
INTEROPERABILITY AMONG EVENT-DRIVEN MICROSERVICE-BASED
SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALI BAYRAMÇAVUŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2022

Approval of the thesis:

INTEROPERABILITY AMONG EVENT-DRIVEN
MICROSERVICE-BASED SYSTEMS

submitted by ALI BAYRAMÇAVUŞ in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Ali H. Doğru
Supervisor, Computer Engineering, METU

Dr. M. Çağrı Kaya
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Assist. Prof. Dr. Pelin Angın
Computer Engineering, METU

Prof. Dr. Ali H. Doğru
Computer Engineering, METU

Assist. Prof. Dr. Selma Nazlıoğlu
Software Engineering, Atılım University

Date: 10.02.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ali Bayramçavuş

Signature :

iv

ABSTRACT

INTEROPERABILITY AMONG EVENT-DRIVEN
MICROSERVICE-BASED SYSTEMS

Bayramçavuş, Ali

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Ali H. Doğru

Co-Supervisor: Dr. M. Çağrı Kaya

February 2022, 77 pages

This work presents our proposed solution to provide interoperability among systems

that have event-driven microservice architecture using different middleware technolo-

gies. Publish/subscribe technology is an essential part of event-driven architectures,

and these technologies, specifically through Kafka and RabbitMQ, are targeted in this

work. Our interoperability tool proposes a way to solve interoperability problems, as

a microservice platform allowing more than two systems to work together. Exper-

iments, which are conducted incorporating Kafka-based and RabbitMQ-based sys-

tems, prove the applicability of the proposed interoperability tool under stress when

subject to tens of thousands of bi-directional messages transmitted per second.

Keywords: interoperability, event-driven systems, microservices

v

ÖZ

OLAY TABANLI MİKROSERVİS ESASLI SİSTEMLER ARASINDA
BİRLİKTE ÇALIŞABİLİRLİK

Bayramçavuş, Ali

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ali H. Doğru

Ortak Tez Yöneticisi: Dr. M. Çağrı Kaya

Şubat 2022 , 77 sayfa

Bu çalışma, farklı ara katman teknolojileri kullanan olay odaklı mikroservis mimari-

sine sahip sistemler arasında birlikte çalışabilirliği sağlamak için önerdiğimiz çözümü

sunmaktadır. Yayınlama/abone olma teknolojisi, olay odaklı mimarilerin önemli bir

parçasıdır ve bu teknolojiler, özellikle Kafka ve RabbitMQ, bu çalışmada hedeflen-

miştir. Birlikte çalışabilirlik aracımız, ikiden fazla sistemin birlikte çalışmasına izin

veren bir mikroservis platformu olarak birlikte çalışabilirlik sorunlarını çözmenin bir

yolunu önermektedir. Kafka tabanlı ve RabbitMQ tabanlı sistemler arasında yapı-

lan deneyler, önerilen birlikte çalışabilirlik aracının, saniyede iletilen on binlerce çift

yönlü mesaja maruz kaldığında stres altında uygulanabilirliğini kanıtlamaktadır.

Anahtar Kelimeler: birlikte çalışabilirlik, olay tabanlı sistemler, mikroservisler

vi

To my family

vii

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Dr. Ali H. Doğru for his constant support,

friendship, and guidance. He is a real gentleman and beyond being my advisor, he is

a role model both for my academic and family life.

I would like to thank Dr. M. Çağrı Kaya. This thesis would not be possible without his

support, help, and motivation. I really appreciate your help throughout my master’s

journey. You are one of the kindest persons I have ever met.

Lastly, I would like to express my gratitude to my dear family members; my mother

Fatma Bayramçavuş, my father Bahadır Bayramçavuş, my sister Elif Bayramçavuş,

and my brother Ömer Bayramçavuş. Thank you for your constant support and your

belief in me.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Approach . 2

1.4 Contribution . 3

1.5 Outline of Thesis . 3

2 BACKGROUND AND RELATED WORK 5

2.1 Microservice Architecture . 5

2.1.1 Doing a Small Thing but Doing It Exactly Right 5

2.1.2 Benefits of Microservice Architecture 6

ix

2.2 Docker . 8

2.2.1 Benefits of Docker . 9

2.2.1.1 Works on My Machine Problem 9

2.2.1.2 Isolated environments 9

2.2.1.3 Development . 10

2.2.1.4 Scaling . 10

2.2.2 Virtual Machine . 10

2.3 Event-Driven Architecture . 11

2.3.1 Benefits of an event-driven architecture 12

2.3.1.1 Scale and fail independently 12

2.3.1.2 Develop with agility 12

2.3.1.3 Audit with ease . 14

2.3.1.4 Cut costs . 14

2.3.2 Event Router . 14

2.3.2.1 Point-to-Point Messaging Pattern 15

2.3.2.2 Publish/Subscribe Messaging Pattern 15

2.4 Interoperability . 17

2.4.1 Importance of Interoperability 18

3 PROPOSED TOOL . 19

3.1 The Problem . 19

3.2 The Solution . 22

3.3 The Proposed Tool in Detail . 23

3.3.1 Converter Configurator . 26

x

3.3.1.1 registerConverter . 27

3.3.1.2 publishToCommonBroker 27

3.3.1.3 subscribeToCommonBroker 28

3.3.2 Middleware Converter . 29

3.3.2.1 publishToCommon . 30

3.3.2.2 publishToSystem . 30

3.3.3 Common Middleware . 30

3.4 Example . 31

3.5 How to Extend . 37

3.5.1 How to Implement a New Middleware Converter 38

4 CASE STUDY - INTEROPERABILITY AMONG ACCESS CONTROL
SYSTEMS . 41

4.1 Access Control System . 41

4.2 Our Scenario . 42

4.3 Test Setup . 43

4.3.1 Simulation with Docker . 52

4.4 Discussion and Test Results . 52

5 CONCLUSION AND FUTURE WORK 57

5.1 Conclusion . 57

5.2 Future Work . 57

REFERENCES . 59

APPENDICES

A DOCKERFILES . 63

xi

A.1 Publisher and Subscriber Services for System using RabbitMQ as
Message Broker . 63

A.2 Publisher and Subscriber Services for System using Kafka as Mes-
sage Broker . 63

A.3 Middleware Converter for System using RabbitMQ as Message Broker 64

A.4 Middleware Converter for System using Kafka as Message Broker . . 64

A.5 Converter Configurator . 65

A.6 Log Manager . 65

B DOCKER-COMPOSE FILES . 67

B.1 Starting All Message Broker Applications in Each System and Inter-
operability Tool . 67

B.2 Starting Services of First Access Control System 69

B.3 Starting Services of Second Access Control System 71

B.4 Starting Log Service . 73

B.5 Starting Converter Configurator and Middleware Converters of the
Interoperability Tool . 75

xii

LIST OF TABLES

TABLES

Table 4.1 Average Time Delays Between Publishers And Subscribers in Mil-

liseconds . 53

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 A High-level View for Docker 8

Figure 2.2 Containers vs Virtual Machines 11

Figure 2.3 Event-Driven Architecture Example 13

Figure 2.4 Publish/Subscribe System Example 16

Figure 3.1 Problem Overview . 20

Figure 3.2 Extended Problem Overview 20

Figure 3.3 Complex Version of the Problem 22

Figure 3.4 Tool in Action . 23

Figure 3.5 Tool in Detail . 24

Figure 3.6 Activity Diagram of the Tool 25

Figure 3.7 Component Diagram of Given Example 33

Figure 3.8 Sequence Diagram of Given Example 34

Figure 3.9 Activity Flow for Implementing A New Middleware Converter . 39

Figure 4.1 Component Diagram of Case Study 45

Figure 4.2 Sequence Diagram of Case Study 46

xiv

LIST OF ABBREVIATIONS

PUB/SUB Publish/Subscribe

REST Representational State Transfer

API Application Programming Interface

PAAS Platform As A Service

OS Operating System

CPU Central Processing Unit

SSL Secure Sockets Layer

TLS Transport Layer Security

JSON JavaScript Object Notation

XML Extensible Markup Language

IT Information Technology

CRM Customer Relationship Management

xv

xvi

CHAPTER 1

INTRODUCTION

1.1 Background

Microservice architecture [1, 2] has gained lots of attention in software engineering

as a development paradigm. Small and autonomous services are the building blocks

of a microservice architecture. Each service should be self-contained and should

implement a single business capability within a bounded context. A bounded con-

text [3] can be defined as a natural division within a business and it provides an

explicit boundary within which a domain model exists.

Microservice architecture is a type of application architecture where the application

is developed as a collection of services. It provides the framework to develop, deploy,

and maintain microservice architecture services independently. Microservices [3] are

small, independent, and loosely coupled. A single team of developers should be able

to write and maintain a service. Each service is a separate codebase, not related to

any codebases of the other services, and this lets developers work on a small code-

base rather than a giant codebase, that is why this codebase is easy to be managed

by a small development team. Each service can be deployed independently. A team

can update an existing service they are responsible, without rebuilding and redeploy-

ing the entire application. Each service is responsible for persisting its own data

or external state, this differs from the traditional model where a separate data layer

handles data persistence. Communication between services is done by using well-

defined interfaces. Internal implementation details of each service are hidden from

other services. Microservice architecture supports polyglot programming; services

do not need to share the same technology stack, libraries, or frameworks.

1

Event-driven microservice architecture [4, 5] is another architectural style that lets

architects create highly decoupled services with the help of middleware and message

broker [6] technologies. In this style, each service is only aware of the middleware,

not any of the other services, and only communicates with the middleware. This

makes the entire application to be more decoupled, which is a good feature to have

for the applications.

1.2 Problem Statement

The number of applications for handling messaging among microservices in an event-

driven architecture is increasing every day, each one solving a more specific or general

problem for messaging among microservices. This increasing number of applications

creates a heterogeneity problem when we are required to integrate multiple systems

using different messaging applications. In this work, we propose a solution, that is

extensible for any messaging applications for this heterogeneity problem.

1.3 Approach

We were heavily influenced by the event-driven microservice architecture [4, 5] while

designing our proposed interoperability tool because our main goal is to make event-

driven microservice applications interoperable and that is why we have emphasized

this architecture. Being influenced by this architecture has let us create a tool that

can be extended to other message brokers which are not yet considered to be used by

applications we are trying to integrate.

We have designed our proposed interoperability tool also based on the microservice

architecture. The tool composes different components, the communication between

components is usually done through a message broker which is also a component

in the tool, however, user-specified commands and some internal commands are re-

ceived and forwarded among components using the APIs [7] exposed by each com-

ponent. The message forwarding among the applications we are trying to make inter-

operable is conducted by the message broker of the proposed tool, so the main job is

2

done using an publish/subscribe mechanism.

1.4 Contribution

The contribution of this thesis is twofold: Firstly, the architecture we used to handle

the interoperability problem is presented. Secondly, the tool, which is created based

on the architecture, is implemented and tested with a real-life scenario.

1.5 Outline of Thesis

In chapter 2, some background information is provided on Microservice Architecture,

Docker, Event-Driven Architecture, and Interoperability.

In chapter 3, we described the problem we tried to solve in detail, then presented

our solution in depth, presented a very small example about how to use the tool, and

lastly, we tried to explain how anyone can extend the capabilities of our proposed

interoperability tool.

In chapter 4, the case study is explained in detail. Some background information

about access control systems is provided to better explain the case study. The case

study scenario, where we were trying to make two different systems interoperable, is

described. We then explained how we conducted our test for this case study, and how

we simulated case study using Docker. And lastly, we presented our thoughts about

the results got from the tests.

We concluded this thesis with chapter 5, and some future work ideas are also given in

that chapter.

3

4

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, some background information is provided on microservice architec-

ture, Docker, event-driven architecture, and interoperability.

2.1 Microservice Architecture

Microservice architecture [3] is an architectural style that structures an application as

a collection of services that are

• Highly maintainable and testable

• Loosely coupled

• Independently deployable

• Organized around business capabilities

• Owned by a small team

Fast and reliable delivery of complex applications is handled easily using microser-

vice architecture patterns. It also lets an organization evolve its technology stack since

each microservice could be deployed independently.

2.1.1 Doing a Small Thing but Doing It Exactly Right

In monolithic applications [8], the codebase grows as the number of new features is

added to the application. Even with a very clear and clever design of a monolithic ap-

plication, the arbitrary in-process boundaries break down over time. Similar methods’

5

code becomes spread all over the codebase, that is why fixing a bug or implement-

ing a new feature becomes harder and harder over time in monolithic applications’

codebases.

Software architects and developers fight against these forces to ensure their code is

more cohesive by creating abstractions or modules. Cohesion is to have related code

grouped together. When we think about microservices, cohesion is an arbitrary con-

cept. Robert C. Martin’s definition of the Single Responsibility Principle [9] states

"Gathering together those things that change for the same reason, and separate those

things that change for different reasons.", which also reinforces the importance of

cohesion.

In microservice architecture, the same approach is taken to independent services.

Service boundaries are focused on business boundaries to make it more clear where

the code lives for a given set of functionality. Keeping services focused on explicit

boundaries enables us to not grow the code so much so that we do not have to deal

with all of the difficulties associated with the big codebase.

2.1.2 Benefits of Microservice Architecture

There are various benefits of microservices. The key benefits of microservices are

• Technology Heterogeneity. We are free to choose any technology while de-

veloping a service since it will be a part of a bigger system composed of many

collaborating services. The only important thing is that the microservice does

what it is supposed to do, so it is not important what technology stack it uses

from the perspective of other services. This allows developers to pick the right

tool for each job, rather than having to select a more standardized, one-size-

fits-all approach that often ends up being the lowest common denominator.

• Scalability. In monolithic applications, we have to scale everything together. If

we are required to scale a small part of the overall system because of a perfor-

mance issue, and if that part is scattered around the whole monolith, we have to

scale everything together as a piece. However with small independent services,

if one part needs scaling, we have to only scale the microservice that handles

6

that part of the overall system. This allows developers to make the right de-

cision about where to do the scaling, and lets them work on this scaling issue

faster since the code for that service is never going to be a messy code like some

monolith’s code, due to its poor cohesion.

• Easy Deployment. A very small change in the code of a million-line-long

monolithic application requires the whole application to be deployed in order

to release the change. Since the whole application is going to change by this

very small intervention, it is a high-risk deployment. That is why these high-

risk deployments happen very infrequently because of the fear of making an

undesirable error. This means that changes build up between releases until

the new version of the application goes to production with lots of changes.

This makes the difference between the new version and the old version bigger;

the bigger the difference between versions, the higher the risk that something

will get wrong. Since each microservice is deployed separately from other

microservices, we can make our changes on the related microservice and just

deploy its new version without affecting the other services. This allows us to

get our code deployed faster with minimum risk of creating an error for the

whole system. And if a problem occurs, we know the source, which is the

new version of the microservice we deployed, so we can easily go back to the

previous deployment of that service to make a fast rollback. This means we can

get new features to production faster.

• Replaceability. In big organizations, there is always a big legacy system [10]

every developer avoids touching. These big old legacy systems are not easy

to replace because they were developed using very old technologies no one

knows about today and most probably they run on very specific hardware which

is very hard to find nowadays. It is extremely risky to try to replace it with

a new version because it is a big and risky job in case of failure. However,

with microservice architecture, each service is already very small and failure of

one microservice does not mean the whole functionality of the whole system

is hampered. That is why replacing a microservice is very easy compared to

replacing a monolithic application and it is not a risky job at all.

• Organizational Alignment. Smaller teams working on small codebases are

7

much more productive than bigger teams working on the same big codebase.

We can align our microservice architecture to our organization architecture,

which lets us minimize the number of people working on any codebase to hit

the nice spot of team size and productivity.

2.2 Docker

Docker [11, 12, 13, 14] is a set of platform as a service (PaaS) products that use

OS-level virtualization to deliver software in packages called containers.

We can get two definitions:

1. Docker is a set of tools to deliver software in containers.

2. Containers are packages of software.

Figure 2.1: A High-level View for Docker (adapted from [11])

How containers include the application and its dependencies are illustrated in Figure

2.1. With containers we can create an isolated environment for the application running

inside the container, the applications running on separate containers never interfere

with each other, or with the application running outside of the containers. In cases

8

we need the applications running on different containers to interact with each other,

Docker offers tools to do so.

2.2.1 Benefits of Docker

Containers package applications and this brings many benefits. In the following sec-

tions we can examine these benefits with a couple of scenarios:

2.2.1.1 Works on My Machine Problem

When developers finish the application, the application works on their machine, it

may even go through a testing pipeline. However when the application is sent to

the server, it fails. This is known as the "works on my machine problem". One

way to solve this problem is that installing every other software developers used in

their machine to the server machine, and developers’ machines are always loaded

with all kinds of other tools that are maybe unnecessary for the application they are

developing. This solution is very cumbersome and even if after this solution the

application may still fail on the server because of different OS-level configurations.

Containers are the best solution for this problem. If the developers run the application

on a container on their machine, and if it successfully runs on that container, then

we are good to go. We can just install that container to the server machine, since

the container already has all of the necessary tools packaged, we do not have to do

anything else.

2.2.1.2 Isolated environments

When we have a couple of different applications that were developed for example

with Python, and we need to deploy these Python applications to a server that already

has another application requiring Python 2.7 but our Python application requires a dif-

ferent version of Python. Installing a different version of a programming language on

the same machine and expecting applications just figure out which version it should

use would cause a disaster, and probably none of them will work as expected. How-

9

ever if we package each application in a container with the necessary Python version,

and then deploy all of the containers to the server machine, everything should work

smoothly.

2.2.1.3 Development

When a developer joins a team, he/she has to install all of the required services like

postgres database, redis, mongodb etc. just to make the developed application run.

However it is not enough to just install all of them, h/she also has to install the right

versions the team uses. It is a painfully long and easily failed process for just starting

to work. Thanks to containers, we can provide all of the necessary services and tools

to new developers easily by just installing the containers in his/her machine.

2.2.1.4 Scaling

Starting and stopping docker containers are extremely fast because they have little

overhead. However big and complex microservice systems used by millions of peo-

ple sometimes get overloaded, and they need to meet the demand for a better user

experience. In this case, we can first identify which microservices are overloaded and

then spin up more containers which packaged these microservices, so that the load is

distributed among all of the containers running the same microservice. Spinning up

more than one for the same container is also beneficial in case of a container failure.

2.2.2 Virtual Machine

All of the benefits mentioned in the previous section have seemed like solved with

virtual machines [15]. They solve the similar problem but they are not the same as

Containers. Figure 2.2 gives a rough idea of the difference between containers and

virtual machines.

There is an efficiency difference between a virtual machine and a docker solution for

moving Application A to an incompatible system “Operating System B”. Running

10

Figure 2.2: Containers vs Virtual Machines (adapted from [11])

software on top of containers is almost as efficient as running it “natively” outside

containers. This is quite an advantage when compared to virtual machines.

2.3 Event-Driven Architecture

Event-driven architecture [4, 5] based on microservices is very common in modern

applications. The main reason why it is used commonly is that it lets software ar-

chitects create highly decoupled services. In event-driven architecture, events [5] are

the main way to trigger microservices and create a communication style among mi-

croservices. An event can be described as a change in the state, or an update, like an

item being placed in a shopping cart in an e-commerce website. With events we can

process the state such as the item purchased, its price, and a delivery address, or we

can use events as identifiers, a notification that an order was shipped.

There are three main components in event-driven architecture:

• Event Producer. It publishes events to the router.

11

• Event Router. It filters events published by event producers and pushes the

events to the related consumers.

• Event Consumer. It receives the pushed events from the router.

The way all communication happens between services, which are either event produc-

ers or event consumers, is via the event router. Microservices do not know anything

about other microservices; they are only communicating with the event router. That

is how highly decoupled microservices are created. Creating a highly decoupled mi-

croservices application is an important architecture task because it lets the application

be scaled, updated, and deployed independently.

In Figure 2.3, we can see an example of an event-driven architecture for an e-

commerce site. With this architecture, the e-commerce application reacts to changes

from a variety of sources during times of peak demand, without crashing the applica-

tion or over-provisioning resources.

2.3.1 Benefits of an event-driven architecture

2.3.1.1 Scale and fail independently

With event-driven architecture, we make our microservices to be only aware of the

event router, not each other. This means our services can communicate with each

other since they are all using the same event router, and if one of the services fails,

the rest will keep running.

2.3.1.2 Develop with agility

With event routers, developers are no longer need to write custom code to poll, filter,

and route events between microservices, all of these jobs are automatically done by

the event router. The event router will filter and push events, produced from event pro-

ducers to related event consumers. Using an event router removes the need for heavy

coordination between producer and consumer services, that is how the development

process speeds up.

12

Fi
gu

re
2.

3:
E

ve
nt

-D
riv

en
A

rc
hi

te
ct

ur
e

E
xa

m
pl

e(
ad

ap
te

d
fr

om
[5

])

13

2.3.1.3 Audit with ease

Since the event router sits in between each microservice in our microservices system,

it can be used as a centralized location to audit our application and define policies.

We can define policies on the event router to restrict who can publish and subscribe

to the router and control which users and resources have permission to access data.

We can add encryption mechanisms to our events both in transit and at rest.

2.3.1.4 Cut costs

Event-driven architecture is based on a push mechanism rather than a poll, so every-

thing happens on-demand as the event presents itself in the router. Being push-based

has many advantages, one of them is our services do not have to continuously poll

the router for an event. This means less network bandwidth consumption, less CPU

utilization, less idle fleet capacity, and fewer SSL/TLS handshakes. This also means

microservices developed in event-driven architecture are more light-weighted.

2.3.2 Event Router

Event routers, commonly known as message brokers [6], are an inter-application com-

munication technology to help build a common integration mechanism to support

cloud-native, microservices-based, serverless, and hybrid cloud applications.

A message broker is a software that enables systems, applications, and services to

communicate with each other to exchange data. The message broker translates mes-

sages between formal messaging protocols to make services communicate with each

other. This is how completely independent services talk to each other even if they are

built with a completely different technology stack.

Message brokers do validation, storing, routing, and delivering of messages to the

appropriate services. They are basically intermediaries between different services

to enable them to communicate with each other without knowing the other services

at all. Senders issue messages to the message broker without knowing where the

receivers are, whether or not they are active, or how many of them there are. This

14

enables us to create highly decoupled services within systems.

The reliable message storage and guaranteed delivery of messages are the key as-

pects of message brokers. Message brokers depend on a component called message

queue that stores the messages and sends messages to the consuming applications

for reliable messaging and guaranteed delivery. The message queue makes sure that

messages are stored in the exact order in which they were transmitted and remain in

the queue until the consumer service consumes the message.

Message brokers make asynchronous messaging between services possible. Message

brokers prevent the loss of data and enable services to function properly even in the

connectivity and latency issues. The main benefit of asynchronous messaging is that

it guarantees messages will be delivered once and only once and in the correct order

to the services.

2.3.2.1 Point-to-Point Messaging Pattern

This pattern is utilized in message queues with a one-to-one relationship between the

message’s sender and receiver. Each message in the queue is sent to only one recipient

and is consumed exactly once. When a message needs to be delivered exactly once,

the point-to-point messaging pattern is the right call. Payroll and financial transaction

processes are good scenarios to use this pattern. In these scenarios, both senders and

receivers need a guarantee that each payment will be sent once and only once.

2.3.2.2 Publish/Subscribe Messaging Pattern

This pattern is often referred to as "pub/sub" [16, 17]. In this pattern, the producer

publishes messages to a topic in the message broker and subscribers or consumers

subscribe to topics from which they want to receive messages. A topic in the message

broker context is a means to identify published messages and send them to correct

subscribers. When a producer publishes a message on a topic, all of the consumers

of that topic receive the same message from the message broker. This is similar

to broadcast-style message distribution, there is a one-to-many relationship between

15

producers and consumers. An example scenario for this pattern could be an airline

system. If an airline updates a landing time or delay status of a flight, multiple other

services could make use of this information, the operators of visual displays notifying

the public, ground crews performing aircraft maintenance and refueling, and baggage

handlers, flight attendants, and pilots preparing for the plane’s next trip. A pub/sub

messaging pattern [16, 17] is appropriate for such use cases.

Figure 2.4: Publish/Subscribe System Example (adapted from [17])

Figure 2.4 shows an example usage of publish/subscribe architecture. There are a

couple of things happening in this figure:

• There are three publishers, Publisher A, Publisher B, and Publisher C.

• There are three subscribers, Subscriber X, Subscriber Y, and Subscriber Z.

• There are three topics in the message broker, Topic A, Topic B, and Topic C.

• Subscriber X is subscribed to two topics, Topic A and Topic B, and that is why

there are Subscription XA and Subscription XB in the message broker.

• Subscriber Y is subscribed to Topic C, that is why there is Subscription YC in

the message broker.

16

• Subscriber Z is also subscribed to Topic C, that is why there is Subscription ZC

in the message broker.

• When Publisher A publishes a message to Topic A, Subscriber X will receive

this message via Subscription XA

• When Publisher B publishes a message to Topic B, Subscriber X will receive

this message via Subscription XB

• When Publisher C publishes a message to Topic C, Subscriber Y and Subscriber

Z will both receive this message via Subscription YC and Subscription ZC

respectively.

2.4 Interoperability

Interoperability [18, 19, 20, 21, 22, 23, 24] can be described as the ability of two or

more systems, components or objects to communicate in a way so that they share

data and use information. Systems that are interoperable can exchange information

in real-time, without needing support from IT or without behind-the-scenes coding.

Interoperability of systems can be as simple as a customer relationship management

(CRM) system that provides deep integrations with automation software to create a

flow of information between sales and marketing, or it can be a complex interoperabil-

ity problem like integrations of multiple different systems, which can have different

purposes, different architectures, and different technology stacks, to create a bigger

system.

There are mainly three types of interoperability:

• Technical Interoperability. This is concerned with hardware, software com-

ponents. It makes possibilities for machine-to-machine communication.

• The Syntactical Interoperability. This deals with the data formats. When

data is transferred from one system to another system, the data should be well-

defined with schemes and encoding like JSON, XML [25].

17

• The Semantic Interoperability. This deals with the understanding of data

rather than the content of data. Semantic interoperability aims to make systems

communicate with each other even if they use different data structures, it aims

to make data interpreted the same way in both the sender and receiver systems.

2.4.1 Importance of Interoperability

Nearly all institutions depend on multiple software systems to operate, for example in

all medium or big size companies there are divisions like human resources, marketing,

finance, operations management, and IT, and all of these divisions heavily use some

software for their job, but there are lots of cases these divisions work together, so

the software applications they use should also be able to work together. So all these

software applications used by different divisions need to interoperate with each other

to make everything smooth for the employees. By interoperating all these software

applications, we can derive future plans, business goals, etc. for the company. The

importance of interoperability [26] can be seen in situations like this.

18

CHAPTER 3

PROPOSED TOOL

We created a tool that will handle interoperability problem among event-driven mi-

croservices systems using different message brokers [27]. In this chapter, the tool we

created for the interoperability among different event-driven microservices systems

is introduced.

3.1 The Problem

Messaging between event-driven microservices in a system is usually handled with

message brokers like RabbitMQ [28], Kafka [29], ZeroMQ [30]. Since each message

broker [6] has its best use case scenarios, different systems choose to use different

message brokers according to their needs.

The problem arises when we need to combine multiple systems into a bigger sys-

tem or when we want some microservices in different systems to communicate for a

common goal. So our problem is the heterogeneity of message brokers in different

event-driven microservices systems.

Figure 3.1 shows two different but very simple microservices systems. The problem

in this diagram is exactly what we tried to solve but a very simple version of the

problem.

• There are two Microservice systems, named Microservice System 1 and Mi-

croservice System 2

• Each microservice systems have two microservices, named Microservice 1 and

19

Figure 3.1: Problem Overview

Figure 3.2: Extended Problem Overview

20

Microservice 2

• In Microservice System 1, the microservices communicate through RabbitMQ

• In Microservice System 2, the microservices communicate through Kafka

• How can Microservice 1 in System 2 get messages from System 1?

• How can Microservice 2 in System 1 get messages from System 2?

For Figure 3.1 solution may seem easy. Microservice 1 in System 2 can just connect

to RabbitMQ of System 1 to get messages, and Microservice 2 in System 1 can just

connect to Kafka of System 2 to get messages. However, what if Microservice 2 in

System 2 also wants to get messages from System 1? Should it also connect to Rab-

bitMQ of System 1 to get messages as depicted in Figure 3.2? This is not a feasible

solution to handle messaging between different systems, because every microservice

which wants to get messages from other systems has to connect to the message broker

of that system to get messages. This simple way of solving this problem increases the

complexity of microservices that wants to get messages from other systems because

these microservices have to implement new code to handle subscribing to a com-

pletely different message broker. Each microservice in a system should only know

about the message broker of its native system. Otherwise, as the number of systems

to interoperate increases the number of message brokers each microservice has to

handle will increase. It means developers of these microservices will have to imple-

ment new code when there is another system to communicate. Adding new features

to a perfectly running service is always a problem, because developers of that service

may change, or the developers may not be very good with the new message broker.

That is why solving interoperability problem in the context of each microservices’

implementation is not a feasible solution and it is very error-prone especially when

we need to interoperate complex systems with different number of microservices and

different message brokers such as depicted in Figure 3.3.

21

Figure 3.3: Complex Version of the Problem

3.2 The Solution

Our proposed tool aims to provide interoperability among various systems which

use different message broker technologies for their publish/subscribe operations [27].

The developers of microservices have to make no change to their microservice to get

messages from other systems, so our tool does not require them to make changes in

the existing microservices.

Figure 3.4 shows a simple overview of making the systems in Figure 3.1 interoper-

able.

The proposed tool lets us forward messages from one system to one or more other

systems. It does not forward all messages from each system to each system, because

22

Figure 3.4: Tool in Action

doing so would increase network load among systems, and forwarding unwanted mes-

sages to a system where no microservice is interested in that message is an unneces-

sary task.

How does the tool know which messages to forward among systems? The tool is

configurable at run-time, and the user of the tool can select what kind of messages

needs forwarding from one system to one or more systems. That is why network

traffic would not be affected so much.

3.3 The Proposed Tool in Detail

The proposed tool is aimed to provide interoperability among two or more event-

driven microservice systems which use different middlewares for their publish/sub-

scribe [16, 17, 27, 31] operations. The tool consists of three main parts as depicted in

23

Fi
gu

re
3.

5:
To

ol
in

D
et

ai
l

24

Figure 3.6: Activity Diagram of the Tool

25

Figure 3.5. These parts are

1. Converter Configurator

2. Middleware Converter

3. Common Middleware

Figure 3.5 represents the architecture of the proposed interoperability tool and the

activity diagram in Figure 3.6 presents the flow of control in our interoperability

tool. While Converter Configurator and Common Middleware components are sin-

gle instances in the tool, there are as many Middleware Converter components as

the number of target systems to interoperate. This architecture lets us distribute the

forwarding logic between Middleware Converters and the Common Middleware com-

ponent of the tool.

3.3.1 Converter Configurator

There is only one instance of the Converter Configurator component for the whole

interoperability tool. The main responsibility of the Converter Configurator is or-

chestrating the Middleware Converter components so that they can forward messages

among different systems. Converter Configurator serves a REST API [32, 33] through

which users of the interoperability tool can configure the interoperability tool. User

configuration lets the interoperability tool know the messages in specific topics in

different systems should be forwarded to which topics in which systems. There are

three endpoints in the API this component serves, these endpoints are:

• /registerConverter

• /publishToCommonBroker

• /subscribeToCommonBroker

26

3.3.1.1 registerConverter

This endpoint waits for POST requests. This endpoint is called by Middleware Con-

verter components to let the Converter Configurator component hold necessary in-

formation about each Middleware Converter component. The request body should

contain systemName, converterIP, converterPort, systemBrokerIP, systemBrokerPort

parameters. The Converter Configurator component holds a map that has system-

Names as key, and other parameters about Middleware Converters as value, so the

Converter Configurator component does not allow two different Middleware Compo-

nents to call this endpoint with the same systemName. converterIP and converterPort

is the IP and port information of the REST API served by the Middleware Converter

calling this endpoint. These IP and port information are necessary for the Converter

Configurator because Converter Configurator sends requests to Middleware Converter

components about which topics in their system broker they should subscribe and for-

ward to Common Middleware, and which topics in Common Middleware they should

subscribe and forward messages to which topics in their system broker. systemBro-

kerIP and systemBrokerPort are used to make sure no more than one Middleware

Converter is using the same system middleware to get messages and to send mes-

sages. This endpoint returns "true" as a response if Middleware Converter can be

added to the Converter Configurator to be configured with the requests of the user of

the interoperability tool.

3.3.1.2 publishToCommonBroker

This endpoint also waits for POST requests. This endpoint is called by the users of

the interoperability tool to configure one of the Middleware Converters to subscribe to

one topic in its message broker of the system to get messages of that topic and publish

those messages to a topic in the Common Middleware (message broker of the interop-

erability tool). The POST requests sent to this endpoint should contain systemName,

systemBrokerTopic, and commonBrokerTopic parameters in the request body. When

Converter Configurator receives requests from this endpoint, it first gets systemName

variable from the request body and decides which Middleware Converter is respon-

sible to handle this request, and then it sends another request to /publishToCommon

27

endpoint of the responsible Middleware Converter with the request body contain-

ing systemBrokerTopic, and commonBrokerTopic parameters. When the responsible

Middleware Converter receives the request with those parameters, it subscribes to a

topic named systemBrokerTopic in the request body and gets every message from that

topic. Every new message in that topic of the message broker of the system is received

by the Middleware Converter and then published to a topic named commonBroker-

Topic in the Common Middleware. At the end of a request, which contains system-

Name, systemBrokerTopic, and commonBrokerTopic parameters in the request body,

made to publishToCommonBroker endpoint. The messages in the topic named sys-

temBrokerTopic in the message broker of the system, whose name is systemName, is

forwarded to a topic named commonBrokerTopic in the Common Middleware, which

is the message broker of our tool.

3.3.1.3 subscribeToCommonBroker

This endpoint also waits for POST requests. This endpoint is called by the users

of the interoperability tool. It configures one of the Middleware Converters to sub-

scribe to a topic in the Common Broker to get messages of that topic, and also to

publish those messages to a topic in its system’s message broker to let the system

components get those messages from the system broker. The POST requests sent

to this endpoint should contain systemName, commonBrokerTopic, and systemBro-

kerTopic parameters in the request body. When Converter Configurator receives re-

quests from this endpoint, it first gets systemName variable from the request body

and decides which Middleware Converter is responsible to handle this request. Then

it sends another request to /publishToSystem endpoint of the responsible Middleware

Converter with the request body containing commonBrokerTopic, and systemBroker-

Topic parameters. When the responsible Middleware Converter receives the request

with those parameters, it subscribes to a topic named commonBrokerTopic in the

Common Middleware, and gets every message from that topic. Every new message

in that topic of the Common Middleware is received by the Middleware Converter

and then published to a topic named systemBrokerTopic in the message broker of

the system of the Middleware Converter component. At the end of a request, which

contains systemName, commonBrokerTopic, and systemBrokerTopic parameters in

28

the request body, made to subscribeToCommonBroker endpoint. The messages in

the topic named commonBrokerTopic in the Common Middleware is forwarded to a

topic named systemBrokerTopic in the message broker of the system whose name is

systemName.

3.3.2 Middleware Converter

Middleware converters are the components that do most of the forwarding between

microservice systems. They are components directly in contact with the systems we

are trying to make interoperable. They are creating the connection to message brokers

of the systems so that they can subscribe to any topic in those systems. They can also

publish messages to the message broker of those systems. Each Middleware Con-

verter is responsible for exactly one system; it connects to only the message broker

of one system and makes it interoperable with the others.

The first thing Middleware Converter does when it starts running is that it sends a

request to /registerConverter endpoint of the Converter Configurator to let it know, it is

up and ready to forward messages between the message broker of our tool, Common

Middleware, and the message broker of the system it is connected.

The main responsibility of a Middleware Converter is to create a connection to the

message broker of a system and message broker of the interoperability tool, Common

Middleware, and also to store a mapping about which topic in the system’s message

broker corresponds to which topic in the interoperability tool’s message broker and

the other way around. The Middleware Converter works bi-directional consequently

it can forward messages from topics of system’s message broker to topics of interop-

erability tool’s message broker, and the other way around.

The Middleware Converter serves a REST API [32, 33] through which Converter

Configurator can configure it. There are two endpoints in the API, which are:

• /publishToCommon

• /publishToSystem

29

3.3.2.1 publishToCommon

This endpoint waits for POST requests. This endpoint is called by the Converter

Configurator component to make the Middleware Converter, receiving this request,

subscribe to a topic in the message broker of the system it is responsible, and forward

received messages from that topic to a topic, possibly with a different name, in the

message broker of interoperability tool, known as Common Middleware. The POST

requests sent to this endpoint should contain systemBrokerTopic and commonBroker-

Topic parameters in the request body. The Middleware Converter, which receives the

POST request with the correct parameters, subscribes to the topic named in the sys-

temBrokerTopic parameter in the message broker of the system and publishes the new

messages to the topic named in the commonBrokerTopic parameter in the Common

Middleware, that is the interoperability tool’s message broker.

3.3.2.2 publishToSystem

This endpoint also waits for POST requests. The requests made to this endpoint

basically do the same as the previous endpoint but the other way around. This end-

point is also called by the Converter Configurator component to make the Middleware

Converter, receiving this request, subscribe to a topic in the message broker of inter-

operability tool, and forward received messages from that topic to a topic, possibly

with a different name, in the message broker of the system this Middleware Converter

component is responsible for. The POST requests sent to this endpoint should contain

commonBrokerTopic, and systemBrokerTopic in the request body. The Middleware

Converter, which receives the POST request with the correct parameters, subscribes

to a topic named commonBrokerTopic in the Common Middleware and publishes the

new messages to the topic named in the systemBrokerTopic in the message broker of

the system.

3.3.3 Common Middleware

The Common Middleware component is the component that handles the message for-

warding among Middleware Converters. The architecture of the interoperability tool

30

is also event-driven [4, 5, 22, 31] microservice architecture like the systems we are

trying to make interoperable. The Middleware Converters are just microservices that

publish messages to topics and subscribe to topics to get new messages, that is why

we thought it is best to use a message broker to handle the messaging among Middle-

ware Converters. Since the forwarding of messages among Middleware Converters is

such a complicated task and there is already a good solution for this task, we choose

to use the ready solution, which is message brokers [6, 34]. We choose to use Rab-

bitMQ [28] as our message broker for the interoperability tool since it was created

exactly to handle publish/subscribe messaging, and it is currently one of the best in

the market.

3.4 Example

Although the detailed explanation of what each component does may seem a little

long, the overall idea is easy to understand that is why we want to give a small exam-

ple of how this tool would be used in a real-life scenario.

For this scenario, we have

• Two event-driven microservice systems, System A and System B.

• System A has two microservices, Microservice A-1 and Microservice A-2.

• System B has two microservices, Microservice B-1 and Microservice B-2.

• System A uses Kafka for communication between its services

• System B uses RabbitMQ for communication between its services

• Microservice A-1 publishes to a topic named ’topic A’, and Microservice A-2

subscribes to that topic to get messages.

• Microservice B-1 publishes to a topic named ’topic B’, and Microservice B-2

subscribes to that topic to get messages.

In this scenario, Microservice A-1 sends messages to ’topic A’ in Kafka, and Mi-

croservice A-2 receives those messages from ’topic A’ to do its job based on the

31

received messages. Microservice B-1 sends messages to ’topic B’ in RabbitMQ, and

Microservice B-2 receives those messages from ’topic B’ to do its job based on the

received messages. In this example our goal is to forward messages from ’topic A’

in System A to ’topic B’ in System B because we want Microservice B-2 to process

those messages which are originally generated in System A. To make this happen, our

tool is a perfect solution.

In Figure 3.7, we tried to show the steps happening inside the interoperability tool.

On the right of the Figure 3.7, there are the two systems, System A, and System B.

The Microservice A-1 in System A is publishing messages to a topic named "topic

A" in System A’s message broker, Kafka. And the Microservice A-2 subscribes to the

same topic so that it can get messages published by Microservice A-1. The Microser-

vice B-1 in System B is publishing messages to a topic named "topic B" in System B’s

message broker, RabbitMQ. And the Microservice B-2 subscribes to the same topic

so that it can get messages published by Microservice B-1. These two completely

different systems, which does not know anything about the other system is perfectly

functioning, but we need to make Microservice B-2 also get messages from the topic

named "topic A" in the message broker of System A. However we can not change the

code of Microservice B-2 because it is running perfectly for so long and the all of the

developers of it is gone now, so it is super risky to change the code of Microservice

B-2 to implement a new feature that will make it connect a completely different mes-

sage broker to subscribe to a topic, while at the same it can also use RabbitMQ as

message broker. That is a perfectly good problem for our interoperability tool. Figure

3.7 and 3.8 show how we make those two systems interoperable with our proposed

tool and they show execution of the proposed tool.

Following steps explain how the developed tool achieves interoperability between two

systems:

1. Common Middleware component, message broker of our proposed tool, starts

running

2. Converter Configurator component starts running

3. Middleware Converters, Middleware Converter for System A and Middleware

32

Fi
gu

re
3.

7:
C

om
po

ne
nt

D
ia

gr
am

of
G

iv
en

E
xa

m
pl

e

33

Fi
gu

re
3.

8:
Se

qu
en

ce
D

ia
gr

am
of

G
iv

en
E

xa
m

pl
e

34

Converter for System B, start running.

4. Middleware Converters for System A and System B sends a POST request to

the /registerConverter endpoint of the API exposed by Converter Configurator

with request body that is shown in the following listing:

{

" systemName " : " System A or System B" ,

" c o n v e r t e r I P " : " The IP of t h e machine o r c o n t a i n e r

Middleware C o n v e r t e r i s r u n n i n g " ,

" c o n v e r t e r P o r t " : " The p o r t from which Middleware

C o n v e r t e r exposed REST API " ,

" s y s t e m B r o k e r I P " : " IP o f t h e message b r o k e r o f

t h e sys tem " ,

" s y s t e m B r o k e r P o r t " : " P o r t from which t h e message

b r o k e r o f t h e sys tem a c c e p t s

c o n n e c t i o n s "

}

5. The user of the interoperability tool first wants to forward messages from a

topic named "topic A" in the message broker of System A to a topic, with a

name he/she will give with the request, in the Common Middleware. The user

of the interoperability tool will send a request to /publishToCommonBroker

endpoint of the API exposed by Converter Configurator component with the

request body shown below:

{

" systemName " : " System A" ,

" s y s t e m B r o k e r T o p i c " : " t o p i c A" ,

" commonBrokerTopic " : "common t o p i c A"

}

6. The Converter Configurator firstly uses systemName parameter to find which

Middleware Converter is responsible for handling this request. After finding the

responsible Middleware Converter, in this example it is Middleware Converter

35

for System A, Converter Configurator sends a request to /publishToCommon

endpoint of the API exposed by the Middleware Converter with the request

body shown below:

{

" s y s t e m B r o k e r T o p i c " : " t o p i c A" ,

" commonBrokerTopic " : "common t o p i c A"

}

7. After receiving this request, the Middleware Converter for System A subscribes

to a topic named "topic A" in the message broker of System A. And whenever it

receives a message from this topic, it immediately publishes the received mes-

sage to the topic named "common topic A" in Common Middleware, message

broker of the interoperability tool.

8. At this point, the messages in the topic named "topic A" in the message broker

of System A are forwarded to a topic named "common topic A" in Common

Middleware. Now we need to forward messages from topic named "common

topic A" to topic named "topic B" in the message broker of System B.

9. The user of the interoperability tool now wants to forward messages from a

topic named "common topic A" in the message broker of the interoperability

tool to a topic, "topic B" for this example, in the message broker of System B.

The user of the interoperability tool will send a request to /subscribeToCom-

monBroker endpoint of the API exposed by Converter Configurator component

with the request body shown below:

{

" systemName " : " System B"

" commonBrokerTopic " : "common t o p i c A"

" s y s t e m B r o k e r T o p i c " : " t o p i c B" ,

}

10. The Converter Configurator again firstly uses systemName parameter to find

which Middleware Converter is responsible for handling this request. After

36

finding the responsible Middleware Converter, in this example it is Middleware

Converter for System B, Converter Configurator sends a request to /publish-

ToSystem endpoint of the API exposed by the Middleware Converter with the

request body shown below:

{

" commonBrokerTopic " : "common t o p i c A"

" s y s t e m B r o k e r T o p i c " : " t o p i c B" ,

}

11. After receiving this request, the Middleware Converter for System B subscribes

to a topic named "common topic A" in the Common Middleware. And when-

ever it receives a message from this topic, it immediately publishes the received

message to the topic named "topic B" in the message broker of System B.

12. Now, everything is complete for this example. The first request sent by the

user of the interoperability tool made the Middleware Converter for System A

forward each message in the topic named "topic A" in the message broker of

System A to a topic named "common topic A" in the message broker of the in-

teroperability tool, Common Middleware. The second request sent by the user

of the interoperability tool made the Middleware Converter for System B for-

ward each message in the topic "common topic A" in the Common Middleware

to "topic B" in the message broker of System B. So at the end, our interop-

erability tool is forwarding each message in the topic named "topic A" in the

message broker of System A to topic named "topic B" in the message broker of

System B. Now Microservice B-2 can use messages that actually originated at

System A to do its job.

3.5 How to Extend

It is obvious the brain of the interoperability tool is the Converter Configurator, it

sends requests to Middleware Converters to make other systems interoperable. And

the Common Middleware is the way how Middleware Converters forward messages

37

between different systems. So we designed the tool so that it can be extended by

adding more Middleware Converters.

Currently, we have implemented two Middleware Converters. One of them can work

with systems that are using Kafka as their message broker, and the other one can

work with systems that are using RabbitMQ as their message broker. To extend the

interoperability tool to make it also work with systems which are using a different

message broker, a new Middleware Converter needs to be implemented that can work

with the new message broker of interest.

3.5.1 How to Implement a New Middleware Converter

Currently, we have implemented two Middleware Converters, one can work with sys-

tems using Kafka [29] as its message broker and the other can work with systems

using RabbitMQ [28]. However when someone needs a Middleware Converter for

another message broker like ZeroMQ [30], a new Middleware Converter needs to be

implemented that is going to forward messages between the new message broker and

the message broker of the interoperability tool, which is RabbitMQ. The activity flow

in Figure 3.9 presents the steps to follow while implementing a new Middleware

Converter.

To set out the requirements for a new Middleware Converter, the inner workings of

a Middleware Converter can be laid out. Middleware Converters serve as a REST

API [32, 33] through which they accept requests from the Converter Configurator.

The API has two endpoints /publishToCommon and /publishToSystem. One of the

first things, when it starts running, is sending a POST request to /registerConverter

endpoint of the API served by Converter Configurator with the request body contain-

ing systemName, converterIP, converterPort, systemBrokerIP, and systemBrokerPort

parameters. It would be beneficial to quote the parameters here:

• systemName is the name of the system which is going to be made interoperable

with other systems by the Middleware Converter.

• converterIP and converterPort is the IP and port of the REST API served by

the Middleware Converter.

38

Figure 3.9: Activity Flow for Implementing A New Middleware Converter

39

• systemBrokerIP and systemBrokerPort is the IP and port of the message

broker of the system Middleware Converter connects to subscribe and publish

to topics.

The Middleware Converters we implemented for Kafka and RabbitMQ are config-

urable. A few items are made configurable: systemName, systemBrokerIP, system-

BrokerPort, configuratorIP, configuratorPort, commonBrokerIP, and commonBroker-

Port. The last two parameters, commonBrokerIP and commonBrokerPort, are IP and

port information to connect to the message broker of the interoperability tool, Com-

mon Middleware. The configuratorIP and configuratorPort parameters are the IP and

port information to send a request to Converter Configurator. The first three, system-

Name, systemBrokerIP and systemBrokerPort, is the configuration for Middleware

Converter itself. With this information the Middleware Converter can send a request

to Converter Configurator with the required parameters. Other than sending requests

to Converter Configurator, it also needs to receive requests from Converter Configura-

tor from the two endpoints, /publishToCommon and /publishToSystem. It also needs

to implement a REST API for this, and accepts requests from the Converter Configu-

rator. After getting a request from /publishToCommon endpoint with the request body

containing systemBrokerTopic and commonBrokerTopic, the Middleware Converter

should subscribe to the topic. The topic is named in the systemBrokerTopic param-

eter and in the new message broker. Each message is published to the topic named

in the commonBrokerTopic parameter, in the message broker of the interoperability

tool. After getting a request from /publishToSystem endpoint with the request body

containing commonBrokerTopic and systemBrokerTopic, the Middleware Converter

should subscribe to the topic named in the commonBrokerTopic parameter. That is in

the message broker of the interoperability tool, and publish each new message to the

topic named in the systemBrokerTopic parameter, in the new message broker of the

system it is responsible.

40

CHAPTER 4

CASE STUDY - INTEROPERABILITY AMONG ACCESS CONTROL

SYSTEMS

One of the best ways to test the applicability of a new application is actually using it.

That is why we decided to test the interoperability tool with a real-life scenario. From

this case study, we can understand the limits of our proposed tool better, and we can

have some ideas about how to make it better. In this chapter, we are going to describe

how we did our case study and we are going to show the results we got.

The main idea of the example scenario is to make different access control systems [35,

36] interoperable so that they can send data to each other. We created this example

scenario to show the applicability of the proposed solution.

4.1 Access Control System

The access control system in the fields of physical security provides selective restric-

tion of access to a place. Access control is based on the software application to solve

the limitations of mechanical locks and keys. Instead of using mechanical keys, it let

us use a wide range of credentials. The access control system grants access based on

the credentials of the user. If a user is authorized to open a locked door and the user

tries to open the door, the user can unlock it for a predetermined time, and this action

is stored as a transaction. If a user is unauthorized to open a locked door and the user

tries to open the door, the user cannot unlock the door and this action is also stored.

The access control system also monitors the doors and starts an alarm if a door is

forced to open or held open too long after being unlocked.

41

4.2 Our Scenario

In our case study scenario, we have a campus containing multiple buildings and there

are a couple of different access control systems used in each building. We use access

control systems to authorize users to enter rooms they are allowed to and monitor

when a user enters a room, when a user exits a room, when a user tries to enter a

room without authorization. However every building is not using the same access

control system; each building may have different access control systems for security

reasons. Access control of each building is chosen according to its security level.

There is a security employee in each building whose job is to monitor the access con-

trol system and take action if necessary. However, some of the security employees in

some buildings are also required to monitor other buildings than they are currently lo-

cated. For example, security employees in Building A should monitor the movement

of employees for both Building A and Building B, and security employees in Build-

ing B should monitor the movement of employees for both Building A and Building

B. As stated earlier, the access control systems installed in Building A and Building B

could be different, so we have to send each system activity between these buildings.

The access control system of Building A is publishing messages about the entrances

to and exits from any toll gate to a topic named "track" in its message broker, which is

RabbitMQ. Similarly, the access control system of Building B is publishing messages

about the entrance to and exit from any toll gate to a topic named "movement" in its

message broker, which is Kafka. Both access control systems are configurable to

show the movements of employees. They can show movement data from various

topics in their message broker, e.g. the access control system of Building A can show

employee movement not only through the topic named "track" but also through other

topics. This is also valid for the access control system of Building B.

For this case study, we have to forward messages from the topic named "track" in

the message broker of the access control system of Building A to the message broker

of the access control system of Building B with a topic name of our choice. We

also have to forward messages from the topic named "movement" in the message

broker of the access control system of Building B to the message broker of the access

control system of Building A with a topic name of our choice. We are going to

42

forward messages from topic named "track" in RabbitMQ of Building A to a topic

named "buildingA_movement" in Kafka of Building B, and we are going to forward

messages from topic named "movement" in Kafka to a topic named "buildingB_track"

in RabbitMQ of Building A. We are going to configure each access control system to

show system activity data also from these topics: "buildingB_track" for Building A’s

system and "buildingA_movement" for Building B’s system.

To summarize, we are required to forward messages published to some topics in both

middlewares to each other. However, there are different access control systems that

are using different message broker technologies, and in the future, there could be

other message broker technologies to integrate together. For this kind of a problem,

our proposed tool is a good solution because it is extensible to other message broker

technologies that are not supported yet, and it is configurable for messages regarding

their related topics and message brokers.

4.3 Test Setup

Our proposed interoperability solution is tried and tested with the following situation:

• We tried to integrate two access control systems located in Buildings A and B

• The message broker of the access control system in Building A is RabbitMQ,

and

• The message broker of the access control system in Building B is Kafka

• The access control system of Building A is publishing system data to "track"

topic in its message broker

• The access control system of Building B is publishing system data to "move-

ment" topic in its message broker

• The access control system of Building A is configured to show system data to

security employees from "track" and "buildingB_track" topics.

• The access control system of Building B is configured to show system data to

security employees from "movement" and "buildingA_movement" topics.

43

• Our proposed interoperability solution is configured to forward messages:

– From the topic named "track" in the message broker of Building A’s sys-

tem to the topic named "buildingA_movement" in the message broker of

Building B’s system

– From the topic named "movement" in the message broker of Building B’s

system to the topic named "buildingB_track" in the message broker of

Building A’s system

• With this configuration, both systems can receive desired messages

In Figure 4.1, we tried to show what is happening inside the interoperability tool

with the requests coming from the user, or admin, of the tool. The two access con-

trol systems of Building A and Building B are depicted in the figure, but the details

of them are left out because the details are not related to what is happening in the

interoperability tool. The requests sent among the components are shown with the

numbers, which show the order of the requests. To better understand what is the

order of requests, it is better to look at the Figure 4.2.

The sequence diagram in Figure 4.2 shows how the user configures the interoperabil-

ity tool so that the desired communication is achieved. The sequence diagram shows

how both Middleware Converters for Building A and Building B are configured and

then how a message in the topic named "track" in the message broker of Building A’s

system is forwarded to a topic named "buildingA_movement" in the message bro-

ker of Building B’s system, and how a message in the topic named "movement" in

the message broker of Building B’s system is forwarded to a topic named "build-

ingB_track" in the message broker of Building A’s system.

Following steps explains how the interoperability tool makes two access control sys-

tems interoperable:

1. Common Middleware component, message broker of our proposed tool, starts

running

2. Converter Configurator component starts running

44

Fi
gu

re
4.

1:
C

om
po

ne
nt

D
ia

gr
am

of
C

as
e

St
ud

y

45

Figure 4.2: Sequence Diagram of Case Study

46

3. Middleware Converters, Middleware Converter for Building A and Middleware

Converter for Building B, start running.

4. Middleware Converters for Building A and Building B sends a POST request to

the /registerConverter endpoint of the API exposed by Converter Configurator

with request body as shown below:

{

" systemName " : " B u i l d i n g A or B u i l d i n g B" ,

" c o n v e r t e r I P " : " The IP of t h e machine o r c o n t a i n e r

Middleware C o n v e r t e r i s r u n n i n g " ,

" c o n v e r t e r P o r t " : " The p o r t from which Middleware

C o n v e r t e r exposed REST API " ,

" s y s t e m B r o k e r I P " : " IP o f t h e message b r o k e r o f

t h e sys tem " ,

" s y s t e m B r o k e r P o r t " : " P o r t from which t h e message

b r o k e r o f t h e sys tem a c c e p t s

c o n n e c t i o n s "

}

5. At this point, Converter Configurator is aware of the two systems. However,

there are currently no messages forwarded between systems. Now, the admin

of the interoperability tool needs to send 4 requests to configure the interoper-

ability tool so that the desired forwarding is achieved. In the sequence diagram,

the first two requests sent by the admin make the interoperability tool forward

messages from the topic named "track" in the message broker of Building A’s

system to the topic named "buildingA_movement" in the message broker of

Building B’s system. The other two requests sent by the admin make the in-

teroperability tool forward messages from the topic named "movement" in the

message broker of Building B’s system to the topic name "buildingB_track" in

the message broker of Building A’s system.

6. The admin, or user, of the interoperability tool, first sends a request to /publish-

ToCommonBroker endpoint of the API exposed by the Converter Configurator

to forward messages from the topic named "track" in the message broker of

47

Building A’s system to the topic named "common track" in the message broker

of the interoperability tool, Common Middleware. The request sent by the user

has the following structure:

{

" systemName " : " B u i l d i n g A" ,

" s y s t e m B r o k e r T o p i c " : " t r a c k " ,

" commonBrokerTopic " : "common t r a c k "

}

7. After getting the above request from the user, the Converter Configurator firstly

finds which Middleware Converter is responsible for handling forwarding of

messages from a message broker of a system to the message broker of the in-

teroperability tool, Common Middleware. Then, it sends a request to /pub-

lishToCommon endpoint exposed by the Middleware Converter with a request

body as shown below:

{

" s y s t e m B r o k e r T o p i c " : " t r a c k " ,

" commonBrokerTopic " : "common t r a c k "

}

8. After receiving this request, the Middleware Converter for Building A sub-

scribes to a topic named "track" in the message broker of Building A’s system.

It publishes the received messages from this topic to the topic named "common

track" in Common Middleware.

9. Now, the messages in the topic named "track" in the message broker of Building

A’s system are forwarded to a topic named "common track" in the Common

Middleware.

10. The admin of the interoperability tool now sends another request which will

make the interoperability tool get messages from a topic named "common track"

in Common Middleware and forward them to a topic named "buildingA_movement"

48

in the message broker of Building B’s system. The request is sent to /subscri-

beToCommonBroker endpoint of the API exposed by the Converter Configura-

tor component with the request body as shown below:

{

" systemName " : " B u i l d i n g B" ,

" commonBrokerTopic " : "common t r a c k " ,

" s y s t e m B r o k e r T o p i c " : " b u i l d i n g A movement "

}

11. After getting the above request from the user, the Converter Configurator again

firstly finds which Middleware Converter is responsible for handling forward-

ing of messages from the message broker of the interoperability tool to a mes-

sage broker of a system. Then, it sends a request to /publishToSystem endpoint

exposed by the Middleware Converter with a request body as shown below:

{

" commonBrokerTopic " : "common t r a c k " ,

" s y s t e m B r o k e r T o p i c " : " b u i l d i n g A movement "

}

12. After receiving this request, the Middleware Converter for Building B sub-

scribes to topic named "common track" in the Common Middleware. And it

publishes the received messages from this topic to the topic named "buildingA_movement"

in the message broker of Building B’s system.

13. Now, messages in the topic named "track" in the message broker of Building A’s

system are forwarded to a topic named "buildingA_movement" in the message

broker of Building B’s system.

14. The admin, or user, of the interoperability tool, now sends a request to /publish-

ToCommonBroker endpoint of the API exposed by the Converter Configurator

to forward messages from the topic named "movement" in the message broker

of Building B’s system to the topic named "common movement" in the message

broker of the interoperability tool, Common Middleware. The request sent by

the user has the following structure:

49

{

" systemName " : " B u i l d i n g B" ,

" s y s t e m B r o k e r T o p i c " : " movement " ,

" commonBrokerTopic " : "common movement "

}

15. After the getting above request from the user, the Converter Configurator firstly

finds which Middleware Converter is responsible for handling forwarding of

messages from a message broker of a system to the message broker of the in-

teroperability tool, Common Middleware. Then, it sends a request to /pub-

lishToCommon endpoint exposed by the Middleware Converter with a request

body as shown below:

{

" s y s t e m B r o k e r T o p i c " : " movement " ,

" commonBrokerTopic " : "common movement "

}

16. After receiving this request, the Middleware Converter for Building B sub-

scribes to a topic named "movement" in the message broker of Building B’s

system. It publishes the received messages from this topic to the topic named

"common movement" in Common Middleware.

17. Now, the messages in the topic named "movement" in the message broker of

Building B’s system are forwarded to a topic named "common movement" in

Common Middleware.

18. The admin of the interoperability tool now sends another request which will

make the interoperability tool get messages from topic named "common move-

ment" in Common Middleware and forward them to a topic named "build-

ingB_track" in the message broker of Building A’s system. The request is sent

to /subscribeToCommonBroker endpoint of the API exposed by the Converter

Configurator component with the request body as shown below:

{

50

" systemName " : " B u i l d i n g A" ,

" commonBrokerTopic " : "common movement " ,

" s y s t e m B r o k e r T o p i c " : " b u i l d i n g B t r a c k "

}

19. After getting the above request from the user, the Converter Configurator again

firstly finds which Middleware Converter is responsible for handling forward-

ing of messages from the message broker of the interoperability tool to a mes-

sage broker of a system. Then, it sends a request to /publishToSystem endpoint

exposed by the Middleware Converter with a request body as shown below:

{

" commonBrokerTopic " : "common movement " ,

" s y s t e m B r o k e r T o p i c " : " b u i l d i n g B t r a c k "

}

20. After receiving this request, the Middleware Converter for Building A sub-

scribes to topic named "common movement" in the Common Middleware. And

it publishes the received messages from this topic to the topic named "build-

ingB_track" in the message broker of Building A’s system.

21. Now, messages in the topic named "movement" in the message broker of Build-

ing B’s system are forwarded to the topic named "buildingB_track" in the mes-

sage broker of Building A’s system.

22. Everything is completed for testing. After this point, every message published

in the topic named "track" in the message broker of Building A’s system is

forwarded to a topic named "buildingA_movement" in the message broker of

Building B’s system. Also every message published in topic named "move-

ment" in the message broker of Building B’s system is forwarded to a topic

named "buildingB_track" in the message broker of Building A’s system.

51

4.3.1 Simulation with Docker

We have used containerization[11, 12, 13, 14] technology excessively to simulate our

case study and to log time delays for a message that take place during its reach from

its publisher to a subscriber. Firstly, we have created Docker images for publisher

and subscriber services in access control systems in Building A and Building B. Each

application in each Docker image is designed to send some log information to a log

service so that we can use these log data later. Secondly, we created a Docker im-

age which will run the Converter Configurator application and manage Middleware

Converters. And lastly, we created two Docker images containing each Middleware

Converter applications, one working with Kafka as the message broker of the system,

and the other one working with RabbitMQ as the message broker of the system. All

of the Dockerfiles for creating these Docker images can be found in Appendix

A.

We have Docker images which are responsible for simulating publisher and subscriber

services in access control systems and the components of our interoperability tool.

We can now create access control systems and the interoperability tool by combining

these Docker images. We are required to create an environment where each compo-

nent of this case study is working like it is in real-life. To achieve this, we have used

Docker network and docker-compose. All of the docker-compose files to create

the simulation environment can be found in Appendix B, and all of the code for this

simulation can be found in [37].

4.4 Discussion and Test Results

The event-based microservice architecture of the proposed interoperability tool en-

ables scalability [38]. The proposed interoperability tool can offer communication

for numerous systems at the same time. In this case study, for the sake of simplic-

ity, we conducted our tests with two systems: the access control systems [35, 36] of

Building A and Building B.

We have tested our solution 5 times with an increasing number of published messages

52

per second from both Building A’s and Building B’s publishers. Since our interop-

erability tool forwards messages in both directions for this case study scenario, the

number of messages forwarded in our tool is the sum of messages published in both

systems.

Table 4.1: Average Time Delays Between Publishers And Subscribers in Milliseconds

Published messages per second

Source Dest 40 100 200 400 500

A Pub A Sub 1.42 1.30 1.10 1.98 2.88

A Pub Conv. A 1.38 1.39 1.16 2.38 4.24

Conv. A Conv. B 1.86 1.35 1.23 4.04 6.04

Conv. B B Sub 2.94 2.19 2.25 7.72 8.11

A Pub B Sub 6.18 4.93 4.64 14.14 18.39

B Pub B Sub 2.70 2.31 2.14 6.42 6.64

B Pub Conv. B 2.98 2.36 2.63 21.04 22.95

Conv. B Conv. A 2.24 1.47 1.48 4.85 6.06

Conv. A A Sub 1.18 1.17 1.00 2.54 3.86

B Pub A Sub 6.40 5.00 5.11 28.43 32.87

In Table 4.1, we tried to show the average time delays in milliseconds for a message

to reach from publisher to subscriber.

A message, which is published to the topic named "track" in the message broker of

the access control system of Building A, both goes to a subscriber microservice in

the Building A’s system and to a subscriber microservice in the Building B’s system

with the help of our proposed tool. The first row shows the time delays between the

publisher and the subscriber in Building A’s system. The second, third, and fourth

rows show the path for a message to be forwarded to Building B’s system with our

53

proposed tool. The second row shows the time delays between the publisher and the

Middleware Converter for Building A. The third row shows the time delays between

the Middleware Converter for Building A and the Middleware Converter for Build-

ing B. The fourth row shows the time delays between the Middleware Converter for

Building B and the subscriber microservice in Building B’s system. The fifth row

shows the overall time for a message to be forwarded from the publisher microser-

vice of Building A’s system to the subscriber microservice of Building B’s system.

A message, which is published to the topic name "movement" in the message broker

of the access control system of Building B, both goes to a subscriber microservice in

the Building B’s system and to a subscriber microservice in the Building A’s system

with the help of our proposed tool. The sixth row shows the time delays between

the publisher and the subscriber in Building B’s system. The seventh, eighth, and

ninth rows show the path for a message to be forwarded to Building A’s system with

our proposed tool. The seventh row shows the time delays between the publisher

and the Middleware Converter for Building B. The eighth row shows the time delays

between the Middleware Converter for Building B and the Middleware Converter for

Building A. The ninth row shows the time delays between the Middleware Converter

for Building A and the subscriber microservice in Building A’s system. The tenth row

shows the overall time for a message to be forwarded from the publisher microservice

of Building B’s system to the subscriber microservice of Building A’s system.

From Table 4.1, we can understand that our interoperability tool can forward tens of

thousands of messages between different systems based on different message brokers

within a second. In the first three tests, with 40, 100, and 200 messages per second

from each publisher, the time delays between each component are very similar. How-

ever, after the fourth test with 400 messages per second from each publisher, time

delays between components that are communicating with Kafka, the message broker

of the access control system of Building B, increased drastically. In [31, 39], the au-

thors stated that the throughput of RabbitMQ is better than the throughput of Kafka in

the basic setup, which is for a single node, single producer/channel, single-partition,

and no replication. However, Kafka’s performance can be increased significantly by

increasing the number of partition counts. In our case study, we use both RabbitMQ

and Kafka in their basic setup, that is the reason why time delays between compo-

54

nents around RabbitMQ are smaller than the time delays between components around

Kafka.

Our primary concern while developing our interoperability tool was achieving inter-

operability among different event-driven microservice systems using different mes-

sage brokers as their publish/subscribe mechanism. Also there were no directly re-

lated work for interoperability of message brokers. That is why we could not compare

our tool with other tools in terms of attributes such as performance and usability. We

only presented time delays to give intuition about the performance of our interoper-

ability tool.

55

56

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we presented our solution to handle interoperability among event-

driven microservice-based systems using message brokers that execute their pub-

lish/subscribe mechanism. Our proposed tool is also designed as an event-driven

microservice-based publish/subscribe system. The components named Middleware

Converters are publishers and subscribers of the Common Middleware component,

which is the message broker of our proposed tool. Common Middleware, the mes-

sage broker of the tool, is used to send messages from and to Middleware Converters

in order to forward messages among message brokers of different systems. Using

another message broker, namely Common Middleware, and using a separate Middle-

ware Converter per system let us design a tool that is extensible to other systems using

other message broker applications. Based on our observations from the case study,

we can state that our interoperability tool can forward tens of thousands of messages

among different systems based on different message brokers within a second.

5.2 Future Work

Our experimentation in the case study was only, for the sake of simplicity, between

two different systems using different message broker technologies as their publish/-

subscribe mechanism. Doing tests with more than two systems and observing how

the performance of our interoperability tool is going to be affected could be future

work.

57

To make our tool better and faster, we need to lower the communication delay be-

tween different systems. However, a message created in one system is required to

travel also in our tool to be forwarded to the target system. The time a message

spends in the interoperability tool could be a bottleneck if there are millions of mes-

sages coming from different systems, so studying and improving the performance of

the interoperability tool could be another future work.

Currently, our tool does not do anything about semantic interoperability, it only for-

wards messages from one system to other systems, which are syntactical interop-

erability. Adding a semantic interoperability feature, like automatic topic matching

among different systems, to our interoperability tool could be a good future work.

Our tool currently forwards the messages among systems without touching the mes-

sage itself. An adaptation of message formats can be another future work.

Our tool does not offer a search mechanism to find a microservice in a system. Adding

search mechanism to find relevant microservices to subscribe for a system could be a

future work, since our tool is integrating diverse systems and it is the only integration

and search point.

Currently there is no user interface to configure and monitor the integration of sys-

tems. Creating an user interface for our tool could be another future work.

58

REFERENCES

[1] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of microser-

vice architecture: current and future directions,” ACM SIGAPP Applied Com-

puting Review, vol. 17, no. 4, pp. 29–45, 2018.

[2] “Microservice architecture style - azure application architecture guide.”

Available at https://docs.microsoft.com/en-us/azure/

architecture/guide/architecture-styles/microservices.

[3] S. Newman, Building microservices. " O’Reilly Media, Inc.", 2021.

[4] B. M. Michelson, “Event-driven architecture overview,” Patricia Seybold

Group, vol. 2, no. 12, pp. 10–1571, 2006.

[5] “Event-driven architecture.” Available at https://aws.amazon.com/

event-driven-architecture/.

[6] I. C. Education, “What are message brokers?,” Jan 2020. Available at https:

//www.ibm.com/cloud/learn/message-brokers.

[7] J. Bloch, “How to design a good api and why it matters,” in Companion to

the 21st ACM SIGPLAN symposium on Object-oriented programming systems,

languages, and applications, pp. 506–507, 2006.

[8] O. Al-Debagy and P. Martinek, “A comparative review of microservices and

monolithic architectures,” in 2018 IEEE 18th International Symposium on Com-

putational Intelligence and Informatics (CINTI), pp. 000149–000154, IEEE,

2018.

[9] R. C. Martin, “The single responsibility principle,” May 2014. Avail-

able at https://blog.cleancoder.com/uncle-bob/2014/05/

08/SingleReponsibilityPrinciple.html.

[10] N. Serrano, J. Hernantes, and G. Gallardo, “Service-oriented architecture and

legacy systems,” IEEE software, vol. 31, no. 5, pp. 15–19, 2014.

59

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/event-driven-architecture/
https://www.ibm.com/cloud/learn/message-brokers
https://www.ibm.com/cloud/learn/message-brokers
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

[11] “Devops with docker.” Available at https://devopswithdocker.com/

part1/.

[12] C. Boettiger, “An introduction to docker for reproducible research,” ACM

SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[13] B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An introduction to docker and analysis

of its performance,” International Journal of Computer Science and Network

Security (IJCSNS), vol. 17, no. 3, p. 228, 2017.

[14] I. Miell and A. Sayers, Docker in practice. Simon and Schuster, 2019.

[15] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current technology

and future trends,” Computer, vol. 38, no. 5, pp. 39–47, 2005.

[16] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces

of publish/subscribe,” ACM computing surveys (CSUR), vol. 35, no. 2, pp. 114–

131, 2003.

[17] “What is pub/sub?.” Available at https://cloud.google.com/

pubsub/docs/overview.

[18] M. C. Kaya, A. Karamanlioglu, İ. Ç. Çetintaş, E. Çilden, H. Canberi, and

H. Oğuztüzün, “A configurable gateway for dds-hla interoperability,” in Pro-

ceedings of the 2019 Summer Simulation Conference, pp. 1–11, 2019.

[19] B. Elvesæter, A. Hahn, A.-J. Berre, and T. Neple, “Towards an interoperability

framework for model-driven development of software systems,” in Interoper-

ability of enterprise software and applications, pp. 409–420, Springer, 2006.

[20] M. Aragão, P. Moreno, and A. Bernardino, “Middleware interoperability for

robotics: A ros–yarp framework,” Frontiers in Robotics and AI, vol. 3, p. 64,

2016.

[21] M. A. Jarwar, S. Ali, M. G. Kibria, S. Kumar, and I. Chong, “Exploiting in-

teroperable microservices in web objects enabled internet of things,” in 2017

Ninth International Conference on Ubiquitous and Future Networks (ICUFN),

pp. 49–54, IEEE, 2017.

60

https://devopswithdocker.com/part1/
https://devopswithdocker.com/part1/
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview

[22] E. S. Pramukantoro and H. Anwari, “An event-based middleware for syntacti-

cal interoperability in internet of things.,” International Journal of Electrical &

Computer Engineering (2088-8708), vol. 8, no. 5, 2018.

[23] H. Mueller, “What is software interoperability and how can it boost profits and

productivity?,” Jun 2021. Available at https://www.formstack.com/

resources/blog-software-interoperability.

[24] “Eprosima integration service.” Available at https://

integration-service.docs.eprosima.com/en/latest/.

[25] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of json

and xml data interchange formats: a case study.,” Caine, vol. 9, pp. 157–162,

2009.

[26] T. D. Team, “What is interoperability and why do we need it?,”

Apr 2018. Available at https://www.dermengine.com/blog/

dermatology-emr-software-integration.

[27] A. Bayramcavus, M. C. Kaya, and A. H. Dogru, “Interoperability of

microservice-based systems,” in 2021 13th International Conference on Elec-

trical and Electronics Engineering (ELECO), pp. 594–598, 2021.

[28] “Rabbitmq documentation.” Available at https://www.rabbitmq.com/

documentation.html.

[29] “Apache kafka documentation.” Available at https://kafka.apache.

org/documentation/#implementation.

[30] “Zeromq | get started.” Available at https://zeromq.org/

get-started/.

[31] P. Dobbelaere and K. S. Esmaili, “Kafka versus rabbitmq: A comparative study

of two industry reference publish/subscribe implementations: Industry paper,”

in Proceedings of the 11th ACM international conference on distributed and

event-based systems, pp. 227–238, 2017.

[32] L. Li, W. Chou, W. Zhou, and M. Luo, “Design patterns and extensibility of rest

61

https://www.formstack.com/resources/blog-software-interoperability
https://www.formstack.com/resources/blog-software-interoperability
https://integration-service.docs.eprosima.com/en/latest/
https://integration-service.docs.eprosima.com/en/latest/
https://www.dermengine.com/blog/dermatology-emr-software-integration
https://www.dermengine.com/blog/dermatology-emr-software-integration
https://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/documentation.html
https://kafka.apache.org/documentation/#implementation
https://kafka.apache.org/documentation/#implementation
https://zeromq.org/get-started/
https://zeromq.org/get-started/

api for networking applications,” IEEE Transactions on Network and Service

Management, vol. 13, no. 1, pp. 154–167, 2016.

[33] L. Li and W. Chou, “Design and describe rest api without violating rest: A petri

net based approach,” in 2011 IEEE International Conference on Web Services,

pp. 508–515, IEEE, 2011.

[34] V. John and X. Liu, “A survey of distributed message broker queues,” arXiv

preprint arXiv:1704.00411, 2017.

[35] “Know about access control systems and their types with fea-

tures,” Sep 2021. Available at https://www.elprocus.com/

understanding-about-types-of-access-control-systems/.

[36] A. Venckauskas, N. Morkevicius, and K. Kulikauskas, “Study of finger vein au-

thentication algorithms for physical access control,” Elektronika ir elektrotech-

nika, no. 5, pp. 101–104, 2012.

[37] A. Bayramcavus, “Thesis code,” Sep 2021. Available at https://github.

com/alibayramcavus/ThesisCode.

[38] W. Hasselbring and G. Steinacker, “Microservice architectures for scalability,

agility and reliability in e-commerce,” in 2017 IEEE International Conference

on Software Architecture Workshops (ICSAW), pp. 243–246, IEEE, 2017.

[39] W. Sriborrirux and P. Laortum, “Healthcare center iot edge gateway based on

containerized microservices,” in Proceedings of the 2020 4th International Con-

ference on Intelligent Systems, Metaheuristics & Swarm Intelligence, pp. 24–29,

2020.

62

https://www.elprocus.com/understanding-about-types-of-access-control-systems/
https://www.elprocus.com/understanding-about-types-of-access-control-systems/
https://github.com/alibayramcavus/ThesisCode
https://github.com/alibayramcavus/ThesisCode

APPENDIX A

DOCKERFILES

A.1 Publisher and Subscriber Services for System using RabbitMQ as Message

Broker

1 FROM python:alpine3.14

2

3 WORKDIR /app

4

5 RUN pip install pika

6

7 COPY *.py .

8

9 CMD ["python", "ServiceSimulator.py"]

A.2 Publisher and Subscriber Services for System using Kafka as Message

Broker

1 FROM python:alpine3.14

2

3 WORKDIR /app

4

5 RUN pip install pika

6 RUN pip install kafka-python

7

63

8 COPY *.py .

9

10 CMD ["python", "ServiceSimulator.py"]

A.3 Middleware Converter for System using RabbitMQ as Message Broker

1 FROM python:alpine3.14

2

3 WORKDIR /app

4

5 RUN pip install pika

6 RUN pip install flask

7 RUN pip install requests

8

9 COPY *.py .

10

11 CMD ["python", "main.py"]

A.4 Middleware Converter for System using Kafka as Message Broker

1 FROM python:alpine3.14

2

3 WORKDIR /app

4

5 RUN pip install pika

6 RUN pip install kafka-python

7 RUN pip install flask

8 RUN pip install requests

9

10 COPY *.py .

11

64

12 CMD ["python", "main.py"]

A.5 Converter Configurator

1 FROM python:alpine3.14

2

3 WORKDIR /app

4

5 RUN pip install flask

6 RUN pip install requests

7

8 COPY *.py .

9

10 CMD ["python", "main.py"]

A.6 Log Manager

1 FROM python:slim-buster

2

3 WORKDIR /app

4

5 RUN pip install pika

6 RUN pip install psycopg2-binary

7

8 COPY *.py .

9

10 CMD ["python", "main.py"]

65

66

APPENDIX B

DOCKER-COMPOSE FILES

B.1 Starting All Message Broker Applications in Each System and Interoper-

ability Tool

1 version: "3.8"

2

3 services:

4 # sys1 rabbit

5 rabbit_sys1:

6 image: rabbitmq:3.9-management

7 networks:

8 - sys1_net

9

10 # sys2 zookeeper

11 zookeeper:

12 image: 'bitnami/zookeeper:latest'

13 environment:

14 - ALLOW_ANONYMOUS_LOGIN=yes

15 networks:

16 - sys2_net

17

18 # sys2 kafka

19 kafka:

20 # https://hub.docker.com/r/bitnami/

21 # kafka/#full-configuration

67

22 # Accessing Kafka with internal and external clients

23 image: 'bitnami/kafka:latest'

24 ports:

25 - 5682:5682

26 environment:

27 - KAFKA_BROKER_ID=1

28 - KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181

29 - ALLOW_PLAINTEXT_LISTENER=yes

30 - >

31 KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP=

32 CLIENT:PLAINTEXT,EXTERNAL:PLAINTEXT

33 - >

34 KAFKA_CFG_LISTENERS=CLIENT://:9092,

35 EXTERNAL://:5690

36 - >

37 KAFKA_CFG_ADVERTISED_LISTENERS=

38 CLIENT://kafka:9092,EXTERNAL://localhost:5690

39 - KAFKA_INTER_BROKER_LISTENER_NAME=CLIENT

40 networks:

41 - sys2_net

42 depends_on:

43 - zookeeper

44

45

46 # tool rabbit

47 rabbit_tool:

48 image: rabbitmq:3.9-management

49 networks:

50 - tool_net

51

52 # log rabbit

53 rabbit_log:

68

54 image: rabbitmq:3.9-management

55 networks:

56 - log_net

57

58

59 networks:

60 sys1_net:

61 external:

62 name: sys1_net

63 sys2_net:

64 external:

65 name: sys2_net

66 tool_net:

67 external:

68 name: tool_net

69 log_net:

70 external:

71 name: log_net

B.2 Starting Services of First Access Control System

1 version: "3.8"

2

3 services:

4 sys1-pub1:

5 image: service_rabbit

6 environment:

7 - SERVICE_NAME=sys1-pub1

8 - RABBITMQ_IP=rabbit_sys1

9 - RABBITMQ_PORT=5672

10 - PUBLISHERS_CONF=track--2500

11 - LOG_ENABLED=True

69

12 - LOG_ONLY_AT_THE_END=True

13 - LOGBROKER_IP=rabbit_log

14 - LOGBROKER_PORT=5672

15 restart: always

16 networks:

17 - sys1_net

18 - log_net

19 depends_on:

20 - sys1-sub1

21 - sys1-sub2

22

23

24 sys1-sub1:

25 image: service_rabbit

26 environment:

27 - SERVICE_NAME=sys1-sub1

28 - RABBITMQ_IP=rabbit_sys1

29 - RABBITMQ_PORT=5672

30 - SUBSCRIBERS_CONF=track

31 - LOG_ENABLED=True

32 - LOG_ONLY_AT_THE_END=True

33 - LOGBROKER_IP=rabbit_log

34 - LOGBROKER_PORT=5672

35 restart: always

36 networks:

37 - sys1_net

38 - log_net

39

40 sys1-sub2:

41 image: service_rabbit

42 environment:

43 - SERVICE_NAME=sys1-sub2

70

44 - RABBITMQ_IP=rabbit_sys1

45 - RABBITMQ_PORT=5672

46 - SUBSCRIBERS_CONF=buildingB_track

47 - LOG_ENABLED=True

48 - LOG_ONLY_AT_THE_END=True

49 - LOGBROKER_IP=rabbit_log

50 - LOGBROKER_PORT=5672

51 restart: always

52 networks:

53 - sys1_net

54 - log_net

55

56 networks:

57 sys1_net:

58 external:

59 name: sys1_net

60 log_net:

61 external:

62 name: log_net

B.3 Starting Services of Second Access Control System

1 version: "3.8"

2

3 services:

4 sys2-pub1:

5 image: service_kafka

6 environment:

7 - SERVICE_NAME=sys2-pub1

8 - KAFKA_IP=kafka

9 - KAFKA_PORT=9092

10 - PUBLISHERS_CONF=movement--2500

71

11 - LOG_ENABLED=True

12 - LOG_ONLY_AT_THE_END=True

13 - LOGBROKER_IP=rabbit_log

14 - LOGBROKER_PORT=5672

15 networks:

16 - sys2_net

17 - log_net

18 depends_on:

19 - sys2-sub1

20 - sys2-sub2

21

22

23 sys2-sub1:

24 image: service_kafka

25 environment:

26 - SERVICE_NAME=sys2-sub1

27 - KAFKA_IP=kafka

28 - KAFKA_PORT=9092

29 - SUBSCRIBERS_CONF=movement

30 - LOG_ENABLED=True

31 - LOG_ONLY_AT_THE_END=True

32 - LOGBROKER_IP=rabbit_log

33 - LOGBROKER_PORT=5672

34 networks:

35 - sys2_net

36 - log_net

37

38 sys2-sub2:

39 image: service_kafka

40 environment:

41 - SERVICE_NAME=sys2-sub2

42 - KAFKA_IP=kafka

72

43 - KAFKA_PORT=9092

44 - SUBSCRIBERS_CONF=buildingA_movement

45 - LOG_ENABLED=True

46 - LOG_ONLY_AT_THE_END=True

47 - LOGBROKER_IP=rabbit_log

48 - LOGBROKER_PORT=5672

49 networks:

50 - sys2_net

51 - log_net

52

53 networks:

54 sys2_net:

55 external: true

56 name: sys2_net

57 log_net:

58 external: true

59 name: log_net

B.4 Starting Log Service

1 version: "3.8"

2

3 services:

4 masterdb:

5 image: postgres:13.4-alpine3.14

6 volumes:

7 - db_data:/var/lib/postgresql/data

8 environment:

9 - POSTGRES_PASSWORD=masterdbpassword

10 ports:

11 - 5000:5432

12 networks:

73

13 - log_net

14

15 logger:

16 image: newlogger

17 environment:

18 - DB_IP=masterdb

19 - DB_PORT=5432

20 - DB_NAME=logDB

21 - DB_PASSWORD=masterdbpassword

22 - BROKER_IP=rabbit_log

23 - BROKER_PORT=5672

24 restart: always

25 depends_on:

26 - masterdb

27 networks:

28 - log_net

29

30 networks:

31 log_net:

32 external:

33 name: log_net

34

35 volumes:

36 db_data:

37 external: true

38 name: db_data

74

B.5 Starting Converter Configurator and Middleware Converters of the Inter-

operability Tool

1 version: "3.8"

2

3 services:

4 configurator:

5 image: configurator

6 environment:

7 - CORE_SERVICE_PORT=8080

8 - CORE_BROKER_IP=rabbit_tool

9 - CORE_BROKER_PORT=5672

10 ports:

11 - 8080:8080

12 networks:

13 - tool_net

14

15 sys1-manager:

16 image: manager_rabbit

17 environment:

18 - SYSTEM_NAME=sys1-manager

19 - MANAGER_IP=sys1-manager

20 - MANAGER_PORT=8080

21 - SYSTEM_BROKER_IP=rabbit_sys1

22 - SYSTEM_BROKER_PORT=5672

23 - CORE_BROKER_IP=rabbit_tool

24 - CORE_BROKER_PORT=5672

25 - CORE_SERVICE_IP=configurator

26 - CORE_SERVICE_PORT=8080

27 - LOG_ENABLED=True

28 - LOG_ONLY_AT_THE_END=True

29 - LOGBROKER_IP=rabbit_log

30 - LOGBROKER_PORT=5672

75

31 networks:

32 - sys1_net

33 - tool_net

34 - log_net

35 depends_on:

36 - core

37

38 sys2-manager:

39 image: manager_kafka

40 environment:

41 - SYSTEM_NAME=sys2-manager

42 - MANAGER_IP=sys2-manager

43 - MANAGER_PORT=8080

44 - SYSTEM_BROKER_IP=kafka

45 - SYSTEM_BROKER_PORT=9092

46 - CORE_BROKER_IP=rabbit_tool

47 - CORE_BROKER_PORT=5672

48 - CORE_SERVICE_IP=configurator

49 - CORE_SERVICE_PORT=8080

50 - LOG_ENABLED=True

51 - LOG_ONLY_AT_THE_END=True

52 - LOGBROKER_IP=rabbit_log

53 - LOGBROKER_PORT=5672

54 networks:

55 - sys2_net

56 - tool_net

57 - log_net

58 depends_on:

59 - core

60

61

62 networks:

76

63 sys1_net:

64 external:

65 name: sys1_net

66 sys2_net:

67 external:

68 name: sys2_net

69 tool_net:

70 external:

71 name: tool_net

72 log_net:

73 external:

74 name: log_net

77

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background
	Problem Statement
	Approach
	Contribution
	Outline of Thesis

	Background And Related Work
	Microservice Architecture
	Doing a Small Thing but Doing It Exactly Right
	Benefits of Microservice Architecture

	Docker
	Benefits of Docker
	Works on My Machine Problem
	Isolated environments
	Development
	Scaling

	Virtual Machine

	Event-Driven Architecture
	Benefits of an event-driven architecture
	Scale and fail independently
	Develop with agility
	Audit with ease
	Cut costs

	Event Router
	Point-to-Point Messaging Pattern
	Publish/Subscribe Messaging Pattern

	Interoperability
	Importance of Interoperability

	Proposed Tool
	The Problem
	The Solution
	The Proposed Tool in Detail
	Converter Configurator
	registerConverter
	publishToCommonBroker
	subscribeToCommonBroker

	Middleware Converter
	publishToCommon
	publishToSystem

	Common Middleware

	Example
	How to Extend
	How to Implement a New Middleware Converter

	Case Study - Interoperability Among Access Control Systems
	Access Control System
	Our Scenario
	Test Setup
	Simulation with Docker

	Discussion and Test Results

	Conclusion And Future Work
	Conclusion
	Future Work

	REFERENCES
	Dockerfiles
	Publisher and Subscriber Services for System using RabbitMQ as Message Broker
	Publisher and Subscriber Services for System using Kafka as Message Broker
	Middleware Converter for System using RabbitMQ as Message Broker
	Middleware Converter for System using Kafka as Message Broker
	Converter Configurator
	Log Manager

	Docker-Compose Files
	Starting All Message Broker Applications in Each System and Interoperability Tool
	Starting Services of First Access Control System
	Starting Services of Second Access Control System
	Starting Log Service
	Starting Converter Configurator and Middleware Converters of the Interoperability Tool

