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ABSTRACT

EFFECT OF PRESCRIBED BOUNDARY CONDITIONS ON THE
CONDENSER BEHAVIOR OF GROOVED HEAT PIPES

Vardin, Ali Pourabdollah

M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Zafer Dursunkaya

FEBRUARY 2022, 83 pages

Rapid enhancements in electronic microchips bring the need to design and manufac-

ture advanced cooling devices which can operate effectively without external source.

Passive heat exchangers like heat pipes can remove a remarkable amount of heat with

the help of capillary action. The phase change process in heat pipes, which utilizes

the latent heat energy, enables high heat transfer rate over small temperature differ-

ences. Although the physics of evaporation in grooved heat pipes is understood, and

comparatively satisfactory models are present, the condensation, on the other hand,

is more complex and still requires a better physical understanding to facilitate the

development of realistic models. This study investigates the effect of two different

sets of boundary conditions on forming liquid-vapor interface �lm on the �n top of

grooved heat pipes. The validation results reveal that the boundary conditions at the

�n edge can change depending on the edge angle and the temperature difference be-

tween the vapor and liquid. Also, the impact of disjoining pressure on the solution

domain and �lm pro�le is explored, which shows that inclusion of the effect of dis-

joining pressure can limit the solution domain, and beyond a speci�c edge angle, a

solution cannot be obtained. Moreover, the current study presents a novel numerical
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approach based on a modi�ed �nite difference method to solve the governing non-

linear fourth-order differential equation. This novel approach provides a chance to

model the two-dimensional �ow on the �n top, which has not been studied in the lit-

erature yet. The primary �ndings of the two-dimensional model suggest that the axial

�ow is negligible compared to the lateral �ow on the �n top except for a small region

near the centerline.

Keywords: Condensation, disjoining pressure, numerical simulation, Grooved heat

pipes, two-dimensional �ow
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ÖZ

ÖNGÖRÜLEN SINIR ŞARTLARININ OLUKLU ISI BORULARININ
YO �GUŞTURMA DAVRANIŞINA ETK �IS�I

Vardin, Ali Pourabdollah

Yüksek Lisans, Makina Mühendisli�gi Bölümü

Tez Yöneticisi: Prof. Dr. Zafer Dursunkaya

Şubat 2022 , 83 sayfa

Elektronik mikroçiplerdeki h�zl� gelişmeler, d�ş etmenler olmadan etkin bir şekilde

çal�şabilen gelişmiş so�gutma cihazlar� tasarlama ve üretme ihtiyac�n� beraberinde ge-

tirmekted�r. Is� borular� gibi pasif �s� eşanjörleri, k�lcal kuvvet yard�m�yla kayda de�ger

miktarda �s�y� taş�yabil�r. Gizli �s� enerjisini kullanan �s� borular�nda faz de�gişimi iş-

lemi, küçük s�cakl�k farklar� ile yüksek �s� ak�lar� sa�glar. Oluklu �s� borular�nda buhar-

laşman�n �zi�gi anlaş�lm�ş ve görece yeterli modeller var olsa da, yo�guşma işlemi daha

karmaş�kt�r ve gerçekçi modellerin geliştirilmesi için hala daha iyi bir �ziksel anlay�ş

gerektirir. Bu çal�şma, oluklu �s� borular�n�n kanatç�klar�n�n üst k�sm�nda s�v�-buhar

arayüz �lminin oluşturulmas�nda iki farkl� s�n�r koşulunun etkisini araşt�rmaktad�r.

Do�grulama sonuçlar�, kanatç��g�n oluk taraf�ndaki s�n�r koşullar�n�n temas aç�s�na ve

buhar ile s�v� aras�ndaki s�cakl�k fark�na ba�gl� olarak de�gişebilece�gini göstermekted�r.

Ayr�ca, ay�rma bas�nc�n�n çözüm alan� ve �lm pro�li üzerindeki etkisi de çal�ş�lm�ş

ve ay�rma bas�nc�n�n eklenmesinin çözüm alan�n� s�n�rlayabilece�gini ve belirli temas

aç�s�n�n ötesinde bir çözümün elde edilemeyece�gini gösterimişt�r. Ayr�ca, mevcut ça-

l�şma, do�grusal olmayan dördüncü dereceden diferansiyel denklemin çözömü için
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sonlu farklar yöntemin� termal alan yeni bir say�sal yaklaş�m sunmaktad�r. Bu yeni

yaklaş�m, henüz literatürde çal�ş�lmam�ş olan kanatç�k tepesindeki iki boyutlu ak�ş�

modelleme amaçl�d�r.�Iki boyutlu modelin �lk sonuçlar�, eksenel ak�ş�n, merkez çiz-

gisine yak�n küçük bir bölge d�ş�nda, kanatç�k tepesindeki yanal ak�şa k�yasla ihmal

edilebilir oldu�gunu göstermektedir.

Anahtar Kelimeler: Yo�guşma, ay�rma bas�nc�, say�sal simülasyon, Yivli �s� borular�,

iki boyutlu ak�ş
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CHAPTER 1

INTRODUCTION

Nowadays, rapid enhancements in electronics and computer technology result in de-

signing and manufacturing chips with high capacity and smaller sizes, which leads

to a signi�cant increase in heat dissipation and reduction in heat removal areas. The

ef�ciency and performance of these microchips depend on some factors, which cool-

ing process is one of them. Therefore, high heat �uxes generated by microchips have

to be removed with a proper cooling system to prevent a reduction in the whole sys-

tem's ef�ciency. A phase change mechanism is used in micro heat transfer devices

to remove a large amount of heat with a small temperature difference between the

heat sink and the heat source regions. One common type of these micro heat transfer

device is heat pipes.

1.1 Heat Pipes

Heat pipes are passive devices that utilize phase-change process and seek to transfer

large amounts of heat in small distances with small temperature differences. Heat

removal in electronic devices plays a vital role in keeping the system's ef�ciency at

a high level. Heat pipes consist of three sections: evaporator, adiabatic section, and

condenser. Fig. 1.1 shows different regions of wicked heat pipes and their working

cycle.

In the working cycle, heat is applied to the evaporator section, and it causes the work-

ing �uid to evaporate. Vapor travels to the condenser, where it condenses on the heat

pipe walls due to the temperature difference between wall and vapor. Capillary action,

which is supplied by a wick structure, creates a driving force for a liquid to �ow back
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Figure 1.1: Heat pipes scheme and working cycle [1]

from the condenser to the evaporator section. As long as there is a wick structure and

temperature difference exists in the system, the cycle continues to work, and there

isn't any need for external �ow supply devices like pumps. Wicks (Fig. 1.2) can be

made using different physical structures such as grooves, screen mesh, and sintered.

Figure 1.2: Different wick structures [2]

1.1.1 Types of heat pipes

There are different types of heat pipes used in various applications. The simplest

and most common type is the cylindrical heat pipes, consisting of cylindrical cross-

sections and different wick structures. The other kind of heat pipe is �at heat pipes,

which due to their geometry, have wide applications in electronic devices. These

heat pipes have a rectangular cross-section, and the working mechanism of both �at

and cylindrical heat pipes are the same. Another heat pipe type is capillary pumped

2



loop heat pipes (CPL), which are widely used in spacecraft applications. A two-

phase reservoir in these heat pipes enables them to control both the working �uid

and the working temperature of the system. The basic schematic of these heat pipe's

structures is presented in Fig. 1.3.

Figure 1.3: Capillary pumped loop heat pipes [3]

Loop heat pipe is another type of heat pipe that can provide reliable operation over

long distances. Differing from conventional heat pipes, loop heat pipes have separate

vapor and liquid lines and a compensation chamber. The ability to remove heat over

long distances without being sensitive to gravity makes them an attractive choice for

spacecraft applications. Fig. 1.4 shows the operating cycle of a loop heat pipe.

Micro heat pipes are the type of heat pipes that can have a noticeable heat removal

for the cooling process in electronic devices. In the micro heat pipes, the mean cur-

vature of the liquid-vapor interface is comparable in magnitude to the reciprocal of

the hydraulic radius of the total �ow channel. Micro heat pipes can have different

cross-sectional shapes as shown in Fig. 1.5.
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Figure 1.4: Principal scheme of loop heat pipes [4]

Figure 1.5: Various cross-sections of micro heat pipes [5]
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1.2 Dimensions of grooved heat pipes

In order to model realistic grooved heat pipes, it's crucial to be familiar with the

dimensions. Alijani et al. [6] fabricated four aluminum �at grooved heat pipes and

experimentally investigated the effect of �lling ratio on the thermal performance. In

this study, the �n width and groove width vary in the range200�m � 1600�m . The

geometry of grooved heat pipe is given in Fig. 1.6. In the current study, the �n and

groove width are taken as400�m and400�m , respectively.

Figure 1.6: Geometry of grooved heat pipe [7]

1.3 Literature Review

The research of Potash and Wayner [8] was one of the earliest studies that presented

a mathematical model for the evaporation section considering the disjoining pressure

to calculate the heat �ux variation and meniscus pro�le. They suggested that the

pressure drop due to the change in the extended meniscus pro�le was adequate to

provide the �uid �ow required for evaporation. Moosman et al. [9] utilized perturba-

tion theory to �nd the meniscus pro�le, and they noted that the major percentage of
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evaporative �ux occurs in the adsorbed and capillary meniscus. Moreover, they elim-

inated the interface temperature, replaced it with the wall temperature, and de�ned a

new temperature jump between the wall and the vapor. Dasgupta et al. [10] solved the

Young-Laplace equation to evaluate the experimental data for an extended meniscus,

and they utilized the lubrication assumption for the �uid �ow. Except for the slight

deviation at the transition region, the experimental observation of �lm thickness and

theoretically calculated �lm thickness matched well. Stephan et al. [11] presented

a mathematical model which was based on combining the conservation of mass and

momentum equations. The governing single differential equation was solved numer-

ically with the fourth-order Runga-Kutta method. They noted that the assumption of

an equality of the interface temperature and the saturation temperature of the vapor

could result in over-prediction of the heat transfer coef�cient. Mirzamoghadam et

al. [12] developed an integral model to calculate the meniscus pro�le utilizing an ap-

proximate temperature distribution and liquid �lm velocity. The approach was similar

to the analysis of the boundary layer, and it resulted in predicting heat transfer based

on the inclination angle of the plate. Akkuş and Dursunkaya [13] introduced a novel

approach to solve the governing equation of evaporation and the liquid �ow in the

extended meniscus region. The starting point for solving the governing equation was

in the intrinsic meniscus, where disjoining pressure is negligible, and as a result, the

modi�cation for the boundary conditions was eliminated. The results were compared

to the results of Stephan et al. [11], and it turned out that the heat �ux distribution

was similar near the intrinsic region. However, near the contact line, where disjoining

pressure is dominant, the heat �ux increased more rapidly and reached its maximum

value, which was6 percent higher than the heat �ux obtained by [11], and then sud-

denly dropped to zero.

Holm and Goplen [14] developed a model to explore the mass and heat transfer from

a wetting surface through capillary grooves. The equations represent the mass and

heat transfer solved simultaneously for the �ow inside of the capillary grooves. A

region with a high heat transfer rate was found, which accounted for about80percent

of heat dissipation from the wall. They called this area the thin �lm transition region

located at the apex of the intrinsic meniscus. The most crucial contribution provided

in this study was presenting an approximate method to detect the mass and heat trans-
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fer effects that occur near the liquid-solid-vapor interface. Jiao et al. [15] presented a

theoretical and experimental model to predict the heat transfer characteristics of the

thin �lm evaporator and condenser in grooved heat pipes. The experimental results

showed good agreement with the numerical results. They noted that the temperature

drop in the evaporator is much bigger than the condenser with the same heat load.

Also, the results showed that the reduction in contact angle decreases the meniscus

radius, which directly improves capillary pumping and heat transfer capacity. Sos-

nowski et al. [16] introduced a numerical model for simulation of evaporation and

condensation of thin water �lm with conjugated heat transfer. They reproduced the

model of Laaroussi et al. [17], and included the thermal characteristics of the solid

part, to demonstrate the importance of conjugate heat transfer. It was shown that the

phase transition, which is strongly dependent on the thermal properties of the solid,

determines the �ow pattern. Xiao and Faghri [18] proposed a three-dimensional math-

ematical model to analyze thermal and hydrodynamic behaviors of �at heat pipes. It

turned out that adding a vertical wick column in the vapor core improves thermal re-

sistance and capillary limit. Moreover, the results showed that applying a higher heat

input in the evaporation region leads to an increase in pressure drop, surface tempera-

ture, and �uid velocities in the wicks and vapor chamber, which improve the thermal

performance of �at heat pipes. Ranjan et al. [19] also presented a three-dimensional

numerical model for thermal transport in �at heat pipes considering the effect of wick

micro-structure. In some studies in the literature [20–22], composite wick structures

were utilized in heat pipes in order to obtain both high capillary pressure and high

vapor permeability, which couldn't be achieved via a single type of wick structure. Li

et al. [20] developed numerical and experimental models for the evaporation and con-

densation heat transfer in a copper-water wicked heat pipe with a sintered-grooved

composite wick structure. The results showed that the thermal resistance of the con-

denser remains constant even when the heat pipe dries, and it was fairly predicted

well by the numerical model. Also, it was seen that applying higher heat load leads

to spending more time driving the heat pipes to reach equilibrium.

Condensation occurs in two distinct modes depending on the surface on which the

vapor condenses, dropwise and �lmwise [23,24]. In dropwise condensation, the sur-

face is non-wettable, and when the vapor condenses, droplets are formed. However,
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in �lmwise condensation, the surface is wettable, and as condensation occurs, a con-

tinuous �lm is formed. Dropwise condensation increases the heat transfer rate by ten

times compared to �lmwise condensation. Fil et al. [25] presented a review to focus

on the underlying the physics and application of the dropwise condensation. Drop-

wise condensation can transfer a signi�cant amount of heat with a small temperature

difference compared to �lm condensation. However, industrial applications of drop-

wise condensation are limited because of the poor durability of the promoter coatings.

Researchers promote wetted surfaces, which is more appropriate for �lmwise conden-

sation. In the literature, some studies were conducted to modify the surface to have

an ef�cient and promoted dropwise condensation. Goswami et al. [26] presented a

review study in surface modi�cation to enhance dropwise condensation. There are

two main approaches to achieve this purpose in the literature: utilizing low surface

coatings such as organic mono-layers, noble metals, graphene, and polymers and pro-

ducing micro-nano surface features to control droplet formation and removal. Lee et

al. [27] fabricated micro-nano scaled porous on the plain surfaces of steam condenser

tubes and measured the heat transfer rate. Results showed that adding porous surfaces

increases heat transfer rates of dropwise condensation by limiting the growth of large

condensate droplets. By utilizing an image analyzing technique, Zheng et al. [28]

presented an experimental model to investigate the growth characteristics of a con-

densing sessile drop in dropwise condensation. They used interference microscopy

in measuring the curvature to calculate the pressure �eld and the Kelvin-Clapeyron

model of interfacial mass �ux to obtain the interfacial temperature difference. The

experimental observation revealed that with constant condensation heat �ux, the ap-

parent contact angle remained the same while the radius of curvature of the growing

droplet increased linearly over time.

In grooved heat pipes, the surface is wettable, and �lmwise condensation takes place

on the �n top. A smaller number of models have been developed for the condensation

section in grooved heat pipe compared to the evaporation section. Most of the evapo-

ration takes place at the edge of the groove. However, due to thinner liquid �lm on the

�n top than in the meniscus, most of the condensation occurs on the �n top. Zhang

and Faghri et al. [29] used the volume of �uid (VOF) method to model the conden-

sation on the �n top of a rectangular grooved heat pipe. They investigated the effect
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of contact angle, �lm thickness, surface tension, and wall temperature on the conden-

sation heat transfer. The results demonstrated that the liquid �lm became �atter on

the �n top as the contact angle increased. They concluded that increasing the surface

tension lowered the liquid �lm thickness. This happened because the surface energy

must be minimized, which can be reached by an increase in the radius of curvature.

As a result, the thickness of the �lm decreases. Kamotani [30] presented a model for

predicting the �lm thickness variation on the �n top of a grooved heat pipe condenser.

In modeling the liquid �ow, it was assumed that the force balance was between vis-

cous and pressure terms. The liquid �lm motion on the �n top is studied separately

in two regions; �at area and round corner region. Approximate fourth-order poly-

nomial pro�les were �tted to the liquid �lm for both areas. He concluded that the

condensation rate in axially grooved heat pipes depends on the working �uid, radius

of the curvature of the liquid meniscus in the groove, and the groove dimensions.

Also, he noted that the condensation rate for given groove geometry and working

�uid remained constant if the pipe wall temperature was kept constant. Do et al. [31]

developed a mathematical model to predict the thermal performance of rectangular

micro-grooved heat pipes. In the condensation region, he also �tted an approximate

fourth-order polynomial pro�le for the liquid �lm at the �n top. The governing equa-

tion was derived from the augmented Young-Laplace equation, conservation of mass,

and linear momentum in the lateral direction. The effect of disjoining pressure had

been neglected. Odabasi [7] used the same method as Do et al. [32] to model the con-

densation region. Launay et al. [33] developed a mathematical model for predicting

the thermal performance of a micro heat pipe array �lled with water. This model was

the combination of hydrodynamic �ow and heat transfer equations for �lm pro�le at

both the condensation and evaporation regions.

The boundary conditions used at the condensation region for both studies of Do et

al. [31] and Launay et al. [33] were the same, which can be written as:

d�
ds

js=0 =
d3�
ds3

js=0 = 0;
d2�
ds2

js= T
2

=
1
r c

;
d�
ds

js= T
2

= � tan
� �

2
� �

�
(1.1)

Where� is the edge angle of �lm. For �at plate micro-grooved heat pipes, Lefevre

et al. [34] presented a hydrodynamic model for the liquid and the vapor �ow coupled
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with the thermal model. In the condensation zone, the result of the two thermal

models demonstrated that due to the lower thermal resistance of the �n compared to

the liquid in the groove, most of the condensation occurred on the �n top. This model

was developed to calculate the �lm thickness, pressure, and velocity of the liquid in

the �n top. The governing equation was based on the conservation of mass, linear

momentum and Young-Laplace equation.

Figure 1.7: Boundary conditions used in [34]

The four boundary conditions are shown in Fig. 1.7: due to symmetry, the �rst and

third derivatives of delta are zero at the beginning, and at the edge of the �n because

of the vapor and liquid pressure equality, the second derivative of delta was assumed

to be zero. The �nal boundary condition at the edge satis�ed the contact angle. In

this research, the Runge-Kutta method was used to solve the fourth-order differential

equation, and also they neglected the effect of disjoining pressure and possible axial

�ow on the �n top. Lips et al. [35] presented a comparison between the interface

shape measurements from experimental observation and the theoretical data which

was obtained in the previous study [34], hydrodynamic modeling of �at plate micro-

grooved heat pipes. There was a satisfactory agreement in the evaporation region, and

the theoretical results matched the experimental results. However, the condensation
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model overestimated the liquid-vapor interface shape on the �n top.

Figure 1.8: Comparison between numerical and experimental liquid-vapor interface

shape [35]

In Fig. 1.8, a change in the slope of the liquid pro�le before the �n edge can be ob-

served, and the authors called this a “slope break”. In the literature, there wasn't any

slope break in the numerical modeling before, and [35] was the �rst study that cap-

tured this change experimentally. The authors provided two possibilities for this slope

break: �rst, possibilities of a �ow in the y-direction( parallel direction to the groove),

and the second is that van der Waals forces for small �lm thickness can be added,

which was neglected in this study. Alipour and Dursunkaya [36] developed a model

of condensation �lm pro�le on the �n top of micro-grooved heat pip considering the

effect of disjoining pressure. Although for thicker �lms disjoining pressure effect is

negligible, it becomes dominant in comparison with the capillary pressure term for

thinner pro�les. This study demonstrated that disjoining pressure affects the solution

domain and brings a limit for the contact angle for a given temperature difference. In

this study, the same set of boundary conditions and numerical approach was used as

before in [34].
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Figure 1.9: Boundary conditions used in [37]

Akda�g et al. [38] presented a novel approach in the modeling of condensation region.

Unlike the other studies in the literature, they started the solution domain from a

point on the vertical wall of the groove, which keeps the edge of the �n top inside

the solution domain. There isn't a need to set boundary conditions at the corner. The

effect of disjoining pressure was taken into account which gives a comprehensive

understating of molecular forces for thinner �lms.

Figure 1.10: Solution domain at [38]

The governing equation consisted of the conservation of mass and momentum equa-

tion, Kucherov-Rikenglaz equation, and Young-Laplace equation which were solved

simultaneously to calculate the liquid-vapor interface shape. Moreover, the effect of

subcooling, dispersion constant, and �n-groove corner radius was investigated. In this
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study, it was stated that for the10� 3K subcooling and 30 nm corner radius, an abrupt

change in the slope had been observed, the same slope break was experimentally

reported by the previous work [35].

1.4 Description and Motivation of the Current Study

The fundamental purpose of this study is to explore the effect of prescribed boundary

conditions on the formation of the �lm pro�le on the �n top in the condensation sec-

tion. In this study, at �rst the condensation �lm is modeled numerically by solving

the governing equations, which consist of conservation of mass and linear momen-

tum, augmented Young-Laplace equation, and the condensation mass �ux equation

based on the kinetic theory of gases, and then the effect of different sets of boundary

conditions are discussed. In the literature, different boundary conditions used at the

edge of the �n top. For understanding that which boundary conditions are proper for

different edge angles and temperature differences, the numerical results are compered

with the exact formulation of Akda�g et al. [38]. This model is most reliable conden-

sation model in the literature, but it can't be implemented in the entire simulation of

grooved heat pipes because it can merely solve speci�ed cross-section of �lm pro�le

on the �n top at a time. However the current condensation model can solve different

cross-sections of �lm pro�le in a short time, which is desirable for a complete simu-

lation of �ow in grooved heat pipes. Also it has to be mentioned that a comprehensive

modeling of condensation section is crucial for optimizing grooved heat pipe design.

Furthermore, as it can be understood from the literature review, there is a signi�cant

difference between the numerical results and experimental observation. Possible par-

allel �ow in the axial direction on the �n can be responsible for this difference. In

the current study a two-dimensional �ow model on the �n top is proposed, which has

not been investigated and discussed in literature before. A novel numerical approach

based on �nite difference method is developed to solve the governing 4th order non-

linear differential equation.

Chapter 2 refers to the numerical modeling of liquid �lm on the �n top, and the

numerical approach is discussed in detail. Numerical Results and discussions can be
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found in Chapter 3. Two-dimensional �ow on the �n top is modeled, and preliminary

�ndings are discussed in Chapter 4. In the end, in Chapter 5, conclusion and possible

future work is presented.
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CHAPTER 2

MODELING AND SOLUTION METHODOLOGY

In this chapter, the condensation model on the �n top is mathematically investigated.

Conservation of mass, linear momentum, Young-Laplace, and condensation mass �ux

equation based on the kinetic theory of gases are solved simultaneously to calculate

the �lm thickness and pressure �eld on the �n top.

2.1 Phase change

The phase change is a reversible mechanism of transformation that takes place when

a substance's state changes from one to another.

Figure 2.1: Phase change regions in the grooved heat pipe
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This mechanism occurs in both the evaporation and condensation regions in heat

pipes. By utilizing the phase change process, heat pipes can spread and remove large

amounts of heat in shorter distances with small temperature differences.

2.2 Capillary pressure

Surface tension forces between two immiscible �uids generated from the interface

curvature's deformation create capillary pressure. Capillary pressure is the function

of the surface tension and radius of curvature. Capillary pressure generated by two

menisci of the various radius of curvature can be represented by the Young-Laplace

equation:

Pc = �
�

1
R1

+
1

R2

�
(2.1)

On the �n top, the radius of the curvature in the axial direction is noticeably large

compared to the radius of the curvature in the lateral direction. As a result, its contri-

bution in the Eq. (2.1) can be neglected:

Pc =
�
R

(2.2)

The radius of the curvature is the function of the �rst and second derivatives of liquid-

vapor interface �lm with respect to lateral direction:

R =

�
�
�
�
�

�
1 + ( � 0)2

� 3
2

� 00

�
�
�
�
�

(2.3)

Thus, capillary pressure can be written as a function of the �rst and second deriva-

tives:

Pc =
� � 00

h
1 + ( � 0)2

i 3
2

(2.4)
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2.3 Disjoining pressure

There is another term in the Young-Laplace equation in addition to capillary pressure,

which shows its effect in the case that �lm thickness is less than 100 nm. This term

is called disjoining pressure, and it is caused by the inter-molecular force between

solid and liquid. Disjoining pressure can written as a function of �lm thickness for

non-polar �uids:

Pd =
Ad

� 3
(2.5)

whereAd is the dispersion coef�cient.

2.4 Lubrication assumption

For the �ow of liquid on a thin �n, lubrication approximation is assumed to be valid

in the current study. Generally, this theory is used in the journal bearings or thin-�lm

�ows, where viscosity becomes dominant in the calculations. This assumption is ap-

plicable when the magnitude of �lm thickness over �ow length or the local Reynolds

number has to be small enough to apply lubrication theory. In the current study, both

terms are adequately small. A detailed justi�cation of lubrication assumption is given

in [38].

2.5 One dimensional model

2.5.1 Solution domain

The solution domain of condensation section can be seen in Fig. 2.2, which shows

that it starts from the symmetry line on the �n top, and ends at edge of the groove.

All the models will be solved in this region.
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Figure 2.2: One dimensional solution domain

2.5.2 Unidirectional �ow

By utilizing the lubrication theory, assuming fully developed unidirectional �ow and

neglecting the effect of gravity, thex-momentum equation is reduced to:

dPl

dx
= �

d2u
dz2

(2.6)

In this equation,� is the �uid's dynamic viscosity,Pl is the liquid pressure, andu is

the �uid velocity in thex-direction. The boundary conditions are given as:

z = 0 ; u = 0 (2.7a)

z = � ;
du
dz

= 0 (2.7b)

Using Eq. (2.7b), zero shear stress at free surface and no-slip boundary condition at

wall, Eq. (2.6) can in integrated, which gives the velocity distribution as follows:

u (z) =
1

2�
dPl

dx
z (z � 2� ) (2.8)
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By integrating the velocity pro�le, the mass �ow rates per unit depth can be calcu-

lated:

_m0 = �
Z �

0
u dz = �

1
3�

dPl

dx
� 3 (2.9)

The condensation mass �ux on the �n top, which was presented by Moosman et

al. [9], is a function of �lm thickness, temperature difference between the vapor and

the wall, pressure difference between the liquid and vapor.

_m0
c =

a(Tw � Tv) � b(Pv � Pl )
1 + a�h lv =kl

(2.10)

Where the factorsa andbare de�ned as:

a =
2c

2 � c

�
M

2�R uTlv

� 1
2

�
MPvhlv

RuTlv Tv

�
(2.11)

b=
2c

2 � c

�
M

2�R uTlv

� 1
2

�
VlPv

RuTlv

�
(2.12)

Mass balance on the �n top can be written as a function of the condensing mass and

the change in the mass �ow rate as:

d _m0

dx
= � _m0

c (2.13)

By substituting the Young-Laplace equation in Eq. (2.9), and assuming a constant

vapor pressure :

dPl

dx
= �

dPc

dx
�

dPd

dx
(2.14)

_m0 = �
1
3�

� 3 dPl

dx
=

1
3�

� 3

0

@ � � 000

�
1 + ( � 0)2

� 3
2

�
3 � � 0(� 00)2

�
1 + ( � 0)2

� 5
2

�
3Ad � 0

� 4

1

A (2.15)
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Substituting Eq. (2.15) into Eq. (2.13) :

1
3�

d
dx

 
� � 000� 3

�
1 + ( � 0)2

� 3
2

�
3 � � 0(� 00)2 � 3

�
1 + ( � 0)2

� 5
2

�
3Ad � 0 � 3

� 4

!

= �
a (Tw � Tv) � b(Pc + Pd)

1 + a�h lv =kl

(2.16)

By taking the derivatives and simplifying Eq. (2.16), the governing equation can be

obtained as follows:

� 0000= �
3� 0� 000

�
+

3 (� 00)3

�
1 + ( � 0)2

� +
9 (� 0)2 (� 00)2

�
1 + ( � 0)2

�
�

�
15 (� 0)2 (� 00)3

�
1 + ( � 0)2

� 2

+
9� 0� 00� 000

�
1 + ( � 0)2

� �
3�

�
1 + ( � 0)2

� 3
2

� � 3

"
a (Tw � Tv) � b(Pc + Pd)

1 + a�h lv =kl

#

+
3Ad

�

�
1 + ( � 0)2

� 3
2

�
� 00

� 4
�

(� 0)2

� 5

�

(2.17)

2.5.3 Groove side boundary conditions

Two sets of boundary conditions are de�ned for our modeling. Each set has four

boundary conditions, which are required to solve the4th order differential equation.

First, due to the symmetry of �lm thickness at the centerline, the �rst derivative of�

with respect tox should be zero. The mass �ow rate should be zero at the centerline

due to the symmetry condition. As a result, in order to satisfy Eq. (2.15), the third

derivative of� with respect tox should be zero as well. The �rst derivative of �lm

thickness with respect tox at the edge is given by the edge angle. The two sets of

boundary conditions are different from each other merely at the second derivative of

�lm thickness with respect tox at the edge. The �rst set of boundary conditions, the

second derivative of� is assumed to be zero at the edge, which is commonly used

in the literature. It means there is an in�ection point of the �lm pro�le at the edge

of the groove. The �rst set of boundary conditions is shown in Fig. 2.3. The second

set assumes the �lm to reach the value of the liquid pressure at the edge of the �n.
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Therefore, for the second set of boundary conditions, the concavity change of �lm

pro�le takes place before the edge, which means the in�ection point is located before

the corner. For this set, the second derivative of �lm thickness is de�ned as a function

of groove width and edge angle at the edge, which can be seen in Fig. 2.4.

Figure 2.3: First set of boundary conditions

Figure 2.4: Second set of boundary conditions
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2.5.4 Numerical approach

The governing equation Eq. (2.17) is solved numerically with two different methods.

The �rst one is the fourth-order Runge-Kutta method which hasO(h4) accuracy. The

second approach is based on the �nite difference method withO(h2) accuracy, which

allows investigating the possible axial �ow on the �n top. This method is discussed in

details in Chapter 4, where it will be used in the formulation and solution of the two-

dimensional �ow on the �n top. In this section, the numerical process is presented for

the Runge-Kutta method.

2.5.5 Fourth-Order Runge-Kutta (RK4) Method

Since the governing equation Eq. (2.17) is a4th order ODE, a system of four coupled

�rst-order ODEs can be simultaneously solved to �nd the solution. Such systems can

be presented as follows:
d�
dx

= y1

d2�
dx2

=
dy1

dx
= y2

d3�
dx3

=
dy2

dx
= y3

d4�
dx4

= f (�; y 1; y2; y3)

(2.18)

The original problem is a4th order boundary value problem (BVP). To solve this,

the problem is formulated as an initial value problem (IVP), and all conditions are

assigned at one boundary. A shooting method in conjunction with a multi dimensional

Newton-Raphson root �nder is used to match the two boundary conditions on the

other boundary at the edge of the groove. Therefore, four initial conditions at the

centerline are needed to solve this system of equations.� 0and� 000are known, and the

value of� and� 00should be guessed in a way that the boundary condition at the edge

of the �n must be satis�ed. In other words, the guessed values have to be updated

continuously until the boundary conditions atx = L are satis�ed. The governing

equation is nonlinear and stiff, the solver is more sensitive to the initial guesses and,

the initial guesses have to be chosen wisely. The solution algorithm is given in Fig. 2.5

in a �owchart.
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Figure 2.5: Flowchart of Fourth-Order Runge-Kutta Method
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CHAPTER 3

SIMULATION RESULTS OF ONE-DIMENSIONAL MODEL

Results obtained by the numerical solution are presented in this chapter. There will

be two models based on two sets of boundary conditions as described in Chapter 2:

� Model 1: In this case, the in�ection point of the �lm thickness pro�le is as-

sumed to be at the edge of the �n top, which means that the second derivative

of �lm thickness with respect tox should be zero at the edge. Physically, it

means that the liquid and the vapor pressure are equal at this point. In the liter-

ature, [7, 36] studies used the same set of boundary conditions to calculate the

�lm thickness in the condenser section, which can be expressed as follows:

At x = 0 ;
d�
dx

= 0 and
d3�
dx3

= 0

At x = L ;
d�
dx

= � tan
� �

2
� �

�
and

d2�
dx2

= 0
(3.1)

� Model 2: In this case, the in�ection point is located before the edge of the �n

top. Before the in�ection point, the liquid pressure is higher than the vapor

pressure, and from the in�ection point until the edge, the vapor pressure is

greater than the liquid pressure. In this case the liquid pressure in the �lm

approaches the liquid pressure inside the groove at the edge of the �n. In the

literature, [31, 33] studies used the same boundary conditions which can be

written as:

At x = 0;
d�
dx

= 0 and
d3�
dx3

= 0

At x = L;
d�
dx

= � tan
� �

2
� �

�
and

d2�
dx2

=
2 cos� (1 + ( � 0)2)

3
2

W

(3.2)

whereW is the width of the groove, and� is the edge angle. As it can be seen from

Eq. (3.1) and Eq. (3.2), except for the second derivative of �lm thickness at the edge,
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Model 1 and Model 2 have the same boundary conditions. In this study, the operating

�uid is water, and the length of the �n top and the width of the groove are considered

to be400� m and400� m, respectively. The physical properties for the modeling are

listed as below:

Table 3.1: Thermophysical properties and geometrical parameters used in the con-

densation modeling

Parameter Magnitude Unit

Fin top length,2L 400� 10� 6 m

Groove width,W 400� 10� 6 m

Vapor pressure,Pv 1:033� 105 Pa

Vapor temperature,Tv 343 K

Latent heat of evaporation,hlv 2:3 � 106 J/kg

Density of liquid,� 1000 kg/m3

Surface tension,� 5:89� 10� 2 N/m

Dynamic viscosity,� 2:79� 10� 4 Pa.s

Thermal conductivity,kl 0.6 W/m� K

Molar mass of liquid,M 18� 10� 3 kg/Mol

Molar volume of liquid,Vl 18� 10� 6 m3/Mol

Accommodation coef�cient,c 1 -

Dispersion constant,Adisj 5 � 10� 21 -

3.1 Fourth-order Runge-Kutta (RK4) solver

In this section, the governing equation for �lm thickness is solved using4th order

Runge-Kutta method. Generally, models vary based on the solving method and used

boundary conditions. The number of nodes along the �n top is20000, which brings

higher accuracy and allows to �nd a solution for lower edge angles with small tem-

perature differences.
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Although the Runge-Kutta method has a high accuracy ofO(h4), the number of nodes

is vital for the solutions with the lower edge angles. The problem should be solved

for a sharp slope with different nodes to �nd the proper mesh size. Assuming� = 20�

and� T = � 5‰, including the effect of disjoining pressure and utilizing Model 1 set

of boundary conditions, the mass �ow rate is calculated.

Figure 3.1: Comparison of Mass �ow rate alongx direction for 5000, 10000and

20000number of nodes with� = 20� , � T = � 5‰

Since there is a constant condensation mass �ux on the �n top, the mass �ow rate has

to be increased along thex direction due to the conservation of mass. From Fig. 3.1,

it can be seen that the mass �ow rate for the models with5000and 10000nodes

is decreased near the edge zone, and because of that, the solution can not be valid.

However, the model with20000nodes can be solved without such error. It's crystal

clear that the derivatives will be calculated more precisely with more nodes, and as a

result, the correct solution can be captured.
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3.2 Comparison of predictions of different groove side boundary conditions

with the exact formulation

In this section, the results are validated with the most reliable condensation model in

the literature. Akda�g et al. [38] developed a novel approach to model the �ow on the

�n top in the condensation section; unlike the other studies in the literature, they start

the solution of the problem from inside of the groove, which eliminates the need to set

assumed boundary conditions at the groove edge. Working �uid is water, and the �n

top length and groove width are400� m and400� m, respectively. The �lm pro�les

variation for the edge angles of� = 65� , � = 75� and� = 85� with the temperature

difference of� T = � 1‰ are compered between models. Film pro�les variation for

Model 1, Model 2 and the reference exact formulation model are plotted in Fig. 3.2,

Fig. 3.3 and Fig. 3.4.

Figure 3.2: Comparison of �lm pro�le variation of Akda�g [39] with the two current

models for� = 65� and� T = � 1‰
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Figure 3.3: Comparison of �lm pro�le variation of Akda�g [39] with the two current

models for� = 75� and� T = � 1‰

Figure 3.4: Comparison of �lm pro�le variation of Akda�g [39] with the two current

models for� = 85� and� T = � 1‰

Since there is a small deviation between the �lm pro�les of the models, it's better to
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compare and plot the mass �ow rate at the edge of the �n for the two models.

It can be seen from Fig. 3.2, Fig. 3.3 and Fig. 3.4 that with a speci�ed temperature

difference, for higher edge angles, Model 2 and for the lower edge angles Model 1

matches the reference model [38] well.

From [39], it is found out that the second derivative of �lm pro�le at the �n edge for

the reference model is not constant, and it changes for different edge angles and tem-

perature differences. Since the solution approach of the current model and the model

given in [38] are different from each other, for the proper validation, a new model,

Model 3, is introduced. Model 1, Model 2 and Model 3 have the same boundary con-

ditions except for the second derivative of �lm thickness at the edge. As mentioned

before, for Model 1, the second derivative of �lm thickness at the edge is assumed to

be zero. For Model 2, the second derivative of �lm thickness is de�ned as a function

of edge angle and groove width. In Model 3, the second derivative of the �lm pro�le

at the edge comes from the model given in [39]. By comparing the numerical results

of Model 1, Model 2 and Model 3 with the model of [39], it can be understood which

sets of boundary conditions are proper as a function of edge angles and temperature

differences. Boundary conditions used in Model 3 are:

At x = 0 ;
d�
dx

= 0 and
d3�
dx3

= 0

At x = L ;
d�
dx

= � tan
� �

2
� �

�
and

d2�
dx2

from [39]

(3.3)

The variation of �lm thickness for the models with edge angles of� = 65� , � = 75�

and� = 85� with the temperature difference of� T = � 1‰ are plotted in Fig. 3.5,

Fig. 3.6, and Fig. 3.7.
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Figure 3.5: Comparison of �lm pro�le variation of Akda�g [39] with Model 3, for

� = 65� with � T = � 1‰

Figure 3.6: Comparison of �lm pro�le variation of Akda�g [39] with Model 3, for

� = 75� with � T = � 1‰
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Figure 3.7: Comparison of �lm pro�le variation of Akda�g [39] with Model 3, for

� = 85� with � T = � 1‰

It can be seen that there is good agreement between the �lm thickness predictions of

the models, but for better validation, the difference of exiting mass �ow at the edge

between [39] and the current models and also the difference of the exiting mass �ow

rate at the edge between Model 3 and other models are plotted in Fig. 3.8, Fig. 3.9

and Fig. 3.10. In Fig. 3.8, the models are solved for the edge angle of� = 65�

for the temperature differences of� T = � 0:1‰, � T = � 0:3‰, � T = � 1‰

and� T = � 5‰. Also, in Fig. 3.9 and Fig. 3.10 the same models with the same

temperature differences are solved for a edge angles of� = 75� and� = 85� . Because

Model 3 have the same boundary conditions as the reference model [39], it is expected

that the Model 3 has the same mass �ow rate at the edge as the reference model

[39]. However, it can be seen from Fig. 3.8, Fig. 3.9 and Fig. 3.10 that there is a

difference between the predictions of Model 3 and the reference model [39], remain

approximately constant with temperature difference. Since the solving approach is

different from the reference model [39] and the current models, it's better to compare

the predictions of Model 1 and Model 2 with Model 3.
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Figure 3.8: Difference of mass �ow rate between (a) Akda�g [39] and the current

models (b) Model 3 and the current models, for� = 65� with � T = � 0:1‰, � T =

� 0:3‰, � T = � 1‰ and� T = � 5‰

Figure 3.9: Difference of mass �ow rate between (a) Akda�g [39] and the current

models (b) Model 3 and the current models, for� = 75� with � T = � 0:1‰, � T =

� 0:3‰, � T = � 1‰ and� T = � 5‰
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Figure 3.10: Difference of mass �ow rate between (a) Akda�g [39] and the current

models (b) Model 3 and the current models, for� = 85� with � T = � 0:1‰,

� T = � 0:3‰, � T = � 1‰ and� T = � 5‰

It can be seen from Fig. 3.9 and Fig. 3.10 that Model 3 matches Model 1 for the

smaller edge angles and small temperature differences. However, for higher edge an-

gles and high temperature differences, there is a good agreement between the results

of Model 3 and Model 2, and it can be concluded that utilizing the second set of

boundary conditions is proper. Of course, there should be more comparison between

the models with different edge angles and temperature differences for a more general

conclusion.

3.3 The effect of disjoining pressure on the predictions of groove side boundary

conditions

In the models without disjoining pressure, the pressure is assumed to be generated

due to the capillary effect only. The primary purpose of constructing these models is

to compare and analyze the effect of disjoining pressure on the �lm thickness on the

�n top. In addition, the effect of boundary conditions at the edge is investigated for

these models. Film thickness pro�les for various temperature differences between the

wall and vapor at an edge angle of� = 88� is plotted in Fig. 3.11
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Figure 3.11: Film pro�les for� = 88� with � T = � 1‰ and� T = � 0:1‰, without

disjoining pressure for Model 1 and Model 2

Figure 3.12: Mass �ow rate exiting the �n top for various temperature differences for

Model 1 and Model 2 without disjoining pressure
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As the temperature difference between the wall and vapor increases, the condensa-

tion mass �ux also increases, and as a result, the �lms become thicker. In addition,

it can be seen from Fig. 3.11 that utilizing different boundary conditions changes

the liquid-vapor interface pro�le, especially in the close proximity of groove's edge,

which affects the mass �ow rate leaving the �n top at the edge of the groove. Mass

�ow at the edge for different edge angles and various temperature differences is plot-

ted in Fig. 3.12. By comparing Model 1 and Model 2 in Fig. 3.12, it can be concluded

that the predicted mass �ow rate will increase if second set of boundary conditions

are used. This increase is due to reduction in the pro�le thickness. The effect of dis-

joining pressure is negligible for thicker and �atter �lm pro�les observed in higher

temperature differences and higher edge angles. Still, the impact of disjoining pres-

sure is dominant in the small zone near the edge for the thinner and more curvy �lm

shapes. Generally, the most realistic models are the ones that have been solved in-

cluding the effect of disjoining pressure.

Figure 3.13: Variation of Model 1 �lm pro�les for� T = � 1‰for � = 80� , � = 70� ,

� = 60� , � = 50� and� = 40� edge angles, including the effect of disjoining pressure
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Variation of �lm thickness for different edge angles with� T = � 1‰ are plotted in

Fig. 3.13. As it can be seen from Fig. 3.13, �lm pro�le �attens by increasing the edge

angle.

Also, �lm pro�les for the edge angles of� = 40� and � = 80� with temperature

difference of� T = � 1‰ are plotted using different sets of boundary conditions at

the edge of �n in Fig. 3.14. From Fig. 3.14, it can be understood that utilizing the

second set of boundary conditions results in thinner �lms, and this effect gets more

prominent as the edge angle increases.

Figure 3.14: Comparison of �lm pro�les of Model 1 and Model 2 for� T = � 1‰

for � = 80� and� = 40� edge angles, including the effect of disjoining pressure

Variation of mass �ow rate along the lateral(x) direction at� = 70� are plotted for

various temperature differences and sets of boundary conditions in Fig. 3.15. it can

be seen that utilizing higher temperature differences and the second set of boundary

conditions at the edge of the groove results in an increased mass �ow rate exiting the

�n edge.
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Figure 3.15: Variation of mass �ow rate alongx direction with � T = � 1‰ and

� T = � 0:1‰ and with� = 70� edge angle for Model 1 and Model 2

Figure 3.16: Percentage mass �ow rate difference between Model 1 and Model 2 for

various edge angles� and temperature differences� T
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The second set of boundary conditions predict an increased mass �ow rate entering

the groove. To investigate it in detail, the difference in percentage of mass �ow rate

at the �n edge between models can give a better understating of this change. For this

purpose, the difference of mass �ow rate exiting the �n between Model 1 and Model

2 is plotted in Fig. 3.16 for different edge angles and temperature differences. It can

be seen from Fig. 3.16 that the maximum difference of mass �ow rate entering the

groove between Model 1 and Model 2 occurs at the edge angle of� = 88� with tem-

perature difference of� T = � 1. Therefore, it can be concluded that this difference

is signi�cant for �atter �lm pro�les with high temperature differences.

Figure 3.17: Relative change of mass exiting the �n top and range of edge angle till

the cut off point for different models with� T = � 0:1‰ and� T = � 1‰ and for

different edge angles
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The magnitude of disjoining pressure is inversely proportional to� 3, and as the �lm

gets thinner, the effect of disjoining pressure becomes non-negligible and even dom-

inant. The dominant effect which disjoining pressure has on modeling is that results

can be calculated until a speci�c value of edge angle and temperature difference. Be-

yond that particular point, due to the physical limitation which will be investigated in

the following, the solver cannot converge to a solution. This speci�ed point will be

called the “cut-off point”.

It turns out that utilizing the second set of boundary conditions alters the location of

the cut-off point. In Fig. 3.17, the mass �ow rate at the edge is found for different

edge angles and temperature differences. As it is seen from the �gure, there is a

limited solution range for a speci�ed temperature difference, and beyond the special

edge angle, the solution cannot be found. For instance, by assuming� T = � 1‰, in

Model 2 without disjoining pressure, results can be obtained from� = 88� to � = 29� .

However, when the disjoining pressure is taken into account, the solution range for

the same model changes to� = 88� until � = 34� . By using the �rst set of boundary

conditions(Model 1), this solution range alters to� = 88� until � = 31� . After this

edge angle, the physical limitation appears. The �lm gets extremely thin, and the

contribution of the disjoining pressure term on the mass �ow rate becomes orders of

magnitude larger. On the other hand, the contribution of capillary pressure term on

the mass �ow rate changes sign and becomes negative.

The contribution of capillary and disjoining pressure on the mass �ow rate for Model 2

with � T = � 1‰ for different edge angles is plotted in Fig. 3.18, where� = 34� is

the cut-off point, and below that a solution does not exist. To remind the capillary and

disjoining pressure terms in the mass �ow rate, Eq. (3.4) is presented as follows:

_m0 =
1
3�

� 3

"
� � 000

�
1 + ( � 0)2

� 3
2

�
3 � � 0(� 00)2

�
1 + ( � 0)2

� 5
2

| {z }
Capillary term

�
3Ad � 0

� 4
| {z }

Disjoining term

#

(3.4)
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Figure 3.18: Contribution of capillary and disjoining pressure terms to the mass �ow

rate for Model 2, with� T = � 1‰, for � = 70� , � = 45� , � = 34� (Cut-off point),

and� = 33�

It can be seen from Fig. 3.18 for higher edge angles, the contribution of capillary

pressure term to the mass �ow rate is more dominant and signi�cant in comparison

with the contribution of disjoining pressure. However, by approaching the cut-off

point, the contribution of disjoining pressure term to the mass �ow rate substantially

increases, and the contribution of the capillary pressure term suddenly drops and even

becomes negative. After the cut-off point, due to the physical limitation, a solution

cannot be obtained. The main reason for this limitation is that the third derivative of�
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with respect tox is discontinuous and approaches in�nity at the edge, which is shown

in Fig. 3.19.

Figure 3.19: The third derivative of �lm thickness with respect tox along the lateral

direction for Model 2, with� T = � 1‰, for � = 34� (Cut-off point) and� = 33�

The second derivative of �lm thickness along the lateral direction(x) is calculated for

Model 1 and Model 2 for edge angles of� = 85� and� = 65� with the temperature

difference of� T = � 0:1‰. As shown in Fig. 3.20, the in�ection point of the �lm

pro�le for Model 2 comes closer to the �n edge by decreasing the edge angle and

an abrupt change in the second derivative of �lm thickness can be observed near the

edge.
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Figure 3.20: Comparison of second derivative of �lm thickness with respect tox

along lateral direction at the edge angles of� = 85� and� = 65� with temperature

difference� T = � 0:1‰
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CHAPTER 4

TWO DIMENSIONAL FLOW ON THE FIN TOP

In all of the models in the literature, the �ow on the �n top of the condensation region

is assumed to be one-dimensional in the lateral direction. Although the change of

radius of curvature of �lm pro�le in the axial direction is not signi�cant compared to

the lateral direction, the axial �ow can still affect the �lm pro�le. In this chapter, a

novel numerical approach based on �nite difference method is developed to explore

the axial �ow. At �rst the mentioned numerical process is applied to one-dimensional

�ow on the �n top to ensure that it works properly. Then a two-dimensional �ow

model on the �n top is proposed, and, preliminary �ndings are discussed.

4.1 Governing equations for two-dimensional �ow modeling

The governing equations is obtained by writing a balance between pressure and shear

effects in both directions in conjunction with conservation of mass. As mentioned

in Chapter 2, by assuming lubrication theory, thex-momentum andy-momentum

equations can be simpli�ed as follows:

@Pl
@x

= �
d2u
dz2

(4.1a)

@Pl
@y

= �
d2v
dz2

(4.1b)

In Eq. (4.1),u,v are the �uid velocities in the lateral and axial directions respectively.
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At z = 0 : u = 0 and v = 0 (4.2a)

At z = � :
du
dz

= 0 and
dv
dz

= 0 (4.2b)

Assuming the zero shear stress at the free surface and no-slip boundary conditions that

given in Eq. (4.2), Eq. (4.1) can be integrated, which gives the velocity distribution.

u (z) =
1

2�
@Pl
@x

z (z � 2� ) (4.3a)

v (z) =
1

2�
@Pl
@y

z (z � 2� ) (4.3b)

By integrating the velocity pro�les, the mass �ow rate per unit depth in bothx-

direction andy-direction can be calculated:

_m0
x = �

Z �

0
u dz = �

1
3�

@Pl
@x

� 3 (4.4a)

_m0
y = �

Z �

0
v dz = �

1
3�

@Pl
@y

� 3 (4.4b)

By utilizing the Young-Laplace equation, and the de�nition of capillary pressure and

disjoining pressure, explained in Chapter 3, the liquid pressure can be written as

follows:

Pv � Pl = Pc + Pd =

"
� � xx

�
1 + ( � x )2

� 3
2

+
� � yy

�
1 + ( � y)2

� 3
2

#

+
Ad

� 3
(4.5)

Since the two-dimensional model will be solved for high edge angles, the denomina-

tor part of capillary pressure can be neglected for simplicity. Moreover, because the

effect of disjoining pressure appears for low edge angles, the disjoining pressure term
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can be eliminated for two-dimensional model. By assuming a constant vapor pres-

sure, the partial derivatives of liquid pressure with respect tox andy can be obtained:

@Pl
@x

= �
@Pc
@x

= � �
�

� xxx + � xyy

�
(4.6a)

@Pl
@y

= �
@Pc
@y

= � �
�

� yyy + � yxx

�
(4.6b)

By substituting Eq. (4.6) in Eq. (4.4), mass �ow rate in both directions can be calcu-

lated:

_m0
x =

� � 3

3�

�
� xxx + � xyy

�
(4.7a)

_m0
y =

� � 3

3�

�
� yyy + � yxx

�
(4.7b)

Mass balance on the �n top is affected by condensation which gives:

@_m0
x

@x
+

@_m0
y

@y
= � _m0

c (4.8)

Using Eq. (2.10) and Eq. (4.7), the above equation arranged to give:

�
3�

(
@

@x

"

� 3

 

� xxx + � xyy

!#

+
@
@y

"

� 3

 

� yyy + � yxx

!#)

= �
a (Tw � Tv) � b(Pc + Pd)

1 + a � h lv =kl

(4.9)

By taking the derivatives in Eq. (4.9), the governing equation can be found as follows:

� xxxx = � � yyyy �
3 � x � xxx

�
�

3 � y � yyy

�
�

3 � x � xyy

�
�

3 � y � yxx

�

� 2 � xxyy �
3 �
� � 3

"
a (Tw � Tv) � b(Pc + Pd)

1 + a � h lv =kl

# (4.10)
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This is a4th order PDE in both transverse(x) and axial(y) directions.

4.2 Finite difference (FD) method for one-dimensional model

The governing equation for one dimensional �ow model was obtained in Chapter 2

as follows:

� 0000= �
3� 0� 000
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+

3 (� 00)3

�
1 + ( � 0)2

� +
9 (� 0)2 (� 00)2

�
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�

�
15 (� 0)2 (� 00)3

�
1 + ( � 0)2

� 2

+
9� 0� 00� 000

�
1 + ( � 0)2

� �
3�

�
1 + ( � 0)2

� 3
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� � 3
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#

+
3Ad

�

�
1 + ( � 0)2

� 3
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�
� 00

� 4
�

(� 0)2

� 5

�

(4.11)

This is also the same equation as Eq. (4.10) when the axial variation is omitted.

Another way to solve this one-dimensional governing4th order nonlinear differen-

tial equation is to utilize the �nite difference method along with an iterative method

based on successive substitution. This approach will be further applied to the two-

dimensional problem presented in this chapter. In the solution domain, the interval of

[0; L] is divided intoN equal sub-intervals(0 � i � N ), and the derivatives in each

node will be written using �nite difference formulae. Central difference formulae of

the orderO(h2) are used, which can be written as:
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� 0
i =

� i +1 � � i � 1

2 � x

� 00
i =

� i +1 � 2 � i + � i � 1

� x2

� 000
i =

� i +2 � 2 � i +1 + 2 � i � 1 � � i � 2

2 � x3

� 0000
i =

� i +2 � 4 � i +1 + 6 � i � 4 � i � 1 + � i � 2

� x4

(4.12)

For the internal nodes, all the above formulae are applied, but in the boundary nodes,

the effect of boundary conditions should be re�ected on the �nite different formu-

lae, therefore, formulae appropriate for the speci�ed boundary conditions should be

derived.

Figure 4.1: Nodes in the �nite difference method

On the line of symmetry� 0 and � 000are equal to zero and by assuming ghost-cells,

central difference formulae for� 0000and� 000in the boundary nodes can be present as:
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Figure 4.2: Ghost-cells

At i = 0 ;
d�
dx

= 0 ! � � 1 = � 1

At i = 0 ;
d3�
dx3

= 0 ! � � 2 = � 2

(4.13)

� 0000
0 =

2� 2 � 8 � 1 + 6 � 0

� x4

� 0000
1 =

� 3 � 4 � 2 + 7 � 1 � 4 � 0

� x4

� 000
1 =

� 3 � 2 � 2 + 2 � 0 � � 1

2 � x3

(4.14)

The derivatives cannot be precisely calculated using backward or forward difference

formulae for� 000and� 0000at the boundary nodes. For getting accurate derivatives at the

�n edge, the effect of boundary conditions should be implemented in the formulae,

and for this purpose, a novel approach is developed. New formulae in the boundary

nodes are developed from a series of Taylor series expansions, which are derived and

discussed in details in Appendix A. The resulting �nite different formulae are:
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� 0000
N � 1 =

� 113� N + 192 � N � 1 � 108� N � 2 + 32 � N � 3 � 4 � N � 4 + 60 � 0
N � x

12 � x4

� 000
N � 1 =

� 39� N + 48 � N � 1 � 9� N � 2 + 30 � 0
N � x � 6� 00

N � x2

4 � x3

� 0000
N =

148� N � 180� N � 1 + 36 � N � 2 � 4 � N � 3 � 120� 0
N � x + 36 � 00

N � x2

3 � x4

� 000
N =

45� N � 48� N � 1 + 3 � N � 2 � 42� 0
N � x + 18 � 00

N � x2

4 � x3

(4.15)

Since the governing differential equation is nonlinear, an iterative method based on

successive substitution is used to handle this issue. After taking care of nonlinear-

ity, the �nite difference method can be applied. To do this, the nonlinear terms are

iteratively lagged and appear in the forcing function. Eq. (4.11) takes the following

form:
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k(� 00)3

(1 + k(� 0)2)2

+
9 k � 0

k � 00
k � 000

(1 + k(� 0)2)
�

3� (1 + k(� 0)2)
3
2

� k � 3

"
a (Tw � Tv) � b(Pc + Pd)

1 + a k � h lv =kl

#

+
3Ad

�

�
1 + k(� 0)2

� 3
2

�
k � 00

k � 4
� k(� 0)2

k � 5

�

(4.16)

where the subscript “k” denotes the iterative step.

An approximation for the initial �lm pro�le has to be used to initiate the iterative

process, and based on that, derivatives and forcing functions on the right-hand side of

the equation can be calculated. The resulting equation is linear and can be solved with
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a proper linear equation solver. In the current modeling, Gauss elimination method is

used to solve the resulting set of linear equations. The form of the linearized equation

is:

A � � = b (4.17)

whereA andb are the coef�cient matrix and the forcing vector, respectively. The

coef�cient matrix is a sparse matrix, and it increases the CPU time to solve the system.

In the interval of(0 � i � N ), the coef�cient matrix becomes ill-conditioned, result-

ing in an unprecise solution. Generally, a matrix is ill-conditioned when the calcula-

tion of its inverse or solution of the linear system has potential signi�cant numerical

errors. In other words, a slight change in the coef�cient matrix can lead to a consider-

able change in the value of the inverse matrix or solution. One way of distinguishing

the ill-conditioning for a matrix is given by Hornbeck [40]. A matrix is considered as

ill-conditioned if :

detC
q P n

i =0

P n
j =0 C2

i;j

� 1 (4.18)

where
q P n

i =0

P n
j =0 C2

i;j is the Euclidean norm. To solve this problem and turn the

coef�cient matrix into a well-conditioned matrix, we assume the solution domain in

the interval of(1 � i � N ). Then for solving the �lm thickness pro�le ati = 0

(symmetry line),� 0 should be found in a way that it satis�es the boundary condition

in the symmetry line� 000
0 = 0. This shooting procedure is implemented in conjunction

with secant method.

After solving the linear set of equations, the new values of� will be compared with

the old values. Until the satisfaction of relative convergence criteria, the new values

(k + 1) should be replaced with the old ones(k). The initial guesses come from the

solution of the RK4 method for the one-dimensional problem, which is described in

Section 2.5.5. Due to the presence of highly nonlinear terms in current problem, to

stabilize the model, damping(under-relaxation) should be applied. In other words,�

should be updated in this form:
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� new = (1 � � ) � old + �� new (4.19)

where� is the damping value and can vary in the range of
�
0; 1

�
, depending on the

stiffness of the problem.

Figure 4.3: Flowchart of FD method

As can be seen from the �owchart in Fig. 4.3, there are two loops in the procedure,

the inner loop and the outer loop. In the inner loop, a system of linear equations in

the interval of(1 � i � N ) should converge to criteria value. The relative conver-

gence criteria for the inner loop is assumed to be10� 12 in current modeling. After

convergence, in the outer loop, the value of �lm thickness at the line of symmetry

should satisfy the� 000
0 = 0 with a shooting method in conjunction with secant method,

otherwise utilizing updated� at i = 0, the �rst loop has to be iterated again, until
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the satisfaction of convergence criteria of the outer loop. The relative convergence

criteria for the outer loop is10� 8. It has to be mentioned that the inner loop has to

converge with a higher precision than the outer loop.

4.3 Validation of one-dimensional FD formulation with RK4 method

Since the accuracy of the FD method is lower than the RK method, the solution range

for the FD method will be limited, but FD method can be applied to solve the two-

dimensional �ow model. For higher edge angles with greater temperate differences,

this restriction cannot signi�cantly affect the solution domain, but for lower edge an-

gles and small temperature differences, due to the considerable variation in �lm pro-

�le and their corresponding higher derivatives, it will be dif�cult for the FD method

to capture a proper solution. Because of this limitation, adding or neglecting the dis-

joining pressure will not make a substantial difference in the solution. In this section,

the solution for various slopes and temperature differences is found, and the effect

of the number of nodes is investigated in Section 4.3.1. Moreover, by comparing the

results with the RK4 method, the validity of this method can be explored.

Figure 4.4: Mass �ow rate comparison between RK4 and FD method, for various

edge angles� and temperature differences� T
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Figure 4.5: Mass �ow rate difference in percentage between RK4 and FD method,

for various edge angles� and temperature differences� T

The number of nodes along the �n top for the FD method is taken as500, and the

�rst set of boundary conditions is used for validation. Fig. 4.4 shows mass �ow

rate entering the groove along the axial direction for both methods with different

temperature differences. It can be seen that the FD method can approximately capture

the same solution as the RK4 method for a particular range of edge angles. Since the

values are so close to each other, it's better to plot the mass �ow rate difference in

percentage. This difference can be seen in Fig. 4.5.

As it can be seen from Fig. 4.4, each temperature difference has its own limited solu-

tion range. For instance, for� T = � 5‰, the FD method cannot �nd valid solution

for the edge angles lower than� = 78� . This limitation comes from the mesh size,

which makes it dif�cult for the FD solver to calculate the derivatives more precisely,

and it results in capturing an incorrect solution. Fig. 4.6 shows this limitation for

� = 77� , and it turns out that the mass �ow rate decrease near the edge, which vio-

lates the mass balance.

55



Figure 4.6: Mass �ow rate along the �n solved by the FD method for� = 77� ,

� T = � 5‰ and utilizing �rst set of boundary conditions

4.3.1 Mesh sensitivity of one-dimensional FD formulation

In order to �nd the effect of mesh size on the accuracy of FD method, the mass �ow

rate at the edge is calculated for the Model 1 with two different numbers of nodes

for various temperature differences, and the numerical results are compared with the

RK4 method, which has the higher accuracy in comparison with FD method. It can

be seen from the Fig. 4.7 that the model with500 nodes is able to �nd the proper

solution for a wider range of edge angles. For instance, the model with100number

of nodes and� T = � 1‰, can obtain the valid solution from� = 88� to � = 84� .

However, the model with500nodes and the same temperature difference can �nd the

correct solution from� = 88� to � = 81� . Moreover, it has to be mentioned that by

assuming a large number of nodes in the FD method, the problem can be solved for a

broader range of edge angles, but on the other hand, increasing the number of nodes
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results in an enormous CPU time.

Figure 4.7: Comparison of mass �ow rate at the edge along axial direction for FD

method with different mesh size

4.4 FD formulation of the two-dimensional �ow/condensation problem

In this section, �rst, the solution domain for the two-dimensional model is introduced,

and the corresponding boundary conditions in both lateral and axial directions for the

problem are de�ned. In the end, a novel numerical approach is presented to solve the

governing two-dimensional partial differential equation given in Eq. (4.10).
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4.4.1 Solution domain

Figure 4.8: Geometry of the two-dimensional �n top �ow domain

Figure 4.9: Two dimensional solution domain and the coordinate system used in the

formulation
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The problem domain in the lateral(x) direction is in the interval of[0; L], and, in

the axial(y) direction, it is in the interval of[0; t]. In lateral direction the interval is

divided intoN equal sub-interval(0 � i � N ), and in the axial direction it is divided

into M equal sub-interval(0 � j � M ), which can be seen in the Fig. 4.9.

4.4.2 Boundary conditions

Boundary conditions in thex- direction are the same as the one-dimensional �ow in

Section 2.5.3. The �rst set of boundary conditions is utilized in the lateral direction

for the two-dimensional model. In they-directions, boundary conditions are assumed

to satisfy the symmetry condition, which means that at they = 0 andy = t mass �ow

rate in the axial direction should be zero. The boundary conditions in they-direction

can be written as follows:

At y = 0 :
@�
@y

= 0 and
@3�
@y3

= 0

At y = t :
@�
@y

= 0 and
@3�
@y3

= 0
(4.20)

wheret is the extent of the �uid �lm along the axial direction.

4.4.3 Numerical formulation and solution

The two-dimensional governing equation Eq. (4.10) is solved numerically using �nite

difference method. In the lateral direction, the same one-dimensional model formulae

are used. Central difference formulae of orderO(h2) given below are used for the

internal nodes in the axial direction.

�
� y

�
i;j

=
� i;j +1 � � i;j � 1

2 � y
�
� yy

�
i;j

=
� i;j +1 � 2 � i;j + � i;j � 1

� y2

�
� yyy

�
i;j

=
� i;j +2 � 2 � i;j +1 + 2 � i;j � 1 � � i;j � 2

2 � y3

�
� yyyy

�
i;j

=
� i;j +2 � 4 � i;j +1 + 6 � i;j � 4 � i;j � 1 + � i;j � 2

� y4

(4.21)
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At the boundary nodes, by assuming ghost-cells, the symmetry conditions should be

embedded in the� yyy and� yyyy formulae:

At j = 0 ;
@�
@y

= 0 ! � i; � 1 = � i; 1

At j = 0 ;
@3�
@y3

= 0 ! � i; � 2 = � i; 2

At j = M ;
@�
@y

= 0 ! � i;M +1 = � i;M � 1

At j = M ;
@3�
@y3

= 0 ! � i;M +2 = � i;M � 2

(4.22)

These conditions result in the following �nite difference formulae at the boundary

nodes:

�
� yyy

�
i; 1

=
� i; 3 � 2 � i; 2 + 2 � i; 0 � � i; 1

2 � y3

�
� yyy

�
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2 � y3
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� yyyy
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� yyyy
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� y4
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� yyyy

�
i;M � 1

=
� 4� i;M + 7 � i;M � 1 � 4 � i;M � 2 + � i;M � 3

� y4

�
� yyyy

�
i;M

=
2� i;M � 2 � 8 � i;M � 1 + 6 � i;M

� y4

(4.23)

The two-dimensional governing equation is nonlinear, and nonlinearities must �rst

be dealt with to implement the �nite difference method. The iterative successive

substitution method used for the one-dimensional test case is also applied here to

linearize the equation, which is explained in Section 4.2. The linearized form of

governing equation can be written as:

60
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3 k � x k � xxx

k �
�

3 k � y k � yyy
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1 + a k � h lv =kl

#

(4.24)

To start the iterative process, the initial liquid �lm pro�le must be obtained from a

one-dimensional model solved by the RK4 method for different edge angles along the

y-direction. At �rst, the linearized Eq. (4.24) is solve with Gauss Elimination method

for the �lm thickness(� ) in the interval of(1 � i � N ) for j = 0 cross-section.

Then in the symmetry line,� 0;j is calculated by the shooting method in conjunction

with a secant root �nder to satisfy Eq. (4.24). This part contains two loops, just like

the one-dimensional model. This procedure is repeated for the other cross-sections

(1 � j � M ) in the axial direction. After obtaining the �lm thickness values for all

cross-sections in they-direction, it should be a third loop to compare the initial values

of � in the j = 0 cross-section with the updated value. It has to be mentioned that

after each loop convergence, the values of� will be updated with proper damping in

order to calculate the right-hand side of the Eq. (4.24). The right-hand side terms in

the main equation are calculated numerically with the �nite difference formulae. The

complete numerical process algorithm for the two-dimensional model can be seen in

Fig. 4.10.
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Figure 4.10: Flowchart of two-dimensional �ow model
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