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ABSTRACT

3D POINT CLOUD CLASSIFICATION WITH GANS: ACGAN AND
VACWGAN-GP

Ergün, Onur

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Yusuf Sahillioğlu

February 2022, 76 pages

With the developing technology and the power of sensors, 3D data has started to be

used in almost every field. Point clouds detected with LIDAR sensors or obtained by

sampling 3D meshes have begun to come to the fore in many areas from autonomous

driving to data visualization, from generating new data and mesh to classifying de-

tected 3D objects. Machine learning and deep learning techniques are widely used to

make sense of this produced data and to implement various applications. In this work,

we propose networks to predict the class to which the 3D point cloud belongs, with

Auxiliary Classifier Generative Adversarial Network and Versatile Auxiliary Condi-

tional Wasserstein Generative Adversarial Network with Gradient Penalty, which are

kind of GANs working with class labeled data. Unlike other classifiers; we are able to

enlarge the limited data set with the data produced by taking advantage of the power

of generative models, thus we aim to increase the success of the model by training it

with more data. As suggested by the ACGAN models, the Discriminator is trained

with synthetic data generated by the Generator with using the class label, in addi-

tion to the real dataset, ensures that data can be classified while separating real and

fake data. Thus, as the training evolves, the Generator is trained to produce more
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realistic data; which forces Discriminator to classify better. Wasserstein GAN with

GP demonstrates similar abilities with a better training by replacing its Discrimina-

tor with Critic and modifying its loss function. In this work, we focus on merging

Wassterstein GAN-GP with conditional GAN in order to improve the classifier’s per-

formance. With this study, the proposed models were tested on 3D datasets and the

results were compared with other studies.

Keywords: Machine Learning, Deep Learning, Generative Models, GAN, CGAN,

ACGAN, Wasserstein GAN, Wasserstein GAN-GP, Classification, Shape Retrieval
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ÖZ

3B NOKTA BULUTUNUN ÇEKİŞMELİ SİNİR AĞLARI İLE
SINIFLANDIRILMASI: ACGAN VE VACWGAN-GP

Ergün, Onur

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Yusuf Sahillioğlu

Şubat 2022 , 76 sayfa

Gelişen teknoloji ve sensörlerin gücüyle birlikte, 3B veriler neredeyse her alanda kul-

lanılmaya başlanmıştır. LIDAR sensörleriyle tespit edilmiş veya sentetik 3 boyutlu

ağların örneklenmesiyle elde edilmiş nokta bulutları; otonom sürüşten veri görsel-

leştirmeye, yeni veri ve 3 boyutlu ağ üretmekten tespit edilen 3 boyutlu nesnelerin

sınıflandırılmasına kadar bir çok alanda ön plana çıkmaya başlamıştır. Üretilen bu

verilerin anlamlandırılmasında ve çeşitli uygulamalarının gerçeklenmesinde makine

öğrenmesi ve derin öğrenme teknikleri sıkça kullanılmaktadır. Bu çalışmada, biz, eti-

ketlenmiş veri ile çalışan bir çeşit Çekişmeli Sinir Ağları olan Sınıflandırıcı Eklenmiş

Çekişmeli Sinir Ağları ile 3B nokta bulutunun ait olduğu sınıfı tahmin etmesi için

bir ağ öneriyoruz. Diğer sınıflandırıcılardan farklı olarak; üretici modellerin gücün-

den yararlanarak üretilen veriler ile sınırlı veri setini büyütebiliyor ve modeli daha

fazla veri ile eğiterek başarısının arttırılmasını hedefliyoruz. Sınıflandırıcı Eklenmiş

Çekişmeli Sinir Ağları modellerinin önerdiği şekilde, gerçek verisetine ek olarak Üre-

tici tarafından sınıf etiketi kullanılarak üretilen sentetik veriler ile eğitilen Ayrıştırıcı

sayesinde; gerçek ve sahte veriyi ayırırken aynı zamanda verinin sınıflandırılabilme-
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sini de sağlıyoruz. Böylece, eğitim ilerlerken Üretici daha gerçekçi veriler üretmek

için eğitilirken; Ayrıştırıcıyı da daha iyi sınıflandırmaya zorlamaktadır. Gradyan Ce-

zalandırmalı Wassertein Çekişmeli sinir ağları ise benzer yetenekleri, Ayrıştırıcıyı

Eleştirmen ile değiştirip; kayıp fonksiyonunu değiştirerek daha iyi bir eğitim ile gös-

termektedir. Bu çalışmada, biz Gradyan Cezalandırmalı Wasserstein Çekişmeli sinir

ağlarını koşullu Çekişmeli Sinir Ağları ile birleştirerek veri sınıflandırma performan-

sını iyileştirmeye odaklanıyoruz. Yapılan bu çalışma ile önerilen modeller 3 boyutlu

verisetleri üzerinde denenmiş ve sonuçları diğer çalışmalar ile karşılaştırılmıştır.

Anahtar Kelimeler: Makine Öğrenmesi, Derin Öğrenme, Üretici Modeller, Çekişmeli

Sinir Ağları, Koşullu Çekişmeli Sinir Ağları, Sınıflandırıcı Eklenmiş Çekişmeli Si-

nir Ağları, Wasserstein Çekişmeli Sinir Ağları, Gradyan Cezalandırmalı Wasserstein

Çekişmeli Sinir Ağları, Sınıflandırma, Şekil Yeniden Alma
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In simple terms, classification is the task of deciding to label of the given sample with

some techniques that learns from other known samples. Classes can differ from the

dataset working on, the objective of classification and the nature of problem and also

named as targets, labels or categories. Furthermore, some problems are defined as the

detection of samples that belong to one class or another, called as binary classifica-

tion, while others can be expressed as multi class and multi label classification. Multi

class classification is a process that trying to categorize every sample which can be-

long to exactly one of the target classes. Unlike binary classification, the target class

space has more labels than two. In multi label classification, one sample can have

more than one label. For example, detection of mail whether spam or not is a binary

classification problem, distinguishing animals at 2D images from each other is multi

class classification problem. Identifying the categories of a film is a good example of

a multi-label classification problem.

As can be seen from the examples, classification is general, suitable and useful for
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use in many areas. With the advancement of technology, it is possible to encounter

classification problems in almost every field. As the amount of data produced in-

creases, the problems are shaped accordingly. With the increasing processing power

of computers, the way of approaching these classification problems is also changing

and developing. Solutions starting from simple machine learning methods are evolv-

ing into very complex artificial neural networks and even deep learning architectures

in order to increase classification accuracy.

These changes have an impact on the data that can be handled. The success of cat-

egorizing 2D images has paved the way for 3D object recognition and classification.

Many fields of study have emerged and have become challenging problems, such as

detecting objects in a room scanned with LIDAR sensors, detecting and classifying

other vehicles, pedestrians, living things, and other objects in autonomous driving, de-

tecting anomalies in data obtained from MRI devices and so on.[23][24][25][26][27]

In this study, we appeal to the generative models for the classification task of 3D

objects using 3D point cloud data. This data can be detected directly with sensors,

or it can be obtained by converting synthetically created 3D meshes into point clouds

by sampling. In order to increase the classification success, we propose using the

data generated by the generator close to the real data set distribution in classifier

training. For that purpose, we propose both a modified ACGAN for the 3D point

cloud and a combined version of a Wasserstein GAN-GP method with a classifier.

We adapt the gradient penalty part to work with 3D point cloud data. As a result, we

present methods for labeling 3D shapes without relying on the surface or connection

information that characterizes 3D objects.

1.2 Proposed Methods and Models

For many years, machine learning methods and approaches have been widely em-

ployed in classification problems. The success of machine learning models using

supervised learning in classification has increased considerably with the developed

models. Many methods have been proposed, from Decision Tree, which is one of

the most basic methods, to deep convolution networks and have proven themselves in
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various applications. These machine learning algorithms train themselves using the

data they encounter during the training phase and gain the ability to recognize and

understand the underlying mean of data that has similar characteristics as the training

progresses. After sufficient training, it models the data and defines a unique function

in order to obtain the desired output from the given data.

In 3D point cloud classification problem, many machine learning approaches pro-

posed. Many researchers utilize CNN models because of the nature of the problem

and the resemblance to 2D image classification challenges. Unlike 2D images, the

points are unordered in the 3D point cloud. It also varies from 3D meshes in that it is

devoid of structural information. While there is inter-vertex connection information

that defines surfaces in 3D meshes, point cloud is defined as a set of scattered points

in space. Some methods employ three-dimensional voxels as a solution, which are

analogous to pixels in a two-dimensional image.

In this study, we employ point cloud data to classify objects in 3D space. As a classi-

fication tool, we propose Generative Adversarial Networks (GAN) which is the most

popular and powerful reconstruction-based deep learning method of recent times[5].

Basically, GAN is a combination of two networks trying to beat each other and es-

sentially both models competing in a zero-sum-game and finally both are training

together. In this game, while the Generator tries to trick the Discriminator by gen-

erating data as close to the real data set as possible; Discriminator also tries to dis-

tinguish the data produced by the Generator from the real data. Furthermore, GANs

address unsupervised generative problems as supervised aspects with this network

combination approach. Besides, it is very powerful tool to data augmentation with

its Generator model. As the power of GAN networks has been realized, several other

forms of GANs have been proposed in a row to be used in many fields and to serve

different purposes. While vanilla GANs are firstly introduced with multi-layer per-

ceptron networks, Deep Convolution GANs (DCGAN) comprise of Convolutional

Networks, Conditional GANs (CGAN) take into consideration condition information

to generate better results. Another variation of GANs is Auxiliary Classifier GAN

that produces labels in addition to real/fake results. We offer to use the Discriminator

of the ACGAN solution, which we have adapted according to the 3D Point cloud, as

a classifier in the first proposed method. By developing this compact solution with
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another successful GAN model, Wasserstein GAN with GP, we strengthen the gener-

ator side and force the classifier we added in parallel to get better results and we offer

this approach as our second method.

1.3 Contributions and Novelties

An ACGAN network is presented as a unique approach to 3D object classification

problem which allows classification of data on the point cloud using only the 3D

position information of the points without the use of additional features.

The Discriminator of this network is utilized as a classifier and the dataset has been

augmented owing to the data generated by the Generator during training, resulting in

enhanced generalization of the model.

The suggested method allows the generator to be multiplied up to the number of target

classes theoretically, thus overcoming the possible mode collapse problem during

training and enabling each Generator to be used as a data generator for the specific

classes after training.

We benefit from the generative power of Wasserstein GAN-GP by combining it with

a separate classifier in our second approach. WGAN-GP, which we have customized

the gradient penalty part for the 3D point cloud, learns the distribution of the real

data set and undertakes the task of data augmentation alongside the classifier in this

method.

As a summary our contributions can be summed up as follows:

• Compared to other studies, ACGAN is used in classification of 3D point clouds

with only 3D coordinate information of points that compose the 3D shapes.

• With multiple generator support, avoiding possible mode collapse problem which

might occur due to the nature of the algorithm of GANs

• Inspired by the spirit of the VACGAN approach, using the generative model

of Wasserstein GAN-GP which placed next to the separated classifier as data

augmenter
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1.4 The Outline of the Thesis

This thesis is divided into six chapters. In the Chapter 1, the definition of the problem

and the motivation is covered and the purposed method are presented along with a

brief overview of the model. Contributions are also given and the thesis outline is

stated. The background information needed to comprehend the proposed approaches

is provided in Chapter 2. Previous studies to classify 3D shapes are detailed in the

Chapter 3 and a literature search is also presented. In Chapter 4, the suggested ap-

proaches to address the problem, as well as the methods of application and how the

proposed solution works are detailed. Chapter 5 describes the data sets with their

attributes and explains the experiments we conducted on those datasets using the pro-

posed methods, as well as the results, and compares them to previous studies. Finally,

in Chapter 6, the work conducted is summarized, concluded and suggestions for fu-

ture works are given.
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CHAPTER 2

BACKGROUND

2.1 Point Cloud

In a spatial reference system, a point cloud is a collection of data points. In practice,

the phrase refers to 3D points that reflect the shape, size, and placement of real-world

objects in three dimensions. Every point in a point cloud data collection has at least

three attributes: X, Y, and Z. RGB for color or intensity of the laser reflection are

two more frequent characteristics. The object’s surface’s reflective qualities are rep-

resented by the intensity value. These attributes can be utilized in the categorization

process to offer information on the qualities of the scanned item.[1]

Point clouds are commonly used to model physical things in three dimensions, with

points taken from the object’s exterior surface forming the envelope. This form of

point cloud is used in computer vision, computer graphics, and computational geom-

etry, and is often the raw output of 3D sensors or made synthetically by computer

algorithms. With the fast development of reality capture devices and sensing tech-

nologies like 3D laser scanners and LIDAR (light detection and ranging), 3D point

clouds have become widespread and cheaply obtainable, spawning a slew of ground-

breaking 3D environment-based applications. Nonetheless, seeing and interacting

with the surrounding environment based on the data obtained is a common job shared

by most of these applications. For instance, in robot manipulation, which has a wide

range of applications including autonomous driving, autonomy, and robotic surgery,

the robot must be aware of and comprehend the surrounding environment in order to

complete its motion planning. The virtual effect in augmented reality (AR) is created

by recognizing features in the surroundings, and the appropriate displacement of this
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effect is heavily dependent on perfect 3D registration of virtual and actual objects.

As a result, developing algorithms that can consume 3D point cloud data directly

and generate semantic characteristics that may be employed in the perception job is

critical.[2]

Different data formats appropriate for 3D object representation exist, which may be

geometric form based on their data structure (irregular) and categorized into rasterized

form (regular grids).

Rasterized Form

The rasterized form includes a structured underlying grid that allows mathematical

operations to be done without too much effort, including multi-view pictures, depth

maps, and volumetric representation (voxel girds). Multi-view pictures, for example,

project 3D situations onto 2D image planes from various angles and use the collection

of those 2D images as a representation of the original 3D scenarios. Following that,

standard image computing techniques (2D matrix) become instantaneously available.

The volumetric representation typically constructs things using regularly spaced 3D

cubes, where values can be supplied to the cubes to produce voxels, which are com-

parable to pixels in 2D. As a result, a three-dimensional grid will be formed, and

computational tools will be easy to use once more.

This computationally advantageous aspect has led to the widespread use of rasterized

form representation in hundreds of simulation and visualization applications. How-

ever, much as a coin has two sides, this representation has significant drawbacks: In

multi-view projection, depth information is lost (projection loss), making a sphere

indistinguishable from an ellipsoid in the simplest instance. Furthermore, if the view-

points remain the same, the projection of a rotated object may alter dramatically (not

rotation invariant). Because the approach must quantify the space into 3D grids, the

volumetric representation suffers from quantization loss. Last but not least, as the

grid resolution grows, the complexity increases at least cubically, resulting in finer

structures being overlooked in practice.

Geometric Form

Unlike the rasterized form, which always has a well-ordered grid, the geometric
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form’s data structure frequently has an irregular feature. The most common repre-

sentations are simplicial meshes and point clouds, among others. The polygon mesh

is a set of convex polygons, such as triangles and quadrilaterals, that is widely used

to determine an object’s profile in geometric modeling or as a computational mesh in

scientific computing. As a result, rendering and modeling with significant hardware

support prefer the polygon mesh. Dealing with an uneven mesh, on the other hand,

is never easy. For starters, polygon mesh is man-made, and constructing it can be

difficult because to the wide variety of polygons and sizes available. Furthermore,

editing polygon mesh is expensive and unintuitive, limiting the versatility with which

appropriate algorithms may be designed.

Point clouds, on either side, are significantly easier since they represent the raw out-

put data of multiple 3D sensors; no quantization, projection, or mesh construction is

required, and the information is preserved. However, because only point coordinates

are provided, any processing method must implicitly infer the link between points in

order to form the actual object, and the connection might differ even within the same

set of points.

2.2 Shape Retrieval

The quantity of 3D models generated is rising day by day as the frequency and ap-

plication areas of 3D models grow. This necessitates querying the continually devel-

oping and expanding 3D model sources. In summary, shape retrieval is the process

of creating a search engine for 3D models stored in various forms in repositories and

gathering comparable and suitable models to the model queried by these search en-

gines. There are three fundamental approaches for retrieving shapes. The first is to

do a search using a text-based query. It is trivial to make a text-based query on 3D

models tagged with annotations. However, relevant findings may not be produced in

many circumstances[3]. It also necessitates labeling all of the repository’s data. La-

beling may be both limiting and ambiguous. Latter, content-based search is described

as gathering shapes with similar properties with using features defined on 3D models

and a wide variety of features can be used as shape descriptors. Furthermore, 2D

techniques being applied in 3D shape retrieval challenges. Using 2D simple sketches,
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3D models can be mapped and thus used in shape retrieval applications [4].The last

one is defined as example-based approaches. This method brings the closest shapes

to the questioned shape by querying a given sample shape. This approach deter-

mines and evaluates the similarities between two shapes by measuring them using a

predetermined procedure. As with the content-based technique, it’s commonly calcu-

lated utilizing a global feature that may describe 3D models. Alternatively, it may be

preferable to search for a feature on the sample in the query that is able to distinguish

it from other sorts of samples in the 3D model repository. In this scenario, classifi-

cation methods such as multi-class classification utilizing machine learning and deep

learning techniques as well as approaches recommended in other domains can be used

to retrieve related shapes.

2.3 Classification

The process of assigning an object class label to a group of points is known as object

categorization. There are two challenges: determining which points belong to the

same item and determining the entity’s class. Both difficulties can be approached in

two ways.[2] The first method involves segmenting the point cloud into clusters of

points that are most likely to be associated with the same item. The clusters may then

be categorized to identify the object’s class after segmentation (object classification).

The second method provides a class label to each individual point (point-wise classi-

fication or semantic segmentation) before grouping close points with the same label.

Individual point classification is also difficult. Because data from a variety of sources

is used to classify things, classification algorithms perform effectively.

Since data from points across the whole object cluster is used, classification tech-

niques function effectively for objects. Data from a single point can be utilized for

segmentation or point-wise classification, but this is generally insufficient for good

prediction. Point-by-point categorization might be improved with more information

from nearby points. The concept of a neighborhood, as well as the procedure for

effectively selecting neighboring points, are not simple.
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2.4 Machine Learning

Machine learning is a branch of artificial intelligence concerned with the creation,

analysis, and development of algorithms and techniques that enable machines to learn

from data. It develops software that can generalize behavior based on patterns or

classifications. It has something to do with statistics, but it also has something to do

with model building approaches and statistical learning. Natural language processing,

search algorithms, medical diagnosis, bioinformatics, fraud detection and classifica-

tion are some of the domains where this sort of learning has been used.

Any intelligent system must have the ability to learn, which means that it must be

able to develop over time.

The programs employed are learning systems capable of accumulating high-level in-

formation and problem-solving strategies through the use of examples, similar to how

the human mind does it.

2.5 Deep Learning

Deep learning is a data-driven research paradigm that has exploded in significantly

in recent years, achieving considerable success in a variety of artificial intelligence

subfields. Deep learning is, at its core, a branch of machine learning that refers to a

set of issues and strategies for solving them.

Artificial intelligence is defined as systems or machines that perform various tasks

similar to human intelligence and constantly improve themselves. Since there are

systems that can learn from artificial intelligence mistakes that emerged in the 1950s,

the system is constantly improving. Machine learning, on the other hand, emerged in

the 1980s and is to process a given dataset and make predictions or classify. There are

two types of learning in machine learning algorithms: supervised and unsupervised

learning.

Supervised Learning involves using labeled datasets with inputs and expected outputs.

When training an AI using supervised learning, an input is given to it and the expected
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output is said. If the output produced by AI is incorrect, it readjusts its calculations.

This process is repeated over the dataset until the AI minimizes the error rate. An

example of supervised learning is weather-defining Artificial Intelligence. Learns to

predict the weather using historical data. These training data include inputs (pressure,

humidity, wind speed) and outputs (temperature).

Unsupervised Learning is the task of machine learning that uses datasets with no

specific structure. If it trains an AI using unsupervised learning, it allows AI to logi-

cally classify data. An example of unsupervised learning is artificial intelligence that

makes predictions for an e-commerce website. Because here it is not learned using

a labeled input and output dataset. Instead, it will create its own classification using

input data. It will tell you which type of users can buy more different items.

Deep learning became popular in the field of computer vision, particularly for image

classification tasks, and convolutional neural networks (CNN) became a household

word.

2.5.1 Artificial Neural Network

Artificial neural networks (ANNs) are computer systems developed with the aim of

automatically performing the abilities of the human brain, such as deriving new in-

formation, creating and discovering new information through learning, without any

assistance.

Artificial neural networks have emerged as a result of mathematical modeling of the

learning process by taking the human brain as an example. It mimics the structure of

biological neural networks in the brain and their ability to learn, remember and gen-

eralize. Learning process in artificial neural networks is carried out using examples.

During learning, input and output information is given and rules are set.

Artificial Neural Networks consist of many cells and these cells work simultaneously

to perform complex tasks. They have the ability to learn and can learn with differ-

ent learning algorithms. They can produce results (information) for unseen outputs.

There is unsupervised learning. They can make pattern recognition, classification

and complete the missing patterns. They have fault tolerance. They can work with
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incomplete or unclear information. In faulty conditions, they show graceful degrada-

tion. They can work in parallel and process real-time information. Artificial neural

networks are mainly used in areas such as diagnosis, classification, prediction, con-

trol, data association, data filtering and interpretation. It is necessary to compare the

properties of the networks with the properties of the problems in order to determine

which mesh is more suitable for which problem.

Unlike other algorithms, neural networks cannot be programmed directly with deep

learning. Rather, just like a child’s developing brain, they need to learn information.

Learning strategies are implemented in three ways: Supervised learning: This learn-

ing strategy is the simplest as the computer has a dataset that it goes through and the

algorithm is modified until it processes the dataset to get the desired result. Unsuper-

vised learning: This strategy is used when there is no dataset available to learn. The

neural network analyzes the dataset and tells the neural network how far the target

is. The neural network is then adjusted to increase the accuracy of the algorithm.

Reinforced learning: In this algorithm, the neural network is augmented for positive

results and the probability of negative results is low.

2.6 GAN

GAN is made up of two independent networks: a Generator and a Discriminator, as

presented by Goodfellow et al.[5]. This generator generates fictitious data samples in

an attempt to deceive the discriminator. The Discriminator, on the other hand, aims

to distinguish between real and fake samples. The discriminator and the generator

are both multilayer perceptrons that compete in the training phase. The phases are

repeated several times, and the generator and discriminator improve in their respective

responsibilities with each iteration. The Generator makes synthetic samples from

random noise (chosen from a latent space), whereas the Discriminator is a binary

classifier that determines if the input sample is real (output a scalar value 1) or fake

(output a scalar value 0). The Discriminator strives to be the finest in its field. When

the Discriminator is fed with a synthetic sample (produced by the Generator), it wants

to identify it as false, but the Generator wants to create samples that the Discriminator

recognizes as real. The Generator is, in a sense, aiming to trick the Discriminator. In
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this structure, the Generator and the Discriminator are hostile.

GANs are min-max systems in which two algorithms compete: the generator pro-

duces data, while the discriminator distinguishes between false and genuine data.

The discriminator’s goal is to decrease the discriminator error, whereas the gener-

ator’s goal is to maximize it. This is an iterative procedure that finishes when the

discriminator error, or baseline error in bi-classification, reaches equilibrium.

Generator evolves into a model that attempts to create data that is as close to genuine

data as possible. It does it by using a random latent vector basis to generate data that

is the same size as the original data and has the same values. During the training

process, it tries to learn the distribution of actual data, and as a consequence of proper

training in optimal conditions, a model is developed that can produce data suited for

the distribution of real data.

The Discriminator, on the other hand, is assigned to a separate task. The Discrimi-

nator accepts a piece of data in the dimensions of actual data as input which consists

both the genuine training data and the fake data generated by the Generator. The

Discriminator’s job is to figure out if the incoming input is legitimate training data or

fake data generated by a Generator.

2.6.1 Conditional GAN

Conditional GAN is a generative adversarial network introduced in 2014 by Univer-

sity of Montreal PhD student Mehdi Mirza and Flickr AI architect Simon Osindero.

It is a generative adversarial network in which the Generator and Discriminator are

conditioned during training using some additional information. [22] In principle, this

auxiliary data may be anything, including a class designation, a series of tags, or even

a written explanation.

The Generator learns to generate realistic instances for each label in the training

dataset, while the Discriminator learns to discriminate false example-label pairs from

actual example-label pairs during CGAN training. The Discriminator in a CGAN

does not learn to determine which class is which, like the Semi-Supervised GAN

from the previous chapter, whose Discriminator learns to separate real instances from

14



fake ones.

2.6.2 Auxiliary Classifier GAN

The fundamental GAN model’s training has been enhanced in AC-GAN. Generator

generates fake samples using random points from a latent space as input. Discrimina-

tor distinguishes between actual (dataset) and false (generated) pictures and predicts

the class label. Instead of one parameter, the generator is given two. It takes as input

random points from the latent space and a class label, then attempts to build a picture

for that class. The addition of the class label as an input makes the picture production

and classification processes reliant on it, thus the term. The training process becomes

more reliable with this Generator model, and it can be used to create pictures of a

given kind using the class label.

2.6.3 Mode Collapse

The generator may collapse to a configuration where it always generates the same

outputs throughout training. This is known as Mode Collapse and is a typical fail-

ure situation for GANs. Despite the fact that the generator may be able to fool the

discriminator, it is unable to learn to represent the complicated real-world data distri-

bution and becomes trapped in a narrow space with very little variability.

2.6.4 Wasserstein GAN

The Wasserstein Generative Adversarial Network, or Wasserstein GAN, is a gener-

ative adversarial network extension that enhances model stability and gives a loss

function that corresponds with produced picture quality. It produces more stable

training with less indications of mode collapse than original GANs, as well as in-

formative curves for debugging and finding hyperparameters. In Wasserstein, the dis-

tance between two probability distributions is measured in distance. It’s also known

as the Earth Mover’s distance, or EM distance, since it may be understood as the

least amount of energy required to move and change a mound of dirt in the shape
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of one probability distribution into the shape of another. The cost is calculated by

multiplying the amount of dirt transported by the distance traveled.

2.6.5 WGAN-GP

While the original Wasserstein GAN increases training stability, it still produces bad

samples or fails to converge in some circumstances. The fundamental problem with

WGAN is the weight clipping approach used to impose Lipschitz continuity on the

critic. To guarantee Lipschitz continuity, WGAN-GP substitutes weight clipping with

a restriction on the critic’s gradient norm. This enables for more stable network train-

ing than WGAN and only requires little hyper-parameter adjustment. WGAN-GP is

extension of Wasserstein GAN.
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CHAPTER 3

LITERATURE SEARCH

Sensors such as Kinect and LIDAR have recently made it feasible to quickly and

easily create 3D models of interior and outdoor settings. As a result, the computer

vision and robotics groups have placed a premium on retrieving useful information

from 3D models. Segmentation and classification difficulties have been addressed

as an active subject to achieve this. Segmentation is the process of grouping points

based on their properties, whereas classification is the process of assigning points to

classes. For these challenges, a variety of approaches have been presented, and Grilli

et al. [6] examine some of the more common algorithms. Edge-based [18], region

growth [18], model fitting [7] [8], hybrid approach [9], and machine learning are five

separate types.

The first method involves segmenting the point cloud into clusters of points that are

most likely to be associated with the same item. The clusters may then be categorized

to identify the object’s class after segmentation (object classification). Both segmen-

tation and object categorization are difficult with this method. On data sets with fully

divided objects. This demonstrates that segmentation is the most difficult aspect of

this method.[6]

In traditional machine learning, descriptors that are relevant to the 3D model’s prop-

erties are first selected, and then the attributes are acquired. The point cloud is split

into relevant pieces based on these characteristics. This method’s drawback is that it

is heavily reliant on descriptors and is unsuitable for complicated data [10]. Further-

more, because 3D descriptors are very high dimensional, it tends to over-fit [11].

Qi et al.[14], indicate in their study that manually designed feature development or
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selection is difficult and application-dependent. Learning techniques based on such

characteristics are confined to the capacities of those features to represent the orig-

inal data, not to the original data itself. This imposes an unnecessarily restrictive

constraint on learning algorithms.

Socher et al. [17] suggested one of the earliest uses of CNN in the construction of 3D

form descriptors. A 3D object classifier is created in this application utilizing a mix of

CNN and recurrent neural networks. In further detail, RGB-D pictures (representing

3D data) are first fed into a CNN, which extracts low-level characteristics like edges.

The features are then sent into a recurrent neural network, which is trained to learn

combinational higher level features and their relationships. This is done by translating

the input into a lower-dimensional space, which produces the shape descriptors that

are utilized for object categorization. In contrast to other approaches such as support

vector machine and random forests, they found that their quick combinatorial model

performed better.

Wu et al. [19] presented another use of DBNs on 3D data. They turned the unstruc-

tured input data into a volumetric representation to be utilized as input in their tech-

nique, rather than utilizing a view-based approach (approaches that employ 2D/2.5D

pictures as input). A convolutional DBN is used in this innovative application to

represent a 3D model as a probability distribution of binary variables on a 3D voxel

grid. Their method, 3DShapeNets, gets a 2.5D depth picture as input and constructs

a volumetric structure in which the shape distribution is learnt. It is the first use of

deep learning on 3D data. They express the shape in the form of a 3D matrix with a

size of 30x30x30. Each member of this matrix is set to 1 or 0 depending on whether

the relevant voxel was within or outside of the mesh. Following that, many tiers of

filters are convolved with the input, resulting in the computation of a 1D vector. The

weight sharing characteristic of convolution is used in their suggested design to limit

the number of parameters to be learnt; however, this structure does not include pool-

ing levels to prevent excessive uncertainty in form reconstruction. Finally, the 1D

vector is delivered to the top layer of a learning architecture, which is created as an

RBM with 4000 hidden units and includes a class label. This layer made an associa-

tive memory that learns the distribution of the binary values mentioned above. Such a

distribution is used as a global descriptor for the input shape. The proposed descriptor
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was evaluated in classification and retrieval applications.

Han et al. [20] introduced a local shape descriptor termed circle convolutional RBM,

which combined the benefits of the DBN in unsupervised learning and the advantages

of convolutional networks to propose a circle convolutional RBM. Bu et al. [21] re-

ported work that was innovative in terms of being applied to 3D meshes, but it was

hampered by the need to compute local features and use them as input to the learning

method. Han et al., on the other hand, suggest using 3D models directly as input for

a DBN method. Because of the uneven architecture of 3D models, applying convo-

lution to them is more difficult than applying it to 2D photos. Han et al. proposed

a circular convolution to solve the problem, in which a sector window is placed on

a vertex and is rotated around the vertex’s normal vector by a stride angle in a given

direction to compute the convolution. The local area is projected onto the tangent

plane perpendicular to the normal vector of the centre vertex while the convolution is

being calculated.

Su et al. [11] used a two-layer CNN system to create a 3D form descriptor from 2D

pictures in a state-of-the-art technique. Multiple 2D pictures produced from a 3D

model are used to construct the suggested descriptor [11]. A CNN hierarchy is used

to construct a compact 3D form descriptor from a series of 2D images. Each CNN at

the first level collects information from a single view input picture to produce a view

descriptor. The higher-level CNN then learns how to combine all of this data into

a single shape description. Rather than just averaging or concatenating the numer-

ous descriptors, this research use a CNN architecture to merge them. To train their

system for classification and retrieval applications, the researchers employed several

2D views of a single 3D model. When compared to ShapeNets [19], their suggested

system performs better in retrieval applications. In addition, evaluating the system for

classification applications using a single view resulted in a ShapeNets improvement.

VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection[12] de-

scribed one method for classifying objects in point clouds. The researchers used point

clouds to build voxels, which were then run through an ANN. A LIDAR is a faster

means of obtaining a point cloud. The study that conducted by Caltagirone et. al. [13]

illustrates how CNN may be used to directly identify a road using LIDAR data as in-
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put. The approach utilized here, however, does not contain any detection of moving

things in a traffic environment, such as vehicles and people, but it does demonstrate

that LIDAR data may be used in a CNN.

Hybrid systems, such as Multi-view Convolutional Neural Networks for 3D Shape

Recognition[11], have also been proposed. The goal of that article was to transform

3D point clouds into 2D pictures and train a neural network to recognize things in

those images. One disadvantage of this strategy is that it eliminates the benefits of

using 3D data in the first place. This includes tasks like point categorization, shape

completion, and scene comprehension [14], [15], all of which can help an automobile

comprehend its environment. Object identification directly from point clouds has

been the subject of a few articles. In PointNet [14], researchers trained a neural

network to recognize an item based on the raw data points gathered.

Anguelov [16] proposed that a 3D point cloud segmentation method should have three

key characteristics. To begin, the algorithm should be able to take use of a variety of

qualitatively distinct types of characteristics, such as the differences between trees and

vehicles. When the number of characteristics increases, the segmentation algorithm

should be able to automatically learn how to trade them off. Second, depending on the

information of their neighbors, a segmentation algorithm should be able to deduce the

label of points in poorly sampled regions. Third, the segmentation method should be

tailored to the 3D scanner in use, because various laser scanners create qualitatively

distinct point cloud data, and even within the same scene, they may have different

qualities.

Traditional convolutional neural networks (CNNs) are extended to accommodate data

that is supported on a graph by graph convolutional neural networks (Graph-CNNs)[33].

The fact that the support set does not always have a natural ordering and that the

graph topology is not always regular. These are two major obstacles when working

with data on graphs. As a result, Graph-CNNs offer a lot of promise for dealing with

3D point cloud data produced by sampling a manifold. In this study, Zhang et. al.

provide PointGCN, a GraphCNN for categorizing 3D point cloud data. A graph is

formed using k-nearest neighbors from a point cloud and each edge is weighted using

a Gaussian kernel in PointGCN. Chebyshev polynomials in the graph spectral domain
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are used to create convolutional filters. To capture global and local properties of the

point cloud, global pooling and multi resolution pooling are utilized.

The goal of most of these systems is to categorize aerial point clouds into meaning-

ful semantic classes, such as ground level objects, vegetation, building facades, and

building roofs, since they[34] are based on point clouds with correct semantic classes.

They used three deep learning algorithms and one machine learning algorithm to test

and evaluate various machine learning methods for classification in this study. Several

hand-crafted geometric characteristics are employed in the experiments, depending

on the dataset, and these geometric features are also used for deep learning, which is

unusual.

Anguelov [35] propose an octree grouping-based network structure for PointNet++,

named OctreeGrouping-PointNet++ (OG-PointNet++). It calculates the point density

by creating an imbalanced octree for the point cloud and grouping points based on the

density. These point groups are allocated to different layers based on their density,

then PointNet++ extracts the local characteristic of each group. The last abstract

layer yields the global feature, which is utilized for classification and segmentation.

Experiments demonstrate that it performs well in a variety of 3D tasks, including

object categorization and semantic segmentation.

Anguelov [37] offer PointAugment, a new auto-augmentation technology that opti-

mizes and augments point cloud samples automatically to enrich data variety when

training a classification network. PointAugment is a sample-aware auto-augmentation

approach for 2D pictures that uses an adversarial learning strategy to jointly optimize

an augmentor network and a classifier network, allowing the augmentor to learn to

create enhanced samples that best suit the classifier. They also build loss functions to

adopt the augmented samples based on the classifier’s learning progress and create a

learnable point augmentation function with a shape-wise transformation and a point-

wise displacement. Extensive testing has also confirmed PointAugment’s ability to

increase the performance of diverse networks in shape categorization and retrieval.

PointNet[14] takes input samples from a point cloud and outputs class labels for each

point in the input for point-wise classification (or semantic segmentation). The Point-

Net study also presents analogous designs for Object classification and Object-part
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segmentation, in addition to point-wise classification.

A 2D matrix with x number of points is used as the input for PointNet. The point

cloud data was divided into grid cells of 1 meter by 1 meter. A training sample is a

set of points in a grid cell. The number of points in a training sample is regulated to

keep the input dimensions consistent. The number of points is a free choice employ

4096 points per 1 meter by 1 meter sample for the indoor data collection S3DIS.

Qi et. al. improve the PointNet approach with PointNet++ [44] taking into consid-

eration local features. They proposed a hierarchical structure that employes PointNet

recursively on nested parts of the input.

In VoxNet[42], Maturana et. al. proposed a method integrating volumetric Occu-

pancy Grid representation with a supervised 3D Convolutional Neural Network (3D

CNN) in order to cope with large amounts of point cloud data. They trained their

proposed network on LIDAR point-cloud data, RGB-D and modelnet datasets. Thus,

they support different sources in the manner of 3D data production.

Shi et. al. [43], converts 3D shapes into a panoramic view with respect to their

principal axes in DeepPano in order to solve the 3D Shape Recognition problem.

Thus, suggested deep CNN becomes invariant to the rotation around the principle

axis for 3D shape queried. They examined their methods on the Modelnet10 and

Modelnet40 datasets.

Kumawat et al. propose a new block as an alternative to 3D Convolutional networks

in their LP-3DCNN work [45] in order to increase the learning capacity of CNN

networks and to overcome the problems caused by CNN networks such as large model

size, computational and space complexity etc. This block aims to extract feature

maps by evaluating 3D local neighborhoods. While testing their proposed method on

volumetric data, they use voxels in their networks and conducted experiments with

their method on classification task of modelnet10 and modelnet40 datasets.

Khan et. al. developed a pipeline for generative model in order to generate 3D Shapes

and that pipeline consists of sequential transformations from coarse to fine [46]. Pro-

posed method employs primitive parts as features and improves itself by adding fine

scale details. As a way of demonstrating the learning power of their proposed gener-
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ative model, they chose to run experiments using it as a feature in the classification

task.

In order to solve classification of point clouds problem, Sheng Xu et. al. proposed

new augmentation CNN at their study [47]. The suggested method inserts an aug-

mentation layer before the sampling and convolutional layers. They aims to capture

local information such as edges and contours from augmented input data before they

are sampled. Proposed method projects provided point clouds into 2D space at differ-

ent views in the augmentation phase and then creates input data as a fixed size square

images which are also normalized and smoothed.

Wang et. al. proposed a neural network module for point cloud classification and

segmentation in their work [48] named Edge Conv. It is possible to use this differ-

entiable module in existing models. In that study, where they aim to benefit from

the local neighborhood, global features also be able to be learned and some semantic

features can be revealed. Even the spirit of the PointNet lives in the proposed study,

Wang et. al. focusing on the construction of local neighborhood graph and applying

operations on the edges of those neighbor pairs. Their graph is updated after each

layer unlike graph CNNs. They evaluated their model in classification, segmentation

and semantic segmentation tasks.

Huang et. al. proposed Spatio-temporal Self-Supervised Representation method that

be able to learn scene understanding for 3D Scenes from unlabeled 3D point clouds

in [49]. They work with two 3D point cloud frames as a sequence input and applies

spatial data augmentation in order to reveal invariant representation. Their empirical

works are on different datasets and different tasks which one of them is 3D Shape

classification. They employed modelnet40 dataset for their experiments and worked

with point cloud on proposed self-supervised model.

Song et. al. proposed method for 3D point cloud classification without need of pre-

processing in their work [50]. They employed multiple 2D convolutional layers for

coordinates of points and applies max pooling layer like PointNet in order to build

global features for shape. Proposed Pointwise CNN was subject to classification task

on Modelnet10 dataset during their experiments.
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CHAPTER 4

METHODOLOGY

In order to better express the proposed methodology, we must first describe how GAN

models may be utilized as classifiers or tools for classification tasks. Vanilla GAN,

as it is known, is a machine learning method that enables the development of both

models by taking advantage of the conflict between two different networks, which

allows the data generated by the Generator to be classified as real or fake by the

Discriminator. While Discriminator specializes in detecting whether the incoming

data is real or fake, it provides better generation of fake data produced by Generator.

Thus, the Generator is refining itself to provide more realistic data after failing to

trick the evolving Discriminator. As a result of the training, we have a Generator that

capable of producing data that is closer to the real data set, and a Discriminator that

learns to distinguish between real and fake data. Discriminator, Generator, and GAN

combined loss equations are defined in Equation 4.1, respectively.

L(D) = max[log(D(x)) + log(1−D(G(z))]

L(G) = min[log(D(x)) + log(1−D(G(z))]

L(C) = min
G

max
D

[log(D(x)) + log(1−D(G(z))]

(4.1)

In fact, this Discriminator we obtained functions as a binary classifier by nature. In

other words, there is already a classification process on the basis of GAN models.

This design-based classification capability of GAN networks inspires the develop-

ment of multi-class classification versions of this method. In Conditional GAN, in

addition to Vanilla GAN, the Generator is required to generate condition-specific data

with a given condition set. Thus, the discriminator processes the fake data generated

under specified conditions together with the condition provided. The Auxiliary Clas-
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sifier GAN, on the other hand, extends and modifies this approach by using class label

information as a condition on both fake and real data produced by the Generator and

allowing the Discriminator to predict which class the sample belongs to in addition to

determining the sample’s realness or fakeness. In ACGAN, the Discriminator needs

to make classification in addition to real/fake discrimination, and these two evalua-

tions contribute to the Discriminator loss, which is tried to be minimized. This makes

the problem more challenging than vanilla GAN. Equation 4.2 shows how the Dis-

criminator loss function of ACGAN differs from the Vanilla GAN loss by splitting it

into adversarial and classification losses.

Ladv = Ex[logD(x)] + Ex̂[log(1−D(x̂))]

Lac = Ex[log p(c|x))] + Ex̂[log(1− p(c|x̂))]

LD =
Wadv ∗ Ladv +Wac ∗ Lac

Wadv +Wac

(4.2)

In addition, as the number of classes increases, it becomes more difficult for the

Generator to produce data close to the real data. M. Kang et. al. is also defining this

problem in their research and expressing early collapse problem [31]. Furthermore,

Cho et. al. proposes Conditional Activation GAN (CAGAN) method which has

multiple GANs with shared hidden layers and their integration considered as a single

GAN [32].

In ACGAN method, as specified in Equation 4.2, both adversarial and classification

loss affect the loss of the Discriminator together with certain weights and determining

these weights can be challenging. Bazrafkan et. al. propose the Versatile Auxiliary

Classifier GAN[36] to remove the classification operation from the objective of the

Discriminator and this method performs labeling with a parallel network. Figure 4.1

illustrates Vanilla GAN, CGAN, ACGAN and VACGAN, respectively.
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Figure 4.1: Network structures of known GAN models

(a): Vanilla GAN, (b): CGAN, (c): ACGAN, (d): VACGAN
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The frustration associated with training GAN models is a well-known issue and is

always a hot topic. Despite the differences in the selected network structure and

GAN type, it is possible to suffer from the mode collapse problem. TThe primer

and the most important cause of this issue lies in the design of the GAN. In the min-

max game played, either it takes too long for two different networks to try to fool

each other until they reach the Nash equilibrium level or they cannot reach that point

at all. In this circumstance, the adversarial loss defined for the model and as well

as the algorithms based on gradient descent that attempt to reduce that loss play a

significant role. Although utilizing Deep Convolutional architectures instead of MLP

layers in the generator and discriminator networks improves GAN performance, it is

insufficient on its own. This type of GAN is commonly referred to as DCGAN and

was first described by Radford et al. [38]

It is also challenging to check the output success of the Generator, which is a gen-

erative model and therefore performs unsupervised learning, and although it is cus-

tomized according to the problem, visual quality or classification accuracy is gener-

ally preferred. Even though the outcomes appear to be acceptable, outputs that do not

match the data’s overall structure and distribution may be observed and vice versa.

In order to overcome the GAN problems mentioned above, especially to avoid the

mode collapse problem, Arjovsky et. al. proposed a powerful approach named

Wassertein GAN[37]. For a more stable and robust training, they define a distance

measure called Wassterstein or Earth’s Movers Distance. Introduced this loss is ad-

dressing to solve the mode collapse problem. Instead of a binary output like real /

fake, they replace the discriminator with a network that provides a "realness/fakeness

score" and rename it as critic. Since this network becomes a critic rather than a dis-

criminator. The distance between the distribution of samples in a real dataset and the

distribution of samples generated by the generator is measured by proposed distance.

Earth Mover Distance, which is differentiable and continuous, ensures that the critic

can be trained for a longer time, while discriminator converges rapidly, thus a reli-

able gradient can be obtained during training[37]. It advises clipping the "weights of

the critic model" with each mini-batch update, in addition to using Wasserstein loss

during training. It is also proposed that the critic should be trained more than the gen-

erator, suggested 5 times, and employing the RMSprop gradient descent optimizer
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with a low learning rate is motivated. While Figure 4.2 shows the general structure of

WGAN, Equation 4.3 defines the loss for generator and critic respectively. The cost

function of WGAN is defined in Equation 4.4 where f is 1-Lipschitz function.

Figure 4.2: WGAN Network architecture
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LossG = ∇θg

1

m

m∑
i=1

[logD(x(i)) + log (D(G(z(i))]

LossC = ∇θg

1

m

m∑
i=1

log (D(G(z(i))

(4.3)

min
G

max
||f ||L≤1

E[f(x)]− E[f(x̂)] (4.4)

Even better generative performance and stable training for GANs are established with

WGAN, during the convergence, several unstable circumstances, such as exploding

and vanishing gradients, may occur. The fundamental problem with WGAN is the

weight clipping approach used to impose Lipschitz continuity on the critic. To guar-

antee Lipschitz continuity, WGAN-GP method [39] is proposed by Gulrajani et. al.

which substitutes weight clipping with a restriction on the critic’s gradient norm.

While WGAN with weight clipping approaches leading to learning simple functions,

Gradient Penalty constraint that the gradients of the critic’s output with respect to the

inputs to have unit norm. Thus, it offers a more stable training. Equation 4.5 defines

WGAN-GP cost with Px and Px̂ which are distribution of real samples and distribu-

tion of generated samples respectively. λ is coefficient which used to weighting the

penalty.

L = E
x̂∼Pg

[f(x̂)]− E
x∼Pr

[f(x)]︸ ︷︷ ︸
critic loss

+λ E
x̂∼Px̂

[(||∇x̂f(x̂)||2 − 1)2]︸ ︷︷ ︸
gradient penalty

(4.5)

All these mentioned methods are recommended for working with 2D images, and as

a result, they are aimed at producing more reasonable new images. During the train-

ing phase, the deep convolutional networks utilized in these models require a large

number of samples. Fortunately, there are numerous 2D image sets produced today

that are suitable for use in training. 3D mesh sets are more limited than 2D images,

despite the fact that their quantity is growing by the day. Because 3D convolution

layers are heavily employed, the problem to be addressed gets more complicated and

the computing cost increases as the new dimension is added to the input. In addition,

while 2D images are expressed and stored in pixels, they can also be easily processed

over pixels. In contrast, 3D meshes are held and rendered in a variety of formats, in-
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cluding the interconnections of points in 3D space, thus defining surfaces. Two points

close to each other in 3D space may not contain a connection, whereas pixels that are

adjacent to each other in 2D images may construct a big meaning. For this purpose,

similar to pixels in 2D images, 3D meshes can be expressed with voxels for ease of

data manipulation. 3D meshes can be expressed in low-resolution and sharp-edged

forms using the voxel information defined at the corners of the 3D space by dividing

it into grids. However, this is a form that differs significantly from the actual data

produced and is generally used to facilitate data processing. In this study, we propose

methods for working with point cloud datasets that may be readily extracted from

real-world data and even generated directly from various sensors, such as LIDAR,

that can currently fit in our pockets. With omitting the connection information in 3D

meshes, we define 3D meshes as nx3 data in a more lightweight way and use the x, y,

and z coordinates of the points as features where n is the sampling size chosen for the

express 3D mesh. Throughout this study, triangle point picking method was applied

for sampling from 3D mesh models and experiments were carried out with different

sampling sizes. 1

In this work, inspired by the methods described above, we propose two different

approaches for classification on the 3D Point cloud and compare our results with the

well-known study, PointNet[14]. The first method we propose includes an adapted

version of the ACGAN model designed for 2D images for point cloud classification.

We rearrange the network layers of the Discriminator and Generator models to dealing

with our problem. In the network structure that we have keep up to be faithful to the

original ACGAN topology in Figure 4.1.c, we leave the Wadv and Wac weights in

Equation 4.2 equal to each other. Latter, we propose another method to perform the

classification task which we are based on the VACGAN method, but here we replace

the vanilla GAN part with Wasserstein GAN with GP and named as VACWGAN. Our

network layer structure is being updated once again so that our technique can work

properly with the 3D Point cloud. The layers of classifier parts of both networks we

proposed have a similar approach with the PointNet study with some hyperparameter

changes. The architectural structure of the two proposed methods is given in Figure

4.3, respectively.

1 https://mathworld.wolfram.com/TrianglePointPicking.html

31



Figure 4.3: Proposed Models: (a) Modified ACGAN, (b) VACWGAN

In GAN models, the Z input is collected from the latent space to feed the Generator

and has no real meaning on its own. Using this input, the Generator tries to generate

meaningful data as close to real data as possible. If the generated data can be pro-

duced well enough, means representing the real dataset well, it undertakes the task of

data augmentation. If the relationship between the data is acceptable enough, train-

ing through viewing more data produces higher outcomes in terms of classification

success. Therefore, the classifier will generalize the data better and give more out-

standing results. We propose to apply generative models for data augmentation to

increase our classification success based on this claim. For this purpose, in this study,

we compare the results of the two methods we proposed with a bare classifier re-

flects PointNet classification spirit. We choose modified ACGAN to accomplish data

augmentation and classification together and improved its classification performance

with enhancing VACWGAN with our classifier separately.

Similar to other GAN models, it is possible to encounter mode collapse problem in

32



ACGAN models. If Discriminator can no longer update itself and gets stuck on local

minima, for example, the Generator can trick this Discriminator with generating a

small dataset as an output. Generator restricts itself to generate the data set similar

with less variation. Different methods are offered to circumvent this situation and

Liu et. al. suggest using more than one generator in their study[2]. A possible

architectural structure would be as in Figure 4.4. However, increasing the number of

generators and training them in certain conditions, in this case conditions are class

labels, is not always a feasible, scalable and applicable solution especially when the

number of classes increases. We integrate Wassterstein GAN-GP with VACGAN to

avoid a potential mode collapse problem and provide more stable training.

Besides the dataset where the original GAN solutions run, in the 3D point cloud, un-

like the features on limited grids in 2D images, the set of points scattered in space

is unordered and the sample points can be organized in any combination. Therefore,

the solution space’s resolution is substantially higher. In 2D pictures, for example,

when the 28x28x1 picture space is considered, the space of the function learned with

the convolutional layers is again stuck in a 28x28x1 space with respect to this neigh-

borhood relationship. In the 3D Point cloud, although the x, y and z coordinates of

the generated data are compressed between 0 and 1, the range of values is relatively

vast, and alternative orderings are conceivable. This makes the problem challeng-

ing. This concern makes difficult to measuring performance visually and in certain

situations, this measurement is worthless in relation to the problem at hand. While

we are actually doing data augmentation with WGAN, we naturally aim to reproduce

the data that is close to the original data set, our main goal is to expand the data set

for the classifier with generated fake data that can best reflect the distribution of the

original data set. In this regard, WGAN with GP is ideal for this task. It promises

to produce the closest data set distributionally to the data set given as input with the

help of defined gradient penalty. However, in the original work, this gradient penalty

is described for 2D images. In this study, we modify the distance measure defined in

WGAN-GP with Chamfer Distance to fit measuring the distance between 3D point

clouds. Thus, for the critic, we update the gradient penalty part in the loss objective

defined in Equation 4.5 to use Chamfer Distance. Chamfer Distance metric is contin-

uous and be expressed as in Equation 4.6, where S1 and S2 are point sets defined in
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R3.

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈S2

min
x∈S1

||x− y||22 (4.6)

The method we propose is similar in spirit to the Multiple Objective Generative Ad-

versarial Active Learning (MO-GAAL)[40] method proposed by Yezheng Liu et al.

While their work aims to use Generative models to better define the boundaries of

normal data in outlier detection, in our method, the generative model learns the dis-

tribution of the data set and produces data close to the real data, thus allowing the

classifier to generalize more effectively.

By design, the two networks in the GAN models take a long time to reach equilibrium

and the training progresses slowly. In the original WGAN-GP approach, it is recom-

mended to train the critic more than the generator. In the VACWGAN method we

recommend, we train the critic five times more than the generator, as in the original

WGAN-GP method. In addition, by training our classifier at a rate of 1/5 of the gen-

erator’s steps, we prevent it from over-fitting during long GAN network training. We

do not want fake data generated by the slow-paced GAN model to make the classifier

unstable.

Figure 4.4: Possible Multiple Generator Structure for ACGAN Networks. By multi-

plexing Generative Networks, it is possible for generators to learn target label specific

generation. Although it is not scalable, one generator can be dedicated for each label

in the target label space, theoretically.
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The structure of both Generator and Discriminator models we used during our experi-

ments to test and evaluate our first method, modified ACGAN, are given in the Figure

4.5, respectively.

The layer structures of the models of the second method which we recommend,

namely VACWGAN, are given in Figure 4.6. Note that, batch normalization lay-

ers are omitted in the critic since the correlation created between the samples in the

same batch by those layers has a bad impact on gradient penalty effectiveness.

Sample point size is given as n and k is the number of labels for classes and latent

vector dimension is expressed with L for both models. In the modified ACGAN

model, Adam is employed as a gradient optimizer in both Discriminator and Genera-

tor, whereas in the suggested VACWGAN model, the RMSprop optimizer is selected

for Generator and Critic. Adam optimizer is used by the classifier.

In order to increase the generator performance and indirectly the discriminator or

the critic performance, we take this Z input from a Gaussian distribution space with

mean 0 variance 1 as suggested in[30]. In addition, during the preprocessing step of

training, we scale the input data between -1 and 1 such that each point vector relies in

defined boundary cube without no distortion. As a result, we now have a model that

is more stable and has converged early.

Lastly, we propose to use the classifiers we have obtained as a result of these two

methods in shape retrieval applications. We offer an approach for data labeling for

point cloud data detected directly by sensors or for an effective classification for

dataset repositories currently maintained as 3D Mesh, without the need for voxeliza-

tion or any additional data processing. We make it possible to use our proposed

method for 3D mesh classification with sampling that can be done cost effectively on

3D meshes. Furthermore, we enable example-based shape retrieval from tagged data

set repositories.

In the next section, we will describe our experiments with these proposed methods

and discuss their results. We will evaluate and compare the training outcomes of

the two different GAN-based models we propose. We will explain the model-based

results of the classification task, which is our main goal. We will show whether a
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sample point size or latent vector size change has an impact on model performance.

We will share the results of the shape retrieval application, where VACWGAN classi-

fier is employed, and we will present the images of the incorrect labeling made during

the dataset labeling, together with their scores.

Figure 4.5: Proposed Modified ACGAN Structure with layers

Left: Generator, Right: Discriminator/Classifier

L: Latent vector dimension, n: Point size, k: Target Class size
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Figure 4.6: Proposed VACWGAN-GP Network Structure with layers

Left: Generator, Middle: Critic, Right: Classifier

L: Latent vector dimension, n: Point size, k: Target Class size

4.1 Evaluation of Proposed Methods

To summarize the development stages of the proposed methods, firstly, the bare net-

work which consists of Conv1D layers was chosen as the classifier, which reflects

the spirit of global feature extraction in PointNet. Furthermore, the power of gen-

erative models was used for the data augmentation method to increase the operabil-

ity with smaller data sets and to provide a better generalization. Thus, the use of

conditional GAN was recommended to provide conditional data generation and the

ACGAN model, which combines the conditional GAN and classifier in the literature,
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was preferred. This method which is originally designed to use in the classification in

2D images has been updated to accommodate 3D point clouds and layers have been

reworked. With this relatively lightweight solution produced, classification success

has been increased by utilizing the power of data augmentation. In order to overcome

potential mode collapse problems, the use of Wasserstein GAN is recommended. In

order to improve classification result the Classifier is separated from the GAN struc-

ture. The vanilla GAN in the VACGAN method in the literature was replaced with the

Wasserstein GAN. Then, Gradient Penalty section was added to Wasserstein GAN in

order to prevent problems such as Vanishing Gradients and increase the success of

classification with better data augmentation. The Chamfer Distance metric has been

integrated to the original Gradient Penalty section in order to can work with the 3D

point cloud. As a result, the more compact modified ACGAN and the more promis-

ing VACWGAN-GP models are recommended for 3D point cloud classification. It

was aimed to increase the success of classification with Data Augmentation by taking

advantage of the power of generative models.

Figure 4.7 shows encountered mode collapse problem during developing modified

ACGAN model. Whereas, Figure 4.8 and Figure 4.9 indicate unstable training en-

countered during Wasserstein GAN training without Gradient penalty.
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Figure 4.7: Mode collapse State

In GAN models, mode collapse problem is well-known and potential issue during

the training phase. Training with optimal parameters is crucial, hard to manage and

even sometimes it is impossible to get rid of. Figure shows mode collapse problem

encountered at ACGAN
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Figure 4.8: Unstable VACWGAN Training

Unstable training is potential problem in Wasserstein GAN models.
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Figure 4.9: Unstable Wasserstein GAN training - 2

Loss for generator stuck at level -1.
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CHAPTER 5

EXPERIMENTS

We tested the sufficiency of the proposed models in the 3D point cloud on Modelnet10

and Modelnet40 datasets. While developing our methods, we compared them with

our base model as well as other well known approach PointNet. We compared the

results of our test with other methods that work on the same dataset. Unless otherwise

noted, all tests were carried out on the Modelnet10 dataset since the desired data class

set is small and hence easy to explain and depict. Furthermore, the comparisons will

be significant due to the widespread use of this dataset in other well-known studies.

In addition, the point sample size n is choosen as 2048 per each mesh in the dataset

during the experiments. Nvidia GeForce RTX 3090 24Gb graphics card was utilized

to train neural networks and takes between 8 hours to a day depending on the epoch

desired. This study was coded using Python programming language and Tensorflow

and Keras v2.5 libraries were used for Neural Network training. The visualization

and rending of 3D models was done with Blender.

5.1 Datasets

5.1.1 Modelnet10

The Modelnet10 dataset contains CAD models created from the most widely used

object categories in the world. The samples were manually categorized and affected.

In this data provided by Princeton University 1, CAD models’ orientation are man-

ually aligned. It is a subset of the Modelnet40 dataset and has 10 different object

categories. In the dataset, the train and test set were separated and this split was em-
1 https://modelnet.cs.princeton.edu/
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ployed exactly as specified during the experiments. Table 5.1 provides a summary of

the modelnet10 dataset.

Table 5.1: Modelnet10 Dataset Summary

Modelnet10 Bathtub Bed Chair Desk Dresser Monitor Night Stand Sofa Table Toilet Sum

Train 106 515 889 200 200 465 200 680 392 344 3991

Test 50 100 100 86 86 100 86 100 100 100 908

Total 156 615 989 286 286 565 286 780 492 444 4899

Figure 5.1 shows five distinct models chosen at random from the data set and which

are rendered with Blender.

Figure 5.1: Randomly selected samples from Modelnet10 dataset for different cate-

gories: Bathtub, Bed, Chair, Table and Monitor. Renders are taken via Blender

5.1.2 Modelnet40

The summary of the Modelnet40 dataset, which is the expanded version of the Mod-

elnet10 dataset with 30 different new categories, is given in Table 5.2 together with

the Modelnet10 dataset. Similar to Modelnet10, this dataset is also divided into train

and test, and this seperation was used during experiments without any changes.

5.1.3 Point Cloud Samples

Figure 5.2 shows five randomly selected examples of 3D point clouds created by sam-

pling Modelnet10 data instances using the Triangle Point Picking method mentioned

above. The classes to which the samples belong are: bathtub, bed, chair, sofa and

toilet, respectively.
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Table 5.2: Datasets Summary

Dataset Modelnet10 Modelnet40

Categories 10 40

Train 3991 9843

Test 908 2468

Total 4899 12311

Figure 5.2: 3D Point Cloud Samples gathered from Modelnet10 dataset shapes. 5

meshes selected randomly from dataset and point size for each sample is 2048. Cate-

gories for point clouds are: batthub, bed, chair, sofa and toilet, respectively.

5.2 Results

In this section, we share the results of the proposed modified ACGAN and VACWGAN-

GP methods during the experiments, respectively. These contain the suggested GAN

models’ learning-related loss charts. In addition, we provide the results that we use

to assess categorization success. We also show examples from mislabeled samples by

our proposed classifier while classifying the test set. Furthermore, we are discussing

the impact of modifying the size of the latent vector or the number of sampled points

on classification performance for both methods.

5.2.1 Modified ACGAN

As mentioned above, the first proposed method, modified ACGAN, consists of one

generator and one discriminator network where the discriminator has also responsi-

ble from classification task. Figure 5.3 shows how both generator and discriminator
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losses propogate through to iteration of training. As expected, spikes with large vari-

ance formed in the early stages of training reach equilibrium by shortening towards

the end of training. This shows us that there is a healthy GAN training. As can be

observed from the graph showing the change in classification loss during the epoch

given in Figure 5.4, the loss value on fake data starts higher than the loss value in the

real data and decreases more with a higher acceleration compared to the real data.

Although the equlibrium period takes a little longer for fake data, it is seen that the

equilibrium level has been reached for both types. This shows us that fake data con-

verge to real data and generator increases classification success by producing data

close to real data. The change in classification accuracy value on both the train set

and the test set during the epochs of the training can be seen in Figure 5.5. The con-

sistent improvement in accuracy and lack of sharp spikes in both the train and the test

set during training support our statements above.

Figure 5.3: Modified ACGAN: Real Fake Loss vs Iterations
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Figure 5.4: Modified ACGAN: Classification Loss vs Epoch
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Figure 5.5: Modified ACGAN: Classification Accuracy vs Epoch

Figure 5.6 and Figure 5.7 provide plots of classification success of suggested method

modified ACGAN. When the confusion matrix is examined, it is seen that especially

the two classes are mixed with each other and most of the misclassified samples be-

long to these two classes. When the objects of these two classes are examined vi-

sually, it is seen that the night stand and dresser converge to a common cube shape

geometrically. Figure 5.8 shows some examples that were mislabeled in the test set.

In this figure, the actual class label and the estimated class label are given with prob-

abilities that define belonging to that class for each misclassification made.
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Figure 5.6: Modified ACGAN: Confusion Matrix

49



Figure 5.7: Modified ACGAN: Precision Recall Curve (PRC)
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Figure 5.8: Modified ACGAN: Misclassified eight samples from test set. Label row

for each sample indicates that real label of the sample and the value in brackets shows

the assigned probability for that class. Pred row for each sample expresses the label

assigned by classifier for that sample with probability to belonging that class

5.2.2 VACWGAN-GP

In the second proposed method, VACWGAN with GP, the GAN part of the existing

VACGAN method was replaced with Wasserstein GAN with GP, and unlike ACGAN,

the classifier network was kept separate from the GAN model. It was mentioned

that with the use of the Chamfer Distance function in the calculation of the Gradient

Penalty, the Generator model will produce fake data closer to the distribution in the

real data set and take on the task of data augmentation that will feed the classifier

with more data. Therefore, it is claimed that improved classification results should

be achieved. Figure 5.9 presents the loss graph of the GAN section of the proposed

VACWGAN-GP model. In Figure 5.10, the loss graph of the classification network

is given. Similar to the Modified ACGAN method, it is seen that as the epochs in

the training progress, the stability in the loss value for real and fake data increases
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and decreases in parallel. Due to the WGAN nature, networks establish equilibrium

in a slower but more stable manner. It is seen in Figure 5.11 that the classification

accuracy has also increased decisively. Figure 5.12 and Figure 5.13 show confusion

matrix after test set classification task and PRC plot, respectively. These figures prove

our thesis which we argue. There is no doubt that the success of classification has in-

creased compared to the other two base methods, PointNet and Modified ACGAN

(ours). In Figure 5.14, we reveal misclassified samples, similar to what we did with

the modified ACGAN method proposed. We would like to draw attention to the prob-

abilities given to the correct classes for some of these incorrectly guessed examples.

Our classifier, which comes close to correct classification, actually mislabels the data

that may be difficult to label even visually.

Figure 5.9: VACWGAN-GP: Classification Loss vs Epoch
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Figure 5.10: VACWGAN-GP: GAN Loss vs Epoch
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Figure 5.11: VACWGAN-GP: Classification Accuracy
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Figure 5.12: VACWGAN-GP: Confusion Matrix
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Figure 5.13: VACWGAN-GP: Precision Recall Curve (PRC)
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Figure 5.14: VACWGAN-GP: Misclassified eight samples from test set. Label row

for each sample indicates that real label of the sample and the value in brackets shows

the assigned probability for that class. Pred row for each sample expresses the label

assigned by classifier for that sample with probability to belonging that class

5.3 Impact of Latent Vector Dimension

During the experiments, we employed some tests that chose different sizes for latent

vector in order to observe how latent vector dimension affects model performance.

Thus, we repeated our tests with only updating the latent vector size to 50, 100, 256,

and 512 while leaving everything else the same. We would like to draw attention

to the fact that we are considering the generator network structure when choosing

the number 256 as the limit. Generator, which takes the class value as an input,

embeds this input to be the same size as the latent vector, and combines this layer

with the latent vector. We do not want the output of this layer to be larger than the

successor layer. As suggested in other studies, choosing a high latent vector size

in our experiments also had negative effects such as late convergence or failure to

converge at all. It has been observed that there is no significant change that will affect
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the classification results among other values. Figure 5.15 shows the results of these

experiments. As a result, 256 is chosen as a latent vector size throughout the tests.

Figure 5.15: The effect of the selected latent vector dimension on the classification

accuracy of the proposed method VACWGAN-GP. Choosing a large latent vector

size that is not compatible with the size of the network layers has negative impact on

classification.

5.4 Impact of Point Size

The number of points that can be sampled through 3D meshes may be subject to

some restrictions. The most crucial of these may be performance concerns, or choos-

ing high numbers for uncomplicated problems may result in overdosing. In addition,

it may not always be possible to reach the desired number of points in the data di-

rectly sampled by the sensors. Both of the models we proposed can take sampled

point size as a configuration parameter and be able to work with specified point size.

However, like with the latent vector size, it may be helpful to take into consideration
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network layer’s structure and dimension. In order to demonstrate our flexibility in

the manner of sampled point size, we repeated our tests by sampling from the data

set at various densities. We chose 128, 256, 512, 1024 and 2048 as candidate sizes.

The comparative results are shown in Figure 5.16. Our tests demonstrate that while

the number of samples goes down between these levels, the success of classification

drops by roughly 3% on average. Since difficulty of expressing the shapes with details

at 128 and below increases, drastic decreases are observed in the manner of classifi-

cation accuracy. In order to be able to make a fairer comparison with other studies,

we conducted our tests on the number of 2048 points, taking PointNet as a reference.

Figure 5.16: The effect of the selected point size on the classification accuracy of the

proposed methods. Choosing a small point size has a negative effect as it causes dif-

ficulties in expressing the shapes. During the tests, the number of points was chosen

as 2048.

59



5.5 Comparison

Evaluation metrics used in order to measure performance of classification task is

given Equation 5.1. Note that, those metrics are defined for binary classification prob-

lems and can be extended to multi class classification task with One vs Rest approach

where TP , TN , FP and FN are defined as follows:

True Positives (TP) : Number of correctly positive labeled data

True Negatives (TN) : Number of correctly negative labeled data

False Positives (FP) : Number of incorrectly positive labeled data

False Negatives (FN) : Number of incorrectly negative labeled data

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1score =
2× Precision×Recall

Precision+Recall

Accuracy =
TP + TN

TP + FP + TN + FN

(5.1)

Detailed classification reports of proposed methods is given Table 5.3. The table

shows that the two methods we propose perform quite well in classifying the dataset.

Our VACWGAN-GP method, in particular, outperforms our Modified ACGAN method

and competes with state-of-the-art researches. While the modified ACGAN method is

more inaccurate in categorizing samples belonging to Desk, Dresser and Night Stand

classes, VACWGAN-GP produces decent results. Table 5.4 compares the classifica-

tion accuracy of our methods with previous studies. The table consists of previous

studies that accept various input types. During the comparison, one should consider

this difference, which affects the way of solving the problem and the difficulty of the

solution and also compatibility to applying on possible datasets.
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Table 5.3: Classification Report for Proposed Methods

Modelnet10 Modified ACGAN VACWGAN-GP Support

Precision Recall F1-Score Precision Recall F1-Score

Bathtub (0) 0.97 0.78 0.87 0.98 0.84 0.90 50

Bed (1) 0.90 0.98 0.94 0.91 0.98 0.94 100

Chair (2) 0.94 0.89 0.91 0.96 0.98 0.97 100

Desk (3) 0.66 0.66 0.66 0.89 0.74 0.81 86

Dresser (4) 0.58 0.79 0.67 0.81 0.84 0.82 86

Monitor (5) 0.84 0.97 0.90 0.93 0.99 0.96 100

Night Stand (6) 0.88 0.42 0.57 0.82 0.77 0.80 86

Sofa (7) 0.93 0.97 0.95 0.97 0.97 0.97 100

Table (8) 0.82 0.84 0.83 0.86 0.96 0.91 100

Toilet (9) 0.96 0.93 0.94 0.99 0.95 0.97 100

Accuracy 0.83 0.91 908

Macro Avg. 0.85 0.82 0.82 0.91 0.90 0.91 908

Weighted Avg. 0.85 0.83 0.83 0.91 0.91 0.91 908
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Table 5.4: Classification Accuracy Comparison

Method Input Type
Classification Acc.

Modelnet10

Classification Acc.

Modelnet40

3DShapeNets Volume 83.5% 77%

VoxNet Volume 92% 83%

LP-3DCNN Volume 94.4% 92.1%

Primitive-GAN Volume 86.4% 92.2%

DeepPano 2D (Panoromic) 85.45% 77.63%

ACNN 2D 92.52% 89.11%

PointNet Point 77.6% 89.2%

PointNet++ Point - 90.7%

DGCNN Point - 92.2%

STRL + DGCNN Point - 93.1%

Pointwise CNN Point 87.07 -

Ours Baseline Point 70.1% 63.2%

Modified ACGAN (ours) Point 85.2% 75.4%

VACWGAN-GP (ours) Point 91.74% 81.3%

5.6 Shape Retrieval Application

In order to adapt these proposed classifiers to real life problems, we have devel-

oped a shape retrieval application where these classifiers can be used. Working as

an example-based application, it aims to bring similar shapes in the same class from

the data set labeled by this classifier by processing the query data as a point cloud. In

Figure 5.17 and Figure 5.18, we show five examples for each class that we collected

from the shape database. To implement this task, a sample for each class is randomly

selected from the test set as query data. Using this selected query data, similar shapes

are retrieved from the data set. These figures are the results of the application using

classifiers in the two methods we propose, respectively.
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Figure 5.17: Modified ACGAN: Shape Retrieval Results

For every class label, randomly selected query shapes and wrong classified examples

pointed with red squares. Each row corresponds to class labels and columns are

samples from those labels
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Figure 5.18: VACWGAN-GP: Shape Retrieval Results

For every class label, randomly selected query shapes and wrong classified examples

pointed with red squares. Each row corresponds to class labels and columns are

samples from those labels
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5.7 Missing Data

It may not always be possible to have the desired number of points for the 3D point

clouds to be queried. In particular, it is possible to encounter this situation in the data

produced by the sensors. In order to examine the behavior of the proposed methods

when applied with missing data and to show their strength, we conducted experiments

with different rates of missing data. In this context, the coordinate information of

randomly selected points from each sample in the point cloud data generated from the

test set in the modelnet10 data has been cleared. The results of the experiments with

different data reduction percentages can be accessed from the Table 5.5. Percentage

represents the number of points cleared in each point cloud sample. The results show

that both methods we propose are data loss resistant and stable.

Table 5.5: Missing Rate vs Classification Accuracy

Missing

Percentage

Classification Accuracy

ACGAN VACWGAN-GP

0% 85.2 91.74

5% 82.37 90.08

10% 82.26 90.3

20% 82.92 90.41

25% 82.48 90.52

30% 82.15 90.3

50% 81.27 90.52

75% 79.95 90.08

80% 79.18 89.97

85% 79.07 89.64

90% 75.77 87.55

95% 70.81 80.72

99% 43.61 51.43

100% 11.01 11.01
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5.8 Time and Space Complexity

Table 5.6 shows the space complexity of the models proposed. The number of the

trainable parameters in the networks in each model is stated in separate columns. Note

that, since the classifier and discriminator are integrated in the proposed ACGAN

model, the number of parameters in the Discriminator and classifier expressed with a

single cell. Space complexity is O(N) where N is point size of the samples.

Table 5.6: Space Complexity

Models
# params

Generator
Discriminator

+ Classifier
Critic Classifier

ACGAN 13.99M 0.49M - -

VACWGAN-GP 15.34M - 0.08M 0.20M

Empirical time results for both classification and shape retrieval application are given

in the Table 5.6 in seconds. Same hardware combination with training phase which

given in Section 5 is employed. First column group in the table shows the classi-

fication time on the test set of the specified dataset. While the middle column ex-

presses the duration of determining the label of a single mesh in query, the last col-

umn group states the running time of the developed shape retrieval application on the

given dataset.

66



Table 5.7: Run Time Results of Classification and Shape Retrieval Application

Time (s)
Classification on Testset Classification on

Instance

Shape Retrieval

Modelnet10 Modelnet40 Modelnet10 Modelnet40

ACGAN 0.9944 2.534 0.0010 0.4008 0.9642

VACWGAN-GP 1.1831 2.879 0.0013 0.4119 0.9868
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CHAPTER 6

CONCLUSIONS

In this thesis, we propose two different methods to classify 3D shapes. In order to

accomplish this task, we are offering to classify 3D meshes in 3D space only by their

coordinates by purging the connection information of vertexes. With this proposed

methods, we use 3D point cloud data that can even be produced from sensors. Thus,

by not using voxel-based approaches which are more distant from real-life scenar-

ios, we propose a lighter method with easier data set availability. Although there are

many 3D data produced today, it is not always possible to access the labeled ones or

it may be difficult to label them. Considering the fact that 3D shapes will increase

even more, the idea of labeling shapes becomes even more important. Taking these

two major factors into consideration, we proposed classifiers to label 3D shapes and

we preferred to use the power of generative models to make these classifiers better.

Based on the difficulty of finding labeled data and the dilemma that machine learning

techniques to be proposed to label the data still need labeled data, we set out with the

motivation to augment an already labeled small dataset with generative models. With

the help of generative models, we are able to enlarge data sets which are very similar

to the data set at hand, enabling the classifier to better model the dataset distribution

and thus make a better generalization. The first of the two methods we suggested

is modified ACGAN, which is already designed to perform the classification task of

2D images, suitable for 3D Point Clouds and employing it in labeling. Unlike 2D

images, the points in 3D point cloud data are unordered and no direct neighborhood

relationship can be defined with respect to each other. This makes this task even more

challenging. The biggest challenge here was when setting up the network layers. The

training process of GAN models, which takes a long time and can cause problematic

results, like mode collapse, depending on the situation, pushed us to improve this
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method. In a solution system where Classifier is separated from Discriminator and

formed by two separate networks, we proposed replacing the GAN model part with

Wasserstein GAN. On top of the Wasserstein GAN structure, we applied the Gradient

Penalty, which can also solve problems such as Vanishing Gradients, mode collapse

etc. However, we have replaced Gradient Penalty calculation proposed for 2D images

with the Chamfer Distance to suit the nature of the 3D point cloud problem. Thus,

by avoiding potential mode collapse problems, we have produced a model that can

enlarge the dataset with fake data that is close to the distribution of the real data.

Thus, we have proposed using the generative model as a data augmenter. With this

powerful tool we have acquired, we have further improved our classifier and achieved

our main goal. As far as we know, we have implemented such a use of Wasserstein-

GAN with Chamfer Distance Gradient penalty as a data augmenter in 3D point cloud

classification as an innovation. The methods we propose are acceptably sensitive to

the number of points selected, as long as they are compatible with the network layer

structure and comply with the physical boundaries. Furthermore, the models we pro-

pose are resistant to working with incomplete data, which means they perform better

against data sets that may be incompletely generated by sensors. As a conclusion,

while the first of the two models we recommend can be preferred with its compact

design, our second method stands out for higher performance. We also developed a

shape retrieval application that uses these proposed classifiers and used our solution

to solve real-life problems in reasonable run time.

As a continuation of this study, application areas such as repairing deformed mod-

els or completing mostly missing data samples by using the generative model we

propose, producing new shapes by combining data belonging to two different or the

same classes without getting too far from the real data set, may be interesting. Ex-

tending the classifiers we recommend to make point cloud segmentation would be a

worthwhile area to work on. With today’s changing focus, 3D models will become

more important and many problems will arise that will require generation. It should

always be kept in mind as an option, without negating the power of generative models

in this area.
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