
 

 

COMPARISON OF ENTROPY AND ENSEMBLE-BASED FEATURE SELECTION 

THROUGH NETWORK ANALYSIS OF ALZHEIMERS DISEASE-ASSOCIATED 

VARIANTS  

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

BY 

 

 

SEVDA RAFATOV 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

BIOINFORMATICS  

 

 

 

 

 

 

 
FEBRUARY 2022 

  



 

 

 

  



 

 

  

Approval of the thesis:  
 

 

 

 

ANALYSIS OF ALZHEIMERS DISEASE -ASSOCIATED VARIANTS FOR THE 

DISCOVERY OF AFFECTED BIOLOGICAL PATHWAYS  
 

Submitted by Sevda Rafatov in partial fulfillment of the requirements for the degree of Master of 

Science in Bioinformatics, Middle East Technical University by, 

 

Prof. Dr. Deniz Zeyrek Bozĸahin 

Dean, Graduate School of Informatics 

 

Assoc. Prof. Dr. Yeĸim Aydēn Son 

Head of Department, Health Informatics  

 

Assoc.  Prof. Dr. Yeĸim Aydēn Son 

Supervisor, Health Informatics, METU 

 

 

 

Examining Committee Members: 
 

Assist. Prof. Aybar Can Acar  

Health Informatics Dept., METU 

 

Assoc. Prof. Dr. Yeĸim Aydēn Son  

Health Informatics Dept., METU 

 

Assoc. Prof. Tunca Doĵan 

Computer Engineering Dept., Hacettepe University 

 

 

Date:                    08.02.2022 

 

 

 

 

 

 



 

 

 

  





iii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as requir ed by these rules and conduct, I  have fully cited and 

referenced all mater ial and results that are not or iginal to this work. 
 

 

 

 

 

 

Name, Last name :   SEVDA RAFATOV  
 

 

 

Signature              :         
  



iv 

 

ABSTRACT 

 

COMPARISION OF ENTROPY AND ENSEMBLE BASED FEATURE SELECTION 

THROUGH NETWORK ANALYSIS OF ALZHEIMERS DISEASE-ASSOCIATED 

VARIANTS  

 

 

Rafatov, Sevda 

MSc., Bioinformatics 

Supervisor: Assist. Prof. Dr. Yeĸim Aydēn Son 

 

February 2022, 120 pages 

Alzheimerôs Disease (AD) is a complex, progressive and irreversible brain disorder that 

slowly destroys memory and thinking skills and eventually loses the ability to do daily 

tasks. Our group is currently developing in-silico AD models in which genotyping and 

phenotyping data are integrated for the differential diagnosis Late-On-Set AD (LOAD) 

cases. Meta-analysis of four different LOAD data sets provided by ADNI and dbGAP, 

which includes the genotyping data of more than 5000 LOAD patients, is done. In this 

study, we provided the biological interpretation of the variants selected through two 

different approaches, namely entropy and ensemble modeling. First, the LOAD-

associated variants are annotated for their genomic location, consequence, gene and 

protein products, and biological pathways. The protein-coding variants prioritized were 

selected for experimental validation based on their relationship with LOAD-related 

biological pathways after network, PPI, and enrichment analysis. For 32 variants, 

pyrosequencing primers were designed, and sequencing primers were optimized. As a part 

of the study, a case-control group with 43 LOAD diagnosed and 38 healthy participants 

were formed, and genotyping for the prioritized variants was completed. We have shown 

that machine learning models capture hidden, new, and informative patterns by 

considering nonlinear interactions where multiple variants determine the risk. Further 

analysis of interconnected networks for selected genes and proteins can identify affected 

biological pathways underlying the molecular etiology of AD susceptibility. 

Understanding the affected molecular pathways can reveal potential causative variants 

that lead to novel preventative therapeutics for AD.  

Keywords: Alzheimer's Disease, biological networks, functional enrichment analysis   
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¥Z 

 

ALZHEĶMER ĶLE ĶLĶķKĶLĶ VARYANTLARIN AĴ ANALĶZĶ ¦ZERĶNDEN 

ENTROPY VE ENSEMBLE BAZLI DEĴĶķKEN SE¢ĶMĶNĶN 

KARķILAķTIRILMASI 

 

Rafatov, Sevda 

Y¿ksek Lisans, Biyoenformatik 

Tez Yºneticisi: Do­. Dr.Yeĸim Aydēn Son 

 

ķubat 2022, 120 sayfa 

 

Alzheimer Hastalēĵē (AD) , hafēza ve d¿ĸ¿nme becerilerini yavaĸ yavaĸ yok eden ve 

sonunda g¿nl¿k iĸleri yapma yeteneĵini kaybetmeye neden olan karmaĸēk, ilerleyici ve 

geri dºn¿ĸ¿ olmayan bir beyin hastalēĵēdēr. Grubumuz ĸu anda, Ge­ Baĸlangē­lē 

Alzheimer Hastalēĵē (LOAD) vakalarēnēn ayērēcē tanēsē i­in genotipleme ve fenotipleme 

verilerinin entegre edildiĵi in-siliko AD modelleri geliĸtirmektedir. ADNI ve dbGAP 

tarafēndan saĵlanan ve 5000'den fazla LOAD hastasēnēn genotipleme verilerini i­eren dºrt 

farklē LOAD veri setinin meta analizi devam etmektedir. Bu ­alēĸmada, entropi ve 

ensembl modelleme olmak ¿zere iki farklē yaklaĸēmla se­ilen varyantlarēn biyolojik olarak 

yorumlanmasēnē saĵladēk. Ķlk olarak, LOAD ile iliĸkili varyantlar, genomik konumlarē, 

sonu­larē, gen ve protein ¿r¿nleri ve biyolojik yolaklarē ile iliĸkilendirilmiĸtir. ¥ncelik 

verilen protein kodlama varyantlarē, aĵ, PPI ve zenginleĸtirme analizinden sonra LOAD 

ile ilgili biyolojik yollar ile iliĸkilerine dayalē olarak deneysel doĵrulama i­in se­ilmiĸtir. 

32 varyant i­in pirosekanslama primerleri tasarlanarak ve pirosekanslama primerleri 

optimize edilmiĸtir. 43 LOAD ve 38 saĵlēklē katēlēmcēdan oluĸan vaka-kontrol grubunda 

ºncelikli varyantlar i­in genotiplendirilmiĸtir. Makine ºĵrenimi modellerinin, birden ­ok 

deĵiĸkenin riski belirlediĵi doĵrusal olmayan etkileĸimleri gºz ºn¿nde bulundurarak gizli, 

yeni ve bilgilendirici ºr¿nt¿ler tanēmlanmēĸtēr. Se­ilen genler ve proteinler i­in birbirine 

baĵlē aĵlarēn ileri analizleri, AD yatkēnlēĵēnēn molek¿ler etiyolojisinin altēnda yatan 

etkilenen biyolojik yollarē tanēmlamada yardēmcē olabilir. Etkilenen molek¿ler yolaklarē 

anlamak, AD i­in yeni ºnleyici terapºtiklere yol a­abilecek potansiyel nedensel 

varyantlarē ortaya ­ēkarabildiĵi ºnerilmektir. 

Anahtar Sºzc¿kler: Alzheimer hastalēĵē, biyolojik aĵlar, fonksiyonel zenginleĸtirme 

analizi   
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CHAPTER 1 

 

1. INTRODUCTION  

 

The most widespread form of neurodegenerative dementia is Alzheimer's disease, marked 

by progressive memory loss and cognitive, problem-solving, and language deficits 

(Cuyvers & Sleegers, 2016). Late-Onset Alzheimerôs Disease (LOAD) is the most 

common type of dementia in the aging population, characterized by memory deterioration 

and other cognitive domains.  

The epistatic nature of Alzheimer's disease and the complex genetic etiology of LOAD is 

still unclear, which restrains the early and differential diagnosis of LOAD. For that 

purpose, Genome-wide association studies (GWAS) are used by many researchers to find 

variants whose common occurrence signaled to AD phenotype (Bodily et al., 2016; 

Cuyvers & Sleegers; Tosto & Reitz, 2013; Lambert et al., 2013; Desikan et al., 2017; 

Escott-Price et al., 2014). GWAS allows exploration of the statistical interactions of 

individualsô variants, but the univariate analysis oversees interactions between variants. 

More sophisticated studies are needed to distinguish variants that collectively influence 

the phenotype (Bodily et al., 2016).  

The machine learning algorithms can capture hidden, novel, and significant patterns 

considering nonlinear interactions between variants to understand the genetic 

predisposition for complex genetic disorders, where multiple variants determine the risk.   

Our previous studies have used three different GWAS datasets provided by ADNI and the 

dbGAPôs controlled accessed datasets from GenADA NCRAD initiatives. First statistical 

analysis is done by PLINK, and initial dimension reduction is completed by p-value 

filtering. Following GWAS, two-step Random Forest (RF-RF) modeling was 

implemented with 5-fold cross-validation (CV) using RANGER package in R. After 

PLINK-RF-RF analysis of LOAD GWAS datasets, a novel Ensemble and Entropy-based 
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methods for meta-analysis were optimized as a part of two other graduate studies 

completed within our group by Onur Erdoĵan and Burcu Yaldēz.  

Based on their biological interpretation, this study compares the gene sets produced by 

these two meta-analyses approaches, Ensemble and Entropy. The network analysis 

approach to identify genes in Alzheimerôs disease is currently studied in several works 

(Talwar et al.,2014; Rao et al., 2013; Rahman et al., 2019; Meng et al., 2020). There are 

several different methods to compare networks. Here, biological networks are constructed 

for the Ensemble and Entropy gene sets, and global parameters are compared to conclude 

the networks' connectivity to assess the usability of both meta-analysis methods.  

The global parameters used for comparison are network density, average path length, and 

efficiency are compared by GeneMANIA based PPI network analysis and STRING 

network analysis. CROssBAR knowledge graphs show associations between genes and 

pathways for each gene set. Further, these associations are investigated by functional 

enrichment analysis of the gene sets. That led us to find novel correlations between our 

genes and Alzheimerôs Disease. So, gene-AD networks are constructed to investigate the 

known associations of our genes in literature with Alzheimerôs Disease.  

Chapter 2 covers the effects of mutations on Alzheimerôs disease phenotype, molecular 

etiology of Alzheimerôs Disease, biological networks, methods to compare biological 

networks, pathway enrichment analysis, and knowledge graphs. 

Chapter 3 explained how data was obtained and the methodology in detail. Firstly, an 

overview of the methods is given. After explaining how data is obtained, protein-protein 

interaction networks, GeneMANIA based PPI network analysis, network gene-training 

disease interaction networks, prediction of network genes-Alzheimerôs disease interaction 

networks by Cytoscape are explained. Subsequently, building knowledge graphs by 

CROssBAR, pathway enrichment analysis, visualization, and functional enrichment 

analysis interpretation are explained. 

In Chapter 4, the results are presented and explained in detail. This chapter explains 

protein-protein interaction networks, prediction of gene functions, network genes- training 

diseases networks, knowledge graphs, pathway-based enrichment analysis, network 

genes-Alzheimerôs disease networks, and STRING enrichment analysis. 

In Chapter 5, the genotyping constructed on the prioritized variants is explained in details. 

In Chapter 6, we discussed our results and interpreted the importance of using a 

network-based approach to predict the biological meaningfulness of gene sets. 
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CHAPTER 2 

 

2. LITERATURE  REVIEW  

2.1. Alzheimerôs Disease 

A mutation is described as a change in the nucleotide sequence of an organism's genome, 

virus genome, or extrachromosomal DNA. Any change in DNA can cause different 

diseases such as Mendelian diseases or complex diseases. (Amberger, Bocchini & 

Hamosh, 2011). Alzheimer's disease is genetically complex, heritable, and the most 

common form of dementia, which increases as the human lifespan increases and is the 

cause of approximately 65% of all dementias, burdening both health and socioeconomic 

aspects in aging societies. Close to 50 million people worldwide live with Alzheimer's 

Disease (AD) (Bright Focus Foundation). These cases exhibit a late-onset complex genetic 

inheritance (Kamboh, 2018). Alzheimer's disease can be classified genetically into two 

types: a rare familial form that affects less than 1% of all patients and is inherited by 

autosomal dominant inheritance, and a sporadic multifactorial form that is assumed to be 

caused by a combination of environmental exposures and genetic susceptibility (Cuyvers 

& Sleegers, 2016). Besides memory loss, other cognitive dysfunctions develop in the AD 

process, amyloid plaques and neurofibrillary tangles accumulate in the brain, and cerebral 

atrophy, more commonly in the temporal region, is observed. 

Thus far, some genes found to be implicated in the etiology of Alzheimerôs disease. Even 

though the use of molecular pathways in diagnosing Alzheimer's disease is unclear, 

several causes are believed to be involved in the disease's pathogenesis. (Moradifard et 

al., 2018). Genes that have been recently identified to be associated with AD are highly 

expressed in glial cells. Therefore, the effect of glial cells on the pathogenesis of 

Alzheimer's disease has recently been the focus of attention. Astrocytes are the most 

numerous cell type within the Central Nervous System (CNS). They are essential for the 

maintenance of brain homeostasis and neuronal protection. Astrocytes are essential in the 

synaptogenesis, the release of neurotransmitters, cognition, neuroinflammation, glycogen 

storage, formation of Blood-Brain Barrier (BBB), clearance of toxic substances such as 

glutamate excess and K+ spatial buffering,  release of trophic factors for neurons and other 
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brain cells in both physiological and disease conditions (Volterra and Meldolesi, 2005; 

Hamby and Sofroniew, 2010; Kimelberg and Nedergaard, 2010; Barreto et al., 2011; 

Cabezas et al., 2012, 2014; Posada-Duque et al., 2014). Astrocytic activities constitute a 

three-party synapse with presynaptic and post-synaptic neurons, based on their intense 

relationship to the neurons at both molecular and morphological levels through their 

endfeet. (Perea et al., 2009; Perez-Alvarez and Araque, 2013; Coulter and Steinhauser, 

2015). Astrocytic metabolic dysregulation in this aspect is a characteristic feature of 

neurodegenerative diseases like Alzheimer's Disease (AD) (Volterra and Meldolesi, 2005; 

Maragakis and Rothstein, 2006; Hamby and Sofroniew, 2010; Kimelberg and Nedergaard, 

2010; Parpura et al., 2011). 

It is believed that pathogenic Aɓ and tau types can cause gliosis and neuroinflammation. 

In addition, it is thought that glial cells may regulate the pathogenesis of inflammation, 

Aɓ, and tau. Neuropathologically, extracellular senile plaques containing ɓ-amyloid (Aɓ) 

and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein are 

described (Harold et al., 2009). 

The complex genetic etiology of LOAD is still unclear, limiting the early and differential 

diagnosis of LOAD. Making the differential diagnosis with other causes of dementia and 

making the differential diagnosis from age-related forgetfulness and mild cognitive 

impairment are often insufficient in making the diagnosis at an early stage; the diagnosis 

of the disease can be made partially with clinical evaluation and imaging methods. The 

definitive diagnosis of AD can be made by tissue diagnosis, that is, by brain biopsy or 

autopsy after the patient's death. Early differential diagnosis with early detection of 

cognitive decline is vital for improving disease management and even reversing 

symptoms. 

So far, studies on Alzheimer's disease have focused on precursor proteins such as tau, 

presenilin, and amyloid and have been carried out through molecular mechanisms (Tan et 

al., 2019). It is observed that LOAD, which has a complex genetic transition, is 80% 

hereditary (Emahazion et al., 2001; Gatz et al., 2006), but studies on its molecular 

mechanisms are still ongoing. Today, early differential diagnosis of LOAD patients from 

aging-related dementia patients is not possible when they usually enter the clinic with 

dementia symptoms. This situation causes patients and their families to be late in planning 

treatment processes and other measures for AD. 

Genome-wide association studies have been conducted to determine the genetic factors 

that cause Alzheimer's disease (Kamboh et al., 2012; Zhang et al., 2012; Mukherjee et al., 

2014; Sherva et al., 2014). Variations associated with AD, especially APOE, can only 

explain about 25% of this complex genetic background (Musani et al., 2007; So et al., 
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2011). The most critical LOAD risk factor is the first identified APOE ὑ4 allele. Genome-

wide analysis studies conducted in the last ten years have identified candidate gene loci 

such as CLU, PICALM, CR1, BIN, ABCA7, EPHA1, CD33, CD2AP, ATP5H/KCTD2, 

and MS4A (Chouraki et al., 2014). As a result of the I-GAP study, the results were 

published in 2013 and performed in nearly 75,000 patients; 11 new loci, 19 in total, were 

identified (Lambert et al., 2013). In the second follow-up study, four of these candidates 

(DSG2; PTK2B; SORL1; SLC24A4) were highly significant in repeated studies (Ruiz et 

al., 2014). 

Alzheimerôs disease-associated new genes were discovered in the recent study by 

Prokopenko et al., 2021. 13 new candidate AD loci were identified, genes mapping to 

these loci are; FNBP1L, SEL1L, LINCOO298, PRKCH, C15ORF41, C2CD3, KIF2A, 

APC, LHX9, NALCN, CTNNA2, SYTL3, and CLSTN2.  

In the study by Jansen et al. 2019, nine novel genes significantly associated with AD are 

published as; ADAMTS4, HESX1, CLNK, CNTNAP2, ADAM10, APH1B, KAT8, 

ALPK2, and AC074212.3. In the most recent study by de Rojas 2021, six variants 

associated with Alzheimerôs disease risk near APP, CHRNE, PRKD3/NDUFAF7, 

PLCG2, and two exonic variants in the SHARPIN gene were discovered. 

2.2.   GWAS 

 Genome-Wide Association Studies (GWAS) explore the statistical association of SNPs 

in complex genetic disorders using high-dimensional datasets (Cantor, R. M., Lange, K., 

& Sinsheimer, J.S. (2010), Marees, et al., 2018). GWAS have shown success in many 

studies in identifying associated single-nucleotide polymorphism (SNP) profiles in 

diseases with complex genetic structure. 

The Genome-Wide Association Studies (GWAS) approach tests a univariate hypothesis. 

GWAS does not evaluate the potential relevance of each genetic marker and assigns 

statistical significance based on statistical assumptions of data distribution. First, these 

associations are identified by single-focus approaches, where each SNP is tested 

individually for the association. Although this standard method provides information on 

novel loci for a particular complex disease, some limitations exist. GWAS does not 

consider the genetic interactions of each biomarker; this means that the expected specific 

mutation or non-mutation combinations are not observed together. 

However, the univariate approach alone cannot explain genetic inheritance alone in most 

complex diseases. It quickly identifies diseases related to a single gene/mutation/variation 
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caused by genetic differences that substantially affect association studies. However, it is 

insufficient for complex genetic diseases that have weak effects and are caused by many 

variations. Identifying the effects of the epistatic interaction of multiple genetic variations 

on specific genes plays an important role in diagnosing and treating these complex human 

diseases. As both the number of genetic variations and the nature of interactions increase, 

such complex phenotypic traits are characterized by a high level of unpredictability.  

Genetic risk factors, which cause susceptibility to diseases with complex genetic 

inheritance, interact together, although they are in different genetic regions. Complex 

interactions such as SNP-SNP, gene-gene, and gene-environment interactions that may 

contribute to the resolution of missing heritability are ignored during GWAS (Cordell, 

2009). Moreover, although it reveals the top-ranking significant correlations associated 

with a particular disease, the method does not provide a predictive model that presents 

statistically significant biomarkers. 

A challenging aspect of genomic studies is understanding the biological impact of 

inherited genetic variations in DNA structure between individuals and the molecular 

etiology of a complex disease. Single nucleotide variations (SNVs) have received much 

attention in disease prediction among genetic variations. SNVs that are the source of 

individual differences can be used as biomarkers and located on or near genes associated 

with particularly complex diseases. Discovering SNV biomarkers at different loci may 

improve early diagnosis accuracy and prevent these diseases through clinical decision-

making. 

The large size of the genetic data used in GWAS studies has necessitated the use of data 

mining methods in order to identify the interactions of genetic changes with the disease, 

prioritize their relationships and use them effectively in clinical applications to support 

decision making in diagnosis. It is a critical and promising area for data mining methods 

to identify representative SNPs to predict variability between individuals with the 

phenotype of interest. 

2.3.  Ensemble and Entropy methods 

2.3.1. Ensemble method 

The ensemble method is a machine learning technique that combines several base models 

to produce one optimal predictive model. Ensemble methods usually produce more 

accurate solutions than a single model would. Before our study, information from three 

different data mining models from different datasets is integrated with the ensemble 

method proposed by Onur Erdoĵan et al., which is one of the first studies which uses 
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higher space (SNVs to genomic locations on bands) ensemble techniques to integrate 

multi models that offer significant information after GWAS and RF analysis. An 

Ensemble scoring algorithm is proposed to calculate information regarding bands that 

emphasize disease-related variations. This is the first ensemble methodology proposed by 

Onur Erdoĵan et al. for different datasets whose attributes also differ. In this point, the 

novelty of this scoring algorithm is to ensemble multi-data mining methods in terms of 

knowledge extraction for each dataset of Alzheimerôs disease. The output of multi-

platform prediction models can be used as prior knowledge to merge all information to 

reach the posterior ensemble model with model minimization to detect Alzheimerôs 

disease-related complex structure of genetic variations and other risk factors. (Erdoĵan O. 

et al., 2022) 

2.3.2. Entropy method 

Shannon entropy is a non-linear function that measures the uncertainty of random 

variables (Shannon, 1948). Methods based on Shannon entropy measure the strength of 

predicting a combination of variables in explaining an event. Different combinations of 

variables are said to interact when the power of the joint prediction ability of this 

combination in describing an event is larger than the sum of the individual prediction 

abilities of these variables (Cover and Thomas, 1991). Fan. et al. proposed an information 

gain approach based on mutual information and used an interaction-information gain 

approach for three-way interactions.  The prioritized SNPs in each dataset (ADNI, 

GenADA, NCRAD) are investigated using this entropy-based three-way interaction 

information method (3WII). 

Two-way mutual information and three-way interaction information are entropy-based 

methods that measure the interaction between two markers and the information common 

to all three attributes (Yaldēz B. et al., 2022).  

D=0 denotes the disease status of an individual for healthy individuals and D=1 for 

affected ones in a case-control study design. The difference between the mutual 

information in the affected population and the general population is defined as information 

gain: 

IG(X,Y\D)=I(X,Y \D)-I(X,Y)  

Interaction information gain of markers X, Y, and Z are defined similarly: 

IIG(X,Y,Z\D)=I(X,Y,Z\D)-I(X,Y,Z)  
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Information gain-based test statistic (TIG) is calculated by dividing IG or IIG by a specific 

normalization factor of variance . The resulting test statistics is centrally chi-square 

distributed with 1 degree of freedom under the null hypothesis that the markers are 

independent of the disease.  

The test statistic for each dataset was calculated using the interaction information gain for 

prioritized SNPs. Since we look for the interactions common to all three variants that 

cannot be explained by two-way mutual information gain, the triplets with SNP 

combinations with significant two-way mutual information gain are excluded (Yaldēz B. 

et al., 2022). 

2.4.   Biological networks and methods to compare biological networks 

Graph theory is a mathematical discipline that underpins the study of complex networks 

in biological and other applications. It has been successfully extended to the study of 

biological network topology, from a global perspective of their scale-free, small-world, 

hierarchical existence to a zoomed-in view of interaction motifs, clusters, and modules as 

fundamental interactions between different biomolecules. Biological networks show that 

their structure is not random but instead linked to a function. (Pavlopoulus et al., 2011).  

The term "network" is a common name for a collection of linked or interacting elements. 

An example of a network in biology is protein-protein interaction networks (PPI). Proteins 

are biological tissues' primary catalysts, structural components, signaling messengers, and 

molecular machines. PPIs play a critical role in coordinating the events in a cell and are 

the foundation of many signal transduction pathways and transcriptional regulatory 

networks in a cell. (Raman et al., 2010). 

The principal measures that influence graphs are the number of nodes (N) and the 

networks' average degree (k). The type of network topology, which is generally unknown 

for experimental data, determines the direct nature of that influence. Therefore, direct 

comparisons of graph measures between empirical networks with different nodes (N) or 

edges (k) can give falsified results (Van Wijk et al., 2010). One of the challenges of 

comparing networks is that it is not easy to compare them as total entities. Global 

properties and summary statistics, such as network density, degree distribution, 

transitivity, average shortest path length, and others, can be used to compare networks. 

The studies comparing networks with different measures are done by (Van Wijk, Stam & 

Daffertshofer, 2010; Steuer and Lopez, 2008 and Valdeolivas, 2019). 
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2.5.   GeneMANIA 

GeneMANIA (Warde-Farley et al., 2010) is a web server predicting the functions of genes 

and gene sets. GeneMANIA searches many large, publicly available biological datasets 

to find related genes. These include protein-protein, protein-DNA and genetic 

interactions, pathways, reactions, gene and protein expression data, protein domains, and 

phenotypic screening profiles. The data in GeneMANIA is regularly updated. The 

explanation of network names is given below.  

Physical interaction is a protein-protein interaction data; two gene products are linked if 

they were found to interact in a protein-protein interaction study. These data are collected 

from primary studies found in protein interaction databases, including BioGRID and 

PathwayCommons. Genetic interactions; two genes are functionally associated if the 

effects of perturbing one gene were found to be modified by perturbations to a second 

gene. These data are collected from primary studies and BioGRID. Co-localization; genes 

expressed in the same tissue or proteins found in the exact location. Two genes are linked 

if they are both expressed in the same tissue or if their gene products are both identified 

in the exact cellular location. Co-expression; is gene expression data. Two genes are 

linked if their expression levels are similar across conditions in a gene expression study. 

Most of these data are collected from the Gene Expression Omnibus (GEO); only data 

associated with a publication is collected. Shared protein domains; is protein domain data. 

Two gene products are linked if they have the same protein domain. These data are 

collected from domain databases, such as InterPro, SMART, and Pfam. 

2.6.   STRING analysis 

STRING (Szklarczyk et al., 2019) is a functional protein association network used for 

building protein-protein interaction networks. The experimental data is extracted from 

BIND, DIP, GRID, HPRD, IntAct, MINT, and PID. The curated data is extracted from 

BioCarta, BioCyc, GO, KEGG, and Reactome databases. The detailed information about 

statistics terms is given below. 

An average node degree is a number of how many interactions that a protein has on the 

average in the network. The clustering coefficient measures how connected the nodes in 

the network are. Highly connected networks have high values. 
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The expected number of edges gives how many edges are to be expected if the nodes 

were selected randomly. A small PPI enrichment p-value indicates that the nodes are not 

random and that the observed edges are significant. Network diameter is the shortest 

distance between the two most distant nodes in the network. A radius of the graph exists 

only if it has a diameter. The minimum among all the maximum distances between a 

vertex to all other vertices is the radius. The characteristic path length is the average 

shortest path length between all pairs of nodes in the network. The clustering coefficient 

measures the degree to which nodes in a graph tend to cluster together. (Holland and 

Leinhardt, 1971). The network density is determined by its ratio of links to the nodes. 

The higher the ratio, the denser the network. Network efficiency is measured by 1/L, 

where L represents average path length (Latora and Marchiori, 2001). 

2.7.  Pathway enrichment analysis 

Quantification of biological samples, DNA, RNA, or protein, is becoming a standard in 

molecular genetic research. Moreover, extensive data is produced through high-yield 

quantification methods, and analysis of these data helps researchers to discover novel 

biological functions, genotype-phenotype relationships, and disease mechanisms. 

(Lander, 2011). Researchers use pathway enrichment analysis to gain mechanistic insight 

into gene lists produced by omics experiments. Pathways are statistically evaluated for 

over-representation in the experimental gene list in comparison to what would be 

predicted by chance, using a variety of conventional statistical analyses that take into 

account the number of genes found in the trial, their relative ranking, and the number of 

genes annotated to a pathway of interest (Reimand et al., 2019). In pathway enrichment 

analysis protocol Lander 2011, the p-value of the enrichment of a pathway is computed 

using a Fisherôs exact test, and Benjamini & Hochberg ïFDR test applies multiple-test 

correction. Multiple-testing correction methods are used to decrease the significance of 

each P-value derived from a series of tests. Fisher's exact test, based on hypergeometric 

distribution, is a standard statistical test used for pathway enrichment analyses of a gene 

list. It indicates whether the fraction of genes of concern in the pathway is more significant 

than the fraction of genes outside the pathway. Fisherôs exact test is generally used for 

non-ranked gene lists, and since our gene lists are not ranked, as we used in this study. 

An ñenrichment mapò is a network visualization that displays the overlaps across enriched 

pathways. On the other hand, ñEnrichmentMapò is a Cytoscape application that creates 

visualization. Related pathways are automatically grouped into main biological themes by 

network layout and clustering algorithms. This method is used in several studies (Merico, 

Isserlin, Bader, 2011; Isserlin et al., 2014; Reimand et al., 2019; Karagiannis et al., 2013).  
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2.8.  Knowledge graphs 

Knowledge Graphs (KG) are an effective tool for data science in many data formats that 

obtain information (Ehrlinger and WºÇ, 2016). The knowledge graph represents a 

collection of interlinked descriptions of entities ï objects, events, or concepts. Knowledge 

graphs put data in context via linking and semantic metadata and, this way, provide a 

framework for data integration, unification, analytics, and sharing. 

Knowledge Graphs can be used to represent biological entities. In the CROssBAR 

Knowledge Graphs by Dogan et al., biological entities are represented by nodes; 

relationships between the same and different types of biological entities are expressed by 

the graph's edges (Dogan et al., 2020). 

2.9.  Pyrosequencing 

Pyrosequencing is a method developed by Pal Nyren in 1986 (Nyren, 2007). It is faster 

than Sanger sequencing and has advantages in convenience, staff, time, and cost. It 

performs sequence analysis by adding nucleotides one by one to the reaction during the 

synthesis of the target DNA product from a single strand (ssDNA) template. It is an 

accurate quantitative sequencing technique based on detecting pyrophosphates released 

by a biotin-labeled sequencing primer during DNA synthesis. Since it is still the fastest 

and most accurate sequencing method today, it is the most suitable method for detecting 

the presence of target mutations and SNPs in clinical samples (Ahmadian et al., 2006; 

Royo et al., 2007; Arnold et al., 2005; Vengen et al., 2012; Ballester LY, 2016). 

The basic principle of pyrosequencing is the sequential addition of dNTPs to newly 

formed DNA and the determination of the sequence by detecting pyrophosphate (PPi), 

which is released when the corresponding DNA template is added. The single-stranded 

DNA template is hybridized to the sequencing primer and incubated with DNA 

polymerase, ATP sulfurylase, luciferase, apyrase enzymes, and substrates of adenosine 5' 

phosphosulfate (APS) and luciferin. Adding one of the nucleotides Adenine, Guanine, 

Cytosine, and Thymine (A, G, C, T) releases pyrophosphate (PPi) if a nucleotide matches 

the DNA template. ATP sulfurylase converts PPi to ATP in adenosine 5' phosphosulfate. 

This ATP formed serves as a substrate for the conversion of luciferin to oxyluciferin in 

the presence of luciferase. Oxyluciferin is the substance that emits light. There is a linear 

relationship between the generated ATP and oxyluciferin. In order to observe the resulting 

light oscillation, the pyrogram graph is examined. The enzyme apyrase degrades unbound 

nucleotides and ATP. 
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The pyrosequencing method, a high-performance and fast method, has become one of the 

clinical diagnostic tests used in medical biology and genetics laboratories to determine 

mutations and SNPs in certain diseases. Pyrosequencing can identify variations with very 

low margins of error, whose incidence is as low as 5% in the population (Alqahtani QM 

et al., 2016). In addition, pyrosequencing is a more adaptable, fast, and economic analysis 

than other high-throughput sequencing methods. 
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CHAPTER 3 

 

3. MATERIALS  AND METHODS 

 

3.1.    Overview of the method 

Our study obtains SNPs from GWAS datasets provided by ADNI, GenADA, and NCRAD 

initiatives. The SNP prioritization is conducted by novel Ensembl and Entropy-based data 

mining methods (Erdoĵan O et al. 2022 and Yaldēz B et al., 2022).  

This study aims to construct and compare biological networks of the variants obtained 

from these two methods and do functional enrichment analysis to discover the affected 

biological pathways. The obtained figures are built using databases; STRING 11.0, 

GeneMANIA, CROssBAR, g: Profiler, and software Cytoscape with plugins 

EnrichmentMap and Autoannotate. A detailed explanation of the methods is provided 

below. 

In this study, for genotyping, the pyrosequencing method is used. Genomic DNA was 

obtained from 43 participants from LOAD groups and 38 participants from control groups. 

The workflow of Pyrosequencing consists of 3 stages; 

1) DNA isolation; 2) PCR; Creating a single-stranded pattern; 3) Pyrosequencing. 

3.2. Obtaining data 

This section explains all data used in this study in detail. The gene sets used in this study 

are provided by our team working on these genes in their research. The final five gene sets 

are named: Ensembl >2.31, Ensembl >3.21, and Entropy genes obtained from three 

databases; ADNI, GenADA, and NCRAD. The number of genes in these gene sets 
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respectively are; 238, 63, 138, 19, 15, and 74. The process of obtaining these gene sets is 

explained below.   

3.2.1. Genotyping Data 

Three different high dimensional datasets from Alzheimerôs Disease 

Neuroimaging Initiative (ADNI), GenADA (dbGaP Study Accession: phs000219.v1. p1), 

and the National Centralized Repository for Alzheimerôs Disease and Related Dementias 

(NCRAD) (dbGaP study accession: phs000168.v1. p1.) are obtained via dbGaP control 

access (Filippini et al., 2009; Li et al., 2008).  Affymetrix Mapping250K_Nsp and 

Mapping250K_Sty with 620901 SNPs Illumina Human610_Quadv1_B 500K with 

410969 SNPs and Illumina Human610-Quad BeadChip with 590247 SNPs 

platforms are used by these initiatives, respectively. Two hundred ten controls and 344 

cases for ADNI, 777 controls and 798 cases for GenADA, 1310 controls, and 1289 cases 

for NCRAD are genotyped using these platforms.  

3.2.2. SNP Prioritization 

For the initial dimension reduction to discover statistically significant SNPôs for building 

a LOAD model from each dataset, GWAS analysis is done. PLINK analysis is completed 

for identifying the independent statistical significance of variations related to the LOAD 

(Chang et al., 2015; Purcell et al., 2007). PLINK results are used for filtering and reducing 

redundant SNPs that are not directly related to the disease.  

After filtering, SNPôs significantly associated with LOAD are used as an input for 

modeling a multistep RF strategy. One RF is used for dimension reduction, and in the next 

step, another RF is conducted as the modeling algorithm. RF is implemented with 5-fold 

cross-validation (CV) using the RANGER package in R (Wright & Ziegler, 2017). 

3.2.3. ENSEMBLE and ENTROPY Scoring Algorithm 

The multistep RF-RF modeling selected a set of prioritized variants out of thousands of 

variants. Following the SNP prioritization step, our team implemented two meta-analysis 

approaches, Ensemble, and Entropy, for model minimization after RF- RF modeling.  

The Ensemble is a scoring algorithm in which chromosomal locations of SNVs are 

obtained by mapping to cytogenetic bands affinities between pairs (Onur Erdoĵan p.c., 

2022). 719 LOAD-associated variants from three different sequencing platforms are 

selected based on Ensemble scores.  
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The Entropy approach measures the difference between the mutual information in case 

and control groups. Three-way interaction information (3WII) calculated by entropy 

analysis can assess third-order interactions. The 3WII describing the amount of 

information common to all variables not present in any other subset alone are calculated 

for all three datasets to reveal triplets of variants significantly associated with LOAD 

(Bucru Yaldēz p.c.,2022). 

3.2.4. Annotation of Variants 

The prioritized variants obtained by Ensemble and Entropy methods are annotated using 

the SNPNexus tool. (Oscanoa et al., 2020; Chelala et al., 2009; Dayem Ullah et al., 2012, 

2013, 2018). For some analysis, an extended version of gene sets is used, consisting of 

overlapped genes, nearest downstream genes, and nearest upstream genes, and for some 

analysis, only overlapped gene sets are used. 

3.2.5. Obtaining Gene Lists 

After obtaining lists of rsIDôs from Onur Erdoĵan (p.c.,2022) and Burcu Yaldēz (p.c., 

2022) these variants are mapped to genes. The gene lists that are used in this study are 

added to the Appendix D. The number of genes for Ensemble >2.31 is 238, for Ensemble 

3.21> is 63, for Entropy-all 138, for Entropy-ADNI 19, for Entropy-GenADA 15 and for 

Entropy-NCRAD 74.  

3.3. GeneMANIA based PPI network analysis 

Genemania (Warde-Farley et al., 2010) is a web server predicting the functions of genes 

and gene sets. Co-expression, shared protein domains, physical interactions, genetic 

interactions, pathways, and co-localization are the network categories created by 

GeneMANIA. We constructed gene networks based on their functions by using 

GeneMANIA for our gene sets; Ensemble, Entropy, NCRAD, ADNI, and GenADA.  

3.4. Building protein-protein interaction networks by STRING 

STRING (Szklarczyk et al., 2019) is a functional protein association network used for 

building protein-protein interaction networks. The experimental data is extracted from 

BIND, DIP, GRID, HPRD, IntAct, MINT, and PID. The curated data is extracted from 

BioCarta, BioCyc, GO, KEGG, and Reactome databases. A PPI enrichment p-value shows 

that nodes are not connected randomly, and the edges between the nodes are significant. 
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This study built gene-gene interaction networks for gene sets Ensemble, Entropy, ADNI, 

GenADA, and NCRAD. These networks were created with a confidence (score) cutoff of 

0.40. The cutoff score determines the minimum interaction score required for being 

included in the prediction network. Additional interactors are added until the PPI 

enrichment is less or equal to 0.05, which means that our proteins have more interactions 

among themselves than what would be expected for a collection of proteins drawn at 

random from the genome that are identical in size. Such an enrichment indicates that the 

proteins are at least partially biologically connected as a group, where all networks have 

PPI enrichment less or equal to 0.05.  NetworkAnalyzer (Assenov et al., 2008) is a 

Cytoscape plugin used to obtain summary statistics. It is a plugin that computes the 

topological attributes for biological networks. Summary statistics created by 

NetworkAnalyzer are used to compare the networks created. 

3.5. Building network gene-training  disease interaction networks by Cytoscape 

Cytoscape (Shannon et al., 2003) is an open-source software platform for visualizing 

molecular interaction networks and biological pathways and incorporating annotations, 

gene expression profiles, and other state data into these networks. In this study, we used 

this software to obtain gene-disease interaction networks. HGPEC (Le et al., 2017) 

application is used for building gene-disease interaction networks. HGPEC is based on a 

random walk with a restart algorithm through a heterogeneous network of genes and 

diseases. This application provides a heterogeneous network of genes/proteins and a 

phenotypic disease similarity network to prioritize network genes and diseases. Novel 

disease-gene and disease-disease associations can be identified based on the rankings. The 

gene-disease associations are obtained from DisGeNET (Pinero et al., 2019), the largest 

publicly available discovery platform. Alzheimer's disease is selected as the disease of 

interest, and a training gene (genes that have functional associations with Alzheimerôs 

disease) list is created. The diseases selected for the training list are indicated in Table 3.1 

Table 3.1. Diseases selected as training diseases for HGPEC. 

Disease ID Name 

MIM104300 ALZHEIMER DISEASE; AD 

MIM104310 ALZHEIMER DISEASE 2 

MIM125320 DEMENTIA/PARKINSONISM WITH NON-

ALZHEIMER AMYLOID PLAQUES 
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MIM602096 ALZHEIMER DISEASE 5 

MIM605055 ALZHEIMER DISEASE, FAMILIAL EARLY-ONSET, 

WITH COEXISTING AMYLOID AND PRION 
PATHOLOGY 

MIM605526 ALZHEIMER DISEASE 6 

MIM606889 ALZHEIMER DISEASE 4 

MIM607822 ALZHEIMER DISEASE 3 

MIM608907 ALZHEIMER DISEASE 9 

 

Network gene sets are created by manual input, and these genes are prioritized by back 

probability 0.5, jumping probability 0.6, and sub-network importance weight 0.7. These 

networks are built for Ensemble, Entropy, ADNI, GenADA, and NCRAD genes with the 

number of genes respectively, 37, 38, 11, 8 and 20. The detailed summary of attributes 

used in HGPEC analysis is indicated in Table 3.2. The Cytoscape plugin Diffusion is used 

to broaden node selection using network propagation algorithms. The Diffusion algorithm 

in Cytoscape aims to find the most critical nodes from a group of nodes and an entire 

interaction network. By using this algorithm, networks are constructed from our genes of 

interest and training diseases. 

Table 3.2. Summary of HGPEC attributes. 

Summary ENSEMBLE ENTROPY ADNI  GenADA NCRAD 

Disease Alzheimer Alzheimer Alzheimer Alzheimer Alzheimer 

Back probability 0.5 0.5 0.5 0.5 0.5 

Jumping 

probability 0.6 0.6 0.6 0.6 0.6 

Subnetwork 
importance 0.7 0.7 0.7 0.7 0.7 

Disease Network 

size 

|V|=5080, 

|A|=38467 

|V|=5080, 

|A|=38467 

|V|=5080, 

|A|=38467 

|V|=5080, 

|A|=38467 

|V|=5080, 

|A|=38467 

Gene/Protein 
Network Size 

|V|=10486, 
|A|=50791 

|V|=10486, 
|A|=50791 

|V|=10486, 
|A|=50791 

|V|=10486, 
|A|=50791 

|V|=10486, 
|A|=50791 
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Number of 

Training Genes 1183 1183 1183 1183 1183 

Number of 
Training Diseases 9 9 9 9 9 

Number of 

Network Genes 37 38 11 8 20 

 

3.6. Prediction of  network gene-Alzheimerôs disease interaction networks by 

Cytoscape 

Gene-Alzheimerôs disease interaction networks are built by the HGPEC plugin on 

Cytoscape. The networks constructed for genes from gene sets Ensemble, Entropy, ADNI, 

GenADA, and NCRAD predict a relationship to Alzheimerôs Disease. The gene-disease 

associations are obtained from DisGeNET. Alzheimer's Disease is selected as the disease 

of interest, and a training gene (known Alzheimerôs Disease-related genes) list is created. 

The disease IDs and names selected as training diseases are represented in Table 3.3. 

Furthermore, a detailed summary of HGPEC attributes is given in Table 3.4. 

Table 3.3. Disease IDs and names of training diseases. 

Disease ID Name 

MIM104300 ALZHEIMER DISEASE; AD 

MIM104310 ALZHEIMER DISEASE 2 

MIM125320 DEMENTIA/PARKINSONISM WITH NON-
ALZHEIMER AMYLOID PLAQUES 

MIM602096 ALZHEIMER DISEASE 5 

MIM605055 ALZHEIMER DISEASE, FAMILIAL EARLY-ONSET, 

WITH COEXISTING AMYLOID AND PRION 

PATHOLOGY 

MIM605526 ALZHEIMER DISEASE 6 

MIM606889 ALZHEIMER DISEASE 4 

MIM607822 ALZHEIMER DISEASE 3 

MIM608907 ALZHEIMER DISEASE 9 
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Table 3.4. HGPEC attributes for network gene-Alzheimerôs disease networks. 

Summary ENSEMBLE ENTROPY ADNI  GenADA NCRAD 

Disease Alzheimer Alzheimer Alzheimer Alzheimer Alzheimer 

Back probability 0.5 0.5 0.5 0.5 0.5 

Jumping probability 0.6 0.6 0.6 0.6 0.6 

Subnetwork 

importance 
0.7 0.7 0.7 0.7 0.7 

Disease Network size 
|V|=5080, 
|A|=38467 

|V|=5080, 
|A|=38467 

|V|=5080, 
|A|=38467 

|V|=5080, 
|A|=38467 

|V|=5080, 
|A|=38467 

Gene/Protein Network 

Size 

|V|=10486, 

|A|=50791 

|V|=10486, 

|A|=50791 

|V|=10486, 

|A|=50791 

|V|=10486, 

|A|=50791 

|V|=10486, 

|A|=50791 

Number of Training 

Genes 
1183 1183 1183 1183 1183 

Number of Training 

Diseases 
9 9 9 9 9 

Number of Network 

Genes 
37 38 11 8 20 

3.7. Functional enrichment analysis and visualization 

Pathway enrichment and visualization of the data were done following a protocol written 

by Reimand et al. (2019). 

3.7.1. Pathway enrichment analysis by g:Profiler 

g: Profiler (Raudvere et al., 2019) is a public web server for characterizing and 

manipulating gene lists. g: GOSt is the core of the g: Profiler; it provides statistical 

enrichment analysis to analyze the given gene list. In this study, g: GOSt is used to obtain 

Gene Ontology (GO) Molecular Function, GO Cellular Component, GO Biological 

Process and Reactome pathways for Ensemble, Entropy, GenADA, ADNI, and NCRAD 

gene sets. 

All analyses were done with default attributions with a significance threshold of 0.05, and 

multiple analyses correction was done with Bonferroni.  
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3.7.2. Visualization by EnrichmentMap 

EnrichmentMap (Merico et al., 2010) is a Cytoscape plugin used for functional enrichment 

visualization. Overrepresented functional groups derived from functional annotation such 

as Gene Ontology (GO) can be identified by enrichment analysis. Gene sets, such as 

pathways and GO terms, are organized into networks. In this study, EnrichmentMap is 

used to create networks from GO annotations and Reactome pathways for Ensemble, 

Entropy gene sets. The P-value of the enrichment of a pathway is computed using Fisherôs 

exact test and Benjamini-Hochberg FDR (Q value) used as multiple test correction. All 

analyses were done with a p-value of 0.05 FDR q-value cutoff 0.1 and edge similarity 

cutoff 0.25 (Jaccard metric). 

3.7.3. Interpretation by AutoAnnotate 

AutoAnnotate (Kucera et al., 2016) is a Cytoscape plugin that finds clusters and annotates 

them visually with labels and groups. This study used AutoAnnotate to create clusters 

after functional enrichment analysis. The clusters are obtained using the Markov Cluster 

Algorithm (MCL) cluster annotation algorithm, and labels are generated automatically 

based on the word frequencies of selected attributes. GO Molecular Function, GO Cellular 

Component, GO Biological Process, and Reactome were used for label calculation.  

3.8. Building kn owledge graphs by CROssBAR 

CROssBAR (Dogan et al., 2020) is a database constructing knowledge graphs for 

biological entities and relationships between them, represented by nodes and edges. This 

study created knowledge graphs for Ensemble genes, Entropy genes, ADNI, GenADA, 

and NCRAD genes with the disease query ñAlzheimerôs Disease.ò We used knowledge 

graphs to obtain literature information related to our genes and the pathways in which they 

occur. The observed gene-pathway associations are investigated in pathway enrichment 

analysis. The genes and query parameters details are given in Table 3.5 in Appendix A. 

The biomedical data sources used in the CROssBAR database are; UniProt, IntAct, 

InterPro, DrugBank, ChEMBL, PubChem, Reactome, KEGG, OMIM, Orphanet, 

Experimental Factor Ontology (EFO), and Human Phenotype Ontology (HPO). 
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3.9. Experimental validation 

3.9.1. Primer Design 

Primer design for PCR primer and Pyrosequencing primer was done using Pyromark 

Assay Design 2.0 by Qiagen. After the design of the primer, the suitability of the designed 

primers was checked by using the BLAT tool (Kent, 2002) from USCS Genome Browser. 

In the study, the design of PCR primers is done by following standard rules. It is designed 

that the temperature is in the range of 62-64ÁC, the primer length is 18-25 bases, the 

formation of dimers and loops is prevented, and the primers with as equal G/C-A/T as 

possible. In order to bind to streptavidin-coated magnetic beads, one of the primers was 

biotin-labeled and the other unmarked. 

3.9.2. DNA Isolation 

The saliva samples are collected from Turkish LOAD patients and controls at the 

Hacettepe University Geriatric Clinic. Saliva samples received by METU Bioinformatics 

Systems Biology Laboratory were used for genomic DNA isolation. Genomic DNA 

isolations of the samples of the participants were obtained with the optimized protocol 

based on the Norgen Saliva DNA isolation protocols. Genomic DNA was obtained from 

43 LOAD groups and 38 control groups in total. 

3.9.3. NanoDrop Spectrophotometry 

After the DNA isolation of the saliva samples, concentration and quality evaluations were 

completed with NanoDrop Spectrophotometry. Samples with good quality and 

concentration were used for the next step. 

3.9.4. Polymer Chain Reactions (PCR) 

The polymerase chain reaction (PCR) is used to amplify small segments of DNA. Because 

the obtained DNA amount after DNA isolation is not enough for the necessary molecular 

analysis, which is pyrosequencing in our case. 

3.9.5. Pyrosequencing 

The pyrosequencing method, which is fast and has an error rate of less than 1/1000, was 

preferred for genotyping. The pyrosequencing method is known as "sequencing by 

synthesis". It is a method based on detecting which base the enzyme adds as DNA 

polymerase produces new DNA. Pyrosequencing is based on detecting light emission 
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resulting from the chain reaction that occurs when pyrophosphate is released. 

Pyrosequencing is done by using the Qiagen Pyromark Q24 machine. In total, for 43 

LOAD patients, 38 controls and 32 variants runs were constructed. 
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CHAPTER 4 

 

4. RESULTS 

This study compares the variant lists produced by two feature selection approaches, 

Ensemble and Entropy, based on their biological interpretation with experimental 

validation on the variant lists provided by Onur Erdoĵan and Burcu Yaldēz. PLINK 

association analysis is performed in these prior studies for genotyping data of three LOAD 

GWAS datasets. Then RF-RF is conducted for modeling. The prioritized variants after 

PLINK-RF-RF steps are analyzed either ensemble or entropy approaches for model 

minimization. 

The 719 variants proposed for LOAD classification with RF-RF models for three GWAS 

datasets are scored according to the Ensemble method. The variants with an Ensemble 

score of 2.31 and higher are categorized as two groups for investigation as an Ensemble 

>2.31 and Ensemble >3.21 (Onur Erdoĵan et al., personal communication).  

Next, for the Entropy selection, variants selected by RF-RF models are prioritized by 

three-way-interaction analysis (3WI). These results are investigated under four groups 

Entropy-ALL, Entropy-ADNI, Entropy-GENADA, and Entropy-NCRAD. The number of 

selected variants for these groups were 145, 39, 25, and 78, respectively (Burcu Yaldēz et 

al., personal communication). 

In all six analysis groups, variants overlapping with a protein-coding gene and LOAD-

related biological pathways were selected for experimental validation based on the 

examination results in terms of biological networks, protein-protein interactions, and 

functional enrichment. These network analyses are planned to show the functional 

relevance of RF-RF model variants associated with LOAD risk as potential causative 

variants. The advantages and disadvantages of ensemble and entropy-based approaches 

are discussed. 

Finally, for LOAD-associated variants selected with model minimization, pyrosequencing 

primer design is completed, and sequencing primers were optimized. Out of the 32 genes, 
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3 were controls, the Ensemble model prioritized 11 genes, and 18 were selected by the 

Entropy model of GenADA and ADNI studies. Results of the genotyping experiments and 

their analysis are presented and discussed. 

4.1. Prediction of gene functions by GeneMANIA 

By using GeneMANIA, gene functions are predicted for our gene sets. According to the 

co-expression results, ADNI has the highest percentage with 100%, GenADA follows 

with 83.04%, and the other gene sets follow with; Entropy: 79.31%, Ensemble: 71.15%, 

and NCRAD: 63.68%. A detailed summary of GeneMANIA network results is given in 

Table 4.1 and a detailed table of the genes found in the GeneMANIA networks is given 

in Table 4.2, Appendix B. 

Table 4.1. GeneMANIA network summary: The statistical analysis of the GeneMANIA 

results for all five gene lists are summarized. 

SUMMARY 

STATISTICS 

ENSEMBLE 

>2.31 

ENSEMBLE 

>3.21 
ENTROPY 

Entropy-

ADNI  

Entropy-

GENADA 

Entropy-

NCRAD 

#related genes 
20 20 20 20 20 20 

#total genes 
218 70 66 34 30 42 

#attributes 
0 0 0 0 0 0 

#total links 4250 353 269 61 114 109 

Co-expression 41.47% 59.19% 85.18% 94% 77.90% 81.07% 

Shared protein domains 
2.12% 10.96% N/A N/A 22.10% N/A 

Physical interactions 
19.19% 13.18% 5.57% N/A N/A 18.34% 

Genetic Interactions 
6.00% 3.14% 1.44% 6.33% N/A 0.59% 

Pathway 4.69% N/A N/A N/A N/A N/A 

Co-localization 26.52% 2.64% 7.81% N/A N/A N/A 

 

In Table 4.1., co-expression, shared protein domains, physical interactions, genetic 

interactions, and co-localization features are investigated to compare our gene lists. The 

highest values corresponding to these features are highlighted in bold. 
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Figure 4.1. Topological relationship for Ensemble > 2.31 scored only overlapped genes 

and related genes obtained by GeneMANIA. Purple strings represent co-expression, pink 

strings represent physical interactions, yellow strings represent shared protein domains, 

green strings represent genetic interactions, and blue strings represent pathways between 

nodes. Nodes represent genes, and we have searched genes are indicated with stripes. 
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Figure 4.2. Topological relationship between Ensemble >3.21 genes. Purple strings 

represent co-expression, pink strings represent physical interactions, green strings 

represent genetic interactions, and blue strings represent colocalization between nodes. 

Nodes represent genes, and we have searched genes are indicated with stripes 

 



27 

 

 

 

 

                                                                        

 

Figure 4.3. Topological relationship between Entropy genes. Purple strings represent co-

expression, pink strings represent physical interactions, green strings represent genetic 

interactions, and blue strings represent colocalization between nodes. Nodes represent 

genes, and we have searched genes are indicated with stripes. 
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Figure 4.4. Topological relationship between ADNI genes. Purple strings represent co-

expression, and green strings represent genetic interactions between nodes. Nodes 

represent genes, and we have searched genes are indicated with stripes. 
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Figure 4.5. Topological relationship for GenADA genes and related genes obtained my 

GeneMANIA. Purple strings represent co-expression and yellow string represent shared 

protein domains. Nodes represent genes and genes that we have searched are indicated 

with stripes. 
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Figure 4.6. Topological relationship for NCRAD genes and related genes obtained by 

GeneMANIA. Purple strings represent co-expression, green strings represent genetic 

interactions and pink strings represent physical interactions. Nodes represent genes and 

genes that we have searched are indicated with stripes. 
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Other figures obtained by GeneMANIA analysis are given in the Figure 7-22 in the 

Appendix B. 

Table 4.3. Number of total genes and genes not connected to any other genes for Ensemble 

and Entropy networks. 

#genes Ensemble  

> 2.31 

physical 

int  

Ensemble  

> 2.31 

shared 

protein 

domains 

Ensemble 

>2.31 

 co-loc 

Ensemble  

> 3.21 

physical 

int  

Ensemble       

>3.21 

shared 

protein 

domains 

Ensemble  

>3.21  

co-loc 

Entropy 

physical 

int  

Entropy 

co-loc 

Total genes 218 218 218 70 70 70 66 66 

Not connected 

genes 
136 110 105 60 27 57 26 53 

%  

CONNECTED 
    37.62 49.55 51.84 14.29 61.43 18.58 60.61 19.70 

 

When we look at the number of connected genes from the obtained GeneMANIA figures; 

for Ensemble >2.31, physical interactions network 110 genes are not connected to any 

other genes, out of 218 total genes. So, 37.6% of genes are connected. In the Ensemble 

>2.31 shared protein domains network 49.5% of genes are connected. And for the 

Ensembl >2.31 co-localization network 51.8% of genes are connected. 

On the other hand, for Ensemble >3.21 physical interactions network 14.3% of genes are 

connected and for shared protein domains network 61.4% of genes are connected. While 

for Ensemble >3.21 co-localization network 18.6% of genes are connected. 

Lastly, for Entropy physical interactions network, 60.6% of genes are connected and for 

the co-localization network, 19.7% of genes are connected. 

4.2. Protein-protein interaction networks by STRING 

We constructed protein-protein interaction networks for our gene sets; Ensemble, Entropy, 

Entropy-GenADA, Entropy-ADNI, and Entropy-NCRAD by STRING. The p-value 

obtained for Ensemble, Entropy, ADNI, GenADA, and NCRAD is 0.291, 0.968, 1, 1, and 

0.723. None of the obtained interaction networks is significant.  

4.3. STRING enrichment analysis 

The networks constructed for gene sets obtained by STRING enrichment were compared 

by expanding each network to the point of significantly more interactions than expected. 
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The networks created for the Ensemble > 2.31, Ensemble >3.21, Entropy, Entropy-ADNI, 

Entropy-GenADA, and Entropy-NCRAD for only overlapped genes are given in detail 

information about the number of nodes and edges for the gene sets are given in Table 4.4. 

Moreover, detailed summary statistics for STRING enrichment are given in Table 4.5.  

Figure 4.23, Figure 4.24, Figure 4.25, Figure 4.26, Figure 4.27 and Figure 4.28 show 

the extended networks for each group of proteins. 

Table 4.4. Numbers of nodes and edges for gene sets. 

  

ENSEMBLE >2.31 ENSEMBLE>3.21 ENTROPY 

Entropy-

ADNI  

Entropy-

GenADA 

Entropy-

NCRAD 

Number of 
nodes 

199 51+10 43+10 15+10 11+10 23+10 

Number of 

edges 
191 96 74 46 34 49 

 

Table 4.5. Summary statistics for STRING enrichment analysis. The highest values for 

each row is marked in bold. 

SUMMARY STATISTICS  ENSEMBLE 

>2.31 

ENSEMBLE 

>3.21 

ENTROPY E-ADNI  E-GenADA E-NCRAD 

#of nodes 199 61 53 25 21 33 

#of edges 191 96 74 46 34 49 

Avg # of neighbors 3.064 5.875 5.481 5.75 3.778 5.444 

network diameter 14 5 5 3 6 5 

network radius 7 3 2 2 3 3 

characteristic path lenght 5.057 2.337 2.282 1.808 2.549 2.386 

clustering coefficient 0.153 0.443 0.493 0.608 0.357 0.48 

network density 0.028 0.19 0.211 0.383 0.222 0.32 

network heterogeneity 0.758 0.797 0.797 0.462 0.511 0.64 

network centralization 0.075 0.28 0.354 0.324 0.279 0.301 

connected components 76 28 27 10 4 16 

analysis time 0.086 0.02 0.004 0.001 0.001 0.002 

efficiency 0.197746 0.427899 0.438212 0.553097 0.392311 0.419111 

PPI enrichment p-value 1.00E-16 9.30E-04 3.99E-09 1.35E-11 2.72E-10 1.00E-16 

significantly more 
interactions than expected 

Yes Yes Yes Yes Yes Yes 
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Figure 4.23. Protein-protein interaction network of Ensemble > 2.31 scored only 

overlapped genes with PPI enrichment p-value 1.00E-16. Nodes represent the genes, while 

the edges represent the connections between the nodes. The colors of nodes do not have 

any meaning. 
 






























































































































































