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ABSTRACT 

 

COMPARISION OF ENTROPY AND ENSEMBLE BASED FEATURE SELECTION 

THROUGH NETWORK ANALYSIS OF ALZHEIMERS DISEASE-ASSOCIATED 

VARIANTS  

 

 

Rafatov, Sevda 

MSc., Bioinformatics 

Supervisor: Assist. Prof. Dr. Yeşim Aydın Son 

 

February 2022, 120 pages 

Alzheimer’s Disease (AD) is a complex, progressive and irreversible brain disorder that 

slowly destroys memory and thinking skills and eventually loses the ability to do daily 

tasks. Our group is currently developing in-silico AD models in which genotyping and 

phenotyping data are integrated for the differential diagnosis Late-On-Set AD (LOAD) 

cases. Meta-analysis of four different LOAD data sets provided by ADNI and dbGAP, 

which includes the genotyping data of more than 5000 LOAD patients, is done. In this 

study, we provided the biological interpretation of the variants selected through two 

different approaches, namely entropy and ensemble modeling. First, the LOAD-

associated variants are annotated for their genomic location, consequence, gene and 

protein products, and biological pathways. The protein-coding variants prioritized were 

selected for experimental validation based on their relationship with LOAD-related 

biological pathways after network, PPI, and enrichment analysis. For 32 variants, 

pyrosequencing primers were designed, and sequencing primers were optimized. As a part 

of the study, a case-control group with 43 LOAD diagnosed and 38 healthy participants 

were formed, and genotyping for the prioritized variants was completed. We have shown 

that machine learning models capture hidden, new, and informative patterns by 

considering nonlinear interactions where multiple variants determine the risk. Further 

analysis of interconnected networks for selected genes and proteins can identify affected 

biological pathways underlying the molecular etiology of AD susceptibility. 

Understanding the affected molecular pathways can reveal potential causative variants 

that lead to novel preventative therapeutics for AD.  

Keywords: Alzheimer's Disease, biological networks, functional enrichment analysis   
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ÖZ 

 

ALZHEİMER İLE İLİŞKİLİ VARYANTLARIN AĞ ANALİZİ ÜZERİNDEN 

ENTROPY VE ENSEMBLE BAZLI DEĞİŞKEN SEÇİMİNİN 

KARŞILAŞTIRILMASI 

 

Rafatov, Sevda 

Yüksek Lisans, Biyoenformatik 

Tez Yöneticisi: Doç. Dr.Yeşim Aydın Son 

 

Şubat 2022, 120 sayfa 

 

Alzheimer Hastalığı (AD) , hafıza ve düşünme becerilerini yavaş yavaş yok eden ve 

sonunda günlük işleri yapma yeteneğini kaybetmeye neden olan karmaşık, ilerleyici ve 

geri dönüşü olmayan bir beyin hastalığıdır. Grubumuz şu anda, Geç Başlangıçlı 

Alzheimer Hastalığı (LOAD) vakalarının ayırıcı tanısı için genotipleme ve fenotipleme 

verilerinin entegre edildiği in-siliko AD modelleri geliştirmektedir. ADNI ve dbGAP 

tarafından sağlanan ve 5000'den fazla LOAD hastasının genotipleme verilerini içeren dört 

farklı LOAD veri setinin meta analizi devam etmektedir. Bu çalışmada, entropi ve 

ensembl modelleme olmak üzere iki farklı yaklaşımla seçilen varyantların biyolojik olarak 

yorumlanmasını sağladık. İlk olarak, LOAD ile ilişkili varyantlar, genomik konumları, 

sonuçları, gen ve protein ürünleri ve biyolojik yolakları ile ilişkilendirilmiştir. Öncelik 

verilen protein kodlama varyantları, ağ, PPI ve zenginleştirme analizinden sonra LOAD 

ile ilgili biyolojik yollar ile ilişkilerine dayalı olarak deneysel doğrulama için seçilmiştir. 

32 varyant için pirosekanslama primerleri tasarlanarak ve pirosekanslama primerleri 

optimize edilmiştir. 43 LOAD ve 38 sağlıklı katılımcıdan oluşan vaka-kontrol grubunda 

öncelikli varyantlar için genotiplendirilmiştir. Makine öğrenimi modellerinin, birden çok 

değişkenin riski belirlediği doğrusal olmayan etkileşimleri göz önünde bulundurarak gizli, 

yeni ve bilgilendirici örüntüler tanımlanmıştır. Seçilen genler ve proteinler için birbirine 

bağlı ağların ileri analizleri, AD yatkınlığının moleküler etiyolojisinin altında yatan 

etkilenen biyolojik yolları tanımlamada yardımcı olabilir. Etkilenen moleküler yolakları 

anlamak, AD için yeni önleyici terapötiklere yol açabilecek potansiyel nedensel 

varyantları ortaya çıkarabildiği önerilmektir. 

Anahtar Sözcükler: Alzheimer hastalığı, biyolojik ağlar, fonksiyonel zenginleştirme 

analizi   
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CHAPTER 1 

 

1. INTRODUCTION 

 

The most widespread form of neurodegenerative dementia is Alzheimer's disease, marked 

by progressive memory loss and cognitive, problem-solving, and language deficits 

(Cuyvers & Sleegers, 2016). Late-Onset Alzheimer’s Disease (LOAD) is the most 

common type of dementia in the aging population, characterized by memory deterioration 

and other cognitive domains.  

The epistatic nature of Alzheimer's disease and the complex genetic etiology of LOAD is 

still unclear, which restrains the early and differential diagnosis of LOAD. For that 

purpose, Genome-wide association studies (GWAS) are used by many researchers to find 

variants whose common occurrence signaled to AD phenotype (Bodily et al., 2016; 

Cuyvers & Sleegers; Tosto & Reitz, 2013; Lambert et al., 2013; Desikan et al., 2017; 

Escott-Price et al., 2014). GWAS allows exploration of the statistical interactions of 

individuals’ variants, but the univariate analysis oversees interactions between variants. 

More sophisticated studies are needed to distinguish variants that collectively influence 

the phenotype (Bodily et al., 2016).  

The machine learning algorithms can capture hidden, novel, and significant patterns 

considering nonlinear interactions between variants to understand the genetic 

predisposition for complex genetic disorders, where multiple variants determine the risk.   

Our previous studies have used three different GWAS datasets provided by ADNI and the 

dbGAP’s controlled accessed datasets from GenADA NCRAD initiatives. First statistical 

analysis is done by PLINK, and initial dimension reduction is completed by p-value 

filtering. Following GWAS, two-step Random Forest (RF-RF) modeling was 

implemented with 5-fold cross-validation (CV) using RANGER package in R. After 

PLINK-RF-RF analysis of LOAD GWAS datasets, a novel Ensemble and Entropy-based 
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methods for meta-analysis were optimized as a part of two other graduate studies 

completed within our group by Onur Erdoğan and Burcu Yaldız.  

Based on their biological interpretation, this study compares the gene sets produced by 

these two meta-analyses approaches, Ensemble and Entropy. The network analysis 

approach to identify genes in Alzheimer’s disease is currently studied in several works 

(Talwar et al.,2014; Rao et al., 2013; Rahman et al., 2019; Meng et al., 2020). There are 

several different methods to compare networks. Here, biological networks are constructed 

for the Ensemble and Entropy gene sets, and global parameters are compared to conclude 

the networks' connectivity to assess the usability of both meta-analysis methods.  

The global parameters used for comparison are network density, average path length, and 

efficiency are compared by GeneMANIA based PPI network analysis and STRING 

network analysis. CROssBAR knowledge graphs show associations between genes and 

pathways for each gene set. Further, these associations are investigated by functional 

enrichment analysis of the gene sets. That led us to find novel correlations between our 

genes and Alzheimer’s Disease. So, gene-AD networks are constructed to investigate the 

known associations of our genes in literature with Alzheimer’s Disease.  

Chapter 2 covers the effects of mutations on Alzheimer’s disease phenotype, molecular 

etiology of Alzheimer’s Disease, biological networks, methods to compare biological 

networks, pathway enrichment analysis, and knowledge graphs. 

Chapter 3 explained how data was obtained and the methodology in detail. Firstly, an 

overview of the methods is given. After explaining how data is obtained, protein-protein 

interaction networks, GeneMANIA based PPI network analysis, network gene-training 

disease interaction networks, prediction of network genes-Alzheimer’s disease interaction 

networks by Cytoscape are explained. Subsequently, building knowledge graphs by 

CROssBAR, pathway enrichment analysis, visualization, and functional enrichment 

analysis interpretation are explained. 

In Chapter 4, the results are presented and explained in detail. This chapter explains 

protein-protein interaction networks, prediction of gene functions, network genes- training 

diseases networks, knowledge graphs, pathway-based enrichment analysis, network 

genes-Alzheimer’s disease networks, and STRING enrichment analysis. 

In Chapter 5, the genotyping constructed on the prioritized variants is explained in details. 

In Chapter 6, we discussed our results and interpreted the importance of using a 

network-based approach to predict the biological meaningfulness of gene sets. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

2.1. Alzheimer’s Disease 

A mutation is described as a change in the nucleotide sequence of an organism's genome, 

virus genome, or extrachromosomal DNA. Any change in DNA can cause different 

diseases such as Mendelian diseases or complex diseases. (Amberger, Bocchini & 

Hamosh, 2011). Alzheimer's disease is genetically complex, heritable, and the most 

common form of dementia, which increases as the human lifespan increases and is the 

cause of approximately 65% of all dementias, burdening both health and socioeconomic 

aspects in aging societies. Close to 50 million people worldwide live with Alzheimer's 

Disease (AD) (Bright Focus Foundation). These cases exhibit a late-onset complex genetic 

inheritance (Kamboh, 2018). Alzheimer's disease can be classified genetically into two 

types: a rare familial form that affects less than 1% of all patients and is inherited by 

autosomal dominant inheritance, and a sporadic multifactorial form that is assumed to be 

caused by a combination of environmental exposures and genetic susceptibility (Cuyvers 

& Sleegers, 2016). Besides memory loss, other cognitive dysfunctions develop in the AD 

process, amyloid plaques and neurofibrillary tangles accumulate in the brain, and cerebral 

atrophy, more commonly in the temporal region, is observed. 

Thus far, some genes found to be implicated in the etiology of Alzheimer’s disease. Even 

though the use of molecular pathways in diagnosing Alzheimer's disease is unclear, 

several causes are believed to be involved in the disease's pathogenesis. (Moradifard et 

al., 2018). Genes that have been recently identified to be associated with AD are highly 

expressed in glial cells. Therefore, the effect of glial cells on the pathogenesis of 

Alzheimer's disease has recently been the focus of attention. Astrocytes are the most 

numerous cell type within the Central Nervous System (CNS). They are essential for the 

maintenance of brain homeostasis and neuronal protection. Astrocytes are essential in the 

synaptogenesis, the release of neurotransmitters, cognition, neuroinflammation, glycogen 

storage, formation of Blood-Brain Barrier (BBB), clearance of toxic substances such as 

glutamate excess and K+ spatial buffering,  release of trophic factors for neurons and other 
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brain cells in both physiological and disease conditions (Volterra and Meldolesi, 2005; 

Hamby and Sofroniew, 2010; Kimelberg and Nedergaard, 2010; Barreto et al., 2011; 

Cabezas et al., 2012, 2014; Posada-Duque et al., 2014). Astrocytic activities constitute a 

three-party synapse with presynaptic and post-synaptic neurons, based on their intense 

relationship to the neurons at both molecular and morphological levels through their 

endfeet. (Perea et al., 2009; Perez-Alvarez and Araque, 2013; Coulter and Steinhauser, 

2015). Astrocytic metabolic dysregulation in this aspect is a characteristic feature of 

neurodegenerative diseases like Alzheimer's Disease (AD) (Volterra and Meldolesi, 2005; 

Maragakis and Rothstein, 2006; Hamby and Sofroniew, 2010; Kimelberg and Nedergaard, 

2010; Parpura et al., 2011). 

It is believed that pathogenic Aβ and tau types can cause gliosis and neuroinflammation. 

In addition, it is thought that glial cells may regulate the pathogenesis of inflammation, 

Aβ, and tau. Neuropathologically, extracellular senile plaques containing β-amyloid (Aβ) 

and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein are 

described (Harold et al., 2009). 

The complex genetic etiology of LOAD is still unclear, limiting the early and differential 

diagnosis of LOAD. Making the differential diagnosis with other causes of dementia and 

making the differential diagnosis from age-related forgetfulness and mild cognitive 

impairment are often insufficient in making the diagnosis at an early stage; the diagnosis 

of the disease can be made partially with clinical evaluation and imaging methods. The 

definitive diagnosis of AD can be made by tissue diagnosis, that is, by brain biopsy or 

autopsy after the patient's death. Early differential diagnosis with early detection of 

cognitive decline is vital for improving disease management and even reversing 

symptoms. 

So far, studies on Alzheimer's disease have focused on precursor proteins such as tau, 

presenilin, and amyloid and have been carried out through molecular mechanisms (Tan et 

al., 2019). It is observed that LOAD, which has a complex genetic transition, is 80% 

hereditary (Emahazion et al., 2001; Gatz et al., 2006), but studies on its molecular 

mechanisms are still ongoing. Today, early differential diagnosis of LOAD patients from 

aging-related dementia patients is not possible when they usually enter the clinic with 

dementia symptoms. This situation causes patients and their families to be late in planning 

treatment processes and other measures for AD. 

Genome-wide association studies have been conducted to determine the genetic factors 

that cause Alzheimer's disease (Kamboh et al., 2012; Zhang et al., 2012; Mukherjee et al., 

2014; Sherva et al., 2014). Variations associated with AD, especially APOE, can only 

explain about 25% of this complex genetic background (Musani et al., 2007; So et al., 
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2011). The most critical LOAD risk factor is the first identified APOE ɛ4 allele. Genome-

wide analysis studies conducted in the last ten years have identified candidate gene loci 

such as CLU, PICALM, CR1, BIN, ABCA7, EPHA1, CD33, CD2AP, ATP5H/KCTD2, 

and MS4A (Chouraki et al., 2014). As a result of the I-GAP study, the results were 

published in 2013 and performed in nearly 75,000 patients; 11 new loci, 19 in total, were 

identified (Lambert et al., 2013). In the second follow-up study, four of these candidates 

(DSG2; PTK2B; SORL1; SLC24A4) were highly significant in repeated studies (Ruiz et 

al., 2014). 

Alzheimer’s disease-associated new genes were discovered in the recent study by 

Prokopenko et al., 2021. 13 new candidate AD loci were identified, genes mapping to 

these loci are; FNBP1L, SEL1L, LINCOO298, PRKCH, C15ORF41, C2CD3, KIF2A, 

APC, LHX9, NALCN, CTNNA2, SYTL3, and CLSTN2.  

In the study by Jansen et al. 2019, nine novel genes significantly associated with AD are 

published as; ADAMTS4, HESX1, CLNK, CNTNAP2, ADAM10, APH1B, KAT8, 

ALPK2, and AC074212.3. In the most recent study by de Rojas 2021, six variants 

associated with Alzheimer’s disease risk near APP, CHRNE, PRKD3/NDUFAF7, 

PLCG2, and two exonic variants in the SHARPIN gene were discovered. 

2.2.   GWAS 

 Genome-Wide Association Studies (GWAS) explore the statistical association of SNPs 

in complex genetic disorders using high-dimensional datasets (Cantor, R. M., Lange, K., 

& Sinsheimer, J.S. (2010), Marees, et al., 2018). GWAS have shown success in many 

studies in identifying associated single-nucleotide polymorphism (SNP) profiles in 

diseases with complex genetic structure. 

The Genome-Wide Association Studies (GWAS) approach tests a univariate hypothesis. 

GWAS does not evaluate the potential relevance of each genetic marker and assigns 

statistical significance based on statistical assumptions of data distribution. First, these 

associations are identified by single-focus approaches, where each SNP is tested 

individually for the association. Although this standard method provides information on 

novel loci for a particular complex disease, some limitations exist. GWAS does not 

consider the genetic interactions of each biomarker; this means that the expected specific 

mutation or non-mutation combinations are not observed together. 

However, the univariate approach alone cannot explain genetic inheritance alone in most 

complex diseases. It quickly identifies diseases related to a single gene/mutation/variation 
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caused by genetic differences that substantially affect association studies. However, it is 

insufficient for complex genetic diseases that have weak effects and are caused by many 

variations. Identifying the effects of the epistatic interaction of multiple genetic variations 

on specific genes plays an important role in diagnosing and treating these complex human 

diseases. As both the number of genetic variations and the nature of interactions increase, 

such complex phenotypic traits are characterized by a high level of unpredictability. 

Genetic risk factors, which cause susceptibility to diseases with complex genetic 

inheritance, interact together, although they are in different genetic regions. Complex 

interactions such as SNP-SNP, gene-gene, and gene-environment interactions that may 

contribute to the resolution of missing heritability are ignored during GWAS (Cordell, 

2009). Moreover, although it reveals the top-ranking significant correlations associated 

with a particular disease, the method does not provide a predictive model that presents 

statistically significant biomarkers. 

A challenging aspect of genomic studies is understanding the biological impact of 

inherited genetic variations in DNA structure between individuals and the molecular 

etiology of a complex disease. Single nucleotide variations (SNVs) have received much 

attention in disease prediction among genetic variations. SNVs that are the source of 

individual differences can be used as biomarkers and located on or near genes associated 

with particularly complex diseases. Discovering SNV biomarkers at different loci may 

improve early diagnosis accuracy and prevent these diseases through clinical decision-

making. 

The large size of the genetic data used in GWAS studies has necessitated the use of data 

mining methods in order to identify the interactions of genetic changes with the disease, 

prioritize their relationships and use them effectively in clinical applications to support 

decision making in diagnosis. It is a critical and promising area for data mining methods 

to identify representative SNPs to predict variability between individuals with the 

phenotype of interest. 

2.3.  Ensemble and Entropy methods 

2.3.1. Ensemble method 

The ensemble method is a machine learning technique that combines several base models 

to produce one optimal predictive model. Ensemble methods usually produce more 

accurate solutions than a single model would. Before our study, information from three 

different data mining models from different datasets is integrated with the ensemble 

method proposed by Onur Erdoğan et al., which is one of the first studies which uses 
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higher space (SNVs to genomic locations on bands) ensemble techniques to integrate 

multi models that offer significant information after GWAS and RF analysis. An 

Ensemble scoring algorithm is proposed to calculate information regarding bands that 

emphasize disease-related variations. This is the first ensemble methodology proposed by 

Onur Erdoğan et al. for different datasets whose attributes also differ. In this point, the 

novelty of this scoring algorithm is to ensemble multi-data mining methods in terms of 

knowledge extraction for each dataset of Alzheimer’s disease. The output of multi-

platform prediction models can be used as prior knowledge to merge all information to 

reach the posterior ensemble model with model minimization to detect Alzheimer’s 

disease-related complex structure of genetic variations and other risk factors. (Erdoğan O. 

et al., 2022) 

2.3.2. Entropy method 

Shannon entropy is a non-linear function that measures the uncertainty of random 

variables (Shannon, 1948). Methods based on Shannon entropy measure the strength of 

predicting a combination of variables in explaining an event. Different combinations of 

variables are said to interact when the power of the joint prediction ability of this 

combination in describing an event is larger than the sum of the individual prediction 

abilities of these variables (Cover and Thomas, 1991). Fan. et al. proposed an information 

gain approach based on mutual information and used an interaction-information gain 

approach for three-way interactions.  The prioritized SNPs in each dataset (ADNI, 

GenADA, NCRAD) are investigated using this entropy-based three-way interaction 

information method (3WII). 

Two-way mutual information and three-way interaction information are entropy-based 

methods that measure the interaction between two markers and the information common 

to all three attributes (Yaldız B. et al., 2022).  

D=0 denotes the disease status of an individual for healthy individuals and D=1 for 

affected ones in a case-control study design. The difference between the mutual 

information in the affected population and the general population is defined as information 

gain: 

IG(X,Y\D)=I(X,Y\D)-I(X,Y) 

Interaction information gain of markers X, Y, and Z are defined similarly: 

IIG(X,Y,Z\D)=I(X,Y,Z\D)-I(X,Y,Z) 
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Information gain-based test statistic (TIG) is calculated by dividing IG or IIG by a specific 

normalization factor of variance Ʌ. The resulting test statistics is centrally chi-square 

distributed with 1 degree of freedom under the null hypothesis that the markers are 

independent of the disease.  

The test statistic for each dataset was calculated using the interaction information gain for 

prioritized SNPs. Since we look for the interactions common to all three variants that 

cannot be explained by two-way mutual information gain, the triplets with SNP 

combinations with significant two-way mutual information gain are excluded (Yaldız B. 

et al., 2022). 

2.4.   Biological networks and methods to compare biological networks 

Graph theory is a mathematical discipline that underpins the study of complex networks 

in biological and other applications. It has been successfully extended to the study of 

biological network topology, from a global perspective of their scale-free, small-world, 

hierarchical existence to a zoomed-in view of interaction motifs, clusters, and modules as 

fundamental interactions between different biomolecules. Biological networks show that 

their structure is not random but instead linked to a function. (Pavlopoulus et al., 2011).  

The term "network" is a common name for a collection of linked or interacting elements. 

An example of a network in biology is protein-protein interaction networks (PPI). Proteins 

are biological tissues' primary catalysts, structural components, signaling messengers, and 

molecular machines. PPIs play a critical role in coordinating the events in a cell and are 

the foundation of many signal transduction pathways and transcriptional regulatory 

networks in a cell. (Raman et al., 2010). 

The principal measures that influence graphs are the number of nodes (N) and the 

networks' average degree (k). The type of network topology, which is generally unknown 

for experimental data, determines the direct nature of that influence. Therefore, direct 

comparisons of graph measures between empirical networks with different nodes (N) or 

edges (k) can give falsified results (Van Wijk et al., 2010). One of the challenges of 

comparing networks is that it is not easy to compare them as total entities. Global 

properties and summary statistics, such as network density, degree distribution, 

transitivity, average shortest path length, and others, can be used to compare networks. 

The studies comparing networks with different measures are done by (Van Wijk, Stam & 

Daffertshofer, 2010; Steuer and Lopez, 2008 and Valdeolivas, 2019). 
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2.5.   GeneMANIA 

GeneMANIA (Warde-Farley et al., 2010) is a web server predicting the functions of genes 

and gene sets. GeneMANIA searches many large, publicly available biological datasets 

to find related genes. These include protein-protein, protein-DNA and genetic 

interactions, pathways, reactions, gene and protein expression data, protein domains, and 

phenotypic screening profiles. The data in GeneMANIA is regularly updated. The 

explanation of network names is given below.  

Physical interaction is a protein-protein interaction data; two gene products are linked if 

they were found to interact in a protein-protein interaction study. These data are collected 

from primary studies found in protein interaction databases, including BioGRID and 

PathwayCommons. Genetic interactions; two genes are functionally associated if the 

effects of perturbing one gene were found to be modified by perturbations to a second 

gene. These data are collected from primary studies and BioGRID. Co-localization; genes 

expressed in the same tissue or proteins found in the exact location. Two genes are linked 

if they are both expressed in the same tissue or if their gene products are both identified 

in the exact cellular location. Co-expression; is gene expression data. Two genes are 

linked if their expression levels are similar across conditions in a gene expression study. 

Most of these data are collected from the Gene Expression Omnibus (GEO); only data 

associated with a publication is collected. Shared protein domains; is protein domain data. 

Two gene products are linked if they have the same protein domain. These data are 

collected from domain databases, such as InterPro, SMART, and Pfam. 

2.6.   STRING analysis 

STRING (Szklarczyk et al., 2019) is a functional protein association network used for 

building protein-protein interaction networks. The experimental data is extracted from 

BIND, DIP, GRID, HPRD, IntAct, MINT, and PID. The curated data is extracted from 

BioCarta, BioCyc, GO, KEGG, and Reactome databases. The detailed information about 

statistics terms is given below. 

An average node degree is a number of how many interactions that a protein has on the 

average in the network. The clustering coefficient measures how connected the nodes in 

the network are. Highly connected networks have high values. 



10 

 

 

 

 

The expected number of edges gives how many edges are to be expected if the nodes 

were selected randomly. A small PPI enrichment p-value indicates that the nodes are not 

random and that the observed edges are significant. Network diameter is the shortest 

distance between the two most distant nodes in the network. A radius of the graph exists 

only if it has a diameter. The minimum among all the maximum distances between a 

vertex to all other vertices is the radius. The characteristic path length is the average 

shortest path length between all pairs of nodes in the network. The clustering coefficient 

measures the degree to which nodes in a graph tend to cluster together. (Holland and 

Leinhardt, 1971). The network density is determined by its ratio of links to the nodes. 

The higher the ratio, the denser the network. Network efficiency is measured by 1/L, 

where L represents average path length (Latora and Marchiori, 2001). 

2.7.  Pathway enrichment analysis 

Quantification of biological samples, DNA, RNA, or protein, is becoming a standard in 

molecular genetic research. Moreover, extensive data is produced through high-yield 

quantification methods, and analysis of these data helps researchers to discover novel 

biological functions, genotype-phenotype relationships, and disease mechanisms. 

(Lander, 2011). Researchers use pathway enrichment analysis to gain mechanistic insight 

into gene lists produced by omics experiments. Pathways are statistically evaluated for 

over-representation in the experimental gene list in comparison to what would be 

predicted by chance, using a variety of conventional statistical analyses that take into 

account the number of genes found in the trial, their relative ranking, and the number of 

genes annotated to a pathway of interest (Reimand et al., 2019). In pathway enrichment 

analysis protocol Lander 2011, the p-value of the enrichment of a pathway is computed 

using a Fisher’s exact test, and Benjamini & Hochberg –FDR test applies multiple-test 

correction. Multiple-testing correction methods are used to decrease the significance of 

each P-value derived from a series of tests. Fisher's exact test, based on hypergeometric 

distribution, is a standard statistical test used for pathway enrichment analyses of a gene 

list. It indicates whether the fraction of genes of concern in the pathway is more significant 

than the fraction of genes outside the pathway. Fisher’s exact test is generally used for 

non-ranked gene lists, and since our gene lists are not ranked, as we used in this study. 

An “enrichment map” is a network visualization that displays the overlaps across enriched 

pathways. On the other hand, “EnrichmentMap” is a Cytoscape application that creates 

visualization. Related pathways are automatically grouped into main biological themes by 

network layout and clustering algorithms. This method is used in several studies (Merico, 

Isserlin, Bader, 2011; Isserlin et al., 2014; Reimand et al., 2019; Karagiannis et al., 2013).  
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2.8.  Knowledge graphs 

Knowledge Graphs (KG) are an effective tool for data science in many data formats that 

obtain information (Ehrlinger and Wöß, 2016). The knowledge graph represents a 

collection of interlinked descriptions of entities – objects, events, or concepts. Knowledge 

graphs put data in context via linking and semantic metadata and, this way, provide a 

framework for data integration, unification, analytics, and sharing. 

Knowledge Graphs can be used to represent biological entities. In the CROssBAR 

Knowledge Graphs by Dogan et al., biological entities are represented by nodes; 

relationships between the same and different types of biological entities are expressed by 

the graph's edges (Dogan et al., 2020). 

2.9.  Pyrosequencing 

Pyrosequencing is a method developed by Pal Nyren in 1986 (Nyren, 2007). It is faster 

than Sanger sequencing and has advantages in convenience, staff, time, and cost. It 

performs sequence analysis by adding nucleotides one by one to the reaction during the 

synthesis of the target DNA product from a single strand (ssDNA) template. It is an 

accurate quantitative sequencing technique based on detecting pyrophosphates released 

by a biotin-labeled sequencing primer during DNA synthesis. Since it is still the fastest 

and most accurate sequencing method today, it is the most suitable method for detecting 

the presence of target mutations and SNPs in clinical samples (Ahmadian et al., 2006; 

Royo et al., 2007; Arnold et al., 2005; Vengen et al., 2012; Ballester LY, 2016). 

The basic principle of pyrosequencing is the sequential addition of dNTPs to newly 

formed DNA and the determination of the sequence by detecting pyrophosphate (PPi), 

which is released when the corresponding DNA template is added. The single-stranded 

DNA template is hybridized to the sequencing primer and incubated with DNA 

polymerase, ATP sulfurylase, luciferase, apyrase enzymes, and substrates of adenosine 5' 

phosphosulfate (APS) and luciferin. Adding one of the nucleotides Adenine, Guanine, 

Cytosine, and Thymine (A, G, C, T) releases pyrophosphate (PPi) if a nucleotide matches 

the DNA template. ATP sulfurylase converts PPi to ATP in adenosine 5' phosphosulfate. 

This ATP formed serves as a substrate for the conversion of luciferin to oxyluciferin in 

the presence of luciferase. Oxyluciferin is the substance that emits light. There is a linear 

relationship between the generated ATP and oxyluciferin. In order to observe the resulting 

light oscillation, the pyrogram graph is examined. The enzyme apyrase degrades unbound 

nucleotides and ATP. 
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The pyrosequencing method, a high-performance and fast method, has become one of the 

clinical diagnostic tests used in medical biology and genetics laboratories to determine 

mutations and SNPs in certain diseases. Pyrosequencing can identify variations with very 

low margins of error, whose incidence is as low as 5% in the population (Alqahtani QM 

et al., 2016). In addition, pyrosequencing is a more adaptable, fast, and economic analysis 

than other high-throughput sequencing methods. 
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CHAPTER 3 

 

3. MATERIALS AND METHODS 

 

3.1.    Overview of the method 

Our study obtains SNPs from GWAS datasets provided by ADNI, GenADA, and NCRAD 

initiatives. The SNP prioritization is conducted by novel Ensembl and Entropy-based data 

mining methods (Erdoğan O et al. 2022 and Yaldız B et al., 2022).  

This study aims to construct and compare biological networks of the variants obtained 

from these two methods and do functional enrichment analysis to discover the affected 

biological pathways. The obtained figures are built using databases; STRING 11.0, 

GeneMANIA, CROssBAR, g: Profiler, and software Cytoscape with plugins 

EnrichmentMap and Autoannotate. A detailed explanation of the methods is provided 

below. 

In this study, for genotyping, the pyrosequencing method is used. Genomic DNA was 

obtained from 43 participants from LOAD groups and 38 participants from control groups. 

The workflow of Pyrosequencing consists of 3 stages; 

1) DNA isolation; 2) PCR; Creating a single-stranded pattern; 3) Pyrosequencing. 

3.2. Obtaining data 

This section explains all data used in this study in detail. The gene sets used in this study 

are provided by our team working on these genes in their research. The final five gene sets 

are named: Ensembl >2.31, Ensembl >3.21, and Entropy genes obtained from three 

databases; ADNI, GenADA, and NCRAD. The number of genes in these gene sets 
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respectively are; 238, 63, 138, 19, 15, and 74. The process of obtaining these gene sets is 

explained below.   

3.2.1. Genotyping Data 

Three different high dimensional datasets from Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), GenADA (dbGaP Study Accession: phs000219.v1. p1), 

and the National Centralized Repository for Alzheimer’s Disease and Related Dementias 

(NCRAD) (dbGaP study accession: phs000168.v1. p1.) are obtained via dbGaP control 

access (Filippini et al., 2009; Li et al., 2008).  Affymetrix Mapping250K_Nsp and 

Mapping250K_Sty with 620901 SNPs Illumina Human610_Quadv1_B 500K with 

410969 SNPs and Illumina Human610-Quad BeadChip with 590247 SNPs 

platforms are used by these initiatives, respectively. Two hundred ten controls and 344 

cases for ADNI, 777 controls and 798 cases for GenADA, 1310 controls, and 1289 cases 

for NCRAD are genotyped using these platforms.  

3.2.2. SNP Prioritization 

For the initial dimension reduction to discover statistically significant SNP’s for building 

a LOAD model from each dataset, GWAS analysis is done. PLINK analysis is completed 

for identifying the independent statistical significance of variations related to the LOAD 

(Chang et al., 2015; Purcell et al., 2007). PLINK results are used for filtering and reducing 

redundant SNPs that are not directly related to the disease.  

After filtering, SNP’s significantly associated with LOAD are used as an input for 

modeling a multistep RF strategy. One RF is used for dimension reduction, and in the next 

step, another RF is conducted as the modeling algorithm. RF is implemented with 5-fold 

cross-validation (CV) using the RANGER package in R (Wright & Ziegler, 2017). 

3.2.3. ENSEMBLE and ENTROPY Scoring Algorithm 

The multistep RF-RF modeling selected a set of prioritized variants out of thousands of 

variants. Following the SNP prioritization step, our team implemented two meta-analysis 

approaches, Ensemble, and Entropy, for model minimization after RF- RF modeling.  

The Ensemble is a scoring algorithm in which chromosomal locations of SNVs are 

obtained by mapping to cytogenetic bands affinities between pairs (Onur Erdoğan p.c., 

2022). 719 LOAD-associated variants from three different sequencing platforms are 

selected based on Ensemble scores.  



15 

 

 

 

 

The Entropy approach measures the difference between the mutual information in case 

and control groups. Three-way interaction information (3WII) calculated by entropy 

analysis can assess third-order interactions. The 3WII describing the amount of 

information common to all variables not present in any other subset alone are calculated 

for all three datasets to reveal triplets of variants significantly associated with LOAD 

(Bucru Yaldız p.c.,2022). 

3.2.4. Annotation of Variants 

The prioritized variants obtained by Ensemble and Entropy methods are annotated using 

the SNPNexus tool. (Oscanoa et al., 2020; Chelala et al., 2009; Dayem Ullah et al., 2012, 

2013, 2018). For some analysis, an extended version of gene sets is used, consisting of 

overlapped genes, nearest downstream genes, and nearest upstream genes, and for some 

analysis, only overlapped gene sets are used. 

3.2.5. Obtaining Gene Lists 

After obtaining lists of rsID’s from Onur Erdoğan (p.c.,2022) and Burcu Yaldız (p.c., 

2022) these variants are mapped to genes. The gene lists that are used in this study are 

added to the Appendix D. The number of genes for Ensemble >2.31 is 238, for Ensemble 

3.21> is 63, for Entropy-all 138, for Entropy-ADNI 19, for Entropy-GenADA 15 and for 

Entropy-NCRAD 74.  

3.3. GeneMANIA based PPI network analysis 

Genemania (Warde-Farley et al., 2010) is a web server predicting the functions of genes 

and gene sets. Co-expression, shared protein domains, physical interactions, genetic 

interactions, pathways, and co-localization are the network categories created by 

GeneMANIA. We constructed gene networks based on their functions by using 

GeneMANIA for our gene sets; Ensemble, Entropy, NCRAD, ADNI, and GenADA.  

3.4. Building protein-protein interaction networks by STRING 

STRING (Szklarczyk et al., 2019) is a functional protein association network used for 

building protein-protein interaction networks. The experimental data is extracted from 

BIND, DIP, GRID, HPRD, IntAct, MINT, and PID. The curated data is extracted from 

BioCarta, BioCyc, GO, KEGG, and Reactome databases. A PPI enrichment p-value shows 

that nodes are not connected randomly, and the edges between the nodes are significant. 



16 

 

 

 

 

This study built gene-gene interaction networks for gene sets Ensemble, Entropy, ADNI, 

GenADA, and NCRAD. These networks were created with a confidence (score) cutoff of 

0.40. The cutoff score determines the minimum interaction score required for being 

included in the prediction network. Additional interactors are added until the PPI 

enrichment is less or equal to 0.05, which means that our proteins have more interactions 

among themselves than what would be expected for a collection of proteins drawn at 

random from the genome that are identical in size. Such an enrichment indicates that the 

proteins are at least partially biologically connected as a group, where all networks have 

PPI enrichment less or equal to 0.05.  NetworkAnalyzer (Assenov et al., 2008) is a 

Cytoscape plugin used to obtain summary statistics. It is a plugin that computes the 

topological attributes for biological networks. Summary statistics created by 

NetworkAnalyzer are used to compare the networks created. 

3.5. Building network gene-training disease interaction networks by Cytoscape 

Cytoscape (Shannon et al., 2003) is an open-source software platform for visualizing 

molecular interaction networks and biological pathways and incorporating annotations, 

gene expression profiles, and other state data into these networks. In this study, we used 

this software to obtain gene-disease interaction networks. HGPEC (Le et al., 2017) 

application is used for building gene-disease interaction networks. HGPEC is based on a 

random walk with a restart algorithm through a heterogeneous network of genes and 

diseases. This application provides a heterogeneous network of genes/proteins and a 

phenotypic disease similarity network to prioritize network genes and diseases. Novel 

disease-gene and disease-disease associations can be identified based on the rankings. The 

gene-disease associations are obtained from DisGeNET (Pinero et al., 2019), the largest 

publicly available discovery platform. Alzheimer's disease is selected as the disease of 

interest, and a training gene (genes that have functional associations with Alzheimer’s 

disease) list is created. The diseases selected for the training list are indicated in Table 3.1 

Table 3.1. Diseases selected as training diseases for HGPEC. 

Disease ID Name 

MIM104300 ALZHEIMER DISEASE; AD 

MIM104310 ALZHEIMER DISEASE 2 

MIM125320 DEMENTIA/PARKINSONISM WITH NON-

ALZHEIMER AMYLOID PLAQUES 
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MIM602096 ALZHEIMER DISEASE 5 

MIM605055 ALZHEIMER DISEASE, FAMILIAL EARLY-ONSET, 

WITH COEXISTING AMYLOID AND PRION 
PATHOLOGY 

MIM605526 ALZHEIMER DISEASE 6 

MIM606889 ALZHEIMER DISEASE 4 

MIM607822 ALZHEIMER DISEASE 3 

MIM608907 ALZHEIMER DISEASE 9 

 

Network gene sets are created by manual input, and these genes are prioritized by back 

probability 0.5, jumping probability 0.6, and sub-network importance weight 0.7. These 

networks are built for Ensemble, Entropy, ADNI, GenADA, and NCRAD genes with the 

number of genes respectively, 37, 38, 11, 8 and 20. The detailed summary of attributes 

used in HGPEC analysis is indicated in Table 3.2. The Cytoscape plugin Diffusion is used 

to broaden node selection using network propagation algorithms. The Diffusion algorithm 

in Cytoscape aims to find the most critical nodes from a group of nodes and an entire 

interaction network. By using this algorithm, networks are constructed from our genes of 

interest and training diseases. 

Table 3.2. Summary of HGPEC attributes. 

Summary ENSEMBLE ENTROPY ADNI GenADA NCRAD 

Disease Alzheimer Alzheimer Alzheimer Alzheimer Alzheimer 

Back probability 0.5 0.5 0.5 0.5 0.5 

Jumping 

probability 0.6 0.6 0.6 0.6 0.6 

Subnetwork 
importance 0.7 0.7 0.7 0.7 0.7 

Disease Network 

size 

|V|=5080, 

|A|=38467 

|V|=5080, 

|A|=38467 

|V|=5080, 

|A|=38467 

|V|=5080, 

|A|=38467 

|V|=5080, 

|A|=38467 

Gene/Protein 
Network Size 

|V|=10486, 
|A|=50791 

|V|=10486, 
|A|=50791 

|V|=10486, 
|A|=50791 

|V|=10486, 
|A|=50791 

|V|=10486, 
|A|=50791 
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Number of 

Training Genes 1183 1183 1183 1183 1183 

Number of 
Training Diseases 9 9 9 9 9 

Number of 

Network Genes 37 38 11 8 20 

 

3.6. Prediction of  network gene-Alzheimer’s disease interaction networks by 

Cytoscape 

Gene-Alzheimer’s disease interaction networks are built by the HGPEC plugin on 

Cytoscape. The networks constructed for genes from gene sets Ensemble, Entropy, ADNI, 

GenADA, and NCRAD predict a relationship to Alzheimer’s Disease. The gene-disease 

associations are obtained from DisGeNET. Alzheimer's Disease is selected as the disease 

of interest, and a training gene (known Alzheimer’s Disease-related genes) list is created. 

The disease IDs and names selected as training diseases are represented in Table 3.3. 

Furthermore, a detailed summary of HGPEC attributes is given in Table 3.4. 

Table 3.3. Disease IDs and names of training diseases. 

Disease ID Name 

MIM104300 ALZHEIMER DISEASE; AD 

MIM104310 ALZHEIMER DISEASE 2 

MIM125320 DEMENTIA/PARKINSONISM WITH NON-
ALZHEIMER AMYLOID PLAQUES 

MIM602096 ALZHEIMER DISEASE 5 

MIM605055 ALZHEIMER DISEASE, FAMILIAL EARLY-ONSET, 

WITH COEXISTING AMYLOID AND PRION 

PATHOLOGY 

MIM605526 ALZHEIMER DISEASE 6 

MIM606889 ALZHEIMER DISEASE 4 

MIM607822 ALZHEIMER DISEASE 3 

MIM608907 ALZHEIMER DISEASE 9 
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Table 3.4. HGPEC attributes for network gene-Alzheimer’s disease networks. 

Summary ENSEMBLE ENTROPY ADNI GenADA NCRAD 

Disease Alzheimer Alzheimer Alzheimer Alzheimer Alzheimer 

Back probability 0.5 0.5 0.5 0.5 0.5 

Jumping probability 0.6 0.6 0.6 0.6 0.6 

Subnetwork 

importance 
0.7 0.7 0.7 0.7 0.7 

Disease Network size 
|V|=5080, 
|A|=38467 

|V|=5080, 
|A|=38467 

|V|=5080, 
|A|=38467 

|V|=5080, 
|A|=38467 

|V|=5080, 
|A|=38467 

Gene/Protein Network 

Size 

|V|=10486, 

|A|=50791 

|V|=10486, 

|A|=50791 

|V|=10486, 

|A|=50791 

|V|=10486, 

|A|=50791 

|V|=10486, 

|A|=50791 

Number of Training 

Genes 
1183 1183 1183 1183 1183 

Number of Training 

Diseases 
9 9 9 9 9 

Number of Network 

Genes 
37 38 11 8 20 

3.7. Functional enrichment analysis and visualization 

Pathway enrichment and visualization of the data were done following a protocol written 

by Reimand et al. (2019). 

3.7.1. Pathway enrichment analysis by g:Profiler 

g: Profiler (Raudvere et al., 2019) is a public web server for characterizing and 

manipulating gene lists. g: GOSt is the core of the g: Profiler; it provides statistical 

enrichment analysis to analyze the given gene list. In this study, g: GOSt is used to obtain 

Gene Ontology (GO) Molecular Function, GO Cellular Component, GO Biological 

Process and Reactome pathways for Ensemble, Entropy, GenADA, ADNI, and NCRAD 

gene sets. 

All analyses were done with default attributions with a significance threshold of 0.05, and 

multiple analyses correction was done with Bonferroni.  
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3.7.2. Visualization by EnrichmentMap 

EnrichmentMap (Merico et al., 2010) is a Cytoscape plugin used for functional enrichment 

visualization. Overrepresented functional groups derived from functional annotation such 

as Gene Ontology (GO) can be identified by enrichment analysis. Gene sets, such as 

pathways and GO terms, are organized into networks. In this study, EnrichmentMap is 

used to create networks from GO annotations and Reactome pathways for Ensemble, 

Entropy gene sets. The P-value of the enrichment of a pathway is computed using Fisher’s 

exact test and Benjamini-Hochberg FDR (Q value) used as multiple test correction. All 

analyses were done with a p-value of 0.05 FDR q-value cutoff 0.1 and edge similarity 

cutoff 0.25 (Jaccard metric). 

3.7.3. Interpretation by AutoAnnotate 

AutoAnnotate (Kucera et al., 2016) is a Cytoscape plugin that finds clusters and annotates 

them visually with labels and groups. This study used AutoAnnotate to create clusters 

after functional enrichment analysis. The clusters are obtained using the Markov Cluster 

Algorithm (MCL) cluster annotation algorithm, and labels are generated automatically 

based on the word frequencies of selected attributes. GO Molecular Function, GO Cellular 

Component, GO Biological Process, and Reactome were used for label calculation.  

3.8. Building knowledge graphs by CROssBAR 

CROssBAR (Dogan et al., 2020) is a database constructing knowledge graphs for 

biological entities and relationships between them, represented by nodes and edges. This 

study created knowledge graphs for Ensemble genes, Entropy genes, ADNI, GenADA, 

and NCRAD genes with the disease query “Alzheimer’s Disease.” We used knowledge 

graphs to obtain literature information related to our genes and the pathways in which they 

occur. The observed gene-pathway associations are investigated in pathway enrichment 

analysis. The genes and query parameters details are given in Table 3.5 in Appendix A. 

The biomedical data sources used in the CROssBAR database are; UniProt, IntAct, 

InterPro, DrugBank, ChEMBL, PubChem, Reactome, KEGG, OMIM, Orphanet, 

Experimental Factor Ontology (EFO), and Human Phenotype Ontology (HPO). 
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3.9. Experimental validation 

3.9.1. Primer Design 

Primer design for PCR primer and Pyrosequencing primer was done using Pyromark 

Assay Design 2.0 by Qiagen. After the design of the primer, the suitability of the designed 

primers was checked by using the BLAT tool (Kent, 2002) from USCS Genome Browser. 

In the study, the design of PCR primers is done by following standard rules. It is designed 

that the temperature is in the range of 62-64°C, the primer length is 18-25 bases, the 

formation of dimers and loops is prevented, and the primers with as equal G/C-A/T as 

possible. In order to bind to streptavidin-coated magnetic beads, one of the primers was 

biotin-labeled and the other unmarked. 

3.9.2. DNA Isolation 

The saliva samples are collected from Turkish LOAD patients and controls at the 

Hacettepe University Geriatric Clinic. Saliva samples received by METU Bioinformatics 

Systems Biology Laboratory were used for genomic DNA isolation. Genomic DNA 

isolations of the samples of the participants were obtained with the optimized protocol 

based on the Norgen Saliva DNA isolation protocols. Genomic DNA was obtained from 

43 LOAD groups and 38 control groups in total. 

3.9.3. NanoDrop Spectrophotometry 

After the DNA isolation of the saliva samples, concentration and quality evaluations were 

completed with NanoDrop Spectrophotometry. Samples with good quality and 

concentration were used for the next step. 

3.9.4. Polymer Chain Reactions (PCR) 

The polymerase chain reaction (PCR) is used to amplify small segments of DNA. Because 

the obtained DNA amount after DNA isolation is not enough for the necessary molecular 

analysis, which is pyrosequencing in our case. 

3.9.5. Pyrosequencing 

The pyrosequencing method, which is fast and has an error rate of less than 1/1000, was 

preferred for genotyping. The pyrosequencing method is known as "sequencing by 

synthesis". It is a method based on detecting which base the enzyme adds as DNA 

polymerase produces new DNA. Pyrosequencing is based on detecting light emission 
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resulting from the chain reaction that occurs when pyrophosphate is released. 

Pyrosequencing is done by using the Qiagen Pyromark Q24 machine. In total, for 43 

LOAD patients, 38 controls and 32 variants runs were constructed. 
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CHAPTER 4 

 

4. RESULTS 

This study compares the variant lists produced by two feature selection approaches, 

Ensemble and Entropy, based on their biological interpretation with experimental 

validation on the variant lists provided by Onur Erdoğan and Burcu Yaldız. PLINK 

association analysis is performed in these prior studies for genotyping data of three LOAD 

GWAS datasets. Then RF-RF is conducted for modeling. The prioritized variants after 

PLINK-RF-RF steps are analyzed either ensemble or entropy approaches for model 

minimization. 

The 719 variants proposed for LOAD classification with RF-RF models for three GWAS 

datasets are scored according to the Ensemble method. The variants with an Ensemble 

score of 2.31 and higher are categorized as two groups for investigation as an Ensemble 

>2.31 and Ensemble >3.21 (Onur Erdoğan et al., personal communication).  

Next, for the Entropy selection, variants selected by RF-RF models are prioritized by 

three-way-interaction analysis (3WI). These results are investigated under four groups 

Entropy-ALL, Entropy-ADNI, Entropy-GENADA, and Entropy-NCRAD. The number of 

selected variants for these groups were 145, 39, 25, and 78, respectively (Burcu Yaldız et 

al., personal communication). 

In all six analysis groups, variants overlapping with a protein-coding gene and LOAD-

related biological pathways were selected for experimental validation based on the 

examination results in terms of biological networks, protein-protein interactions, and 

functional enrichment. These network analyses are planned to show the functional 

relevance of RF-RF model variants associated with LOAD risk as potential causative 

variants. The advantages and disadvantages of ensemble and entropy-based approaches 

are discussed. 

Finally, for LOAD-associated variants selected with model minimization, pyrosequencing 

primer design is completed, and sequencing primers were optimized. Out of the 32 genes, 
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3 were controls, the Ensemble model prioritized 11 genes, and 18 were selected by the 

Entropy model of GenADA and ADNI studies. Results of the genotyping experiments and 

their analysis are presented and discussed. 

4.1. Prediction of gene functions by GeneMANIA 

By using GeneMANIA, gene functions are predicted for our gene sets. According to the 

co-expression results, ADNI has the highest percentage with 100%, GenADA follows 

with 83.04%, and the other gene sets follow with; Entropy: 79.31%, Ensemble: 71.15%, 

and NCRAD: 63.68%. A detailed summary of GeneMANIA network results is given in 

Table 4.1 and a detailed table of the genes found in the GeneMANIA networks is given 

in Table 4.2, Appendix B. 

Table 4.1. GeneMANIA network summary: The statistical analysis of the GeneMANIA 

results for all five gene lists are summarized. 

SUMMARY 

STATISTICS 

ENSEMBLE 

>2.31 

ENSEMBLE 

>3.21 
ENTROPY 

Entropy-

ADNI 

Entropy-

GENADA 

Entropy-

NCRAD 

#related genes 
20 20 20 20 20 20 

#total genes 
218 70 66 34 30 42 

#attributes 
0 0 0 0 0 0 

#total links 4250 353 269 61 114 109 

Co-expression 41.47% 59.19% 85.18% 94% 77.90% 81.07% 

Shared protein domains 
2.12% 10.96% N/A N/A 22.10% N/A 

Physical interactions 
19.19% 13.18% 5.57% N/A N/A 18.34% 

Genetic Interactions 
6.00% 3.14% 1.44% 6.33% N/A 0.59% 

Pathway 4.69% N/A N/A N/A N/A N/A 

Co-localization 26.52% 2.64% 7.81% N/A N/A N/A 

 

In Table 4.1., co-expression, shared protein domains, physical interactions, genetic 

interactions, and co-localization features are investigated to compare our gene lists. The 

highest values corresponding to these features are highlighted in bold. 
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Figure 4.1. Topological relationship for Ensemble > 2.31 scored only overlapped genes 

and related genes obtained by GeneMANIA. Purple strings represent co-expression, pink 

strings represent physical interactions, yellow strings represent shared protein domains, 

green strings represent genetic interactions, and blue strings represent pathways between 

nodes. Nodes represent genes, and we have searched genes are indicated with stripes. 
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Figure 4.2. Topological relationship between Ensemble >3.21 genes. Purple strings 

represent co-expression, pink strings represent physical interactions, green strings 

represent genetic interactions, and blue strings represent colocalization between nodes. 

Nodes represent genes, and we have searched genes are indicated with stripes 
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Figure 4.3. Topological relationship between Entropy genes. Purple strings represent co-

expression, pink strings represent physical interactions, green strings represent genetic 

interactions, and blue strings represent colocalization between nodes. Nodes represent 

genes, and we have searched genes are indicated with stripes. 
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Figure 4.4. Topological relationship between ADNI genes. Purple strings represent co-

expression, and green strings represent genetic interactions between nodes. Nodes 

represent genes, and we have searched genes are indicated with stripes. 
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Figure 4.5. Topological relationship for GenADA genes and related genes obtained my 

GeneMANIA. Purple strings represent co-expression and yellow string represent shared 

protein domains. Nodes represent genes and genes that we have searched are indicated 

with stripes. 



30 

 

 

 

 

                                                      

 

 

Figure 4.6. Topological relationship for NCRAD genes and related genes obtained by 

GeneMANIA. Purple strings represent co-expression, green strings represent genetic 

interactions and pink strings represent physical interactions. Nodes represent genes and 

genes that we have searched are indicated with stripes. 
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Other figures obtained by GeneMANIA analysis are given in the Figure 7-22 in the 

Appendix B. 

Table 4.3. Number of total genes and genes not connected to any other genes for Ensemble 

and Entropy networks. 

#genes Ensemble  

> 2.31 

physical 

int 

Ensemble  

> 2.31 

shared 

protein 

domains 

Ensemble 

>2.31 

 co-loc 

Ensemble  

> 3.21 

physical 

int 

Ensemble       

>3.21 

shared 

protein 

domains 

Ensemble  

>3.21  

co-loc 

Entropy 

physical 

int 

Entropy 

co-loc 

Total genes 218 218 218 70 70 70 66 66 

Not connected 

genes 
136 110 105 60 27 57 26 53 

%  

CONNECTED 
    37.62 49.55 51.84 14.29 61.43 18.58 60.61 19.70 

 

When we look at the number of connected genes from the obtained GeneMANIA figures; 

for Ensemble >2.31, physical interactions network 110 genes are not connected to any 

other genes, out of 218 total genes. So, 37.6% of genes are connected. In the Ensemble 

>2.31 shared protein domains network 49.5% of genes are connected. And for the 

Ensembl >2.31 co-localization network 51.8% of genes are connected. 

On the other hand, for Ensemble >3.21 physical interactions network 14.3% of genes are 

connected and for shared protein domains network 61.4% of genes are connected. While 

for Ensemble >3.21 co-localization network 18.6% of genes are connected. 

Lastly, for Entropy physical interactions network, 60.6% of genes are connected and for 

the co-localization network, 19.7% of genes are connected. 

4.2. Protein-protein interaction networks by STRING 

We constructed protein-protein interaction networks for our gene sets; Ensemble, Entropy, 

Entropy-GenADA, Entropy-ADNI, and Entropy-NCRAD by STRING. The p-value 

obtained for Ensemble, Entropy, ADNI, GenADA, and NCRAD is 0.291, 0.968, 1, 1, and 

0.723. None of the obtained interaction networks is significant.  

4.3. STRING enrichment analysis 

The networks constructed for gene sets obtained by STRING enrichment were compared 

by expanding each network to the point of significantly more interactions than expected. 



32 

 

 

 

 

The networks created for the Ensemble > 2.31, Ensemble >3.21, Entropy, Entropy-ADNI, 

Entropy-GenADA, and Entropy-NCRAD for only overlapped genes are given in detail 

information about the number of nodes and edges for the gene sets are given in Table 4.4. 

Moreover, detailed summary statistics for STRING enrichment are given in Table 4.5.  

Figure 4.23, Figure 4.24, Figure 4.25, Figure 4.26, Figure 4.27 and Figure 4.28 show 

the extended networks for each group of proteins. 

Table 4.4. Numbers of nodes and edges for gene sets. 

  

ENSEMBLE >2.31 ENSEMBLE>3.21 ENTROPY 

Entropy-

ADNI 

Entropy-

GenADA 

Entropy-

NCRAD 

Number of 
nodes 

199 51+10 43+10 15+10 11+10 23+10 

Number of 

edges 
191 96 74 46 34 49 

 

Table 4.5. Summary statistics for STRING enrichment analysis. The highest values for 

each row is marked in bold. 

SUMMARY STATISTICS ENSEMBLE 

>2.31 

ENSEMBLE 

>3.21 

ENTROPY E-ADNI E-GenADA E-NCRAD 

#of nodes 199 61 53 25 21 33 

#of edges 191 96 74 46 34 49 

Avg # of neighbors 3.064 5.875 5.481 5.75 3.778 5.444 

network diameter 14 5 5 3 6 5 

network radius 7 3 2 2 3 3 

characteristic path lenght 5.057 2.337 2.282 1.808 2.549 2.386 

clustering coefficient 0.153 0.443 0.493 0.608 0.357 0.48 

network density 0.028 0.19 0.211 0.383 0.222 0.32 

network heterogeneity 0.758 0.797 0.797 0.462 0.511 0.64 

network centralization 0.075 0.28 0.354 0.324 0.279 0.301 

connected components 76 28 27 10 4 16 

analysis time 0.086 0.02 0.004 0.001 0.001 0.002 

efficiency 0.197746 0.427899 0.438212 0.553097 0.392311 0.419111 

PPI enrichment p-value 1.00E-16 9.30E-04 3.99E-09 1.35E-11 2.72E-10 1.00E-16 

significantly more 
interactions than expected 

Yes Yes Yes Yes Yes Yes 
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Figure 4.23. Protein-protein interaction network of Ensemble > 2.31 scored only 

overlapped genes with PPI enrichment p-value 1.00E-16. Nodes represent the genes, while 

the edges represent the connections between the nodes. The colors of nodes do not have 

any meaning. 
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Figure 4.24. Protein-protein interaction network of Ensemble > 3.21 scored for only 

overlapped genes with PPI enrichment p-value 9.30E-04. Nodes represent the genes, while 

the edges represent the connections between the nodes. The colors of nodes do not have 

any meaning. 
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Figure 4.25. Protein-protein interaction network of Entropy for only overlapped genes 

with the PPI enrichment p-value 3.99E-09. Nodes represent the genes, and the edges 

represent the connections between the nodes. The colors of nodes do not have any 

meaning. 
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Figure 4.26. Protein-protein interaction network for ADNI only overlapped genes with the 

PPI enrichment p-value 1.35E-11. Nodes represent the genes, and the edges represent the 

connections between the nodes. The colors of nodes do not have any meaning. 
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Figure 4.27. Protein-protein interaction network for GenADA only overlapped genes with 

the PPI enrichment p-value 2.72E-10. Nodes represent the genes, and the edges represent 

the connections between the nodes. The colors of nodes do not have any meaning. 
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Figure 4.28. Protein-protein interaction network for NCRAD only overlapped genes with 

the PPI enrichment p-value 1.00E-16. Nodes represent the genes, and the edges represent 

the connections between the nodes. The colors of nodes do not have any meaning. 
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4.4. Network genes-candidate diseases networks 

Cytoscape plugin HGPEC obtains gene-disease interaction networks. The gene lists 

consist of extended gene lists with overlapped genes, nearest upstream genes, and nearest 

downstream genes. Also, for Ensemble >2.31 scored, only overlapped genes are used to 

compare. The mapped genes are selected as the original gene set, and the diffusion 

algorithm finds the most relevant nodes and interactions. In the original entropy gene-

disease network, 5110 nodes and 56912 edges are observed; 48 nodes and 61 edges are 

obtained after the Diffusion algorithm. In the original Ensemble gene-disease network, 

5105 nodes and 56924 edges were observed; after the Diffusion algorithm, 64 nodes and 

128 edges were obtained.  Furthermore, the Ensemble >2.31 scored only overlapped genes 

5182 nodes and 57441 edges are observed; after the diffusion algorithm, 100 nodes and 

40 edges are obtained. The detailed information on the HGPEC analysis results is 

indicated in Table 4.6. 

Table 4.6. HGPEC Summary Statistics. 

Summary Statistics ENSEMBLE >2.31 ENSEMBLE >3.21 ENTROPY Entropy-ADNI Entropy-GenADA Entropy-NCRAD 

Number of nodes 100 69 51 12 10 51 

Number of edges 40 161 98 6 8 80 

Average number of neighbors 2.176 5.033 3.951 1.5 2 3.659 

Network diameter 5 8 7 2 4 6 

Network radius 3 4 4 1 2 3 

Characteristic path length 2.66 2.955 2.999 1.5 2.143 2.918 

Clustering coefficient 0 0.078 0.063 0 0 0.082 

Network density 0.066 0.085 0.099 0.5 0.286 0.091 

Network heterogeneity 1.795 0.741 0.772 0.577 0.612 0.606 

Network centralization 0.574 0.21 0.212 1 0.381 0.167 

Connected components 65 10 11 9 3 6 

Analysis time 0.021 0.024 0.028 0.001 0.001 0.004 

Efficiency 0.37593985 0.338409475 0.333444481 0.666666667 0.466635558 0.34270048 
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The networks obtained for Ensemble >2.31, Ensemble>3.21 and Entropy-all are given in 

the Figure 4.29, Figure 4.30 and Figure 4.31, respectively. 

 

 

 

Figure 4.29. Topological relationship between network genes and diseases for Ensemble 

> 2.31 scored, only overlapped genes. The network obtained by Diffusion rank %20. 

While red nodes represent network genes, blue nodes represent candidate diseases. Edges 

represent the relationship between nodes. 



41 

 

 

 

 

The detailed information on genes and diseases in the Ensemble >2.31 network is given 

in the Table 4.7 in Appendix C. 

 

Figure 4.30. Topological relationship between network genes and diseases for Ensemble 

> 3.21 genes. The network obtained by Diffusion rank %10. While red nodes represent 

network genes, blue nodes represent candidate diseases. Edges represent the relationship 

between nodes. 

The detailed information on genes and diseases in the Ensemble >3.21 network is given 

in Table 4.8. 
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Table 4.8. Genes and diseases revealed in Figure 4.30. 

SHARED NAME ENTREZ 

ID 

Type Role SHARED NAME ENTREZ 

ID 

Type Role 

SPOCK1 6695 Gene/Protein Candidate-

Gene/Protein 

LEUKEMIA, ACUTE 

MONOCYTIC  

MIM151380 Disease Candidate-

Disease 

SLC18A2  6571 Gene/Protein Unknown-

Gene/Protein 

JUVENILE 

MYELOMONOCYTIC 

LEUKEMIA; JMML  

MIM607785 Disease Candidate-

Disease 

SCHIZOPHRENIA; SCZD   MIM181500 Disease Candidate-

Disease 

IQGAP2  10788 Gene/Protein Unknown-

Gene/Protein 

RWDD4  201965 Gene/Protein Unknown-

Gene/Protein 

INFLAMMATORY 

BOWEL DISEASE 1; 

IBD1   

MIM266600 Disease Candidate-

Disease 

RUNX2  860 Gene/Protein Unknown-

Gene/Protein 

HEPATOCELLULAR 

CARCINOMA   

MIM114550 Disease Candidate-

Disease 

RUNX1  861 Gene/Protein Candidate-

Gene/Protein 

GNGT1  2792 Gene/Protein Unknown-

Gene/Protein 

RBFOX1  54715 Gene/Protein Unknown-

Gene/Protein 

GLAUCOMA, PRIMARY 

OPEN ANGLE; POAG  

MIM137760 Disease Candidate-

Disease 

PROSTATE CANCER   MIM176807 Disease Candidate-

Disease 

GJB6  10804 Gene/Protein Unknown-

Gene/Protein 

PPFIBP2  8495 Gene/Protein Unknown-

Gene/Protein 

FUBP3  8939 Gene/Protein Unknown-

Gene/Protein 

PLAGL1  5325 Gene/Protein Candidate-

Gene/Protein 

FGFR2 2263 Gene/Protein Unknown-

Gene/Protein 

PITPNC1  26207 Gene/Protein Unknown-

Gene/Protein 

FGF12  2257 Gene/Protein Unknown-

Gene/Protein 

PHLPP1  23239 Gene/Protein Unknown-

Gene/Protein 

FBXW8  26259 Gene/Protein Unknown-

Gene/Protein 

PANCREATIC CANCER  MIM260350 Disease Candidate-

Disease 

FAM46A  55603 Gene/Protein Unknown-

Gene/Protein 

OSTEOGENIC SARCOMA   MIM259500 Disease Candidate-

Disease 

DLC1  10395 Gene/Protein Unknown-

Gene/Protein 

OSTEOARTHRITIS 

SUSCEPTIBILITY 1; OS1   

MIM165720 Disease Candidate-

Disease 

DIABETES MELLITUS, 

NONINSULIN-

DEPENDENT; NIDDM   

MIM125853 Disease Candidate-

Disease 

OSBP2  23762 Gene/Protein Unknown-

Gene/Protein 

DIABETES MELLITUS, 

INSULIN-DEPENDENT; 

IDDM   

MIM222100 Disease Candidate-

Disease 

OBESITY   MIM601665 Disease Candidate-

Disease 

CYFIP2  26999 Gene/Protein Unknown-

Gene/Protein 
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NR5A2 2494 Gene/Protein Unknown-

Gene/Protein 

CYB5R3  1727 Gene/Protein Unknown-

Gene/Protein 

NPLOC4  55666 Gene/Protein Candidate-

Gene/Protein 

COLORECTAL CANCER; 

CRC   

MIM114500 Disease Candidate-

Disease 

MYELOMA, MULTIPLE  MIM254500 Disease Candidate-

Disease 

CHONDROSARCOMA  MIM215300 Disease Candidate-

Disease 

MUCOLIPIDOSIS IV  MIM252650 Disease Candidate-

Disease 

CERVICAL CANCER  MIM603956 Disease Candidate-

Disease 

MPDZ  8777 Gene/Protein Unknown-

Gene/Protein 

BRUGADA SYNDROME 

1; BRGDA1  

MIM601144 Disease Candidate-

Disease 

METHEMOGLOBINEMIA 

DUE TO DEFICIENCY OF 

METHEMOGLOBIN 

REDUCTASE  

MIM250800 Disease Candidate-

Disease 

BLADDER CANCER   MIM109800 Disease Candidate-

Disease 

MELK  9833 Gene/Protein Unknown-

Gene/Protein 

BARD1  580 Gene/Protein Unknown-

Gene/Protein 

MEDULLOBLASTOMA; MDB  MIM155255 Disease Candidate-

Disease 

AUTOIMMUNE 

DISEASE   

MIM109100 Disease Candidate-

Disease 

MDFI  4188 Gene/Protein Unknown-

Gene/Protein 

ATTENTION DEFICIT-

HYPERACTIVITY 

DISORDER; ADHD   

MIM143465 Disease Candidate-

Disease 

MAJOR DEPRESSIVE 

DISORDER; MDD  

MIM608516 Disease Candidate-

Disease 

ASS1  445 Gene/Protein Unknown-

Gene/Protein 

LUNG CANCER  MIM211980 Disease Candidate-

Disease 

ARHGAP26  23092 Gene/Protein Unknown-

Gene/Protein 

LSAMP  4045 Gene/Protein Unknown-

Gene/Protein 

ALCOHOL 

DEPENDENCE   

MIM103780 Disease Candidate-

Disease 

LEUKEMIA, CHRONIC 

MYELOID; CML   

MIM608232 Disease Candidate-

Disease 

ADCY2  108 Gene/Protein Unknown-

Gene/Protein 

LEUKEMIA, CHRONIC 

LYMPHOCYTIC; CLL   

MIM151400 Disease Candidate-

Disease 

ADAM10  102 Gene/Protein Unknown-

Gene/Protein 

LEUKEMIA, ACUTE 

MYELOID; AML   

MIM601626 Disease Candidate-

Disease 

ACUTE MYELOGENOUS 

LEUKEMIA   

MIM602439 Disease Candidate-

Disease 

 

 

The network obtained for the Entropy gene set is given in Figure 4.13, and the network 

obtained for the Ensemble gene set is given in Figure 4.14. 



44 

 

 

 

 

 

Figure 4.31. Topological relationship between network genes and diseases for all Entropy 

genes. The network obtained by Diffusion rank %10. While red nodes represent network 

genes, blue nodes represent candidate diseases. Edges represent the relationship between 

nodes. 

The Table 4.9. shows the gene/disease names, Entrez ID’s, types and roles of the entities 

found in the Figure 4.31. 
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Table 4.9. Detailed information on genes and diseases is found in Figure 4.31. 

SHARED NAME EntrezID Type Role SHARED NAME EntrezID Type Role 

TRIP12 9320 Gene/Protein Unknown-

Gene/Protein 

LEUKEMIA, ACUTE 

MYELOID; AML 

MIM601626 Disease Candidate-

Disease 

BLADDER 

CANCER 

MIM109800 Disease Candidate-

Disease 

NPLOC4 55666 Gene/Protein Candidate-

Gene/Protein 

LUNG CANCER MIM211980 Disease Candidate-

Disease 

DNAJB8 165721 Gene/Protein Unknown-

Gene/Protein 

SAMSN1 64092 Gene/Protein Unknown-

Gene/Protein 

PSG5 5673 Gene/Protein Unknown-

Gene/Protein 

FAM76B 143684 Gene/Protein Candidate-

Gene/Protein 

TPO 7173 Gene/Protein Unknown-

Gene/Protein 

FARS2 10667 Gene/Protein Unknown-

Gene/Protein 

AUTISM MIM209850 Disease Candidate-

Disease 

FERMT2 10979 Gene/Protein Candidate-

Gene/Protein 

ANXA13 312 Gene/Protein Unknown-

Gene/Protein 

ACUTE 

MYELOGENOUS 

LEUKEMIA 

MIM602439 Disease Candidate-

Disease 

VAV2 7410 Gene/Protein Candidate-

Gene/Protein 

ADAM10 102 Gene/Protein Unknown-

Gene/Protein 

FBLN2 2199 Gene/Protein Candidate-

Gene/Protein 

CDH13 1012 Gene/Protein Candidate-

Gene/Protein 

ANGPT2 285 Gene/Protein Candidate-

Gene/Protein 

UGGT1 56886 Gene/Protein Candidate-

Gene/Protein 

DNER 92737 Gene/Protein Unknown-

Gene/Protein 

MELK 9833 Gene/Protein Unknown-

Gene/Protein 

ALZHEIMER 

DISEASE; AD 

MIM104300 Disease Training-

Disease 

SLC4A4 8671 Gene/Protein Unknown-

Gene/Protein 

SPARC 6678 Gene/Protein Unknown-

Gene/Protein 

PCP4 5121 Gene/Protein Unknown-

Gene/Protein 

SOX6 55553 Gene/Protein Unknown-

Gene/Protein 

CBX5 23468 Gene/Protein Unknown-

Gene/Protein 

MBD2 8932 Gene/Protein Unknown-

Gene/Protein 

MCPH1 79648 Gene/Protein Candidate-

Gene/Protein 

TPST1 8460 Gene/Protein Candidate-

Gene/Protein 

DOWN 

SYNDROME 

MIM190685 Disease Candidate-

Disease 

LCMT1 51451 Gene/Protein Unknown-

Gene/Protein 

RYR3 6263 Gene/Protein Unknown-

Gene/Protein 

HEPATOCELLULAR 

CARCINOMA 

MIM114550 Disease Candidate-

Disease 
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ALCOHOL 

DEPENDENCE 

MIM103780 Disease Candidate-

Disease 

TMPRSS15 5651 Gene/Protein Candidate-

Gene/Protein 

GNAL 2774 Gene/Protein Unknown-

Gene/Protein 

SPOCK1 6695 Gene/Protein Candidate-

Gene/Protein 

LAMA2 3908 Gene/Protein Unknown-

Gene/Protein 

NDFIP1 80762 Gene/Protein Candidate-

Gene/Protein 

PLAGL1 5325 Gene/Protein Candidate-

Gene/Protein 

TAF15 8148 Gene/Protein Candidate-

Gene/Protein 

RAPGEF4 11069 Gene/Protein Unknown-

Gene/Protein 

GLAUCOMA, 

PRIMARY OPEN 

ANGLE; POAG 

MIM137760 Disease Candidate-

Disease 

HCRTR2 3062 Gene/Protein Unknown-

Gene/Protein 

COLORECTAL 

CANCER; CRC 

MIM114500 Disease Candidate-

Disease 

HIF1AN 55662 Gene/Protein Unknown-

Gene/Protein 

OBESITY MIM601665 Disease Candidate-

Disease 

PROSTATE 

CANCER 

MIM176807 Disease Candidate-

Disease 
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4.5. Network genes-Alzheimer’s disease networks 

Biological networks constructed for extended gene sets by the HGPEC plugin are 

represented in Figure 4.32, Figure 4.33, Figure 4.34, Figure 4.35, Figure 4.36, and 

Figure 4.37. In addition, the detailed summary statistics of the networks are given in 

Table 4.10. 

 

Figure 4.32. Network representation of Ensemble >3.21 genes and Alzheimer's disease. 

While network genes are represented with an octagon and unknown genes are represented 

with an ellipse, training diseases are represented with a diamond. The color mapping type 

is a continuous mapping according to the rank of the nodes, from red to green. Thus, the 

highest rank is represented with red, and the lowest rank is represented with green. Edges 

show connections between genes and diseases. 
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Figure 4.33. Network representation of Ensemble > 2.31 only overlapped genes and 

Alzheimer's disease. While network genes are represented with an octagon, training genes 

are represented with a triangle, and unknown genes are represented with an ellipse, 

training diseases are represented with a diamond. The color mapping type is a continuous 

mapping according to the rank of the nodes, from red to green. Thus, the highest rank is 

represented with red, and the lowest rank is represented with green. Edges show 

connections between genes and diseases. 
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Figure 4.34. Network representation of all Entropy genes and Alzheimer's disease. While 

network genes are represented with an octagon and unknown genes are represented with 

an ellipse, training diseases are represented with a diamond. The color mapping type is a 

continuous mapping according to the rank of the nodes, from red to green. Thus, the 

highest rank is represented with red, and the lowest rank is represented with green. Edges 

show connections between genes and diseases. 

 

Figure 4.35. Network representation of Entropy-ADNI genes and Alzheimer's disease. 

While network genes are represented with an octagon and unknown genes are represented 

with an ellipse, training diseases are represented with a diamond. The color mapping type 

is a continuous mapping according to the rank of the nodes, from red to green. Thus, the 

highest rank is represented with red, and the lowest rank is represented with green. Edges 

show connections between genes and diseases. 
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Figure 4.36. Network representation of Entropy-GenADA genes and Alzheimer's disease. 

While network genes are represented with an octagon and unknown genes are represented 

with an ellipse, training diseases are represented with a diamond. The color mapping type 

is a continuous mapping according to the rank of the nodes, from red to green. Thus, the 

highest rank is represented with red, and the lowest rank is represented with green. Edges 

show connections between genes and diseases. 

 

Figure 4.37. Network representation of Entropy-NCRAD genes and Alzheimer's disease. 

While network genes are represented with an octagon and unknown genes are represented 

with an ellipse, training diseases are represented with a diamond. The color mapping type 

is a continuous mapping according to the rank of the nodes, from red to green. Thus, the 

highest rank is represented with red, and the lowest rank is represented with green. Edges 

show connections between genes and diseases. 

The detailed result of summary statistics of network genes and Alzheimer’s Disease 

networks is given in Table 4.10. 
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Table 4.10. Summary statistics of network genes and Alzheimer’s Disease networks. 

Summary Statistics ENSEMBLE >3.21 ENSEMBLE > 2.31 ENTROPY Entropy-

ADNI 

Entropy-

GenADA 

Entropy-

NCRAD 

Number of nodes 46 120 48 20 17 35 

Number of edges 26 45 24 19 22 21 

Average number of neighbors 3.25 2.750 3.429 4.222 3.667 3.538 

Network diameter 4 5 4 3 4 4 

Network radius 2 3 2 2 2 2 

Characteristic path length 2.258 2.530 2.187 1.5 2.045 2.128 

Clustering coefficient 0.374 0.175 0.427 0.665 0.498 0.46 

Network density 0.217 0.089 0.264 0.528 0.333 0.295 

Network heterogeneity 0.742 1.256 0.64 0.443 0.549 0.593 

Network centralization 0.362 0.559 0.321 0.446 0.364 0.341 

Connected components 31 88 35 12 6 23 

Analysis time 0.006 0.080 0.037 0.002 0.002 0.007 

4.6.Knowledge graphs 

Knowledge graphs created by CROssBAR are used to obtain associations of genes, 

pathways, and diseases. The gene lists consist of extended gene lists which have 

overlapped genes, nearest upstream genes, and nearest downstream genes. The knowledge 

graphs created for Ensemble >3.21, Ensemble >2.31, Entropy, ADNI, GenADA, and 

NCRAD genes with Alzheimer’s disease are represented in Figure 4.38, Figure 4.39, 

Figure 4.40, Figure 4.41, Figure 4.42, Figure 4.43 and Figure 4.44.  
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Figure 4.38. Ensemble > 2.31 scored genes knowledge graph created by CROssBAR. 

Dark orange nodes represent core genes; light orange nodes represent interacting 

genes/proteins. Blue squares represent pathways, and purple pentagons represent 

phenotypes. Edges represent the connections between the nodes. Genes related to the 

“Alzheimer’s Disease” component and genes in our Ensemble list are highlighted. 
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Figure 4.39. Ensemble >3.21 scored genes knowledge graph created by CROssBAR. Dark 

orange nodes represent core genes; light orange nodes represent interacting 

genes/proteins. Blue squares represent pathways, and purple pentagons represent 

phenotypes. Edges represent the connections between the nodes. Genes related to the 

“Alzheimer’s Disease” component and genes in our Ensemble list are highlighted. 
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Figure 4.40. Entropy genes knowledge graph created by CROssBAR. Dark orange nodes 

represent core genes; light orange nodes represent interacting genes/proteins. Blue squares 

represent pathways, and purple pentagons represent phenotypes. Edges represent the 

connections between the nodes. Genes related to the “Alzheimer’s Disease” component 

and genes in our Entropy list are highlighted. 
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Figure 4.41. Entropy-ADNI genes knowledge graph created by CROssBAR. Dark orange 

nodes represent core genes; light orange nodes represent interacting genes/proteins. Blue 

squares represent pathways, and purple pentagons represent phenotypes. Edges represent 

the connections between the nodes. Genes related to the “Alzheimer’s Disease” 

component and genes in our ADNI list are highlighted. 
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Figure 4.42. Entropy-GenADA genes knowledge graph created by CROssBAR. Dark 

orange nodes represent core genes; light orange nodes represent interacting 

genes/proteins. Blue squares represent pathways, and purple pentagons represent 

phenotypes. Edges represent the connections between the nodes. Genes related to the 

“Alzheimer’s Disease” component and genes in our GenADA list are highlighted. 
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Figure 4.43. Entropy-NCRAD genes knowledge graph created by CROssBAR. Dark 

orange nodes represent core genes; light orange nodes represent interacting 

genes/proteins. Blue squares represent pathways, and purple pentagons represent 

phenotypes. Edges represent the connections between the nodes. Genes related to the 

“Alzheimer’s Disease” component and genes in our NCRAD list are highlighted. 
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Figure 4.44. CROssBAR knowledge graph created for “Nuclear signaling by ERRB4” 

pathway. Dark orange nodes represent core genes; light orange nodes represent 

interacting genes/proteins. Blue squares represent pathways. Edges represent the 

connections between the nodes. 

This figure is obtained to investigate the genes involved in the “Nuclear signaling by 

ERBB4” pathway coming with CROssBAR analysis. We have added this figure to 

compare the genes that are related to the “Nuclear signaling by ERBB4” with the genes 

in our lists and to find out if there are any common genes. As the result of this 

observation we have found out that SPARC gene takes part both in our gene lists (except 

entropy-ADNI and entropy-NCRAD) and “Nuclear signaling by ERBB4” pathway. 
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4.7. Functional enrichment analysis 

Functional enrichment analysis of genes of interest is done by the following analysis the 

g: Profiler, EnrichmentMap, and AutoAnnotate pipeline. The functional enrichment 

analysis results are obtained for Ensemble only overlapped and Entropy extended gene 

sets. Ensemble the whole gene list for this analysis, consisting of variants scored 1.11 and 

over. For Ensemble, only overlapped genes are used, while for Entropy, the extended gene 

list is used, which consists of overlapped genes, nearest downstream genes, and nearest 

upstream genes. Clusters obtained for Ensemble and Entropy gene lists are presented in 

Figure 4.45 and Figure 4.46. 

 

 

Figure 4.45. Enrichment analysis results for Ensemble > 1.11 scored gene list. Ensemble 

only overlapped genes list is used for this analysis.  
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Figure 4.46. Enrichment analysis results for Entropy gene list.  For this analysis, Entropy 

extended gene list is used, which consists of overlapped genes, nearest downstream genes, 

and nearest upstream genes. 

4.8.Genotyping results and comparison with population frequencies 

After running the pyrosequencing experiments, obtained runs were analyzed by using 

Pyromark Q24 software by Qiagen. The obtained pyrograms were interpreted to 

investigate variations. 

The genotyping results of the LOAD and control groups of the variants prioritized with 

Ensemble scores and Entropy method and whose genotyping was completed are presented 

in detail. Variants are encoded with the first five digits of the rsIDs. The minor allele 

frequencies of these variants are summarized in Table 4.11.  
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When the MAFs of the LOAD-TR and Non-Finnish European (NFE) populations were 

compared (except for rs11749731), it was seen that all variants examined were distinctive 

in terms of risk and protective. Four of these variants (rs17092948, rs10050568, 

rs10807701, rs6705017) indicated low risk, while nine variants were seen twice and 

higher times in the LOAD class. 

Table 4.11. Comparison of LOAD-TR and NFE MAF: Comparison of genotyped variants 

with LOAD-TR and European (NFE) MAF. LOAD-TR and CNT-TR are abbreviations 

for project participants. 

Variant Gene LOAD-TR MAF CNT-TR MAF LOAD-TR/ CNT-TR NFE MAF LOAD TR/NFE 

rs100170 PI4K2B 0.103 0.067 1.54 0.047 2.19 

rs100505 SPOCK1 0.395 0.4 0.99 0.751 0.53 

rs105154 SPOCK1 0.317 0.188 1.691 0.146 2.17 

rs105205 TENM3 0.2 0.086 2.333 0.138 1.447 

rs108077 TPST1 0.39 0.467 0.84 0.891 0.44 

rs111300 ITPR1 0.3 0.324 0.927 0.203 1.481 

rs115036 FAM76B 0.917 0.875 1.05 0.492 0.86 

rs11749 NDFIP1 0.563 0.308 1.83 0.621 0.91 

rs142155 CNTN5 0.61 0.611 0.998 0.344 1.774 

rs14571 CSMD1 0.605 0.438 1.382 0.414 1.461 

rs170675 NHSL1 0.225 0.25 0.9 0.046 4.93 

rs170816 genomic 0.19 0.143 1.33 0.091 2.09 

rs170929 DLC1 0.2 0.333 0.6 0.164 1.219 

rs176421 LSAMP 0.35 0.143 2.45 0.054 6.504 

rs297801 ST3GAL1 0.69 0.75 0.92 0.36 1.92 

rs377640 ARHGAP26 0.128 0.057 2.244 0.015 8.633 

rs378079 VAV2 0.488 0.563 0.87 0.342 1.43 

rs475030 CCDC3 0.476 0.25 1.905 0.238 1.999 

rs557098 ALDH3B1 0.033 0 N/A 0.004 8.33 

rs557098 UNC93B1 0.024 0 N/A 0.004 6.011 

rs605928 ADAM10 0.439 0.455 0.966 0.301 1.46 

rs609841 genomic 0.122 0.125 0.98 0.015 8.18 

rs670501 UGGT 0.049 0.063 0.78 0.977 0.05 

rs715763 FERMT2 0.158 0.25 0.63 0.117 1.35 

rs931460 ANGPT2 0.07 0 N/A 0.011 6.34 

rs936666 SYCP2L 0.619 0.813 0.76 0.429 1.44 
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4.8.1 Statistical Power Analysis of Variant Frequency Differences 

Power analysis indicates how many participants can reach the required power and error 

percentage during the planning phase of the studies. While the studies are in progress, the 

measured effect and the number of participants are used to calculate the strength achieved 

with the same formulation. Since the minor allele frequencies will be compared, the MAF 

values listed for the populations found in the gnomAD database were used as the effect 

mean value in the strength analysis. Based on the distribution of MAF values in these 

populations, the standard derivation for each variant MAF value was calculated as seen in 

Table 4.12. 

Table 4.12. gnomAD population means and standard deviations of the genotyped variants. 

LOAD RF RF 

variant 

gnomAD populations 

Avg 

SD 

rs100170 0.071 0.029 

rs100505 0.703 0.08 

rs105154 0.13 0.06 

rs105205 0.144 0.042 

rs108077 0.882 0.049 

rs111300 0.139 0.059 

rs115036 0.523 0.169 

rs11749 0.679 0.05 

rs142155 0.408 0.169 

rs14571 0.383 0.103 

rs170675 0.139 0.133 

rs170816 0.132 0.054 

rs170929 0.171 0.036 

rs176421 0.056 0.025 

rs297801 0.234 0.122 

rs377640 0.085 0.109 

rs378079 0.263 0.106 

rs475030 0.256 0.085 

rs557098 0.032 0.065 

rs557098 0.013 0.009 

rs605928 0.528 0.209 

rs609841 0.061 0.107 

rs670501 0.903 0.101 

rs715763 0.096 0.068 

rs931460 0.079 0.118 

rs936666 0.337 0.066 
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Based on the distribution and standard derivation information calculated in the table above 

for the genotyped variants, the MAF observed in the LOAD group was compared with the 

Non-Finnish European (NFE) population and the healthy participant groups formed 

within the scope of the project (Rosner B., 1982). Calculated force values and significant 

differences are given in Table 4.13. 

Table 4.13. Power Analysis of LOAD-RF-RF variants MAF comparisons. When 

calculating the statistical power for all groups, a type-1 error was accepted as =0.01. The 

genotyped variants selected with the LOAD-RF-RF model as a result of the strength 

analysis were found to have comparable reliability with the European population. 

Variant Gene LOAD-TR/ 

CNT-TR 

power LOAD 

TR/NFE 

power 

rs100170 PI4K2B 1.54 88.00% 2.19 100.00% 

rs100505 SPOCK1 0.99 2.00% 0.53 100.00% 

rs105154 SPOCK1 1.691 10..0% 2.17 100.00% 

rs105205 TENM3 2.333 100.00% 1.447 100.00% 

rs108077 TPST1 0.84 98.00% 0.44 100.00% 

rs111300 ITPR1 0.927 29.00% 1.481 100.00% 

rs115036 FAM76B 1.05 5.00% 0.86 100.00% 

rs11749 NDFIP1 1.83 100.00% 0.91 83.00% 

rs142155 CNTN5 0.998 1.00% 1.774 100.00% 

rs14571 CSMD1 1.382 100.00% 1.461 100.00% 

rs170675 NHSL1 0.9 4.00% 4.93 100.00% 

rs170816 genomic 1.33 1.00% 2.09 99.00% 

rs170929 DLC1 0.6 100.00% 1.219 99.00% 

rs176421 LSAMP 2.45 100.00% 6.504 100.00% 

rs297801 ST3GAL1 0.92 17.00% 1.92 100.00% 

rs377640 ARHGAP26 2.244 70.00% 8.633 99.00% 

rs378079 VAV2 0.87 37.00% 1.43 94.00% 

rs475030 CCDC3 1.905 100.00% 1.999 100.00% 

rs557098 ALDH3B1 N/A 100.00% 8.33 100.00% 

rs557098 UNC93B1 N/A 19.00% 6.011 63.00% 

rs605928 ADAM10 0.966 2.00% 1.46 77.00% 

rs609841 genomic 0.98 57.00% 8.18 100.00% 

rs670501 UGGT 0.78 3.00% 0.05 100.00% 

rs715763 FERMT2 0.63 93.00% 1.35 68.00% 

rs931460 ANGPT2 N/A 26.00% 6.34 50.00% 

rs936666 SYCP2L 0.76 100.00% 1.44 100.00% 
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4.8.2 LOAD Variant Frequencies with Statistical Significance 

GenADA, ADNI, and NCRAD datasets have been modeled with high success with 

machine learning methods (LOAD-RF-RF). After evaluating these models with Ensemble 

and Entropy analyses, among the prioritized variants, their genotyping in the LOAD-TR 

and CNT-TR groups was completed. 

Genotyping results were evaluated for success in classification and statistical power in the 

study group and Non-Finnish European populations created in the project. It was observed 

that three variants with MAF 0.01 and below differed with high risk when compared with 

both TR and European populations. Although these variants have low statistical power, 

they were selected for the diagnostic kit considering their low MAF. 

The nine variants evaluated were classified as significantly high risk in the LOAD-TR 

groups. Among these nine variants, except for rs11749731, the risk classification for 

LOAD in the European population was also statistically significant. It was observed that 

six variants listed in rows 13 to 18 in Table 4.14 were in the protective classification for 

LOAD in the TR group. Out of these variants, rs10807701 and rs6705017 were also 

evaluated to be protective in the European population. 

When the eight variants listed in the 19th and 26th rows in Table 4.14 were evaluated 

individually, it was observed that there was no distinctive feature in the TR group. Out of 

these eight variants, one was found to have a protective (rs10050568) classification power 

for the European population, and the others for the risk of LOAD. 

As a success criterion of the project, it was expected that 75% of the variants prioritized 

with machine learning models would have a distinctive feature of LOAD risk for the 

geography of Turkey. As listed in Table 4.13, 18 of the 26 variants studied were found to 

be distinctive in the LOAD-TR and CNT-TR groups in terms of risk and protection. 

Distinctive ones constitute 70% of the genotyping variants. Considering the Non-Finnish 

European, which is the population closest to the population frequencies observed in our 

country, it was observed that only one variant did not report a difference between the 

LOAD group and NFE, which shows that the variants selected for the NFE population 

consist of variants with a discrimination potential of 96%. 
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Table 4.14. Relationship of genotyped variants to LOAD. The success and statistical 

power of 26 variants Prioritized by Ensemble and Entropy Methods in classification in 

LOAD-TR and CNT-TR groups and European (NFE) populations. 

variant gene LOADT-

TR maf 

CNT-

TR maf 

LOAD TR/ 

CNT TR 

power NFE maf LOAD 

TR/NFE 

power explanation 

1 rs55709 UNC93B1 0.024 0 * 100.00% 0.004 6.011 100.00%  

variants indicating very 

high risk in both TR 

and NFE populations 

 

2 rs93146 ANGPT2/MCPH1 0.07 0 * 26.00% 0.011 6.342 50.00% 

3 rs55709 ALDH3B1 0.03 0 * 19.00% 0.004 8.333 63.00% 

4 rs17642 LSAMP 0.35 0.143 2.45 100.00% 0.054 6.504 100.00%  

 

 

 

LOAD-RF-RF variants 

that increase risk in TR 

Variants that also 

increase risk for NFE, 

except rs11749731 

 

 

 

 

5 rs10520 TENM3 0.2 0.086 2.333 100.00% 0.138 1.447 100.00% 

6 rs37764 ARHGAP26 0.256 0.114 2.244 70.00% 0.015 8.633 99.00% 

7 rs47503 CCDC3 0.476 0.25 1.905 100.00% 0.238 1.999 100.00% 

8 rs11749 NDFIP1 0.56 0.31 1.828 100.00% 0.621 0.906 83.00% 

9 rs10515 SPOCK1 0.317 0.188 1.691 100.00% 0.146 2.17 100.00% 

10 rs100117 PI4K2B 0.1 0.07 1.538 88.00% 0.047 2.187 100.00% 

11 rs14571 CSMD1 0.605 0.438 1.382 100.00% 0.414 1.461 100.00% 

12 rs17081 genomic 0.19 0.14 1.333 1.00% 0.091 2.089 99.00% 

13 rs37807 VAV2 0.49 0.56 0.868 37.00% 0.342 1.428 94.00%  

 

 

 

Protective LOAD-RF-

RF variants in TR also 

protective variants for 

rs10807701 and 

rs6705017 NFE 

 

 

14 rs10807 TPST1 0.39 0.47 0.836 98.00% 0.891 0.428 100.00% 

15 rs67050 UGGT 0.05 0.06 0.78 3.00% 0.977 0.05 100.00% 

16 rs93666 SYCP2L 0.62 0.81 0.762 100.00% 0.429 1.444 100.00% 

17 rs71576 FERMT2 0.16 0.25 0.632 93.00% 0.117 1.351 68.00% 

18 rs17092 DLC1 0.2 0.333 0.6 100.00% 0.164 1.219 99.00% 

19 rs10050 SPOCK1 0.4 0.4 0.988 2.00% 0.751 0.526 100.00%  

 

Variants with no 

distinctive features for 

TR 7 were classified as 

risk for NFE and 1 as 

protective for the NFE 

population 

 

 

 

 

 

20 rs60984 genomic 0.12 0.13 0.976 57.00% 0.015 8.185 100.00% 

21 rs17067 NHSL1 0.23 0.25 0.9 4.00% 0.046 4.934 100.00% 

22 rs29780 ST3GAL1 0.69 0.75 0.921 17.00% 0.36 1.92 100.00% 

23 rs11503 FAM76B 0.92 0.88 1.048 5.00% 0.492 1.863 100.00% 

24 rs14215 CNTN5 0.61 0.611 0.998 1.00% 0.344 1.774 100.00% 

25 rs11130 ITPR1 0.3 0.324 0.927 29.00% 0.203 1.481 100.00% 

26 rs60592 ADAM10 0.439 0.455 0.966 2.00% 0.301 1.46 77.00% 
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CHAPTER 5 

 

5. DISCUSSION  

Diagnosis of Late-Onset Alzheimer's (LOAD) disease is now partially available based on 

clinical evaluation and imaging, and many patients remain undiagnosed in the early stages 

of LOAD. Recent advances in genome-wide analysis are accelerating the study of human 

health and disease. High-dimensional data is produced that can be used for research 

purposes, including genotyping data of different platforms. High-throughput genotyping 

technologies such as Affymetrix or Illumina enable association studies. The Discovery of 

SNV biomarkers at different loci may improve early diagnosis accuracy and 

early/differential diagnosis processes of these diseases through clinical decision making. 

SNVs, which can act as biomarkers by causing individual differences and localizing on 

genes associated with a particular complex disease, will contribute to determining the 

pathogenetic causation and origin behind the phenotypes of complex genetically based 

diseases such as LOAD. 

Genome-Wide Association Studies (GWAS) allows for the investigation of statistical 

interactions of individual variants at candidate loci, but univariate analysis checks for 

interactions between variants. In the current literature, a meta-analysis of LOAD GWAS 

results is not successful in identifying causal variants. Integrated prioritization of all SNVs 

associated with post-GWAS or machine learning approaches from the genotyping results 

produced by different platforms is a fundamental problem in the field. Since SNP 

genotyping platforms do not have a shared set, finding common biomarkers between 

individual risk models was challenging. Our group proposed two approaches to address 

this prioritization problem: Ensemble (Onur E, p.c.,2002) and Entropy (Burcu Yaldız, p.c. 

2022). Here we have compared the utility of variants prioritized by the ensemble and 

entropy-based methods.  

Among the variants with an Ensemble score of 2.31 and higher, variants associated with 

bioinformatics analysis LOAD were selected for network analysis. The variants 

overlapping with a protein-coding gene and LOAD-related biological pathways were 

selected for experimental validation based on biological networks, protein-protein 

interactions, and functional enrichment. Variant triplets are also selected from three 

databases (ADNI, GenADA, NCRAD) using the information gain approach for the 

Entropy method in the same manner. 
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The network analyses reveal the functional relevance of RF-RF model variants associated 

with LOAD risk as potential causative variants. Here the results of each analysis and 

discusses the advantages and disadvantages of ensemble and entropy-based approaches 

are discussed. 

The overall statistics of GeneMANIA analysis are summarized as in Table 4.1. Ensembl 

genes with variant score higher than 2.31 showed highest physical interactions (19.19%), 

genetic interactions (6.00%), and co-localization (26.52%). Ensembl >2.31 list has the 

highest number of variants compared to the other lists. So these results might be observed 

due to its large variant size. However, Ensembl >3.21 set showed a higher ratio for co-

expression (59.19%) and shared protein domains (10.96%). When Ensembl and Entropy 

sets are compared, we observe that the Entropy set outperformed both Ensembl sets 

regarding co-expression (85%).  

When we look at the results of the STRING enrichment, we observe that the raw list of 

genes for Ensembl >2.31 is a more significantly connected network than Ensembl >3.21. 

For Ensembl > 2.31 we have not added any additional genes (raw list). We have added 10 

more genes to the other groups to obtain a significant PPI enrichment p-value.  

In Table 4.5, we can see that network diameter is 14 for the Ensembl gene list and 5 for 

the Entropy gene list. Network diameter is the longest shortest path between any two 

nodes in the network. The characteristic path length is defined as the average shortest path 

length between all pairs of nodes in the network. When we compare characteristic path 

length for Ensembl 2.31 and higher, it is 5.057, and for Entropy, it is 2.282. Network 

density is 0.028 for Ensembl and 0.211 for Entropy; network efficiency is 0.20 for 

Ensembl gene set and 0.43 for Entropy gene set. These observations indicate that the 

Entropy gene set has a more connected network.  

When we compared network efficiency and network density at the point where all 

networks had significantly more interactions than expected. Based on these observations, 

Ensembl >3.21 genes observed to be more comparable to all genes selected with Entropy. 

The results of this comparison are listed below; 

 

Rank by Network_density: 

1- Entropy-ADNI  

2- Entropy-NCRAD 

 3-   Entropy-GenADA 

 4-   Entropy-all 

 5-   Ensembl > 3.21 
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 6-   Ensembl >2.31 

 

Rank by Network_efficiency: 

1- Entropy-ADNI 

2- Entropy 

3- Ensembl >3.21 

4- Entropy-NCRAD 

5- Entropy-GenADA 

6- Ensembl >2.31 

 

The entropy gene set has a higher network density and efficiency than the Ensembl gene 

set, which indicates that the Entropy gene set is more connected than the Ensembl gene 

set regarding gene networks.  On the other hand, the PPI enrichment p-value is 1.00E-16 

for the Ensembl network and 3.99E-9 for the Entropy network, which shows that the 

Ensembl gene set produced a more connected and meaningful protein-protein interaction 

network. Hence in the Ensembl scoring method, the variants clustered on neighboring 

genomic loci are prioritized, probably enriching genes sharing a role in similar processes, 

supported by highly connected protein-level interactions.   

We constructed network genes candidate disease networks to obtain information for our 

genes from the disease database DisGeNET. When we look at the network obtained for 

Ensembl >2.31, the diseases obtained in the network are Schizophrenia and Diabetes 

Mellitus, which did not cover any LOAD-related events. On the other hand, for the 

Entropy gene set, diseases associated with our genes of interest are; Alzheimer’s Disease, 

Down Syndrome, Prostate Cancer, Acute Myelogenous Leukemia, Obesity, Glaucoma, 

Lung Cancer, Alcohol Dependence, Autism, Colorectal Cancer, Hepatocellular 

Carcinoma, and Bladder Cancer. 

However, when we obtained genes- Alzheimer’s Disease networks from DisGeNET to 

gain information about our genes and Alzheimer’s Disease from the literature, the LOAD-

related events were more observable for the ensemble selected gene list.  Looking at the 

networks obtained for Ensembl >2.31 and Entropy, we see many more interactions 

between Ensembl >2.31 and Alzheimer’s Disease clusters than the Entropy gene set and 

Alzheimer’s Disease. More genes are associated with AD included within the genes 

prioritized by the Ensembl scoring method.  

Knowledge graphs created by CROssBAR are used to obtain associations of genes, 

pathways, and diseases. We have used obtained knowledge graphs to investigate relations 

of our gene sets with Alzheimer’s Disease. We have used extended gene lists for Ensembl 
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and Entropy to gain as much information as possible from genes, and we observed 

pathway, gene, and Alzheimer’s Disease relationships of our gene sets. When we look at 

the knowledge graphs obtained for Ensembl >2.31, the genes connected to Alzheimer's 

Disease node were; ADAM10, PSEN1, PSEN2, UNC5C, MT-ND1, MT-ND2, DBN1, 

SORL1, ABCA7, APP, and APOE. For Entropy knowledge graph; APP, UNC5C, 

PSEN1, ADAM10, PSEN2, MT-ND2, MT-ND1, ABCA7, SORL1, APOE, and DBN1.  

When we look at the Figure 4.31; knowledge graph obtained for Ensemble >2.31 and 

higher scored variants, genes that are related to Alzheimer’s Disease node are APP, 

DBN1, MT-ND2, MT-ND1, ABCA7, SORL1, ADAM10, UNC5C, PSEN2, PSEN1 and 

APOE. We know from the literature that ADAM10 and APOE are the genes that are 

related to Alzheimer’s Disease. At the same time ADAM10 is one of the genes that is 

present in our Ensembl gene list. Pathways that are found to be associated with these genes 

are NOTCH activation and transmission, Noncanonical activation of NOTCH3 and 

Nuclear signaling by ERBB4. When we look at the Figure 4.32; knowledge graph 

obtained for Ensemble >3.21 and higher scored variants, genes related to Alzheimer’s 

Disease node are PSEN1, PSEN2, ADAM10, UNC5C, APP, MT-ND1, MT-ND2, 

ABCA7, SORL1, DBN1 and APOE. Although the number of genes is fewer in the 

Ensembl 3.21> list we still observe the same pathways; noncanonical activation of 

NOTCH3, NOTCH2 activation and transmission, NOTCH3 activation and transmission, 

NOTCH4 activation and transmission and Nuclear signaling by ERBB4. When we look 

at the connection of NOTCH 2-3-4 activation and transmission pathways with the genes, 

it is observed that ADAM10 is involved in the NOTCH pathways. ADAM10 is associated 

with Alzheimer’s Disease pathology from the literature. According to Yuen I. et al., 2017, 

increasing amounts of data shows that ADAM10 not only inhibits the formation of Aβ, 

but it may also alter the pathology of Alzheimer's disease through mechanisms such as 

lowering tau pathology, maintaining normal synaptic functioning, and encouraging 

hippocampus neurogenesis and neural network homeostasis.  

On the other hand, Nuclear signaling by ERBB4 has been shown to take part in AD 

pathogenesis, and it is known to regulate SPOCK1 and APOE at gene expression level in 

the nucleus.  APOE is one of the major players in AD etiology, responsible for %25 of 

hereditary AD cases.  APOE, which is found in both the CNS and the periphery, is a 

crucial link between these two compartments and playing a role in the pathogenesis of 

Alzheimer's disease (AD) by breaking the blood–brain barrier (BBB) on both sides 

(Chernick et al., 2019). But there are no AD-related studies for the SPOCK1 gene, which 

is a gene from the SPARC protein family. It is known that SPOCK1 is regulated by 

ERBB4 signaling. There are studies on the role of ERRB4 regulation in the pathology of 
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AD, but so far, there aren’t any studies showing that SPOCK1 is related to AD through 

ERBB4 or causes a pathology through nerve cells.  

The SPARC gene is shared between Ensemble and Entropy gene lists and genes related 

to “Nuclear signaling by ERBB4 pathway”. There is a lack of studies on the role of 

SPOCK1 (SPARC) in the brain and LOAD. These observations lead us to propose a new 

hypothesis that SPOCK1 (SPARC) may be regulated by ERBB4 signaling in brain cells, 

thus having a causative role in AD pathogenesis. 

The functional enrichment analysis results revealed a higher number of clusters for 

Ensemble >2.31 set than the Entropy set when we look at the results. The clusters obtained 

for the Entropy method are at the same time part of the Ensemble>2.31 network. 

Enrichment and clustering analyses showed that neuron and cell development, 

extracellular matrix, and cell membrane functions occur among genes with ensemble 

scores of 2.31 and higher.  

As the result of the genotyping, risk variants that are significantly different in case and 

control groups are; UNC93B1, ANGPT2/MCPH1, ALDH3B1, LSAMP, TENM3, 

ARHGAP26, CCDC3, NDFIP1, SPOCK1, PI4K2B, CSDMD and a genomic variant. 

When we look at the SPOCK1 gene, it is observed with a much greater frequency in the 

LOAD group. As a success criterion of the proposed TUBİTAK ARDEB 1003 project, it 

was expected that 75% of the variants prioritized with machine learning models would 

have a distinctive feature of LOAD risk for the geography of Turkey. As listed in Table 

4.14, 18 of the 26 variants studied were found to be distinctive in the LOAD-TR and CNT-

TR groups in terms of risk and protection. Distinctive ones constitute 70% of the 

genotyping variants. Considering the Non-Finnish European, which is the population 

closest to the population frequencies observed in our country, it was observed that only 

one variant did not report a difference between the LOAD group and NFE, which shows 

that the variants selected for the NFE population consist of variants with a discrimination 

potential of 96%. 
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CHAPTER 6 

 

6. CONCLUSIONS 

The Late-Onset Alzheimer’s Disease’s (LOAD) complex genetic etiology is still unclear, 

which prevents the early and differential diagnosis of LOAD. Genome-Wide Association 

Studies (GWAS) allows exploration of the statistical interactions of individual variants, 

but the univariate analysis oversees these interactions between variants. The machine 

learning algorithms can capture hidden, novel, and significant patterns considering 

nonlinear interactions between variants to understand the genetic predisposition for 

complex genetic disorders, where multiple variants determine the risk.  

In this study, the variants produced as the results of the machine learning algorithms 

developed by our group are compared by network-based approaches. Firstly, we 

constructed biological networks for our genes of interest to compare the connectivity of 

networks obtained by different methods. Then we did functional enrichment analysis to 

discover pathways related to Alzheimer’s Disease. Lastly, we observed the number of 

shared pathway clusters obtained by Ensemble and Entropy gene sets. Among the selected 

variants after prioritization associated with LOAD, the pyrosequencing primer design was 

completed for a total of 32 variants, and the sequencing primers were optimized. In 

addition, within the project's scope, a case-control group consisting of 43 LOAD 

diagnosed and 38 healthy participants were formed, and genotyping for the prioritized 

variants was completed. 

The result obtained by the Ensemble method included interacting proteins, while the result 

obtained by entropy showed that the genes on the same genetic network were more 

concentrated. We showed that, both of the meta-analysis methods helped us to understand 

the relation of associated variants prioritized with LOAD-RF-RF and LOAD. Genotyping 

studies have shown that the proposed LOAD-RF-RF model variants will be successful in 

the early and differential diagnosis of patients, especially in NFE populations. These 

results should be reconfirmed with clinical studies to be carried out with expanded patient 

groups, and confirmation should be made about the use for diagnostic purposes in the 

clinic. 

In addition, we think that the rate of choosing causative variants among the associated 

variants has increased with both the application of machine learning methods applied after 

GWAS and the meta-analysis of the results obtained from different data sets with ensmebl 
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and entropy methods. In this study, the strongest candidate variants with these features 

were on the SPOCK1 gene, which is regulated by ERBB4 signal. 

ERBB4 gene is one of the four members in the EGFR subfamily of receptor tyrosine 

kinases. Ligands include EGF, epiregulin, betacellulin and the neuregulins. (Sundvall 

et.al.) ERBB4 is a key neuregulin-1 receptor, it is expressed in multiple regions in the 

adult animal brain, but there is a little information about its localization in AD brains. In 

a 2010 study by Woo et al., in AD brains, ERBB4 immunoreactivity was demonstrated to 

colocalize with the apoptotic signal Bax in apoptotic hippocampal pyramidal neurons. 

These results suggest that up-regulation of ERBB4 immunoreactivity in the apoptotic 

neuron may involve the progression of AD pathology. The neuregulins (NRG1) are a 

complex family of factors that perform many functions during neural development. At 

interneuronal synapses, neuregulin ERBB receptors associate with PDZ-domain proteins 

at postsynaptic densities, where they can modulate synaptic plasticity. (Buonanno and 

Fischbach, 2001). According to the study Sardi et al. 2006, presenilin-dependent ERBB4 

Nuclear signaling regulates the timing of astrogenesis in the developing brain. Relying on 

these studies, astrogenesis occurs precociously in ERBB4 knockout mice. Corresponding 

to the 2011 study by Woo et al., up-regulating of ERBB4 immunoreactivity may be 

involved in the progression of pathology of AD. Neuregulin 4 (NRG4) +/+ mice 

embryonic cortical pyramidal neurons co-express NRG4 and its receptor ERBB4, 

according to a study by Paramo et al., 2018.  

 

When we look at the recent 2021 study by Ou et al., it is stated that NRG4 has a crucial 

function in the developing brain. Thus, it will be interesting to ascertain how the putative 

NRG4/ERBB4 autocrine loop is regulated in pyramidal neurons and investigate how 

NRG4 contributes to the pathogenesis of particular neurodegenerative diseases such as 

AD. On the other hand, in a 2016 study by Chang et al., it was stated that increased plasma 

soluble neuregulin-1 levels might be a novel and reliable biological marker for the early 

diagnosis of AD. Furthermore, Xu et al., 2016 stated that soluble ectodomains of type I 

and type III Neuregulin 1 significantly increased the expression of Aβ-degrading enzyme 

neprilysin (NEP) in primary neuronal cultures. A 2020 review by Guma et al. investigated 

the impact of the growth factor neuregulin and its ERBB receptors on mitochondria. While 

the APOE4 gene, which is associated with AD etiology, also has a detrimental role in 

regulating fatty acid metabolism across neurons and astrocytes in tandem with their 

distinctive mitochondrial phenotypes. The literature supports the role of ERBB4 signaling 

in AD etiology. Moreover, the gene SPOCK1 (SPARC) present in our gene lists is related 

to the ERBB4 nuclear signaling pathway. Upon this, we proposed that the role of SPOCK1 

in brain cells and Alzheimer’s Disease should be further investigated. 
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APPENDICES 

 

APPENDIX A 

Materials and Methods 

Table 3.5. Detailed parameters of CROssBAR query. 
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APPENDIX B 

Results 

 

 

Figure 4.7. Topological relationship for Ensemble > 2.31 scored, only overlapped genes 

for shared protein domains attribute. Nodes represent genes, genes that we have searched 

are indicated with stripes and strings represent relation between genes. 110 genes are not 

connected. 
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Figure 4.8. Topological relationship for Ensemble 3.31, 3.21 and 2.31 scored, only 

overlapped genes for shared protein domains attribute. Nodes represent genes, genes that 

we have searched are indicated with stripes and strings represent relation between genes. 

Only connected gene are showed. 
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Figure 4.9. Topological relationship for Ensemble > 2.31 scored, only overlapped genes 

for physical interactions attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes and strings represent relation between genes. 136 genes are not 

connected. 
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Figure 4.10. Topological relationship for Ensemble > 2.31 scored, only overlapped genes 

for physical interactions attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes, and strings represent the relation between genes. Only connected 

genes are shown. 
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Figure 4.11. Topological relationship for Ensemble >2.31 scored, only overlapped genes 

for co-localization attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes and strings represent relation between genes. 105 genes are not 

connected.  
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Figure 4.12. Topological relationship for Ensemble > 2.31 scored, only overlapped genes 

for co-localization. Nodes represent genes, genes that we have searched are indicated with 

stripes and strings represent relation between genes. Only connected genes are showed. 
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Figure 4.13. Topological relationship for Ensemble > 3.21 scored, only overlapped genes 

for shared protein domains. Nodes represent genes, genes that we have searched are 

indicated with stripes and strings represent relation between genes. 27 genes are not 

connected. 
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Figure 4.14. Topological relationship for Ensemble >3.21 scored, only overlapped genes 

for shared protein domains. Nodes represent genes, genes that we have searched are 

indicated with stripes, and strings represent the relation between genes. Only connected 

genes are shown. 
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Figure 4.15. Topological relationship for Ensemble >3.21 scored, only overlapped genes 

for physical interaction attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes, and strings represent the relation between genes. Sixty genes are 

not connected. 
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Figure 4.16. Topological relationship for Ensemble > 3.21 scored, only overlapped genes 

for physical interaction attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes, and strings represent the relation between genes. Only connected 

genes are shown. 
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Figure 4.17. Topological relationship for Ensemble > 3.21 scored, only overlapped genes 

for co-localization attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes, and strings represent the relation between genes. Fifty-seven genes 

are not connected. 



100 

 

 

 

 

 

 

 

Figure 4.18. Topological relationship for Ensemble > 3.21 scored, only overlapped genes 

for co-localization attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes, and strings represent the relation between genes. Only connected 

genes are shown. 
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Figure 4.19. Topological relationship for Entropy only overlapped genes for physical 

interactions attribute. Nodes represent genes, genes that we have searched are indicated 

with stripes, and strings represent the relation between genes. Twenty-six genes are not 

connected. 
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Figure 4.20. Topological relationship for Entropy only overlapped genes for physical 

interactions attribute. Nodes represent genes, genes that we have searched are indicated 

with stripes, and strings represent the relation between genes. Only connected genes are 

shown. 
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Figure 4.21. Topological relationship for Entropy only overlapped genes for co-

localization interactions attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes, and strings represent the relation between genes. Fifty-three genes 

are not connected. 
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Figure 4.22. Topological relationship for Entropy only overlapped genes for co-

localization interactions attribute. Nodes represent genes, genes that we have searched are 

indicated with stripes, and strings represent the relation between genes. Only connected 

genes are shown. 

 

 

 

 

 

 

 

 

 



105 

 

 

 

 

Table 4.2. Genes in the GeneMANIA networks for Ensemble > 2.31, Ensemble >3.21, 

and Entropy groups. 

Ensemble > 2.31_physical_int Ensemble >2.31_co_loc Ensemble > 3.21_physical_int Ensemble >3.21_co_loc Entropy_physical_int Entropy_co_loc 

ABCB9,APP, C9orf3 ABCB9,ABCC8,ADAMTS12 DLC1 CSGALNACT2 RYR3,VAV2 LAMA2 

ADCY2,ARMCX3, CNNM1 AOAH,APP,ARHGAP18 FBXW8 CRISP1 MDFI,NEDD1 TPO 

ADCY5,BEX1, COL22A1 ARHGAP26, 

ARHGDIG,ARMCX3 

ABI1 GNGT1 CALML6 PLAGL1 

CSGALNACT2, CYP4F2, DMD ASIC2,ATOH8,BEX1 CYB5R3 SPOCK1 VPS26B SPOCK1 

CYB5R3,DISC1, FAM168A C9orf3,CACNA2D1,CALN1 CYFIP1 NR1H4 PGM2L1 VPS26B 

CYP4F12,DLC1, FARS2 CCDC3,CDH13,CDH22 C9orf3 PITPNA TNFRSF11A SLC11A2 

FBLN2,FGF12, GOPC CHST11,CNGB3,CNNM1 NR5A2 NDRG3 TUBGCP3 CA4 

FBXW8,FITM2, HUS1 CNR1,ZNF764 CYFIP2 OSBP2 GSTA1 ELF2 

FERMT2,GLRA3, IGSF21 CNTN5,CSMD1,CYP4F12 CSGALNACT2 CCDC3 SLC22A7 FBLN2 

KCNAB1,KCTD2, LMBRD1 CRISP1,CTDSPL,CYP4F2 NHSL2 PITPNC1 SNX32 ANGPT2 

KCNIP4,LINGO1, LSAMP CSGALNACT2,CYB5R3,DISC1  LSAMP CHST12 ST3GAL1 

KCNJ11,LINGO2, MDFI DLGAP1, FGF12, GNAL  SLC17A2 SLC11A2 NDFIP1 

MLYCD,NFATC1, NTM DMD, FHIT, GNGT1  NDRG4 UQCRFS1 ADAM18 

MSH3,NPLOC4, OPCML EMCN, GLRA3, HUS1   ZNF184  

NEGR1,NR5A2,OSBP2 IGSF21,KCNIP4,LAMA2   CA4  

PCDHA1,PCDHA12, PCDHA3 ITPR1, KCNK7, LRFN3   ELF2  

PCDHA10, PCDHA13, PCDHA4 KCNAB1,KIF26B,LSAMP   E2F2  

PCDHA11,PCDHA2, PCDHA5 MAN1A2, ME1, NAV2   CCN4  

PCDHA6,PCDHA9, PLEKHG2 MCF2, MLYCD, NDFIP1   SNX4  

PCDHA7, PCDHAC1, PPFIBP2 MDFI, MOCOS, NDRG4   CCT2  

PCDHA8,PCDHAC2, PPP2R5C NR5A2,OSBP2,PCDHA11   PRR36  

PRKCE,RAPGEF4,RYR2 NTM,PCDHA1,PCDHA12   FARS2  

PTPRD,RBFOX1,RYR3 OPCML,PCDHA10,PCDHA13   UGGT1  

PVRL2,RUNX1,SLC17A2 PCDHA2,PCDHA5,PCDHA8   PCP4  

SPRY1, TPST2, VAV2 PCDHA3,PCDHA6,PCDHA9   NPLOC4  

SSBP3,TSPAN18,ZNF747 PCDHA4,PCDHA7,PCDHAC1   NPSR1  
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SYCP2L,TTN,ZNF764 PCDHAC2,PIK3C3,PRKCE   TMPRSS15  

ZNF786 PCSK6,PITPNC1,PTPRD   ANXA13  

 PEX14, PLAGL1, PTPRG   ST3GAL1  

 PTPRT, RBFOX1, RORA   RAPGEF4  

 RAPGEF4,RCN1,RPS6KL1   SNX30  

 RASGRF1,RNFT2,RUNX1   NDFIP1  

 RUNX2,SEMA3C,SPOCK1   LYRM7  

 RYR2, SEMA6A, SSBP3   SOX6  

 RYR3,SLCO1A2,ST3GAL1   SLC4A4  

 STAB2, TPO, UST   RUNX1  

 THSD4, TRIM9, VAV2   MCPH1  

 TNFRSF13C,TTN,ZNF747   SYCP2L  
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APPENDIX C 

 

Results 

 

Table 4.7. Genes and diseases which are found in Figure 4.29. 

SHARED 

NAME 

ENTREZ 

ID 

Type Role SHARED NAME ENTREZ 

ID 

Type Role 

PCP4  5121 Gene/Protein Candidate-

Gene/Protein 

PLAGL1  5325 Gene/Protein Candidate-

Gene/Protein 

ANXA6  309 Gene/Protein Candidate-

Gene/Protein 

KCNAB1  7881 Gene/Protein Candidate-

Gene/Protein 

PRDM16  63976 Gene/Protein Candidate-

Gene/Protein 

LAMA2  3908 Gene/Protein Candidate-

Gene/Protein 

FERMT2  10979 Gene/Protein Candidate-

Gene/Protein 

DGKB  1607 Gene/Protein Candidate-

Gene/Protein 

FARS2  10667 Gene/Protein Candidate-

Gene/Protein 

CTNNA3  29119 Gene/Protein Training-

Gene/Protein 

ARHGAP18  93663 Gene/Protein Training-

Gene/Protein 

CYB5R3  1727 Gene/Protein Candidate-

Gene/Protein 

SEMA3C  10512 Gene/Protein Candidate-

Gene/Protein 

NFATC1  4772 Gene/Protein Candidate-

Gene/Protein 

FRMPD4  9758 Gene/Protein Candidate-

Gene/Protein 

ROBO2  6092 Gene/Protein Candidate-

Gene/Protein 

ERC2  26059 Gene/Protein Candidate-

Gene/Protein 

TPST1  8460 Gene/Protein Candidate-

Gene/Protein 

NPLOC4  55666 Gene/Protein Candidate-

Gene/Protein 

TPST2  8459 Gene/Protein Candidate-

Gene/Protein 

OSBP2  23762 Gene/Protein Candidate-

Gene/Protein 

CDH13  1012 Gene/Protein Candidate-

Gene/Protein 

SSBP3  23648 Gene/Protein Candidate-

Gene/Protein 

CTDSPL  10217 Gene/Protein Candidate-

Gene/Protein 

STAB2  55576 Gene/Protein Candidate-

Gene/Protein 

PPP2R5C  5527 Gene/Protein Candidate-

Gene/Protein 
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TRIM9  114088 Gene/Protein Candidate-

Gene/Protein 

UGGT1  56886 Gene/Protein Candidate-

Gene/Protein 

EMCN  51705 Gene/Protein Candidate-

Gene/Protein 

CHAT  1103 Gene/Protein Training-

Gene/Protein 

FBXW8  26259 Gene/Protein Candidate-

Gene/Protein 

PI4K2B  55300 Gene/Protein Candidate-

Gene/Protein 

NAV2  89797 Gene/Protein Candidate-

Gene/Protein 

SCHIZOPHRENIA; 

SCZD  

MIM181500 Disease Candidate-Disease 

SLC6A5  9152 Gene/Protein Candidate-

Gene/Protein 

PIK3C3  5289 Gene/Protein Training-

Gene/Protein 

PTPRT  11122 Gene/Protein Candidate-

Gene/Protein 

COL5A1  1289 Gene/Protein Candidate-

Gene/Protein 

RCN1  5954 Gene/Protein Candidate-

Gene/Protein 

RASGRF1  5923 Gene/Protein Candidate-

Gene/Protein 

TMPRSS15  5651 Gene/Protein Candidate-

Gene/Protein 

IQGAP2  10788 Gene/Protein Candidate-

Gene/Protein 

PTPRD  5789 Gene/Protein Candidate-

Gene/Protein 

ITPR1  3708 Gene/Protein Candidate-

Gene/Protein 

LCMT1  51451 Gene/Protein Training-

Gene/Protein 

VAV2  7410 Gene/Protein Candidate-

Gene/Protein 

PCDHA6  56142 Gene/Protein Training-

Gene/Protein 

ARHGAP26  23092 Gene/Protein Candidate-

Gene/Protein 

EXD3  54932 Gene/Protein Candidate-

Gene/Protein 

PLEKHG2  64857 Gene/Protein Candidate-

Gene/Protein 

NXN  64359 Gene/Protein Candidate-

Gene/Protein 

CHRM3  1131 Gene/Protein Candidate-

Gene/Protein 

OPCML  4978 Gene/Protein Candidate-

Gene/Protein 

MCF2  4168 Gene/Protein Candidate-

Gene/Protein 

SLCO1A2  6579 Gene/Protein Candidate-

Gene/Protein 

ZMIZ1  57178 Gene/Protein Candidate-

Gene/Protein 

NDFIP1  80762 Gene/Protein Candidate-

Gene/Protein 

PCDHA4  56144 Gene/Protein Candidate-

Gene/Protein 

LINGO1  84894 Gene/Protein Candidate-

Gene/Protein 

MDFI  4188 Gene/Protein Candidate-

Gene/Protein 

PVRL2  5819 Gene/Protein Training-

Gene/Protein 

ANXA13  312 Gene/Protein Candidate-

Gene/Protein 

SPOCK1  6695 Gene/Protein Candidate-

Gene/Protein 

DLGAP1  9229 Gene/Protein Candidate-

Gene/Protein 

MAN1A2  10905 Gene/Protein Candidate-

Gene/Protein 

RYR2  6262 Gene/Protein Training-

Gene/Protein 
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RAPGEF4  11069 Gene/Protein Candidate-

Gene/Protein 

IGSF21  84966 Gene/Protein Candidate-

Gene/Protein 

KCNIP4  80333 Gene/Protein Candidate-

Gene/Protein 

DLC1  10395 Gene/Protein Candidate-

Gene/Protein 

LSAMP  4045 Gene/Protein Candidate-

Gene/Protein 

NR5A2  2494 Gene/Protein Candidate-

Gene/Protein 

PEX14  5195 Gene/Protein Candidate-

Gene/Protein 

PHLPP1  23239 Gene/Protein Candidate-

Gene/Protein 

SHROOM3  57619 Gene/Protein Candidate-

Gene/Protein 

AHNAK  79026 Gene/Protein Candidate-

Gene/Protein 

SPRY1  10252 Gene/Protein Candidate-

Gene/Protein 

FBLN2  2199 Gene/Protein Training-

Gene/Protein 

GNAL  2774 Gene/Protein Candidate-

Gene/Protein 

ADCY2  108 Gene/Protein Candidate-

Gene/Protein 

GNGT1  2792 Gene/Protein Candidate-

Gene/Protein 

CIITA  4261 Gene/Protein Training-

Gene/Protein 

CYFIP2  26999 Gene/Protein Candidate-

Gene/Protein 

DISC1  27185 Gene/Protein Training-

Gene/Protein 

RYR3  6263 Gene/Protein Candidate-

Gene/Protein 

PRKCE  5581 Gene/Protein Candidate-

Gene/Protein 

PCSK6  5046 Gene/Protein Candidate-

Gene/Protein 

TTN  7273 Gene/Protein Candidate-

Gene/Protein 

HUS1  3364 Gene/Protein Candidate-

Gene/Protein 

ETV6 2120 Gene/Protein Candidate-

Gene/Protein 

FGF12  2257 Gene/Protein Candidate-

Gene/Protein 

GOPC  57120 Gene/Protein Candidate-

Gene/Protein 

PPFIBP2  8495 Gene/Protein Candidate-

Gene/Protein 

ROS1  6098 Gene/Protein Candidate-

Gene/Protein 

PTPRG  5793 Gene/Protein Candidate-

Gene/Protein 

DIABETES MELLITUS MIM125853 Disease Candidate-Disease 

RBFOX1  54715 Gene/Protein Training-

Gene/Protein 

FAM76B  143684 Gene/Protein Candidate-

Gene/Protein 

ELL2  22936 Gene/Protein Candidate-

Gene/Protein 

PITPNC1  26207 Gene/Protein Candidate-

Gene/Protein 
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APPENDIX D 

 

Whole gene lists used in this work. 

 

Ensembl>2.31 Ensembl3.21> Entropy-all Entropy-ADNI Entropy-GenADA Entropy-NCRAD 

PRDM16 PRDM16 AADACL2-AS1 ALDH3B1 AP003398.2 HIF1AN 

PEX14 CSMD2 AC009117.1 FAM76B AC079362.1 PAX2 

IGSF21 RP5-1007G16.1 AC009509.1 LINC00507 AC024909.1 RP11-309P22.1 

MYOM3 NR5A2 AC009869.1 FERMT2 None GPAM 

CSMD2 KIF26B AC010255.3 CDH13 AC034268.2 RP11-396O20.2 

RP5-1007G16.1 CCDC3 AC022784.1 MMP28 NPLOC4 RP11-222N13.1 

SSBP3 CSGALNACT2 AC024909.1 AC092594.1 RUNX1 SOX6 

RP11-14O19.2 SLC18A2 AC025252.1 UGGT1 PHF21B RP11-1060J15.4 

SLC6A17 PPFIBP2 AC026396.1 TMPRSS15 FBLN2 CBX5 

FAM19A3 TSPAN18 AC026884.1 PI4K2B SPOCK1 RP11-968A15.2 

MAN1A2 ALDH3B1 AC034268.2 NDFIP1 NHSL1 FAM19A2 

PBX1 CNTN5 AC068787.1 SYCP2L MCPH1 Y_RNA 

NR5A2 RP11-13A1.3 AC073592.2 RP11-637O19.3 ANGPT2 NCOR2 

DISC1 RNFT2 AC073592.8 PLAGL1 ST3GAL1 SCARB1 

MLK4 FBXW8 AC079362.1 NPSR1-AS1 HMCN2 RP11-955H22.2 

RYR2 RBFOX1 AC079380.1 NPSR1  RP11-351O2.1 

CHRM3 NDRG4 AC087379.1 TPST1  LINC00430 

KIF26B PITPNC1 AC090515.3 RP11-3P22.2  UBBP5 

CCDC3 NPLOC4 AC091895.1 VAV2  RP11-33N16.3 

RP11-462L8.1 PHLPP1 AC092100.1   RYR3 

CSGALNACT2 AC107057.2 AC092364.1   LCMT1 

CHAT AC108025.2 AC093277.1   GNAL 
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SLC18A3 RP4-568F9.6 AC093462.1   MBD2 

CTNNA3 RUNX1 AC093840.1   POLI 

ZMIZ1 OSBP2 AC096992.1   RP11-420K14.8 

HPSE2 CYB5R3 AC104662.2   PSG5 

CNNM1 AC026188.1 AC105252.1   PSG4 

SLC18A2 ITPR1 AC105450.1   TPO 

PPFIBP2 FBLN2 AC106744.1   DPP10 

ABCC8 LSAMP AC106800.1   RAPGEF4 

NAV2 RP11-454C18.2 AC117382.2   DNER 

SLC6A5 TPRG1 AC123767.1   TRIP12 

LUZP2 FGF12 ADAM10   PCP4 

RP11-587D21.4 TENM3 ADAM18   AC008132.13 

RCN1 ENPP6 AF127936.2   DGCR6 

TSPAN18 ADCY2 AL024498.2   EEFSEC 

AHNAK ANKRD33B AL137230.2   DNAJB8 

ALDH3B1 CTC-340D7.1 AL138885.1   RP11-102M11.2 

FAM168A IQGAP2 AL139317.5   RP11-731C17.1 

KCTD21 SPOCK1 AL161716.1   RP11-454C18.2 

FAM76B ARHGAP26 AL353595.1   SLC4A4 

CNTN5 CYFIP2 AL589740.1   RP11-285A15.1 

SLC35F2 SYCP2L AL589826.1   RP11-427M20.1 

NTM RP11-637O19.3 AL713851.1   RNU1-150P 

OPCML SLC17A2 ALDH3B1   AC108105.1 

ETV6 MDFI ANGPT2   NIM1K 

SLCO1A2 RUNX2 ANXA13   RP11-447H19.1 

RP11-13A1.3 CRISP1 AP003398.2   CTC-441N14.4 

UHRF1BP1L ME1 APOOP2   CTC-210G5.1 

STAB2 RP11-378G13.2 BX119904.1   RP11-166A12.1 

CHST11 NHSL1 C9orf84   LYRM7 
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RP11-438N16.1 PLAGL1 CBX5   FARS2 

RNFT2 NPSR1-AS1 CDH13   FAM83B 

FBXW8 NPSR1 CTC-210G5.1   RP3-523K23.2 

LINC00507 GNGT1 CTC-441N14.4   HCRTR2 

LINC00347 AC009784.3 DGCR6   RP11-406O16.1 

MIR4500HG DLC1 DNAJB8   RP3-453D15.1 

SLC25A21 RP11-145O15.3 DNER   RP11-67P15.1 

TRIM9 ANXA13 DPP10   LAMA2 

FERMT2 ST3GAL1 EEFSEC   LINC-PINT 

RP11-33N16.3 C9orf3 FAM19A2   RP11-63E5.6 

PPP2R5C SNX30 FAM230F   FAM87A 

RP11-580I1.2 HMCN2 FAM76B   RP11-10A14.4 

RYR3  FAM83B   CTD-2024D23.1 

RP11-108K3.1  FAM87A   ADAM18 

RORA  FARS2   ANXA13 

THSD4  FBLN2   MELK 

LINGO1  FERMT2   MIR4475 

RASGRF1  GNAL   C9orf84 

AEN  GPAM   SNX30 

PCSK6  HCRTR2   RP11-232D9.1 

RBFOX1  HIF1AN   RNU6-1323P 

CIITA  HMCN2   NEDD1 

LCMT1  HSPD1P15   MDFI 

NDRG4  LAMA2    

CDYL2  LCMT1    

CDH13  LINC00430    

ATP2C2  LINC00507    

NXN  LINC01376    

DNAH9  LINC01440    
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ASIC2  LINC02199    

MMP28  LINC-PINT    

PITPNC1  LYRM7    

KCTD2  MBD2    

SLC38A10  MCPH1    

NPLOC4  MELK    

DLGAP1  MGAT5    

GNAL  MIR4475    

AQP4-AS1  MMP28    

MOCOS  MRPS35P3    

PIK3C3  NDFIP1    

KIAA1468  NHSL1    

PHLPP1  NIM1K    

NFATC1  NPLOC4    

CTC-548K16.2  NPSR1    

CYP4F2  NPSR1-AS1    

CTC-513N18.7  PCP4    

RP11-420K14.8  PHF21B    

PLEKHG2  PLAGL1    

PVRL2  PSG4    

CTC-326K19.6  PSG5    

TPO  PSMC1P6    

AC019118.2  RAPGEF4    

AC107057.2  RF00017    

AC108025.2  RF00019    

LINC00298  RN7SKP190    

AC092594.1  RN7SKP93    

PRKCE  RNU1-150P    

RP11-444A22.1  RNU6-1323P    
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AC007131.2  RNU6ATAC21P    

ATOH8  RP11-166A12.1    

CNTNAP5  RP11-285A15.1    

UGGT1  RP11-309P22.1    

RAPGEF4  RP11-406O16.1    

TTN-AS1  RP11-427M20.1    

TTN  RP11-63E5.6    

RP4-568F9.6  RP11-968A15.2    

PTPRT  RPL12P4    

CDH22  RUNX1    

TMPRSS15  RYR3    

APP  SAMSN1    

RUNX1  SEPSECS-AS1    

AF064860.5  SLC4A4    

PCP4  SNX30    

TPST2  SOX6    

OSBP2  SPARC    

RP1-272J12.1  SPOCK1    

CYB5R3  ST3GAL1    

PHF21B  SYCP2L    

AC026188.1  TAF15    

ITPR1  TEMN3-AS1    

FBLN2  TMPRSS15    

CTDSPL  TPO    

LARS2  TPST1    

ERC2  TRIP12    

FHIT  UBBP5    

PTPRG  UGGT1    

ROBO2  VAV2    



116 

 

 

 

 

LSAMP      

SLC9A9      

RP11-454C18.2      

KCNAB1      

TPRG1      

FGF12      

KCNIP4      

PI4K2B      

RP11-725D20.1      

SHROOM3      

FRAS1      

EMCN      

SPRY1      

RP11-93I21.3      

TENM3      

ENPP6      

RP11-217E13.1      

ADCY2      

ANKRD33B      

ADAMTS12      

AMACR      

RP11-1084J3.4      

GDNF      

CTC-340D7.1      

IQGAP2      

PDE8B      

MSH3      

ELL2      

SEMA6A      
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SPOCK1      

PCDHA1      

PCDHA2      

PCDHA3      

PCDHA4      

PCDHA5      

PCDHA6      

PCDHA7      

PCDHA8      

PCDHA9      

PCDHA10      

PCDHA11      

PCDHA12      

PCDHA13      

PCDHAC1      

NDFIP1      

ARHGAP26      

MIR143HG      

ANXA6      

CYFIP2      

RP11-541P9.3      

FARS2      

SYCP2L      

RP11-637O19.3      

MBOAT1      

CASC15      

LRRC16A      

SLC17A2      

ZSCAN12P1      
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MDFI      

RUNX2      

CRISP1      

RP11-406O16.1      

LMBRD1      

COL19A1      

ME1      

RP11-378G13.2      

RP3-399L15.3      

ROS1      

GOPC      

LAMA2      

ARHGAP18      

NHSL1      

PLAGL1      

UST      

DGKB      

NPSR1-AS1      

NPSR1      

AOAH      

HUS1      

RP11-1217F2.15      

TPST1      

RP11-3P22.2      

CALN1      

SEMA3C      

CACNA2D1      

GNGT1      

AC009784.3      
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ERICH1      

CSMD1      

DLC1      

RP11-145O15.3      

RP11-383H13.1      

CNGB3      

RP11-398G24.2      

ANXA13      

ST3GAL1      

COL22A1      

PTPRD      

LINGO2      

C9orf3      

C9orf84      

SNX30      

DENND1A      

HMCN2      

VAV2      

COL5A1      

EXD3      

FRMPD4      

DMD      

MCF2      
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