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ABSTRACT 

 
INTEGRATIVE PREDICTIVE MODELING OF METASTASIS IN 

MELANOMA CANCER 

 

KUTLAY, Ayşegül 

Ph.D., Department of Health Informatics 

Supervisor: Assist. Prof. Dr. Yeşim AYDIN SON 
 

February 2022, 121 pages 
 

This study focused on identifying the regulatory impact of genetic biomarkers for monitoring 
metastatic molecular signatures of melanoma by investigating the consolidated effect of miRNA, 
mRNA, and DNA methylation. We developed multiple machine learning models to distinguish 
the metastasis by integrating miRNA, mRNA, and DNA methylation markers. We used the TCGA 
melanoma dataset to differentiate metastatic melanoma samples by assessing a set of predictive 
models. An iterative combination of differentially expressed miRNA, mRNA, and methylation 
signatures is used as candidate markers to reveal each new biomarker category's impact. In each 
iteration, the performances of the combined models are calculated. The choice of feature selection 
method and under and oversampling approaches are analyzed during all comparisons. Selected 
biomarkers of the highest performing models are further analyzed for the biological interpretation 
of functional enrichment. MiRNA biomarkers can identify metastatic melanoma with an 81% F-
score in the initial model. The addition of mRNA markers upon miRNA increased F-score to 92 
%. In the final integrated model, the inclusion of the methylation data resulted in a similar F-score 
of 92% but produced a stable model with low variance across multiple trials.   Our results support 
the role of miRNA regulation in metastatic melanoma as miRNA markers models metastasis 
outcomes with high accuracy.  Moreover, the integrated evaluation of miRNA with mRNA and 
Methylation biomarkers increases the model's accuracy. It populates selected biomarkers on the 
metastasis-associated pathways of melanoma, such as "Osteoclast," "Rap1 Signaling" "and 
"Chemokine Signaling" Pathways.   

 
Keywords: Machine Learning, Metastatic Molecular Signatures, miRNA, mRNA, DNA 
Methylation 
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ÖZ 

MELANOM KANSERİNDE METASTAZIN TAHMİNE DAYALI 
BÜTELEŞTİRİCİ MODELLENMESİ 

 

KUTLAY, Ayşegül 

Doktora Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim AYDIN SON 
 

Şubat 2022, 121 sayfa 

 

Bu çalışma, miRNA, mRNA ve DNA metilasyonunun birleştirilmiş etkisini araştırarak 
melanomun metastatik moleküler imzalarını izlemek için genetik biyobelirteçlerin düzenleyici 
etkisini belirlemeye amaçlamaktadır. MiRNA, mRNA ve DNA metilasyon belirteçlerini entegre 
ederek metastazı ayırt etmek için çoklu makine öğrenme modelleri geliştirdik. Bir dizi tahminleme 
modeli değerlendirerek metastatik melanom örneklerini ayırt etmek için TCGA melanom veri 
setini kullandık. Her yeni biyobelirteç kategorisinin etkisini ortaya çıkarmak için aday belirteçler 
olarak ayırıcı şekilde ifade edilen miRNA, mRNA ve metilasyon özniteliklerini yinelemeli bir 
kombinasyonu uygulanmıştır. Her yinelemede, birleştirilmiş modellerin performansları 
hesaplandı. Tüm karşılaştırmalar sırasında, öznitelik seçim yönteminin seçimi ve alt ve üst 
örnekleme yaklaşımları analiz edilmiştir. En yüksek performans gösteren modellerin seçilmiş 
biyobelirteçleri, fonksiyonel zenginleştirme kümelerinin analizi biyolojik yorumu için ayrıca 
irdelenmiştir. İlk modelde, miRNA biyobelirteçleri metastatik melanomu %81 F-skoru ile 
tanımlayabilir. miRNA üzerine mRNA markörlerinin eklenmesi F-skorunu %92'ye yükseltti. 
Nihai entegre modelde, metilasyon verilerinin eklenmesi, %92'lik benzer bir F-skoruyla ulaşıldı, 
ancak birden fazla denemede düşük varyanslı daha kararlı bir model üretildi. Sonuçlarımız, 
miRNA belirteçleri metastaz sonuçlarını yüksek doğrulukla modellediğinden, metastatik 
melanomda miRNA düzenlemesinin rolünü desteklemektedir. Ayrıca miRNA'nın mRNA ve 
Metilasyon biyobelirteçleri ile entegre değerlendirmesi, modelin gücünü artırmaktadır. Modelde, 
seçilmiş olan belirteçler  "Osteoclast", "Rap1 Signaling" "ve "Chemokine Signaling" gibi 
melanomun metastazla ilişkili patikalarda yoğunlaşmaktadır. 
 
Anahtar Sözcükler: Makine Öğrenimi, Metastatik Moleküler İmzalar, miRNA, mRNA, DNA 
Metilasyonu  
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CHAPTER 1 
CHAPTER 

1. INTRODUCTION 

 

The discovery of the gene regulation mechanism of the microRNAs (miRNA) is one of 
the critical signs of progress in cancer biology. MicroRNAs, are untranslated sequences, 
transcript from DNA but do not code into any protein products. So far, about 1400 miRNA 
(Jansson and Lund 2012) have been discovered in the human genome. The most 
remarkable function of miRNAs is their capability to suppress almost one-third of human 
genes. Since the initial discovery of the relationship between cancer and miRNA 
signatures, many studies have shown that miRNA has a critical role in regulating genes 
and, thus, is crucial in tumorigenesis.  

Today, many techniques for the early detection and diagnosis of tumors are available. 
Still, when invasive procedures are required for diagnosis or treatment, it is essential to 
know the metastatic potential of the tumor to estimate the risks benefits of the procedure. 
Also, in the later stages of tumor development, any information about the metastatic status 
of the late-stage tumors is required for deciding between therapy choices. So having a tool 
to predict the metastatic potential may help to decide on a better therapeutic pathway. 

In this study, we focused on the “identification and classification of the key miRNA 
expression profiles for predicting tumor metastasis”. We assessed the predictive potential 
of miRNA by comparing the findings with the combination of various biomarkers. 

So, predictive models based on expression patterns of miRNA, mRNA, and DNA 
methylation markers were developed to monitor the presence and progression of the 
metastatic changes in tumors. For this purpose, analysis of miRNA, mRNA expression, 
and methylation beta values and their impact on metastatic outcomes is conducted. 
Various technique and machine learning models were applied, and their performance was 
compared.  

As a result, this predictive model, which is based on genetic profiles as biomarkers, is 
utilized to generate knowledge for metastasis and to develop a personalized medicine 
approaches in cancer treatment. 
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1.1. Background of Study 
 

The microRNA profiling in cancer has been used for 12 years (Di Leva and Croce 2013). 
After discovering the connection between cancer signature and micro-RNA profiling, 
many studies have been conducted. However, studies until now are mainly focused on the 
correlation or significance between genes and malignancy of cells.  Interrogation 
metastatic progression of cancer is the main novelty of our proposal.  

Two studies with a more generalized scope are pointed out when the literature is reviewed. 
The first is the study conducted to classify the common cancer types (Volinia et al. 2006). 
The other study, called “systems genetic analysis to metastatic interrogation progression 
of cancer,” was performed by Faraji and his coworkers (Faraji et al. 2014). Volinia and 
colloquies (Volinia et al. 2006) did not focus on metastatic cancers. In contrast, Faraji and 
his coworkers conducted the study by focusing on metastatic breast cancers by working 
on mice miRNAs. Even though metastasis is the systemic outcome of most cancer diseases 
that are the leading cause of cancer-related mortality, there is not enough study on the 
interrogation of the metastatic progression of different cancer types. 

This study is distinguished from the other studies in the literature on three main points. 
First, this study will provide a different perspective for cancer studies by proving a 
generalized model for metastatic cancer signatures on humans by including various 
genetic biomarkers miRNAs, mRNA, and DNA methylation. Second, the studies focus on 
diagnostic purposes, but cancer treatments also need predictive models (tools). This study 
aims to provide a probabilistic model that could be used as a guide for monitoring of 
presence and progression of the metastatic changes in tumors. Finally, this study is 
dissociated from other studies on the literature that the causality of the metastatic 
signatures will be revealed. A prototype for a predictive model based on the signatures 
revealed is proposed. 

 

1.2. Aim of Study 

The main goals of this study are : 

1- To identify the miRNA signatures involved in the regulation of metastatic disease. 

2- Comparison of different genetic biomarkers and investigate their contribution to 
the metastatic outcome.  
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3- Reveal out the impact of miRNAs among other markers (mRNAs and DNA 
methylation) and causality relationship for metastatic disease. 

4- Use founded relationships of regulators to generate a predictive model that 
manages metastatic tumor progress within cancers. 

  
The predictive model created during the study is the study's primary outcome. 

1.3. Outline of Study 

This thesis study is organized into five chapters which are described as follows. 

Chapter 1: MicroRNAs' contribution to a cancer diagnosis is discussed as background 
information. Then the novelty and purposes of the study are listed.   

Chapter 2:  This chapter contains the study's literature review, which is introduced in 
three sub-sections. The first is the review of melanoma and metastasis. The second is the 
list of the potential biomarkers of melanoma metastasis. Finally, previous studies on 
metastasis are discussed.  

Chapter 3: In this chapter methodology of the study is presented. In the initial part of the 
chapter, the TCGA data set for skin melanoma is given, and attributes are examined. Then 
the overall method for preprocessing, model training, tuning, and test are discussed in 
detail. The iterative approach that the study is formed is described in this section.  

Chapter 4:  Findings of the methods are provided in detail. Comprehensive results for 
each iteration are presented in this chapter.  

Chapter 5: In this final chapter, the discussion and conclusion of the study are explained. 
Limitations and future works are also introduced.  
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 
In this chapter, melanoma, metastasis, and biomarkers of metastasis are presented. Also, 
previous studies on metastasis prediction are discussed.  

2.1. Melanoma And Metastasis 

Melanoma, cancer with a rapid increase in incidence and high mortality, is a malignant 
tumor of skin pigmentation cells with a high mortality disease. Melanoma can develop 
anywhere on the body, but the most observed in areas exposed to the sun, such as the back, 
legs, arms, and face. With nearly 300,000 cases, melanoma is one of the most common 
cancer types worldwide  (World Cancer Research Fund n.d.). 

According to CDC statistics, yearly 85.000 new cases are reported in the USA, where 
8.000 people die annually (United States Cancer Statistics n.d.). On the other hand, 
melanoma cancer incidence reaches 140.00 annual cases in the European Union. It is 
considered one of the fastest-rising types of cancer, albeit with hotspots in Europe being 
the Scandinavian countries, Switzerland, and Austria (American Cancer Society 2016). In 
addition, 16.000 new melanoma cases are reported in the UK, which corresponds to 4% 
of all cancer types, and it has a rising incidence rate of 135% over thirty years (Cancer 
Research UK n.d.).   

Both distant and regional metastasis is possible in melanomas. The most common 
metastases sites in melanoma cases are bone, brain, liver, lung, and skin.  The presence of 
skin metastasis may be the first outward sign of lymphatic or hematogenous spreading.  
So, in melanoma, the prognosis is a critical concern rather than diagnosis. Detecting at 
least suspicious cases via visual examination or short screening is possible. Early 
diagnosis leads to high cure rates, but there is still no effective treatment in later stages, 
where metastasis is observed frequently (Damsky et al., 2011).   
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In normal tissues, the balance between cell growth and death is essential. This balance can 
be disrupted as a result of either “uncontrolled cell growth” or “loss of apoptosis ability 
(Programmed cell death)”  (Ma and Weinberg 2008; Oppenheimer 2006), which leads to 
tumorigenesis. In general, tumorigenesis (abnormal cell) can be malignant or benign. 
While benign tumors do not spread, a malignant tumor spreads to the other tissues.  

Before a malignant tumor develops,  the initial conversion of a normal cell into a primary 
tumor cell occurs (Oppenheimer 2006). This primary tumor may stay stable in this 
originated tissue (benign) or spread to the other parts of the body (malignant) by invasion 
or metastasis (Oppenheimer 1983, 2006; Willis and Pp 1953). Invasion, tumor expansion, 
can be defined as the direct migration of cancer cells into neighboring tissues.  On the 
other hand, metastasis is the spread of tumor cells to areas not directly neighboring the 
primary tumor (Oppenheimer 2006). In metastasis, five main stages are observed (Leong 
et al. 2006; Oppenheimer 2006; Willis and Pp 1953): 

• Cells from the primary tumor are detached  

• Tumor cells, penetration (invasion) of these cells migrate into lymph vessels 
or blood vessels and disseminate the cells or cell clusters to distant areas. 

• Tumor cells lodge in blood vessels of distant organs. 

• Invasion of tumor cells through the vessel walls and into the tissue of 
secondary sites takes place. 

• The secondary tumors grow at the secondary sites. 

Besides the cellular basis described above, carcinogenesis also has a molecular foundation 
(Shalaby et al. 2014; Shen, Stass, and Jiang 2013; Tonini, Rossi, and Claudio 2003).  It is 
caused by alterations or mutations in the genetic code (loss of DNA, gain of DNA, changes 
in nucleotides, or epigenetic effects). Such mutations alter crucial cancer-related 
pathways. Both “research on abnormalities of cancer-related genes occurring in 
preneoplastic and neoplastic lesions” and “recent research such as defining signal 
transduction pathways in cells cycle and the genetic control of the cell cycle” helps to 
reveal the molecular basis of carcinogenesis. Understanding the molecular basis of 
carcinogenesis has important implications in the prevention, diagnosis, and treatment of 
cancer and its metastasis (Harris 1991)  
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2.2. Signatures of Metastasis 

Understanding the molecular basis of carcinogenesis is essential in preventing, 
diagnosing, and treating cancer and its metastasis (Harris 1991).  

Many different markers have been proposed to describe the molecular foundation of 
metastasis. DNA methylation, gene expression profiles, and microRNAs are frequent 
biomarkers for predicting metastasis for most cancer types. The initial studies on 
metastasis biomarkers and predictive models were published in 2004. These initial studies 
were performed using gene expression profiles of the primary tumor collected by DNA 
microarray. Until now, many researchers studied the same topic with different datasets. 
Meanwhile, collective studies performed by three or more previous datasets were also 
published. After 2015 studies on miRNA expression levels and methylation data occur in 
the literature.  

Although predictive machine learning models for melanoma metastasis are limited, many 
studies propose predictive biomarkers for different metastatic cancers. While most studies 
target specific markers, such as microRNA or protein expression, recent studies (De Souza 
et al., 2017) investigate the integrated usage of miRNA and mRNA signatures.  For 
example, binary logistic regression, which uses mir- 331 and miR-195  as markers, can 
distinguish metastasis and local breast cancer (Sensitivity = 0.95, Specificity= 0.76) 
(McAnena et al. 2019). A study conducted by Souza et al. (De Souza et al. 2017) 
developed an integrated model using expression levels of 27 miRNA and 81 targets 
mRNA to classify prostate cancer patients from controls with 67% sensitivity and 75% 
specificity.  

The following sections will provide details of previous studies in literature, which utilize 
different data types as a biomarker.    

2.2.1. Micro RNA 

MicroRNAs are non-coding RNAs (transcripts from DNA but do not code any protein 
products). The microRNAs regulate these cancer-related pathways, such as proliferation, 
cell cycle control, apoptosis, differentiation, migration, and metabolism (Chowdhury et 
al., 2012; Jansson and Lund 2012; Stahlhut and Slack 2013). So, it is not surprising that 
these molecules take a role in carcinogenesis. MicroRNAs have a key role as suppressors 
or promoters of carcinogenesis or metastasis by controlling their target mRNA, which 
causes the pathogenic activity of cells (Shalaby et al., 2014). For these reasons, in time, 
microRNAs became the main focus in cancer biology and were proven as crucial 
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components of normal and pathologic states of cells  (Hayes, Peruzzi, and Lawler 2014; 
Stahlhut and Slack 2013). Their major role is the regulation of genes (He, Xu, and 
Goldkorn 2011). They are also regulatory actors on carcinogenesis. It is proven that in 
about 68% of chronic lymphocytic leukemia cases, microRNA genes miR15 and miR16 
are either deleted or down-regulated (Calin et al. 2002) (Calin et a.,2002). After this initial 
finding, many microRNAs are shown as dysregulated or upregulated in different 
malignant cases  (Calin et al., 2002; Chowdhury et al., 2012; Hayes, Peruzzi, and Lawler, 
2014; Di Leva and Croce 2013; Lim et al. 2015). So, It is a fact that microRNAs contribute 
to several different aspects of carcinogenesis (Shalaby et al., 2014). 

Shalaby and colloquies conducted one of the initial metastatic early prediction studies 
based on microRNA expression levels (Shalaby et al., 2014).  In the study, the expression 
levels of the studied miRNAs are analyzed (with Mann-Whitney U test and Kaplan-Meier 
plots approach) for metastatic characteristics of primary tumor of the renal cell.  As a 
result of the study, miR-155, miR-210, miR-106a, miR-106b, miR-200, and miR-141 are 
found as differentially expressed over metastatic and non-metastatic tumor cells. 

Zhou and colloquies (Zhou et al. 2014) search for the potential of using miR-105 as a 
prognostic marker for metastases. They have conducted research on miR-105 in their 
mouse models and observed high circulating miR-105 at premetastatic and metastases 
stages. Then they used patient data to analyze serum from patients with stage II and III 
breast cancer. 

Zhang and colloquies (L. Zhang et al. 2015) proposed a microRNA-based prediction 
model which predicts risk and hazard ratio for metastasis primary hepatocellular cancer.  
For this purpose, they have used five statistically independent factors (vascular invasion, 
Barcelona Clinic Liver Cancer stage, miR-145, miR-31, and miR-92a). The model 
sensitivity and specificity were 69.6 and 80.2 %, respectively.  

Goossens-Beumer and colloquies (Goossens-Beumer et al. 2015) also proposed a 
microRNA-based classifier for prediction metastasis in colon cancer. In this study, the 
combination of miR25-3p and miR339-5p expression levels in tumor cells was founded 
as an independent prognostic factor for the occurrence of distant metastasis in TNM stage 
II–III colon cancer with a stable microsatellite phenotype. According to another study (Wu 
et al., 2015), CD44, MMP7, and β-catenin expression were positively correlated, 
AI1/CD82 expression showed a negative correlation with distant metastasis colorectal 
cancer.  
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In the other study, Wang et al. (R. Wang, Chen, and Shu 2015) developed a model that 
predicts distance metastatic of primary lung cancer by using Micro RNA expressions on 
a nude mouse. As a result, 17 microRNAs are founded as up-regulated, and seven are 
founded as a down-regulated expression between the non-small cell lung cancer metastatic 
and the non-metastatic cancers.   

 

2.2.2. mRNA And Gene Expression Profiles 

Most of the studies in the literature used gene expression profiles of primary tumors 
obtained by microarray as predictive markers. The distributions of these studies are given 
below.  

In terms of predictive biomarkers of metastasis, the study conducted by Kan et al. (Kan et 
al. 2004)  is one of the initial researches. They have developed a predictive model for 
“Lymph Node Metastasis” using artificial neural networks. The primary site of the 
metastasis was the “esophagus.” According to their result, the model predicts the 
metastasis with %77 accuracy by using “gene expression profiles of primary tumor obtain 
by DNA microarray.” 

Another study is conducted on “Lung Adenocarcinomas” cancer (Xi et al. 2005) with 
metastasis of lymph nodes.  The prediction model is constructed upon “gene expression 
profiles of primary tumor obtain by microarray.” Analysis of gene expression profiles 
from primary tumors may predict lymph nodes well but frequently misclassifies negative 
patients as positive. Classification accuracy is again 94.1% in the metastasis-positive cases 
but only 21.2% in the metastasis-negative cases.  

Moriya et al. (Moriya et al. 2009)  also introduce another study on primary lung tumors 
with Lymph Node metastasis using gene expression profiles. Their prediction model has 
yielded 71.4% accuracy for forecasting lymph node metastasis with independent test 
cases. 

Besides, SVM (support vector machine) classifier, which uses gene expression profiling 
with microarray,  predicts metastasis with 78% accuracy for breast cancer (Burton et al., 
2012).   

Bidus et al. proposed to use gene expression profiling of the primary tumors in patients 
with endometrioid endometrial cancers seems promising for identifying genes associated 
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with lymph node metastasis (Bidus et al. 2006). As a result of the study, TOB2, CDC2, 
MAD2L, ZIC2 probes on the microarray are found as differentially expressed between 
patients with and without lymph node metastasis. 

Wang and colloquies proposed a model to predict distance metastasis on breast cancer (Y 
Wang et al. 2005). Their model predicts distance metastasis with 93% sensitivity and 48% 
specificity. In another study on Gene expression profiling with microarray, a classifier 
SVM (support vector machine) classifier is modeled to predict the primary tumor 
metastasis on Breast Cancer (Thomassen et al. 2007). Through SVM modeling, 24 
metastases and 23 non-metastases were classified correctly using 60 samples with 78 % 
accuracy (Thomassen, 2007). In a later study, metastatic characteristics of breast cancer 
are modeled by using pathological and histological findings of lymph node biopsy by 
using ADTree as a prediction model (Takada et al., 2012).  The multiple survival screening 
algorithms predict metastasis with an accuracy of %77 (Li et al., 2010). The predictive 
accuracy was %87 only for the low-risk group patients.  

Dehnavi and colloquies (Dehnavi et al. 2013) also proposed a hybrid model to predict 
metastasis in breast cancer by using a combination of six data set which includes Lin et 
al. (Li et al. 2010), Dataset and Wang et al. (Y Wang et al. 2005) data sets.  First of all, 
they generated a rough-set theory-based gene selection method. Afterward, this method 
was applied to six available data sets on breast cancer to select the most informative genes. 
This selected gene set is evaluated for prognostic signatures of breast cancer. From the 
combined gene pool, 18 genes were selected for meta-signature. Their model reached a 
71% accuracy level for all risk groups. Radwan and colloquies (Radwan et al. 2013), on 
the other hand, proposed to use the blood mammaglobin expression level as a marker for 
the diagnosis and prediction of breast cancer. During the 34 months of follow-up, five 
mammaglobin-positive patients showed metastatic lesions, and none of the 
mammaglobin-negative patients developed metastasis.  

Computerized tomography(CT) and mRNA expression profiling were combined via 
statistical analysis (Chang et al., 2008) to predict the lymph node metastasis of primary 
lung cancer tumors. This method increases accuracy from 55%(CT) to 86% (CT and 
mRNA).  

A statistical model (by using ANOVA and hierarchical Clustering) is proposed by 
Rickman and colloquies (Rickman et al. 2008) to predict head and neck squamous cell 
carcinoma (HNSCC) metastasis. Using the expressing mRNA levels (with microarray), 
the model predicts future metastasis with an accuracy of %77.  
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In the study of “cancer metastasis networks,” done on a large set of patient data, the 
prediction of progression patterns is generated as a system network for primary tumors 
and the sides of metastasis (Chen et al., 2009). By using these networks (which are 
constructed by hierarchical clustering), they have tried to predict the primary site of tumor 
after a sequence of metastasis multinomial logistic regression with an overall accuracy of 
51-(Prostate 84%, colon 80%, lung and bronchus 69%, ovary 64%, larynx 61%, and 
female breast 56%).  

Roessler  (Roessler et al. 2010) has generated a risk classifier tool to predict the outcome 
of hepatocellular tumors by using gene expression levels combined with serum AFP levels 
or BCLC staging.  In this study, six prediction algorithms (Support Vector Machines 
(SVM), Nearest Centroid (NC), 3-Nearest Neighbor (3-NN), 1-Nearest Neighbor (1-NN), 
Linear Discriminant Analysis (LDA), or Compound Covariate Predictor (CCP) were used 
as a prediction model. Among all, CCP had a sensitivity of 76 % and a specificity of 60.3 
%  on cases from the “Liver Cancer Institute” case. They also tested the model on another 
case set from “Laboratory of Experimental Carcinogenesis.” The model predicts the risk 
with a sensitivity of 83.9 % - specificity of 64.9 %.   

Watanabe and colloquies (Watanabe et al. 2010) proposed a model to predict liver 
metastasis with primary colorectal tumor by using Gene-expression profiles of samples of 
DNA microarray with k-nearest- neighbor method (KNN) and 10-fold cross-validation. 
The model predicts metastasis with 86,2 % Accuracy.  

Zemmour and friends  (Zemmour et al. 2015) developed three different models (Elastic 
net, LASSO, and CoxBoost ) to predict Early Breast Cancer Metastasis by using DNA 
micro Array Data.  In the study, they have used a publicly available dataset. Then they 
validate the results on two other datasets. They predict metastasis with 66 % accuracy on 
one of the datasets and 59% accuracy on the other.  

Several prognostic gene expression signatures have been proposed as significant for 
colorectal cancer.  Ramaswamy et al. (Ramaswamy et al. 2003)  studied patients with 
lung, breast, prostate, colorectal, uterus, ovary” on expression levels of oligonucleotide 
microarray and found five genes as significant for prognostic purposes.   In addition, Wang 
(2004) (Yixin Wang et al. 2004), Barrier  (2005)  (Barrier et al. 2005, Yamasaki (2007) 
(Yamasaki et al. 2007) is also studied patients with Stage I-III colorectal Cancer and found 
23 genes, 47 genes, 119 genes as significant respectively. Yoshida  (Yoshida et al. 2010), 
Cavalieri   (Cavalieri et al. 2007), and lin (Lin et al. 2007) also studied patients with all 
Stages(I-II-III-IV) of colorectal cancer. Nevertheless, they have proposed different genes 
with prognostic significance. Moreover, overlap in the gene expression signatures is little. 
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The low consistency between the different studies may be in part attributed to 
methodological and technical variances.   

 

2.2.3. DNA Methylation 

DNA methylation is a chemical process that adds methyl groups to DNA. This process 
modifies the functionality of the DNA itself. DNA methylation is an important regulator 
and plays a crucial role in normal development. It is essential for genomic imprinting, X-
chromosome inactivation, repression of repetitive elements, and aging.  Besides all these, 
DNA methylation is also found as associated with many types of cancer (F. F. Zhang et 
al., 2011). Global hypomethylation has also been implicated in the development and 
progression of cancer through different mechanisms (Craig et al., 2011). Typically, there 
is hypermethylation of tumor suppressor genes and hypomethylation of oncogenes 
(Gonzalo 2010). 

Melchers and colloquies (Melchers et al. 2015), used DNA methylation as marker for 
metastasis. According to the result of their study, five out of 28 methylation markers 
(OCLN, CDKN2A, MGMT, MLH1, and DAPK1) were frequently differentially 
methylated in patients with oral and oropharyngeal squamous cell carcinoma. 

2.2.4. Other Markers 

Several other studies propose different markers besides mRNA and miRNA expression 
profiles and  DNA methylation biomarkers. 

Yang and colloquies (Yang et al. 2016) developed a predictive statistical model for Lymph 
Node Metastasis in Endometrial Cancer using Serum CA125 combined with 
immunohistochemical markers PR and Ki67. Their model predicts the lymph node 
metastasis sensitivity and specificity of the model were 84.6% and 67.4%, respectively. 
Son et al.

 
(Son et al. 2015) also studied on prediction of primary Endometrial cancer. In 

the study, they proposed using “serum CA-125” as a biomarker for early prediction of 
metastasis.   

In one of the recent studies, Schell et al. (2016) (Schell et al. 2016) developed a prognostic 
signature score with a propensity to detect non-EMT(epithelial-to-mesenchy- mal 
transition ) features. The study has proposed a new composite gene expression signature 
as prognostic score (DPC1.EMT).  
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Lim & Chung (2014) (Lim et al. 2015) proposed serum ENA78/CXCL5, SDF-1/CXCL12, 
and their combinations as biomarkers to predict the presence and distant metastasis of 
primary gastric cancer. Combination of serum ENA78/CXCL5, SDF-1/CXCL12, and 
CEA achieved 92.8% specificity at 75.0% sensitivity to predict distant metastasis of 
gastric cancer. 

2.3. Predictive Models for Metastasis of Melanoma 
 
Unlike other cancers, there are limited studies on modeling melanoma metastasis. 
Recently serum levels of the cytokines IL‐4, GM‐CSF, DCD, and the Breslow thickness 
were proposed as a marker to predict melanoma metastasis, where a linear regression 
achieved the best balance accuracy (83%) in the test set (Mancuso et al. 2020). A deep 
convolutional neural network (DCNN) study to predict BAP1 mutation also identified 
decisive prognostic factors for predicting metastatic risk via whole slide images with an 
area under curve 0.90 (H. Zhang et al. 2020). Additionally, Mir-205-5p is found as a 
significant biomarker for metastatic melanoma by Valentine (Valentini et al. 2019). Also, 
Wei et al. (Wei et al. 2019)  indicate TRIM44 -tripartite motif-containing protein-44, 
regulated by miR-26b-5p, is identified as amplified on melanoma tissues.  The same study 
reports miR-26-5p as downregulated on melanoma. The study conducted by Kinslechner 
et al. (Kinslechner et al. 2019) shows that the scavenger receptor class B type 1 (SR-BI) 
protein expression contributes to metastatic melanoma.   Wang et al. (Yanqian Wang et 
al. 2019) proposed long non-coding RNA TUG1 as a prognostic biomarker of metastatic 
melanoma. Besides, they have also indicated miR‑29c‑3p, which is the target for G-
protein signaling 1 (RGS1), suppresses the expression of Long non-coding RNA taurine-
upregulated gene 1 (TUG1).  

2.4. Summary 
 

Overall, transcriptional regulation is one of the critical mechanisms underlying cancer 
development. Even though mRNA, microRNA, and DNA methylation mechanisms 
critically impact metastatic outcomes, there are no comprehensive data mining models 
that combine all aspects of transcriptional regulation for metastasis prediction. This study 
focused on identifying the regulatory impact of genetic biomarkers for monitoring 
metastatic molecular signatures of melanoma by investigating the consolidated effect of 
miRNA, mRNA, and DNA methylation.  We used differentially expressed miRNA, 
mRNA, and methylation signatures on the TCGA melanoma dataset to distinguish 
metastatic melanoma samples by assessing a set of predictive models. The highest 
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performing model is selected, and its biomarkers are further analyzed for the biological 
interpretation of functional enrichment and to determine regulatory networks. 
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CHAPTER 3 
 

3. METHODOLOGY 

 

3.1. Dataset Collection 

In the study, opened data for Skin Melanoma (SKCM) (The Cancer Genome Atlas 
Network 2015) of TCGA(The Cancer Genome Atlas) database is used, which is a part of 
the TCGA dataset served on the Cancer Genomics Cloud (CGC). The Cancer Genomics 
Cloud (CGC) (Institute 2020) hosts a large genomic dataset and provides tools for 
searching and analyzing genomic data, serving as a computational environment on the 
cloud.  The data browser tool provided by CGC is used to search on TCGA cases and 
Cancer Cell Line Encyclopedia (CCLE) Cell Lines. On TCGA, melanoma data set with 
470 cases composed of 352 Metastatic and 97 primary tumor samples used during this 
study, with three experimental strategies in the data set, namely miRNA Expression, 
mRNA Expression, and methylation.  

 

3.1.1. TCGA Skin Melanoma Data (SKCM)  

We have collected the melanoma data for miRNA sequencing, RNA sequencing, and 
methylation array. For 470 different cases with primary and metastatic melanoma, tissue 
samples are compared to distinguish the metastatic melanoma from the primary tumor. 
We finalized the predictive model input preprocessing by applying data cleaning, 
normalization, and scaling preprocessing steps for the remaining 449 cases (Figure 1). 470 
distinct cases and 11.265 opened files have been found by using three filters: 

1. Primary Site (Skin) 
2. Project (TCGA-SKCM) 
3. Experimental Strategy (miRNA-Seq; Methylation array; RNA-Seq)  
4. File Access (Open) 

We generated a subset of cases, which contains all data for “miRNA sequences,” 
“Methylation array,” and “RNA sequences.” In the current interface of GDC Data Portal, 
the following search query provides the data files in the repository: 
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cases.primary_site in ["skin"] and cases.project.program.name in 
["TCGA"] and cases.project.project_id in ["TCGA-SKCM"] and 
files.access in ["open"] and files.experimental_strategy in 
["Methylation Array","RNA-Seq","miRNA-Seq"] 

 
TCGA provides various attributes for “miRNA sequences,” “Methylation array,” and 
“RNA sequences.” For miRNA, we used “miRNA Expression Quantification,” which 
is miRNA expressions provided as a table that associates miRNA IDs with reading 
count and a normalized count in reads-per-million-miRNA-mapped. Raw Read 
Counts, the number of reads aligned to each gene, calculated by the HT-Seq 
algorithm, is used for mRNA. Ensemble Gene Id represents this data and the number 
of reads aligned mRNA.  For methylation analysis, TCGA provides Beta-values, 
which approximates the percentage of methylation of the gene (Figure 1).  

 
Table 1: TCGA provides separate files for each data type.  

SUPPLEMENTARY 
DATA 

1. Clinical  
2. Biospecimen  

 
MIRNA 3. Isoform Expression Quantification 

4. miRNA Expression Quantification 
MRNA 5. Gene Expression Quantification (HT-SEQ) 

6. Gene Expression Quantification (FPKM) 
7. Gene Expression Quantification (FPMK-UQ) 

 
GENOTYPING 8. Copy Number Segment 

9. Masked Copy Number Segment 
10. Gene Expression Quantification 
11. Masked Somatic Mutation 

METHYLATION 12. Methylation Beta Value 
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Figure 1: Experimental Pool Generation  

Each method is evaluated using a sample experimental pool under the same circumstances. miRNA, mRNA, 
Methylation Data consumed through TCGA were processed separately and merged to generate the whole 
melanoma marker dataset. Then, through random splinting, ten individual sample datasets are constructed. 
Each random split is saved by applying both under-sampling and oversampling (SMOTE) techniques. 

 

TGCA provides two supplementary data, namely clinical data and biospecimen data.  
Clinical data provides clinical values such as gender, race, ethnicity, year of birth, year 
of death, diagnosis and treatment, family history, 

 
Biospecimen provides detailed data on the samples. On TCGA, each sample is represented 
by a barcode number. A TCGA barcode is composed of a collection of identifiers. The 
following image provides those identifiers. 
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Figure 2: TCGA Sample Barcode  

Biospecimen files are used to identify tumor types. Tumor types range from 01 - 09, normal types from 10 - 

19, and control samples from 20 - 29. See Code Tables Report for a complete list of sample codes. (Pls see 

codes table  (Sample Type Codes | NCI Genomic Data Commons n.d.) https://gdc.cancer.gov/resources-

tcga-users/tcga-code-tables/sample-type-codes )  

 

3.1.1.1.MiRNA Expressions 
 
Each expression value is provided with more than one type of data.  There were two types 
of data “miRNA Expression Quantification” and “Isoform Expression Quantification.” 

miRNA Expression Quantification:  miRNA expressions are provided as a table that 
associates miRNA IDs with reading count and a normalized count in reads-per-million-
miRNA-mapped (Bioinformatics Pipeline: miRNA Analysis - GDC Docs n.d.). 
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Figure 3: Sample Data File For miRNA Expression Quantifications 

 

Isoform Expression Quantification: this data contains a table with the same information 
as the miRNA Expression Quantification files with the addition of isoform information 
such as the coordinates of the isoform and the type of region it constitutes within the full 
miRNA transcript  (Bioinformatics Pipeline: miRNA Analysis - GDC Docs n.d.)  
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Figure 4:Sample Data File Isoform Quantifications 

 

3.1.1.2.MRNA Expressions  

For mRNA, there were three types of data, namely, “Raw Read Count,” “FPKM,” and 
“FPKM-OU.” 
 
Raw Read Counts: The number of reads aligned to each gene, calculated by the HT-Seq 
algorithm. Ensembl Gene Id represents data and the number of reads aligned 
(Bioinformatics Pipeline: mRNA Analysis - GDC Docs n.d.). 
 
Fragments Per Kilobase of transcript per Million mapped reads (FPKM): FPKM, 
which is an expression level normalization method (Bioinformatics Pipeline: mRNA 
Analysis - GDC Docs n.d.)., is formulated as follows : 

FPKM = [RMg * 109 ] / [RMt * L] 

• RMg: The number of reads mapped to the gene 

• RMt: The total number of readings mapped to protein-coding sequences in the 
alignment 

• L: The length of the gene in base pairs 

Fragments Per Kilobase of transcript per Million mapped reads upper quartile 
(FPKM-UQ): This data type contains a modified version of the FPKM formula, where 
the 75th percentile read count is used (Bioinformatics Pipeline: mRNA Analysis - GDC 
Docs n.d.). The formulation FPKM-UQ value is as follows: 
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FPKM = [RMg * 109 ] / [RM75 * L] where 

 • RMg: The number of reads mapped to the gene 

 • RM75: The number of reads mapped to the 75th percentile gene in the alignment. 

 • L: The length of the gene in base pairs 

 

3.1.1.3.DNA Methylation 

TGCA methylation data is provided as beta values, representing the ratio between the 
methylated array intensity and total array intensity. Beta values take 0 for the lower level 
of methylation and 1 for the highest methylation level.  Methylation data is represented 
by the association of array props with CpG sites in the dataset. Apart from the CpG site, 
Gene symbol, gene type, Transcript Id CGI coordinates are also available in the data 
file(Bioinformatics Pipeline: Methylation Liftover Pipeline - GDC Docs n.d.)  (Figure 5)  
 

 
Figure 5:Sample Data File for DNA Methylation 

3.1.2.  Data Collection Process  

Data is downloaded from Cancer Genome Atlas  (The Cancer Genome Atlas Program - 
National Cancer Institute n.d.) Genomic Data Commons data portal  (GDC Data Portal 
n.d.), by implementing Application Programming Interface (API) (GDC Application 
Programming Interface (API) | NCI Genomic Data Commons n.d.).A new application has 
been implemented for this purpose (Downloading Files - GDC Docs n.d.).  
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The implementation has been designed to read each case, including manifest file, clinical 
data, biospecimen supplementary, miRNA expressions, mRNA expression (including all 
data files). A sample data directory for Case “TCGA-GN-A265”  is represented in Figure-
6. 
 

 
Figure 6: Case Directory After downloading 

 
After the data is downloaded via API, the files on the data directory list for CASES are 
read by file IO operations and to parse data.  Case clinical data and sample information 
are also read by XML parser and combined with expression values.  11.265 files were 
processed during this process, with an algorithm implemented for this purpose.  
 
Once the data parser of expression values and combination of bio-specimen and clinical 
data is collected, the initial data cleaning has been started. 

1- miRNA IDs and RNA Ensemble IDs, containing all null/zero values, have been 
removed. 

2- Three separate databases have been created for 
a. Cases for miRNA expressions (452 Sample) 
b. Cases for mRNA Expression (472 Sample)  
c. Cases for DNA Methylation (483 Sample) 

3- By intersection, all three database cases containing miRNA expressions, mRNA 
expressions, and DNA methylation are merged.  
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Figure 7: Summary of Analysis Steps 

 

 

Besides, a new database for miRNA, its target mRNA, has been prepared to be used during 
variable selection for Differentially Expressed Patterns of miRNA and target mRNA.  All 
differentially expressed variables (miRNAs & mRNAs) are analyzed by comparing their 
target mRNA or miRNA expression levels.  
 
In order to identify matching, identify miRNA expressions and RNA expressions of Data 
4 database has been used 

1- TCGA miRNA ID Data List: (List for miRNA IDs has been  exported from TCGA 
Data portal) 

2- miRTARBASE (mirTAR Base Database has been downloaded to find matching 
RNA Name) (H. Y. Huang et al. 2020).  

3- BioMart database for ensemble has been used to get ensemble Gene Id from RNA 
Name. For this purpose, the biomart R package has been used (BiomaRt Bioc R 
package n.d.) 

4- TCGA mRNA Ensemble ID List: (List for mRNA ensemble ID has been exported 
from TCGA Data portal) 
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Figure 8: miRNA And Target RNA identification cycle 

 
This mapping database is extended during methylation biomarkers analysis to cover their 
miRNA expressions with target genes’ DNA methylation beta-values. For this purpose, 
the same method is used, and the target gene of the miRNA is defined by checking the 
gene symbol of the DNA methylation data values.   All these mapping databases were 
used to analyze the pattern of selected miRNA with respect to target mRNA and Gene. 

3.2. Method 

The data analysis is started with data preprocess and variable selection.  miRNA 
expression is used for the initial cycle of the spiral analysis method. Then, 11.265 separate 
files that contain miRNA mRNA expressions for each case are downloaded from TCGA 
with a manifest file that contains metadata for the specific case.  The manifest file is used 
to read and combine case files to generate a data pool. The final data pool contains 472 
observations with 60.492 properties for mRNA, 450 observations with 1904 properties for 
miRNA, and 483 observations with 34014 variables for methylation. We only chose the 
cases which have all three experiments, namely miRNA, mRNA, and Methylation.  

The sample type property is used for the class variable, which is a categorical variable 
with four levels, namely: “Primary Tumor,” “Solid Tissue Normal,” “Metastatic,” and 
“Additional Metastatic.” “Solid Tissue Normal.”  Only the samples with “Primary Tumor” 
and “Metastatic” are selected for further analysis. 

There were variables for miRNA and mRNA expressions with a constant (1 or 0) value 
for all samples. These attributes have been removed from the dataset.  The remaining 
samples are subject to a significance test concerning class variables: log normalization & 
Z-score normalization used for relevant markers. Markers are scaled 0-1 range. T-TEST 
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has been used as a significance test (P-value is defined as 0.001). As a result of the test, 
425 miRNA, 2061 mRNA, and 8698 Methylation variables were significantly expressed 
between two groups (“Primary Tumor” and “Metastatic”). 

For a detailed analysis of the results, all possible miRNA patterns and their target mRNA 
and gene methylation are calculated. Then, depending on the evaluation of the significance 
level, different patterns are defined.  

Random selection is applied for each class with a 20 % ratio to separate unseen data for 
testing during the analysis. We repeated this randomization process to create ten different 
splits, which are used as a separate trial.  By generating more than one split, we aim to 
decrease the bias due to random splitting and test the repeatability. So, as an experiment 
environment, we created an experiment pool constructed by ten random partitions for the 
test set and training set generated by applying both under-sampling and oversampling 
(SMOTE) (Fernández et al. 2018) techniques for addressing class imbalance issues.  So, 
80% of the data is used for training and validation (Figure 9). In each trial, both 
dimensional reduction and feature selection techniques were applied separately to solve 
the curse of dimensionality problem for both undersampling and oversampling 
methodology, and different machine learning techniques were evaluated with 10-fold 
cross-validation.  Final models are tested against the unseen data separated at the 
beginning. All these processes were repeated ten times for each data set in the 
experimental pool.  Finally, the mean values of prediction parameters are calculated for 
the results reported in this study.  
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Figure 9: Training Validation and Unseen Test Data Generation  

In each trial, for this purpose following steps are followed for both undersampling and oversampling. 
1)The significant variables listed in the given category are selected from the dataset. 2) A set selected 
randomly from whole data with an 80 % ratio of each class is kept for unseen data. 3) Apply technique to 
solve the curse of dimensionality problem(For dimensional Reduction, Principal component analysis is 
applied and for Oversampling runs SMOTE algorithm is used with K=3) 4) Steps 1 to 3 is repeated for 
each data split in experiment pool.  
 

Each test/training subsets listed in the experiment pool were trained and tested for 
different models by adding miRNA expressions, mRNA expressions, and methylation 
beta values iteratively. Besides, to address the curse of dimensionality, we tried both 
dimensional reduction and feature selection techniques.  Seven methods, namely SVM 
with linear, radial, polynomial kernels, neural network, random forest, Adaboost, and 
Naive Bayes, have been applied to generate and test a predictive model (Figure 3). Neural 
Networks and Support Vector Machines are frequent models that have been applied to 
similar classification models. However, as we searched the literature, we did not see any 
research which applied bagging, boosting, or probabilistic methods.  So, we choose at 
least one representative of various classification algorithm categories, namely Artificial 
Neural Networks, Bagging Methods, Boosting methods, and probabilistic models one or 
more.  Apart from Support Vector Machines and Neural Networks, we included Adaptive 
Boosting, an ensemble method that composes a robust classifier from various weak 
classifiers, and Random Forest, which relies on bagging techniques to increase 
classification performance more than the single decision trees (see Figure 10).  Apart from 
all these, Naïve Bayes also chooses an alternative since it is a fundamental model based 
on probabilistic techniques.  Mean F-score and Mean P-value are evaluated as 
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performance indicators for validation and test classifications of data sets. Box Plot 
distribution of classification scores is investigated for each data set in the experimental 
pool. The best model for each category is made by comparing mean F scores and mean P-
values. If these results are the same two or more best model candidates, we have reviewed 
the box plot of significance and sensitivity distributes. 

 
Figure 10: Model Training And Testing Process   

Experiment flow initiated by applying alternative dimensionality solutions, namely PCA and Feature 
Selection. Through each experiment flow,  models are trained with seven (SVM with linear, radial, 
polynomial kernels, neural network, random forest, AdaBoost, and Naive Bayes) machine learning 
algorithms and tested with the same unseen data. Overall flow repeated for each data-subsets in the 
experiment pool. 
 
This thesis follows the following coding mechanism to map the alternative scenarios of 
class imbalance and dimensionality solution techniques for each category. This annotation 
is used as the naming convention of the given result set in the following sections : 

• a1: miRNA biomarkers modeled with feature selection and undersampling 
• b1: miRNA biomarkers modeled with feature selection and SMOTE 
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• c1: miRNA biomarkers modeled with PCA and undersampling 
• d1: miRNA biomarkers modeled with PCA and SMOTE 
• a2: miRNA and mRNA biomarkers modeled with feature selection and 

undersampling 
• b2: miRNA and mRNA biomarkers modeled with feature selection and SMOTE 
• c2: miRNA and mRNA biomarkers modeled with PCA and Undersamplining 
• d2: miRNA and mRNA biomarkers modeled with PCA and SMOTE 
• a3: miRNA, mRNA, and methylation biomarkers modeled with feature selection 

and undersampling 
• b3: miRNA, mRNA, and methylation biomarkers modeled with feature selection 

and SMOTE 
• c3: miRNA, mRNA, and methylation biomarkers modeled with PCA and 

undersampling 
• d3: miRNA, mRNA, and methylation biomarkers modeled with PCA and SMOTE 
• a4: miRNA, mRNA, and methylation biomarkers modeled with feature selection 

and undersampling 
• b4: miRNA, mRNA, and methylation biomarkers modeled with feature selection 

and SMOTE 
• c4: miRNA, mRNA, and methylation biomarkers modeled with PCA and 

undersampling 
• d4: miRNA, mRNA, and hypo methylation biomarkers modeled with PCA and 

SMOTE 
• a5: miRNA, mRNA, and hypo methylation biomarkers modeled with feature 

selection and undersampling 
• b5: miRNA, mRNA, and hyper methylation biomarkers modeled with feature 

selection and SMOTE 
• c5: miRNA, mRNA, and hyper methylation biomarkers modeled with PCA and 

undersampling 
• d5: miRNA, mRNA, and hyper methylation biomarkers modeled with PCA and 

SMOTE 
• a6: mRNA, and methylation biomarkers modeled with feature selection and 

undersampling 
• b6: mRNA, and methylation biomarkers modeled with feature selection and 

SMOTE 
• c6: mRNA, and methylation biomarkers modeled with PCA and undersampling 
• d6: mRNA, and methylation biomarkers modeled with PCA and SMOTE 
• a7: mRNA biomarkers modeled with feature selection and undersampling 
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• b7: mRNA biomarkers modeled with feature selection and SMOTE 
• c7: mRNA biomarkers modeled with PCA and undersampling 
• d7: mRNA biomarkers modeled with PCA and SMOTE 
• a8: methylation biomarkers modeled with feature selection and undersampling 
• b8: methylation biomarkers modeled with feature selection and SMOTE 
• c8: methylation biomarkers modeled with PCA and undersampling 
• d8: methylation biomarkers modeled with PCA and SMOTE 
• a9: miRNA and methylation biomarkers modeled with feature selection and 

undersampling 
• b9: miRNA and methylation biomarkers modeled with feature selection and 

SMOTE 
• c9: miRNA and methylation biomarkers modeled with PCA and undersampling 
• d9: miRNA and methylation biomarkers modeled with PCA and SMOTE 

 
 

All preprocessing, training, validation, and test with R studio use various R packages. 
• Neural Network ( package:nnet) (Ripley 2021)(Ripley and Venables 2021)  
• Adaboost ( package :  adabag ) (Alfaro, Gáamez, and García 2013) (Alfaro, 

Gamez, and Garcia 2018) 
• Random Forest (package: ranger) (Wright, Wager, and Probst 2021; Wright and 

Ziegler 2017) 
• Naïve Bayes (package : naivebayes ) (Majka and Michal Majka 2020) 
• Support Vector Machine (package : kernlab) (Karatzoglou et al. 2004; 

Karatzoglou, Smola, and Hornik 2016) 
• Smote (smotefamily) (Siriseriwan 2019; Wacharasak Siriseriwan 2019) 

We followed a systematic cross-comparison technique during the collection and 
evaluation of the results. First, we collected the prediction scores for different 
classification models to find the best algorithm. Evaluation of the successors within each 
feature category identified the winner.  Finally, model progress and contributions of 
adding new feature categories are assessed based on these results collected.  The 
illustration of this process is summarized in Figure 11.  
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Figure 11: Illustration For Category Based Analysis With Techniques Applied 

 Each evaluation criterion is represented with a code. For example, (a1) represents the predictive models 
by using miRNA signatures with the hybrid method -that is, random forest to calculate feature importance 
undersampling for class imbalance solution. Similarly, d3 represents the outcomes of models applied to 
predict metastasis using significant miRNA & mRNA, methylation biomarkers using PCA as a 
dimensional solution, and SMOTE as a class imbalance solution.  
 
The experiment is repeated for each subset in the data pool to find the prediction scores, 
and mean values were calculated. We have assessed the predictive algorithm using seven 
different machine-learning models, including representatives of various classification 
algorithm categories, namely artificial neural networks, bagging methods, boosting 
methods, and probabilistic models. We applied ten-fold cross-validation for each subset 
and calculated mean F-score; mean P-value to evaluate each category's best model. If the 
results are the same for two or more model candidates, we have reviewed the box plot of 
significance and sensitivity distributes to choose the one with low variance.   

!"#$%& = 2 ∗ ("&+,-.-/-.0 ∗ 1%&2-#.-/-.0)"&+,-.-/-.0 + 1%&2-#.-/-.0 		(1) 

As a final step, we performed functional and pathway enrichment analysis using DAVID 
(Dennis et al., 2003; D. W. Huang et al., 2007). KEGG, Reactome, EC Number, and 
Biocarta Pathways of selected biomarkers are compared for sets of "miRNA," "miRNA 
and mRNA," and "miRNA, mRNA, and methylation" to better understand contributing 
factors behind the higher precision and consistency after including methylation data to the 
models. 
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CHAPTER 4 
 
 

4. RESULTS 

 
In this study, we have evaluated the potential genetic biomarkers of melanoma metastasis. 
In addition, we developed multiple predictive models to predict the metastatic outcome 
by integrating miRNA, mRNA, and DNA methylation markers by using the TCGA 
melanoma dataset. This study's experimental strategy is composed of a Multi-cycled 
evaluation, each of which targets different feature categories. In each cycle, different 
techniques to solve using dimensionality and class imbalance problem solutions are 
evaluated. Figure 12 summarizes the results of all evaluation techniques for each cycle.  

4.1. Classification with  miRNA 

At the first step of the initial cycle, we have implemented a predictive model (a1) with a 
microRNA biomarkers model using feature selection through importance (hybrid model) 
and class imbalance solution through under-sampling. The predictive model with adaptive 
boosting (AdaBoost) demonstrates the best results among all trials with the highest F-
score and accuracy. Besides, the variance of the results for the different datasets in the 
experiment was also low compared to other models. Similarly, the random forest has the 
second-best results among all trials (F-score 80%). In the second scenario (b1), when we 
replace the class imbalance solution with smote, random forest demonstrates similar 
results with an F-score of 79 %. In parallel, adaptive boosting (AdaBoost) presents a 
comparable performance (F-score 80%) to the random forest model with a slightly higher 
score. In the third trial (c1), we have used under-sampling and dimensional reduction with 
PCA. According to our results, adaptive boosting (AdaBoost) showed better scores (F-
score 80 %), but for this time, SVM with the linear kernel (F-score 78%) was better than 
random forest (F-score 72%), demonstrating the second-best results. Finally, we applied 
SMOTE to address the class imbalance issues (d1). The results were similar to the first 
trial; adaptive boosting showed the best results (F-score: 80%), the random forest also had 
the better results (F-score: 79%) compared with other models (Figure 13).   
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Figure 12: Illustration For Results Of Category Based Analysis With Techniques Applied To Solve 

Significant Issues  

As a result of the evaluation process, c1 is selected as the successor model for miRNA markers. When two 
markers, miRNA and mRNA, are combined, the winner is identified as d2. In the final cycle, the merge of 
all biomarkers resulted in d3 as the successor. Among all d3 was the winner to predict the metastatic 
outcome 
 
 
As a result of the initial cycle, microRNA biomarkers predict the primary tumor's 
metastatic outcome with an F-score of almost 80%. In predictive models, all workflows 
showed similar classification accuracy by using miRNA markers. We selected (c1) the 
adaptive boosting with the PCA and undersampling, resulting in the highest F-score. Both 
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random forest and adaptive boosting (AdaBoost) demonstrated better results in each 
workflow (Figure 13).  

 
 

Figure  13: Model Comparison Of Techniques Used For miRNA Biomarkers 

(1:a1, 2:b1, 3:c1, 4:d1): Category 1, which uses a hybrid model of feature selection and Adaboost 
classifier(c1), has the best results among all scenarios. 
  

4.2. Classification with  mRNA   

Only mRNA markers are selected as biomarkers for the classification model in this step.  
By following the same methodology for dimensional reduction and class imbalance 
solution techniques, random forest algorithm(d7) with principal component analysis and 
Smote (as oversampling) technique classification achieved the highest accuracy with 88% 
mean F score and P-Value of 1.18 x 10-05.  Undersampling with PCA also showed similar 
performance with the AdaBoost algorithm(c7) (F score 86%, P-Value 1.44 x 10-05), but 
feature selection techniques were behind these two trials.  Neural networks technique(a7), 
by applying feature selection as dimensional reduction and undersampling as class 
imbalance solution, accuracy is observed as 82% Mean F Score and 9.09 x 10-04.  When 
we replaced the class imbalance solution with smote, SVM (with the linear kernel) is listed 
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as the best model, but almost no change is observed in prediction accuracy ( F Score 81 
%, P-Value  4.88 x 10-04). 

At the end of the cycle, we saw that model using mRNA markers winner models had F-
scores ranging between 82% and 88%. The prediction scores using the feature selections 
technique were not as good as PCA for undersampling and oversampling techniques.  
Principle component analysis produced better results for both oversampling and 
undersampling.  Since F-score for (d7), Random Forest using PCA and SMOTE, has the 
highest scores, it is selected. (See Figure 14). 

 
Figure 14: Model Comparison Of Techniques Used For mRNA Biomarkers  
(1:a7, 2:b7, 3:c7, 4:d7): Category 4, which uses (d7) PCA and Smote techniques and Random Forest 
classifier, has the best results among all scenarios. 
 

4.3. Classification with  Methylation   

In this cycle, we filter down methylation biomarkers. Like previous cycles, we applied a 
combination of each class imbalance and dimensionality solution techniques. We decided 
on Support Vector Machine since model significance demonstrated improvement in our 
results. Firstly, all Neural network predicts metastasis with an F-score of 79% using under-
sampling and feature selection through importance techniques(a8). SVM with all radial, 



35 
 
 

polynomial and linear kernel produced similar results in this technique ( F score  72%, 
74%, and 72% relatively).  Random Forest predicts with similar F-scores (75%). 
AdaBoost, on the other hand, showed %74 accuracies in F-Score.  The best prediction 
accuracy was observed with Neural Network with feature selection and undersampling 
(F-Score 80%). In the second trial, we have replaced the class imbalance solution 
technique with SMOTE. Prediction accuracies were quite similar to the previous.  Both 
SVM with linear kernel and the polynomial kernel have similar results with 77% and 78% 
F-scores.  Prediction accuracy of random forest decreased to %72 while AdaBoost 
produced 67% in F score.  In the third trial, under-sampling and dimensional reduction 
with PCA are applied.  SVM with radial kernel was the best model (F-score; 81%). All 
models showed similar performance in this cycle (Neural Network 79%, SVM -Linear 
Kernel- 80 %, SVM-Polynomial Kernel- %79, Random Forest %80, Adaboost %79). 
Finally, when we applied SMOTE instead of under-sampling(d8), SVM with Polynomial 
kernel demonstrated slightly higher scores (F-score 83%). SVM with Linear and radial 
kernels had an F-score of 82%.  Both Neural networks and AdaBoost had similar results 
with an F Score % of 78.  Similarly, random forest achieved 80% of the mean F score 
(Figure 15).  

 

Figure 15: Model Comparison of Techniques Used For methylation 

Biomarkers (1:a8, 2:b8, 3:c8, 4:d8): The model listed in d8, is selected as the successor model for 
the second cycle 
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As a result, although the prediction accuracies have similar results for all trials, SVM 
with polynomial kernel bu using SMOTE and principal component analysis(d8), we 
observed the best accuracy in mean F Score and Low variance in all prediction variables 
(see Figure 15) 

4.4. Classification with miRNA and mRNA 

In this cycle, we utilized both miRNA and mRNA as biomarkers. Like the previous cycles, 
we first used (a2) feature selection through importance (hybrid model) and class 
imbalance solution through undersampling. When we compared the predictive models, 
results were quite similar by varying F scores between 81% to %83. However, random 
forest produces the best results of mean F-score (83%); mean P-value (8.26 x 10-05). 
SVM with a polynomial kernel was the second-best model to predict the metastatic 
outcome with the same F-score but with a lower P-value (9.34 x 10-05).  As a second 
trial(b2), we have replaced the class imbalance solution with SMOTE.  The results for 
each model, which vary from 80% to 84% for F-score, were quite similar. The neural 
network showed the best F-score (84%) and P-values (2.41 x 10-05). SVM with linear and 
polynomial kernel also had the same F-score (84%), and the neural network showed higher 
significance. Adaptive boosting and random forest demonstrate better results for the 
miRNA-mRNA cycle predict the metastatic outcome with equal mean F-scores of 81%. 
In the third trial (c2), undersampling for class imbalance and dimensional reduction with 
PCA are applied. SVM with the linear kernel was the best model with the highest F-score 
(90%). The neural network was the second-best model to predict metastasis with F-score 
(89%).  Nevertheless, this time, adaptive boosting (F-score: 82%) and random forest (F-
score 75%) are left behind. As the final trial(d2), we have applied SMOTE and 
dimensional reduction with PCA(d2). Neural network and SVM with linear kernel 
produced the best results compared to the rest with F-scores 91% and 92%, respectively. 
On the other hand, adaptive boosting and random forest showed high variance across 
different trials (Figure 16). 

At the end of the second cycle, we saw that models using MiRNA and mRNA markers as 
winner models with F-scores ranging between 83% and 92%. The prediction scores for 
both boosting and bagging techniques were not as good as in the first cycle.  Since F-score 
for (d2), SVM using PCA and SMOTE, has the highest scores, it is selected.  
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Figure  16: Model Comparison of Techniques Used For miRNA And mRNA Biomarkers  

(1:a2, 2:b2, 3.c3, 4:d2): Model listed in 4, which applies d2, is selected as the successor model for the 
second cycle  
 
 

4.5. Classification with mRNA and Methylation 

The combination of mRNA and Methylation biomarkers is examined during our analysis. 
First, we tried feature selection as dimensional reduction and undersampling as class 
imbalance solution(a6) prediction accuracies for neural network, SVM with linear and 
polynomial kernels observed as 85 % Mean F Score. On the other hand, the SVM radial 
kernel presents similar but a bit lower results with 84 % F-Score.  

While AdaBoost algorithm resulted with %79 accuracies, random forest present the best 
accuracy with %87 of F score and P-value of 1.35 x 10-05. Secondly, when we replace 
class imbalance with SMOTE (b6), prediction accuracies result in similar F- scores. While 
random forest demonstrates the best accuracy in 88 % F-Score, neural network, SVM with 
linear, radial, and polynomial kernels had F-Scores, had F-Values of 85 %, 86 %, 86%, 
and 85% relatively.   
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In the third trial, we tried PCA as a feature selection method using undersampling(c6); the 
neural networks were the best model with a %86 F- Score. The other algorithms 
demonstrated quite similar results varying between %81 and %84 in F-score. The worst 
results were observed in SVM with the polynomial kernel (F score 67 %).  

Finally, using PCA with SMOTE(d6), SVM with linear kernel listed with the best F-Score 
(87%). Neural Network and Adaboots present comparable results with 86% and 85% 
mean F Scores. Random forest resulted in %80 Mean F Score. Like the previous trial 
SVM, the polynomial kernel was the worst model (F Score 67 %) (Figure 17).   

 
Figure 17: Model Comparison of Techniques Used For mRNA And Methylation   

Biomarkers (1:a6, 2:b6, 3:c6, 4:d6): The model listed as 2, which applies b6, is selected as the successor 
model for the second cycle  
 

4.6. Classification with miRNA and Methylation  

We combined miRNA with Methylation markers in the final step of 2-grouped 
biomarkers. In all previous trials, we started with feature selection as dimensional 
reduction and undersampling as class imbalance solution(a9). Random Forest 
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demonstrated the highest result in this initial step with an F value of %83. Adaboost was 
the second-best model in this trial (F score-80%). On the other hand, SVM resulted in 
similar F Scores for all kernels with ~77%. Finally, the Neural network showed a 78 % F-
score.  

When we change the class imbalance method with smote(b9), apart from the random 
forest, SVM (with the linear kernel) reached the same highest F score (81 %). Neural 
network and Adaboost were relatively close with 78 %, and 77% mean F scores.  

For the third trial, we applied PCA with the undersampling technique(c9), Neural network, 
SVM with Radial and polynomial kernel demonstrated the highest prediction values with 
82% in F Score.  Random Forest and AdaBoost, on the other hand, were listed with lower 
scores with 76% and 78% F scores, relatively. 

Finally, we applied SMOTE for the class imbalance solution with PCA(d9). Results were 
also  similar in this run; SVM with radial kernel was the best model with an 84% F-score. 
Neural networks also produced high results with an 83% F -score.  Random Forest and 
AdaBoost models have the same results in F-scores (%80) (Figure 18).  

 
 
Figure 18: Model Comparison of Techniques Used For miRNA And Methylation  Biomarkers  
(1: a9, 2:b9, 3.c9, 4.d9): Model listed in 5, which applies d9, is selected as the successor model for the 
second cycle. Indeed, the results were similar to a9. Also, the variance in the prediction variable was 
relatively small for a9. 
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4.7. Classification with  miRNA, mRNA, and Methylation  

We combined all miRNA, mRNA, and methylation biomarkers in the third cycle. Similar 
to previous cycles, we applied a combination of each class imbalance and dimensionality 
solution techniques. We decided on neural networks since model significance 
demonstrated improvement in our results.  

Firstly, all Neural networks, SVM with linear and polynomial kernel predicts metastasis 
with an F-score of 83% by using under-sampling and feature selection through importance 
techniques(a3). Both SVM with radial kernel and random forest predict with similar F-
scores (83%). So, the prediction model results were close to each other for this trial. 
However, the lowest variance across different trials was observed with SVM (linear 
kernel).  

In the second trial (b3), we have replaced the class imbalance solution technique with 
SMOTE.  Both SVM with linear kernel and the polynomial kernel were the two best-
performing models with 84% and 85% F-scores.   

In the third trial(b4), sampling and dimensional reduction with PCA are applied.  SVM 
was the best model regardless of the selected kernel (F-score; 88%).   

Finally, when we applied SMOTE instead of under-sampling(d3), SVM with linear kernel 
demonstrated slightly higher scores (F-score 92%). In contrast, SVM with polynomial 
kernel and Neural network had 91% and 90% F-score.  The best predictive model was 
SVM, trained using dimensional reduction with PCA and SMOTE (d3).  Like the second 
cycle, both SVM and Neural Network models resulted in better results in all trials. In 
addition, both under-sampling and oversampling techniques produced similar results 
(Figure 19).  

4.8. Classification with  miRNA, mRNA and Hypo Methylation   

After we analyzed the triple model, we were also curious about changes for hypo and 
hyper methylated genes. First, we combined miRNA and mRNA markers with Hypo 
Methylated genes.    

In the initial trial, we started with feature selection and undersampling techniques (a4). 
Adaboots was the successor model in this step with 84% accuracy. The random forest also 
produced similar results with 82 % accuracy. On the other hand, SVM achieved a 78% F 
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score with Linear Kernel.  On the other hand, Neural Network showed the worst results 
with a 67% F score. 

 

Figure 19: Model Comparison Of Techniques Used For miRNA, mRNA, and Methylation Biomarkers 

 (1:a3, 2:b3, 3:c3, 4:d3). The model listed in 4, which applies d3, is selected as the successor model for 
the final cycle   
 
 
Secondly, we tried smote ad class imbalance solution and combined it with the feature 
selection(hybrid) technique(b4). SVM with the linear kernel is the winner among all 
models with 81% accuracy. While AdaBoost presented similar results ( F score, 79%), 
neural network and Random forest demonstrated the worst results with 77% accuracies. 

Next, we switched to PCA for dimensional reduction and combined it with undersampling 
(c4).  Similar to the previous trial, SVN with Liner kernel was the successor model ( F 
Score 87%). The results for neural networks were also quite similar, with an 86% F Score. 
Random forest and AdaBoost were lower with 82% and 80% F scores. 

Finally, we tried smote as a class imbalance solution. As we observed, linear SVM was 
the winner model again (F score %87). SVM with polynomial kernel and random forest 
were the second-best model with a %86 F Score. Neural network and AdaBoost shared 
similar scores with 84% and 83% F scores. 
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As a result, when PCA is selected, the undersampling technique results were higher for 
all models. In general, SVM demonstrated high scores in all trials (Figure 20).  

 

 
 
 
Figure 20: Model Comparison Of Techniques Used For miRNA, mRNA, and Hypo Methylation 

Biomarkers  

(1:a4, 2:b4, 3:c4, 4:d4) The model listed in 3, which applies c4, is selected as the successor model for the 
final cycle. 
 

4.9. Classification with  miRNA,  mRNA and Hyper Methylation   

We filtered down hypermethylation biomarkers for the next cycle and ran the same 
analysis. The results were better when compared with hypomethylation, but they did not 
exceed the score of the triple model (listed in d3). 

First of all, when we select feature selection as dimensional reduction and 
undersampling(a5) for class imbalance solution, AdaBoost had the best F score with 83 
%. Random forest was the second-best predictive model with an 82% F score.  On the 
other hand, SVM reached a 78% F score with Linear Kernel. Finally, the neural network 
showed the worst F score with 67%. 
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Secondly, we tried Smote instead of undersampling(b5). Results were similar; AdaBoost 
was the winning model again (F score 80 %). SVM also reached an F score of 80 % 
accuracy with linear kernel.  Random forest listed behind with an F score of 75 %. 

Next, we switched the dimensional reduction method with PCA and used undersampling 
as a class imbalance solution(b6). SVM with polynomial and radial kernels, both listed as 
successor model with F score 88%.  SVM radial kernel and neural networks were also 
similar regarding 86% and 85%  in F score. Random Forest and AdaBoost had relatively 
similar results with 82% and 81% F scores. 

Finally, we used SMOTE as a class imbalance solution(d5) and achieved 90% accuracy 
with SVM linear and polynomial kernels. Neural network listed just behind these two and 
produced 88% of F score.  Random forest and AdaBoost demonstrated relatively 85 % 
and 82% F scores (Figure 21).  
 

 
 
 
Figure 21: Model Comparison Of Techniques Used For miRNA, mRNA, and Hyper Methylation 

Biomarkers  

(1:a5, 2:b5, 3:c5, 4:d5). The model listed in 4, which applies d5, is selected as the successor model for the 
final cycle   
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4.10. Comparison for All Findings 

This study examines the predictive model progress when new biomarkers sets are added 
upon micro-RNAs. We started the analysis by selecting miRNA and adding mRNA upon 
it in the next cycle. We included DNA methylation upon these two and re-analysis the 
model progress as the next step. 

Once these three cycles are completed, we also check the other combinations. Predictive 
power changes are also investigated to select hypomethylated and hypermethylated genes. 
Then we continue with the analysis of various other combinations of biomarkers. 

As a result of all evaluations (see supplementary material), we came up with successors 
for each biomarker category (Table 2, Figure 22).   

First of all, random forest with (a1) feature selection and undersampling achieved best 
results for miRNA markers (F-score=81 %, sensitivity= 75 %, Specify = 90 %, accuracy= 
82 % p = 1.7 x10-4). In addition, SVM (d2) with PCA and SMOTE was the most successful 
technique for combination of miRNA and mRNA markers (F-score=92 %, sensitivity= 92 
%, Specify = 93,5 %, accuracy= 93% p = 1.0 x10-7). Finally, by using all miRNA, mRNA 
and methylation markers (d3), SVM reached the same results with the previous one with 
higher consistency across different trials (F-score=92 %, sensitivity= 92 %, Specify = 93 
%, accuracy= 92 % p = 1.05 x10-7) (Figure 22). 

For mRNA markers predictive model achieve 88% for F-score (sensitivity= 93 %, Specify 
= 83 %, accuracy= 82 % p = 1.18 x10-5 ) by using Adaptive boosting model via 
undersampling and PCA methods. Methylation biomarkers on the other hand shows 81% 
of F-score (sensitivity= 82 %, Specify = 81 %, accuracy= 81 % p = 2.1 x10-5 )  by using 
Support vector machine algorithm.  

The combination of miRNA with methylation resulted in the same F-Score (82 %). 
Similarly, grouping mRNA with Methylation demonstrates the same F-score with the 
mRNA model (88 %).   

Finally, selecting hyper and hypomethylated genes for the triple model and combining 
them with miRNA and mRNA markers generated two predictive models with an F-score 
of 90% and 87%, respectively.  
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Table 2: Summary For Iterative Progress On Model Precision Scores:  

The miRNA model applied by feature selection through importance (hybrid model) and class imbalance 
solution through under-sampling is the method to be applied for prediction. For both the "miRNA- mRNA" 
and "miRNA-mRNA-Methylation" triple model, principal component analysis for dimensionality and 
SMOTE for Class imbalance solution was the best method to increase predictive power and stability of the 
model  

Biomarker Group Method Sen. Spe. Accuracy F Value Kappa P-Value 

miRNA PCA, Undersample 
 Adaboost 

90% 73% 81.25% 82.71% 62.50% 4.58E-04 

mRNA PCA, SMOTE 
 Random Forest 

93% 83% 88.00% 88.57% 76.00% 1.18E-05 

methylation PCA, SMOTE   
SVM (radial Kernel) 

82% 81% 81.00% 81.16% 62.00% 2.10E-03 

miRNA and mRNA PCA, SMOTE 
SVM (Linear  Kernel) 

92% 94% 92.50% 92.43% 85.00% 1.00E-07 

mRNA and 
methylation 

Feature Selection, 
SMOTE  Random Forest 

84% 94% 88.75% 88.00% 77.50% 3.43E-05 

miRNA -methylation PCA, SMOTE 
SVM (Radial  Kernel) 

93% 72% 82.25% 84.11% 64.50% 9.03E-04 

miRNA - mRNA  and 
methylation 

PCA, SMOTE 
 SVM (Linear  Kernel) 

92% 93% 92.50% 92.47% 85.00% 9.92E-08 

miRNA - mRNA  and 
methylation L 

PCA, SMOTE 
 SVM (Linear  Kernel) 

88% 87% 87.50% 87.53% 75.00% 1.29E-05 

miRNA - mRNA  and 
methylation H 

PCA, SMOTE 
 SVM (Linear  Kernel) 

92% 90% 90.75% 90.90% 81.50% 5.87E-07 

 

 
As a result of evaluations, the combination of miRNA, mRNA, and methylation markers 
(d3), SVM, by using Smote and PCA at method selected as successor model.  

In third model, ten  miRNA biomarkers, namely hsa-mir-142, hsa-mir-29c, hsa-mir-3124, 
hsa-mir-3130, hsa-mir-326, hsa-mir-331, hsa-mir-4419b, hsa-mir-4444, hsa-mir-4474, 
hsa-mir-4491, hsa-mir-4523, hsa-mir-625 and hsa-mir-766 are found as upregulated and 
1 miRNA ,hsa-mir-203a, found as down-regulated. Hence, 11 miRNA markers have been 
used as a biomarker in our successor model to predict metastasis. In addition, 163 
methylation and 1770 mRNA markers are selected in the final triple biomarker model.  
All miRNA biomarkers and their targets miRNA and Methylation information in their 
target genes are presented in the Appendixes (Table S2 and S3).  
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Figure 22: Comparison of Best Models for Each Biomarker Sets  
 
1) The Performance of the predictive model by using miRNA, 2) The Performance of the predictive 
model by using mRNA, 3) The Performance of the predictive model by using Methylation,    4) The 
Performance of the predictive model by using miRNA and mRNA markers, 5) The Performance of the 
predictive model by using mRNA and methylation markers 6) The Performance of the predictive model 
by using miRNA and methylation markers 7) The Performance of the predictive model by using miRNA, 
mRNA and Methylation markers 8) The Performance of the predictive model by using miRNA, mRNA, 
and Hypo Methylation marker 9) The Performance of the predictive model by using miRNA, mRNA and 
Hyper Methylation markers. 

 

4.11. Pathway Analysis 

Evaluation of the overall results at the functional level is completed with an enrichment 
analysis. We used DAVID ((Dennis et al. 2003; D. W. Huang et al. 2007))Tools for 
biological interpretation of selected features used in selected "miRNA and mRNA" 
classification and "miRNA, mRNA, and Methylation" classification.   

Based on the functional enrichment analysis, KEGG, Reactome, EC Number, and 
Biocarta Pathways of selected biomarkers are compared for "MiRNA and mRNA" with 
"miRNA, mRNA, and Methylation" to examine the reason higher precision and 
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consistency of addition of methylation.  In the model with methylation markers, the 
significance of the Osteoclast, Rap1 Signaling Pathway, and Chemokine Signaling 
pathways increased (Figure 10). Osteoclast Differentiation also appealed within the top 
15 pathways when all three biomarker categories were combined. In addition, Rap1 
Signaling Pathway and Chemokine Signaling were listed in the top 3 among the most 
significant pathways (Table 3). 

 
Table 3: Comparison of Top 15 Pathways of Different Biomarkers Sets.   

P values of Osteoclast, Rap 1 Signaling Pathway, and Chemokine Signaling Pathways gradually 
increased after adding a new biomarker set. In addition, Rap1 Signaling Pathway and Chemokine 
Signaling were listed among the top three pathways with increasing significance with Osteoclast 
Differentiation. Other pathways with increasing significance, such as Cytokine-cytokine receptor 
interaction and Ras signaling pathway also observed.   

P-value  
miRNA miRNA-mRNA miRNA-mRNA- Methylation 

6.3.2.- 
 

1.60 x 10-02 
 

cAMP signaling pathway 7.40 x 10-04 
  

Chemokine signaling pathway  (*) 
 

2.40 x 10-07 1.60 10-10 
Cytokine-cytokine receptor 

interaction 

  
1.90 10-04 

Endocytosis 4.30 x 10-04 6.30 x 10-11 1.40 10-04 
Focal adhesion 6.10 x 10-09 1.40 10-06 2.80 10-07 

Hepatitis B 4.40 x 10-09 
  

HTLV-I infection 5.10 x 10-07 3.60 x 10-13 2.00 x 10-09 
MAPK signaling pathway 1.60 x 10-03 6.70 x 10-11 4.90 x 10-04 

Osteoclast differentiation  (*) 
  

2.90 x 10-14 
Pathways in cancer 4.60 x 10-13 3.10 x 10-16 1.20 x 10-12 

PI3K-Akt signaling pathway 7.00 x 10-05 8.00 x 10-06 1.90 x 10-05 
Proteoglycans in cancer 2.00 x 10-10 5.70 x 10-10 2.70 x 10-08 

R-HSA-212436 3.40 x 10-05 6.00 x 10-03 
 

R-HSA-983168 3.60 x 10-03 3.80 x 10-05 7.30 x 10-03 
Rap1 signaling pathway(*) 4.80 x 10-07 4.30 x 10-06 3.70 x 10-10 

Ras signaling pathway 3.80 x 10-06 1.50 x 10-07 3.00 x 10-08 
Regulation of actin cytoskeleton 1.80 x 10-03 1.70 x 10-05 1.50 x 10-04 

Viral carcinogenesis 9.70 x 10-06 5.10 x 10-04 3.80 x 10-04     
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Figure 23: Significant Pathways Functionally Enriched in All Three Feature Sets  
As the new biomarker set is added, the significance of the pathways is evaluated. Osteoclast, Rap1 
Signaling Pathway, and Chemokine Signaling Pathways' showed a significant increase in the third 
model.  
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CHAPTER 5 
 

5. CONCLUSIONS AND DISCUSSION 

 

5.1. Discussion 

Melanoma can be distinguished with visual assessment or through a short screening. 
Although there is an opportunity for the cure when detected early, treatment is challenging 
in later stages. Likewise, metastasis is an undesired outcome in such cases, and differential 
diagnosis is crucial for the treatment decision. So, the opportunity to diagnose metastatic 
melanomas in earlier stages may support therapeutic decisions, advise for more frequent 
and in-depth screening, and provide a higher chance of curing or preventing further 
metastatic progress.   

This study shows that miRNA plays an essential role in the metastatic progression of 
primary melanoma and predicts metastasis outcomes with high accuracy. miRNA 
biomarkers anticipated metastatic results with an F-score of 82 %. Expansion of mRNA 
markers upon miRNA reached an F-score of 92 %. The ultimate model, which includes 
DNA methylation, results in a comparative F-score of 92 % but delivers a steady model 
with low variation over different trials. Moreover, the integrated evaluation of miRNA 
with mRNA and methylation biomarkers increases the model's predictive power. Another 
remarkable finding in this study is that boosting and bagging models' performance was 
better for miRNA signatures. However, we got higher prediction scores for neural 
networks and support vector machine classifiers when we added new mRNA and DNA 
methylation.  

So far, different markers have been proposed to describe the molecular foundation of 
metastasis. DNA methylation, gene expression profiles, and microRNAs are used as 
markers of metastasis.  In the literature, the predictive models for cancer metastasis were 
revealed by 2004. These initial studies were performed using gene expression profiles of 
the primary tumor collected by DNA microarray. After 2015 studies on miRNA 
expression levels and methylation data were published in the literature. Most of the studies 
of miRNA focused on identifying differentially expressed miRNAs for different cancer 
types based on statistical analysis.On the other hand, many more studies were reported for 
mRNA, where machine learning models apart from the statistical analysis were utilized. 
The prediction accuracy of metastasis observed to be between %50 and %86 percent.  
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For the methylation, there was one remarkable study. They identified 28 methylation 
markers for metastasis of primary colorectal cancer. On the other hand, several studies 
proposed different miRNA or proteins as significant for metastasis for melanoma. For 
example, miR-26b-5p (Wei et al. 2019), Mir-205-5p (Valentini et al. 2019), miR-26-5p 
(Wei et al. 2019), scavenger receptor class B type 1 (SR-BI) protein, and miR‑29c‑3p 
(Kinslechner et al. 2019) were found as a significant marker for melanoma metastasis. In 
addition, using serum levels of the cytokines IL‐4, GM‐CSF, DCD, and the Breslow 
thickness linear regression predicts metastatic outcome with a %83 accuracy (Mancuso et 
al. 2020). Also, prediction BAP1 mutation is used to identify metastatic outcomes by using 
whole slide images and a deep convolutional neural network (AUC: %90).   

As can be seen, few studies try to predict metastatic outcomes of melanoma.  Our results 
were compatible with them.  Most of the studies in the literature are based on diagnostic 
purposes, so we focused on metastatic progress.  There was not enough research that built 
up a generalized perspective and investigated the contribution of different genetic 
markers. On the other hand, we focused on this goal and examined the contribution of 
miRNA, mRNA, and Methylation to the metastatic outcome of primary melanoma cancer.   
Genetic material provides various biomarkers, which can be utilized either for diagnostic 
or predictive purposes. However, it is impossible to examine each marker, so we need to 
find an effective smallest biomarkers set that provide high precision. Our study is focused 
on this idea as bases and tried to evaluate the effectiveness of the proposed miRNA by 
comparing their predictive contribution with other possible biomarkers.  From these points 
of view, our study provides valuable input to the field.  

In machine learning studies, undersampling techniques are also used to deal with class 
imbalance issues.  So, we performed oversampling and undersampling methods and 
evaluated their outcomes. The SMOTE, a synthetic minority oversampling method based 
on the k-nearest-neighbors, has been tested with different k values between 3 to 6, and the 
final k is chosen as 3. We used the 1:2 ratio for oversampling of the minority class.  Under 
the given circumstances, we generated similar results for undersampling and 
oversampling.  Overall, our results present satisfactory evidence that the synthetic 
minority oversampling technique can also be applicable for prediction studies for 
genomics data.  

Although the results are compatible with SMOTE, this technique created a shortcoming 
for our study; that is, synthetic data generation may cause overfitting of the machine 
learning model. So evaluation of our predictive model in new data sets would be valuable 
to eliminate this issue. Unfortunately, our data size was limited and skewed. In order to 



51 
 
 

continue extended research on metastasis prediction,  new integrative datasets that hold 
different genetic markers should be collected.  We can observe many more samples for 
metastastic tumors in many datasets, but primary tumor samples are restricted. This also 
prevents the diversity of the machine learning used for prediction. Therefore, collecting 
more samples for primary tumors will also contribute to developing more effective 
predictors.  

As our model is based on the differences between primary and metastatic melanomas, the 
markers identified here can be used for differential diagnosis. We believe it will become 
possible to predict melanomas with metastatic potential (prediction of prognosis). In those 
cases, several actions can be taken in the clinic, such as intensive scanning for metastasis 
or frequent follow-ups of patients. In the future, patients with higher risk can be offered 
prevention from metastasis with gene therapies based on emerging technologies like 
miRNA therapies or gene editing. 

Our study is initiated with an iterative approach to include more biomarkers set upon 
miRNA signatures. In the initial run, we included mRNA, and then we included 
methylation biomarkers. The triple model resulted in the highest predictive value. After 
investigating biomarkers with a recursive approach, we also inquire predictive accuracy 
of different combinations of biomarker sets. All biomarkers generated relatively high 
performant models with above %80 F values for all single biomarker sets. However, the 
mRNA model was more potent than both MiRNA and Methylation predictive models. 
The sensitivity of both mRNA and miRNA was quite similar, but variance specificity was 
higher in the miRNA model for different trials. The addition of methylation markers upon 
miRNA and mRNA does not improve the predictive accuracy of miRNA and mRNA. 

Nevertheless, the combination of miRNA and mRNA exceeds the predictive values of 
models. On the other hand, the addition of methylation reduces the variance of model 
scores among different trials. Finally, the selection of hypo-methylated and hyper-
methylated genes reduces the predictive scores.  

During the study, we have identified 128 miRNA for model c1 (miRNA model), 18 mi-
RNA in model d2 (mRNA and miRNA model), and ten miRNA for model d3 (miRNA, 
mRNA, and Methylation).  There were only a few studies that we can identify on modeling 
melanoma metastasis in the literature. Valentine et al. (Valentini et al. 2019) found that 
mir-205, which is also listed in our attribute list for model c1 (miRNA model), is 
significant in distinguishing metastatic melanoma. Similarly,  Wang et al. (Yanqian Wang 
et al. 2019)  mentioned that miR-29c is a suppressor of non-coding RNA taurine-
upregulated gene 1 (TUG1), which is identified as a prognostic marker of metastatic 
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melanoma. Our results also support this finding since miR-29c is one of the markers that 
we included in all models c1, d2, and d3. 

Moreover, Mancuso et al. (Mancuso et al. 2020) used serum levels of the cytokines IL‐4, 
GM‐CSF, and DCD to model linear regression, which achieves 80% accuracy. Another 
study by Zhang et al. approaches the issue from a different perspective and tries to predict 
BAP 1 mutation for predicting metastatic risk via whole slide images.  In their study, AUC 
is reported as 0.90. As it can be seen, our results, which aim to distinguish metastatic 
melanoma from the primary tumor, are compatible with other similar studies in the 
literature.  

This study focused on identifying the regulatory impact of genetic biomarkers for 
monitoring metastatic molecular signatures of melanoma by investigating the 
consolidated effect of miRNA, mRNA, and DNA methylation.  We used the TCGA 
melanoma dataset to predict metastatic melanoma samples by assessing a set of predictive 
models. Throughout the study, differentially expressed miRNA, mRNA, and methylation 
signatures are used as biomarkers. The highest performing models’ selected biomarkers 
are further analyzed for the biological interpretation of functional enrichment and 
determining regulatory networks. So we focused on gradually including new feature sets.  
We have performed functional enrichment analysis to reveal our evaluation pattern for 
including a new biomarkers set. The functional enrichment of KEGG, Reactome, EC 
Number, and Biocarta Pathways of selected biomarkers and compare sets for "miRNA," 
"miRNA and mRNA," and "miRNA, mRNA, and Methylation" we tried to search for the 
reason behind the higher precision and consistency achieved after addition of methylation.  

Osteoclast, Rap1 Signaling Pathway, and Chemokine Signaling Pathways 
significantly increased and listed the top 15 pathways when all three biomarker sets were 
used for modeling. So combined model populates selected biomarkers on the metastasis-
associated pathways of melanoma.  

Osteoclasts are multinucleated cells responsible for bone resorption. Molecular pathways 
involved in osteoclast proliferation, differentiation, and survival are essential players of 
bone metastasis. Osteoclast Differentiation is a systemic pathway that controls bone 
renovation.   Since the main metastasis sites for melanoma cancer include bone, liver, 
lung, and skin/muscle [54], functional enrichment of osteoclast-related pathways within 
top-level pathways is a supporting finding for our study design. 

Ras-associated protein-1 (Rap1) is an essential regulator for basic cell functions such as 
cellular migration and polarization. This pathway has critical role in tumor metastasis,  so 
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such an increase in the significance level is also critical for the metastatic outcome (Y. L. 
Zhang et al. 2017).  

Chemokines are involved in controlling the migration of cells during normal processes of 
tissue maintenance or development.  The chemokine-receptor system plays critical roles 
in various physiological processes, including immune homeostasis, inflammatory 
responses, and cancer progression. Chemokines have essential roles in tumor progression, 
involved in the growth of many cancers and metastasis (Sarvaiya et al., 2013).  

Since the initial discovery of the relationship between cancer and miRNA signatures, 
many studies have shown that miRNA has a critical role in regulating genes and, thus, has 
a critical role in tumorigenesis.  Today, many techniques for the early detection and 
diagnosis of tumors are available. Still, when invasive procedures are required for 
diagnosis or treatment, it is vital to know the tumor's metastatic potential to estimate the 
risks vs. benefits of the procedure. Also, in the later stages of tumor development, any 
information about the metastatic status of the late-stage tumors is required for deciding 
between therapy choices. Hence, the miRNA reported in this study can be candidates for 
therapeutic targets of melanoma metastasis.  

5.2.  Limitations 

One limitation of the study was the data imbalance and small sample size. We validated 
and tested our models in restricted data size since we could not access additional data sets 
on GEO or CGC, combining all three markers at the time of the study. We utilized 
oversampling techniques and ran the overall process multiple times to reduce the bias to 
address this limitation.  Additionally, we were able to compare various machine learning 
models as they were appropriate for the data size in the study.  However, we realize that 
deep learning methods would be competitive with these techniques. Therefore, repetition 
of the study with a balanced or more extensive data set in the future can further validate 
the biomarkers reported here. 

5.3.  Future Research 

Comparing significant pathways of the biomarker’s groups can give information about the 
featured pathways for Melanoma Metastasis.  In this study, we only focus on pathway 
analysis of specific groups. In future studies, pathways analysis of mRNA, Methylation, 
miRNA- Methylation, and mRNA- Methylation can be done, and the results can be 
compared with those included in this study.  



54 
 
 

In addition, the final predictive model of this study can be extended to conduct an ablation 
study, where input modalities would be removed, to see how much predictive accuracy 
can be extracted from individual data modalities.   

5.4. Conclusion  

 
Since this initial discovery of the gene regulation mechanism of the microRNAs, many 
studies have been contacted to reveal out their impact.  In this study we tried to investigate 
contriutoon of miRNAs for metastatic outcome of the primary melanoma cancer.  

Untill now, there were many studies on impact molecular biomarkers and gene regulation 
mechanism of the microRNAs on various cancer types. However, there was not enough 
studies to investigate metastic progress from genereralized perspective and to investigate 
the contribution of different genetic markers. 

We consternate on molecular foundation of metastasis by combining all miRNA and 
mRNA  and Metthlaton  as possible markers, for idenifing metastasis of melanoma which 
is a cancer with a rapid increase in incidence and high mortality.  In Melanoma, metastasis 
is frequent and deadly. Therefore predicting possiple outcome of the melanoma in early 
stages may help to make better terapatic decisions.  

We used TCGA melanoma dataset by combining miRNA and mRNA expressions with 
Methylation Beta Values.We developed Predictive models by using combinations of all 
these biomarker groups.  Different techniques for dimensional reduction and class 
imbalance solutions are applied. We trained the model by using various machine learning 
algorithms, and compare their performance. Our goal was comparing different biomarkers 
and investigating their contribution to metastasis.  By this way we want to identify miRNA 
signatures and reveal out their impact.    

According to our results combining miRNAs with mRNA and Methylation improves 
models predictive accuracy and precision. However, miRNAs alone proposed in this 
study, predicts the melanoma metastasis with high accuracy as well.  Therefore, miRNAs 
proposed in this study can be effective smallest set to predicts the metatastic outcome.  
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APPENDICES 

 

APPENDIX A 

 
Prediction Model Results 

 
 
Table 4: Model Prediction Results for Each Experiment Cycle and Technique in Unseen Test Data   

Model Sensitivity Specificity PValue Accuracy F Value 
miRNA A1 Neural Network 80% 75% 2.50E-03 77.25% 77.50% 

A1 SVM(Linear ) 78% 72% 6.69E-03 74.75% 75.18% 
A1 SVM (Polynomial) 79% 74% 1.45E-03 76.00% 76.38% 
A1 SVM (Radial ) 79% 72% 5.91E-03 75.50% 75.52% 
A1 Random Forest 75% 90% 1.70E-04 82.25% 80.79% 
A1(*) AdaBoost 78% 79% 1.59E-03 78.25% 77.96%* 
A1 Naïve Bayes 56% 89% 8.77E-03 72.50% 66.98% 
B1 Neural Network 72% 80% 3.39E-03 75.75% 74.61% 
B1 SVM(Linear ) 72% 77% 3.78E-03 74.50% 73.65% 
B1 SVM (Polynomial) 68% 78% 1.28E-02 73.00% 71.09% 
B1 SVM (Radial ) 65% 80% 2.24E-02 72.00% 69.06% 
B1 Random Forest 71% 92% 2.59E-04 81.00% 78.66% 
B1(*) AdaBoost 78% 84% 3.11E-04 80.75% 79.91%* 
B1 Naïve Bayes 56% 91% 6.81E-03 73.50% 67.53% 
C1 Neural Network 81% 73% 3.25E-03 77.00% 77.87% 
C1 SVM(Linear ) 77% 74% 5.21E-03 75.25% 75.53% 
C1 SVM (Polynomial) 81% 67% 5.79E-03 73.50% 75.24% 
C1 SVM (Radial ) 79% 75% 1.95E-03 77.00% 77.40% 
C1 Random Forest 85% 80% 2.37E-04 82.25% 82.63% 
C1(**) AdaBoost 90% 73% 4.58E-04 81.25% 82.71%* 
C1 Naïve Bayes 92% 62% 2.61E-03 76.50% 79.57% 
D1 Neural Network 68% 79% 8.79E-03 73.25% 71.33% 
D1 SVM(Linear ) 80% 74% 3.97E-03 76.75% 77.46% 
D1 SVM (Polynomial) 70% 75% 1.35E-02 72.25% 71.46% 
D1 SVM (Radial ) 59% 87% 1.24E-02 72.75% 68.15% 
D1 Random Forest 63% 91% 2.38E-03 77.00% 72.97% 
D1(*) AdaBoost 81% 80% 7.85E-03 80.25% 80.30%* 
D1 Naïve Bayes 70% 80% 2.98E-02 75.00% 73.29% 

miRNA and 
mRNA 

A2(*) Neural Network 85% 80% 1.68E-04 82.50% 82.80%* 
A2 SVM(Linear ) 87% 77% 1.79E-04 81.75% 82.67% 
A2 SVM (Polynomial) 86% 78% 9.34E-05 82.00% 82.58% 
A2 SVM (Radial ) 85% 77% 4.10E-03 81.00% 81.76% 
A2 Random Forest 81% 86% 8.26E-05 83.25% 82.71% 
A2 AdaBoost 86% 76% 2.83E-04 80.75% 81.43% 
A2 Naïve Bayes 59% 92% 6.59E-03 75.25% 70.09% 
B2(*) Neural Network 80% 90% 2.41E-05 84.75% 83.92%* 
B2 SVM(Linear ) 81% 88% 5.67E-05 84.50% 83.80% 
B2 SVM (Polynomial) 78% 94% 2.24E-04 85.50% 83.81% 
B2 SVM (Radial ) 86% 73% 8.66E-04 79.00% 80.21% 
B2 Random Forest 72% 93% 1.70E-04 82.00% 79.65% 
B2 AdaBoost 76% 90% 3.73E-04 82.75% 81.18% 
B2 Naïve Bayes 56% 95% 6.47E-03 75.25% 68.43% 
C2 Neural Network 95% 81% 3.52E-05 87.75% 88.69% 
C2(*) SVM(Linear ) 90% 91% 2.40E-06 90.00% 89.93%* 
C2 SVM (Polynomial) 96% 75% 1.24E-04 85.00% 86.57% 
C2 SVM (Radial ) 96% 35% 2.08E-01 65.25% 74.46% 
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C2 Random Forest 100% 56% 8.45E-04 77.50% 81.63% 
C2 AdaBoost 82% 64% 1.13E-02 72.75% 74.94% 
C2 Naïve Bayes 100% 26% 1.06E-01 62.50% 72.71% 
D2 Neural Network 93% 88% 1.40E-06 90.25% 90.50% 
D2(**) SVM(Linear ) 92% 94% 1.00E-07 92.50% 92.43%* 
D2 SVM (Polynomial) 93% 77% 1.59E-04 84.75% 86.03% 
D2 SVM (Radial ) 99% 3% 5.31E-01 50.75% 66.69% 
D2 Random Forest 96% 60% 2.50E-03 77.75% 81.33% 
D2 AdaBoost 80% 74% 9.23E-03 77.00% 77.43% 
D2 Naïve Bayes 100% 9% 3.61E-01 54.25% 68.52% 

miRNA-mRNA- 
Methylation  

A3(*) Neural Network 86% 84% 2.41E-05 84.50% 84.60%* 
A3 SVM(Linear ) 83% 86% 2.28E-05 84.25% 84.10% 
A3 SVM (Polynomial) 87% 81% 6.41E-05 83.75% 84.24% 
A3 SVM (Radial ) 84% 82% 8.86E-04 82.75% 83.05% 
A3 Random Forest 92% 71% 2.81E-04 81.25% 83.06% 
A3 AdaBoost 80% 81% 4.23E-04 80.00% 79.77% 
A3 Naïve Bayes 97% 14% 3.36E-01 55.25% 68.51% 
B3 Neural Network 76% 93% 1.18E-04 84.00% 82.51% 
B3 SVM(Linear ) 78% 93% 1.51E-05 85.25% 84.11% 
B3(*) SVM (Polynomial) 80% 91% 2.17E-05 85.50% 84.55%* 
B3 SVM (Radial ) 89% 70% 2.36E-03 79.50% 81.46% 
B3 Random Forest 75% 76% 1.62E-02 75.25% 74.90% 
B3 AdaBoost 74% 86% 2.17E-03 79.75% 78.39% 
B3 Naïve Bayes 89% 21% 3.35E-01 55.00% 66.38% 
C3 Neural Network 93% 79% 4.45E-05 86.00% 87.01% 
C3 SVM(Linear ) 86% 88% 1.22E-05 87.00% 86.76% 
C3(*) SVM (Polynomial) 93% 82% 1.92E-05 87.25% 87.89%* 
C3 SVM (Radial ) 98% 71% 8.36E-05 84.00% 86.10% 
C3 Random Forest 96% 69% 1.93E-04 82.00% 84.18% 
C3 AdaBoost 84% 78% 2.90E-04 80.50% 80.94% 
D3 Neural Network 84% 90% 3.89E-06 87.00% 86.53% 
D3(*) SVM(Linear ) 92% 93% 9.92E-08 92.50% 92.47%* 
D3 SVM (Polynomial) 95% 85% 9.45E-07 89.75% 90.34% 
D3 SVM (Radial ) 96% 78% 8.39E-04 86.50% 87.94% 
D3 Random Forest 95% 76% 1.38E-05 85.25% 86.47% 
D3 AdaBoost 85% 85% 6.40E-05 84.75% 84.51% 

miRNA-mRNA-
Hypo Methylation  

A4 Neural Network 60% 82% 6.26E-03 71.00% 67.43% 
A4 SVM(Linear ) 75% 85% 9.11E-05 80.00% 78.95% 
A4 SVM (Polynomial) 60% 85% 4.70E-03 72.50% 68.46% 
A4 SVM (Radial ) 72% 82% 5.71E-04 76.75% 75.45% 
A4 Random Forest 73% 97% 1.06E-05 84.50% 82.36% 
A4(*) AdaBoost 78% 93% 1.16E-04 85.25% 84.07%* 
A4 Naïve Bayes 55% 95% 1.11E-03 75.00% 68.75% 
B4 Neural Network 70% 90% 1.16E-04 79.75% 77.57% 
B4(*) SVM(Linear ) 80% 83% 5.97E-05 81.50% 81.25%* 
B4 SVM (Polynomial) 50% 85% 1.92E-02 67.50% 60.61% 
B4 SVM (Radial ) 50% 80% 4.03E-02 65.00% 58.82% 
B4 Random Forest 64% 100% 4.21E-05 81.75% 77.80% 
B4 AdaBoost 70% 98% 3.16E-05 83.50% 80.74% 
B4 Naïve Bayes 60% 100% 9.11E-05 80.00% 75.00% 
C4 Neural Network 93% 78% 8.42E-04 85.25% 86.41% 
C4(*) SVM(Linear ) 88% 87% 1.29E-05 87.50% 87.53%* 
C4 SVM (Polynomial) 91% 78% 8.19E-05 84.50% 85.52% 
C4 SVM (Radial ) 94% 70% 3.85E-04 82.00% 83.99% 
C4 Random Forest 95% 65% 4.99E-04 80.00% 82.61% 
C4 AdaBoost 85% 75% 4.97E-04 79.50% 80.36% 
D4 Neural Network 85% 83% 2.06E-05 84.00% 84.11% 
D4(*) SVM(Linear ) 87% 88% 2.19E-06 87.50% 87.35%* 
D4 SVM (Polynomial) 94% 77% 4.80E-05 85.00% 86.23% 
D4 SVM (Radial ) 97% 66% 1.07E-03 81.00% 83.80% 
D4 Random Forest 92% 80% 2.30E-05 85.50% 86.31% 
D4 AdaBoost 84% 83% 6.85E-05 83.00% 83.14% 

miRNA-mRNA-
Hypo Methylation  

A5 Neural Network 60% 81% 7.86E-03 70.50% 67.06% 
A5 SVM(Linear ) 75% 85% 9.11E-05 80.00% 78.95% 
A5 SVM (Polynomial) 61% 82% 6.14E-03 71.50% 68.08% 
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A5 SVM (Radial ) 71% 84% 4.94E-04 77.00% 75.40% 
A5 Random Forest 73% 97% 3.97E-05 85.00% 82.91% 
A5(*) AdaBoost 76% 94% 1.69E-05 84.75% 83.29%* 
B5 Neural Network 70% 90% 1.16E-04 79.75% 77.57% 
B5 SVM(Linear ) 80% 80% 9.11E-05 80.00% 80.00% 
B5 SVM (Polynomial) 51% 85% 1.81E-02 67.75% 61.02% 
B5 SVM (Radial ) 50% 80% 4.03E-02 65.00% 58.82% 
B5 Random Forest 62% 99% 1.38E-04 80.25% 75.83% 
B5(*) AdaBoost 68% 99% 4.95E-05 83.50% 80.30%* 
C5 Neural Network 91% 78% 5.87E-05 84.25% 85.20% 
C5 SVM(Linear ) 88% 89% 6.91E-06 88.25% 88.07% 
C5(*) SVM (Polynomial) 91% 86% 3.52E-06 88.50% 88.79%* 
C5 SVM (Radial ) 97% 73% 3.57E-04 84.75% 86.49% 
C5 Random Forest 97% 62% 4.85E-04 79.25% 82.37% 
C5 AdaBoost 88% 72% 2.33E-03 79.75% 81.18% 
D5 Neural Network 89% 88% 4.80E-06 88.50% 88.60% 
D5(**) SVM(Linear ) 92% 90% 5.87E-07 90.75% 90.90%* 
D5 SVM (Polynomial) 95% 85% 3.09E-06 89.75% 90.39% 
D5 SVM (Radial ) 96% 74% 5.00E-05 84.75% 86.42% 
D5 Random Forest 94% 75% 1.52E-04 84.25% 85.72% 
D5 AdaBoost 81% 86% 8.13E-05 83.00% 82.44% 

mRNA-
Methylation 

A6 Neural Network 92% 77% 3.34E-04 84.25% 85.45% 
A6 SVM(Linear ) 91% 79% 1.24E-04 84.75% 85.63% 
A6 SVM (Polynomial) 93% 75% 1.26E-04 84.00% 85.39% 
A6 SVM (Radial ) 99% 63% 1.03E-03 80.75% 83.90% 
A6(*) Random Forest 92% 83% 1.35E-05 87.25% 87.76%* 
A6 AdaBoost 84% 73% 1.43E-03 78.50% 79.75% 
B6 Neural Network 87% 84% 1.61E-05 85.50% 85.75% 
B6 SVM(Linear ) 93% 79% 7.30E-05 85.75% 86.91% 
B6 SVM (Polynomial) 97% 71% 3.91E-04 83.75% 85.87% 
B6 SVM (Radial ) 99% 70% 5.67E-05 84.25% 86.32% 
B6(**) Random Forest 84% 94% 3.43E-05 88.75% 88.00%* 
B6 AdaBoost 81% 86% 3.79E-05 83.25% 82.76% 
C6(*) Neural Network 88% 85% 2.34E-05 86.00% 86.26%* 
C6 SVM(Linear ) 89% 78% 3.70E-04 83.00% 84.04% 
C6 SVM (Polynomial) 100% 5% 4.56E-01 52.25% 67.71% 
C6 SVM (Radial ) 85% 77% 2.63E-04 80.75% 81.44% 
C6 Random Forest 85% 84% 2.22E-05 84.50% 84.49% 
C6 AdaBoost 81% 85% 5.85E-05 82.75% 82.29% 
D6 Neural Network 84% 90% 3.89E-06 87.00% 86.53% 
D6(*) SVM(Linear ) 87% 88% 2.06E-05 87.25% 87.29%* 
D6 SVM (Polynomial) 100% 2% 5.13E-01 51.00% 67.12% 
D6 SVM (Radial ) 73% 89% 4.90E-04 80.75% 78.61% 
D6 Random Forest 75% 90% 9.17E-05 82.25% 80.71% 
D6 AdaBoost 80% 93% 2.17E-05 86.25% 85.09% 

MRNA A7(*) Neural Network 86% 80% 9.09E-04 82.50% 82.89%* 
A7 SVM(Linear ) 90% 68% 6.56E-04 79.00% 81.10% 
A7 SVM (Polynomial) 100% 7% 4.08E-01 53.50% 68.32% 
A7 SVM (Radial ) 87% 75% 4.20E-04 80.75% 81.74% 
A7 Random Forest 81% 81% 9.15E-04 80.75% 80.44% 
A7 AdaBoost 77% 86% 8.98E-04 81.00% 79.79% 
B7 Neural Network 80% 85% 1.00E-04 82.00% 81.57% 
B7(*) SVM(Linear ) 88% 74% 4.88E-04 80.75% 81.84%* 
B7 SVM (Polynomial) 100% 2% 5.13E-01 51.00% 67.12% 
B7 SVM (Radial ) 78% 81% 4.20E-03 79.25% 78.84% 
B7 Random Forest 76% 88% 4.07E-03 81.75% 79.85% 
B7 AdaBoost 76% 91% 3.61E-04 83.00% 81.22% 
C7 Neural Network 94% 76% 7.48E-05 84.75% 86.07% 
C7 SVM(Linear ) 88% 85% 1.44E-05 86.25% 86.49% 
C7(*) SVM (Polynomial) 91% 81% 2.14E-05 85.75% 86.49%* 
C7 SVM (Radial ) 98% 69% 8.60E-04 83.00% 85.36% 
C7 Random Forest 98% 70% 5.37E-05 83.75% 85.84% 
C7 AdaBoost 87% 75% 1.36E-04 80.75% 81.82% 
D7 Neural Network 90% 82% 2.13E-05 86.00% 86.56% 
D7 SVM(Linear ) 91% 83% 3.58E-05 87.00% 87.59% 



67 
 
 

D7 SVM (Polynomial) 95% 73% 1.41E-04 83.50% 85.20% 
D7 SVM (Radial ) 100% 62% 7.75E-04 80.50% 83.78% 
D7(**) Random Forest 93% 83% 1.18E-05 88.00% 88.57%* 
D7 AdaBoost 78% 85% 8.66E-04 81.25% 80.29% 

Methylation A8(*) Neural Network 81% 77% 5.06E-03 78.75% 79.27%* 
A8 SVM(Linear ) 74% 74% 6.07E-03 74.00% 73.66% 
A8 SVM (Polynomial) 85% 57% 3.16E-02 70.75% 74.07% 
A8 SVM (Radial ) 71% 78% 1.85E-02 74.25% 72.50% 
A8 Random Forest 75% 77% 3.36E-03 76.00% 75.68% 
A8 AdaBoost 77% 71% 7.14E-03 73.50% 74.37% 
B8(*) Neural Network 76% 88% 2.76E-03 81.75% 80.48%* 
B8 SVM(Linear ) 75% 85% 5.50E-04 80.00% 78.90% 
B8 SVM (Polynomial) 92% 55% 1.71E-02 73.25% 77.55% 
B8 SVM (Radial ) 63% 92% 1.33E-03 77.50% 73.24% 
B8 Random Forest 63% 92% 1.65E-03 77.25% 72.99% 
B8 AdaBoost 62% 80% 1.47E-02 71.00% 67.89% 
C8 Neural Network 82% 77% 4.48E-03 79.25% 79.79% 
C8 SVM(Linear ) 78% 85% 7.70E-04 81.25% 80.63% 
C8 SVM (Polynomial) 78% 83% 2.89E-03 80.25% 79.72% 
C8(**) SVM (Radial ) 82% 81% 2.10E-03 81.00% 81.16%* 
C8 Random Forest 93% 63% 4.03E-03 77.75% 80.96% 
C8 AdaBoost 85% 70% 1.17E-03 77.25% 78.79% 
D8 Neural Network 76% 84% 8.18E-04 79.75% 78.93% 
D8 SVM(Linear ) 82% 83% 4.44E-04 82.25% 82.18% 
D8(*) SVM (Polynomial) 84% 83% 6.64E-05 83.50% 83.51%* 
D8 SVM (Radial ) 88% 75% 5.98E-04 81.00% 82.24% 
D8 Random Forest 80% 82% 4.02E-04 80.75% 80.46% 
D8 AdaBoost 80% 78% 4.56E-04 78.75% 78.75% 

miRNA-
Methylation 

A9 Neural Network 78% 80% 3.21E-03 78.75% 78.31% 
A9 SVM(Linear ) 79% 77% 8.61E-03 77.50% 77.28% 
A9 SVM (Polynomial) 79% 77% 2.22E-03 77.75% 77.45% 
A9 SVM (Radial ) 81% 71% 2.18E-03 75.75% 76.69% 
A9(*) Random Forest 82% 86% 7.73E-05 83.75% 83.41%* 
A9 AdaBoost 79% 83% 5.16E-04 80.75% 80.22% 
B9 Neural Network 73% 88% 9.30E-04 80.00% 78.32% 
B9(*) SVM(Linear ) 78% 89% 3.40E-04 83.00% 81.98%* 
B9 SVM (Polynomial) 88% 66% 1.65E-03 76.50% 78.58% 
B9 SVM (Radial ) 69% 89% 1.43E-03 78.50% 75.50% 
B9 Random Forest 74% 94% 1.33E-04 83.50% 81.56% 
B9 AdaBoost 71% 89% 9.35E-04 79.75% 77.63% 
C9(*) Neural Network 87% 78% 2.08E-03 82.00% 82.86%* 
C9 SVM(Linear ) 79% 84% 2.30E-03 81.25% 80.74% 
C9 SVM (Polynomial) 83% 82% 1.98E-03 82.25% 82.34% 
C9 SVM (Radial ) 85% 79% 9.20E-04 81.75% 82.17% 
C9 Random Forest 96% 43% 3.58E-02 69.50% 76.03% 
C9 AdaBoost 84% 70% 4.86E-03 77.00% 78.59% 
D9 Neural Network 79% 90% 6.23E-05 84.25% 83.33% 
D9 SVM(Linear ) 77% 88% 2.49E-04 82.25% 81.09% 
D9 SVM (Polynomial) 81% 88% 1.57E-04 84.25% 83.72% 
D9(**) SVM (Radial ) 93% 72% 9.03E-04 82.25% 84.11%* 
D9 Random Forest 88% 71% 1.13E-03 79.25% 80.98% 
D9 AdaBoost 80% 82% 4.13E-04 80.75% 80.48% 
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Figure 24: miRNA Models Variance of Predictive Models for A 
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Figure 25: miRNA Models Variance of Predictive Models for B1 
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Figure 26: miRNA Models Variance of Predictive Models for C1 
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Figure 27: miRNA Models Variance of Predictive Models for D1 
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Figure 28: mRNA Models Variance of Predictive Models for A7 
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Figure 29: mRNA Models Variance of Predictive Models for B7 
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Figure 30: mRNA Models Variance of Predictive Models for C7 
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Figure 31: mRNA Models Variance of Predictive Models for D7 

 



76 
 
 

 
Figure 32: Methylation Models Variance of Predictive Models for A8 
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Figure 33: Methylation Models Variance of Predictive Models for B8 
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Figure 34: Methylation Models Variance of Predictive Models for C8 
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Figure 35: Methylation  Model Variances of Predictive Models of  D8 
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Figure 36: miRNA and mRNA   Model Variances of Predictive Models of  A2 
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Figure 37: miRNA and mRNA   Model Variances of Predictive Models of  B2 
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Figure 38: miRNA and mRNA   Model Variances of Predictive Models of  C2 
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Figure 39: miRNA and mRNA   Model Variances of Predictive Models of  D2 
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Figure 40: mRNA and Methylation   Model Variances of Predictive Models of  A6 
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Figure 41: mRNA and Methylation  Model Variances of Predictive Models of  B6 
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Figure 42 : mRNA and Methylation   Model Variances of Predictive Models of  C6 
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Figure 43: mRNA and Methylation  Model Variances of Predictive Models of  D6 
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Figure 44: miRNA and Methylation  Model Variances of Predictive Models of  A9 
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Figure 45: miRNA and Methylation  Model Variances of Predictive Models of  B9 
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Figure 46: miRNA and Methylation  Model Variances of Predictive Models of  C9 
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Figure 47: miRNA and Methylation  Model Variances of Predictive Models of  D9 
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Figure 48: miRNA, mRNA and Methylation  Model Variances of Predictive Models of  A3 
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Figure 49: miRNA, mRNA and Methylation  Model Variances of Predictive Models of  A3, B3 , C3 And 

D3 
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Figure 50: miRNA, mRNA and Methylation  Model Variances of Predictive Models of  C3 
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Figure 51: miRNA, mRNA and Methylation  Model Variances of Predictive Models of  D3 
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Figure 52: miRNA, mRNA and Hypo-Methylation  Model Variances of Predictive Models of  A4 
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Figure 53: miRNA, mRNA and Hypo-Methylation  Model Variances of Predictive Models of  B4 
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Figure 54: miRNA, mRNA and Hypo-Methylation  Model Variances of Predictive Models of  C4 
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Figure 55: miRNA, mRNA and Hypo Methylation  Model Variances of Predictive Models of  D4 
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Figure 56: miRNA, mRNA and Hyper-Methylation  Model Variances of Predictive Models of  A5 
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Figure 57: miRNA, mRNA and Hyper-Methylation  Model Variances of Predictive Models of  B5 

 



102 
 
 

 
Figure 58: miRNA, mRNA and Hyper-Methylation  Model Variances of Predictive Models of  C5 
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Figure 59: miRNA, mRNA and Hyper Methylation  Model Variances of Predictive Models of D5 
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APPENDIX B 

 
BIO-MARKERS USED IN MODELS 

Table 5: miRNA and Methylated Gene relations presented Triple Model 
In the final model ,  7 miRNA biomarkers where presented with target differentially expressed methylated 
genes.   

  
miRNA-

Methylation 
# HYPER METHYLATED GENES # HYPO- 

METHYLAT
ED GENES 

H hsa-mir-142 3 SLC30A6,  S100A11,  CBD3     
hsa-mir-3124 2 SENP1,  CYP2U1     
hsa-mir-326     1 C8orf17 
hsa-mir-331 1 IRF4     

hsa-mir-4419b 2 TRUB2,   SLC30A6     
hsa-mir-766 5 ORC6,  NDUFB5,  GMPR,  TMEM251,  POLR1D     

L hsa-mir-203a 1 SLC7A6OS     

 

 
Table 6: miRNA and mRNA Gene relations presented Triple Model  
 In the final model ,  miRNA biomarkers and their target mRNA  where presented together.  

miRNA-
mRNA 

# upregulated mRNA # Down 
regulated 
mRNA 

H hsa-mir-142 57 ENSG00000055208.16,  ENSG00000065809.12,  ENSG00000068366.18,  
ENSG00000069431.9,  ENSG00000070961.13,  ENSG00000084093.14,  
ENSG00000087460.22,  ENSG00000088179.7,  ENSG00000091009.7,  
ENSG00000096717.10,  ENSG00000100934.13,  ENSG00000101966.11,  
ENSG00000104689.8,  ENSG00000105851.9,  ENSG00000108064.9,  
ENSG00000112208.11,  ENSG00000116062.13,  ENSG00000116406.17,  
ENSG00000118058.19,  ENSG00000122877.12,  ENSG00000128585.16,  
ENSG00000128585.16,  ENSG00000129450.7,  ENSG00000134352.18,  
ENSG00000134644.14,  ENSG00000134982.15,  ENSG00000135913.9,  
ENSG00000136436.13,  ENSG00000138398.14,  ENSG00000140836.13,  
ENSG00000142512.13,  ENSG00000143924.17,  ENSG00000145365.10,  
ENSG00000147894.13,  ENSG00000148516.20,  ENSG00000152683.13,  
ENSG00000154217.13,  ENSG00000158050.4,  ENSG00000164164.14,  
ENSG00000164463.11,  ENSG00000165209.17,  ENSG00000165997.4,  
ENSG00000166211.7,  ENSG00000166501.11,  ENSG00000168944.14,  
ENSG00000171150.7,  ENSG00000172493.19,  ENSG00000175414.6,  
ENSG00000178695.5,  ENSG00000179331.2,  ENSG00000181450.16,  
ENSG00000181722.14,  ENSG00000183918.13,  ENSG00000185862.6,  
ENSG00000196233.10,  ENSG00000197714.7,  ENSG00000198162.11 

 0  - 

hsa-mir-29c 17 ENSG00000078304.18,  NSG00000084093.14,  ENSG00000086758.14,  
ENSG00000096717.10,  ENSG00000117020.15,  NSG00000135426.13,  
ENSG00000139218.16,  ENSG00000143384.11,  ENSG00000143970.15,  
ENSG00000144468.15,  ENSG00000156675.14,  ENSG00000158050.4,  
ENSG00000159873.8,  ENSG00000162924.12,  NSG00000164164.14,  
ENSG00000169756.15,  ENSG00000179454.12 

 0  - 

hsa-mir-
3124 

23 ENSG00000001561.6,  ENSG00000006459.9,  ENSG00000028277.19,  
ENSG00000101347.8,  ENSG00000101966.11,  ENSG00000105866.12,  
ENSG00000111727.10 ENSG00000112486.13,  ENSG00000113441.14,  
ENSG00000121067.16,  ENSG00000134460.14,   ENSG00000151789.8,  
ENSG00000152601.16,  ENSG00000153201.14,  ENSG00000154305.15,  
ENSG00000157827.18,  ENSG00000160593.16,  ENSG00000163635.16,  

 0  - 
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ENSG00000164463.11,  ENSG00000186265.8,  ENSG00000196233.10,  
ENSG00000205542.9,  ENSG00000273274.1 

hsa-mir-
3130 

12 ENSG00000089916.16,  ENSG00000091009.7,  ENSG00000115947.12,  
ENSG00000119820.9,  ENSG00000130584.9,  ENSG00000143751.9,  
ENSG00000162924.12,  ENSG00000173473.9,  ENSG00000174749.5,  
ENSG00000185155.10,  ENSG00000185215.7,  ENSG00000197714.7 

 0  - 

hsa-mir-326 10 ENSG00000009307.14,  ENSG00000114331.11,  ENSG00000120885.18,  
ENSG00000129003.14,  ENSG00000143970.15,  ENSG00000165997.4,  
ENSG00000171051.7,  ENSG00000171988.16,  ENSG00000172943.17 
ENSG00000179813.5 

 0  - 

hsa-mir-331 24 ENSG00000065526.9,  ENSG00000079819.15,  ENSG00000085224.19,  
ENSG00000087460.22,  ENSG00000096717.10,  ENSG00000100055.19,  
ENSG00000103187.7,  ENSG00000112658.7,  ENSG00000115977.17,  
NSG00000116285.11,  ENSG00000117500.11,  ENSG00000117713.16,  
ENSG00000131931.7,  ENSG00000136436.13,  ENSG00000138443.14,  
ENSG00000144381.15,  ENSG00000148606.11,  NSG00000156976.13,  
NSG00000160352.14,  ENSG00000162924.12,  ENSG00000163960.10,  
ENSG00000165821.10,  ENSG00000172943.17,  ENSG00000241644.2 

 0  - 

hsa-mir-
4419b 

39 ENSG00000021574.10,  ENSG00000074660.14,   ENSG00000074706.12,  
ENSG00000076108.10,  ENSG00000080345.16,   ENSG00000081320.9,   
ENSG00000090659.16,  ENSG00000090924.13,  ENSG00000101974.13,   
NSG00000106948.15,  ENSG00000108061.10,  ENSG00000112658.7,  
ENSG00000117593.9,  ENSG00000119820.9,  ENSG00000120693.12,  
ENSG00000120868.12,  ENSG00000125637.14,  ENSG00000125730.15,  
ENSG00000131931.7,  ENSG00000134070.4,  ENSG00000134371.9,  
ENSG00000136052.8,  ENSG00000136731.11,  ENSG00000139146.12,  
ENSG00000151320.9,  ENSG00000152683.13,  ENSG00000158473.6,  
ENSG00000160049.10,  ENSG00000161405.15,  ENSG00000162692.9,  
ENSG00000163792.6,  ENSG00000166822.11,  ENSG00000167984.15,  
ENSG00000174579.3,  ENSG00000178607.14,  ENSG00000181896.10,  
ENSG00000186265.8,  ENSG00000269743.2,  ENSG00000273274.1 

 0  - 

hsa-mir-
4444 

1 ENSG00000143603.17  0  - 

hsa-mir-
4474 

8 ENSG00000096717.10,  ENSG00000116406.17,  ENSG00000137478.13,  
ENSG00000159217.8,   ENSG00000168214.19,  ENSG00000168685.13,  
ENSG00000171150.7,  ENSG00000181450.16 

 0  - 

hsa-mir-
4491 

3 ENSG00000108061.10,  ENSG00000174749.5,  ENSG00000181896.10  0  - 

hsa-mir-
4523 

1 ENSG00000198113.2  0  - 

hsa-mir-625 13 ENSG00000076108.10,  ENSG00000100647.7,  ENSG00000101109.10,  
ENSG00000102245.6,  ENSG00000127124.12,  ENSG00000130584.9,  
ENSG00000159217.8,  ENSG00000159873.8,  ENSG00000162885.11 ,  
ENSG00000179454.12,  ENSG00000180370.9,  ENSG00000187239.15,  
ENSG00000254087.6 

 0  - 

hsa-mir-766 61 ENSG00000003436.13,  ENSG00000051108.13,  ENSG00000065923.8,   
ENSG00000074660.14,   ENSG00000077044.8,  ENSG00000087589.15,  
ENSG00000090382.5,  ENSG00000090659.16,  ENSG00000090924.13,  
ENSG00000100625.8,  ENSG00000101109.10,  ENSG00000101966.11,  
ENSG00000103522.14,  ENSG00000105246.5,  ENSG00000108061.10,  
ENSG00000108819.10,  ENSG00000110395.4,  ENSG00000114331.11,  
ENSG00000122188.11,  ENSG00000124507.9,  ENSG00000125107.15,  
ENSG00000125730.15,  ENSG00000126003.6,  ENSG00000126003.6,  
ENSG00000129450.7,  ENSG00000130935.8,  ENSG00000131471.5,   
ENSG00000132704.14,  ENSG00000134070.4,  ENSG00000134371.9,  
ENSG00000138134.10,  ENSG00000138439.11,  ENSG00000146112.10,  
ENSG00000146955.9,  ENSG00000148730.6,  ENSG00000150630.3,  
ENSG00000153147.5,  ENSG00000161405.15,  ENSG00000163349.20,  
ENSG00000164164.14,  ENSG00000165821.10,  ENSG00000166250.10,  
ENSG00000166822.11,  ENSG00000167077.11,  ENSG00000171408.12,  
ENSG00000175414.6,  ENSG00000176390.11,  NSG00000178385.12,  
ENSG00000178502.5,  ENSG00000180616.7,  ENSG00000181450.16,  

 0  - 
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ENSG00000181896.10,  ENSG00000183484.10,  ENSG00000186265.8,  
ENSG00000188994.11,  ENSG00000197057.7,  ENSG00000197714.7,  
ENSG00000239264.7,  ENSG00000243811.6,  ENSG00000273274.1,  
ENSG00000278195.1 

L hsa-mir-
203a 

40 ENSG00000004468.11,  ENSG00000049249.7,   ENSG00000068796.15,  
ENSG00000087460.22,  ENSG00000100985.7,  ENSG00000104432.11,  
ENSG00000106483.10,  ENSG00000108854.14,  ENSG00000116473.13,  
ENSG00000116473.13,  ENSG00000117713.16,  ENSG00000118260.13,  
ENSG00000119004.13,  ENSG00000120693.12,  ENSG00000121879.3,  
ENSG00000125630.14,  ENSG00000126003.6,  ENSG00000126778.8,  
ENSG00000128512.18,  ENSG00000139146.12,  ENSG00000142875.18,  
ENSG00000143190.20,  ENSG00000148516.20,  ENSG00000152601.16,  
ENSG00000153561.11,  ENSG00000157827.18,  ENSG00000158985.12,  
ENSG00000160791.13,  ENSG00000163848.17,  ENSG00000173166.16,  
ENSG00000175471.18,  ENSG00000179454.12,  ENSG00000185551.11,  
ENSG00000187800.12,  ENSG00000188452.12,  ENSG00000196233.10,  
ENSG00000196428.11,  ENSG00000196428.11,  ENSG00000205268.9 ,  
ENSG00000266412.4 

 0  - 

 

 
Table 7: Differentially Methylated Genes Selected in Triple Model 

In the final model there was 70 Hypermethylated genes and 75 Hypomethylated genes that does not target 
any miRNA 

 #  
Hyper Methylated 

Genes 70 
AC004381.6, FAM214B, HMG20B, RABL2B, P2RX7, MCAT, RP1-191J18.66, UBXN8, VPS4B, 
CAAP1, ZNFX1-AS1_2, USP8, AP1AR, TPRKB,  SLC30A5, ZC3H12C, Z98744.1, UEVLD, AAED1, 
BAP1, UBAP1, FAM161A,  ETFDH, GOLGB1, CTD-2026K11.4, ZNF223, PTTG1IP,  RPL23AP82, 
PIGP, AMZ2, FAM179B, SNORD1B, RNU6-560P, SNORD14B, HIST2H2BC, MIR636, MIR124-
3, MIR3074, SNORD12C, ZNF845,  AC079305.10, AC105247.1, NSUN5P1, Z93930.1, 
PET100, CTD-2192J16.11, CTB-187M2.1, AC013264.2, NDUFS5P2, RPL29P30, ARHGEF38,  
SMARCA5-AS1, CRNDE, ZNF564, AC004066.3, AC083843.2, AF186192.1, AF186192.5, 
CYP4A44P, LINC01003, SNORD3B-2, MIR3655, MIR4795,  AC005625.1, CTB-129P6.11, CTD-
2371O3.3, AC003956.1, CTC-339O9.2, CTD-2562G15.3, MIR6892 

Hypo Methylated 
Genes 

75 CTD-2555A7.3, SPO11, ZP2, SLAMF1, TTF1, HRH4, FBXO10, MS4A1, CCL15-CCL14, CRYGC, 
MS4A5, CCL23, C7orf33, OR5A2, ANKS4B,  RPL24P4, KRTAP6-1, PRG2, KRTAP22-1, KRTAP6-
2, KRTAP19-4, KRTAP15-1, KRTAP21-1, MPEG1, DCLRE1A, RNU6-940P, RN7SKP249, GCNT6, 
KRTAP5-6,  KRTAP20-3, KRTAP20-4, KRTAP271, TRAJ43, TRAJ42, TRAJ29, TRAJ24, 
AC005229.7, NUTF2P5, AP000357.4, ARL5AP4, SUCLA2P1, AC004899.3,  IGBP1P1,  
THRAP3P1, AC013436.6, LINC00692, RP11-101C11.1, AC113610.1, SPA17P1, KLF7-IT1, 
RN7SL337P,  ERVFRD-1, KRTAP20-1, TRAJ60, BRD9P2, CTD-2083E4.5, RTEL1P1, 
RNU6ATAC32P, RNU6-327P, SERPINE3, KB-1107E3.1, KB-1615E4.2, CTC-535M15.2, 
LINC00520, CTD-2033D15.1, HLA-P, AF001550.7, MIR4288, RN7SL612P, CCL15, GS1-
21A4.2, MIR7848, CTD-2373N4.3, FLJ42393, LINC01584 

 
Table 8: Differentially Expressed miRNA Selected in Triple Model 
In the final model there was 1529 upregulated genes and 9  downregulated mRNA which is not target of any miRNA 

 #  
Down regulated 

mRNA 9 
 
ENSG00000137675.4,  ENSG00000164687.9,  ENSG00000168703.5,  ENSG00000178184.14,  
ENSG00000180921.6,  ENSG00000198695.2,  ENSG00000226145.6,  ENSG00000262133.1,  
ENSG00000276023.3,  

Up regulated RNA 
1529 

 ENSG00000000938.11,  ENSG00000002933.6,  ENSG00000003096.12,  ENSG00000003400.13,  
ENSG00000003402.18,   ENSG00000005020.11,  ENSG00000005700.13,  ENSG00000005844.16,  
ENSG00000007129.16,  ENSG00000007312.11, ENSG00000007314.10,  ENSG00000008277.13,  
ENSG00000008952.15,  ENSG00000009790.13,  ENSG00000010610.8,  ENSG00000010671.14,  
ENSG00000010818.7,  ENSG00000011590.12,  ENSG00000011600.10,  ENSG00000012779.9,   
ENSG00000013725.13,  ENSG00000015133.17,  ENSG00000015285.9,  ENSG00000019169.10,  
ENSG00000022267.15, ENSG00000023902.12,  ENSG00000024048.9,  ENSG00000025434.17,  
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ENSG00000026103.18,  ENSG00000026297.14,  ENSG00000026751.15,  ENSG00000027075.12,  
ENSG00000028137.15,  ENSG00000030066.12,  ENSG00000030419.15,  ENSG00000032219.17,  
ENSG00000033170.15,  ENSG00000033178.11,  ENSG00000033800.12,  ENSG00000035720.6,   
ENSG00000037749.10,  ENSG00000038427.14,  ENSG00000038945.13,  ENSG00000039123.14,  
ENSG00000039537.12,  ENSG00000040199.17,  ENSG00000040933.14,  ENSG00000042980.11,  
ENSG00000043462.10,  ENSG00000047410.12,   
ENSG00000047457.12,  ENSG00000048462.9,  ENSG00000048991.15,  ENSG00000049768.13,  
ENSG00000054219.10,  ENSG00000054267.19,  ENSG00000054282.14,  ENSG00000055163.17,  
ENSG00000055917.14,  ENSG00000056097.14,  ENSG00000056277.14,  ENSG00000057657.13,  
ENSG00000058063.14,  ENSG00000058091.15,  ENSG00000058272.14,  ENSG00000060982.13,  
ENSG00000061918.11,  ENSG00000062650.16,  ENSG00000064218.4,  ENSG00000064989.11,   
ENSG00000065328.15,  ENSG00000065534.17,  ENSG00000065613.12,  ENSG00000065675.13,  
ENSG00000065717.13,  ENSG00000065882.14,  ENSG00000066056.12,  ENSG00000066294.13,  
ENSG00000066336.10,  ENSG00000066422.4,  ENSG00000066583.10,  ENSG00000067369.12,  
ENSG00000068784.11,  ENSG00000068831.17,  ENSG00000068976.12, ENSG00000069122.17,  
ENSG00000069275.12,  ENSG00000070190.11,  ENSG00000070915.8,  ENSG00000071054.14,   
ENSG00000071073.11,  ENSG00000071246.9,  ENSG00000072401.13,  ENSG00000072736.17,  
ENSG00000072818.10,  ENSG00000072858.9,  ENSG00000073614.10,  ENSG00000073754.5,  
ENSG00000073849.13,  ENSG00000073861.2,  ENSG00000074370.16,  ENSG00000074966.9,  
ENSG00000075151.18,  ENSG00000075213.9,  ENSG00000075420.11,  ENSG00000076662.8,  
ENSG00000076770.13,  ENSG00000077097.12,  ENSG00000077420.14, ENSG00000078177.12,   
ENSG00000078269.12,  ENSG00000078589.11,  ENSG00000078674.16,  ENSG00000079263.17,  
ENSG00000079335.16,  ENSG00000080200.8,  ENSG00000080298.14,  ENSG00000081019.12,  
ENSG00000081189.12,  ENSG00000081237.17,  ENSG00000082074.14,  ENSG00000083168.8,  
ENSG00000083454.20,  ENSG00000083799.16,  ENSG00000083828.14,  ENSG00000084070.10,  
ENSG00000084676.14,  ENSG00000085265.9,  ENSG00000085276.16,  ENSG00000085514.14,   
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APPENDIX C 

 
PATHWAYS 

 

Table 9: Top 15 Pathway of Genes for selected miRNA,  mRNA and Methylation Markers  
        

Category Term Count LT PH PT %  P-Value Fold 
Enrichment Bonferroni Benjamini FDR 

KEGG_PATHWAY 
Chemokine signaling 

pathway  (*)  

84 1630 186 6879 1.9 1.60E-10 1.9 4.80E-08 1.60E-08 2.20E-07 

KEGG_PATHWAY 
Cytokine-cytokine receptor 

interaction  

83 1630 243 6879 1.9 1.90E-04 1.4 5.50E-02 4.70E-03 2.50E-01 

KEGG_PATHWAY Endocytosis 83 1630 241 6879 1.9 1.40E-04 1.5 4.00E-02 4.10E-03 1.90E-01 

KEGG_PATHWAY Focal adhesion  82 1630 206 6879 1.9 2.80E-07 1.7 8.30E-05 1.00E-05 3.70E-04 

KEGG_PATHWAY HTLV-I infection  103 1630 254 6879 2.4 2.00E-09 1.7 6.00E-07 1.20E-07 2.70E-06 

KEGG_PATHWAY MAPK signaling pathway  84 1630 253 6879 1.9 4.90E-04 1.4 1.30E-01 1.00E-02 6.50E-01 

KEGG_PATHWAY Osteoclast differentiation  (*) 72 1630 131 6879 1.7 2.90E-14 2.3 8.60E-12 8.60E-12 3.90E-11 

KEGG_PATHWAY Pathways in cancer  155 1630 393 6879 3.6 1.20E-12 1.7 3.60E-10 1.80E-10 1.60E-09 

KEGG_PATHWAY PI3K-Akt signaling pathway  116 1630 345 6879 2.7 1.90E-05 1.4 5.60E-03 6.30E-04 2.60E-02 

KEGG_PATHWAY Proteoglycans in cancer  83 1630 200 6879 1.9 2.70E-08 1.8 7.90E-06 1.30E-06 3.60E-05 

REACTOME_PATHWAY R-HSA-983168  93 2158 308 9075 2.2 7.30E-03 1.3 1.00E+00 9.90E-01 1.10E+01 

KEGG_PATHWAY Rap1 signaling pathway (*) 91 1630 210 6879 2.1 3.70E-10 1.8 1.10E-07 2.70E-08 5.00E-07 

KEGG_PATHWAY Ras signaling pathway  91 1630 226 6879 2.1 3.00E-08 1.7 8.80E-06 1.30E-06 4.00E-05 

KEGG_PATHWAY 
Regulation of actin 

cytoskeleton  

74 1630 210 6879 1.7 1.50E-04 1.5 4.40E-02 4.10E-03 2.00E-01 

KEGG_PATHWAY Viral carcinogenesis 71 1630 205 6879 1.6 3.80E-04 1.5 1.00E-01 8.50E-03 5.00E-01 

                        

 

Table 10: Top 15 Pathway of Genes for selected miRNA,  mRNA Markers                

Category Term Count LT PH PT %  P-Value Fold 
Enrichment Bonferroni Benjamini FDR 

EC_NUMBER 6.3.2.- 137 2506 205 4250 1.2 1.60E-02 1.1 1.00E+00 1.00E+00 2.20E+01 

KEGG_PATHWAY 
Chemokine signaling 

pathway  

141 3958 186 6879 1.3 2.40E-07 1.3 7.30E-05 1.00E-05 3.30E-04 

KEGG_PATHWAY Endocytosis 187 3958 

241 

 

 

6879 1.7 6.30E-11 1.3 1.90E-08 6.20E-09 8.40E-08 
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KEGG_PATHWAY Focal adhesion  152 3958 206 6879 1.4 1.40E-06 1.3 4.10E-04 5.10E-05 1.80E-03 

KEGG_PATHWAY HTLV-I infection  201 3958 254 6879 1.8 3.60E-13 1.4 1.10E-10 5.30E-11 4.70E-10 

KEGG_PATHWAY MAPK signaling pathway  195 3958 253 6879 1.7 6.70E-11 1.3 2.00E-08 5.00E-09 9.00E-08 

KEGG_PATHWAY Pathways in cancer  302 3958 393 6879 2.7 3.10E-16 1.3 1.00E-13 1.00E-13 4.40E-13 

KEGG_PATHWAY PI3K-Akt signaling pathway  238 3958 345 6879 2.1 8.00E-06 1.2 2.40E-03 2.40E-04 1.10E-02 

KEGG_PATHWAY Proteoglycans in cancer  157 3958 200 6879 1.4 5.70E-10 1.4 1.70E-07 3.40E-08 7.50E-07 

REACTOME_PATHWAY R-HSA-212436  234 5317 358 9075 2.1 6.00E-03 1.1 1.00E+00 9.90E-01 9.40E+00 

REACTOME_PATHWAY R-HSA-983168  215 5317 308 9075 1.9 3.80E-05 1.2 5.30E-02 5.30E-02 6.30E-02 

KEGG_PATHWAY Rap1 signaling pathway  153 3958 210 6879 1.4 4.30E-06 1.3 1.30E-03 1.40E-04 5.80E-03 

KEGG_PATHWAY Ras signaling pathway  168 3958 226 6879 1.5 1.50E-07 1.3 4.50E-05 7.50E-06 2.00E-04 

KEGG_PATHWAY 
Regulation of actin 

cytoskeleton  

151 3958 210 6879 1.4 1.70E-05 1.2 5.00E-03 4.50E-04 2.20E-02 

KEGG_PATHWAY Viral carcinogenesis 142 3958 205 6879 1.3 5.10E-04 1.2 1.40E-01 1.30E-02 6.80E-01 

                        

  

  
                      

Table 11: Top 15 Pathway of Genes for selected miRNA Markers                  

Category Term  Count LT  PH  PT  %  P-Value  

Fold 
Enrichment 

Bonferroni Benjamini FDR  

KEGG_PATHWAY Pathways in cancer  125 1183 393 6879 4, 0 4, 6E-13 1, 8 1, 3E-10 1, 3E-10 9, 6E-11 

KEGG_PATHWAY Proteoglycans in cancer  72 1183 200 6879 2, 3 2, 0E-10 2, 1 5, 7E-8 1, 9E-8 1, 4E-8 

KEGG_PATHWAY Hepatitis B  55 1183 145 6879 1, 7 4, 4E-9 2, 2 1, 3E-6 2, 1E-7 1, 5E-7 

KEGG_PATHWAY Focal adhesion  70 1183 206 6879 2, 2 6, 1E-9 2, 0 1, 8E-6 2, 5E-7 1, 8E-7 

KEGG_PATHWAY Rap1 signaling pathway  66 1183 210 6879 2, 1 4, 8E-7 1, 8 1, 4E-4 1, 1E-5 8, 2E-6 

KEGG_PATHWAY HTLV-I infection  76 1183 254 6879 2, 4 5, 1E-7 1, 7 1, 5E-4 1, 1E-5 8, 2E-6 

KEGG_PATHWAY Ras signaling pathway  67 1183 226 6879 2, 1 3, 8E-6 1, 7 1, 1E-3 5, 0E-5 3, 6E-5 

KEGG_PATHWAY Viral carcinogenesis 61 1183 205 6879 1, 9 9, 7E-6 1, 7 2, 8E-3 1, 1E-4 7, 8E-5 

REACTOME_PATHWAY R-HSA-212436  94 1599 358 9075 3, 0 3, 4E-5 1, 5 3, 8E-2 1, 7E-2 1, 7E-2 

KEGG_PATHWAY PI3K-Akt signaling pathway  88 1183 345 6879 2, 8 7, 0E-5 1, 5 2, 0E-2 6, 0E-4 4, 3E-4 

KEGG_PATHWAY Endocytosis 63 1183 241 6879 2, 0 4, 3E-4 1, 5 1, 2E-1 2, 7E-3 1, 9E-3 

KEGG_PATHWAY cAMP signaling pathway  53 1183 198 6879 1, 7 7, 4E-4 1, 6 1, 9E-1 4, 3E-3 3, 1E-3 

KEGG_PATHWAY MAPK signaling pathway  63 1183 253 6879 2, 0 1, 6E-3 1, 4 3, 8E-1 7, 8E-3 5, 6E-3 
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KEGG_PATHWAY 
Regulation of actin 

cytoskeleton  

54 1183 210 6879 1, 7 1, 8E-3 1, 5 4, 0E-1 8, 1E-3 5, 8E-3 

REACTOME_PATHWAY R-HSA-983168  74 1599 308 9075 2, 4 3, 6E-3 1, 4 9, 8E-1 1, 6E-1 1, 5E-1 
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