOA®. that

purpose, Genomeide association studies (GWAS) are used by many researchers to find
variants whose common occurrence sigtiaie AD phenotype (Bodily et al., 2016;
Cuyvers & Sleegers; Tosto & Reitz, 2013; Lambert et al., 2013; Desikan et al., 2017;
EscottPrice et al., 2014) GWAS allows exploration of the statistical interactions of

i ndi vidual s0 v ar i alysts sversebsunteradtiomng between waants. at e
More sophisticated studies are needed to distinguish variantsotteatively influence
thephenotype (Bodily et al., 2016)

The machine learning algorithms can capture hidden, novel, and significanhgatter
considering nonlinear interactions between variants to understand the genetic
predisposition for complex genetic disorders, where multiple variants determine the risk.

Our previous studidsave usediree differenGWAS datasets provided by ADNiInd he
d b G A ebdtmlled accessathtasets fronbenADA NCRAD nitiatives. First statistical
analysis is done by PLINK, and initial dimension reduction is completed-\glua
filtering. Following GWAS two-step Random Fores{RFRF) modeling was
implemented wh 5-fold crossvalidation (CV) using RANGER package in R. After
PLINK-RFRF analysis of LOAD GWAS datasetsnovel Ensembkland Entropybased



methodsfor metaanalysiswere optimizedas apart of two other graduate studies
completed within our groupyOnur Er doj an and Burcu Yal deéez.

Based on their biological interpretation, this study compares the gene sets produced by
these two metanalyses approaches, Enseenbhd Entropy The network analysis
approach to identi fy gcarerglsstudied in eivezahveoikane r 6 s
(Talwar et al.,2014; Rao et al., 2013; Rahman et al., 2019; Meng et al., 2Zb2f.are

several different methods to compare netwadrese, hiological networks are constructed

for theEnsemb¢ and Entropygene sets, anglobal parameterarecomparedo conclude

the networks' connectivityp assess the usability of both matzalysis methods.

The global parameters used for comparignetwork density, average path lengtid
efficiency are comparedby GeneMANIA based Pl network analysis and STRING
network analysisCROssBAR knowledge graphs show associations between genes and
pathwaysfor each geneset Further these associations are investigated by functional
enrichment analysis of the gene setsafled usto find novel correlations between our
genes and Al z BegemaAD nétworkDarescenatriaed investigate the

known associations of our genes in |iterature

Chapter2 covart he ef fects of mut atphematypemoleculaAl z hei mer 6

etiology of A | lologdalmetwotksmetbodsste eosa ,biological
networks pathway enrichment analysend knowledge graphs.

Chapter 3explained how datsvas obtained andhe methodology in detailFirstly, an

oveniew of the methods is giveAfter explaining how data is obtaingakoteinprotein

interaction networks, GeneMANIA based PPI nativanalysis, networkjenetraining

disease interaction networksedicton ofnetwork genefA\ | z hei mer 6 s di sease
networks by Cytoscapare explainedSubsequentlypuilding knowledge graphs by
CROssBAR, pathway enrichment analysigssualization, and functional enrichment

analysis interpretatioareexplained

In Chapter 4the results argpresentedand explained irdetail This chapter explains
proteinprotein interaction networks, prediction of gene functions, network geagsng

diseases networks, knowledge graphs, patHvesed enrichment analysis, network

genesAl zhei mer 6s di sease nentanalysiks, and STRI NG

In Chapter 5, the genotyping constructed on the prioritized variants is explained in details.

In Chapter 6we discussed our results and interpreted the importance of aising
networkbased approach to predict the biological meaningfulnegsraf sets.
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CHAPTER 2

2. LITERATURE REVIEW

2.1. Al z h e iDiseased s

A mutation is described as a change in the nucleotide sequence of an organism's genome,
virus genome, or extrachromosomal DNAny change in DNAcan cause different
diseases such as Mendeliarsadises or complex diseases. (Amberger, Bocchini &
Hamosh, 2011)Alzheimer's disease is genetically compléeritable,and themost
common form of dementjavhich ncreasess the human lifespan increases and is the
cause of approximately 65& all denentias, burdening both health and socioeconomic
aspects in aging societies. Close to 50 million pewamddwide live with Alzheimer's
Disease (AD) (Bright Focus Foundatiomhese cases exhibit a lataset corplex genetic
inheritance (Kamblo, 2018).Alzheimer's disease can be classified genetically into two
types: a rare familial form that affects less than 1% of all patients and is inherited by
autosomal dominant inheritance, and a sporadic multifactorial form that is assumed to be
caused by a combinathmf environmental exposes and genetic susceptibil{@uyvers

& Sleegers, 2016Besides memory loss, other cognitive dysfunctions develop in the AD
processamyloid plaques and neurofibrillary tangles accumulate in the brain, and cerebral
atrophy, mor&eommonly in the temporal region, is observed.

Thusfars ome genes found to be i mplicaEvend i n
thoughthe use of molecular pathways diagnosingAlzheimer's disease is unclear,
several causes are believed to beoived in the disease's pathogene@oradifard et

al., 2018).Genes that have been recently identified to be associated witireAllghly
expressed in glial cells. Therefore, the effect of glial cells on the pathogenesis of
Alzheimer's disease has retigrbeen the focus of attentioAstrocytes arehe most
numerous cell type within the Central Nervous System (CNS). They are essential for the
maintenance of brain homeostasis and neuronal protection. Astrocytes are essential in the
synaptogenesisherelease of neurotransmitters, cognition, neuroinflammation, glycogen
storage, formation of BloeBrain Barrier (BBB), clearance of toxic substances such as
glutamate excess and K+ spatial buffering, release of trophic factors for neurons and other
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brain celsin both physiological and disease conditions (Volterra and Meldolesi, 2005;
Hamby and Sofroniew, 2010; Kimelberg and Nedergaard, 2010; Barreto et al., 2011;
Cabezas et al., 2012, 2014; PosBdmue et al., 2014). Astrocytic activities constitute a
threeparty synapse with presynaptic and p®gtaptic neurons, based on their intense
relationship to the neurons at both molecular and morphological levels through their
endfeet. (Perea et al., 2009; Pefdearez and Araque, 2013; Coulter and Steinhauser,
2015). Astrocytic metabolic dysregulation in this aspect is a characteristic feature of
neurodegenerative diseases like Alzheimer's Disease (AD) (Volterra and Meldolesi, 2005;
Maragakis and Rothstein, 2006; Hamby and Sofroniew, 2010; Kimelberg and Nedergaard
2010; Parpura et al., 2011).

Itis believedthap at hogeni ¢ Adan causalgliosigsand neygniasmation.

In addition, it is thought that glial cells may regulate the pathogenesis of inflammation,

A band tauNeuropathologicallyex t r acel | ul ar sen-amgl pl dqUAb) con
and irtracellular neurofibrillary tangles containing hyperphosphorylated tau pratein

described (Harold et aR009).

The complex genetic etiology of LOAD is still unclear, limiting the early and differential
diagnosis of LOAD. Making the differential diagsie with other causes of dementia and
making the differential diagnosis from agsated forgetfulness and mild cognitive
impairment are often insufficient in making the diagnosis at an early stage; the diagnosis
of the disease can be made partially withical evaluation and imaging methods. The
definitive diagnosis of AD can be made by tissue diagnosis, that is, by brain biopsy or
autopsy after the patient's death. Early differential diagnosis with early detection of
cognitive decline is tal for improving disease management and even reversing
symptoms.

So far, studies on Alzheimer's disedss#ave focused on precursor proteins such as tau,
presenilinand amyloid and have been carried out through molecular mechanisms (Tan et
al., 2019). It is observed ah LOAD, which has a complex genetic transition, is 80%
hereditary (Emahazion et al.,, 2001; Gatz et al., 2006), but studies on its molecular
mechanisms are still ongoing. Today, early differential diagnosis of LOAD patients from
agingrelated dementia patnts is not possible when they usually enter the clinic with
dementia symptoms. This situation causes patients and their families to be late in planning
treatment processes and other measures for AD.

Genomewide association studies have been conductee@termine the genetic factors

that cause Alzheimer's disease (Kamboh et al., 2012; Zhang et al., 2012; Mukherjee et al.,
2014; Sherva et al., 2014). Variations associated with AD, especially APOE, can only
explain about 25% of this complex genetic backgtb(Musani et al., 2007So et al.,
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2011).The mostritical LOAD risk factor is the first identified APO& allele. Genome
wide analysis studies conducted in the tastyears have identified candidate gene loci
such as CLU, PICALM, CR1, BIN, ABCA7, EPHA CD33, CD2AP, ATP5H/KCTD2,
and MS4A (Chouraki et al., 2014). As a result of tHeAP study, the results were
published in 2013 and performed in nearly 75,000 patiédtsew loci, 19 in total, were
identified (Lambert et al., 2013). In the second faHop stud, four of these candidates
(DSG2; PTK2B; SORL1; SLC24A4) were highly sificant in repeated studies (Ruet
al., 2014).

Al z hei measessociatdd new genes were discovered in the recent study by
Prokopenko et gl 2021. 13 new candidate AIDci were identified, genes mapping to
these loci are; FNBR., SEL1L, LINCOO298, PRKCH, C150RF41, C2CD3, KIF2A,
APC, LHX9, NALCN, CTNNA2, SYTL3and CLSTN2.

In the study by Jansen et 2019 nine novel genesignificantly associated with AD are
publisked as ADAMTS4, HESX1, CLNK CNTNAP2, ADAM10, APH1B, KATS,
ALPK2, and AC074212.3In the most recentstudy by de Rojas 202Xix variants
asci ated with Al zhei mer os di sease risk
PLCGZ2 and two exonic variants in the SHARPg&¥ne were discovered.

2.2. GWAS

GenomeWide Association Studies (GWAS) explore the statistical association of SNPs
in complex genetic disorders using hidimensional datasets (Cantor, R. M., Lange, K.,
& Sinsheimer, J.S. (2010), Mareex al., 2018). GWS have shown success in many
studies in identifying associated singlacleotide polymorphism (SNP) profiles in
diseases with complex genetic structure.

The Genom@&Vide Association Studies (GWAS) approdebtsa univariate hypothesis.
GWAS does not evalte the potential relevance of each genetic marker and assigns
statistical significance based on statistical assumptions of data distribution. First, these
associations are identified by sindteus approacheswhere each SNP is tested
individually for theassociation. Although this standard method provides information on
novel loci for a particular complex diseasmme limitations existGWAS does not
considerthe genetic interactions of each biomarker; this means that the expected specific
mutation or na-mutation combinations are nobservedogether.

However,the univariate approach alone cannot explain genetic inherigdooein most
complex disease#t quickly identifies diseases related to a single gene/mutation/variation
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caused by genetic diffences thasubstantially affecassociation studieslowever,it is
insufficient for complex genetic diseases that have weak effects and are caused by many
variations. Identifying the effects of the epistatic interaction of multiple genetic variations
on gecific genes plays an important rolediagnosing and treatirthese complex human
diseases. As both the number of genetic variations and the nature of interactions increase,
such complex phenotypic traits are characterized by a high level of unprégitjctab

Genetic risk factors, which cause susceptibility to diseases with complex genetic
inheritance, interactogeher, although they are in different genetic regions. Complex
interactions such as SNBNP, genggene and geneenvironment interactions thatay
contribute to the resolution of missing heritability are ignored during GWAS (Cordell,
2009). Moreover, although it reveals the-tapking significant correlations associated
with a particular disease, the method does not provide a predictive rhaterésents
statistically significant biomarkers.

A challenging aspect of genomic studies is understanding the biological impact of
inherited genetic variations in DNA structure between individuals and the molecular
etiology of a complex diseasBingle rucleotide variations (SNVs) have received much
attention in disease prediction among genetic variatiSBi/s that are the source of
individual differences can be used as biomarkers and located on or near genes associated
with particulaty complex disease Discovering SNV biomarkers at different loci may
improve early diagnosis accuracy and prevent these diseases through clinical -decision
making.

Thelargesize of the genetic data used in GWAS studies has necessitated the use of data
mining methods in ordeo identify the interactions of genetic changes with the disease
prioritize their relationships and use them effectively in clinical applications to support
decision making in diagnosis. It is a critical and promising area for data mining methods
to identify representative SNPs to predict variability between individuals with the
phenotype of interest.

2.3. Ensembé and Entropy methods
2.3.1. Ensemb¢ method

The ensemble method is a machine learning technique that combines several base models
to produce one optimgbredictive model. Ensemble methods usually produce more
accurate solutions than a single model would. Before our study, information from three
different data mining models from different datasets is integrated with the ensemble
method proposed by Onur&rx¢ an et al . , which is one of
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higher space (SNVs to genomic locations on bands) ensemble techniques to integrate
multi models that offer significant information after GWAS and RF analysis. An
Ensembé scoring algorithm is propes to calculate information regarding bands that
emphasize diseaselated variations. This is the first ensemble methodology proposed by
Onur Erdojan et al. for different dataset:
novelty of this scoring gbrithm isto ensemble muldata mining methods in terms of

knowl edge extraction for e d'lwe hautpat aftmails- e t of
platform prediction models can be used as prior knowlddgmerge all information to

reach the posterior enserabl mo d e | with model mi ni mi zat.i
diseasaelated complex structure of genetic variations and other risk facto(SsEr d o] an (
et al., 2022)

2.3.2. Entropy method

Shannon entropy is a ndimear function that measures the uncertainty of random
variables(Shannon, 1948Methods based on Shannon entropy measure the strength of
predicting a combination of variables in explagnan event. Different combinations of
variables are said to interact when the power of the joint prediction ability of this
combination in describing an event is larger than the sum of the individual prediction
abilities of these variabld€over and Thmas, 1991)Fan. et al. proposed an information
gain approach based on mutual information and used an interadftomation gain
approach for threwvay interactions. The prioritized SNPs in each dataset (ADNI,
GenADA, NCRAD) are investigated using thémtropybased thregvay interaction
information method (3WI11).

Two-way mutual information and threeay interaction information are entrojmased
methods that measure the interaction between two markers and the information common
to all three attributes @1 dez B. et al ., 2022).

D=0 denotes the disease status of an individual for healthy individuals and D=1 for
affected ones in a casentrol study design. The difference between the mutual
information in the affected population and the general populaidefined as information
gain:

IG(X,Y\D)=I(X,Y\D)-I(X,Y)
Interaction information gain of markers X, Y, and Z are defined similarly:

IG(X,Y,Z\D)=I(X,Y,Z\D)-I(X,Y,2)



Information gainbased test statistic ) is calculated by dividing IG or IIG by a specif
normalization factor of variance. The resulting test statistiags centrally chisquare
distributed with 1 degree of freedom under the null hypothesis that the markers are
independent of the disease.

The test statistic for each dataset was calculated using the interaction inforraatitor g

prioritized SNPsSince we look for the interactions common to all three variants that

cannot be explained by twway mutual information gain, the triplets with SNP

combinations with significanttwaway mut u a l i nformati oBh gain are
et al., 2022).

2.4. Biological networks and methods to compare biological networks

Graph theory is a mathematical disciplthatunderpins the study of complex networks
in biological and other applications. It has been successfully extended to theoktudy
biological network topology, from a global perspective of their strak, smalworld,
hierarchical existence to a zoorA@dview of interaction motifs, clusters, and modules as
fundamentalnteractions between different biomolecules. Biological net&/show that
their structure is not random huasteadinked toafunction. (Pavlopoulus et al., 2011)

The term "network" is a common name for a collectiohrnided or interacting elements

An example o networkin biology is potein-protein interattion networks (PPI)Proteins

are biological tissues' primary catalysts, structural components, signaling messengers, and
molecular machinefPls play a critical role in coordinating the events in aaradlare

the foundation of many signal transductipathways ad transcriptional regulatory
networks in a celllRaman et al., 2010)

The principal measures that influence graphs are the number of nodes (N) and the
networks' average degrée. The type of network topology, which is generalhknown

for experimental datadetermineghe direct nature of that influenc&herefore, direct
comparisons of graph measures between empirical networks with different nodes (N) or
edges (k) can give falsified results (Van Wijk et al., 2010). One of the challenges of
comparing networks is that is not eag to compare them as total entities. Globa
properties and summary statisticsuch as network density, degree distribution,
transitivity, average shortest path l&#mgand others, can be used to compare networks.
Thestudies comparing networks with different measures are done by (Van Wijk, Stam &
Daffertshofer, 2010; Steuer and Lopez, 2008 and Valdeolivas, 2019).



2.5. GeneMANIA

GeneMANIA (WardeFarley et al., 2010) is a web server predicting the functions of genes
andgene setsGeneMANIA searches many large, publicly available biologizdbsets

to find related geree These include proteprotein, proteilDNA and genetic
interactions, pathways, reactions, gene and protein expression data, protein gamdains
phenoypic screening profiles. The data in GeneMANIA is regularly updatéu:
explanation of network names is given below.

Physical interaction is a proteprotein interaction data; two gene products are linked if
they were found to interact in a protgrotein interaction study. These data are collected
from primary studies found in protein interaction databases, including BioGRID and
PathwayCommons. Genetic interactions; two genes are functionally associated if the
effects of perturbing one gene were foundoe modified by perturbations to a second
gene. These data are collected from primary studies and BioGRIDc@l@ation; genes
expressed in the same tissue or proteins found iexthetlocation. Two genes are linked

if they are both expressed in th@me tissue or if their gene products are both identified

in the exactcellular location. Ceexpressionis gene expression data. Two genes are
linked if their expression levels are similar across conditions in a gene expression study.
Most of these datare collected from the Gene Expression Omnibus (GEO); only data
associated with a publication is collected. Shared protein dopgpretein domain data.

Two gene products are linked if they have the same protein domain. These data are
collected from dorain databases, such as InterPro, SMAR Pfam.

2.6. STRING analysis

STRING Szklarczyk et al., 20)9s a functional protein association network used for
building proteinprotein interaction networks. The experimental data is extracted from
BIND, DIP, GRD, HPRD, IntAct, MINT, and PID. The curated data is extracted from
BioCarta, BioCyc, GO, KEGG, and Reactome databddesdetailed information about
statistics terms is given below.

An average node degrees a number of how many interactions that a prob@son the
average in the networKheclustering coefficientmeasuretiow connected the nodes in
the network are. Highly connected networks have high values.



The expected number of edgegives how many edges are to be expected if the nodes
wereselectedandomly A small PPl enrichment-palue indicatethat the nodes are not
random and that the observedges arsignificant. Network diameter is the shortest
distance between the two most distant nodes in the netwaediés of the graph exists
only if it hasa diameter. The minimum among all the maximum distances between a
vertex to all other vertices is the radidfie characteristic path length is the average
shortest path length between all pairs of nodes in the nethoekdustering coefficient
measureshe degree to which nodes in a graph tend to cluster togétwland and
Leinhardt, 1971)The network density is determined by its ratio of links to the nodes.
The higher the ratio, the denser the netwd&twork efficiency is measured by 1/L
where L represestaverage path lengti.gtora and Marchiori001).

2.7. Pathway enrichment analysis

Quantification of biolgical samplesDNA, RNA, or protein is becominga standard in
moleculargeneticresearchMoreover, extensive data is producéulough highyield
guantificationmethods and analysis of these data helps researchers to discover novel
biological functions, genotypghenotype relationshipsand disease mechanisms.
(Lander, 2011)Researchers use pathway enrichment analysis to gain mstharsight

into gene lists produced by omics experimeRtEthways are statistically evaluated for
overrepresentation in thexperimental gene list in comparisea what would be
predicted by chance, using a variety of conventional statistical anahatetake into
account the number of genes found in the trial, their relative ranking, and the number of
genes annotated to a pathway of inte(Bgtimand et al., 2019)n pathway enrichment
analysis protocol Lander 2011, thevalue of the enrichment @& pathway is computed

usi ng a Fi s heBedjamine&HochbergFRRstest, apphes ohultipteest
correction Multiple-testing correction methods are used to decrease the significance of
each Pvalue derived from a series of tedtssher's exadest, based on hypergeometric
distribution, is a standard statistical test used for pathway enrichment analyses of a gene
list. It indicates whether the fraction of genes of concern in the pathweyréssignificant

than the fraction of genes outside the@a t h wa vy . Fi sherds exact test |
nonranked gene lisf@nd since our gene lists are not rankexve usedn this study.

An Aenrichment mapo is a network visualizati or
pathwaysOn the othehand,Ai Enr i chment Mapo i s a Cytoscape ap
visualization Related pathways are automatically grouped into h@ilogical themes by

network layout and clustering algorithni$his method is used in several studies (Merico,

Isserlin, Bader2011,; Isserlin et al2014;Reimand et al., 2019; Karagiannis et al., 2013)
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2.8. Knowledge graphs

Knowledge Graphs (KG) are an effective tool for data science in many data formats that
obtain infomat i on ( Ehr | i n g.eThe kaowleédgeWfragh regs@rislab
collection of interlinked descriptions of entitiegbjects, event®r concepts. Knowledge
graphs put data in context via linking and semantic metadatalasdvay provide a
framework for data integration, unification, analytiaed sharing.

Knowledge Graphs can be used to represémibdical entities. In the CROssBAR
Knowledge Graphsy Dogan et aJ biological entities are represented by nogdes
relationshps betweeithe same and different types of biological entities are expressed by
thegraph's edgefDogan et al., 2020).

2.9. Pyrosequencing

Pyrosequencing is a method developed by Pal Nyren in 1986 (Nyren, 2007). It is faster
than Sanger sequencing and has advantages in convenience, stafgntineost. It
performs sequence analysis by adgdnucleotides one by one to the reaction during the
synthesis of the target DNA product from a single strand (ssDNA) template.nt is a
accuratequantitative sequencing technique basedletectingpyrophosphates released

by a biotinlabeled sequencing iprer during DNA synthesis. Since it is still the fastest

and most accurate sequencing method today, it is the most suitable method for detecting
the presence of target mutations and SNPs in clinical samples (Ahmadian et al., 2006;
Royo et al., 2007; Arnoldt al., 2005; Vengen et al., 2012; Ballester LY, 2016).

The basic principle of pyrosequencing is the sequential addition of dNTPs to newly
formed DNA and the determination of the sequence by detecting pyrophosphate (PPi),
which is released when the compesding DNA template is added. The singteanded

DNA template is hybridized to the sequencing primer and incubated with DNA
polymerase, ATP sulfurylase, luciferase, apyrase enzymes, and substrates of adenosine 5'
phosphosulfate (APS) and luciferiAdding one of the nucleotides Adenine, Guanine,
Cytosine and Thymine A, G, C, T) releases pyrophosphate (PPa ifiucleotidanatches

the DNA template. ATP sulfurylase converts PPi to ATP in adenosine 5' phosphosulfate.
This ATP formed serves as a substratetfie conversion of luciferin to oxyluciferin in

the presence of luciferase. Oxyluciferin is the substance that emits light. There is a linear
relationship between the generated ATP and oxyluciferin. In order to observe the resulting
light oscillation, tle pyrogram graph is examinékthe enzyme apyrase degrades unbound
nucleotides and ATP
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The pyrosequencing methahighperformance and fast method, has become one of the
clinical diagnostic tests used in medical biology and genetics laboratorgetemine
mutations and SNPs in certain diseases. Pyrosequerasiidentify variations with very

low margins of error, whose incidence is as low as 5% in the populatioaghtafg QM

et al., 2016). In addition, pyrosequencing is a more adaptableridstonomicanalysis

than other highhroughput sequencing methods.
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CHAPTER 3

3. MATERIALS AND METHODS

3.1. Overview of the nethod

Our study obtains SNPom GWAS datasets provided by ADNI, GenADend NCRAD
initiatives. The SNP prioritiation isconductéel by novel Ensembl and Entrojmased data
mining method¢ Er doganald. 2022 and. Yal déz B et al

This study aims to construct and compare biological networks of the variants obtained
from these two methodsnd do functional enrichment analysisdiscoverthe affected
biological pathwaysThe obtained figuresre built using databases; STRING 11.0,
GeneMANIA, CROssBAR, g: Profiler, andsoftware Cytoscape with plugins
EnrichmentMap and Autoannotat&. detailal explanation of the methods provided
below.

In this study for genotyping the pyrosequencing method is used. Genomic DNA was
obtained from 4®articipants from OAD groups and 3articipants frontontrol groups.
The workflow of Pyrosequencing consists of 3 stages;

1) DNA isolation; 2) P®; Creating a singlstranded pattern; 3) Pyrosequencing.

3.2. Obtaining data

This section explains all data used in this stindgetail. The gene sets used in this study
are provided by our team working on these genes in their res&aechinal five gene ¢e

are named: Ensembl >2.31, Ensembl >3.21, Bnttopy genes obtained from three
databases; ADNI, GenADAand NCRAD The number of genes in these gene sets
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respectively are238, 63, 138, 19, 15, and.7Phe process of obtaining these gene sets is
explaired below.

3.2.1. GenotypingData

Three di fferent high di mensi onal dat aset

Neuroimagingdnitiative (ADNI), GenADA (dbGaP Study Accessiophs000219.¢. pl),

and the National Centralized Repoenmntasory for
(NCRAD) (dbGaP study accessiophs000168.¢. pl) areobtained via dbGaP control
access(Filippini et al., 2009; Li et al., 2008)Affymetrix Mapping250K_Nsp and
Mapping250K_Sty with 620901 SNPs lllumina Human610 Quadvl B 500K with

410969 SNPs andlllumina Human616QuadBeadChipwith 590247 SNPs
platformsareused by these initiatives, respectivelyvo hundred tercontrols and 344

cases for ADNI/77 controls and 798 cases @enADA, 1310 controlsand 1289 cases

for NCRAD aregenotyped using tlse platforms.

3.2.2. SNP Prioritization

C

=

A

For the initial di mension reduction to discov

a LOAD model from eachadasetGWAS analysis is done. PLINK analysis is completed
for identifying theindependent statisticalggiificance of variations related to the LOAD
(Chang et al., 2015; Purcell et al., 200P).INK resultsareused for filtering and reducing
redundant SNPs that are not directly related to the disease.

After filtering, SNPO6s ADiagrusetl mgnanput foy associ af

modelingamultistep RF strategy. One RF is used for dimension reduction, and in the next
step, another RF is conducted as the modeling algorithm. iRfpismentedvith 5-fold
crossvalidation (CV) using the RANGER package in(\Rright & Ziegler,2017).

3.2.3. ENSEMBIE and ENTROPScoring Algorithm

The multistepRFRF modeling selected a set of prioritized variants ouhofisand®of
variants. Followinghe SNP poritization step our teamimplementedwo metaanalysis
approaches€nsembeg, andEntropy, for modeminimizationafter RF RF modeling.

The Ensembe is a scoring algorithm in which chromosomal locations of SNVs are

obtained by mapping to cytogenetic bands affinities betweenppa@dsi ur Er doj an p.

2022) 719 LOAD-associated variants froiiree different sequencing platformare
selected based on Ensembtores.
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The Entropyapproachmeasureshe difference between the mutual information in case
and control groupsThreeway interaction information (3WIl)calculated by entropy
analysis can assedhird-order interactions.The 3WII describng the amount of
information common to all variables not present in any other subsetai@malculated
for all three datasetw® reveal tripets of variants significantly associated with LOAD
(Bucru Yaldez p.c.,2022).

3.2.4. Annotation of Variants

The prioritized variants obtained by Enseedhd Entropy methods aessmnotatedising

the SNPNexus tool(Oscanoa et al., 202Chelala et al., 2009; Dayelilah et al., 2012,
2013, 2018 For some analysisan extended version of gene sets is used, consisting of
overlapped genes, nearest downstream genes, and nearest upstreaangdnesome
analysisonly overlapped gene sets are used.

3.2.5. Obtaining Gene ists

Af ter obtainimgormi Ongr oErdaejldos(p.c.,2022)
2022) these variants are mapped to genbe gene lists that are used in this study are

added to the Appendix.0'he number of genes for EnsembP.31is 238, for Ensembl

3.21>is 63, for Entropwll 138, for EntropyADNI 19, for EntropyGenADA 15 andfor
EntropyNCRAD 74

3.3. GeneMANIA based PPI network analysis

Genemania (WardEarley et al., 2010) is a web server predicting the functions of genes
and gene sets. @xpression, shared protein domaipysical interactions, genetic
interactions, pathwaysand caolocalization are the network categories created by
GeneMANIA. We constructed gene networks based on their functions by using
GeneMANIA for our gene sets; EnsemtiEntropy, NCRAD, ADNI, and GenMA.

3.4. Building protein-protein interaction networksby STRING

STRING (Szklarczyk et al., 20)9s a functional protein association network used for
building proteinprotein interaction networkd'he experimental data is extracted from
BIND, DIP, GRID, HPRD,IntAct, MINT, and PID. The curated dats extracted from
BioCarta, BioCyc, GO, KEGG, and Reactome datab&sE®1 enrichment{value shows
that nodes are not connected randqrahd the edges betwe#re nodes are significant.
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This study built gengeneinteraction network$or gene set&nsembé, Entropy, ADNI,
GenADA, and NCRAD. These networks were created aitlonfidence (score) cutoff of

0.40. The cutoff score determines the minimum interaction score required for being
included in the prediction twork. Additional interactors are added until the PPI
enrichment is less or equal to 0.05, which means that our proteins have more interactions
among themselves than what would be expected for a collection of proteins drawn at
random from the gemme that ee identical in sizeSuch an enrichment indicates that the
proteins are at least partially biologically connected as a group, where all networks have
PPI enrichment less or equia 0.05. NetworkAnalyzer (Assenov et al., 200B) a
Cytoscape plugin usetb obtain summary statistics. It is a plugin that computes the
topological attributes for biological networks. Summary statistics created by
NetworkAnalyzer are used to compare the networks created

3.5. Building network genetraining diseasanteraction networks by Cytoscape

Cytoscape (Shannon et al., 2008)an opersource software platform for visualizing
molecular interaction networks and biological pathwagd incorporating annotations,

gene expression profiles, and other state data into these netimotikis. studywe used

this software to obtain gertisease interaction networkBlGPEC (Le et al., 2017)
apgicationis used for building gendisease interaction network8GPEC is based on a
random wallkwith a restart algorithm through a heterogeneousvori of genes and
diseasesThis application provides a heterogeneous network of genes/proteins and a
phenotypic disease similarity netwotd prioritize networkgenes and diseasdsovel
diseasggene and diseasBsease associations can be identifiecedas the ranking3he
genedisease associations are obtained from DisGeNET (Pinero et al., 2019), the largest
publicly availablediscovery platformAlzheimers disease is selected as the disease of
interest and atraining geneg(genes that have functian associations with Al
diseasglist is createdThe diseases selected fbetraining list arandicated inTable 3.1

Table 3.1 Diseases selected as training diseases for HGPEC

Disease ID Name

MIM104300 ALZHEIMER DISEASE; AD

MIM104310 ALZHEIMER DISEASE 2

MIM125320 DEMENTIA/PARKINSONISM WITH NON-
ALZHEIMER AMYLOID PLAQUES
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MIM602096 ALZHEIMER DISEASE 5
MIM605055 ALZHEIMER DISEASE, FAMILIAL EARLY -ONSET,
WITH COEXISTING AMYLOID AND PRION
PATHOLOGY
MIM605526 ALZHEIMER DISEASE 6
MIM606889 ALZHEIMER DISEASE 4
MIM607822 ALZHEIMER DISEASE 3
MIM608907 ALZHEIMER DISEASE 9

Network gene sets are created by manual input, and these genes are prioritized by back
probability 0.5 jumpingprobability 0.6 and subnetwork importance weight 0.These
networks are but for Ensembé, Entropy,ADNI, GenADA and NCRAD genes with the
number of genes respectively, 37, 38, 8 and 20The detailed summary of attributes

used in HGPEC analysis is indicatedmble 3.2 The Cytoscape plugin Diffusion is used

to broaden node selection using network propagatigorithms. The Diffusion algorithm

in Cytoscape aims to find the magitical nodes from a group of nodes and an entire
interaction networkBY using this algorithmnetworks are constructed from our gerof

interes$ and trainingliseases.

Table 3.2 Summary of HGPEC attributes.

Summary ENSEMBLE ENTROPY ADNI GenADA NCRAD
Disease Alzheimer Alzheimer Alzheimer Alzheimer Alzheimer
Back probability 0.5 0.5 0.5 0.5 0.5
Jumping
probability 0.6 0.6 0.6 0.6 0.6
Subnetwork
importance 0.7 0.7 0.7 0.7 0.7
Disease Network |V|=5080, |V|=5080, |V|=5080, |V|=5080, |V|=5080,
size |A|=38467 |A|=38467 |A|=38467 |A|=38467 |A|=38467
Gene/Protein |V|=10486, |[V|=10486, |V|=10486, |V[=10486, |V|=10486,
Network Size |A]=50791 |A]=50791 |A]=5074 |A]=50791 |A]=50791
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Number of

Training Genes 1183 1183 1183 1183 1183
Number of

Training Diseaseg 9 9 9 9 9
Number of

Network Genes 37 38 11 8 20

3.6. Prediction of network geneAl zhei mer 6s di sease interact

Cytoscape

GeneAl zhei mer ds di s e asaebuiltnby ¢he lGREC @lagion et wo r k

CytoscapeThe networks constructed foeiges from gene s#Ensembé, Entropy, ADNI,

GenADA, and NCRAD predict a relationship &1 z h ei me r the gebdliseasa s e .

associabns are obtained from DisGeNEAlzheimer's Dsease is selected as the disease
of i nterest, and a tr ai ntrelated geres) bst ig ckeatard.w n
The disease IDs and names selected as training diseases are represEabéel 33
Furthermore, aetailed summary of HGPEC attributes is giveiable 3.4.

Table 3.3 Disease IDs and namef training diseases.

Disease ID Name

MIM104300 ALZHEIMER DISEASE; AD
MIM104310 ALZHEIMER DISEASE 2
MIM125320 DEMENTIA/PARKINSONISM WITH NON-

ALZHEIMER AMYLOID PLAQUES

MIM602096 ALZHEIMER DISEASE 5
MIM605055 ALZHEIMER DISEASE, FAMILIAL EARLY -ONSET,
WITH COEXISTING AMYLOID AND PRION
PATHOLOGY
MIM605526 ALZHEIMER DISEASE 6
MIM606889 ALZHEIMER DISEASE 4
MIM607822 ALZHEIMER DISEASE 3
MIM608907 ALZHEIMER DISEASE 9
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Table3.4. HGPEC attributes fanetworkgeneAl z hei mer 6 s di sease net

Summary ENSEMBLE | ENTROPY ADNI GenADA NCRAD
Disease Alzheimer Alzheimer Alzheimer Alzheimer Alzheimer
Back probability 0.5 0.5 0.5 0.5 0.5
Jumping probability | 0.6 0.6 0.6 0.6 0.6
Subnetwork 0.7 0.7 0.7 0.7 0.7
importance
Disease Network size |V|=5080, |V|=5080, |V|=5080, |V|=5080, |V|=5080,
|A|=38467 |A|=38467 |A|=38467 |A|=38467 |A|=38467
Gene/Protein Networl |V[=10486, |V|=10486, [V|=10486, |V|=10486, |V|=10486,
Size |A|=50791 |A]=50791 |A|=50791 |A]=50791 |A|=50791
Number of Training
Genes 1183 1183 1183 1183 1183
Number of Training
Diseases 9 9 9 9 9
Number of Network 37 38 1 8 20

Genes

3.7. Functional enrichment analysis and visualization

Pathway enrichment and visualization of the data were done follovampgotocol written
by Reimand et al. (2019).

3.7.1. Pathway enrichment analysis by g:Profiler

g: Profiler (Raudvere et al.,, 2019) is a public web server for characterizing and
manipulating gene lists.: ¢sOSt is the core of the g: Profiler; it provides statistical
enrichment analysis to analyze the given gene list. In this study, g: GOSt is used to obtain
Gene Ontology (GO) Molecular Function, GO Cellular Component, GO Biological
Process and Reactome lpays for Ensemb) Entropy, GenADA, ADNJand NCRAD

gene sets.

All analyses were done with default attributions with a significance threshold of 0.05, and
multiple analyses correatin was done with Bonferroni

19



3.7.2. Visualization by EnrichmentMap

EnrichmentMap (Merico et al., 2010) is a Cytoscape plugin used for functional enrichment

visualization. Overrepresented functional groups derived from functional annotation such

as Gene Ontology (GO) can be identified by enrichment analysis. Gene sets, such as

pathways and GO terms, are organized into networks. In this study, EnrichmentMap is

used to create networks from GO annotations and Reagtathevays for Ensemgl
Entropy gene set3heP-v al ue of the enrichment of a pat hwa:
exact test and Benjamirsiiochberg FDR (Q value) used as multiple test correction. All

analyses were done withpavalue of 0.05 FDR gvalue cutoff 0.1 and edge similarity

cutoff 0.25 (Jaccard metric).

3.7.3. Interpretation by AutoAnnotate

AutoAnnotate (Kucerat al., 2016) is a Cytoscape plugin that finds clusters and annotates
them visually with labels and groupBhis studyused AutoAnnotate to create clusters
after functional enrichment analysis. The clusters are obtained using the Markov Cluster
Algorithm (MCL) cluster annotation algorithnandlabels are generated automatically
based on the word frequencies of selected attributes. GO Molecular Function, GO Cellular
Component, GO Biological Process\d Reactome were used for label calculation.

3.8. Building kn owledge graphs by CROssBAR

CROssBAR (Dogan et al.,, 2020) is a database constructing knowledge graphs for

biological entities and relationships between them, repredbgtnodes and edgeBhis

studycreated knowledgergphs for Ensemblgenes, Entropgeres, ADNI, GenADA

and NCRAD genewiththedi sease query 0 AlVeasded knowdedgé s Di seas
graphs to obtain literature information related to our genes and the pathways in which they

occur. The observed gergathway associatiorare investigated ipathway enrichment
analysis.Thegenes and query parameters dstiegiven inTable 3.5in Appendix A.

The biomedical data sources used in the CROssBAR database are; UniProt, IntAct,

InterPro, DrugBank, ChEMBL, PubChem, Reactome, KEGG, OMIM, Orphanet,

Experimental Factor Ontology (EFGnd Human Phenotype Ontology (HPO).
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3.9. Experimental validation
3.91. Primer Design

Primer design for PCR primer and Pyrosequencing priredene using Pyromark
Assay Design 2.0 by Qiagen. After the design of the prithesuitability of the designed
primerswaschecked by usinthe BLAT tool (Kent, 2002) from USCS Genome Browser.

In the study, the design of PCR primers is done by following standard rules. It is designed
that the temperature is in the range of632C, the primer length is 185 bases, the
formation of dimers and loops is prevented, and the primers with as equ&l/G&3
possible. In order to bind to streptavigioated magnetic beads, one of the primers was
biotin-labeled and the other unmarked.

3.9.2 DNA Isolation

The saliva samples are collected from Turkish LOAD patients and controls at the
Hacettepe University Geriatric Clinic. Saliva samples received by METU Bioinformatics
Systems Biology Laboratory were used for genomic DNA isolation. Genomic DNA
isolations of the samples of the participants were obtained with the optimized protocol
based on the Norgen Saliva DNA isolation protocols. Genomic DNA was obtained from
43 LOAD groups and 38 control groups in total.

3.9.3 NanoDrop Spectrophotometry

After the DNA isolation of the saliva samplesncentration and quality evaluations were
completed with NanoDrop Spectrophotometry. Samples with good quality and
concentration were used for the next step.

3.9.4. Polymer Chain Reactions (PCR)

The polymerase @in reaction (PCR) is used to amplify small segments of [Bésause
the obtained DNA amount after DNA isolation is not enough for the necessary molecular
analysiswhich is pyrosequencing in our case.

3.9.5. Pyrosequencing

The pyrosequencing method, whishfast and has an error rate of less than 1/1000, was
preferred for genotyping. The pyrosequencing method is known as "sequencing by
synthesis". It is a method based on detecting which base the enzyme adds as DNA
polymerase produces new DNA. Pyrosequends based owletectinglight emission
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resulting from the chain reaction that occurs when pyrophosphate is released.
Pyrosequencing is done by usitige Qiagen Pyromark Q24 machine. In totar 43
LOAD patients, 38 controls and 32 variants runs weratcocted.
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CHAPTER 4

4. RESULTS

This study compares the variant lists produced by two feature selection approaches,
Ensemb¢é and Entropy, based on their biological interpretatisith experimental

validation on the variant lists providddy Onur Erdoj dnd.&&INKd Bur c
association analysis is performed in these prior stdidiggenotyping data of three LOAD

GWAS datasets. Then RRF is conducted for modelindhe prioritized variants after
PLINK-RFRF stepsare analyzedeither enemble or entropy approachésr model
minimization.

The 719 variants proposéar LOAD classificationwith RFRF modelsfor three GWAS
datasets are scored according to Eneembé method The variants with an Ensengbl
score of 2.31 and higharecategorzed as two groups for investigatias an Ensemel
>2.31 and Enseméb3.21(OnurEr doj an et alunicatorper sonal com

Next, for the Entropy selectin, variants selected by RRF models arerioritized by
threeway-interaction analysig3WI). These results are investigated under four groups
EntropyALL, EntropyADNI, EntropyGENADA, andEntropyNCRAD. Thenumber of
selectedrariants for these groupgere145, 39, 25and 78, respectively Bur cu Yal deée z
al., personal comomicaion).

In all six analysis groupsvariantsoverlapping with a protetsoding gene and LOAD
related biologcal pathways were selected for experimental validation based on the
examination resultsn terms of biological networksproteinprotein interactns, and
functional enrichmentThese network analyss are planned to show the functional
relevance of RIRF model variants associated with LOAD rigk potential causative
variants.The advantages and disadvantages of ensemblerdarapybased approaches
are discussed.

Finally, for LOAD-associate@ariantsselectedvith model minimizationpyrosequencing
primerdesignis completedand sequencing primers were optimiz@dt of the 32 genes,
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3 were controls,the Ensemid model prioritized 11 genesnd 18were selectedby the
Entropy modebf GenADA and ADNI studiefResults of the genotyping experiments and
their analysisarepresented and discussed.

4.1. Prediction of gene functiondby GeneMANIA

By using GeneMANIA, gene functions are predicted for our gene sets. According to the
co-expression results, ADNI has the highest percentage wiiPo1@GenADA follows

with 83.04%, and the otbr gene sets follow with; Entropy: 79.31%, EnsesBl.1%%,

and NCRAD: 63.686. A detailed summary of GeneMANIA network results is given in
Table 4.1and a detailed table of the genes found in the GeneMANIA networks is given
in Table 4.2 Appendix B

Table 4.1 GeneMANIA network summarylhe statistal analysisof the GeneMANIA
resultsfor all five gene listaresummarized.

SUMMARY ENSEMBLE | ENSEMBLE ENTROPY Entropy- | Entropy- Entropy -
STATISTICS >2.31 >3.21 ADNI GENADA NCRAD
#related genes

20 20 20 20 20 20
#total genes

218 70 66 34 30 42
#attributes

0 0 0 0 0 0
#total links 4250 353 269 61 114 109
Co-expression 41.47% 59.19% 85.18% 94% 77.90% 81.07%
Shared protein domains | , 159, 10.96% N/A N/A 22.10% N/A
Physical interactions 19.19% 13.18% 5.57% N/A N/A 18.34%
Genetic Interactions

6.00% 3.14% 1.44% 6.33% N/A 0.59%
Pathway 4.69% N/A N/A N/A N/A N/A
Co-localization 26.52% 2.64% 7.81% N/A N/A N/A

In Table 4.1.,co-expression, shared protein domains, physical interactions, genetic
interactions and celocalization features are investigated to compare our gene lists. The
highest values corresponding to these features aredfiggdiin bold.
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Figure 41. Topological relationship for Enseneot 2.31 scored only overlapped genes
and related genes obtained by GeneMANIA. Purple strings represerpassion, pink
strings represent physical interactions, yellow sirpresent shared protein domains
green strings represent genetic interacti@msl blue strings represent pathwéetween
nodes Nodes represent genasidwe have searched gera® indicated with stripes.
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Figure 4.2. Topological relationship between Ensen#8.21 genes. Purple strings
represent c@xpression, pink strings represent physical interactions, green strings
represent genetic interactions, and blue strings represent colocalizatiseen nodes.
Nodes represent genes, and we have searched genes are indicated with stripes
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Figure 43. Topological relationship between Entropy genes. Purple strings repcesent
expression, pink strings represent physical interactions, green strings represent genetic

interactions and blue strings represent colocalizatlmtween nodesNodes represent
genesandwe have searched gera® indicated with stripes.
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Figure 44. Topological relationship between ADNI genes. Purple sirregresent co
expression and green strings represent genetic interactions between nodes. Nodes
represent geneandwe have searcldegenesare indicated with stripes.
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genes that we have searched are indicated with stripes.
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Other figures obtained by @aeMANIA analysis are given in théigure 7-22 in the
Appendix B.

Table 4.3. Number of total genes and genes not connected to any other genes foreEnsembl
and Entropy networks.

#genes Ensembke Ensembke | Ensembk | Ensembe | Ensembke | Ensembk | Entropy | Entropy
>231 >231 >2.31 >321 >3.21 >3.21 physical | co-loc
physical shared co-loc physical shared co-loc int
int protein int protein
domains domains
Total genes 218 218 218 70 70 70 66 66
NEH T | R 110 105 60 27 57 26 53
genes
%
CONNECTED 37.62 49.55 51.84 14.29 61.43 18.58 60.61 19.70

When we look at the number of connected gérms the obtained GeneMANIA figures;
for Ensembd >2.31, physical interactions network 1Xf&nes are not conrted to any
other genesout of 218total geres. So, 37% of genes are connectdd.the Ensembé
>2.31 shaed protein domains networ#9.86 of genes are connectednd for the
Ensembb2.31co-localization networks1.8% of genes are connected.

On the other handpf Ensemi®# >3.21physical interagbns network 14.3% of genes are
connectedand forshared protein domains network 61.4% of genes are conné¢idd.
for Ensemi# >3.21co-localization network 18.6% of genes are connected.

Lastly, for Entropy physical interactions netwof0.6% of geneare connectednd for
theco-localizationnetwork 19.7% of genes are connected.

4.2. Protein-protein interaction networks by STRING

We constructed proteiprotein interaction networks for our gene sets; Enserioltropy,
EntropyGenADA, EntropyADNI, and Entropy-NCRAD by STRING. The pvalue
obtained for Ensemél| Entropy,ADNI, GenADA, and NCRADIs 0.291, 0.968, 1,,land
0.723 None of the obtained interaction networks is significant.

4.3. STRING enrichment analysis

The networks constructed for gene sets obtanye8TRING enrichment were compared
by exparding each network to the pr of significantly more interactions than expected.

31



The netvorks created for thEnsembé > 2.31, Ensembé >3.21,Entropy,Entropy-ADNI,
EntropyGenADA, and EntropyNCRAD for only ovelapped geneare given indetall
information about the number of nodes and edges for the geragesgiteen inTable 44.
Moreover,detailed summary statistics for STRING enrichmamgiven in Table 45.
Figure 4.23, Figure 424, Figure 4.25, Figure 4.26, Figure 427 andFigure 4.28 show

the extended networks for each groupiateins.

Table 44. Numbers of nodes and edges for gene sets.

Entropy - Entropy - Entropy -
ENSEMBLE >2.31 ENSEMBLE>3.21 ENTROPY | ADNI GenADA NCRAD
Number of
nodes 199 51+10 43+10 15+10 11+10 23+10
Number of | ;o) 96 74 46 34 49
edges

Table 45. Summary statistics for STRING enrichment analyBiee highest values for

each row is markeih bold.

SUMMARY STATISTICS ENSEMBLE ENSEMBLE ENTROPY E-ADNI E-GenADA E-NCRAD
>2.31 >3.21
#of nades 199 61 53 25 21 33
#of edges 191 96 74 46 34 49
Avg # of neighbors 3.064 5.875 5.481 5.75 3.778 5.444
network diameter 14 5 5 3 6 5
network radius 7 3 2 2 3 3
characteristic patkehght 5.057 2.337 2.282 1.808 2.549 2.386
clustering coefficient 0.153 0.443 0.493 0.608 0.357 0.48
network density 0.028 0.19 0.211 0.383 0.222 0.32
network heterogeneity 0.758 0.797 0.797 0.462 0.511 0.64
network centralization 0.075 0.28 0.354 0.324 0.279 0.301
connected components 76 28 27 10 4 16
analysis time 0.086 0.02 0.004 0.001 0.001 0.002
efficiency 0.19774 0.427899 0.438212 0.553097 0.392311 0.419111
PPI enrichment palue 1.00E16 9.30E04 3.99E09 1.35E11 2.72E10 1.00E16
significantly more Yes Yes Yes Yes Yes Yes
interactions than expected
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Figure 423. Proteinprotein interaction network of Ensembb 2.31 scored only
overlappedyenes witt PPl enrichmentpaluel.00E16. Nodes represent the genes, while

the edges represent the connections between the nodes. The colors of nodes do not have
anymeaning.
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