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Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Emre Özkan
Supervisor, Electrical and Electronics Engineering

Examining Committee Members:

Prof. Dr. Çağatay Candan
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ABSTRACT

VARIATIONAL BAYES METHODS FOR RANDOM MATRIX-BASED
EXTENDED TARGET TRACKING

Tuncer, Barkın
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Emre Özkan

February 2022, 130 pages

In this thesis, we investigate two major topics; Random matrix-based models using

variational Bayes inference for extended target tracking and shape classification al-

gorithms for tracking applications. In the scope of this thesis, we have derived two

novel random matrix-based tracking algorithms. First, to represent the extent of dy-

namic objects as an ellipsoid with a time-varying orientation angle, and secondly, to

estimate the extent of the object or a group of objects with more than one ellipsoid.

In both of these solutions, we have used the variational Bayes technique to perform

approximate inference, where the Kullback-Leibler divergence between the true and

the approximate posterior is minimized by performing fixed-point iterations. The up-

date equations are easy to implement, and the algorithms can be used in real-time

tracking applications. We illustrated the performance of the methods in simulations

and experiments with real data. In extended target tracking, once the shape estimate

of an object is formed, it can naturally be utilized by high-level tasks such as classifi-

cation of the object type. Therefore, we present a naively deep neural network, which

v



consists of one input, two hidden and one output layers, to classify dynamic objects

regarding their shape estimates. In this manner, the proposed method shows superior

performance in comparison to a Bayesian classifier for simulation experiments.

Keywords: Extended Target Tracking, Object Tracking, Variational Bayes, Kalman

Filter, Machine Learning, Classification, Target Classification, Neural Networks
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ÖZ

RASLANTISAL MATRİS TABANLI GENİŞLETİLMİŞ HEDEF TAKİP
MODELLERİ İÇİN VARYASYONEL BAYES YÖNTEMLERİ

Tuncer, Barkın
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Emre Özkan

Şubat 2022, 130 sayfa

Bu tezde iki ana konu incelenmiştir; Genişletilmiş hedef takibi için varyasyonel Ba-

yes çıkarımı kullanan rastlantısal matris tabanlı modeller ve hedef takibi uygulamaları

için obje sınıflandırma algoritmaları. Bu tez kapsamında iki yeni rastlantısal matris

tabanlı hedef takibi algoritması türetilmiştir. Birincisi, dinamik nesnelerin kapsamını

zamanla değişen bir oryantasyon açısına sahip bir elipsoid olarak temsil eden bir al-

goritmadır. İkinci yaklaşımda ise, bir nesnenin veya bir grup nesnenin kapsamı birden

fazla elipsoid ile temsil edilmektedir. Bu çözümlerin her ikisinde de, yaklaşık çıka-

rımı gerçekleştirmek için varyasyonel Bayes tekniği kullanılmıştır; burada gerçek ve

yaklaşık sonsal olasılık arasındaki Kullback-Leibler ayrışmasının, sabit nokta yinele-

meleriyle en aza indirilmesi amaçlanmıştır. Güncelleme denklemlerinin uygulanması

kolaydır ve algoritmalar gerçek zamanlı izleme uygulamalarında kullanılabilir hal-

dedir. Simülasyon ve deneylerde gerçek veriler kullanılarak yöntemlerin performansı

gösterilmiştir. Genişletilmiş hedef izlemede, bir nesnenin şekil tahmini bir kez oluş-
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turulduktan sonra, nesne türünün sınıflandırılması gibi üst düzey görevler için kulla-

nılabilmektedir. Bu nedenle, dinamik nesneleri şekil tahminlerine göre sınıflandırmak

için bir girdi, iki gizli ve bir çıktı katmanından oluşan saf derin bir yapay sinir ağı al-

goritması sunulmuştur. Bu şekilde önerilen yöntemin, simülasyon deneylerinde başka

bir Bayes sınıflandırıcısına kıyasla daha üstün performans gösterdiği gözlemlenmiş-

tir.

Anahtar Kelimeler: Genişletilmiş Hedef Takibi, Obje Takibi, Varyasyonel Bayes, Kal-

man Filtresi, Makine Öğrenmesi, Sınıflandırma, Hedef Sınıflandırması, Yapay Sinir

Ağları
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Some say you have two lives, the second one begins when you realize you have only

one...

To my family, my love, my friends,

and the memory of my father...
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Is it possible to build an autonomous vehicle? Will we ever be able to experience

the joy of a vehicle driving itself from a starting point to a destination without any

interference from the driver? Today, people ask questions similar to these every day

and are curious about the answers. In fact, even if we seem to be approaching that

standard, there is still a long way to go. According to the report of the Society of

Automotive Engineers (SAE International), there are six levels of autonomous driv-

ing. The labeling of the layers starts with Level 0: No Automation. At this level, the

driving experience heavily relies on the human control of the vehicle in every aspect.

In Level 1: Driver Assistance level, the system starts to achieve simple tasks such as

steering or acceleration/deceleration based on the knowledge of the driving environ-

ment. However, the driver still needs to accomplish all remaining tasks of driving.

In Level 2: Partial Automation, as in Level 1, the system is able to steer along with

acceleration and deceleration while the human monitors the behavior. Up to Level

2, the driver is required to monitor the driving environment; however, with Level

3: Conditional Automation, we enter the autonomous driving scheme. At Level 3,

the driver is not supposed to monitor the environment yet; it is still a necessity to take

control with a notice from the system. In Level 4: High Automation, the system mon-

itors and drives in specific environments without having any inputs from the driver. If

human interference is necessary for some situations and the driver does not respond

appropriately, the system still performs well. From this level, the vehicles are started
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to be called fully autonomous. At the last level, Level 5: Full Automation, the system

can perform the driving action in all conditions without any attention from the driver.

Car manufacturing companies have been trying to exceed these levels one by one for

years. As the current state of the vehicle rises, relative to the above-mentioned levels,

the system becomes more complex, and the demand for better technology increases.

To accomplish this goal, numerous independent subsystems have to be installed and

set to work together. In this thesis, mainly, we focused on the perception branch,

where we try to observe an object and its behavior by referring the information pro-

vided by the sensor measurements. In this context, we put emphasis on two specific

tasks that are critical for perception; extended target tracking and target classification.

The first subsystem, extended target tracking, is required in order to track the state of

the objects around the environment. So that the vehicle can position and orient itself

according to the movement of the surrounding objects. The second, classification of

the objects, is needed to distinguish the objects in the environment from each other.

Both of these systems are required to have a safe driving experience.

1.2 Extended Target Tracking

In essence, target tracking is the estimation of the state of a moving object based on

remote observations of the object [2, Ch. 12]. The term target can be considered as an

object whose state is interest of us, while the term state may consist of a collection of

dynamic variables such as position, velocity, orientation, and angular velocity, which

fully describe the system [70, Ch. 1].

In order to have reliable state estimations, we need to gather information from the

target, i.e., we have to measure some quantities of the target. These variables, which

rely on the type of the sensor, might include positional information, or velocity, etc.

The data collection process is achieved via different kinds of sensors such as Light

Detection and Ranging (LiDAR) sensor, radar, and camera.

Some difficulties must be overcome to track targets accurately. First of all, in most
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of target tracking scenarios, the number of the targets is unknown. Even though this

is the case for many situations, such as autonomous driving, applications can also be

encountered where the target number is assigned to a particular value. Tracking of

sports athletes in competitions may be given as examples of such problems [84, 85].

The second difficulty is that it is not known whether the source of the measurements

gathered by the sensors is the target to be tracked. Since there is no information about

the location of the target on the sensor side, the sensor collects every data it is able

to. This behavior results in collecting clutter measurements which are measurements

that the target does not cause [22].

In such a case, even if we know which of the measurements we collect originates

from the target of interest, this time, the noise caused by the sensor or due to the

environment affects the measurement we receive in a negative way. Because of this

so-called measurement noise, a measurement could be identified as a clutter even if it

comes from the target and vice versa.

Targets can be categorized according to two attributes; first, the dimensions according

to the sensor resolution, and secondly, their distance from the sensor. Based on these

characteristics, we can make the following two definitions:

• Point target: A target that can give rise at most a single noisy measurement in a

single senso scan [22].

• Extended target: A target that can potentially generate more than one mostly

noisy measurement in a single measurement scan [22].

In modern target tracking, the resolution of the sensors and the application fields, such

as tracking of vehicles, bicycles, etc., allow us to make extended target assumptions.

Therefore, we will mainly focus on this aspect of the target tracking field. Although

extended target tracking (ETT) introduces a new challenge, the uncertainty of the

number of the measurements the target generates, it allows us to deduct some benefi-

cial properties of the target, such as the size, shape, and orientation. These estimated

characteristics of the target may positively affect tracking performance and may be

used in further purposes such as classification.
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An early approach to ETT consists of representing the target’s extent, sometimes

called the contour, as a simple shape and estimating the relevant parameters. These

simple shapes can be a line [23], a circle [6] or a rectangle [24]. In order to approxi-

mate the extent with a more complex shape, random hyper-surface models [4, 5, 90]

could be used, which assume that the measurements are generated from an unknown

random surface. A more recent proposal to the ETT problem, especially well-suited

to the star convex shapes, is to use Gaussian Process (GP) models initiated by [82].

GPs rapidly managed to attract the attention of the target tracking community, and

extensive research began to be carried out [1, 33, 43, 53]. GPs are also significantly

considered in machine learning and deep learning applications [68] since it is straight-

forward to track the analytical properties and posterior computations. In GP-based

ETT solutions, the target’s contour is described as an unknown radial function with a

GP prior. Hence, the estimated contour can be denoted as a descriptive representation

of the target, i.e., the radial function that is used to describe the target’s contour can

be utilized to classify the targets [76, 77].

Another common approach in the ETT literature is the random matrix model (RMM)

based algorithms [18, 25, 39, 42, 60, 78, 88–90], which was initiated by Koch [42]. In

the RMM based methods, the extent of the target is described by an ellipse that is

represented by an unknown semi-positive definite (SPD) matrix. The first study [42]

describes an exact inference in the cost of neglecting the measurement noise. This

model is later improved by [18] to regard the measurement noise in the measure-

ment update at the expense of exact inference. Even if the resulting update equations

in [18] are intuitive, the approximations needed are challenging to quantify theoret-

ically. In [60], the variational Bayes technique is utilized in order to calculate ap-

proximate posteriors. To account for maneuvering of the target, the earlier works on

RMM [18, 42, 60] rely on a forgetting factor which is supposed to increase the un-

certainty of the extent approximation. However, more recent works [25, 78, 88–90]

incorporate the orientation of the target as a separate random variable to estimate.

As we mentioned before, ETT algorithms naturally provide us with information about

the shape of the target. This information might be useful in further research topics,
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such as classification of targets. In the following section, we will give an introduction

to how the classification problem is handled in conjunction with ETT frameworks.

1.3 Classification of Targets

One of the many reasons employing target tracking algorithms in various areas, such

as autonomous driving, military, etc., is to use the output data in further deduc-

tions. Primitive approaches to the classification of tracked targets revolve around

discriminating the dynamic behavior, motion cues, attributes, or fingerprints of the

targets [3, 9, 20]. In one of the early works, authors of [13] proposed a joint target

tracking and classification (JTC) framework, where the joint target state-class poste-

rior density is ought to be estimated together. In [73], authors published an approach

to the JTC problem based on belief functions. A batch iterative optimization algo-

rithm that ought to minimize the Bayes risk consists of estimation and classification

errors is presented in [47], and a recursive version of this method is introduced in [49].

A recent publication [11] also governs Bayes risk to solve the extended object clas-

sification problem. In most of these methods, a multi-model filtering technique is

considered, and the classification output has a direct effect on the tracking perfor-

mance of the algorithm, i.e., cross-coupled feedback is specified between the state

and class.

On the other hand, with the recent developments in sensor systems, it is possible

to acquire reliable contour estimates from ETT algorithms. Apart from the above-

mentioned approaches, we can classify tracked targets in an online manner based on

the contours predicted by such ETT methods [76, 77] without having a direct effect

on the tracking performance. The authors in [77] solve this problem by extracting

some descriptive features from the contour estimates and feeding them to a Bayesian

classifier which also incorporates the uncertainty information hidden inside the co-

variance matrix of the contour estimate. In [76], a neural network is used to solve the

classification problem considering the features gathered from the contour estimates.
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1.4 Contribution

Contributions of this thesis can be listed as follows:

First contribution: Developed a novel random matrix model-based extended

target tracking model which also estimates the heading-

angle

Second contribution: Proposed a novel multi-ellipsoidal extended target track-

ing algorithm

Third contribution: Established a novel deep learning-based object classi-

fier on top of a Gaussian process-based extended target

tracker

In our first contribution, we proposed a novel random matrix model that describes the

extent with inverse Gamma prior distributions and denotes the heading-angle with

a Gaussian random variable. Defining the extent parameters with inverse Gamma

priors ensures the positive semi-definiteness, which is crucial in the context of random

matrix models. Since it is not possible to find a closed-form analytical expression for

the posterior, we have utilized the variational Bayes inference to approximate the

resulting posterior. We illustrated the performance of the method in simulations and

experiments with real-life data. The proposed method outperforms the state-of-the-art

methods when compared with respect to accuracy and robustness.

The second contribution includes a novel algorithm to represent a target’s extent or

a group of targets with multiple ellipses with respect to the random matrix model.

In this work, each ellipse is represented by an unknown symmetric positive-definite

random matrix. At its core, the proposed algorithm solves two challenging problems.

The first one is the data association problem caused by the numbers of ellipses and

multiple measurements. The second problem involves the non-conjugate priors and

likelihoods, which requires special algorithms to approximate the resulting posterior

distribution. We have utilized the variational Bayes method to solve the association

problem and to approximate the intractable true posterior. The demonstrations of the
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performance of the approach are done with simulations and real-life data experiments.

The results of the experiments show that the proposed method significantly improves

the computation time while achieving better kinematic and extent state estimation

performance compared to the existing approaches in the literature.

Our third contribution focuses on a different aspect of perception. In this work, we

leveraged the information that is the output of the extended target tracking algorithms

and used that data to classify the targets online. We have used a Gaussian process-

based extended target tracking algorithm since the extent estimate is descriptive. Us-

ing the output of the tracker, we have extracted and analyzed meaningful features from

the extent estimate and supplied them into a shallow deep neural network model. The

model consists of an input layer, 2 hidden layers, and a single output layer. Simula-

tions show that the proposed method outperforms the previously published Bayesian

classifier.

1.5 Thesis Outline

In this thesis, first of all, we will give a brief introduction to state estimation and

Bayesian state estimation topics in 2.1, and 2.2, respectively. Then, we will extend

this knowledge to Kalman filtering in 2.3. An essential aspect of the Kalman filters,

which is Bayesian conjugacy, will be discussed in 2.4. Later, we will explain the de-

tails of a solution, namely the variational Bayes approach, to the conjugacy problem

in Kalman filters in 2.5. Random matrix models, which is one of the most investi-

gated branches of the extended Kalman filters, are introduced in 2.6. A compressed

explanation of the neural networks is given in 2.7 as the last item for the Background

Knowledge Chapter.

In Chapters 3-5, we will go over the publications which are published or submitted

during the course of this thesis.
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CHAPTER 2

BACKGROUND

2.1 State Estimation

Fundamentally, state estimation is a technique to find unknown values of so-called

state variables by interpreting measurements affected by noise. Consider the state-

space model below.

xk = f(xk−1,wk−1) (2.1a)

yk = h(xk,vk) (2.1b)

where xk ∈ Rnx is the state vector that contains the values of state variables at time k

with the initial state x0 ∼ p(x0). The measurement vector at time k is represented by

yk ∈ Rny . The functions f(·) and h(·) are the state transition function and the mea-

surement function, respectively. In a perfect world, we would be able to estimate the

state variables directly from the measurements if we had knowledge of the true pro-

cess model. Unfortunately, in some cases, we cannot have precise information about

the actual process model, which introduces an additional challenge to the problem.

In addition to that, most measurements are affected by noise from the environment or

the sensor itself. The noise component in (2.1a), wk−1, also known as white process

noise, presents our lack of knowledge about the system model. If process noise level

is considerably high, we cannot trust our state transition estimation. On the other

hand, vk denotes the white measurement noise. As for process noise, if measurement

noise is significant, we cannot put our trust in measurements. In target tracking prob-

lems that we will cover in this thesis, we assume that the distribution of wk ∼ p(wk)
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and vk ∼ p(vk) are known, and they are independent of the state xk. Based on this

information, our aim is to find the posterior density of the state p(xk|Y1:k) based on

the measurements collected up to time k, Y1:k , {y1,y2, . . . ,yk}.

2.2 Recursive Bayesian State Estimation

In Bayesian state estimation, the posterior distribution is inferred by the prior and

likelihood distributions using the Bayes rule (2.2), where x and θ are state vector and

the parameters, respectively. In most of the target tracking applications, however,

the model is an online dynamic system. For this reason, it is desirable to handle the

problem with a recursive solution, in which new information is collected in a timely

manner and to take into account the past information. To achieve this, with an initial

state vector distribution p(x0), we follow the scheme in (2.3).

p(x|θ) ∝ p(x)× p(θ|x), (2.2a)

posterior ∝ prior × likelihood. (2.2b)

. . .
correction−−−−−→ p(xk−1|Y1:k−1)

prediction−−−−−→ p(xk|Y1:k−1)
correction−−−−−→ p(xk|Y1:k)

prediction−−−−−→ . . .

(2.3)

where p(xk|Y1:k−1) and p(xk|Y1:k) denote the predicted state density and posterior

state density, respectively. Note that the one-step Markov property is assumed here,

i.e., the current state depends only on the state of the previous time step. Between

each successful cycle, we collect new measurements, Yk−1:k from the sensor.

2.2.1 Prediction Update

In the prediction update, our goal is to compute the sufficient statistics of the pre-

dictive density by propagating the posterior density of the previous time step in time

(2.4).

p(xk−1|Y1:k−1)
prediction−−−−−→ p(xk|Y1:k−1) (2.4)

10



This is calculated with the well-known Chapman-Kolmogorov equation (2.5), which

essentially governs the law of total probability and Markov property to relate joint

probability density functions (PDFs) [64].

p(xk|Y1:k−1) =

∫
p(xk|xk−1)p(xk−1|Y1:k−1)dxk−1, (2.5)

In general, it is not straightforward to solve this equation and obtain a compact ana-

lytical form. However, under some assumptions, it is possible to obtain expressions

regarding the propagation of sufficient statistics of the predictive distribution.

2.2.2 Measurement Update

If any measurements are obtained, we can utilize these measurements to gain further

information about the states and combine it with the predicted density. This process

is called the measurement update or correction.

p(xk|Y1:k−1)
correction−−−−−→ p(xk|Y1:k) (2.6)

Given all measurements up to time k, we can calculate the posterior density of the

state variables by the well-known Bayes rule.

p(xk|Y1:k) =
p(xk|Y1:k−1)p(yk|xk)

p(yk|Y1:k−1)
, (2.7)

p(yk|Y1:k−1) =

∫
p(yk|xk)p(xk|Y1:k−1)dxk (2.8)

where p(xk|Y1:k−1) is the predicted state density acquired from the prediction up-

date, and p(yk|xk) denotes the measurement likelihood density. The term in the de-

nominator, p(yk|Y1:k−1), is independent of the state vector xk and designated as the

predictive likelihood distribution.

As in the prediction update, it might become a challenge to calculate the posterior

distribution based on the PDFs. To compute the prediction and measurement update,

there are several compact analytical formulas under certain assumptions. Some of the

most well-known and used assumptions are gathered under the name Kalman filter,

which will be explained next.
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2.3 Kalman Filtering

The Kalman filter (KF) has been widely used in both industry and academia since its

first publication in the 1960s [37] to the present day. In essence, KF is the optimal

solution to the filtering problem given in the system (2.1) under linear and Gaussian

assumptions. In other words, the state transition function f(·) and the measurement

function h(·) are assumed to be linear in the state vector, and the noise terms are

assumed to have zero mean Gaussian distribution. Therefore, the state space system

in (2.1) simplifies to the system below.

xk = Fxk−1 + wk−1 (2.9a)

yk = Hxk + vk (2.9b)

where F ∈ Rnx×nx and H ∈ Rny×nx are the state transition and measurement matri-

ces, respectively. The process noise is a white Gaussian noise wk−1 ∼ N (0,Q). The

measurement noise has also a white Gaussian distribution vk ∼ N (0,R).

In this manner, the prior distribution of the state vector at time k = 0 is assumed

to follow a Gaussian distribution x0 ∼ N (m0,P0). In the prediction update, the

sufficient statistics of the random state variables are propagated in time concerning

the equation in (2.9a). The resulting predictive distribution is then updated according

to the measurement equation in (2.9b).

Assume that we have the following prior and likelihood densities, respectively.

p(xk−1|k−1|Y0:k−1) = N (xk−1|k−1; mk−1|k−1,Pk−1|k−1) (2.10a)

p(xk|k−1|Y0:k−1) = N (xk|k−1; mk|k−1,Pk|k−1) (2.10b)

The KF equations which are calculated based on (2.5), (2.7), and equations above are

given below. Note that, in the sequel, the predicted and posterior statistics will have

k|k−1 and k|k as subscripts, respectively.

• Prediction Update Equations:
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mk|k−1 = Fmk−1|k−1, (2.11a)

Pk|k−1 = Fmk−1|k−1F
T + Q. (2.11b)

• Measurement Update Equations:

Sk = HPk|k−1H
T + R, (2.12a)

Kk = Pk|k−1H
TS−1k , (2.12b)

mk|k = mk|k−1 + Kk(yk −Hmk|k−1), (2.12c)

Pk|k = Pk|k−1 −KkHPk|k−1. (2.12d)

In the first two equations of (2.12), the calculated variables are called innovation

matrix Sk, and the Kalman gain Kk. Based on the equations given in (2.11) and

(2.12), we can estimate the state variables recursively.

2.4 Bayesian Conjugacy

With the Kalman filter, we achieved our goal and obtained some compact formulas for

Gaussian distributed densities. In the Bayesian approach, the posterior distribution is

proportional to the product of the prior distribution and the likelihood function (2.2).

In most applications, the posterior and prior distributions are desired to be in the same

probability distribution family. If this is satisfied, the prior is then called the conjugate

prior for the likelihood function [56]. In the KF, since we are performing linear

operations with Gaussian distributions, our posterior distribution is also a Gaussian

distribution. This property of the Gaussian distributions is named self-conjugacy.

There are various conjugate pairs in the literature [56]. In this thesis, in addition to

the Gaussian self-conjugacy, we will focus on;

• The conjugacy is defined by the inverse-Wishart (IW) distribution for the posi-

tive semi-definite covariance matrix of a multivariate Gaussian distribution.
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• The conjugacy is defined by the inverse-Gamma (IG) distribution for the posi-

tive variance of a Gaussian distribution.

In the RMM based ETT, literature researchers take advantage of these utilities in order

to define appropriate distributions for the extent of the target.

2.5 Variational Bayes Approach

In most probabilistic approaches, a posterior density is required to be calculated.

However, in some cases, it might not be feasible to achieve that. In these situations,

one has to approximate the posterior density rather than calculating exactly. In this

manner, a distance metric between the true posterior density, p(·), and the approxi-

mation, q(·), has to be defined and minimized in order to achieve a desirable result. A

possible distance metric to use is the Kullback-Leibler (KL) divergence 2.13. In this

thesis, we utilized the variational Bayes approach [8, Ch. 10], which incorporates a

recursive solution to the optimization problem by minimizing the KL divergence to

find the optimal approximate density in a specified family of distributionsM.

q∗(·) = argmin
q(·)∈M

KL
(
q(·)||p(·)

)
= argmin

q(·)∈M

∫
q(·) log

[
q(·)
p(·)

]
(2.13)

The KL divergence formula is analyzed below for two exemplary probability distri-

butions.

KL
(
q(z)||p(z|x)

)
=

∫
z

q(z) log

[
q(z)

p(z|x)

]
dz

=

∫
z

[q(z) log q(z)]dz −
∫
z

[q(z) log p(z|x)]dz

= Eq[log q(z)]− Eq[log p(z|x)]

= Eq[log q(z)]− Eq[log

[
p(x, z)

p(x)

]
]

= Eq[log q(z)]− Eq[log p(x, z)] + Eq[log p(x)]

= Eq[log q(z)]− Eq[log p(x, z)] + log p(x) (2.14)
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where p(z|x), and q(z) are the posterior distribution, and the approximation, respec-

tively. Since the KL divergence includes a term log p(x) which is not related with

q(·), it is not tractable. However, since log p(x) is a constant we can optimize the KL

divergence without considering it. Note that, KL divergence is not symmetric, i.e.,

KL
(
q(z)||p(z|x)

)
6= KL

(
p(z|x)||q(z)

)
. One can verify this property by inspecting

the terms in 2.14.

2.5.1 Factorized Distributions

Factorized distributions are frequently utilized to solve the variational Bayes prob-

lem [8, Ch. 10]. It also corresponds to the approximation framework called mean

field theory in physics [65].

First of all, we reckon a set of the latent variables Z which consists of individual

elements indicated by zi where each probability distribution could be in any type and

i = 1, . . . , N . The major assumption in this approach is

q(Z) =
N∏
i=1

qi(zi). (2.15)

Now that we stated our assumption, it is required to find the distribution set which

minimizes the KL divergence. Let’s suppose that our observed variables are described

by X = x1, x2, . . . , xN The KL divergence equation will be as following.

KL
(
q(Z)||p(Z|X )

)
= Eq[log q(Z)]− Eq[log p(X ,Z)] + log p(X )

= L(q(Z)) + log p(X ) (2.16)

log p(X ) = L(q(Z)) + KL
(
q(Z)||p(Z|X )

)
(2.17)

where L(q(Z)) = Eq[log q(Z)]−Eq[log p(X ,Z)]. Note that, the term L(q(Z)) acts

as a lower limit in (2.17) when the KL divergence goes to zero. Hence, L(q(Z)) is

described as evidence lower band (2.18).

log p(X ) = L(q(Z)) + KL
(
q(Z)||p(Z|X )

)
log p(X ) ≥ L(q(Z)) (2.18)
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In this context, minimizing KL divergence equals to maximizing the evidence lower

band.

q∗(Z) = argmin
q(·)∈M

KL
(
q(Z)||p(Z|X )

)
= argmax

q(·)∈M
L(q(Z))

= argmax
q(·)∈M

[
Eq[log q(Z)]− Eq[log p(X ,Z)]

]
(2.19)

From now on, we need to find the particular set of distributions q∗(Z), which will

maximize the evidence lower band. We achieve this by optimizing each distribution

individually with respect to the other distributions in the set. The derivation of a

single component q∗j (zj) is given below.

L(q) =

∫ ∏
i

qi(zi)

{
log p(X ,Z)−

∑
i

log qi(zi)

}
dZ

=

∫
qj(zj)

{∫
log p(X ,Z)

∏
i 6=j

qi(zi) dZ i

}
dZj −

∫
qj(zj) log qj(zj) dZj + c

=

∫
qj(zj) log p̂ (X ,Zj) dZj −

∫
qj(zj) log qj(zj) dZj + c

=

∫
qj(zj)

log p̂ (X ,Zj)

log qj(zj)
dZj + c

= −KL
(
q(Z)||p̂ (X ,Zj)

)
(2.20)

where

log p̂ (X ,Zj) =

{∫
log p(X ,Z)

∏
i 6=j

qi dZ i

}
= Ei 6=j[log p(X ,Z)] + c. (2.21)

By looking at 2.20, we note that maximizing the lower bound is equal to minimizing

the KL divergence between q(Z) and p̂ (X ,Zj). Since KL divergence is a strictly

positive function, the minimum occurs when q(Z) = p̂ (X ,Zj). Therefore;

log q∗j (zj) = Ei 6=j[log p(X ,Z)] + c. (2.22)

In conclusion, the logarithm of the optimal solution for a particular distribution qj is

obtained by keeping other factors still; and evaluating the expected logarithmic value
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of the joint distribution of hidden and latent variables with respect to all elements of

Z except the one that is being optimized.

2.6 Random Matrix Model

In ETT, there are a plethora of different approaches. The earliest methods consider

a predefined shape, such as a line, a circle, or a rectangle, in order to estimate the

extent of the target. Gaussian Process (GP) based ETT algorithms, and random hyper-

surface models (RHM) algorithms are among the most used algorithms to predict the

shape of targets with more complex extents. In GP-ETT approaches [43, 82], the

target’s contour is defined as an unknown radial function with a GP prior. On the

other hand, in RHM [4,5,90] it is assumed that measurements are originated from an

unknown random surface.

The random matrix model (RMM) [18, 42,44,60], which was initiated by Koch [42],

has become one of the most researched areas of ETT in recent years. In essence,

the RMM is introduced as estimating the extent of any target with an ellipse while

tracking the kinematic properties. The ellipse is defined with an SPD matrix, X,

which can be originated from several matrix variate distributions [30]. The dimension

of X represents the dimension of object’s extent representation, i.e., if X ∈ R2×2, the

extent is represented by a 2D plot. Since X is a SPD matrix, the implied object

shape would be an ellipse. In tracking applications, where the measurements are

assumed to be Gaussian, the Gaussian and the inverse Wishart distributions specify

conjugate priors for the the unknown mean and the covariance of the measurement

density. This led the researchers to define the target’s extent with the inverse Wishart

distribution [42].

p(xk,Xk|Yk) = p(xk|Xk,Yk)p(Xk|Yk)

= N (xk; mk|k,Pk|k ⊗Xk)IW(Xk; vk|k,Vk|k) (2.23)

where the kinematic vector, xk, is defined to be a Gaussian vector with mk|k, and

Pk|k ⊗ Xk as the mean and the covariance. The sufficient statistics for the inverse

Wishart density are the degrees of freedom, vk|k, and the scale matrix Vk|k. Vi-
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(a) Samples gathered from the inverse Wishart dis-

tribution IW(X; 3,

10 3

3 2

)
(b) Measurements generated from a Gaussian dis-

tribution with unknown mean and unknown co-

variance N (y;x,X) whose conjugate prior dis-

tributions are set to N (x;

1
1

 ,

1 0

0 1

), and

IW(X; 3,

10 3

3 2

)
Figure 2.1: Inverse Wishart distribution sampling and measurements visualization

examples

sualizations of the samples taken from an exemplary inverse Wishart distribution

IW(X; 3,

10 3

3 2

) with a specific center location

3

3

, and measurements gen-

erated from a Gaussian distribution with unknown mean and unknown covariance

N (y; x,X) whose conjugate prior distributions are set to N (x;

1

1

 ,
1 0

0 1

), and

IW(X; 3,

10 3

3 2

) are depicted in Fig. 2.1a and Fig. 2.1b, respectively .

Two of the biggest challenges in RMM-based methods are that the measurement up-

date is analytically not tractable, and the resulting posterior density does not satisfy

the conjugacy. There are different approaches to solve these problems. In the pioneer

work [42], the measurement noise is neglected to achieve Bayesian conjugacy. The

follow-up research [18] incorporates the measurement noise in consideration of exact

inference. This is later improved in [60] where a Bayesian interference is utilized in

order to approximate the intractable posteriors. In these works, the changes in the

extent of the observed part of the target are handled only by a forgetting factor which
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Figure 2.2: An illustration of the RM based method proposed in [78].

increases the uncertainty of the estimate. Such an approach is not troublesome as it

tries to solve the problem by renouncing the information collected over the course of

the tracking process. More recent RMM studies [25, 78, 88–90] focus on, also, esti-

mating the heading-angle of the target. The target’s orientation is calculated in [25]

using data from the target’s trajectory. In [88–90], the approaches provide parametric

expression of the unknown extent by using an inference method that utilizes extended

Kalman filters and pseudo-measurements. The method in [78] exploits the variational

Bayes approach to estimate the heading-angle of the target. An exemplary visual for

the RM based methods [78] is depicted in Fig. 2.2.

2.7 Machine learning with Neural Networks

2.7.1 Learning Types in Machine Learning

In recent years, we have begun to see machine learning applications being used in

almost every aspect of our lives. Machine learning is actually a subtopic of the

broader field of artificial intelligence and points towards the automation of various

human-driven tasks. Machine learning algorithms are being utilized for different

purposes such as classification, estimation, recognition, translation, prediction, etc.

These methods accomplish their purposes by discovering the overt or hidden patterns

that lie in the data, i.e., by learning from the data.
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There are mainly three types of learning in the machine learning context. The first

learning method is supervised learning. In this type of learning, the model is sup-

plied with a unique label for each data instance. In other words, the scientist has to

know the correct outcome of any input in the dataset. Therefore, the model is able

to calculate the error between its predictions with the actual true value and adjust

its parameters accordingly. An example of the supervised learning problem is the

classification of vehicles based on some features such as the size of the vehicle, the

brand of the vehicle, the mileage, the tire radius, etc. In this particular example, the

training data should consist of extracted features of a large number of vehicles and

their related categories. The second type of learning is the sibling of the supervised

learning; unsupervised learning. In unsupervised learning, the model and often the

scientist does not know the correct outcome for any given input data. Most of the time,

unsupervised learning problems are considered to be more difficult than supervised

learning problems. Since the analysis and labeling of big data is often an expensive

process, unsupervised learning approaches are quite important. Some purposes of

this kind of learning can be given as finding any patterns among the data to categorize

it accordingly without requiring any external interference, feature learning for fur-

ther learning algorithms, etc. Clustering the car drivers as aggressive and calm based

on their driving behaviors could be given as a real-life example of the unsupervised

learning problem. The last but not least type of learning is reinforcement learning.

Even though reinforcement learning is similar to supervised learning, we cannot con-

sider them the same. In reinforcement learning, a feedback is supplied to the so-called

agent based on how well it performs in the given assignment. The actions of the agent

are rewarded or punished according to a reward function. The main goal for the agent

is to obtain the highest reward possible by following a trial-and-error procedure. Af-

ter each run, the probabilities of the agent’s possible actions are updated based on the

reward collected. In essence, reinforcement learning strongly relates to the process

of learning by humans and animals. An example of this similarity could be given as

how human babies learn to walk and how agents learn to walk [32]. In this thesis, we

will focus on supervised learning for neural network algorithms and discuss further

in the following sections.
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2.7.1.1 Supervised Learning

One of the most crucial features of neural networks, perhaps the one that still drives

us to utilize them, is their high-performance learning capabilities using data. Earlier,

we underlined the similarities between artificial neural networks and the biological

nervous system. Another prominent similarity would be their abilities to learn. Even

though we do not precisely understand how the learning process occurs in the brain,

our understanding of how the neural network learns is solid.

2.7.2 Biological Interpretation of Neural Networks

In the past decades, researchers have been trying to build a computational model sim-

ilar to a natural supercomputer that is our brain. Neural networks (NN) or, more

formally, artificial neural networks (ANN) can be interpreted as a model that is in-

spired by how the human brain processes information and provides an output. From a

highly simplified biological perspective, the brain consists of neurons, which are the

basic computational units that manipulate data and transmit information to synapses

through axons. The so-called output of the previous neuron is gathered from the pre-

vious neuron’s synapses by the dendrites, and the process repeats itself. The compu-

tational model of a NN mimics the behavior of the biological model, Fig. 2.3. Similar

to the biological point of view, the computational model of a NN consists of artificial

neurons where the computations take place. Each artificial neuron’s input is associ-

ated with a weight that represents synaptic strength. These weights are different from

each other and vary according to the importance of the input signal. Lastly, weighted

input data is accumulated in the neuron by summation similar to dendrites.

2.7.3 Neural Network Architecture

Similar to a brain, computational models of neural networks comprise so-called neu-

rons. In a simple neural network architecture, neurons are combined to create three

main layers: the input layer, the hidden layer, and the output layer. Nowadays, neu-
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Figure 2.3: A basic biological representation of a neuron.

rons in each layer are connected to neurons in the previous and subsequent layers;

however, there are no connections between neurons within the layer. An example of

a primary neural network is visualized in Fig. 2.4.

2.7.3.1 Input Layer

The input layer consists of a series of neurons ordered in a single layer. In essence,

it gathers the information from the data and feeds them into the network without

applying any operations. The number of neurons is determined based on the number

of features extracted from the data. For example, in Fig. 2.4, the number of features

is set to 3.

2.7.3.2 Output Layer

The output layer is a single layer of neurons containing several neurons that is equal to

the number of distinct classes. By definition, it is safe to say that there are 4 different

classes in the dataset that is being used by the network in Fig. 2.4. A non-linear

activation function that maps the output to the desired format is applied at the end of

the output layer. There are different activation functions that will be discussed in the

coming sections.
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2.7.3.3 Hidden Layer

Hidden layers are where the magic of the neural network happens. In these layers,

the processing of the data is accomplished. The number of hidden layers and the

number of neurons in each layer depends on the size of the data, the number of fea-

tures, and the structure of the data. Note that one should be careful while adjusting

the number of hidden layers and the number of neurons. As the number of hidden

layers increases, the more complex the network becomes. Having a model that is

more complex than enough would result in overfitting the data, which will yield poor

performance in the testing phase. On the other hand, a more straightforward model

might underfit the data, causing the model to underperform during the testing stage,

as in the case of overfitting. There are also algorithms whose purpose is to optimize

these hyper-parameters, i.e., the number of layers and the number of neurons [52].

The output of a single jth neuron in the (k + 1)th hidden layer is calculated as the

following equation. A visualization of the calculation is shown in Fig. 2.5.

ak+1
j = σ(bk+1

j +
n∑
i=1

wkj,ia
k
i ) (2.24)

where

• aki denotes the output of the ith neuron in layer #k,

• wkj,i is the weight value of the connection between the ith neuron in layer #k

and jth neuron in layer #(k + 1),

• bk+1
j is called bias and defined uniquely for each neuron,

• σ(·) is the selected activation function.

2.7.3.4 Learning Mechanism

In machine learning, learning is referred to the tuning of network parameters good

enough to predict an output based on an input reasonably accurate. In order to up-
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Input Layer Hidden Layers Output Layer

Figure 2.4: An example neural network model.
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Figure 2.5: A deeper look of a single neuron in a hidden layer
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date the parameters of a neural network, namely the weights and bias values, there

has to be a feedback mechanism inside the network. In the literature, this feedback

mechanism is called the backpropagation algorithm [48]. A summary of the main

principles in a single cycle of the backpropagation algorithm is stated below before a

broader explanation.

• Calculate the output of the network for a given input.

• Calculate the error, i.e., the loss, according to a loss function using the ground

truth and the predicted value for that particular input.

• Calculate the derivatives of the loss value with respect to the loss value via

chain-rule.

• Update the parameters with a product of a hyper-parameter called learning rate

and the derivation.

One of the crucial elements of backpropagation algorithm is choosing a well-suited

loss function. A loss function effectively calculates the error between the desired

output and the network’s prediction. There are a plethora of loss functions in the

literature. Some of the most used ones are given below with their use-cases.

• Mean Square Error (MSE) also known as Quadratic Loss and L2 Loss

L(θ) =
1

N

N∑
i=1

(y(i) − fθ(x(i)))2 (2.25)

MSE is calculated as the average of squared error between ground truths y(i)

and predictions of the network fθ(x(i)) which is parametrized by θ per input

x(i). The square of the error has several benefits. The first one is that predic-

tions that are further away from their desired values will be punished severely.

Secondly, since the calculated squared error is always positive, different terms

cannot cancel each other, so it does not output a meaningless result.

• Cross-Entropy Loss

L(θ) = − 1

N

N∑
i=1

C∑
j=1

y
(i)
j log(pj(fθ(x

(i)))) (2.26)
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Figure 2.6: An illustration of the backpropagation algorithm.

where pj(fθ(x(i))) is the probability of the output fθ(x(i)) to belong in class-j.

Cross-entropy losses are usually used for classification purposes.

After the error is calculated, it is then back-propagated to the network in order to

update parameters by utilizing the chain rule. A derivation of the chain rule for a

single neuron and an illustration of the backpropagation algorithm is given in Fig. 2.6.

There are different optimization techniques to update parameters. One of the most

employed algorithms is the gradient-descent approach. Gradient-descent has advan-

tages such as having low complexity and being computationally efficient. The for-

mula of the gradient-descent approach for a single parameter is depicted below.

wkj,i,updated = wkj,i − α
∂L(θ)

∂wkj,i
(2.27)

where α is the learning rate and needs to be chosen wisely. An α which is too large

would cause the parameter to oscillate, and with a too-small α the convergence rate

would be too slow.
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Tuncer, B., & Özkan, E. (2021). Random matrix based extended target tracking
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Processing, 69, 1910-1923.

Tuncer, B., Kumru, M., & Özkan, E. (2019, July). Extended Target Tracking

and Classification Using Neural Networks. In 2019 22th International Confer-

ence on Information Fusion (FUSION) (pp. 1-7). IEEE.
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CHAPTER 3

RANDOM MATRIX BASED EXTENDED TARGET TRACKING WITH

ORIENTATION: A NEW MODEL AND INFERENCE

3.1 Introduction

Extended target tracking (ETT) problem involves processing multiple measurements

that belong to a single target at each scan. In contrast to conventional tracking algo-

rithms, which rely on point target assumption, ETT algorithms aim at estimating the

target extent, which can be defined as the target-specific region that generates multi-

ple measurements. Previous studies in the ETT literature can be broadly categorized

into four groups:

• Simple shape models

• Random matrix (RM) based models

• Random hyper-surface (RHS) based models

• Mixture models

A simple approach to ETT involves assuming a predefined shape for the extent/con-

tour of the object such as a circle, a rectangle, or a line [6,23,24]. The most common

approaches in the literature utilize RM models, where the target extent is represented

by an ellipse [18,42,44,60]. Alternatively, RHS models are suggested in [4,5]. More

recently, Gaussian Process (GP) based models are proposed for extended target track-

ing [43, 63, 82]. Another fold of studies focuses on modeling the target extent with

multiple ellipses [21, 34, 40, 45].
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RM models represent the elliptical extent of a target by an unknown positive semi-

definite matrix (PSDM). In the Bayesian framework, inverse-Wishart (IW) distribu-

tion defines a conjugate prior for PSDMs. In RM based ETT models, the overall

target state is composed of a Gaussian kinematic state vector and an IW distributed

extent matrix. Several algorithms are proposed to approximate or compute the poste-

rior of this augmented state. In [42], exact inference is performed by neglecting the

measurement noise and exploiting the resulting conjugacy. This model is restrictive

in the sense that the kinematic state vector has to be composed of the target’s position

and higher-order spatial components such as velocity and acceleration. Koch’s RM

model is later improved in [18] to account for the measurement noise in the updates

at the expense of exact inference. The update equations in [18] are intuitive, but the

approximations are difficult to quantify theoretically. This problem is later addressed

by [60], where the variational Bayes technique is used to obtain approximate posteri-

ors.

None of the aforementioned RM models is capable of tracking the heading angle of an

extended target. They instead rely on a forgetting factor to forget the sufficient statis-

tics of the unknown extent matrix in time to account for the changes in the orientation

of the target. Such an approach is problematic as it aims to discard the information

collected in the past and try to explain the change in the orientation as the change

in the target shape. There are earlier studies that aim at estimating the orientation

angle of elliptical objects [25, 88–90]. In [25], the orientation of the target is esti-

mated by using the information that is obtained from the trajectory of the target. The

methods that are proposed in [88–90] express the unknown extent parametrically and

perform inference using extended Kalman filters together with pseudo-measurements.

In these approaches, an explicit nonlinear measurement equation is derived where the

kinematic and shape parameters are related to measurements by multiplicative ran-

dom variables. The inference in [88] involves second-order Taylor series approxima-

tion to approximate the pseudo-measurement covariance matrix. In [89], the authors

improved the algorithm in [88] further and eliminated the need for computing Hes-

sian matrices. Instead, they showed that the expectation and the covariance of the

pseudo-measurements could be approximated from the original measurement covari-
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ance matrix. In [90], the predicted measurement covariance matrix approximation is

calculated more precisely.

There are several drawbacks of the methods in [88–90]. The models used in these

methods involve a multiplicative noise term, which introduces additional non-linearity

in the problem, and it makes performing inference more difficult. The methods re-

quire a pseudo-measurement, which must be constructed from the original measure-

ments to update kinematic and extent states separately. The measurements collected

at one time instant must be processed sequentially. Changing the order of the mea-

surements causes minor changes in the performance [90]. The state variables corre-

sponding to the semi-axes lengths, which are positive by definition, are distributed

with Gaussian distributions whose support covers both positive and negative real line.

In some cases, it can be challenging to reflect available information into the priors

defined in [90], which may cause a collapse in the extent estimates in the subsequent

measurement updates.

In this chapter, we propose a novel RM model that defines a Gaussian prior for the

heading angle and an inverse Gamma prior for the extent parameters, which guarantee

positive semi-definiteness. It is not possible to find a closed-form expression for

the resulting posterior hence we utilize the variational Bayes technique to perform

approximate inference. The variational Bayes technique is successfully applied to

complex filtering problems in the literature to obtain approximate posteriors [35, 58–

60, 71, 74].

The contributions of this chapter can be listed as follows.

• We provide a novel solution that can track the orientation of a target and esti-

mate its extent jointly.

• The proposed solution utilizes appropriate priors, which are defined over non-

negative real numbers, for the unknown extent parameters.

• The problem formulation does not rely on multiplicative noise terms or pseudo-

measurements.
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• The measurement update can be performed by processing multiple measure-

ments as a batch. The update does not depend on the order of the measure-

ments.

• The uncertainty in the orientation and shape parameters can be expressed sepa-

rately.

• The inference is performed via the well-known variational Bayes technique.

• The update equations are easy to implement, and the algorithm can be used in

real-time tracking applications. We illustrate the performance of the method in

simulations and experiments with real data.

• The proposed method outperforms the state-of-the-art methods when compared

with respect to accuracy and robustness.

The following sections are organized as follows. In Section 3.2, we formulate the

problem of joint shape estimation and tracking of elliptical objects with time-varying

orientation. In the subsequent sections, we present the inference method. The mea-

surement update is derived in Section 3.3. Time update is given in Section 3.4. A

closer look at a single measurement update and its comparison with the state-of-the-

art extended Kalman filter (EKF) algorithm is given in Section 3.5. Lastly, the results

are presented and discussed in Section 3.6.
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Table 3.1: Notations

• Set of real matrices of size m× n is represented with Rm×n.

• Set of symmetric positive definite and semi-definite matrices of size n × n is

represented with Sn++ and Sn+, respectively.

• N (x;µ,Σ) represents the multivariate Gaussian distributions with mean vector

µ ∈ Rnx and covariance matrix Σ ∈ Snx++,

• IG(σ;α, β) represents the inverse Gamma distribution over the scalar σ ∈ R+

with shape and scale parameters α ∈ R+ and β ∈ R+ respectively,

IG(σ;α, β) =
βα

Γ(α)
σ−α−1 exp

(
−β
σ

)
,

• The number of measurements at time k is represented by mk ∈ Z+.

• For given measurement number of mk, Yk represents the measurement set

{y1
k, . . . ,y

mk
k } at time k.

• For any number a ∈ Z+, Zk represents the variable set {z1
k, . . . , z

a
k} at time k.

• rk represent the vector [r1k, . . . , r
a
k]
T with size a ∈ Z+.

• KL denotes the Kullback-Leibler divergence between two distributions q(x)

and p(x),

KL
(
q(x)||p(x)

)
,
∫
q(x) log

(
q(x)

p(x)

)
dx.

• det(A) denotes the determinant of matrix A.

33



Table 3.1: Notations (continued)

• Tr
[
A
]

=
∑n

i=1 aii where aii is the ith diagonal element of A ∈ Rn×n.

• Ep denotes the expectation operator, and p emphasizes the underlying probabil-

ity distribution(s).

• diag(a1, a2, . . . , an) returns the diagonal matrix whose diagonal elements are

a1, a2, . . . , an.

• blkdiag(A1,A2, . . . ,AN) returns the block diagonal square matrix whose

main-diagonal blocks are the input matrices A1,A2, . . . ,AN .

• h.o.t. stands for higher-order terms.

3.2 Problem Definition

Consider a single target from which multiple measurements are generated in a sin-

gle scan. Assume that the state of the extended target consists of the kinematic state

xk ∈ Rnx , the orientation angle θk ∈ R, and the diagonal positive definite target

extent matrix Xk ∈ Rny×ny , Xk , diag
(
σ1
k, σ

2
k, . . . , σ

ny
k

)
, where nx and ny repre-

sent the dimensions of the kinematic target state and the measurements, respectively.

Given xk,Xk and θk, the measurements generated by the target are assumed to be

independent and identically distributed,

p(yjk
∣∣xk,Xk, θk) ∼ N

(
yjk; Hxk, sTθkXkT

T
θk

+ R
)
, (3.1)

where

• yjk ∈ Rny is the jth measurement at time k,

• H ∈ Rny×nx is the measurement matrix,

• R ∈ Rny×ny is the positive definite measurement noise covariance matrix,

• s ∈ R+ is the scaling parameter,
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• Tθk ∈ Rny×ny is the rotation matrix which performs a rotation around the center

of the target by the orientation angle θk. Tθk satisfies the well known properties

of the rotation matrices such as T−1θk = TT
θk

, and det(Tθk) = 1. In 2D, it is

defined as,

Tθk ,

cos(θk) − sin(θk)

sin(θk) cos(θk)

 . (3.2)

Note that the measurement likelihood in (3.1) can be interpreted as a measurement

model with two additive Gaussian terms; one with time-varying, unknown but state-

dependent statistics, vIk(Xk, θk) ∼ N (0, sTθkXkT
T
θk

), and one with known statistics,

vIIk ∼ N (0,R).

yk = Hxk + vIk(Xk, θk) + vIIk (3.3)

The effective covariance matrix in likelihood (3.3) is unknown, time-varying, and

state-dependent, which casts the main difficulty in the ETT problem together with the

absence of conjugacy1. An illustration of the resulting extent model is depicted in

Figure 3.1. Similar elliptical models are frequently used in target tracking applica-

tions for tracking vehicles, vessels, pedestrians, animals, or groups of objects [26,29,

72, 80, 81].

In the Bayesian filtering framework, we aim at estimating the unknown variables

xk, θk, and Xk given the measurements collected up to and including time k. To

achieve this, we define appropriate priors for the unknowns and try to compute their

posteriors in a recursive manner. This is generally performed by repeating two recur-

sive steps:

• Time Update (Prediction): At any time step k, the predictive distribution

p(xk,Xk, θk|Y1:k−1) is computed according to Chapman-Kolmogorov equa-

tion by using the posterior from the previous time step k− 1, and the transition

density induced by the system dynamics.

• Measurement Update (Correction): When the new measurements Yk are

available, the posterior distribution p(xk,Xk, θk|Y1:k) is computed by using
1 A family of prior distributions is conjugate to a particular likelihood function if the posterior distribution

belongs to the same family as the prior.
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Figure 3.1: An illustration of the target extent model with ellipsoids corresponding to

the covariance matrices Xk (dashed line), TθkXkT
T
θk

(solid line) and sTθkXkT
T
θk

+R

(dotted line), respectively.

the Bayes’ rule. In this step, the predictive distribution p(xk,Xk, θk|Y1:k−1) is

used as the prior.

Unfortunately, it is not possible to obtain a closed form expression for the posterior

in our problem. Therefore, we will look for an approximate analytical solution using

a variational approximation.

Before introducing the details of this approximation, we will first define the prior

distributions of the unknown variables. The joint prior distribution of the kinematic

state, the extent, and the orientation is specified as

p(x0,X0, θ0) = N (x0; x̂0, P0)×
ny∏
i=1

IG
(
σi0;α

i
0, β

i
0

)
×N

(
θ0; θ̂0,Θ0

)
, (3.4)

where X0 , diag
(
σ1
0, σ

2
0, . . . , σ

ny
0

)
, and IG (σi0;α

i
0, β

i
0) denotes the inverse Gamma

distribution. Here, x̂0 and P0 are the prior mean and covariance matrix of the Gaussian

kinematic state vector x̂0, respectively. The prior mean and covariance matrix of the

orientation angle θ0 are denoted by θ̂0 and Θ0, respectively. Please see Table 3.1 for
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the complete list of the notations.

In the following sections, we will describe the Measurement Update and Time Update

steps of the proposed method in detail.

3.3 Measurement Update

Suppose at time k, we have the following conditional predicted density for the kine-

matic, orientation, and extent states:

p(xk,Xk, θk|Y1:k−1) = N (xk; x̂k|k−1,Pk|k−1)

×
ny∏
i=1

IG(σik|k−1;α
i
k|k−1, β

i
k|k−1)

×N
(
θk; θ̂k|k−1,Θk|k−1

)
. (3.5)

The left-hand side of the above expression is conditioned on the measurements up to

and including time instant k− 1. The predicted mean and covariance of the Gaussian

state vector is represented by x̂k|k−1 and Pk|k−1, respectively. The shape and the scale

variables for the ith diagonal element of the inverse Gamma distributed extent state

Xk are αik|k−1 and βik|k−1.

When the measurements Yk are available at time k, the posterior distribution can be

computed using Bayes’ rule

p(xk,Xk, θk|Y1:k)

=
p(Yk|xk,Xk, θk)p(xk,Xk, θk|Y1:k−1)

p(Yk|Y1:k−1)
. (3.6)

By assuming conditional independence of the measurements at time k, the measure-

ment likelihood can be factorized as

p(Yk|xk,Xk, θk) =

mk∏
j=1

p(yjk|xk,Xk, θk)

=

mk∏
j=1

N (yjk; Hxk, sTθkXkT
T
θk

+ R). (3.7)
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In the following, we will describe a variational inference based approximation method

to estimate the posterior distribution using the likelihood function in (3.7).

3.3.1 Variational Inference

An approximate analytical solution for the posterior density in (3.6) can be obtained

as a product of factorized probability density functions (PDFs) using a variational ap-

proximation. Before we present the details, we need to define additional instrumental

variables to address the absence of conjugacy caused by the additive measurement

noise covariance term R in the likelihood. We will call these variables noise-free

measurements [60], and denote them with Zk = {zjk}mkj=1. By using Zk, the mea-

surement likelihood in (3.7) can be expressed as

N (yjk; Hxk, sTθkXkT
T
θk

+ R) =∫
N (yjk;z

j
k,R)N (zjk; Hxk, sTθkXkT

T
θk

)dzjk (3.8)

for a single measurement. Note that the measurement likelihood is the marginal of

the following joint density

p(yjk, z
j
k|xk,Xk) = N (yjk; z

j
k,R)

×N (zjk; Hxk, sTθkXkT
T
θk

). (3.9)

Let us include the instrumental variable Zk in the posterior. Later, it will be marginal-

ized out to obtain the posterior of the states

p(xk,Xk, θk,Zk|Y1:k) ≈ qx(xk)qX(Xk)qθ(θk)qZ(Zk). (3.10)

Here, qZ(Zk) denotes the approximate density of the instrumental variable Zk. The

idea of variational approximation is to seek factorized densities whose product mini-

mizes the following cost function.

q̂x, q̂X , q̂θ, q̂Z = arg min
qx,qX ,qθ,qZ

KL
(
qx(xk)qX(Xk)qθ(θk)qZ(Zk)

||p(xk,Xk, θk,Zk|Y1:k)
)
. (3.11)
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The solution of the optimization problem (3.11) satisfies the following equation [8,

Ch. 10]:

log q̂φ(φk) =E\φ
[
log p(xk,Xk, θk,Zk,Yk|Y1:k−1)

]
+ c\φ (3.12)

where φ ∈ {xk,Xk, θk,Zk}, and \φ is the set of all elements except φ, e.g., E\xk will

denote expectation with respect to variables Xk, θk, Zk. The constant term with re-

spect to variable φwill be denoted by c\φ. The joint density p(xk,Xk, θk,Zk,Yk|Y1:k−1)

in (3.12) can be written explicitly as

p(xk,Xk, θk,Zk,Yk|,Y1:k−1)

=p(Yk|Zk)p(Zk|xk,Xk, θk)p(xk,Xk, θk|Y1:k−1)

=

(
mk∏
j=1

N (yjk; z
j
k,R)

)(
mk∏
j=1

N (zjk; Hxk, sTθkXkT
T
θk

)

)

×N (xk; x̂k|k−1,Pk|k−1)

ny∏
i=1

IG(σik|k−1;α
i
k|k−1, β

i
k|k−1)

×N (θk; θ̂k|k−1,Θk|k−1). (3.13)

The optimization problem (3.11) can be solved by fixed-point iterations [8, Ch. 10].

Each iteration is performed by updating only one factorized density in (3.10) while

keeping all other densities fixed to their last estimated values. The update equations

of the approximate densities in the (` + 1)th iteration will be given in the following

subsections. To simplify the notations, p
(
xk,Xk, θk,Zk,Yk|Y1:k−1) is denoted as

P k
x,X,θ,Z,Y in the sequel.

3.3.2 Calculation of q(`+1)
x (·)

Substituting the previous estimates of the factorized densities into equation (3.12)

yields

log q(`+1)
x

(
xk
)

= E\xk
[
logP k

x,X,θ,Z,Y
]

+ c\xk . (3.14)

The expectation above can be simplified as

E\xk
[
logP k

x,X,θ,Z,Y
]
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= E\xk
[
logP

(
Zk|xk,Xk, θk

)]
+ logN (xk; x̂k|k−1,Pk|k−1) + c\xk (3.15a)

=

mk∑
j=1

−0.5 Tr

[(
zjk −Hxk

)(
zjk −Hxk

)T
× E

q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
] ]

+ logN (xk; x̂k|k−1,Pk|k−1) + c\xk (3.15b)

= −0.5 Tr

[
mk

(
zk −Hxk

)(
zk −Hxk

)T
× E

q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
] ]

+ logN (xk; x̂k|k−1,Pk|k−1) + c\xk (3.15c)

= logN (zk; Hxk,
E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]−1

mk

)

+ logN (xk; x̂k|k−1,Pk|k−1) + c\xk , (3.15d)

where zjk , E
q
(`)
Z

[zjk], and zk , 1
mk

∑mk
j=1 zjk. It can be seen from (3.15d) that

q
(`+1)
x (xk) is a Gaussian PDF with mean vector x̂

(`+1)
k|k and covariance P (`+1)

k|k

q(`+1)
x (xk) = N (xk; x̂

(`+1)
k|k ,P

(`+1)
k|k ), (3.16)

where

x̂
(`+1)
k|k = P

(`+1)
k|k (P−1k|k−1x̂k|k−1

+mkH
TE

q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]
z̄k), (3.17a)

P
(`+1)
k|k = (P−1k|k−1 +mkH

TE
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]
H)−1. (3.17b)

3.3.3 Calculation of q(`+1)
X (·)

Substituting the factorized densities from the previous variational iteration into equa-

tion (3.12) yields

log q
(`+1)
X

(
Xk

)
= E\Xk

[
logP k

x,X,θ,Z,Y
]

+ c\Xk
(3.18)
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Substituting (3.13) into (3.18) and grouping the constant terms with respect to Xk

results in

E\Xk

[
logP k

x,X,θ,Z,Y
]

= E\Xk

[
logP

(
Zk|xk,Xk, θk

)]
+

ny∑
i=1

log IG(σik|k−1;α
i
k|k−1, β

i
k|k−1) + c\Xk

(3.19a)

=
−mk

2
log |sXk|

− 1

2
Tr

[ mk∑
j=1

E\Xk

[
(zjk −Hxk)(z

j
k −Hxk)

T

× (sTθkXkT
T
θk

)−1
]]

+

ny∑
i=1

log IG(σik|k−1;α
i
k|k−1, β

i
k|k−1) + c\Xk

. (3.19b)

Consequently, the approximate posterior density qX follows an inverse-Gamma dis-

tribution

q
(`+1)
X (Xk) =

ny∏
i=1

IG(σ
i,(`+1)
k|k ;α

i,(`+1)
k|k , β

i,(`+1)
k|k ), (3.20)

where

α
i,(`+1)
k|k = αik|k−1 + 0.5mk, (3.21a)

β
i,(`+1)
k|k = βik|k−1 +

1

2s

mk∑
j=1

E
q
(`)
x ,q

(`)
θ ,q

(`)
Z

[z̃jk(z̃
j
k)
T ]ii, (3.21b)

and z̃jk , TT
θk

(zjk −Hxk).

3.3.4 Calculation of q(`+1)
Z (·)

Substituting the factorized densities from the previous variational iteration into equa-

tion (3.12) yields

log q
(`+1)
Z

(
Zk

)
= E\Zk

[
logP k

x,X,θ,Z,Y
]

+ c\Zk
. (3.22)

The expectation above can be expressed as

E\Zk
[
logP k

x,X,θ,Z,Y
]
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= E\Zk
[
logP

(
Zk|xk,Xk, θk

)]
+

mk∑
j=1

logN (yjk; z
j
k,R) + c\Zk

(3.23a)

=

mk∑
j=1

−1

2
Tr

[
(zjk −Hxk)(z

j
k −Hxk)

T

× E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
] ]

+

mk∑
j=1

logN (yjk; z
j
k,R) + c\Zk

, (3.23b)

where xk = E
q
(`)
x

[xk]. Update equations for the approximate posterior density qZ in

the (`+ 1)th iteration are given by

q
(`+1)
Z (Zk) =

mk∏
j=1

N (zjk; ẑ
j,(`+1)
k ,Σkk

z,(`+1)), (3.24)

where

ẑ
j,(`+1)
k = Σkk

z,(`+1)

(
E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]
HE

q
(`)
x

[xk]

+ R−1yjk

)
, (3.25a)

Σkk
z,(`+1) =

(
E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]

+ R−1
)−1

. (3.25b)

3.3.5 Calculation of q(`+1)
θ (·)

The update equations for q(`+1)
θ (·) is obtained by substituting the factorized densities

from the previous variational iteration into equation (3.12)

log q
(`+1)
θ

(
θk
)

= E\θk
[
logP k

x,X,θ,Z,Y
]

+ c\θk . (3.26)

Substituting (3.13) into (3.26) and grouping the constant terms with respect to θk

results in

E\θk
[
logP k

x,X,θ,Z,Y
]

= E\θk
[
logP

(
Zk|xk,Xk, θk

)]
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+ logN (θk; θ̂k|k−1,Θk|k−1) + c\θk (3.27a)

=
−1

2

mk∑
j=1

E\θk

[
Tr
[
(zjk −Hxk)(z

j
k −Hxk)

T

× (sTθkXkT
T
θk

)−1
]]

+ logN (θk; θ̂k|k−1,Θk|k−1) + c\θk (3.27b)

Unfortunately, it is not possible to obtain an exact compact form PDF for q(`+1)
θ

(
θk
)

because of the non-linearities involved in (3.27b). To address this issue, we will make

a first order approximation of the non-linear function f(θk) , TT
θk

(zjk −Hxk) using

its Taylor series expansion around θ̂(`)k|k,

f(θk) = f(θ̂
(`)
k|k) +∇f(θ̂

(`)
k|k)(θk − θ̂

(`)
k|k) + h.o.t., (3.28)

where ∇f(θ̂
(`)
k|k) ,

∂f

∂θk

∣∣∣∣
θk=θ̂

(`)
k|k

.

By plugging in the first order approximation of f(θk) into (3.27b), the expectation

term can be written as

E\θk
[
(a− bθk)T (sX)−1(a− bθk)

]
,

where

a ,
[
f(θ̂

(`)
k|k)−∇f(θ̂

(`)
k|k)θ̂

(`)
k|k
]
, (3.29)

b , −∇f(θ̂
(`)
k|k). (3.30)

Through algebraic manipulations, q(`+1)
θ (θk) can be expressed as a Gaussian PDF with

mean vector θ̂(`+1)
k|k and covariance Θ

(`+1)
k|k ,

q
(`+1)
θ (θk) = N (θk; θ̂

(`+1)
k|k ,Θ

(`+1)
k|k ), (3.31)

where

θ̂
(`+1)
k|k = Θ

(`+1)
k|k

(
Θ−1k|k−1θ̂k|k−1 + δ

)
, (3.32a)

Θ
(`+1)
k|k =

(
Θ−1k|k−1 + ∆

)−1
, (3.32b)

δ =

mk∑
j=1

Tr

[
sX−1k (T′

θ̂
(`)
k|k

)T
(
zjk −Hxk

)(
·
)T

(T′
θ̂
(`)
k|k

)θ̂
(`)
k|k

]
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− Tr

[
sX−1k TT

θ̂
(`)
k|k

(
zjk −Hxk

)(
·
)T

(T′
θ̂
(`)
k|k

)

]
, (3.32c)

∆ =

mk∑
j=1

Tr

[
sX−1k (T′

θ̂
(`)
k|k

)T
(
zjk −Hxk

)(
·
)T

(T′
θ̂
(`)
k|k

)

]
, (3.32d)

where sX−1k = E
q
(`)
X

[(sXk)
−1],

(
zjk −Hxk

)(
·
)T

= E
q
(`)
Z ,q

(`)
x

[
(
zjk −Hxk

)(
·
)T

], and

T′
θ̂
(`)
k|k

,
∂Tθk
∂θk

∣∣∣∣
θk=θ̂

(`)
k|k

.

The derivations of δ and ∆ are given in Appendix .1.3.

By using the expressions derived so far, we can set up variational iterations to find the

approximate posteriors qx, qX , qθ, and qZ. The noise-free measurement set Zk can be

marginalized out from the joint density, and an approximation for p(xk,Xk, θk|,Y1:k)

is obtained.

3.3.6 Expectation Calculations

The relevant expectations in the variational iterations can be computed by using the

following set of equations:

E
q
(`)
x

[xk] = x̂
(`)
k|k, (3.33a)

E
q
(`)
Z

[zjk] = ẑ
j,(`)
k , (3.33b)

E
q
(`)
X

[(sXk)
−1] = diag

(
α1,`

sβ1,`
,
α2,`

sβ2,`
, . . . ,

αny ,`

sβny ,`

)
, (3.33c)

E
q
(`)
Z ,q

(`)
x

[
(
zjk −Hxk

)(
·
)T

] = HP
(`)
k|kH

T + Σkk
z,(`)

+
(
ẑ
j,(`)
k −Hx̂

(`)
k|k

)(
ẑ
j,(`)
k −Hx̂

(`)
k|k

)T
, (3.33d)

E
q
(`)
x ,q

(`)
θ ,q

(`)
Z

[z̃jk(z̃
j
k)
T ]

= E
q
(`)
θ

[
TT
θk

((
ẑ
j,(`)
k −Hx̂

(`)
k|k

)(
ẑ
j,(`)
k −Hx̂

(`)
k|k

)T
+ HP

(`)
k|kH

T
k + Σkk

z,(`)

)
Tθk

]
, (3.33e)
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where the expectation in (3.33e) can be calculated by using the identity TT
θk

= T−θk

and Lemma 1.

E
q
(`)
X

[(sXk)] =

diag

(
sβ1,`

(α1,` − 1)
,

sβ2,`

(α2,` − 1)
, . . . ,

sβny ,`

(αny ,` − 1)

)
(3.34)

The initial conditions for the quantities can be chosen as ẑ
j,(0)
k = yjk, Σ

z,(0)
k =

E
q
(0)
X

[(sXk)], x̂
(0)
k|k = x̂k|k−1, P

(0)
k|k = Pk|k−1, α(0)

k|k = αk|k−1 and β(0)
k|k = βk|k−1.

3.3.7 Calculation of E
q
(`)
X ,q

(`)
θ

[
(TθkXkT

T
θk

)−1
]

This expectation can be calculated exactly, thanks to the factorized distributions.

Lemma 1 Given

M−1 =

m11 m12

m21 m22

 ,
and q(`)θ (θk) = N (θk, θ̂

(`)
k|k,Θ

(`)
k|k), the entries of the matrix E

q
(`)
θ

[
(TθkMTT

θk
)−1
]

can

be computed as:

E
q
(`)
θ

[
(TθkMTT

θk
)−1
]
11

=
[
m11 m22 −(m12 +m21)

]
K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
, (3.35a)

E
q
(`)
θ

[
(TθkMTT

θk
)−1
]
12

=
[
m12 −m21 m11 −m22

]
K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
, (3.35b)

E
q
(`)
θ

[
(TθkMTT

θk
)−1
]
21

=
[
m21 −m12 m11 −m22

]
K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
, (3.35c)

E
q
(`)
θ

[
(TθkMTT

θk
)−1
]
22

=
[
m22 m11 m12 +m21

]
K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
, (3.35d)

where

K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
,


1 + cos(2θ̂

(`)
k|k) exp(−2Θ

(`)
k|k)

1− cos(2θ̂
(`)
k|k) exp(−2Θ

(`)
k|k)

sin(2θ̂
(`)
k|k) exp(−2Θ

(`)
k|k)

 . (3.35e)
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The proof is given in Appendix .1.4.

Corollary 1

E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]

= (1− exp(−2Θ
(`)
k|k))

Tr(E
q
(`)
X

[(sXk)
−1])

2
I2

+ exp(−2Θ
(`)
k|k)

(
T
θ̂
(`)
k|k
E
q
(`)
X

[(sXk)
−1]TT

θ̂
(`)
k|k

)
, (3.36)

where I2 is 2x2 identity matrix. This expression is obtained from Lemma 1 by exploit-

ing the fact that the matrix Xk is diagonal by definition.

A summary of the resulting iterative measurement update procedure is given in Algo-

rithm 3.1.

Algorithm 3.1 Variational Measurement Update

Given x̂k|k−1, Pk|k−1, {αik|k−1, βik|k−1}
ny
i=1, θ̂k|k−1, Θk|k−1 and Yk; calculate x̂k|k,

Pk|k, {αik|k, βik|k}
ny
i=1, θ̂k|k, Θk|k as follows.

Initialization

x̂
(0)
k|k ← x̂k|k−1, P

(0)
k|k ← Pk|k−1,

θ̂
(0)
k|k ← θ̂k|k−1, Θ

(0)
k|k ← Θ̂k|k−1,

α
i,(0)
k|k ← αik|k−1, β

i,(0)
k|k ← βik|k−1 for i = 1, . . . , ny,

z
j,(0)
k|k ← yjk for j = 1, . . . ,mk,

Σkk
z,(0) ← E

q
(0)
X

[(sXk)] using (3.34)

Iterations:

for ` = 0, . . . , `max − 1 do

Calculate the expectations in (3.33), and (3.36)

Update x̂
(`+1)
k|k , and P

(`+1)
k|k using (3.17)

Update θ̂(`+1)
k|k , and Θ

(`+1)
k|k using (3.32)

Update αi,(`+1)
k|k , and βi,(`+1)

k|k using (3.21) for i = 1, . . . , ny

Update ẑ
j,(`+1)
k , and Σkk

z,(`+1) using (3.25) for j = 1, . . . ,mk

end for

Set final estimates:
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x̂k|k = x̂
(`max)
k|k , Pk|k = P

(`max)
k|k ,

θ̂k|k = θ̂
(`max)
k|k , Θk|k = Θ

(`max)
k|k ,

αik|k = α
i,(`max)
k|k , βik|k = β

i,(`max)
k|k for i = 1, . . . , ny

3.4 Time Update

Once the measurement update is performed, the sufficient statistics of the posterior

density must be propagated in time in accordance with the target dynamics. An op-

timal time update step requires the solution to the following Chapman-Kolmogorov

equation

p(xak,Xk|Y1:k−1) =

∫
p(xak,Xk|xak−1, Xk−1)

p(xak−1, Xk−1|Y1:k−1)dx
a
k−1dXk−1, (3.37)

where xak ,
[
xTk θk

]T
. Unfortunately, it is not possible to obtain an exact com-

pact form analytical expression for most extended target tracking models. Therefore

various independence conditions are implied to perform time updates in the liter-

ature [18, 25, 42, 44]. For a detailed analysis of possible time update approaches,

interested readers can refer to [25] and the references therein.

In the random matrix framework, it is possible to assume that the dynamical models

of the kinematic state and the extent state are independent [18],

p(xk,Xk|xk−1, Xk−1) = p(xk|xk−1)p(Xk|Xk−1). (3.38)

Consequently, the time update of the kinematic state and the extent state can be de-

coupled for factorised posteriors. The time update of the kinematic state follows the

Kalman filter prediction equations if the underlying dynamics are linear. Consider

the following state space model which describes the dynamics of the augmented state

vector xak,

xak = Fxak−1 + uk, uk ∼ N (0,Q). (3.39)

The prediction density N (xak|k−1; x̂
a
k|k−1, P

a
k|k−1) is obtained by updating the suffi-

cient statistics (mean and covariance) of the Gaussian components in accordance with
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the system dynamics

x̂ak|k−1 = Fx̂ak−1|k−1, (3.40a)

P a
k|k−1 = FP a

k−1|k−1F
T + Q. (3.40b)

where Pa
k , blkdiag(Pk, Θk).

In most tracking applications, the exact dynamics of the extent state is unknown.

Even in the case where the dynamic equations of the extent states are available, the

transition density induced by the known dynamics may not lead to a prediction up-

date that results in the same family of probability distributions using (3.37). If the

dynamics of the extent state is slowly varying but unknown, it is possible to obtain

the maximum entropy prediction density of the extent states by utilizing a forgetting

factor [62, Theorem 1]. In that case, the sufficient statistics of the inverse Gamma

distribution is updated as

αik|k−1 = γkα
i
k−1|k−1, (3.41a)

βik|k−1 = γkβ
i
k−1|k−1, for i = 1, . . . , ny (3.41b)

where γ is the forgetting factor. We prefer to use the maximum entropy prediction

density in the time update. However, it is possible to perform alternative time updates

within the proposed framework.

3.5 A Closer Look to a Single Measurement Update

In this section, we investigate the proposed measurement update, here and after de-

noted as VB, in more detail and illustrate its capabilities in comparison with a state-of-

the-art extended Kalman filter (EKF) algorithm [90]. For this purpose, we initiate the

prior mean and covariance of both approaches the same; and we compare the poste-

rior distribution of the extent states. Consider the example given in Figure 3.2, where

the prior mean of the target’s location is [−20 − 20]T . The measurements are shown

with blue stars, and the posterior means of the VB and EKF updates are shown with

the solid green and red lines, respectively. The median of the true posterior, which

is computed by using 1 million Monte Carlo samples, is shown with the solid black
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Figure 3.2: A single measurement update for VB and the EKF approach. The prior

and posterior mean shape estimates are represented by green dotted and solid lines for

VB, respectively. The red dashed line indicates the prior mean shape estimate while

the red solid line depicts the posterior mean estimate for EKF approach. The VB #i

denotes the ith variational iteration shape estimate mean of the VB algorithm.

line. The mean of the extent and kinematic state distributions at the end of each VB

iteration is denoted by VB #i where #i stands for the ith variational iteration. A total

of 10 iterations are performed within the variational update. As shown in Figure 3.2,

the posterior found by the VB algorithm is closer to the true posterior than the pos-

terior computed by the EKF, thanks to the iterative nature of the VB updates. Unlike

EKF, the VB algorithm performs multiple iterations in a single update and performs

multiple linearizations during the iterations by taking all available measurements into

account. The ability to compute the posterior iteratively is the key concept to explain

the superior performance of VB in the experiments given in Section 3.6.

Lastly, we compare the average computation time of the algorithms. The simulations

for the illustrative example are run in Matlab(R) R2019b on a standard laptop with an

Intel(R) Core(TM) i7-6700HQ 2.60 GHz platform with 16 GB of RAM. We compare

naive implementations of the algorithms without exploiting any code optimization

methods. A single measurement update (with 10 iterations) and a single variational
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iteration for VB takes 2.3 × 10−3 sec and 2.1 × 10−4 sec, respectively. On the other

hand, it takes 8.6 × 10−4 sec to perform a measurement update for the EKF. The

relevant parameters of the illustrative example are given in the Appendix-.1.5.

3.6 Experimental Results

In this section, we evaluate the performance of the proposed method and compare it

with relevant elliptical object tracking algorithms in the literature. The comparison is

performed through both simulations and real data experiments. The alternative mod-

els are selected as the state-of-the-art EKF approach that is capable of tracking the

orientation of elliptical objects [90] and the widely used RM based ETT model [18].

In the sequel, we denote these algorithms as Algorithm-1 and Algorithm-2, respec-

tively. The simulation results are presented in Section 3.6.1, and the results of the

real-data experiment are given in Section 3.6.4.

3.6.1 Simulations

In the simulations, we use the Gaussian Wasserstein (GW) distance [19], [91] and

root-mean-square-error (RMSE) for performance evaluation and comparison,

GW(ma,Xa,mb,Xb)
2

, ‖ma −mb‖22︸ ︷︷ ︸
1st Term

+ Tr[Xa + Xb − 2(X
1
2
aXbX

1
2
a )

1
2 ].︸ ︷︷ ︸

2nd Term

(3.42)

Here, ma, mb and Xa, Xb stand for two different center locations and elliptic extent

matrices, respectively. The first term in (3.42) corresponds to the error in the esti-

mation of the object’s center, and the second term corresponds to the error in extent

estimation. We report both terms in (3.42) in addition to the overall GW distance to

provide insight into the estimation performance of the algorithms in detail. Further-

more, we compare the RMSE of the orientation estimations which is defined by

RMSE(θtrue, θ) =

√√√√ 1

N

N∑
k=1

(θk,true − θk)2, (3.43)
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where N denotes the number of time steps in a single run.

3.6.2 Constant Velocity Model

In the first experiment, a dynamic object is simulated, which moves according to the

nearly constant velocity model defined by the following parameters.

F =

1 T

0 1

⊗ I2, F = blkdiag(F, 1), (3.44a)

P0 = I5, x̂0 =
[
0 0 50 0 0

]T
, (3.44b)

Xtrue =

50 0

0 600

 , Q = σ2

T 3

3
T 2

2

T 2

2
T

⊗ I2, (3.44c)

Q = blkdiag(Q, σθ), R = 5× I2, (3.44d)

where T = 0.1, σ = 1, and σθ = 0.01. In this simulation, the parameters of the

motion model are fully provided to the tracking algorithms so that the error due to

model-mismatch does not affect the estimation performance. Throughout the trajec-

tory, the object generates an average of 10 measurements per scan. We investigate

two different cases separately; in the first case, the measurements follow a Gaussian

distribution, and in the second case, they follow a uniform distribution. All simula-

tion experiments were performed 100 times with different realizations of the process

noise, measurement noise, and measurement origin at each simulation. The presented

numbers are the average of these 100 Monte Carlo (MC) runs. The algorithm specific

initial shape variables for VB are set to α1,2
0 = [2 2]T and β1,2

0 = [100 100]T . The

number of variational iterations is 10.

The shape variables are initialized for Algorithm-2 as v0 = 4 and V0 = 100 × I2.

The forgetting factor is set to γ = 0.99 for both VB and Algorithm-2. To be con-

sistent with [90], we use the same notations for the parameters of Algorithm-1. The

prior mean and covariance matrix of the shape variables of Algorithm-1 are selected

to be p̂0 = [0 10 10]T and Cp
0 = diag([1, 20, 20]). The vector p̂0 consists of

[θ, l1, l2] where, θ, l1, and l2 are the orientation and the semi-axis lengths, respec-
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Table 3.2: The GW distance values for Gaussian measurements.

GW Distance

1st Term [m2]

GW Distance

2nd Term [m2]

GW

Distance [m]

Mean Std.

Algorithm-1 4.78 8.54 3.18 0.24

Algorithm-2 5.22 56.63 6.86 1.68

VB 4.49 5.27 2.85 0.23

Table 3.3: The GW distance values for uniformly distributed measurements.

GW Distance

1st Term [m2]

GW Distance

2nd Term [m2]

GW

Distance [m]

Mean Std.

Algorithm-1 1.93 6.02 2.49 0.55

Algorithm-2 2.18 58.54 6.69 1.65

VB 1.92 4.54 2.28 0.41

tively. The process noise covariance matrix for the shape variables for Algorithm-1 is

Cw
p = diag([10−2, 0.1, 0.1]). The kinematic state transition matrix for Algorithm-1

is set to Ar = F(1 : 4, 1 : 4). The initial mean of the kinematic state vector is the

same as VB, r̂0 = x̂0(1 : 4). The state transition matrix for the shape variables is

Ap = I3. The initial values of the shape and kinematic variables are selected to make

the prior means of the algorithms the same. The algorithmic specific parameters are

hand-tuned to obtain the best performance of each algorithm. We report the aver-

age GW distance and the orientation RMSE for Gaussian and uniformly distributed

measurements in Table 3.2 and Table 3.3, respectively. The proposed algorithm per-

forms better in terms of estimating the extent of the target and outperforms the other

algorithms in terms of GW distance. Additionally, VB shows a better performance in

estimating the orientation of the target.
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Table 3.4: The heading angle RMSE values for Gaussian and uniform measurements.

Gaussian

Measurements

Heading

Angle RMSE [°]

Uniform

Measurements

Heading

Angle RMSE [°]

Mean Std. Mean Std.

Algorithm-1 4.46 0.87 4.93 0.45

Algorithm-2 59.98 34.38 60.15 34.00

VB 3.93 0.41 4.00 0.43
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Figure 3.3: An example MC run of the scenario in Section 3.6.3
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3.6.3 Experimental Trajectory

This experiment involves the scenario studied in [18,44,89,90]. In this simulation, the

trajectory composed of one 45° and two 90° turns pieced together with straight paths.

The object of interest has unknown but fixed semi-axes lengths, and its orientation

varies in time. The object starts its motion from the origin with a speed of 50 km/h,

which is fixed throughout the trajectory. The measurements are generated from a

uniform distribution, and the number of the measurements is drawn from a Poisson

distribution with an average of 20 measurements per scan. In addition to simulations

performed in [90], we will examine the performance of the algorithms with Gaussian

distributed measurements. As in [90], the prior mean and covariance matrix of the

shape variables are selected to be p̂0 = [π, 200, 90]T and Cp
0 = diag([1, 702, 702]).

The process noise covariance matrix for the shape variables and kinematics are Cw
p =

diag([0.1, 1, 1]) and Cw
r = diag([100, 100, 1, 1]), respectively. The measurement

noise covariance matrix is, R = diag([400, 400]). In order to have a fair comparison,

the prior mean values of the kinematic and shape variables for VB and Algorithm-2

are chosen to be the same as those of Algorithm-1. The shape variables for VB are

selected to be α1,2
0 = [5 5] and β1,2

0 = [4002 1802]. The degrees of freedom is v0 = 7

for Algorithm-2. The scale matrix is initialized as V0 = diag([4002, 1802]). The

initial mean of the kinematic state is set to x̂0 = [100 100 5 − 8 π]T for VB. The

number of the variational iterations is 10. The initial mean of the kinematic state for

the Algorithm-1 and Algorithm-2 is selected to be r̂0 = x̂0(1 : 4).

We conducted 100 MC runs for each measurement distribution type. The GW dis-

tance and the orientation RMSE are presented in Table 3.5 and Table 3.6. An example

MC run is depicted in Fig 3.3. Algorithm-2 could not perform well during the turns

because the method does not treat the orientation as a separate random variable and

compensates the changes in the orientation by updating the extent estimate. How-

ever, VB and Algorithm-1 are able to overcome this problem. The results show that

the proposed approach, VB, provides better orientation, center, and extent estimates.
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Table 3.5: The GW distance and heading angle RMSE values of the scenario in Sec-

tion 3.6.3 when the measurements are uniformly distributed.

GW Dist.

1st Term

[m2]

GW Dist.

2nd Term

[m2]

GW

Dist.

[m]

Heading

Angle

RMSE

[°]

Mean Std. Mean Std.

Alg.-1 281.38 280.54 20.84 0.94 3.89 0.26

Alg.-2 284.05 1436.05 32.94 082 82.61 5.21

VB 270.74 203.01 19.83 0.89 3.37 0.21

Table 3.6: The GW distance and heading angle RMSE values of the scenario in Sec-

tion 3.6.3 when the measurements are generated from a Gaussian distribution.

GW Dist.

1st Term

[m2]

GW Dist.

2nd Term

[m2]

GW

Dist.

[m]

Heading

Angle

RMSE

[°]

Mean Std. Mean Std.

Alg.-1 884.75 244.15 29.17 1.43 3.57 0.35

Alg.-2 826.32 1167.80 37.69 1.29 82.66 5.08

VB 822.15 145.31 27.36 1.39 2.94 0.20
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Figure 3.4: The outline of the movement of the vehicle during the time-lapse. The

vehicle starts from the dark blue colored parking spot; and follows the colored path

until the red colored parking spot. In the figure, the last frame is shown.

Figure 3.5: A representative MC run of the real data experiment. The extent estimates

of VB, Algorithm-1, Algorithm-2, and GP-ETT are shown in black, red, blue, and

green lines, respectively. The measurements are represented with green dots.
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3.6.4 Real Data Experiment

In this section, the algorithms’ capabilities are illustrated with real data. In addi-

tion to elliptical models, we compare the performance of another well-known ETT

algorithm, namely the Gaussian process based extended target tracking (GP-ETT)

algorithm [82] to demonstrate the performance of the methods that do not rely on

elliptical extent assumption in the scenario.

The test data is collected in an urban area of Ankara. The test scenario involves a

commercial vehicle moving in a parking lot while a steady aerial camera captures

images of the surveillance region every second, i.e., T = 1s. In the scenario, a

long sampling time is intentionally chosen to minimize the computational power con-

sumption, thereby prolonging the air-time of the aerial camera in possible real-time

applications. The outline of the vehicle’s trajectory is shown in Figure 3.4. The

colored-line indicates the trajectory followed by the mid-point of the vehicle. The

scenario starts while the vehicle is parked in the parking area, indicated by the dark

blue color. The vehicle leaves the parking area and follows the path shown in blue

until it is parked in the parking area, which is indicated by the green color. Then the

vehicle performs a similar motion from the green-colored parking spot following the

path to the red-colored parking spot.

Throughout the scenario, the captured images are processed for measurement extrac-

tion. Various feature extraction algorithms can be used to obtain measurements from

the vehicle such as Harris corner detection [31], Scale Invariant Feature Transform

(SIFT) [50], Speeded Up Robust Features (SURF) [7] or similar. In order to demon-

strate that the algorithm can work with a wide range of feature extraction algorithms,

we present a more general case, where the measurements are uniformly sampled from

the vehicle’s visible surface. The results obtained by using the features extracted by

the Harris corner detector are also consistent with the results presented here.

As part of the image processing step, a segmentation is performed in every frame in

the HSV color band to separate the yellow vehicle from the background. Follow-

ing that, a median filter is used to reduce the number of clutters. Finally, the pixels
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that belong to the vehicle are sampled uniformly to obtain the measurements. The

initial position of the vehicle is extracted from the first frame. The initial velocity,

on the other hand, is assumed to be unknown and assumed to be zero. Hence, the

initial mean of the kinematic state vector is selected to be x̂0 = [450 245 0 0 π
2
]T .

The initial parameters of the algorithms are selected to match the prior means of the

corresponding distributions. For this purpose, the initial shape parameters for VB is

selected to be α1,2
0 = [2 2]T and β1,2

0 = [250 1000]T . The prior mean and covariance

matrix of the shape variables for Algorithm-1 is set to p̂0 = [0 2500.5 10000.5]T and

Cp
0 = diag([1, 100, 100]), respectively. The degrees of freedom value and the initial

scale matrix is set to v0 = 4 and V0 = diag([250, 1000]) for Algorithm-2, respec-

tively. The process noise covariance matrix Q is similar to the previous simulations,

however σ is taken as 4, and σθ is 0.1 for VB. The number of variational iterations is

10. The process noise covariance matrix for the shape variables for Algorithm-1 is set

to Cw
p = diag([0.1, 10−3, 10−3]). Finally, the measurement noise covariance matrix

is taken as R = diag([1, 1]). The parameters were optimized manually to obtain the

best performances of the algorithms.

The extent estimates corresponding to the frames {2, 18, 24, 39, 45, 83} are given in

Figure 3.5. These snapshots were chosen for the sake of a clearer illustration of the

differences between the algorithms’ performances, starting from the initial frames.

At the beginning of the scenario, the vehicle stays immobile, and the algorithms are

able to estimate the vehicle’s extent satisfactorily (see: Frame 2).

Before the vehicle starts its movement, the extent estimate of the GP-ETT is more

accurate and closer to the true extent of the target. On the other hand, the random ma-

trix approaches are significantly advantageous throughout this scenario because they

can fully exploit the prior information that the target’s extent is close to an elliptical

shape. GP-ETT algorithm aims at estimating the contours of objects having arbitrary

shapes and its performance degrades when the measurements are originating from the

surface of objects and the number of the surface measurements is low. The algorithm

is essentially trying to solve a harder problem because it has more degrees of freedom

to represent the unknown extent and a greater uncertainty to resolve compared to the
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ellipsoidal target tracking methods.

When the vehicle is moving in a straight path, such as in Frame 18 and Frame 39, the

performance of all random matrix based algorithms are satisfactory. However, when

the vehicle performs a maneuver, as in Frame 24, Frame 45 and Frame 83, VB shows

superior performance in estimating the orientation of the vehicle. During the ma-

neuvers, Algorithm-2 cannot estimate the extent accurately because it does not treat

the heading angle as a separate random variable, and it tries to adapt to the changes

in the orientation by updating the extent states. Algorithm-1 also struggles to find

the correct orientation of the vehicle. However, VB can provide accurate estimates

of the extent thanks to its iterative updates. Note that VB and Algorithm-1 use the

same process noise variance for the orientation. Since the vehicle is stable in the first

couple of frames and the algorithms are able to estimate the extent accurately, in-

creasing the variance values of the shape variables for Algorithm-1 does not improve

the performance of estimating the extent further. Additionally, if the variance values

are increased too much, the extent estimates of Algorithm-1 tend to collapse to zero.

We encountered a similar problem while tuning Algorithm-1 in the simulation sce-

narios. We report one example of such behavior in a single measurement update in

Appendix- .1.6 for interested readers.

3.7 Conclusion and Discussion

ETT involves tracking objects that generate multiple measurements per scan. In most

ETT applications, the orientation of the extended targets changes in time. In standard

RM based ETT methods, this phenomenon is addressed by a forgetting factor, which

aims at forgetting the accumulated information. In this study, we proposed a novel

approach for extended target tracking that is capable of simultaneously estimating

the kinematic, extent, and orientation states of an extended target. We use the vari-

ational Bayes technique for inference and define appropriate priors for the unknown

state variables that can accurately model the changes in the extended targets’ orien-

tation. The performance and capabilities of the algorithm are demonstrated through
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simulations and real data experiments. Experimental results on simulations and real

data demonstrate that the proposed method significantly improves the tracking per-

formance, as well as the accuracy in estimating the orientation and the shape of the

object compared to the state-of-the-art methods.

It is also worth mentioning that variational Bayes approaches resort to factorized dis-

tributions, which lose the correlation structure in the posterior density. An algorithm

that does not neglect correlation terms may provide better estimation performance

than such variational methods. In our experience (as illustrated in benchmark scenar-

ios and real data experiments in Sections 3.5-3.6), the iterative optimization structure

provided by the variational inference framework outperforms the alternative solu-

tions by overcoming the disadvantages associated with the factorized approximation.

However, improved performance can be achieved by further exploiting the correlation

structure in the true posterior.

The model and the technique we use might also be applicable to estimation problems

other than extended target tracking applications, which involve dynamic elliptical

representations or unknown covariance matrices with similarly structured uncertainty.

These problems may include, but are not limited to, obtaining elliptical bounds in

power systems [14, 67], estimating ellipsoid sets containing target states over sensor

networks [16] or spectrum representation in speech processing [12, 61].
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CHAPTER 4

MULTI-ELLIPSOIDAL EXTENDED TARGET TRACKING WITH

VARIATIONAL BAYES INFERENCE

4.1 Introduction

Recent advances in autonomous vehicles, robotics, and intelligent systems require

not only estimating the position of an object but also recognizing its shape. This

requirement is usually fulfilled with short-range sensor systems, where it is possi-

ble to collect multiple instantaneous measurements from a single target. In contrast

to traditional point target tracking methods, one can extract more information from

the measurements, such as the shape, size, or orientation of the target. The special

algorithms that are capable of estimating these unknowns together with the target’s

kinematic state are called Extended Target/Object Tracking (ETT/EOT) algorithms.

A primitive approach to ETT is to represent the target’s extent as a simple shape and

estimate the relevant parameters. These simple shapes can be a line [23], a circle [6]

or a rectangle [24]. More complex shapes can be defined using random hyper-surface

models which assume that the measurements are generated from an unknown random

surface [4, 5, 90]. More recently, Gaussian Process (GP) based models [43, 82] were

proposed to estimate the extent of targets with unknown shapes. GP based ETT al-

gorithms define the target’s contour as an unknown radial function with a GP prior.

An advantage of these models is that the estimated contours are descriptive, i.e., the

contour representations can be utilized in further purposes such as classification of

targets [76, 77].
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Figure 4.1: An extended target representation with multiple ellipses (solid lines).

Classical RM models represent the same target extent as a single ellipse (dashed black

line). The measurements are shown with red stars.

One of the most common approaches in the ETT literature is the random matrix model

(RM) [18, 27, 34, 39, 42, 45, 60, 78, 88–90], which was pioneered by Koch [42]. In

RM based methods, the extent is approximated by an ellipse which is represented by

a symmetric positive definite (SPD) unknown matrix. The inference in [42] neglects

the measurement noise covariance matrix in order to meet the conjugacy requirement.

This approach was later improved in [18], where the measurement noise covariance

is incorporated into the updates. More recent studies consider the orientation angle of

the target together with the RM model [78, 88–90].

A single ellipsoidal representation of the target can provide only lumped informa-

tion about the shape of the target, which may result in over-simplified representa-

tions. To remedy this problem, more recent works on random matrices focus on

multi-ellipsoidal (ME) models [27, 34, 39, 45], where the target extent is represented

with more than one ellipse. Each ellipse is called a sub-object, and as the number of

sub-objects increases, a finer representation of the target’s extent can be obtained. A

representative example of using multiple ellipses for target extent is given in Fig. 4.1.

ME models in the literature use different inference methods for estimating a mixture

of Gaussian inverse Wishart (GIW) distributions which represent the kinematic state
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together with the extent. In [39], a particle filter is used for inference which becomes

computationally heavy when the number of particles is increased. The ME model

proposed in [45] does not contain a unified kinematic model for different sub-objects.

In [27], the kinematics of the sub-objects are unified however, the method requires

computationally heavy partitioning algorithms to associate the measurements with

the sub-objects. Furthermore, mixture reduction algorithms are required to manage

the number of components resulting from different association hypotheses. In [34],

an approach that can handle varying numbers of sub-objects in time is proposed.

In this chapter, we present a ME-ETT approach utilizing variational Bayes infer-

ence for solving the measurement association problem and obtaining an approximate

distribution for the intractable posterior. Our approach does not require any cluster-

ing [45], partitioning [27], mixture reduction [27] and merging methods [45]. The

resulting algorithm has low computational complexity and outperforms the state-of-

the-art methods in terms of accuracy. It can be employed in scenarios where the users

require a more detailed representation of the targets, such as tracking of aerial ve-

hicles, see Fig. 4.1. Another well-suited reason for use would be tracking a group

of targets, such as a flock of birds or a group of people, whose individuals share the

same kinematic behaviour so that the position of every member of the group can be

estimated well by the proposed algorithm even when a member of the group is ob-

structed from the vision of the sensor. The proofs of concepts for the aforementioned

use cases are illustrated in the coming sections.

The rest of this part is organized as follows. First, the problem formulation is given in

Section 4.2. Then, the variational inference for the measurement update is explained

in Section 4.3. Section 4.4 presents the time update. In Section 4.5 the simulation re-

sults will be shown and discussed. Finally, we will conclude the article in Section 4.7.
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Figure 4.2: Illustration of the extent estimation for L = 4 where + sign denotes the

measurements.

4.2 Problem Formulation

We consider the following extended target model, first proposed in [39], composed of

L ≥ 1 sub-objects. At any time k, the extent state of the `th sub-object is represented

by the SPD matrix X`
k ∈ Rny×ny , ` = 1, . . . , L. We define the kinematic state of the

extended object as

xk ,
[

(xck)
T x̃Tk (µ2

k)
T · · · (µL

k )T
]T (4.1)

where xck ∈ Rny denotes a reference point on the target and {µ`
k ∈ Rny}L`=1 denote

the displacement vectors of the sub-object centers from the reference point xck. We

assume that µ1
k = 0, i.e., the reference point of the extended target is at the center

of the first sub-object without loss of generality. The vector x̃k contains all non-

positional kinematic information, such as velocity and acceleration. An illustration

of this kinematic state vector for L = 4 is shown in Fig. 4.2. The kinematic state

vector xk ∈ Rnx is assumed to evolve with the following linear Gaussian dynamics

xk = Fxk−1 + wk, (4.2)
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Table 4.1: Notations

• Set of real matrices of size m× n is shown with Rm×n.

• ny and nx are the dimension of the measurement vector and the dimension of

the kinematic state vector, respectively.

• N (µ,Σ) denotes the the multivariate Gaussian distribution with mean vector

µ ∈ Rnx and covariance matrix Σ ∈ Snx++. N (x;µ,Σ) is used for the value of

this distribution at x ∈ Rnx .

• IW(v,V) denotes the inverse Wishart distribution with degrees of freedom

v, and positive definite scale matrix V. IW(X; v,V) denotes the value of

this distribution at a real-valued positive definite matrix X and it is defined as

follows.

IW(X; v,V)
4∝etr

(
− 1

2
X−1V

)
|X|v/2 ,

where etr(·) , eTr(·).

• For the number of measurements Mk ∈ Z+, y1:Mk
k represents the measurement

set {y1
k, . . . ,y

Mk
k } at time k.

• rk represents the vector [r1k, . . . , r
a
k]
T with size a ∈ Z+.

• |A| denotes the determinant of the matrix A.

• c\φ is a generic constant that denotes the constant terms with respect to variable

φ in an equation.

• The subscripts k|k−1 and k|k denote the predicted statistics and filtered statistics,

respectively.

• Tr
(
A
)

=
∑n

i=1 aii where aii is the ith diagonal element of A ∈ Rn×n.

• The iterate numbers are shown with parenthesized superscripts, e.g., q(i)(·).
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Table 4.1: Notations (continued)

• The expectation with respect to a specific variable is shown with a subscript

in the expectation sign, e.g., Ez will show an expectation with respect z1:Mk
k .

When it is clear from the context which variable we are taking the expectation

with respect to, we will show the expectation with an overline, e.g., (Xk)−1

will denote EX[(Xk)
−1].

• When it is necessary to take expectations with respect to all random variables

except for one of them, we will use a backslash “\” in the subscript of the ex-

pectation operator, e.g., E\z will denote expectation with respect to all random

variables except z1:Mk
k .

• In the derivations, the joint distribution

p
(
y1:Mk
k , z1:Mk

k , r1:Mk
k ,xk,X

1:L
k , π1:L

k

∣∣Yk−1
)

is abbreviated as p(·|Yk−1)

for the sake of brevity.

• The quadratic forms xTAx and outer products xxT are written as xTA(·) and

x(·)T , respectively to avoid duplicating long expressions unnecessarily.

66



where F ∈ Rnx×nx denotes the state transition matrix and wk ∈ Rnx denotes zero-

mean white Gaussian process noise vector with known SPD covariance matrix Q,

i.e., wk ∼ N (wk; 0,Q).

Suppose at time k, a set of Mk target-originated measurements are captured by the

sensor which is denoted as y1:Mk
k , {yjk}Mk

j=1. The measurements are assumed to be

conditionally i.i.d. and distributed according to the Gaussian mixture given as

p
(
yjk
∣∣xk,X1:L

k , π1:L
k

)
=

L∑
`=1

π`kN
(
yjk; H`xk, sX

`
k + R

)
(4.3)

for j = 1, . . . ,Mk, where

• π1:L
k , (π1

k, π
2
k, . . . , π

L
k ) is the list of time-varying, unknown and random mix-

ture probabilities π`k, ` = 1, . . . , L, satisfying π`k ≥ 0 and
∑L

`=1 π
`
k = 1.

• H` ∈ Rny×nx , ` = 1, . . . , L are the measurement matrices defined such that

H`xk , c`k where

c`k ,

xck, ` = 1

xck + µ`
k, otherwise

denotes the center of the `th ellipse.

• X1:L
k , (X1

k,X
2
k, . . . ,X

L
k ) is the list of sub-object extent matrices X`

k, ` =

1, . . . , L.

• R ∈ Rny×ny is a known SPD measurement noise covariance matrix.

• s ∈ R+ is a known positive scaling constant1.

• Other necessary notations can be found in Table 3.1.

The likelihood of the set of measurements y1:Mk
k is then given as

p
(
y1:Mk
k

∣∣xk,X1:L
k , π1:L

k

)
=

Mk∏
j=1

p
(
yjk
∣∣xk,X1:L

k , π1:L
k

)
(4.4a)

1 The value s = 1/4 can be used to model uniformly distributed measurements over the ellipse [18, 22].
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=

Mk∏
j=1

L∑
`=1

π`kN
(
yjk; H`xk, sX

`
k + R

)
. (4.4b)

The aim is to find the posterior distribution p(xk,X1:L
k , π1:L

k

∣∣Yk) recursively where

Yk , {y1:Mk
t }kt=0 denotes the cumulative set of measurements obtained from the

sensor up to and including time k. At each time step k, the posterior distribution

p(xk,X
1:L
k , π1:L

k

∣∣Yk) is assumed to be in the form of

p
(
xk,X

1:L
k , π1:L

k |Yk

)
=N

(
xk; mk|k,Pk|k

)
×
( L∏

`=1

IW
(
X`
k; v

`
k|k,V

`
k|k
))

×D
(
π1:L
k ;α1:L

k|k
)
, (4.5)

where mk|k,Pk|k are the mean and covariance of the kinematic state vector xk, re-

spectively. The notations IW(X; v,V) and D
(
π1:L, α1:L

)
denote the inverse Wishart

and Dirichlet distributions, respectively

IW(X; v,V)
4∝etr

(
− 1

2
X−1V

)
|X|v/2 , (4.6a)

D
(
π1:L;α1:L

) 4∝ L∏
`=1

(π`)α
`−1. (4.6b)

The recursive calculation of the posterior p(xk,X1:L
k , π1:L

k

∣∣Yk) will be carried out in

two steps, namely, the measurement update and time update, which will be investi-

gated separately in the following sections.

4.3 Measurement Update

Suppose now that the predicted distribution p
(
xk,X

1:L
k , π1:L

k |Yk−1
)

has the form

in (4.5) and is given as

p
(
xk,X

1:L
k , π1:L

k |Yk−1
)

= N
(
xk; mk|k−1,Pk|k−1

)
×
( L∏

`=1

IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

))
×D

(
π1:L
k ;α1:L

k|k−1
)
. (4.7)
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In the measurement update, we would like to update the predicted distribution in (4.7)

with the likelihood in (4.4b). Unfortunately, such an update is not analytically tractable,

and furthermore, it would not result in a posterior in the form (4.5). In order to ensure

analytical tractability and to preserve the form of the posterior, first, we are going to

define some latent variables and then resort to variational approximation.

We first define the latent variables zjk, j = 1, . . . ,Mk, which represent the noise-free

measurements as in [60], as

p(zjk|xk,X1:L
k , π1:L

k ) =
L∑
`=1

π`kN
(
zjk; H`xk, sX

`
k

)
, (4.8a)

p(yjk|zjk) =N
(
yjk; z

j
k,R

)
. (4.8b)

Note that the conditional joint distribution for yjk, z
j
k is given as

p
(
yjk, z

j
k

∣∣xk,X1:L
k ,π1:L

k

)
= N

(
yjk; z

j
k,R

)
×

L∑
`=1

π`kN
(
zjk; H`xk, sX

`
k

)
. (4.9)

We also define the association/responsibility vector rjk for each measurement yjk (or

zjk), which is a binary vector of size L defined as

rjk ,
[
rj,1k rj,2k · · · rj,Lk

]T (4.10)

where the elements rj,`k ∈ {0, 1}, ` = 1, . . . , L, which are called responsibilities in

the literature [8, Ch. 10]. These binary variables satisfy

L∑
`=1

rj,`k = 1. (4.11)

Note that, with these properties, the elements rj,`k . ` = 1, . . . , L, are all equal to zero

except for one of them which is unity. The index `∗ for which rj,`k is equal to unity,

i.e., rj,`
∗

k = 1, is the index of the sub-object which the measurement yjk (or zjk) is

associated to. The distribution of rj,`k is defined as

P
{
rj,`k = 1

∣∣π1:L
k

}
, π`k, for ` = 1, . . . , L, (4.12)
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for j = 1, . . . ,Mk. The expression (4.12) can be written as

P
{
rjk
∣∣π1:L
k

}
,

L∏
`=1

(π`k)
rj,`k . (4.13)

Note that given the association vector rjk, the noisy and noiseless measurements yjk

and zjk are distributed as

p(yjk|rjk,xk,X1:L
k , π1:L

k ) =N
(
yjk; H`∗xk, sX

`∗

k + R
)
, (4.14a)

p(zjk|rjk,xk,X1:L
k , π1:L

k ) =N
(
zjk; H`∗xk, sX

`∗

k

)
, (4.14b)

for j = 1, . . . ,Mk where `∗ is the index for which the element rj,`k is equal to unity,

i.e., rj,`
∗

k = 1. The expressions (4.14) can conveniently be written as

p(yjk|rjk,xk,X1:L
k , π1:L

k ) =
L∏
`=1

N rj,`k
(
yjk; H`xk, sX

`
k + R

)
, (4.15a)

p(zjk|rjk,xk,X1:L
k , π1:L

k ) =
L∏
`=1

N rj,`k
(
zjk; H`xk, sX

`
k

)
, (4.15b)

for j = 1, . . . ,Mk. Using these expressions, we can write the conditional joint distri-

bution for yjk, z
j
k, r

j
k as

p
(
yjk, z

j
k, r

j
k

∣∣xk,X1:L
k , π1:L

k

)
=p
(
yjk
∣∣zjk)

× p
(
zjk
∣∣rjk,xk,X1:L

k , π1:L
k

)
× P

{
rjk
∣∣π1:L
k

}
, (4.16a)

= N
(
yjk; z

j
k,R

) L∏
`=1

N rj,`k
(
zjk; H`xk, sX

`
k

) L∏
`=1

(π`k)
rj,`k , (4.16b)

= N
(
yjk; z

j
k,R

) L∏
`=1

(π`k)
rj,`k N rj,`k

(
zjk; H`xk, sX

`
k

)
. (4.16c)

The overall conditional joint distribution for y1:Mk
k , z1:Mk

k , r1:Mk
k can then be written

as

p
(
y1:Mk
k , z1:Mk

k , r1:Mk
k

∣∣xk,X1:L
k , π1:L

k

)
=

Mk∏
j=1

(
N
(
yjk; z

j
k,R

) L∏
`=1

(π`k)
rj,`k N rj,`k

(
zjk; H`xk, sX

`
k

))
. (4.17)
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Since the posterior for xk,X
1:L
k , π1:L

k given Yk is intractable, we aim for approxi-

mating the joint posterior for z1:Mk
k , r1:Mk

k ,xk,X
1:L
k , π1:L

k given Yk in the following

form,

p
(
z1:Mk
k , r1:Mk

k ,xk,X
1:L
k , π1:L

k

∣∣Yk

)
≈ qz

(
z1:Mk
k

)
qr
(
r1:Mk
k

)
qx(xk)qX(X1:L

k )qπ
(
π1:L
k

)
. (4.18)

We calculate the terms of the approximation above iteratively using variational ap-

proximation with the following true joint density

p
(
y1:Mk
k , z1:Mk

k , r1:Mk
k ,xk,X

1:L
k , π1:L

k

∣∣Yk−1
)

=p
(
y1:Mk
k , z1:Mk

k , r1:Mk
k

∣∣xk,X1:L
k , π1:L

k

)
× p
(
xk,X

1:L
k , π1:L

k |Yk−1
)
,

=

Mk∏
j=1

(
N
(
yjk; z

j
k,R

) L∏
`=1

(π`k)
rj,`k N rj,`k

(
zjk; H`xk, sX

`
k

))
×N

(
xk; mk|k−1,Pk|k−1

)
×
( L∏

`=1

IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

))
×D

(
π1:L
k ; {α`k|k−1}L`=1

)
. (4.19)

The logarithm of the joint density above is given as

log p
(
y1:Mk
k , z1:Mk

k , r1:Mk
k ,xk,X

1:L
k , π1:L

k

∣∣Yk−1
)

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
+

L∑
`=1

rj,`k

(
log π`k + logN

(
zjk; H`xk, sX

`
k

)))
+ logN

(
xk; mk|k−1,Pk|k−1

)
+

L∑
`=1

log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

)
+ logD

(
π1:L
k ; {α`k|k−1}L`=1

)
. (4.20)

With this log-distribution, the factors qz(·), qr(·), qx(·), qX(·), and qπ(·) can be calcu-
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lated using variational Bayes approach [8, Ch. 10] as

qz
(
z1:Mk
k

)
=

Mk∏
j=1

N
(
zjk; ẑ

j
k|k,P

z,j
k|k
)
, (4.21a)

qr
(
r1:Mk

)
=

Mk∏
j=1

L∏
`=1

(
γj,`k|k
)rj,`k , (4.21b)

qx(xk) =N
(
xk; mk|k,Pk|k

)
, (4.21c)

qX
(
X1:L
k

)
=

L∏
`=1

IW
(
X`
k; v

`
k|k,V

`
k|k
)
, (4.21d)

qπ
(
π1:L
k

)
=D

(
π1:L
k ;α1:L

k|k
)
, (4.21e)

where the parameters ẑjk|k, Pz,j
k|k, γ

j,`
k|k, mk|k, Pk|k, v`k|k, V`

k|k, α`k|k, j = 1, . . . ,Mk,

` = 1, . . . , L, are found iteratively. Once the updated distributions in (4.21) are

obtained we can approximate the updated posterior p
(
xk,X

1:L
k , π1:L

k |Yk

)
as

p
(
xk,X

1:L
k , π1:L

k |Yk

)
≈ qx(xk)qX(X1:L

k )qπ
(
π1:L
k

)
, (4.22)

which is in the form (4.5) as required. The distributions in (4.21) are calculated itera-

tively. The expressions for the corresponding iterations are given in the following sub-

sections. The detailed derivations of these expressions and the required expectations

are given in Appendix .1.1. A summary of the resulting iterative update procedure

can be found in Algorithm 4.1.

4.3.1 Calculation of q(i+1)
z (·)

The (i+ 1)th iterate q(i+1)
z (·) of qz(·) is given as

q(i+1)
z

(
z1:Mk
k

)
=

Mk∏
j=1

N
(
zjk; ẑ

j,(i+1)
k|k ,P

z,j,(i+1)
k|k

)
, (4.23)

where

ẑ
j,(i+1)
k|k ,P

z,j,(i+1)
k|k

(
R−1yjk +

L∑
`=1

rj,`k
(
sX`

k

)−1
H`xk

)
, (4.24a)

P
z,j,(i+1)
k|k ,

(
R−1 +

L∑
`=1

rj,`k
(
sX`

k

)−1)−1
, (4.24b)

for j = 1, . . . ,Mk.
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4.3.2 Calculation of q(i+1)
r (·)

The (i+ 1)th iterate q(i+1)
r (·) of qr(·) is given as

q(i+1)
r

(
r1:Mk
k

)
=

Mk∏
j=1

L∏
`=1

(
γ
j,`,(i+1)
k|k

)rj,`k , (4.25)

where

γ
j,`,(i+1)
k|k ,

γ̃
j,`,(i+1)
k|k∑L

`=1 γ̃
j,`,(i+1)
k|k

, (4.26a)

γ̃
j,`,(i+1)
k|k , exp

(
log π`k −

1

2
log |X`

k|

− 1

2
Tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

, (4.26b)

for j = 1, . . . ,Mk, ` = 1, . . . , L.

4.3.3 Calculation of q(i+1)
x (·)

The (i+ 1)th iterate q(i+1)
x (·) of qx(·) is given as

q(i+1)
x (xk) = N

(
xk; m

(i+1)
k|k ,P

(i+1)
k|k

)
, (4.27)

where

m
(i+1)
k|k =P

(i+1)
k|k

(
P−1k|k−1mk|k−1 + HT

1:LΛ1:Lu1:L
k

)
, (4.28a)

P
(i+1)
k|k =

(
P−1k|k−1 + HT

1:LΛ1:LH1:L

)−1
, (4.28b)

u1:L
k ,

[
(u1

k)
T (u2

k)
T · · · (uLk )T

]T
, (4.28c)

H1:L ,
[

HT
1 HT

2 · · · HT
L

]T
, (4.28d)

Λ1:L , blkdiag(Λ1
k,Λ

2
k, . . . ,Λ

L
k ). (4.28e)

Here, we have

u`k ,

∑Mk

j=1 r
j,`
k zjk∑Mk

j=1 r
j,`
k

, (4.28f)

Λ`
k ,
(
sX`

k

)−1 Mk∑
j=1

rj,`k , (4.28g)

for ` = 1, . . . , L.
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4.3.4 Calculation of q(i+1)
X (·)

The (i+ 1)th iterate q(i+1)
X (·) of qX(·) is given as

q
(i+1)
X

(
X1:L
k

)
=

L∏
`=1

IW
(
X`
k; v

`,(i+1)
k|k ,V

`,(i+1)
k|k

)
, (4.29)

where

v
`,(i+1)
k|k ,v`k|k−1 +

Mk∑
j=1

rj,`k , (4.30a)

V
`,(i+1)
k|k ,V`

k|k−1 +
1

s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T
, (4.30b)

for ` = 1, . . . , L.

4.3.5 Calculation of q(i+1)
π (·)

The (i+ 1)th iterate q(i+1)
π

(
·
)

of qπ
(
·
)

is given as

q(i+1)
π

(
π1:L
k

)
= D

(
π1:L
k ;
{
α
`,(i+1)
k|k

}L
`=1

)
, (4.31)

where

α
`,(i+1)
k|k , α`k|k−1 +

Mk∑
j=1

rj,`k , (4.32)

for ` = 1, . . . , L.

Algorithm 4.1 Measurement Update for ME-ETT Model

1: Given: mk|k−1, Pk|k−1, {v`k|k−1,V`
k|k−1, α

`
k|k−1}L`=1 and y1:Mk

k , calculate mk|k,

Pk|k, {v`k|k,V`
k|k, α

`
k|k}L`=1 as follows.

2: Initialization at time k = 0:

3: m
(0)
k|k ←mk|k−1

4: P
(0)
k|k ← Pk|k−1

5: for ` = 1, . . . , L do

6: v
`,(0)
k|k ← v`k|k−1
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7: V
`,(0)
k|k ← V`

k|k−1

8: α
`,(0)
k|k ← α`k|k−1

9: for j = 1, . . . ,Mk do

10: γ
j,`,(0)
k|k ← α`

k|k−1∑L
`′=1 α

`′
k|k−1

11: end for

12: end for

13: for j = 1, . . . ,Mk do

14: z
j,(0)
k|k ← yjk

15: P
z,j,(0)
k|k ← R

16: end for

17: Iterations:

18: H1:L =
[

HT
1 HT

2 · · · HT
L

]T
19: for i = 0, . . . , imax − 1 do

20: for j = 1, . . . ,Mk do

21: for ` = 1, . . . , L do

22: W
(i)
j` ,

(
z
j,(i)
k|k −H`m

(i)
k|k
)(

z
j,(i)
k|k −H`m

(i)
k|k
)T

+ P
z,j,(i)
k|k + H`P

(i)
k|kH

T
`

23: γ̃
j,`,(i+1)
k|k = exp

(
ψ
(
α
`,(i)
k|k
)
− 1

2
log
∣∣V`,(i)

k|k

∣∣+ 1
2

∑ny
d=1 ψ

(
v
`,(i)
k|k −ny−d

2

)
−v

`,(i)
k|k −ny−1

2
Tr
((
sV

`,(i)
k|k
)−1

W
(i)
j`

))
24: end for

25: for ` = 1, . . . , L do

26: γ
j,`,(i+1)
k|k =

γ̃
j,`,(i+1)
k|k∑L

`
′
=1

γ̃
j,`
′
,(i+1)

k|k

27: end for

28: end for

29: for j = 1, . . . ,Mk do

30: P
z,j,(i+1)
k|k =

(
R−1 +

∑L
`=1

[
γ
j,`,(i)
k|k

(
v
`,(i)
k|k − ny − 1

)(
sV

`,(i)
k|k
)−1])−1

31: z
j,(i+1)
k|k = P

z,j,(i+1)
k|k

(
R−1yjk

+
∑L

`=1

[
γ
j,`,(i)
k|k

(
v
`,(i)
k|k − ny − 1

)(
sV

`,(i)
k|k
)−1

H`m
(i)
k|k

])
32: end for
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33: for ` = 1, . . . , L do

34: v
`,(i+1)
k|k = v`k|k−1 +

∑Mk

j=1 γ
j,`,(i)
k|k

35: V
`,(i+1)
k|k = V`

k|k−1 + 1
s

∑Mk

j=1

[
γ
j,`,(i)
k|k W

(i)
j`

]
36: α

`,(i+1)
k|k = α`k|k−1 +

∑Mk

j=1 γ
j,`,(i)
k|k

37: u`k =
∑Mk
j=1

[
γ
j,`,(i)
k|k z

j,(i)
k|k

]
∑Mk
j=1 γ

j,`,(i)
k|k

38: Λ`
k =

(
v
`,(i)
k|k − ny − 1

)(
sV

`,(i)
k|k
)−1∑Mk

j=1 γ
j,`,(i)
k|k

39: end for

40: u1:L
k =

[
(u1

k)
T (u2

k)
T · · · (uLk )T

]T
41: Λ1:L = blkdiag(Λ1

k,Λ
2
k, . . . ,Λ

L
k )

42: P
(i+1)
k|k =

(
P−1k|k−1 + HT

1:LΛ1:LH1:L

)−1
43: m

(i+1)
k|k = P

(i+1)
k|k

(
P−1k|k−1mk|k−1 + HT

1:LΛ1:Lu1:L
k

)
44: end for

45: Set final estimates:

46: mk|k = m
(imax)
k|k

47: Pk|k = P
(imax)
k|k

48: for ` = 1, . . . , L do

49: v`k|k = v
`,(imax)
k|k

50: V`
k|k = V

`,(imax)
k|k

51: α`k|k = α
`,(imax)
k|k

52: end for

4.4 Time Update

With the target dynamics given in (4.2), the time update of the kinematic state is

performed following the regular Kalman filter time update equations

mk|k−1 = Fmk−1|k−1, (4.33a)

Pk|k−1 = FPk−1|k−1F
T + Q. (4.33b)

In this proposition, we assume that the extent state of the target is slowly varying with

unknown dynamics, which is usually the case in various target tracking applications.
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The parameters of the inverse Wishart distribution and the Dirichlet distribution of the

extent model are updated with forgetting factors as proposed in [62] for exponential

family of distributions,

v`k|k−1 = λIWv
`
k−1|k−1, (4.34a)

V`
k|k−1 = λIWV`

k−1|k−1, for ` = 1, . . . , L. (4.34b)

The forgetting factor is used to obtain the maximum entropy prediction density of

the extent states when the dynamics of the extent state is slowly varying and un-

known [62, Theorem 1]. Similarly, the sufficient statistics of the Dirichlet distributed

mixture weights π1:L
k are propagated with a forgetting factor λD,

α`k|k−1 = λDα
`
k−1|k−1 for ` = 1, . . . , L. (4.35)

If the true parameter evolution is slowly varying, the time update equations (4.34)

and (4.35) will not underestimate the uncertainty by maximizing the entropy. Note

that, for the special case of stationary parameters forgetting factors are set to 1, i.e.,

λIW = λD = 1.

The proposed algorithm is also versatile to perform under alternative random matrix

time update schemes.

4.5 Experimental Results

In this section, we will demonstrate the performance of the proposed algorithm in var-

ious experiments and compare its performance with the algorithms presented in [18,

39, 45, 90]. In the sequel, we will denote the proposed algorithm as VB (Variational

Bayes), the method in [39] as VPF (Variational Particle Filter), and the method in [45]

as LL (denoting the initials of the authors’ surnames).

To assess the performance of the algorithms, we consider the Intersection-Over-Union

(IOU) similarity measure [17, 24, 82] together with Gaussian Wasserstein (GW) dis-

tance [19,91] for the extent estimates and the root-mean-square error (RMSE) for the

center of the ellipses. The RMSE between the true and the estimated center of the `th
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ellipse is defined as

RMSE(c`,true1:N , ĉ`1:N) =

√√√√ 1

N

N∑
k=1

||c`,truek − ĉ`k||22, (4.36)

where N is the number of time steps in a single Monte Carlo (MC) run. The true and

estimated center of the `th ellipse at time k are denoted as c`,truek and ĉ`k, respectively.

The IOU measure between the estimated extent and the true extent of the `th sub-

object is calculated as

GW(X`,true
k , X̂`

k) =
area(X`,true

k ∩ X̂`
k)

area(X`,true
k ∪ X̂`

k)
∈ [0, 1], (4.37a)

GW(X`,true
1:N , X̂`

1:N) =
1

N

N∑
k=1

GW(X`,true
k , X̂`

k), (4.37b)

where X`,true
k and X̂`

k ,
V`
k|k

v`
k|k−2ny−2

are the true and estimated extent matrices of the

`th sub-object at time k, respectively. Note that IOU takes values between 0 and 1,

where 1 corresponds to the perfect match, while 0 indicates no intersection between

the true and the estimated extents. The GW distance [91] between the estimated

extent and the true extent of the `th sub-object can be expressed as

GW(c`,truek ,X`,true
k , ĉ`k, X̂

`
k)

2 , ‖c`,truek − ĉ`k‖22
+ Tr

[
X`,true
k + X̂`

k − 2(X`,true
1
2

k X̂`
kX

`,true
1
2

k )
1
2

]
, (4.38a)

GW(c`,true1:N ,X`,true
1:N , ĉ`1:N , X̂

`
1:N)

=
1

N

N∑
k=1

GW(c`,truek ,X`,true
k , ĉ`k, X̂

`
k). (4.38b)

The comparison metrics above are formulated for a single MC run. In the sequel, all

simulations are performed 100 times with different realizations of the measurement

noise at each run. The presented numbers in the simulations are the averages of the

100 MC runs.
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4.5.1 Simulations

The first simulation consists of two co-centered elliptical objects moving according

to the near constant velocity model with parameters given in Table 4.2.

Throughout the simulation, 7 measurements are generated from each object per time

step.

We compare the performances of VB, VPF (with N=100 particles), and LL algo-

rithms over 100 MC runs. An example MC run is illustrated in Fig. 4.3. The compar-

ison metrics and the computation time of the algorithms are given in Table 4.3. VB

algorithm estimates both the kinematic and extent states better than other approaches

in terms of RMSE, IOU, and GW distance.

Note that the number of association events in the LL algorithm grows exponentially

as the number of the sub-objects and measurements increases [45]. Hence the LL al-

gorithm’s computation time is significantly higher than the other methods, as shown

in Table 4.3. Being a sequential Monte Carlo method, VPF algorithm is also compu-

tationally costly.

On the other hand, the computation time of VB is linear in both number of mea-

surements Mk and number of sub-objects L. The computational complexity of the

proposed solution is O(LMk) at time k. Consequently, the computation time of the

VB algorithm is significantly lower than the alternatives as shown in Table 4.3.

In the second simulation scenario, we have a target with a shape similar to an airplane

(see: Fig. 4.4.). The object performs a constant velocity motion on a straight line.

The relevant parameters of the scenario are given in Table 4.4. Throughout the sim-

ulation, the number of measurements is set to 2 for each sub-object, yielding 8 mea-

surements in total per time step. The performance evaluation metrics are given in

Table 4.5. The VB algorithm outperforms LL and VPF algorithms in terms of accu-

racy in the extent estimates and provides results which exhibit smaller variation over

time.
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Figure 4.3: The estimation results for the first scenario where two co-centered objects

move along a straight line. The extent estimates of VB, VPF, and LL are shown in

purple, orange, and yellow lines, respectively. The ground truth is depicted by black

dashed lines.
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Figure 4.4: The estimation results for the second scenario where four sub-objects

with distinct extents move along a straight line. The extent estimates of VB, VPF,

and LL are shown in purple, orange, and yellow lines, respectively. The ground truth

is depicted by black dashed lines.

80



Table 4.2: The simulation parameters for the first scenario.

Xtrue

800 700

700 800

  800 −700

−700 800


m0 [0, 0, 200, 0, 0, 0]T

P0 blkdiag(50I2, 10I4)

V0 1500I2

v0 10

Fc

1 T

0 1

⊗ I2

Fµ,` I2

F blkdiag(Fc,Fµ,2)

Qc σ2

T 3

3
T 2

2

T 2

2
T

⊗ I2

Qµ,` I2

Q blkdiag(Qc,Qµ,2)

R 10I2

σ2 0.1

T 0.1
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Table 4.3: The RMSE, IOU, GW values and the computation times for the first sce-

nario.

Sub-obj IOU RMSE GW
Comp. Time

Per Time Step

LL
1st 0.70 3.89 9.68

13.96 s
2nd 0.70 4.26 9.69

VPF
1st 0.70 1.95 8.64

298.56 ms
2nd 0.70 2.12 8.57

VB
1st 0.77 1.64 5.06

25.91 ms
2nd 0.77 1.92 5.08

Figure 4.5: The extent estimates of VB (purple solid line) and FFK (yellow solid line)

together with the ground truth (black dashed line). The top two targets are occluded

between t = 36 and t = 51. During this interval, no measurements are acquired from

these targets. The occlusion region is represented by the green area.
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Table 4.4: The simulation parameters for the second scenario.

Xtrue
Body:

6000 0

0 500

 Bottom Wing:

300 500

500 2000


Top Wing:

 300 −500

−500 2000

 Tail:

150 0

0 3000


m0 [−10, 0, 400, 0, 0,−120, 0, 120,−200, 0]T

P0 blkdiag(10I4, 100I6)

V0 3000I2

v0 30

Fc

1 T

0 1

⊗ I2

Fµ,` I2

F blkdiag(Fc,Fµ,2, . . . ,Fµ,5)

Qc σ2

T 3

3
T 2

2

T 2

2
T

⊗ I2

Qµ,` I2

Q blkdiag(Qc,Qµ,2, . . . ,Qµ,5)

R 10I2

σ2 0.1

T 0.1
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Table 4.5: The RMSE, IOU, GW values and the computation times for the second

scenario.

Sub-obj: 1st 2nd 3rd 4th

Comp. Time

Per

Time Step[s]

LL

RMSE 6.98 12.46 11.54 14.24

15.97 sIOU 0.65 0.65 0.65 0.65

GW 26.98 16.15 16.13 18.04

VPF

RMSE 5.35 11.46 9.86 6.44

351.44 msIOU 0.65 0.70 0.71 0.76

GW 32.27 16.76 15.75 11.48

VB

RMSE 2.58 8.61 7.71 6.73

27.87 msIOU 0.71 0.75 0.75 0.75

GW 18.60 11.73 11.02 12.37

4.5.2 Occlusion Scenario

In this section, we illustrate the capabilities of the algorithm in the presence of an oc-

clusion problem that is frequently encountered in various target tracking applications.

For instance, aerial objects might be partly or fully occluded by thick clouds while

tracking with a day camera. Many practical systems resort to multiple complemen-

tary sensors, such as a thermal and a day camera, to prevent track loss during such

occlusions.

In this simulation scenario, we simulated a group of coordinated targets, which con-

tains 5 individuals moving on a straight path in a V-shape formation2. In the simu-

lation, 8 measurements per sub-object are generated at every scan. During a certain

part of the simulated trajectory, the line of sight of the sensor is partly blocked. It is

assumed that no measurements can be obtained from the top two targets of the forma-

tion at the corresponding time instances. During the occlusion period, the group of

2 Note that, the data generated in this scenario can also be interpreted to originate from a single solid object
whose extent is composed of five ellipses.
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targets gradually slows down. Then, they increase their velocity incrementally back

to their regular pace. A visualization that describes the corresponding scenario is

depicted in Fig. 4.5.

We compare the performance of the proposed approach, VB, against the algorithm

in [12], referred to as FFK (denoting the initials of the authors’ surnames) in the se-

quel. The VB algorithm incorporates a unified kinematic model, i.e., the sub-objects

depend on the common kinematic state as described in Section 4.2. However, FFK

treats each sub-object as a different target and tracks them individually without con-

sidering the interactions between them. During the occlusion period, FFK relies only

on time update equations to estimate the kinematic and extent state of the occluded

targets. On the contrary, VB can utilize the measurements that are collected from

the visible targets to extract information about occluded targets’ state, thanks to the

unified kinematics in the model. Consequently, it can provide a much better perfor-

mance, as shown in Fig. 4.5. Other algorithms, such as [27, 39], which incorporate

unified kinematics, can also achieve similar performance in this scenario.

4.5.3 Experiments with Real Data

In this subsection, the performance of the proposed algorithm is demonstrated with

real data. The data are extracted from aerial footages of a delta-wing aircraft and a

glider.

Our main aims with these experiments are to provide a proof of concept beyond sim-

ulations and to present the performance of our approach under measurement model

mismatch. Throughout the experiments, each frame of the videos is processed to

generate point measurements. Various standard feature extraction algorithms can

be used to obtain point measurements from the objects such as Harris corner de-

tector [31], Scale Invariant Feature Transform (SIFT) [50], Speeded Up Robust Fea-

tures (SURF) [7], Sobel edge detection [38], ORB feature extractor [69] or similar.

Here, we present the results obtained using the well-known Sobel edge detection

technique [38] and ORB feature extractor [69].
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The first real data experiment consists of a delta wing airplane [51]. A representa-

tive example of VB algorithm’s performance is illustrated in Fig. 4.6a and Fig. 4.6b.

Note that the camera zoom is not constant throughout the scenario, which introduces

additional challenges for the algorithm.

The second scenario is an air-footage of a glider in motion [36]. The performance of

VB algorithm is illustrated in Fig. 4.6c and Fig. 4.6d.

The results indicate that the proposed algorithm can track the measurement generating

regions of the objects successfully. As part of the model, a unified kinematics is

defined among these regions. This property can be exploited in the case of abrupt

changes in the frame characteristics such as background change or occlusions.

In Figure 4.6, we also depict the extent estimates of two different single ellipsoidal

target tracking algorithms [18, 90]. For the sake of clarity, only the estimates in the

final frames of the video sequences are plotted. Both results demonstrate that mod-

eling the extent with multiple ellipses provides a more accurate representation of the

target extent.

Finally, note that the other multi-ellipsoidal ETT algorithms [27, 39, 45] may also

represent the object extent better than the single ellipse tracking approaches in these

experiments.
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(a) Delta ORB features tracking results.

(b) Delta edge features tracking results.

(c) Glider ORB features tracking results.

(d) Glider edge features tracking results.

Figure 4.6: The results of experiments with real data: (a-b) Delta wing airplane (c-d)

Glider. In the last frame of each scenario, the result of the single ellipsoidal target

tracking algorithms [90] (magenta dashed line) and [18] (yellow dashed line) are also

presented.
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Figure 4.7: An illustration of the results of the variational Gaussian mixture estima-

tion algorithm given in [8, Section 10.2] for selecting the number of sub-objects of

the plane-shaped object.

Figure 4.8: An illustration of the results of the variational Gaussian mixture estima-

tion algorithm given in [8, Section 10.2] for selecting the number of sub-objects in

the V-shape formation.

4.6 Discussions

4.6.1 The number of sub-objects

Target tracking algorithms mostly aim at resolving the uncertainty in the data in order

to make deductions about the existing targets and their states. Consequently, they

require some prior information on the structure and parameters of the underlying

models. In this respect, we assumed that the number of sub-objects is known and

kept as a design parameter which can possibly be determined by offline experiments.

In addition, our method is generic in the sense that any Gaussian mixture estimation

algorithm that is capable of estimating the number of components at one scan can be

employed for pre-processing. Various algorithms can be used for this purpose [15,

28, 57, 79]. As an example, in Figures 4.7 and 4.8, we illustrate the performance

of the VB approach given in [8, Section 10.2] on selecting the number of mixture
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Figure 4.9: An illustration of the results of the variational Gaussian mixture estima-

tion algorithm given in [8, Section 10.2] for selecting the number of sub-objects at a

given time during the motion.

components. In the VB approach in [8, Section 10.2] a Gaussian mixture model is

employed with priors allowing some of the mixing coefficients to be close to zero.

The algorithm is initialized with a mixture of 20 components which are placed on a

grid covering the extended object. In every iteration, the components with very small

mixing coefficients are removed. As the number of iterations increases, the number of

components gradually decreases, settles at a constant value, and a sufficiently good

Gaussian mixture model is attained for the plane-shaped object (see Fig. 4.7) and

for the targets in V-shape formation (see Fig. 4.8). Another approach to adjust the

number of mixture components is to start tracking with a single ellipse, collecting

the available measurements up to a given time and initiating the above mentioned

algorithm with the aggregated batch of measurements. An example of this scenario is

depicted in Fig. 4.9, where measurements are collected until t = 100, and a mixture

of 20 components is utilized as introduced previously such as in Fig. 4.7 and Fig. 4.8.

4.7 Conclusion and Future Work

In this study, a novel extended target tracking algorithm that is capable of represent-

ing a target or a group of targets with multiple ellipses while simultaneously estimat-

ing the kinematics is presented. The proposed solution involves approximating the

intractable posterior distribution with the variational Bayes method to estimate kine-

matic and extent states. We demonstrated the performance of the approach in simula-

tions and real data experiments. The results of the experiments show that the proposed
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method significantly improves the computation time while achieving better kinematic

and extent state estimation performance compared to the existing approaches in the

literature.

In this study, mild target maneuvers are handled by using a forgetting factor in the

time update. If the severity of the maneuver increases, some performance degradation

might occur. In such cases a dedicated algorithm which tracks the orientation of the

target together with other kinematic state variables as in [78] would yield a better

performance. Similarly, for severe accelerations/decelerations/turn maneuvers, the

interacting multiple model framework might be used as in [18].

Finally, in this study, we have assumed that the dynamics of the kinematic state is

linear for the sake of simplicity. If the kinematic state evolution is nonlinear, the time

update for the kinematic state can be achieved using Gaussian based solutions, such

as extended or unscented Kalman filter time updates [70].
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CHAPTER 5

EXTENDED TARGET TRACKING AND CLASSIFICATION USING

NEURAL NETWORKS

5.1 Introduction

Current advances in intelligent systems, automated vehicles and unmanned aerial ve-

hicles brought the necessity of short-range tracking systems. In contrast to regular

long-range counterparts, it is possible to acquire multiple measurements from an ob-

ject of interest at each instance using short-range sensors. Therefore, they enable

us to extract valuable information to a greater extent related to the object contour

along with the kinematics of the object, e.g., position, velocity and orientation. In

this regard, extended target/object tracking (ETT) algorithms have provided system-

atic ways to process these measurements to estimate the kinematic state of the object

together with its shape. Algorithms presuming simple shape models, such as circle,

rectangle, line, are developed in [6, 23, 24]. In this branch of ETT algorithms, the

most common approach is to utilize random matrix models, where the target extent

is represented by an ellipse [18, 42, 44, 60]. In another line of research, approxi-

mate non-parametric models are used to describe the target extent. These methods

can simultaneously track and learn various shapes without assuming predefined ex-

tents. Random hyper-surface models, as suggested in [4,5], are examples of this class.

More recently, algorithms relying on a Gaussian Process (GP) representation of the

unknown target extent have been suggested in [43, 63, 82].

Classification of objects while tracking has been a long-standing problem in the lit-

erature. Various algorithms have been proposed to tackle the identification of targets
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Figure 5.1: Block diagram of the proposed online classification algorithm.

based on their dynamic behavior, motion cues, attributes, fingerprints, etc. [3, 9, 20].

One of the early works on joint target tracking and classification (JTC) was presented

in [13]. Their method aims to compute the joint target state-class posterior density and

allows for cross-coupled feedback between state and class. In [20], authors proposed

a particle filter based method, which covers the state and feature space, designed for

each class. In [73], authors presented an approach to JTC problem based on belief

functions. In another fold of studies, [47] proposed a batch iterative optimization

algorithm which minimizes the Bayes risk involving classification and estimation er-

rors. A recursive version of this method is introduced in [49]. Recently, the authors

of [11] also tackled the extended object classification problem by relying on a Bayes

risk.

In most of the aforementioned methods, there exists a connection between the classi-

fication result and the tracking filter, e.g., the result of the classification manipulates

the tracking filter. On the contrary, the method proposed in this study considers a

rather weak coupling between the tracking and classification tasks, since the output

of the tracker is used for classification purposes while there is no established feedback

mechanism.

In this study, we consider the problem of online classification of dynamic objects

using point cloud data. A block diagram of the proposed method is depicted in Fig-

ure 5.1. At each instant, point measurements originated from an object are first pro-

cessed by GP based extended target tracker (GP-ETT) algorithm which produces es-

timates of the kinematic state and the contour of the object. After that, the estimated

contour is utilized to extract descriptive features of the object shape. These features

are then fed to a neural network (NN) model to compute the class probabilities of
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the object of interest. Note that we recently addressed the problem of tracking and

classification in [77]. The method in [77] essentially relies on a similar architecture

which exploits the outputs of GP-ETT for classification; however, it carries out the

classification by a Bayesian classifier. Therefore, the contribution of the current study

is twofold: retaining the basic structure of our previous study we hereby demonstrate

the modularity of the proposed framework, and secondly, we also improve the result-

ing classification accuracy by utilizing an NN-based classifier.

As a final note, although GP-ETT is employed as the tracker in this study, it can

be simply generalized to other ETT algorithms that are capable of generating extent

estimates of the objects.

The organization of the chapter is as follows. In Section 5.2, we discuss the feature

selection process and the details of the NN model. Subsequently, we briefly introduce

the GP-ETT algorithm in Section 5.3 to provide an insight into the contour represen-

tation that we rely on for classification. This is followed by the demonstration of the

classification performance via simulation results in Section 5.4. Finally, we conclude

our work in Section 5.5.

5.2 Object Classification

In this study, we aim at achieving object classification by using contour estimates

produced by an extended object tracker. With this purpose, the estimated contour is

to be transformed into some features to acquire a descriptive representation of the

object shape. Thereafter, an NN-based classifier will perform the classification task

regarding these features. In this section, the details of the selected features and the

classifier architecture are discussed.

5.2.1 Feature Selection for Contour Representation

In literature, studies on shape classification mostly rely on two different interpre-

tations of the object shape. These interpretations are embodied by either region-

93



based descriptors [41] or contour-based descriptors [46], [10]. Considering substan-

tial amount of empirical evidence, an object can be described as a combination of

a set of regions or may be a single body. These regions might include some holes

inside. Region-based descriptors make use of all information constituting the shape

including the holes or several disjoint regions. On the other hand, contour-based de-

scriptors consider the characteristic shape features extracted from the contour of an

object while ignoring what is inside the contour. In this study, we naturally direct

our attention to the utilization of the contour-based descriptors since we make use of

contour estimates obtained by the tracking algorithm and none of the shapes consist

of any holes or disjoint members.

There are various contour descriptors proposed in the literature. The most com-

mon ones are the Fourier Descriptors (FD), [66, 83], and Curvature Scale Space

(CSS), [54, 55].

FD consist of the Fourier coefficients of 2-D shapes which can be represented in terms

of different shape signatures, such as the contour coordinates expressed as complex

numbers or the radial distance between the contour and the object center, [83]. FD

are robust to rotation and affine transformation, while being efficient in terms of com-

putation. CSS, on the other hand, considers the inflection points as descriptors which

represent the location of change in the direction of the curvature. The contour is con-

volved with multiple Gaussian kernels with different standard deviations, also called

as width, to smoothen the contour. The inflection points are calculated for different

Gaussian kernels and used as descriptors. One of the main advantages of CSS is that

it is noise invariant since the characteristic inflection points remain available after

filtering with large width kernels, while other points resolve.

In addition to these prominent descriptors, there are also numerous geometric fea-

tures with various levels of complexity, [86], [87], [75]. These features are basically

employed to map object contours into some descriptive representations. Selecting a

proper set of features among numerous alternatives is of paramount importance for

classification performance. In this regard, we restrict our scope to the simple geomet-

ric features to be able to form a basis for computationally efficient and fast operation.
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The following set of six features are chosen to be respected by the classifier: elon-

gation [87], rectangularity [86], circularity [86], solidity [86], compactness [75], and

area. Note that this particular group of features is not hand-crafted to optimize the

resulting classification performance. Instead, it is empirically observed to be suffi-

cient for the proof of concept. However, for a specific application, it can be selected

to account for any prior knowledge or can be learned in an automated fashion by

employing various tools, such as convolutional neural networks, autoencoders.
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Figure 5.2: Visualization of the parameters used in the feature extraction process. The

solid red curve represents the contour of the object. The minimum bounding circle

and rectangle are plotted in green and yellow, respectively. Major and minor axes

of the minimum bounding rectangle are denoted by l1 and l2. The blue dashed line

indicates the convex hull of the object.

Elongation is uniquely defined as the ratio of the major and minor axes of the mini-

mum bounding rectangle (which are denoted as l1 and l2 in Fig. 5.2). Rectangularity

is the ratio of the object area to the area of the minimum size rectangle that encloses

the contour. In Fig. 5.2, rectangularity can be computed as the object area to the area

encapsulated by the orange contour. On the other hand, circularity is related to the

ratio of the object area to the area of the minimum confining circle, and it is basi-

cally used to measure the similarity of the object of interest to a circle. The minimum

bounding circle is illustrated by the green line in Fig. 5.2, and the circularity is calcu-

lated as the ratio of the object area to the area enclosed by the green contour. Solidity
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is an indicator of the shape being convex or concave. It is defined as the ratio of the

object area to the area of the convex hull. The convex hull of the shape is represented

by the blue line in Fig. 5.2. Lastly, compactness measures the contour complexity

versus the enclosed area. The value of compactness increases with increasing shape

complexity. The expression to calculate the compactness is given as [75]

C = 1− 4πa

p2
, (5.1)

where a and p are the area and the perimeter of the shape, respectively.

The computed features of the object contour are then passed to the NN-based classi-

fier. The classifier architecture is revealed in the following subsection.

5.2.2 Classifier Architecture

In this study, we realize object classification by a naively deep feedforward NN. A

typical NN model is basically a collection of special processing units, called neu-

rons, which are grouped into different layers, such as input, hidden and output layers.

Specifically, in a feedforward NN, there exist weighted connections between these

layers while there is no connection between neurons within the same layer. A simple

feedforward NN consisting of one input, one hidden and one output layer is depicted

in Fig. 5.3.

In vector form, the outputs of the neurons in the hidden layer can be computed as

follows.

a = g
(
WT

i x + bi
)

(5.2)

a , [a1 . . . am]T represents the output vector of the hidden layer; x , [x(1) . . . x(Ni)]T

indicates the input vector of the network; Wi is the input weight matrix; bi , [b1 . . . bm]T

denotes the bias vector; g(·) is the activation function. Note that if the NN model has

multiple hidden layers, the output of kth hidden layer can easily be calculated simi-

ilarly via replacing x in (5.2) by the output of the (k − 1)th layer.

Besides, the output of the network is obtained by

ŷ = WT
o a + bo (5.3)
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Figure 5.3: A simple neural network including one input layer, one hidden layer and

one output layer.

where ŷ , [ŷ1 . . . ŷNo ]
T is the output vector; Wo is the output weight matrix and bo

is the bias vector.

The standard loss function used in the training procedure to optimize the parameters

of an NN is given in (5.4).

J(θ) =
1

N

N∑
i=1

(
y(i) − fθ(x(i))

)2
(5.4)

There are N training points and y(i) denotes the ground truth for the ith input x(i).

The function fθ(x(i)) is the output of the NN for the corresponding input, and it is

parametrized by θ which comprises of the weights and the biases of the model.

In this study, we construct a naively deep NN consisting of 2 hidden layers with re-

spectively 16 and 8 neurons. This specific architecture was empirically observed to

be sufficient regarding the classification performance obtained for training and vali-

dation data sets. The activation functions are selected as hyperbolic tangent sigmoid

function in the hidden layers and softmax function in the output layer.
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5.3 GP-ETT

First introduced in [82], GP-ETT is an effective way of tracking dynamic objects with

unknown shapes. It is able to jointly estimate the kinematics and the extent of the

object by using point measurements. The suggested NN-based object classification

scheme basically processes the contour estimates produced by this algorithm.

In the formulation of GP-ETT, the contour of an object is represented by a radial

function r = f(θ) which is to be modeled by a GP. The output of the radial function is

the distance between the center and the contour at the specified polar angle. A typical

shape described by radial function is shown in Fig. 5.4. Notice that the formulation

implicitly assumes that the shape of the object is star-convex1.

A noisy observation of the object contour represented by the radial function can be

described as

zk,l = xck + p(θk,l)f(θk,l) + ek,l, (5.5)

where xck is the center position of the target at time instant k, {zk,l}nkl=1 indicate the

measurements collected at time k, {θk,l}nkl=1 are the polar angles of the source points

on the contour that originate the corresponding measurements, ek,l ∼ N (0, R) de-

note i.i.d. Gaussian noise with zero mean and covariance R, and p(θk,l) is an orien-

tation vector defined as p(θk,l) ,

cos(θk,l)

sin(θk,l)

T .

The core idea of GP-ETT is to facilitate modeling of the unknown radial function

f(·) in (5.5) by a GP, i.e., f(θ) ∼ GP
(
µ(θ), k(θ, θ′)

)
where µ(·) is the mean function

and k(·, ·) is the covariance function. By doing so, one can establish a probabilistic

representation of the extent whose inherent spatial characteristics are conveniently

encoded by the covariance function. In this study, the GP is specified with the zero

mean function and the following covariance function, which is obtained by modifying

the squared exponential kernel.

k(θ, θ′) = σ2
fe
−

2sin2
(
|θ−θ′|

2

)
l2 + σ2

r (5.6)
1 A set S(x) is called star-convex if each line segment from the center to any point is fully contained in S(x),

where x denotes the position of a point.

98



1

−1 0 1

−1

0

1

θ
r

x-coordinate
y
-c

oo
rd

in
at

e

(a) Star-convex target shape

1

0 π 2π
0

1

r = f(θ)

Angle θ

R
ad

ia
l

di
st

an
ce
r

(b) Radial function

Figure 5.4: An example star-convex contour described by radial function r =

f(θ), [82].

σf is the prior variance, l is the scaled length and σr essentially accounts for the

uncertainty in the mean. The covariance function is illustrated in Fig. 5.5. Being a

stationary covariance function which depends on the relative position of the inputs,

the function is plotted against the difference between the input angles, i.e., θ−θ′. The

figure reveals that the covariance function ensures perfect correlation between f(θ)

and f(θ + 2π), i.e., ρ (f(θ), f(θ′)) = 1, since they basically correspond to the same

point on the contour. Additionally, the correlation between f(θ) and f(θ′) decreases

as the angle between them increases. This characteristic essentially accounts for the

fact that radii at closer angles naturally tend to be more interrelated than the farther

sections of the contour.

0 π 2π

σ2
r

σ2
f + σ2

r

Angle Difference (θ − θ′)

C
ov

ar
ia

nc
e

Figure 5.5: The covariance function of the GP as defined in (5.6).

The standard GP regression requires batch processing of the measurements hence it
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does not apply to the online tracking and classification application due to its com-

putational complexity and sequentially available measurements. To overcome these

issues, an approximation of the standard regression was suggested to compute the

posterior recursively in [82]. In particular, this method summarizes the original GP

model at a finite number of basis inputs u =
[
u1 . . . uN

]T
, thus the posterior dis-

tribution can simply be computed by a Kalman filter regarding the following state

space model.

ck+1 = Fck + wk, wk ∼ N (0,Q), (5.7a)

zk = H(uk)ck + e, e ∼ N (0,R(uk)), (5.7b)

c0 ∼ N (0,P0), (5.7c)

where ck =
[
f(u1) . . . f(uN)

]T
is the radial function values at time k, and zk

indicates a single point measurement. Further details of the model can be found

in [82].

To be able jointly estimate the target dynamics and the contour, a unified state space

model is constructed which relies on the state vector, xk , [x̄k ck], where x̄k denotes

the object dynamics including position, velocity and orientation. GP-ETT algorithm

is simply implemented by an extended Kalman filter (EKF) considering this state

vector. The EKF infers the joint posterior of the state, p(xk|z1:k), and the updated

mean of the contour ĉ is delivered to the classification scheme as the contour estimate.

As GP-ETT recursively updates the posterior of the state, it thereby refines the con-

tour estimate due to the accumulation of information in time. In contrast, instant

point measurements can only delineate the shape partially, and they get sparse due

to occlusions or increased distance between the object and the sensor. Consequently,

GP-ETT provides a more reliable basis to perform classification compared to instant

measurements.

100



5.4 Simulations and Results

In this section, the performance of the proposed algorithm is demonstrated through

some simulation experiments. Throughout simulations, objects from the following

shape classes are taken into consideration: circle, triangle, rectangle and plus. To

form a labeled data set, first we simulate dynamic scenarios of random sized objects

from each class. The initial orientation of each object is randomly selected from

a uniform distribution between 0 and 2π. At each instant of the simulations, point

measurements are originated from random points on the object contour with an ad-

ditive Gaussian noise whose standard deviation is set to 0.02. Subsequently, these

point measurements are processed by the GP-ETT to obtain corresponding contour

estimates. Contour estimates are maintained at fifty basis angles which are evenly

spaced between 0-2π. Some typical examples of the contour estimates from each

class are exhibited in Fig. 5.6. The resulting data set consists of 10000 contour esti-

mates per each shape class, and it is divided into training and test sets by the ratios

of 80% and 20%, respectively. The training set is further split into two by the same

ratios, 80% and 20%, to attain training and validation sets.

To be able to assess the performance of the proposed algorithm in a comparative

manner, we consider another classification method from our previous work, [77].

This baseline algorithm is based on a Bayesian classification scheme and is denoted

as ‘BC’. Different from the proposed method, BC makes use of both the contour

estimate and the associated covariance matrix, which essentially carries the local un-

certainty information along the contour estimate. In particular, BC applies Unscented

Transform (UT) to the outputs of GP-ETT to adopt a probabilistic representation

in the feature space. Subsequently, the classification is achieved by the following

Bayesian classifier which regards this probabilistic description of the feature.

Pr(r = i|f) =
p(f |r = i)p(r = i)∑M
j=1 p(f |r = j)p(r = j)

(5.8)

where f is the feature vector; r ∈ {1, . . . ,M} is the class index, and p(f |r = j)

is the likelihood of observing the feature f from an object in class-j. The posterior

probability, Pr(r = i|f), can simply be computed for each class once the sufficient
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Figure 5.6: Typical contour estimates produced by GP-ETT. (Contour estimates are

plotted in blue while red crosses represent point measurements.)

statistics of the class distributions are available. To this end, the feature distribution

of each class is approximated to be Gaussian, i.e., p(f |r = i) ≈ N (f ;µi,Σi), and

the mean, µi, and the covariance matrix, Σi, are determined by means of a supervised

learning scheme using the labeled training data. For further details, see [77].

Additionally, we also implemented a variant of the proposed method which employs

an NN having the same architecture; however, this time the NN is trained and tested

directly on the contour estimates rather than the features extracted from these esti-

mates. The original method is denoted as ‘NN-feature’ and ‘NN-contour’ stands for

the variant.

All of the algorithms were implemented in MATLAB 2018a; in particular, we used

Deep Learning Toolbox for NN-feature and NN-contour. Since the NN model is a

rather shallow one, we optimized the network parameters by Levenberg-Marquardt

method, which provides a fast but computationally expensive optimization scheme

combining the gradient descent algorithm with Gauss-Newton method. The training
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procedure is stopped when the validation accuracy does not increase for the following

20 consecutive epochs. The loss function values of NN-feature at each epoch are

demonstrated for both training and validation sets in Fig. 5.7. The training and test

of the models were performed on a computer with an Intel Core i7-6700HQ CPU

without using parallel programming.
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Figure 5.7: The performance curves of the proposed model (NN-feature). The net-

work parameters are set to be the values satisfying the best performance in the vali-

dation set.

The results obtained by the methods are presented in Table 5.1. NN-feature is ob-

served to outperform the other algorithms in the accuracy rate. Specifically, the dif-

ference in the accuracy rates of NN-feature and BC is mainly due to the test scenarios

including irregular contour estimates generated due to insufficient sampling of the

objects. Some typical classification outputs produced at these instants are depicted in

Table 5.2. NN-feature can handle these challenging scenarios more robustly. Even

though NN-contour has a higher accuracy rate compared to BC, the execution time per

object is significantly higher than the others. Particularly, NN-contour operates more
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slowly compared to NN-feature because the former processes fifty contour points

while the latter one considers only six features. This characteristic might render NN-

contour inconvenient for object classification in real time.

Table 5.1: Classification results on the synthetic data set in terms of accuracy rate and

the execution times for each shape.

Classifier
Accuracy

Rate

Execution Time

(ms/object)

BC 0.94 0.57

NN-feature 0.99 1.80

NN-contour 0.97 2.55

A common problem encountered during the training phase of an NN is over-fitting

to the training data. This leads to degradation in the generalization capabilities of

the NN to other data sets. With this in mind, we briefly examined the effect of L2

regularization on the performance of NN-feature and NN-contour. For both of the

NN-based algorithms, regularization did not improve the accuracy rate of the corre-

sponding model.

It can be concluded that utilization of an NN in the classifier yields more robust per-

formance especially for irregular contour estimates, which is frequently encountered

in real-world scenarios when the tracked object is occluded by its surroundings. How-

ever, the simplicity of the Bayesian classifier shows its strength at the execution time

by being approximately three times faster than the proposed method.
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Table 5.2: Some of the results that NN shows superior performance against Bayesian

approach.

Ground Truth:

Circle

Bayesian:

Plus

NN:

Circle

Ground Truth:

Plus

Bayesian:

Circle

NN:

Plus

Ground Truth:

Plus

Bayesian:

Rectangle

NN:

Plus

Ground Truth:

Plus

Bayesian:

Rectangle

NN:

Plus

Ground Truth:

Triangle

Bayesian:

Rectangle

NN:

Triangle

Ground Truth:

Triangle

Bayesian:

Plus

NN:

Triangle

Ground Truth:

Rectangle

Bayesian:

Plus

NN:

Rectangle

Ground Truth:

Rectangle

Bayesian:

Triangle

NN:

Rectangle
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5.5 Conclusion and Future Work

Classifying objects based on their extent estimates is still at very early ages in the

ETT literature. In this study, we propose to combine a well-known deep learning

algorithm with a GP based extended target tracker to classify the type of dynamic

objects. To this end, various shape features and different structures of NNs are ex-

amined. The performance of the suggested algorithm is comparatively demonstrated

against a Bayesian classifier. NN-based classifier shows superior performance com-

pared to the Bayesian classifier. As future work, the algorithm will be tested on real

data sets considering several applications such as identification of biological cells and

annotating agents in urban driving environment.

106



CHAPTER 6

CONCLUSION AND FUTURE WORK

Target tracking is an emerging topic with the recent developments in sensor technol-

ogy and autonomous vehicles. The earlier algorithms, which are capable of repre-

senting the target with a single point, gave their place to more comprehensive solu-

tions with which one can also gather information such as the shape of the target and

heading angle. Researchers proposed various solutions to estimate the extent of the

target with respect to the measurements. Some simple approaches denote the target’s

shape with a predefined simple shape such as a circle, rectangle, and stick. On the

other hand, more complex solutions include representing the extent with a random

hyper-surface model, an ellipsoid using a random matrix model, or a non-parametric

Gaussian process model.

In the scope of this thesis, we have proposed two novel extended target tracking al-

gorithms on random matrix models. In our first work, we aimed to solve the com-

putation of the orientation problem while simultaneously estimating the extent of

the object with a novel model and inference. The proposed solution utilizes appro-

priate priors, does not rely on multiplicative noise terms or pseudo-measurements,

and is easy to implement. The second contribution incorporates a novel approach

representing a target’s extent or a group of targets with multiple ellipsoidal shapes.

The suggested algorithm has low computational complexity and does not require any

clustering, partitioning, mixture reduction, and merging steps. We have utilized the

well-known variational Bayes inference technique in both studies to achieve the de-

sired outcomes. In the result sections of the studies, we showed the performances

and capabilities of the methods through simulations and real data experiments. Ex-
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perimental results demonstrate that the proposed solutions significantly improve the

tracking performance and the accuracy in estimating the extent of the target.

In another fold of study, we have presented that the output of the extended target

tracking algorithms could be used as a base to further research purposes such as the

classification of the targets. We have modeled a deep neural network on top of a

Gaussian process-based extended target tracker to classify targets based on their ex-

tent information. We compared the performance of our solution against a Bayesian

classifier.

In the future, we intend to combine our two extended target tracking algorithms to

obtain an approach that can approximate the orientation while representing the extent

with multiple ellipses. Additionally, we aim to leverage our work to incorporate the

estimation of the orientation’s derivative. On the classification side, we aspire to

elevate our algorithm into 3D real-life applications. On a broader vision, we hope

that our research will serve as a base for other works in the extended target tracking

community.
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.1 Appendix

.1.1 Derivation of Variational Updates

In this appendix, we are going to derive the iterations which would calculate the

(i+1)th iterates of the distributions qz
(
z1:Mk
k

)
, qr
(
r1:Mk
k

)
, qx(xk), qX(X1:L

k ), qπ
(
π1:L
k

)
from their corresponding ith iterates.

.1.1.1 Calculation of q(i+1)
z (·)

The density q(i+1)
z (·) is given as [8, Ch. 10]

log q(i+1)
z

(
z1:Mk
k

)
= E\z

[
log p(·|Yk−1)

]
+ c\z (.1)

where c\z denotes any constant term(s) with respect to the variables z1:M
k . The joint

log-distribution in the expectation above is given as

log p(·|Yk−1)

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
+

L∑
`=1

rj,`k logN
(
zjk; H`xk, sX

`
k

))
+ c\z, (.2a)

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
− 1

2

L∑
`=1

rj,`k
(
zjk −H`xk

)T (
sX`

k

)−1( · ))+ c\z. (.2b)

Taking the expectation of both sides, we get

E\z [log p(·|Yk−1)]

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
− 1

2

L∑
`=1

rj,`k
(
zjk −H`xk

)T (
sX`

k

)−1( · ))+ c\z, (.3a)
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=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
− 1

2

L∑
`=1

(
zjk −H`xk

)T
rj,`k
(
sX`

k

)−1( · ))+ c\z, (.3b)

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
+

L∑
`=1

logN
(
zjk; H`xk,

(
rj,`k
(
sX`

k

)−1)−1)
+ c\z, (.3c)

=

Mk∑
j=1

logN
(
zjk; ẑ

j,(i+1)
k|k ,P

z,j,(i+1)
k|k

)
+ c\z, (.3d)

where

ẑ
j,(i+1)
k|k ,P

z,j,(i+1)
k|k

(
R−1yjk +

L∑
`=1

rj,`k
(
sX`

k

)−1
H`xk

)
, (.4a)

P
z,j,(i+1)
k|k ,

(
R−1 +

L∑
`=1

rj,`k
(
sX`

k

)−1)−1
, (.4b)

for j = 1, . . . ,Mk. Hence we have

q(i+1)
z

(
z1:Mk
k

)
=

Mk∏
j=1

N
(
zjk; ẑ

j,(i+1)
k|k ,P

z,j,(i+1)
k|k

)
. (.5)

.1.1.2 Calculation of q(i+1)
r (·)

The density q(i+1)
r (·) is given as

log q(i+1)
r

(
r1:Mk
k

)
= E\r [log p(·|Yk−1)] + c\r (.6)

where c\r denotes any constant term(s) with respect to the variables r1:Mk . The joint

log-distribution in the expectation above is given as

log p(·|Yk−1)

=

Mk∑
j=1

L∑
`=1

rj,`k

(
log π`k + logN

(
zjk; H`xk, sX

`
k

))
+ c\r, (.7a)
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=

Mk∑
j=1

L∑
`=1

rj,`k

(
log π`k −

1

2
log |2πsX`

k|

− 1

2

(
zjk −H`xk

)T (
sX`

k

)−1( · ))+ c\r, (.7b)

=

Mk∑
j=1

L∑
`=1

rj,`k

(
log π`k −

1

2
log |2πsX`

k|

− 1

2
Tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

+ c\r. (.7c)

Taking the expectation of both sides, we get

E\r [log p(·|Yk−1)]

=

Mk∑
j=1

L∑
`=1

rj,`k

(
log π`k −

1

2
log |2πsX`

k|

− 1

2
Tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

+ c\r, (.8a)

=

Mk∑
j=1

L∑
`=1

rj,`k log exp
(

log π`k −
1

2
log |2πsX`

k|

− 1

2
Tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

+ c\r, (.8b)

=

Mk∑
j=1

L∑
`=1

log

((
exp

(
log π`k −

1

2
log |2πsX`

k|

− 1

2
Tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T)))rj,`k )

+ c\r,

=

Mk∑
j=1

L∑
`=1

log
((
γ
j,`,(i+1)
k|k

)rj,`k )+ c\r, (.8c)

where

γ
j,`,(i+1)
k|k ,

γ̃
j,`,(i+1)
k|k∑L

`=1 γ̃
j,`,(i+1)
k|k

, (.9a)

γ̃
j,`,(i+1)
k|k , exp

(
log π`k −

1

2
log |X`

k|

− 1

2
Tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

, (.9b)

for j = 1, . . . ,Mk, ` = 1, . . . , L. Hence, we have

q(i+1)
r

(
r1:Mk
k

)
=

Mk∏
j=1

L∏
`=1

(
γ
j,`,(i+1)
k|k

)rj,`k . (.10)
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Note that the expression above corresponds to the following probabilistic characteri-

zation

P
q
(i+1)
r

{
rj,`k = 1

}
= γ

j,`,(i+1)
k|k (.11)

for j = 1, . . . ,Mk, ` = 1, . . . , L.

.1.1.3 Calculation of q(i+1)
x (·)

The density q(i+1)
x (·) is given as

log q(i+1)
x

(
xk
)

= E\x [log p(·|Yk−1)] + c\x (.12)

where c\x denotes any constant terms with respect to the variable xk. The joint log-

distribution in the expectation above is given as

log p(·|Yk−1)

=

Mk∑
j=1

L∑
`=1

rj,`k logN
(
zjk; H`xk, sX

`
k

)
+ logN

(
xk; mk|k−1,Pk|k−1

)
+ c\x, (.13a)

=
L∑
`=1

Mk∑
j=1

rj,`k logN
(
zjk; H`xk, sX

`
k

)
+ logN

(
xk; mk|k−1,Pk|k−1

)
+ c\x, (.13b)

= −1

2

L∑
`=1

Mk∑
j=1

rj,`k
(
zjk −H`xk

)T (
sX`

k

)−1( · )
+ logN

(
xk; mk|k−1,Pk|k−1

)
+ c\x, (.13c)

= −1

2

L∑
`=1

Tr

((
sX`

k

)−1 Mk∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ logN
(
xk; mk|k−1,Pk|k−1

)
+ c\x. (.13d)

Taking the expectation of both sides, we get

E\x [log p(·|Yk−1)]
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= −1

2

L∑
`=1

Tr

((
sX`

k

)−1 Mk∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ logN
(
xk; mk|k−1,Pk|k−1

)
+ c\x, (.14a)

= −1

2

L∑
`=1

Tr

((
sX`

k

)−1( Mk∑
j=1

rj,`k

)

×
∑Mk

j=1 r
j,`
k

(
zjk −H`xk

)(
·
)T∑Mk

j=1 r
j,`
k

)

+ logN
(
xk; mk|k−1,Pk|k−1

)
+ c\x, (.14b)

= −1

2

L∑
`=1

Tr

((
sX`

k

)−1( Mk∑
j=1

rj,`k

)

×
(∑Mk

j=1 r
j,`
k zjk∑Mk

j=1 r
j,`
k

−H`xk

)(
·
)T)

+ logN
(
xk; mk|k−1,Pk|k−1

)
+ c\x, (.14c)

= −1

2

L∑
`=1

Tr

((
sX`

k

)−1( Mk∑
j=1

rj,`k

)(
u`k −H`xk

)(
·
)T)

+ logN
(
xk; mk|k−1,Pk|k−1

)
+ c\x,

=
L∑
`=1

logN
(
u`k; H`xk,

(
Λ`
k

)−1)
+ logN

(
xk; mk|k−1,Pk|k−1

)
+ c\x, (.14d)

= logN
(
u1:L
K ; H1:Lxk,Λ

−1
1:L

)
+ logN

(
xk; mk|k−1,Pk|k−1

)
+ c\x, (.14e)

where

u`k ,

∑Mk

j=1 r
j,`
k zjk∑Mk

j=1 r
j,`
k

, (.15a)

Λ`
k ,
(
sX`

k

)−1 Mk∑
j=1

rj,`k , (.15b)

u1:L
k ,

[
(u1

k)
T (u2

k)
T · · · (uLk )T

]T
, (.15c)

H1:L ,
[

HT
1 HT

2 · · · HT
L

]T
, (.15d)
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Λ1:L , blkdiag(Λ1
k,Λ

2
k, . . . ,Λ

L
k ). (.15e)

for ` = 1, . . . , L. Hence we have

q(i+1)
x (xk) = N

(
xk; m

(i+1)
k|k ,P

(i+1)
k|k

)
, (.16)

where

m
(i+1)
k|k =P

(i+1)
k|k

(
P−1k|k−1mk|k−1 + HT

1:LΛ1:Lu1:L
k

)
, (.17a)

P
(i+1)
k|k =

(
P−1k|k−1 + HT

1:LΛ1:LH1:L

)−1
. (.17b)

.1.1.4 Calculation of q(i+1)
X (·)

The density q(i+1)
X (·) is given as

log q
(i+1)
X

(
X1:L
k

)
= E\X [log p(·|Yk−1)] + c\X (.18)

where c\x denotes any constant terms with respect to the variables X1:L
k . The joint

log-distribution in the expectation above is given as

log p(·|Yk−1)

=

Mk∑
j=1

L∑
`=1

rj,`k logN
(
zjk; H`xk, sX

`
k

)
+

L∑
`=1

log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

)
+ c\X, (.19a)

=
L∑
`=1

(
Mk∑
j=1

rj,`k logN
(
zjk; H`xk, sX

`
k

)
+ log IW

(
X`
k; v

`
k|k−1,V

`
k|k−1

))
+ c\X, (.19b)

=
L∑
`=1

(
− 1

2

( Mk∑
j=1

rj,`k

)
log
∣∣X`

k

∣∣
− 1

2
Tr

((
X`
k

)−11

s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

))
+ c\X. (.19c)
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Taking the expectation of both sides, we get

E\X [log p(·|Yk−1)]

=
L∑
`=1

(
− 1

2

( Mk∑
j=1

rj,`k

)
log
∣∣X`

k

∣∣
− 1

2
Tr

((
X`
k

)−11

s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

))
+ c\X, (.20a)

=
L∑
`=1

log IW
(

X`
k;

Mk∑
j=1

rj,`k ,
1

s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

)
+ c\X,

=
L∑
`=1

log IW
(
X`
k; v

`,(i+1)
k|k ,V

`,(i+1)
k|k

)
+ c\X, (.20b)

where

v
`,(i+1)
k|k ,v`k|k−1 +

Mk∑
j=1

rj,`k , (.21a)

V
`,(i+1)
k|k ,V`

k|k−1 +
1

s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T
, (.21b)

for ` = 1, . . . , L. Hence, we have

q
(i+1)
X

(
X1:L
k

)
=

L∏
`=1

IW
(
X`
k; v

`,(i+1)
k|k ,V

`,(i+1)
k|k

)
. (.22)

.1.1.5 Calculation of q(i+1)
π (·)

The density q(i+1)
π (·) is given as

log q(i+1)
π

(
π1:L
k

)
= E\π [log p(·|Yk−1)] + c\π (.23)

where c\π denotes any constant terms with respect to the variables π1:L
k . The joint

log-distribution in the expectation above is given as

log p(·|Yk−1)
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=

(
Mk∑
j=1

L∑
`=1

rj,`k log π`k

)
+ logD

(
π1:L
k ; {α`k|k−1}L`=1

)
+ c\π, (.24a)

=

Mk∑
j=1

L∑
`=1

rj,`k log π`k +
L∑
`=1

(α`k|k−1 − 1) log π`k + c\π, (.24b)

=
L∑
`=1

( Mk∑
j=1

rj,`k + α`k|k−1 − 1

)
log π`k + c\π. (.24c)

Taking the expectation of both sides, we get

E\π [log p(·|Yk−1)]

=
L∑
`=1

( Mk∑
j=1

rj,`k + α`k|k−1 − 1

)
log π`k + c\π. (.25)

Hence we have

q(i+1)
π

(
π1:L
k

)
= D

(
π1:L
k ;
{
α
`,(i+1)
k|k

}L
`=1

)
(.26)

where

α
`,(i+1)
k|k , α`k|k−1 +

Mk∑
j=1

rj,`k , (.27)

for ` = 1, . . . , L.

.1.2 Expected Values Required for Iterations

The expected values required in the previous subsections can be calculated as

(sX`
k)
−1 ,EX

[
(sX`

k)
−1]

=
(
v
`,(i)
k|k − ny − 1

)(
sV

`,(i)
k|k
)−1

, (.28a)

xk ,Ex

[
xk
]

= m
(i)
k|k, (.28b)

rj,`k ,Er

[
rj,`k
]

= P
q
(i)
r

{
rj,`k = 1

}
= γ

j,`,(i)
k|k , (.28c)

log π`k ,Eπ
[

log π`k
]

=ψ
(
α
`,(i)
k|k
)
− ψ

( L∑
`=1

α
`,(i)
k|k

)
, (.28d)
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log
∣∣X`

k

∣∣ ,EX

[
log
∣∣X`

k

∣∣]
= log

∣∣V`,(i)
k|k

∣∣− ny log 2

−
ny∑
d=1

ψ

(
v
`,(i)
k|k − ny − d

2

)
, (.28e)

zjk ,Ez

[
zjk
]

= z
j,(i)
k|k , (.28f)(

zjk −H`xk
)(
·
)T

,Ez,x

[(
zjk −H`xk

)(
·
)T ]

=
(
z
j,(i)
k|k −H`m

(i)
k|k
)(
·
)T

+ P
z,j,(i)
k|k

+ H`P
(i)
k|kH

T
` , (.28g)

for j = 1, . . . ,Mk, ` = 1, . . . , L where ψ(·) denotes the digamma function (i.e., the

logarithmic derivative of the Gamma function or polygamma function of order zero.).

.1.3 Calculation of δ and ∆

In Section 3.3.5, we introduced the update formulas for the orientation distribution as

below.

θ̂
(`+1)
k|k = Θ

(`+1)
k|k

(
Θ−1k|k−1θ̂k|k−1 + δ

)
, (.29)

Θ
(`+1)
k|k =

(
Θ−1k|k−1 + ∆

)−1
, (.30)

Here, the variables δ and ∆ are derived from the expectation in (.31).

−1

2

mk∑
j=1

E\θk
[
(a− bθk)T (sX)−1(a− bθk)

]
, (.31)

where δ and ∆ are denoted as

δ ,
mk∑
j=1

Tr
[
E
q
(`)
X

[
(sXk)

−1]E
q
(`)
x ,q

(`)
Z

[
abT
]]
, (.32)

∆ ,
mk∑
j=1

Tr
[
E
q
(`)
X

[
(sXk)

−1]E
q
(`)
x ,q

(`)
Z

[
bbT
]]
, (.33)

and

a = (T
θ̂
(`)
k|k

)T (zjk −Hxk)− (T ′
θ̂
(`)
k|k

)T (zjk −Hxk)θ̂
(`)
k|k, (.34)
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b = −(T ′
θ̂
(`)
k|k

)T (zjk −Hxk). (.35)

When the a and b variables are substituted into (.32) and (.33), we obtain the δ and ∆

variables as

δ =

mk∑
j=1

Tr

[
sX−1k (T ′

θ̂
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k|k

)T
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Tr
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where
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)(
·
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= E
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x ,q
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[(
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)(
·
)T], and sX−1k = E

q
(`)
X

[(sXk)
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.1.4 Proof of Lemma 1

In this section we will give the proof of Lemma 1 to calculate E
q
(`)
θ

[
(sTθkMT Tθk)

−1].
In the formulation, we first multiply the matrices inside the expectation. Then, the

expectation of each entry of the resultant matrix is taken. First, notice that,(
TθkMT Tθk

)−1
= TθkM

−1T Tθk . (.38)

Given

M−1 =

m11 m12

m21 m22

 ,
the expression whose expectation has to be taken becomes

Λ = TθkM
−1T Tθk

=

cos(θk) − sin(θk)

sin(θk) cos(θk)

m11 m12

m21 m22


×

 cos(θk) sin(θk)

− sin(θk) cos(θk)

 , (.39a)

Λ(1, 1) = m11 cos2(θk) +m22 sin2(θk)
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− (m12 +m21) cos(θk) sin(θk), (.39b)

Λ(1, 2) = m12 cos2(θk)−m21 sin2(θk)

+ (m11 −m22) cos(θk) sin(θk), (.39c)

Λ(2, 1) = m21 cos2(θk)−m12 sin2(θk)

+ (m11 −m22) cos(θk) sin(θk), (.39d)

Λ(2, 2) = m22 cos2(θk) +m11 sin2(θk)

+ (m12 +m21) cos(θk) sin(θk). (.39e)

Now the following trigonometric transformations are utilized and the expectations are

taken with respect to the resulting expressions.

cos2(θk) =
1 + cos(2θk)

2
, sin2(θk) =

1− cos(2θk)

2
, (.40a)

cos(θk) sin(θk) =
sin(2θk)

2
, (.40b)

E
q
(`)
θ

[cos(2θk)] = cos(2θ̂
(`)
k|k) exp(−2Θ

(`)
k|k)), (.40c)

E
q
(`)
θ

[sin(2θk)] = sin(2θ̂
(`)
k|k) exp(−2Θ

(`)
k|k)). (.40d)

By substituting the expressions in (.39) with the corresponding equalities given in

(.40) Lemma 1 is obtained.

.1.5 The parameters of the experiment in section 3.5

In this section, the parameters of the experiment given in Section 3.5 are summarized.

The prior shape estimate is apart from the true center location of the target by (20, 20)

units in the 2D coordinate frame. The extent of the ground truth object is parametrized

as diag([6, 0.5]) with 0° orientation. The mean of the prior extent ellipse parameters

for both methods are equal to the parameters of the ground truth extent. The prior

shape parameters of the proposed algorithm are selected to be α1,2
0 = [101 101]T and

β1,2
0 = [600 50]T . The prior mean of the orientation variable is taken as θ̂0 = π

2
. To

have a reasonable comparison, the mean vector and the variance of the shape parame-

ters for the EKF approach are selected to match with those of the VB algorithm. The

prior kinematic state covariance matrix is P0 = diag([300, 300, 1, 1, π
2
]). The mea-
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surement noise covariance matrix isR = diag([1, 1]). In this experiment, the number

of measurements is 10, and the measurements are generated according to a Gaussian

distribution. However, the trials with the uniformly distributed measurements yield

similar results.

.1.6 An example for the collapsing extent estimates

Here we repeated the simulation in Section 3.5 with the following set of parameters:

For VB, the prior mean of the target’s kinematic state is x̂0 = [−30 −30 1 1 π
2
]T . The

prior kinematic state covariance matrix is P0 = diag([300, 300, 1, 1, π
2
]). The shape

parameters for VB is α1,2 = [11 11]T and β1,2 = [600 50]T . For Algorithm-1, the

prior mean vector and covariance matrix of the kinematic state is r̂0 = x̂0(1 : 4) and

Cr
0 = diag([300, 300, 1, 1]), respectively. The prior mean and variance of the extent

parameters are the same for both algorithms. The number of measurements generated

from the target is 10. The measurement noise covariance matrix is R = diag([1, 1]).

A single measurement update of VB and Algorithm-1 is visualized in Figure .1.
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Figure .1: The visualization of the collapsing behavior of Algorithm-1. Blue stars rep-

resent the measurements, the solid green and red lines stand for the posterior means

of the VB and EKF updates, respectively. The solid black line indicates the median

of the true posterior, which is computed by using 1 million Monte Carlo samples.
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