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ABSTRACT

DESIGN, IMPLEMENTATION AND VERIFICATION OF A HIGH-SPEED
ON-CHIP PACKET SWITCH

Yildiz, Ayhan Sefa
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Senan Ece Giiran Schmidt

February 2022, 77| pages

In this thesis, an on-chip packet switch architecture to interconnect modules
on System on Chip (SoC) platforms at high line speeds is proposed. The particular
target application for the proposed on-chip switch is hardware accelerated cloud
computing systems. To this end, FPGA Accelerator Cards (FAC) are employed
in heterogeneous cloud data centers which implement hardware accelerators on the
FPGA. The data from the cloud user is brought on the accelerators and delivered
after processing through high-speed Ethernet Interfaces on the FAC. The FPGA has
other modules such as memory modules and SoC processor for supporting the cloud
services. To this end, a high-throughput on-chip packet switch is required to
interconnect heterogeneous interfaces. Furthermore, the switch design should be
scalable and configurable to meet the dynamically changing demands of the cloud

data center.

The contributions of this thesis are the design, verification and evaluation of an
on-chip packet switch that addresses these requirements. The switch is an

input-queued switch that operates at line rate to support scalability. The number of



ports, the data width and buffer sizes are parametrized and configurable. To the best
of our knowledge, there is no on-chip switch implementation presented together with

its systematic verification.

The on-chip switch design is implemented on the XC7Z100FFG1156-2 SoC of the
Xilinx Zyng-7000 family. The pipelined hardware architecture and the
memory organization are described in detail. The systematic verification is carried
out using the SystemVerilog infrastructure. We demonstrate that the switch supports
100% throughput at 40 Gbps line speed and a maximum latency around 1250 nsec by

making use of the statistics collected by SystemVerilog in Modelsim tool.

Keywords: On-chip switch, switch fabric arbitration, cloud computing, verification,

coverage
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0z

YUKSEK HIZLI YONGA USTU PAKET ANAHTARI TASARIMI,
GERCEKLESTIRIMI VE DOGRULAMASI

Yildiz, Ayhan Sefa
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Senan Ece Giiran Schmidt

Subat 2022 ,[77]sayfa

Bu tezde, yiiksek hat hizlarinda System on Chip (SoC) platformlarindaki modiilleri
birbirine baglamak icin bir yonga iistii paket anahtar mimarisi Onerilmistir.
Onerilen yonga iistii anahtar icin 6zel hedef uygulama, donanim hizlandirmali bulut
bilisim sistemleridir. Bu amagla, FPGA iizerinde donanim hizlandiricilar1 uygulayan
heterojen bulut veri merkezlerinde FPGA Hizlandirici Kartlart  (FAC)
kullanilmaktadir. Bulut kullanicisindan gelen veriler hizlandiricilara getirilir ve FAC
tizerindeki yiiksek hizli Ethernet Arayiizleri aracilifiyla islendikten sonra teslim edilir.
FPGA, bulut hizmetlerini desteklemek ic¢in bellek modiilleri ve SoC islemcisi gibi
baska modiillere sahiptir. Bu amacla, heterojen arayiizleri birbirine baglamak i¢in
yiiksek verimli bir yonga iistii paket anahtar1 gereklidir. Ayrica, anahtar tasarimi, bulut
veri merkezinin dinamik olarak degisen taleplerini karsilamak icin 6l¢eklenebilir ve

yapilandirilabilir olmalidir.

Bu tezin katkilari, bu gereksinimleri karsilayan bir yonga iistii paket anahtarinin
tasarimi, dogrulanmasi ve degerlendirilmesidir. Anahtar, Ol¢eklenebilirligi

desteklemek i¢in hat hizinda calisan giris tamponlu bir anahtardir. Baglanti noktasi

vii



sayisi, veri genisligi ve arabellek boyutlar1 parametrelendirilir ve yapilandirilabilir.
Bildigimiz kadariyla, sistematik dogrulamasiyla birlikte sunulan bir yonga iistii

anahtar uygulamasi yoktur.

Yonga-iistii anahtar tasarimi, Xilinx Zyng-7000 ailesinin XC7Z100FFG1156-2 SoC
iriintinde uygulanmaktadir. Boru hatti donanim mimarisi ve bellek organizasyonu
ayrintihi olarak aciklanmistir. Sistematik dogrulama, SystemVerilog altyapisi
kullanilarak gerceklestirilir. Modelsim aracinda SystemVerilog tarafindan toplanan
istatistiklerden yararlanarak anahtarin 40 Gbps hat hizinda 100% verimi ve 1250 ns

civarinda maksimum gecikmeyi destekledigini gosteriyoruz.

Anahtar Kelimeler: Yonga-iistii anahtar, anahtar orgiisii ¢ekismesi, bulut bilisim,

dogrulama, kapsam
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CHAPTER 1

INTRODUCTION

Recently, in cloud computing services, hardware accelerators (HA) are also provided
as computing resources alongside conventional cloud server resources such as
memory, processor and disk [1} 2]. For this purpose, FPGA Accelerator Cards (FAC)
cards containing pure FPGA or FPGA with a processor (SoC) are directly connected
to the data center network without connecting to servers in the cloud data center [3].
Thanks to the partial reconfiguration feature of FPGAs, it allows for instantiation of
HAs on demand. Thus, it is possible to present multiple HAs performing different
tasks on the same FPGA.

In cloud computing systems, the FACs are sophisticated system on chip (SoC)
platforms. These platforms incorporate processors, hardware accelerators, memory
modules, and high speed Ethernet interfaces to enable receiving and delivering data
from the cloud users. To this end, on-chip switching is necessary to facilitate data
exchange among all these components. On the one hand, the heterogeneity of these
components and the application characteristics indicate that rather than the switches
for classical on-chip mesh networks that interconnect identical Processing Elements,
a switch architecture that is similar to computer network packet switches in terms of
buffer organization and fabric arbitration is more suitable. On the other hand, the
on-chip communication based on the amount of data that is transmitted within one
clock cycle, namely flit, should be maintained. Furthermore, the resource constraints
of the on-chip implementation together with the advantages of high-speed data
exchange via shared memory, registers and on-chip interconnects should be taken

into consideration.



Today, with increasing computing capacity applications, the size and complexity of
designs are increasing. This makes functional verification one of the most important
parts of the design development process. The most time-consuming process in the
design development process is design verification [4]]. For design verification, the use
of universal verification methods is increasing to speed up the functional verification
and debugging process. SystemVerilog and Universal Verification Methodology
(UVM) are widely used tools developed to enable the integration of designers’ work
and system-level design verification [S]. An on-chip switch runs under different
types of workloads, with different arrival patterns and packet sizes. To this end, it
is important to have a systematic verification procedure that ensures the functional
correctness of the implementation [6]. Systematic verification refers to testing
predefined features and comparing them to a gold model or gold results. During
the testing phase, there should be functional coverage constraints that show that the
device under test is tested in all desired conditions. A result or report is then obtained
showing that all of these constraints are hit during the testing phase. In addition, the
results of the tested design and the golden results must be the same. In this way, the

design requirements are systematically verified.

In the work described throughout this thesis, we propose the design, implementation,
verification and performance evaluation of an on-chip packet switch architecture that
operates at the line rate of 40 Gbps and provides 100% throughput. The design
is configurable in terms of the number of ports, the data width, and the amount
of buffer memory. The on-chip packet switch design, implementation, verification
and performance evaluation are presented for FACs to be used in cloud computing
systems, which will enable communication between components implemented on

FPGA.

In our proposed architecture, the FPGA Accelerator Card (FAC) has two 40 Gbps
Ethernet interfaces that are implemented as IP Cores [7]. The first interface is to the
connected cloud server and the second interface is to the data center network. There
are four Reconfigurable Regions (RR) to implement hardware accelerators. There is
an SoC processor, a DDR interface and a PCle interface. Accordingly, the switch is
designed with 9 input/output ports. All lines and the fabric work at the rate of 40
Gbps.



We implement an on-chip switch design on XC7Z100FFG1156-2 SoC of the Xilinx
Zyng-7000 family as the target device and present the hardware resource and
operating frequency results. The performance of our switch architecture is evaluated
with simulations under different load scenarios. Furthermore, the design is verified
using the SystemVerilog verification environment. Scoreboard values showing
verification test results and coverage results with the ability to observe generated test

data are also displayed.

To the best of our knowledge, the work in this thesis is a first work that addresses the

design and systematic verification of an on-chip switch for SoC systems.
The rest of the thesis is organized as follows:

In Chapter [2] firstly, basic information about packet switching and on-chip packet
switches is given. The reason for the head of line blocking problem and the buffer
structure developed to solve this problem are explained. Then, basic information
about fabric arbiter methods, which are widely used in the literature, is given. Next,
the motivation for design verification to have a vital place in the design development
processes is mentioned. Past studies on validation in the literature are described.
Finally, the SystemVerilog verification process and the basics of the sub-elements

used in the verification process are explained in detail.

The proposed on-chip switch design details are described in Chapter |3} First, the
on-chip switch architecture is mentioned. Then, all sub-blocks that make up the
design and the signals that provide communication between sub-blocks are explained
in detail. It is also mentioned that the packet transmitted over the switch is separated

into flits. Finally, the pipeline structure of the blocks on the switch is shown.

Chapter {] describes the evaluation of the on-chip switch. While evaluating, the
latency and throughput of the on-chip switch performance evaluation are made. In
addition, in this section, the verification test method of the switch is explained in

detail. Then, the verification test result and test coverage information are displayed.

Chapter [5] presents the summary of the work in the thesis and the work planned for

the future.






CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this part, we give an overview and fundamentals of the on-chip packet switch and
design verification process. To this end, we present the basic and important past work
for on-chip switch arbiters in network systems. Then, we focus on SystemVerilog
verification fundamentals and relevant previous studies. Finally, we explain the

contribution of the studies within the scope of the thesis.

2.1 Packet Switching

Packet transfers have gained an important place in developing network
structures recently. Many different systems transfer data within themselves or with
other systems. In cloud networks, embedded systems, the internet, and real-time
computer systems, packet exchanges with various features, large sizes, and high
speeds are needed. In these cases, packet switches that enable all
end-points to communicate with each other are needed. Packet switches receive the
packet from an input line and send it to an output packet [8]. For the packets to be
successfully transmitted over the packet switches, there is some control information
required in the packets because packet switches can only learn to which destination
the incoming packets want to go [9]. Packet switches decide the priority or order
of the packets is sent during data exchange with their arbitrary structure, which is
a predetermined decision-making method. Ethernet switches, also known as LAN

switches, and routers are the most well-known examples of packet switches.
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2.1.1 Packet Switching Basics

The traditional packet switch structure has multiple input lines and multiple output
lines. In a NxN packet switch architecture, the packet on each input line ¢ €
(0...N —1) can send packets with any output line j € (0... N —1). The output line
to be sent is determined by the destination information in the package. Thus, a one-to-
one connection is established between the input line and the target output lines. The
dimensions of the packages to be sent may vary. For this reason, packets are divided
into smaller pieces of fixed size throughout the packet switch to ensure a deterministic
operation. Small pieces whose transmission is completed are reassembled before

being sent over the output lines.

It can be seen that more than one input line wants to send packets to the same output
line at the same time. Because packet switches can provide only a one-to-one match
between input and output ports at a time, a contention occurs in these cases. This
problem is solved by two different methods. The first method is to exchange packets
on the switch fabric faster than line speed C'. In this case, the packet switch bandwidth
should be equal to NxC value to prevent packet dropping. The fact that the packet
switch connection speed depends on the number of ports /V limits the scalability of the
switch. In addition, in cases where the connection speed is higher than the line speed,
buffers are needed to store the excess packets transmitted on the output lines. Nz N
packet switches operating at NzC' speed are called pure output queuing switches.
The second method for solving the contention occurring on the packet switch is to
store these packets in the buffers created on the input lines. In this case, the switch
operating speed can be equal to the line speed. In this case, there must be a crossbar
structure that can connect all input lines to all output lines. This crossbar connection
structure has a feature that can change dynamically. The current connection type
of the crossbar is determined by the arbiters. Due to its low complexity, crossbar
fabrics consist of Nx1 multiplexers as shown in Figure 2.1} Such switches are called

pure input queuing switches.

There are also NxN packet switches with fabric speed speed-up of 1 < S < N.
These switches are called combined input — output switches because they need

buffers on both the input and output ports. Since they operate at SzC' speed, .S unit

6



chips can be transferred on the switch at one unit line rate.

Input 0
z
X Output 0
*—
Input 1 z
ol Output 1
o—\
z
X Output N-1
Input N-1 /ﬁ

S[0] S[1] S[N-1]

Figure 2.1: Crossbar Fabric

2.1.2 Buffer Architecture

The packet switch structure described in this thesis operates at line speed C' and
includes crossbar fabric. For this reason, we focus on such packet switch structures

from now on.

The size of the packets passing through the packet switch may not be fixed. For this
reason, it is common practice to fragment packets into small units before switching
in the packet switch [9, [10]. Fixed-size units sent to the output lines need to be

reassembled on the output lines.

Packets arriving at the input lines of packet switches are stored in buffers after they
are fragmented into fixed-size units. In these buffers, they wait to be transmitted to
the output lines with the crossbar fabric. Basically, each input port can store buffers

input cells with a simple FIFO structure. However, a problem may arise with this
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simple FIFO structure. This performance-limiting problem is called head — of —
line blocking (HOL). The head-of-line blocking problem occurs when the cell
waiting to be sent at the head of the FIFO is not sent due to congestion, even if
the other packets waiting in the back can be sent. An example of this problem can be
seen in Figure[2.2] The box in the middle of the figure shows the crossbar fabric. The
boxes to the left of the crossbar fabric indicate the buffers of the input ports, and the
numbers inside the boxes indicate the output lines that the fixed-size cells want to go
to. Head cell in buffer at input port 1 wants to go to output port 2, while head cells
of buffers of input port O and input port 2 want to go to output port 0. However, the
crossbar fabric is configured to establish a connection between output port O and input
port 0 according to the arbiter decision. Output port 1 could not establish a connection
with any input port. Although there is a packet on input port 1 to be sent to output port
1, it cannot send this packet to output port 1 because the cell located at the beginning
of the buffer of input port 1 blocks these next cells. Head — of — line blocking is a

problem that seriously reduces switch efficiency.

Crossbar Fabric

Input 0 2 [ e L . 0utput o
Input 1 1|2 —— Output 1
A
blocked cell
Arbiter
input - output

0-0

1-2

2-X

Figure 2.2: An Example of HoL Blocking Problem

Special buffers are organized at the input ports to avoid the head-of-line problem.
These buffer structures are called Virtual Output Queues (VOQs). Thus, each
input port ¢ has a different VOQ; ; buffer for cells that want to go to each output port

j. Thus, even if the buffer sizes increase, the head cell of the buffer does not block

8



the cells that follow it.

To summarize, the reasons for the need for packet switches, the problems encountered
in packet switch structures, and their solutions have been explained. A switch structure
designed considering the mentioned critical buffer structure is shown in Figure [2.3]
This packet switch performs the switching operation periodically. First, the arbitrator
decides which input and output ports to match in this periodic cycle. Then, according
to this decision, the crossbar fabric establishes the physical connection between the
input and output lines. Finally, the cells stored in the VOQs on the input lines are sent

to the output lines.

Input Queue
VOQg o Reassembly
Buffer
Input 0 ——> j —> Output 0
Reassembly
vOQq,o Buffer
Input N —> Crossbar Fabric _|_> > Output 1
voQq N

Figure 2.3: Switch Buffer Organization

2.1.3 Fabric Arbiters

Nowadays, there has been a dramatic increase in the communication needs of
advanced systems. In particular, smart devices connected to each other over the
Internet and cloud computing are used a lot in daily life. These applications need
throughput and low packet delays. In this case, fabric arbiter designs have become
very important because fabric arbiter performance is a factor that directly determines
all on-chip switch performance. All of the fabric arbiters basically try to increase
efficiency by ensuring that the largest number of input-output lines are matched.
Fabric arbiters are fast and of low complexity so that packets can be sent over the

packet switch with low latency. They also ensure fairness between switching input

9



lines and prevent starvation of any input lines.

For input queued switches, an arbitration method that gives the highest priority to the
input line with the most packet in its VOQ is proposed in [11]. Also, this method
decides input-output match in a single iteration, reducing the packet delay on the
switch. It has less delay than other methods compared according to test results.
Another method providing a deadline guarantee for input queued switches is proposed
in [12]]. However, it is very difficult to give Quality—o f — Service guarantee because

the packet traffic is unknown in input queued switches [13]].

Work — conserving arbiters are the decision mechanisms where the maximum
number of input and output ports are matched. Maximum input and output line
matching can only be given as a result of iterative decisions. Iterative steps continue
until no more input and output lines can be matched [8]. A fastest method for
maximum matching is suggested in [[14]. Even if this algorithm gives confidence that

it will provide high efficiency, it is insufficient to prevent starvation on the switch.

Another method that offers maximum matching guarantee is Parallel [terative
Matching [15]. In this method, the input and output ports are matched iteratively
with random priorities. For this reason, it cannot provide a fair Quality-of-Service
between the input and output ports. [terative Round Robin Matching with Slip
(¢S L1 P) algorithms use a round robin sequence instead of [[16,[17] random selection.
Thus, fairness is achieved between the input lines of the switch. But in this case, it
causes an increase in complexity. Additionally, another method commonly used in
network switches is Dual Round — Robin (DRR) [18]. [18] iteratively ensures
that the maximum input and output lines are matched. Also, the accept state in the
1S L1 P method is not needed in DRR. Hence, D RR has low complexity and makes

matching decisions in a short time.
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2.2 Network On-chip Packet Switches

Thanks to the sharp progress in silicon technology, it has become possible for
technology users to perform many calculations on a single chip. Today broadcasts
over the Internet, cloud computing, and artificial intelligence applications are the
most popular applications that users need to use. In this period, which is called
the information age, people need high throughput in such applications. Systems
where the required application can be realized on a single silicon chip are known
as System—on—Chip (SoC'). Advanced System-on-Chips have multiple processors
and DSPs, re-programmable logic elements, high-speed communication blocks,
memory sticks, and multi-purpose I/O pins. These blocks communicate with each
other for high-capacity computational operations. This network structure on a single
chip is called Network — on — Chip (NoC'). It can also exist on multiple networks
on a single chip [19]]. In Network-on-Chips, a fixed size cell sent per unit time is

known as a flit.

Network-on-Chip (NoC) switches have several advantages and disadvantages over
computer switches. Since all units communicating in NoCs are on the same silicon
chip, networks with low packet delay and high communication speed can be
established. On the other hand, NoCs may face resource problems because they
have limited resources and also want to run other applications on the chip. There
are two basic types of on-chip switches. These are homogeneous and heterogeneous
switches. Homogeneous switches are regular network structures that enable
communication between similar computing cores. An example of these structures is
artificial neural network applications [20]. In heterogeneous switches, communication
takes place between blocks with different characteristics. For example, in a
heterogeneous network, a link is established between hardware accelerators, RAM,

and other high-speed communication interfaces.

The on-chip switch designed within the scope of this thesis has a heterogeneous
structure to ensure the communication between the reconfigurable regions in the
FPGA and between the processor, Ethernet, PCle, and DRAM blocks. It is foreseen
to be used as a hardware accelerator in cloud platforms of reconfigurable regions

created in FPGA. Other blocks are used to enable these hardware accelerators to
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perform their tasks efficiently.

These days, the need for faster computational calculations has increased in computer
architectures. For this reason, there are differences in the structures of traditional
computer architectures. Now, computer architectures that contain pure processors are
replaced by processors that also use auxiliary elements to speed up a certain process.
This creates highly efficient architectures that can successfully perform a specific
operation [21]. Components that can perform a specific task by helping processors are
generally called accelerators. Accelerators generally include graphics processing
units (GPUSs), field programmable gate arrays (FPGAs), or many processors
with smaller capacities. The most suitable type of accelerator to be used varies
according to the intended application. Two decades ago, GPUs were predominantly
used for real-time 3D rendering. Today, it is widely preferred in artificial intelligence
applications, especially thanks to its parallel processing capability [22]]. On the other
hand, FPGAs, which have the ability to perform parallel processing like GPUs, are
also used as accelerators. It offers high-performance gains to processors with its
parallel processing and superior combinational design capabilities [23]. FPGAs have
very low energy and resource consumption compared to GPUs and CPUs in image
processing, vector operations, and integer convolution operations [24]]. In addition,
FPGAs and processors can easily work together. Processors can use FPGAs as
accelerators in a task or the whole service while performing a service. After the
processors write data to the RAMs of the FPGAs that have been previously configured
for a specific application, they trigger the FPGAs to start performing their tasks. Then,
when the application is terminated on the FPGA side, the processed data in the FPGA

memory is read by the processor [25, 26].

In cloud systems, which are increasingly used in computational operations, hardware
accelerators (HA) are used as much as processors and memories [2]. Hardware
Accelerated Cloud Data Centers (HACDC) uses FPGA Accelerator Cards
(FAC's) with a processor as a hardware accelerator.Another reason why F'AC's are
preferred is that it is possible to implement multiple H As on a single FFAC with
SoC thanks to its Reconfigurable Regions (RR) [3) 27]. Such a cloud system needs
a structure that provides high-throughput communication between F'AC's. There

should also be an on-chip switch specially developed for these high-speed data
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transfers [28, 29, 30].

A hardware accelerator design with multiple reconfigurable regions called vF' PG As
is proposed in [27]. In this design, all VFPGAs have external memory, PCle interface,
and AXI-Stream interface with two neighboring VFPGAs. Data transfer between
these regions is realized with a switch applied on the FPGA. The switch arbiter
algorithm is Round Robin. In addition, the arbiter is customized to give high
bandwidth to the required VFPGA in the desired situation. These designs are
developed on the Xilinx VC709 FPGA board and its static resource consumption
is stated to be approximately equal to 7% of the FPGA.

The on-chip packet switch we designed for use in a hardware-accelerated cloud
service architecture, described in [3], is proposed in our previous work [29, 30]. This
on-chip switch is called ACCLOUD-SWITCH (Accelerated Cloud Switch). The
switch has 8 input and 8 output ports and operates at a line speed of 156.25 MHz.
Switch input and output lines are compatible with the AXI-Stream interface. The
switch provides data exchange between RRs, ARM processor, external RAM, PCle,
and 40G Ethernet interfaces in the FAC. The switch has VOQs that are used to prevent
head-of-line (HoL) blocking. The flit size on the switch is 256 bits. Flits are stored in
reassembly buffers (RAB) for reassembly before being sent to the output lines of the
switches. ACCLOUD-SWITCH design is implemented in the Xilinx XC7Z2100 SoC
programmable logic side on Vivado Design Suite 2016.4. The utilization rates of
FPGA LUT, FF, BRAM resources are approximately 7%, 8% and 30%, respectively.
The estimated power consumption is around 0.7 Watts. [31]] proposes an on-chip
packet switch architecture with capabilities of offering different bandwidth allocations
to input-output port pairs. The focus of this work is the fabric scheduler that provides
the service differentiation and its dynamic buffer memory allocation. The architecture
is evaluated with a C++ performance simulator without a systematic verification

approach.

13



2.3 SystemVerilog Verification

With the increasing computational capacity applications, the size and complexity
of the designs have been increasing recently. Functional verification is a vital part
of systems as well as the design process. Research in [4] indicates that the most
time-consuming process in a project life-cycle is design verification. Complex designs
can be developed in a short time thanks to the IP cores that are reused during the
design phase. However, even if previously designed cores are used, that design
needs to be functionally verified again. After the design processes, there should be
a universal verification process to reduce the time spent on functional verification
and debugging [32, 33]. Thus, as a result of increasing system requirements, the
need for fast and accurate designs is also increasing. SystemV erilog and Universal
Verification Methodology (UV M) have become invaluable tools for the
integration of the work of collaborating designers and to overcome a system-level
design verification [5]. SystemVerilog is a combined Hardware Description and
Verification Language (HDV L) developed for system-level verification and
design purposes. SystemVerilog standardized as IEEE 1800 in 2005 [34]. It is a
language based on Verilog extensions. SystemVerilog is used by many verification

designers to functionally test complex systems [35]].

[36]] proposes a weighted Round-robin arbiter design and verification. There are only
arbiter and crossbar fabric designs in the design. However, there is no solution to the
head-of-line blocking problem. In the verification part, the accuracy of the contention
arbiter decisions is tested using the SystemVerilog language. An architectural solution
is not proposed for application to complex systems such as Network-on-Chip,

including the arbiter described.

SystemVerilog language consists of 5 basic components as shown in Figure [2.4]
These components are testbench, assertion, coverage, Verilog, and DPI (Direct
Programming Interface). Verilog is a well-known Hardware Description Language
(HDL). Components other than Verilog will be explained in more detail throughout

this section.
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Testbench Coverage

DPI

Verilog Assertions

Figure 2.4: Components of SystemVerilog Language

2.3.1 Testbench

Testbench or verification environment provides functional verification of designs
in a simulation environment. Testbench consists of classes with different tasks for
design and verification of the design. Testbench generates predefined input signals
for designs and drives the design with these input signals. Then, it captures the design
results and compares the results with the expected values. A standard SystemVerilog

testbench consists of different sub-components, shown in Figure

DUT

Interface
Test A Y

Environment

Y

Driver Monitor

A
data E;]

] data

Generator

Scoreboard

Figure 2.5: SystemVerilog Testbench Components

Device Under Test (DUT) represents the design to be verified, developed with
one of the hardware design languages (Verilog or VHDL). It can also be called
Design Under Verification (DUV).

Inter face is an important structure that facilitates the reusability of designs. It is
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created to encapsulate the communication between blocks. Interface structures have
features such as parameters, variables, assignments, functions, and tasks. Thus, it is
suitable for testing system-level applications. Other modules in testbench can access
the information in the interface. They are especially helpful for applications with
functional coverage and assertions. The most important difference that distinguishes
the interface from other classes in testbench is that the interface is allowed to be
connected as a port. Interfaces can also be seen as a container in which all input and
output signals in the testbench are placed. Hence, DUTs are driven and monitored

through an interface.

Generator is one of the main classes of the testbench. Generator is responsible for
generating data transactions to be sent to the design to be verified. The data to be sent
to the DUT can be constrained or randomized by this class. Driver class receives
the transactions generated by G'enerator and drives the packet-level data to the DUT

through the interface.

The main purpose of verification is to obtain and evaluate the results of the DUT
driven by the input data. Monitor class is responsible for monitoring the input
data set to the DUT and the output data processed in the DUT to capture the design
behavior. Monitor achieves this by observing the activity of the DUT’s inputs and
outputs at pin level. It then sends these observed signals to the scoreboard component

to be checked.

Scoreboard is a class that checks whether the output data processed in the DUT
is in the expected behavior. It performs this control process in 2 different ways.
Scoreboard can compare the design output data with the expected output data thanks
to the golden data-set, which is the expected output data in return for the input data.
In another method, the scoreboard has a reference model with the expected behavior
of the DUT. Thus, the input data sent to the DUT is also sent to the scoreboard.
Then, it is checked whether the DUT outputs match the reference model outputs on
the scoreboard. If the design has a functional problem, it is determined in this way.
To summarize, a scoreboard is a class that compares the design results and expected

results and maintains a score based on these match results.
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Environment is a higher-level container that contains verification components
Generator, Driver, Monitor, and Scoreboard classes. It also enables easy adaptation
of a previously used verification infrastructure to advanced versions of the project or
a different project. In short, the environment makes verification more scalable and

flexible.

Test component contains the environment that can be set with different configuration
settings. Test is a program that creates an object of environment. Thus, it starts the
process of configuring testbench and creating other components. It then triggers the
drive of the input data-set to be verified for the testbench. In a design that needs to be
tested many times, it is not feasible to change the environment for each test. Instead,
there are some parameters tweaked for each test the environment has. So, it will be

much easier to be able to test a design.

The testbench components described so far are commonly used components to verify
a design. As the complexity of the design to be verified increases, new custom

auxiliary components like classes may be defined that facilitate the testing process.

2.3.2 Coverage

Coverage is a feature that is used to measure the tested functional parts or features
of the design. Thus, it can be observed under which conditions the design can be
tested from the features desired to be verified. After specifying the constraints to be
observed, it can be concluded how many of these constraints have been achieved
as a result of the test. Coverage is divided into two parts. The first of these is
code coverage. Measures how much of the code coverage design code is hit. For
a designed Finite State Machine (FSM), the measurement of whether all states are
entered can be given as an example of code coverage. F'unctional coverage measures

the realization of a user-specified design metric.

The features to be measured in the design can be specified with coverage models.
Coverage models can be implemented with the help of Covergroups. There may
be more than one different situation to be measured within the covergroups defined

by the users. In this case, a separate coverpoint variable is defined for each feature.
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Bins that can be defined within the coverpoints represent the results of the coverpoint
states. With bins, hitting only one result can be defined, or more than one result can be
defined with a single bin. An example of coverage class code is shown in AlgorithmT]

to better understand the concepts of covergroup, coverpoint, and bin.

class myCoverage ;

rand bit [2:0] CovPoint
rand bit CovPointl ;
covergroup C'ovGroup ;

coverpoint C'ov Point {

bins bl = {0};
bins 02 = {1};
bins b3 = {2:$};

}

coverpoint C'ov Point1 {
bins dl = {0};
bins d2 = {1};

}

endgroup
endclass

Algorithm 1: Coverage Class Definition Example Code

With the covergroup shown in Algorithm[I] two different coverpoints named C'ov Point
and C'ovPointl are defined to observe whether the desired situations occur during
design verification. CovPoint is assumed to be a 3-bit wide variable. Thus, the
CovPoint variable can take 8 different values. If these 8 different values want to be
observed, an example coverage group can be as in the Algorithm{I| The bin variables
defined under C'ovPoint’s coverpoint show the values that CovPoint takes. If the
Cov Point variable takes the value 0, it means that bin b1 hit. Similarly, bin b2 reports
whether a value of 1 is observed. On the other hand, b3 is defined to check whether
it hits more than one result under a single bin. If values greater than 2 and 2 are
observed, it means that bin b3 has occurred. With CovPointl, it can be checked

whether another situation has occurred.
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Another feature of covergroups is that it can be cross-checked whether the conditions
specified in the bin definitions of other coverpoints are met at the same time in a
different coverpoint. In addition, it is provided by the functions defined in
SystemVerilog with different features that can be controlled such as the minimum

number of hits to a coverpoint bin metric.

2.3.3 Assertions

Assertions are used to control the desired behavior of a system. In this way, a desired
feature of the design can be verified in the simulation process. Additionally, checking
whether a condition has occurred can also be checked using assertions. Assertions
generate errors or warnings when an undesirable situation occurs. In other words,

assertions are representations that provide functional control of a feature of the design.

234 DPI

Direct Programming Inter face (DPI) is the interface between one programming
language and another programming language. SystemVerilog Direct Programming
Interface refers to the interface between SystemVerilog and foreign programming
languages. Thanks to this interface, SystemVerilog codes can be called by C, and C
functions can be easily called by SystemVerilog. This allows users to reuse previously

produced codes. Hence, a faster code development process is possible.

2.4 Placement of the Thesis Work in the Literature

This thesis fills in the gap in the literature by addressing on-chip packet design and
verification together. The on-chip switch proposed in the thesis has generic parameters
for flexible implementation with different configurations on FPGA. Hence, the desired
number of input and output ports, buffer memory, and data width can be easily
selected with the help of defined parameters. In addition, the on-chip switch’s input
and output ports support the AXI4-Stream protocol, which is a standard interface

used in FPGAs to connect components that want to exchange data. Hence, general
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IP cores and designs with AXI4-Stream communication standards can also be flexibly
connected to the on-chip switch.  Furthermore, a verification design using
SystemVerilog infrastructure with cycle accuracy is developed to verify the on-chip
switch within the scope of the thesis. This verification design tests the on-chip switch
extensively with random input data. In addition, a detailed performance evaluation of

the design is obtained on the RTL simulator.

The works that cover verification are [36] and [37]. [36] proposes a Round Robin
arbiter design and verification of the arbiter in the SystemVerilog environment.
However, this study only verifies the contention arbiter method, a packet switch
architecture is not proposed. [37] focus on a verification methodology in the
SystemVerilog environment. However, it does not include detailed verification design

descriptions, test coverage, and scoreboard reports.

To the best of our knowledge, the design and the systematic verification using
the SystemVerilog environment of an on-chip switch with AXI interfaces is not
covered in the literature. We provide all design details together with the detailed

coverage and scoreboard reports.

Mentioned previous studies are summarized in Tables [2.1]
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CHAPTER 3

ON-CHIP SWITCH DESIGN

In this chapter we present the design of the on-chip switch in detail. The on-chip
switch is designed with N = 9 lines and all lines are designed to operate at 40
Gbps. The switch interconnects 4 Reconfigurable Regions (RR) to implement the
hardware accelerators, ARM SoC processor, DDR, PCle, and 2x 40 Gbps Ethernet
network interfaces. The switch is designed similar to a computer network switch
to interconnect such heterogeneous interfaces. The scalability is supported by the
line-speed operation of the switch without any internal speed-up. To this end, all the
buffers are at the input ports and organized as Virtual Output Queues (VOQs). We
implement Dual Roun Robin (DRR) [18]] method for the fabric arbiter to achieve full
throughput. The switching of data is carried out in flits compatible with the on-chip
interconnection infrastructure. To this end, the variable size packets that are received
on the input interfaces are carried through the fabric interleaved by the fabric arbiter

and reassembled at the switch outputs in Reassembly Buffers (RABs).

3.1 Hardware Architecture of Switch

High Speed On-chip Switch block architecture is shown in Figure for N =9
ports. The design is detailed for the input line ¢ and the output line j. The switch
fabric is designed to operate at line speed (¢ = 1) in a scalable way. The size flit,
which is the number of bits switched in one clock cycle, is selected as 256 bits. The

reason for this is that it is desired to develop a structure compatible with the 40 Gbps

IP Core [7] interface which is 256 bit wide.
Here, we first provide an overview of the blocks, then explain the on-chip switch
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design in detail in the rest of this chapter.

In order to prevent the head of line blocking, virtual output queues are created at each
input i € (0...8) to increase data output and prevent data loss. The virtual output
queue block at input port ¢ is named as VOQ,. VOQ; is partitioned into 9 VOQ; ; regions

for output port j € (0...8) to stores the flits that are destined to output port j.

VOQ Controller; module controls packets stored in VOQ;. To this end, VOQ
Controller; writes the flits arriving at input 7, destined to output j to VOQ; ;. In
addition, VOQ; sends the information to Arbiter module that the input line 7 has
data ready to be sent to which output lines by empty_status_i signal. Crossbar
Fabric block is a basic crossbar structure that connects each input line to all output

lines with a multiplexer.

Arbiter module decides the one-to-one connection configuration for Crossbar
Fabric and sets the selection inputs of the multiplexers. VOQ Controller;
block ensures that the data stored in VOQ; ; is transmitted to the Crossbar Fabric
input ports according to the contention arbiter decision. The arbiter algorithm used
in the design is a well-known algorithm as the Dual Round Robin (DRR) approach in
the literature [18]. Arbiter uses the DRR approach with a maximum of 3 iterations

to increase switch efficiency in a decision-making phase.

Decision-making within the switch and data transmission over the crossbar fabric is
implemented with a pipeline method. Switching is accomplished with fixed size cells
to increase pipeline throughput and to make configuration changes often enough to
determine the appropriate configuration for packet arrival. The time spent calculating
the connection configuration and switching cells is what we call operation cycle
(op_cycle). We select an operation cycle of 14 clock cycles for both achieving
a high pipeline efficiency and frequent enough fabric arbitration to closely track
the incoming data traffic. Hence, each cell is 14 flits, 14 x 256/8 = 448 Bytes.
To this end, the configuration of the fabric during op_cycle,, stays constant and is
updated in op_cycle,_;. During an op_cycle up to 448 Bytes are switched between
the connected input/output port pairs. We provide detailed operation of the pipeline

design in Section[3.1.§]
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In some rare cases, there may be no flit left to send from VOQs. However, Crossbar
Fabric’s input and output ports are still connected. In order to control this situation,
with the help of a bit in the VOQ flit structure, the information of whether that
packet is valid is transmitted across the switch. When a valid flit is not observed

at Crossbar Fabric input, this flit is then ignored by Crossbar Fabric.

Flits delivered from input line ¢ to output line j are stored at the reassembly buffers
as named RAB; for output port j which is partitioned into regions RAB;; where
i € (0...8). To this end, the flits arriving from input ¢ are stored in RAB,; to be

reassembled into the original packet.

RAB Controller; block controls RAB; and directs the flits from input port ¢ of
the Crossbar Fabric module to be stored in RAB;; region. The module that
reassembles the flits in the RAB; is RA Scheduler; block. RA Scheduler;
module receives the information that the last flit of a packet has reached RAB; by
last_flit_info_j signal fromRAB Controller;. Itis possible that more than one
RAB;; have complete packets and are ready to go out of port j. For these reasons, RA
Scheduler; selects the next packet to be transmitted with a Round Robin approach
and transmits the reassembled packet to output line j with appropriate packet format

and timing.
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3.1.1 VOQ Controller

VOQ Controller; receives the packets arriving at input ¢, converts them to the
flit format that we show in Table [3.1} writes the flits in VOQ; ; and sends them to
Crossbar Fabric according to the decision of Arbiter. In Figure the

interface signals of VOQ Controller; for input port ¢ € (0...8) are shown in

detail.
clk ———— > | 260 bit_,, VOQ_packet_i
rst ——>»
€« 9bit  full_status_i
< 9bit empty_status_i
s_axis_tdata_j — 256 bit__,| | 1bit__ write_en_i
s_axis_tkeep_i — 32bit__ |_4bit 5 write_add_i
s_axis_tid_i — 4ot ) VOQ | 260bit_,, VOQ_data_in_ij
s_axis_tdest j — 4bit ) |_1bit 5 read_en_i
s_axis_tlast_j —_1bit ] Controlle Fj |4bt ,read_add_i
s_axis_tvalid_i ___1bit <260bit___yOQ_data_out_j
s_axis_tready_i <« 1hit |
<« 1bit  match_trigger
1Pt match_valid_i
4bit select_in_i

Figure 3.2: VOQ Controller Block Diagram

Input data of the on-chip switch is in AXI4-Stream standard. VOQ Controller
also supports AXI4-Stream standard communication. Thus, the source and destination
port information for the flits is obtained with a successful AXI4-Stream

communication.

The successfully received packets from input line ¢ destined to output j are written
to the region VOQ; ; as a VOQ flit thanks to VOQ Controller;. The destination
region VOQ; ; is determined by s_axis_dest_i signal value. VOQ flits have 260-bit
length data. It contains AXI4-Stream data, last and valid signal information as shown
in Table [3.1} Moreover, if there is not enough space in the destination region VOQ; ;,
this situation is indicated by pulling s_axis_ready_i signal into logic low signal level

according to AXI4-Stream protocol.
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Table 3.1: Bit Field of VOQ Flits

259 | 258:257 | 256 255:0

valid | reserved | last data

The rising edge of the match_trigger signal indicates the start of a new match period.
At the start of a match period, the select_in_t signal is updated and displays the
current match until the next match period. When match_valid_z signal is logic high,
it means that there is a valid match for input port . In this case, VOQ Controller;
reads the flits stored in the corresponding region of the VOQ; based on the destination
id info in select_in_1 signal. Then, the flits are sent to the Crossbar Fabric. We
note that the fabric ports stay connected and switching goes on during the op_cycle.
Hence, if there are no more real flits to send, a fixed flit is sent to Crossbar
Fabric with the valid bit set to 0. Hence, Crossbar Fabric can ignore this

flit.

3.1.2 Virtual Output Queue

In a traditional Xilinx Block RAM (BRAM) resource, there are two signals that
indicate a BRAM is full and empty. Additionally, the depth of BRAMs is interpreted
as 2’s power. If we use a BRAM for each virtual output queue, it will consume BRAM
resources that are the power of 2, greater than the packet depth to be specified for the
VOQ. This limits the depth of each virtual output queue to 2’s power and leads to an

inefficient memory organization.

A special VOQ architecture is developed to increase resource efficiency and have
flexible virtual output queue depth. The VOQ architecture designed is shown for
the input port i € (0...8) in Figure with separate VOQ; ; regions allocated for
each output port j € (0...8). VOQ;; depths can be easily changed with the help
of a parameter located in the top module of the switch design. Furthermore, the

information that each VOQ; ; region is full and empty can be sent to other blocks
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in switch module by 9-bit empty_status_i and full_status_i signals. In short, all
VOQ; ;s can be implemented in a single Block RAM for an input port : which provides

more efficient resource consumption thanks to the VOQ architecture in Figure[3.3]

VOQ;
Data
Addr .
clk > 012 tiiseeeeeinn caanaens 259 260 bit > VOQ_data_out i
rst — > :’
. VOQ; .
, 0 |_9bit __, empty_status_i
. . 1 bit (1) i
write_en_ij ! —> 9 bit » full_status_i
write_add_j —260bit :
voQ_data_in_i — 40| : VOoQ; 4
(r-.1)
read_en_i 1—b"t>
read_add_i L
vVoQ;;
0
1
. VOQ; g
(P.-1)

Figure 3.3: Virtual Output Queue Architecture

Although the application running and the data produced on Reconfigurable Regions
are under the designer’s control, it is assumed that there is no such control in data
communication made from other interfaces. In traffic under 95% maximum load,
according to the simulator results [30], the VOQ size is 16 flits on lines connected
to RRs, and 512 flits on other lines. Hence, VOQ; ; region size is reserved 16 flit for
i€ (0...3)and5121liti € (4...8). Moreover, these sizes for VOQs are in a generic

structure. They can be adjusted via a parameter easily.
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3.1.3 Crossbar Fabric

Crossbar Fabrichas NxN port switch structure. In this thesis, we implement a
crossbar fabric with N = 9. Block diagram of Crossbar Fabric can be seen in
Figure The fabric is capable of connecting all input ports ¢ € (0. .. 8) to all output
ports j € (0...8) with multiplexers. The multiplexer select inputs of Crossbar
Fabric are determined by Arbiter module matching decision. Input and output

ports of Crossbar Fabric operate at line speed 148.5MHz.

clk— >
rst —— >

9 bit
_ i "% 5 RAB_enable
match_trigger — 9 5
match_valid g—b't_>
select — 3001 5 264 bit RAB_packet_0
. —)264 b’_t RAB_packet_1
| Crossbar Fabric [zt | orpo et
VOQ_packet_0 M) ﬁﬁb RAB_packet_3
260 bit 264 bit - -
VOQ_packet_1 250 b : RAB_packet_4
VOQ_packet_2 260 bt 264 b’,t RAB_packet_5
VOQ_packet_3 Tb’" 264 bit RAB_packet_6
VOQ_packet_4 ——L> 264 bit RAB_packet_T
260 bit 264 bit - -
VOQ_packet_5 260 bit RAB_packet_8
VOQ_packet_6 260 bit
VOQ_packet_7 !
260 bit

VOQ_packet 8 —— >

Figure 3.4: Crossbar Switch Block Diagram

Crossbar Fabric ensures that the flits stored in the virtual output queues are
transmitted to the target reassembly buffers according to arbiter decision. Crossbar
Fabric input and output ports connection are configured according to the select
signals that have matching information as a result of Arbiter decision. Crossbar
Fabric configuration continues until the rising edge of the match_trigger signal
indicates the next match arrives. Crossbar Fabric input ports support data
format in VOQ flit standard. The bit field of VOQ flits can be seen in Table
Output ports are connected to RABs. RAB flit width is 264 bits. The reason why the
RAB flit width differs from the VOQ flit width is due to the fact that the flits going
to the reassembly buffers also have input port information. The bit field of RAB Flits
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is shown in Table[3.2] Crossbar Fabric also adds the input port id information
to the 260-bit input data before transferring input flits to output ports. Hence, the
Crossbar Fabric output port width is 264 bits.

Table 3.2: Bit Field of RAB Flits

263:260 | 259 | 258:257 | 256 255:0

source id | valid | reserved | last data

All input and output ports of Crossbar Fabric may not be matched at each
match. To this end, the RAB_enable signal has been added to indicate the matched
ports. Each bit of the 9-bit RAB_enable signal indicates whether the data on the
corresponding output line is valid or not. In addition, the RAB_enable signal
indicates that there are no more valid flits at the output ports when the flits to be
sent from the VOQs are finished. In short, it is used to notify RAB Controller

when there are no valid flits on the output ports.

3.1.4 Arbiter

It is mentioned in the previous sections that packets from the on-chip switch input
ports are stored in VOQs. Arbiter decides an one-to-one input/output port
connection configuration. Crossbar Fabric configuration is updated after
Arbiter decides the matching status of the input and output ports. The input and

output ports of Arbiter module used in the design are shown in Figure [3.5]

The signal request_in_i indicates whether there are packets on the VOQ; of input
port ¢ to be sent to the output ports. request_in_i is a 9-bit signal and each bit
corresponds to the regions of the VOQ;. For this reason, empty_status_i signal,
which shows the emptiness information of VOQ; regions, is used as the request_in_z
signal of Arbiter. If there is no flit stored in the j region of the VOQ; (VOQ; ;),
the request_in_i[j] bit is equal to the logic low level. If there is at least one flit

to be sent in VOQ; ;, request_in_i[j] signal is at logic high level. Thus, Arbiter
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Figure 3.5: Arbiter Block Diagram

obtains the information to which output ports the input ports want to send flits. After
Arbiter has made a matching decision, matching information must be sent to
the relevant blocks in the on-chip switch to make other blocks ready for new flit
transfer. Matching information is transmitted with a 36-bit select signal. For each
input port, the information to which output port it can send packets includes 4-bit
output port id information. Since there are 9 input ports in total, the select signal is
36-bit. Each bit of the 9-bit match_valid signal indicates whether there is a valid
match for the input lines. If the i** bit of the match_valid signal is at the logic
high level, it means that the input line ¢ is deserved to send packets as a result of
Arbiter decision. After Arbiter block has decided which input and output lines
will transfer data, Crossbar Fabric is reconfigured to allow flit transfer. This
configuration remains unchanged until Arbiter block makes its next decision. Each
new decision result of Arbiter block is indicated by match_trigger signal to other

blocks. Hence, other blocks in the switch can prepare themselves for the new match.

Arbiter used in this study is Dual Round Robin (DRR) [18] with a maximum
of 3 iterations. Arbiter notifies other blocks for new match information in every

op_cycle (14 clock cycles). The algorithm can be seen in detail in Figure

Arbiter starts from Request state first after initial reset. In the Request state, the

information that the input ports have flits to send to which output ports is instantly
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received and saved for use in other iterations. This request information is obtained
with request_in_i signals. request_in_: signals are not sampled in each iteration.
Requests are sampled only at the start of each new round of decision-making. Also,
the next thing to do in the Request state is to specify the output ports that the input
ports want to send flits to. Input ports may want to send flits to more than one output
port at the same time. However, according to the Dual Round Robin algorithm, one
output port is selected among all the output ports to be sent. In general, all output
ports are equal. There is a request pointer to decide between the output ports in a fair
way. The pointer initially gives priority to one output port. Then, the pointer value is
updated so that the output line that the flit is sent is the least prioritized for the next
matching decision. Since there are 9 output ports in the design, the pointer value for
the input port 7 is updated as (7 + 1)mod 9 after sending a flit to the output port j.
Within 1 clock cycle, it is decided which output port all input ports want to send flits

to.

The state passed after the request information collected in Request state is Grant
state. In the Grant state, the output ports evaluate requests from input ports that want
to send flits to them. If there is only one input line that wants to send flits to an output
line, the output line accepts this request. However, if more than one input line wants
to send flits to the same output line at the same time, this causes a problem since an
output line can only be connected with a single input port at a time. This problem is
solved with the help of a pointer similar to the one used in the Request state. There
is a special grant pointer for each output port. If there is more than one input line
request for the same output line, this pointer gives priority to one line specific to that
match round. Then, in order to ensure fairness between the input ports, the grant
pointer is updated so that the input line that is decided as a result of the match has the
least priority. Since there are 9 output ports in the design, the grant pointer value is
updated as (7 + 1)mod 9 after the input port ¢ sends a flit to the output port j. Within
1 clock cycle, it is decided that all output ports agree to send flits from which input

port.

There are basically 3 steps in the Accept state. In the first step, match information
is collected based on the approvals given in the Grant state. Then, the requests of

the matching input ports are deleted from the request information collected in the
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Request state. In addition, requests to the matched output ports from input ports that
fail to match in the previous iteration are also discarded. The final step is to decide
whether a new iteration is needed. If there are unpaired input ports that want to send
flits to unpaired output ports, the efficiency of the switch can be increased with a
new iteration. Therefore, to start a new iteration, the Accept state is passed to the
Request state. Thus, an output port is determined for the input ports to which they
want to send flits again. If there is no need for a new iteration, it is passed from the
Accept state to the Match state. The design has been developed to make a maximum
of 3 iterations. After 3 iterations, it will switch from Accept state to Match state

regardless of whether there are still unmatched ports.

The match_trigger signal that notifies other blocks that there is a new match is driven
in Match state. On the rising edge of the match_trigger signal, the information
contained in the match_valid and select signals are sampled by other blocks.
Another task of the Match state is to ensure that the match rounds are completed at
the same time. As a result of one or two iterations, the lines that want to send flits can
be determined. In these cases, the timing of the decision rounds after three iterations
differs. However, such a situation is not desired for the switch design to work in a
deterministic way. In addition, if the matching round is completed as a result of one
or two iterations and the information that there is a new match is reported to the other
blocks, less time will be allocated for the flit transfer that took place as a result of
the previous match. This causes an unfairness between the input lines. The value
of period_counter, which is reset at the beginning of the match round and increases
with each clock cycle that passes in the match, is checked to ensure that each match
round is completed in an equal amount of time. When period_counter is 10, the

W ait state is passed from the Match state.

As aresult of the decisions made by Arbiter, it takes time for the flits stored in the
VOQs to arrive at the Crossbar Fabric. At the same time, the fact that the read
requests sent in the previous matching round are not terminated also causes errors
in the value of the request signals collected from the VOQs. That’s why Arbiter
waits for packet reading from VOQs to start based on the current decision result
before starting a new round of decision making. Since these processes take 4 clock

cycles, the W ait state controls the period_cycle value to reach 14. After the value of
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period_cycle reaches 14, the Request state is returned to start the new match round.
In this section, Arbiter working cycle is explained. More detailed information can

be found in Section [3.1.8] where the pipeline working cycle of the switch is explained.

3.1.5 Reassembly Controller

Reassembly controller for each output port j € (0...8) named RAB Controller;
basically performs two tasks. The first of these tasks is to send flits from Crossbar

Fabric with source port ¢ to reassembly buffer RAB, ;.

The other main task is to inform RA Scheduler; how many flits are in the packets
coming from Crossbar Fabric and the last flit of the current packet has arrived.
In Figure the input and output signal interfaces of RAB Controller; are

shown in detail.

clk — «—25T__RAB_full_status_j
rst , 1Ot RAB_write_en_j
RAB b, RAB_write_addr_j
| 204Dt ,RAB data_in_j
RAB . 264 bit C t || .
_packet_j —=2"—> ontro erj .
RAB_enable_j— 10t )] 4Dy 1ast flit_info_j

—— 85 fiit_length_j
1Dty a5t flit_info_en_j

Figure 3.7: RAB Controller Block Diagram

RAB Controller runs at line speed. Thus, each flit coming from Crossbar
Fabric is sent to the reassembly buffers with the same speed. RAB_packet_j
signal represents flit data from Crossbar Fabric. As shown in Table[3.2] bits
between 260 and 263 of the RAB_packet_j flit indicate which input port the flit
comes from. The id information of the input port in these bits is transferred to
the RAB_write_add_j signal in order to determine the destination region in RAB;.

Although the reassembly buffers are implemented as Block RAM, it is sufficient to
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send only the input port id information as a write address. The reason for this is that
the read and write pointers are stored in specially designed reassembly buffers. This

structure is explained in more detail in the Reassembly Buffer (RAB) section.

RAB_packet_j is sent to be stored in reassembly buffers by signal RAB_data_in_j.
The RAB_full_status_j signal indicates the fullness status of the regions in the
output port j reserved for all input ports. Biti of RAB_ full_status_j signal indicates
fullness status for i*” region in RAB;. Thanks to a write error counter kept in the RAB
controller, the number of unsuccessful write requests to the reassembly buffers of the
flit coming from the crossbar switch is calculated in case of no space in reassembly

buffers.

256" bits of the VOQ and RAB flits show whether that flit is the last flit of the
communication packet to be sent, as can be seen in Table [3.1 and Table 3.2 The
number of flits coming from each input port 7 is kept in the corresponding part of
the packet_length vector in RAB Controller. The number of flits is increased
until the last flit arrives. When the last flit arrives, the last flit information is reported
to RA Scheduler; with the rising edge of the last_flit_info_en_j signal. RA
Scheduler; obtains all flit information about the packet sent to the RAB; by
sampling the signals last_flit_info_j and flit_length_j. The last_flit_info_j
signal indicates which input port it came from, while the flit_length_j signal shows

the number of flits the completed packet consists of.
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3.1.6 Reassembly Buffer

A packet that is passing over the switch may consist of one or more flits. However,
all flits in a packet may not pass through the switch one after the other. This is due to
changes in the connection of Crossbar Fabric input and output ports. All flits
in a packet may not exit Crossbar Fabric in the same match cycle, or a packet
may contain more flits than the clock iteration in a matching cycle. In this case,
the integrity of the packets leaving Crossbar Fabric must be preserved. The
common solution to this problem is to store the flits passing through the switch in
one area and then assemble them to form a packet. The common name given to these
storage areas is the reassembly buffer. In summary, reassembly buffers are regions

where the flits are stored after leaving Crossbar Fabric.

J
clk > Addrig i, . Data ............. 263 ‘ « 1ot RAB_read_en_j
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RAB_data_in_j _ 264 bit = RABy 1,
RAB_full_status_j <« 901 a ’
RABU,i}
8d
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Figure 3.8: Reassembly Buffer Architecture

In this study, reassembly buffers (RAB;) store the flits sent by RAB Controller.
The stored flits are sent from RAB;s with the read request of the RA Scheduler;.
It supports 264 bits of input data and output data and operates at a line rate. There

is a separate RAB;; in output port j for each input port i € (0...8). A detailed
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architectural representation showing the input and output ports and the regions where

the data is stored for output port j € (0...8) is shown in Figure 3.8

RAB;s are also specially designed to reduce resource consumption such as virtual
output queues. Xilinx FPGA Block RAM modules have 1-bit standard logic signals
for showing the full and empty status of RAMs. For this reason, if RAB;s are tried
to be implemented with a standard Block RAM, different storage resources must
be used for each RAB;;. In the RAB; architecture shown in Figure [3.8] there is
a BRAM resource divided into regions. It is named RAB; for each output port
Jj € (0...8). In RAB; structure, the regions specially reserved for the input port
i € (0...8) are called RAB,;. Furthermore, there are special write (head_i) and
read (tail_i) pointers for regions in RAB; in order to implement them for all input
ports in a single Block RAM. In addition, the relevant empty and full flags are
used for the fullness or emptiness status of the packets in the regions. The empty
(RAB_empty_status_j) and full (RAB_full_status_j) signals have a 9-bit width
to indicate the status in all regions reserved for input ports. Moreover, reassembly
buffer sizes can be changed generically, thanks to the RAM _depth parameter in the
project top module. The RAM _depth parameter is 2 or a power of 2 allows for more
efficient resource consumption. Otherwise, a minimum power of 2, which is larger

than the number in the parameter size, is already reserved for reassembly buffers.

3.1.7 Reassembly Scheduler

Packets passing through the switch may consist of one or more flits. There may also
be cases where the flits that make up the package do not pass through the switch one
after the other. In these cases, other flits are stored in reassembly buffers until the
last flit of the package arrives. After the last flit arrives, all flits must be sent to the
output ports. The structure that understands the last flit is coming and sends the flits to
the output ports is called the Reassembly Scheduler named RA Scheduler in this
design. It is explained in the Reassembly Buffer section that there are special regions
for all input ports in reassembly buffers. In the process of transmitting all the flits in
a packet sent from an input port to output ports, the last flits of the packets sent from

other input ports may also have arrived in the reassembly buffers. In short, packets
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belonging to multiple input ports waiting to be sent to output ports may be ready in
reassembly buffers. In such a case, since only one packet can be sent at the same time

on the output port, there must be a decision mechanism for the packets to be sent.

clk —> '
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1 bit . o
> m_axis_valid_j
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RAB_read_add_j « 42 | . m_axis_tid_j
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RAB_data_out_j —> RA Schedulerj 256bit_y 1 axis_tdata_j
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flit_length_j — === |

Figure 3.9: Reassembly Scheduler Block Diagram

Reassembly Scheduler is the block that sends the flits stored in the reassembly buffers
to the output ports. While providing this transmission, it should have a fair decision
mechanism for the input ports. For this decision mechanism, Round Robin arbitration
(RR) is used to prioritize all options sequentially in a loop. In addition, since the
output ports of the on-chip switch design have communication in the AXI4-Stream

standard, data should be sent to the output ports in this standard.

There are 9 Reassembly Schedulers in total, one for each output port. The detailed
block diagram of RA Scheduler; for output port j where j € (0...8) used in
the design is shown in Figure RA Scheduler; can read the packets in the
desired region of RAB; with the signals RAB_read_en_j and RAB_read_add_j.
The first 256-bit data piece of the 264-bit data in RAB_data_out_j signal is the data
information to be used in AXI4-Stream communication. The RAB_empty_status_j
signal indicates whether there are flits stored in the RAB; regions. These signals are
between RA Scheduler; and RAB; blocks of output port j. RA Scheduler;
block needs the information that the last flit of a communication packet is also stored

in RAB; to start sending data to the output port. This information comes from RAB
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Controller of output port j. The signal last_flit_info_en_j indicates that the
last flit has arrived. While last_flit_in fo_j signal indicates the input port id of the
last flit incoming packet, flit_length_j gives information about how many flits the
last flit incoming packet consists of. The bit field diagram of a flit read from RAB;
1s shown in Table Bits 260 and 263 of the RAB_data_out_j signal carry the
input port id of the flit and are assigned to the output port m_axis_tid_j. Previously
assigned id information for output port j determines the value of m_azis_tdest_j
signal. m_axis_tlast_j signal points to the last flit of a communication packet and
takes value according to the 256" bit information, which is the last flit information in
the flit from RAB;. m_axis_tready_j and m_axis_tvalid_j signals are the
handshaking mechanism signals in the AXI4-Stream protocol. The m_axis_tready_j
signal indicates that the slave side to which the switch wants to send flits is ready to
accept new data. The m_azis_tvalid_j signal means that new valid flit data is sent by
the master side, switch here. Valid flit exchange occurs when both m_axis_tready_j

and m_axis_tvalid_j signals are at a logic high level at the same time.

A total of 9 different reassembly buffer regions RAB;,; where i € (0...8), which
are special for each input, want to send packets to output port j. Here, the Round
Robin algorithm has to be a contention arbiter used to determine 1 port out of 9 input
reassembly buffer regions. For RA Scheduler, 9 reassembly buffer regions have
equal priority. For this reason, a region is prioritized for that decision cycle with the
help of the decision pointer, which is updated after each decision. Decision Pointer
has a circular structure that will follow the port numbers sequentially. If there is no
packet to be sent in the region that the pointer prioritizes, the pointer checks whether
there is a packet to be sent for the next region to complete the circle. In this way, the
next reassembly buffer region that will send packets to the output port in one clock
cycle time is selected. Then, the decision pointer is updated according to the selected

reassembly buffer region.

A working example of RA Scheduler; for output port j can be seen in the Figure
last_flit_info_i shows how many packets whose last flit arrived in RAB; ;.
The packets that are ready for each reassembly RAB; ; region are colored differently.
In addition, the numbers written in the packets indicate how many flits the packets

consist of. In the trapezoidal shape, the arrows indicate the RAB;; regions to be
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prioritized for the decision pointer. The initial position of the decision pointer is
such that it prioritizes the RAB; ( region. This means that if there is a packet to be
transmitted to the output port j in RAB; o region during the decision-making process,
RAB;( region will win this decision cycle. When RA Scheduler;; block starts
working with the traffic shown, the packet containing 14 flits in the RAB region
is first sent to the output port j. Then, the decision pointer is updated to point to
the RAB;; region. In the next decision cycle, since there is no packet in the RAB; ;
region, RAB; , region is entitled to send a packet to the output port. Next, the decision
pointer is updated to point to the RAB, 5 region. In this way, the decision-making
mechanism continues to work until the completed packets in all of the RAB; ; regions
are sent. The order of sending the packets to the output m_awis_tdata; port is shown
time sequentially in the table in Figure [3.10] The packet on the most left is the packet

sent first.

3.1.8 Pipelined Switching Cycles

We implement the on-chip switch in a pipeline structure. It is indicated that 14
clock cycles for both achieving a high pipeline efficiency and frequent enough fabric
arbitration to closely track the incoming data traffic is selected in Chapter[3.1] On the
other hand, the speed-up of the on-chip switch is 1. It means the operating rate of the
switch is equal to the line rate. Also, the 40 Gbps Ethernet IP operates at 156.25MHz
with 256 bit flit length. For all these reasons, the pipeline structure is developed to
run only at the rising edge of the 156.25 MHz main clock. Table[3.3] Table 3.4 and
Table show the execution of the pipeline structure. The process of a packet
arriving at the input port ¢ on the on-chip switch until it goes to the output port j

is explained in detail.

In the example given, the packet arriving at the on-chip switch consists of 6 flits.
Flits are labeled £%/, where n € (1...6). Packet’s last flit is specified as *f£%7.
The numbers in C'ycle row refer to each clock cycle in the design. VOQ; ; shows the
region reserved for output port j of input port 7, while RAB;;, indicates the region
reserved for the input port ¢ of output port j. An e flag indicates whether the VOQ; ;

regions are empty, and an f flag indicates whether the RAB;; regions are full. A
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indicates the stages of the arbiter block. In the A, block, each k where k € (1...3)
value represents k' iterations. A, represents the matching state of Arbiter block

whereas Aj is represents the waiting state.

In Cycle 1, the first flit of the 6-flit packet reaches the input port ¢ of the on-chip
switch. At this time, VOQ; ; and RAB;; are empty. Therefore, e;; is 1 for VOQ; ;
and f;; is 0 for RAB;;. In Cycle 2, the VOQ Controller; block writes fi’j flit to
the corresponding VOQ; ; region. In Cycle 3, since £}” is written to VOQ; , it is now
VOQ; ; region is not empty. Thus, the value of e; ; becomes 0. In Cycle 4, A, ;, the
first stage of Arbiter block, collects the output port requests to which the flits on
the input ports want to go. In Cycle 5, output ports approve the input ports’ requests
according to grant pointers’ values in A; 5 stage. In Cycle 6, it is first checked to see
if a new iteration is needed in A; 3 stage. If a new iteration is required, the pipeline
proceeds to Ay ; stage. If not, the pipeline proceeds to the A, stage and waits here
such that the arbitration cycle is completed at the same time for each arbiter decisions.
Also, in the A, 5 stage, signal values that inform the arbiter decision to other blocks
are set. In case of a new iteration is required, the requests of the matching input ports
in the current iteration are discarded. The incoming flits are simultaneously written
to the switch to the relevant VOQ; ; regions by VOQ Controller; thanks to the

pipeline structure.

In Cycle 7, if Arbiter is in A4 stage, it waits here until the end of Cycle 13. If
Arbiter isin Ay stage, the operations performed in A, ;, A; > and A, 3 stages are
repeated sequentially in Ay 1, A5 and Ay 3 stages for unconnected ports. At the end
of the A, 3 stage, it is checked again whether a new iteration is needed. If a new
iteration is required, Az, Azo and Aj s stages are performed for the last iteration
cycle. In Cycle 13, A, stage executes and the input and output port pairs information
is forwarded to other blocks in the on-chip switch design, according to the arbiter
decision. Before starting a new arbiter matching round, it waits for 4 cycles at the
A5 stage during Cycle 14 to Cycle 17. This time is for the current match information
to be transmitted to the other blocks in the on-chip switch and for them to prepare
themselves according to the new match configuration. Because VOQ regions are
implemented in BRAM structures, flits in VOQ regions are obtained 1 clock cycle

after read requests are sent by Arbiter. Thus, Crossbar Fabric isnotupdated
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until the last flit for the previous match decision read from the VOQ reaches the
Crossbar Fabric. Also, according to the current match information, a new
flit read request is sent without updating Crossbar Fabric so that there is no
interruption between incoming flits to Crossbar Fabric. In other words, after
the matching information is sent to the blocks in the on-chip switch, 4 clock cycles
must pass before Crossbar Fabric structure is updated. VOQ empty signals are
also updated when flits are read from VOQ regions. Requests should not be collected
for the next match decision until the last flit for the previous match decision has
been removed from the VOQ region. For the reasons explained, the arbiter decision
is sent to all blocks in the on-chip switch in Cycle 13. At the end of Cycle 17,
Crossbar Fabric configuration is updated. Then, a new flit transfer through the

on-chip switch can start In Cycle 18.

In Cycle 18, fi’j reaches the updated crossbar fabric’s input port. During Cycle 19
to Cycle 24, RAB Controller; sends incoming flits to the corresponding RAB; ;
regions. In Cycle 24, Reassembly Scheduler; receives the information that
the last flit of the relevant packet has also reached the RAB; ; region. Since the output
ports are in the AXI4-Stream standard, it is assumed that the communication auxiliary
signals are valid for data transfer in order to send flit. In this case, Reassembly
Scheduler; sends a read request to RAB;; to transfer all the flits that make up the
packet to the output port. Because RABs are also implemented as BRAMs, flits can
arrive at Reassembly Scheduler; block in Cycle 26, 1 clock cycle after read
requests are sent. During Cycle 27 to Cycle 32, flits read from RAB; ; are sent from

the output ports to the destinations in accordance with the AXI4-Stream standard.

To summarize, this section describes the movement of a packet containing 6 flits
through the switch from the packet that arrives at the input ports of the switch until

the packet is sent to the output ports of the on-chip switch.
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CHAPTER 4

EVALUATION

4.1 Performance Evaluation

The on-chip switch design in this thesis has 9x9 input and output ports. In addition,
the arbiter method is the basic Dual Round Robin (DRR) [18]] with 3 iterations.
All ports are running at the line speed of 40 Gbps. We evaluate the proposed and
implemented on-chip switch for its functional correctness and performance. To this
end, we perform a systematic verification procedure. These design source codes are
generated and synthesized using the Vivado 2020.2 tool, and resource consumption
is obtained through this tool. Every sub-block is tested for functional correctness by
its own testbench in Vivado. Then, in Modelsim SE-64 10.1d, we verify the overall
on-chip switch design by a testbench using the System Verilog verification architecture.
Scoreboard and coverage reports are obtained from Modelsim SE-64 tool. We then

evaluate the throughput and latency of the switch under different traffic loads.

4.1.1 Verification of the On-chip Switch

Designs should be tested throughout the development process to verify that they
have the desired functionality. The on-chip switch design, detailed in Chapter [3]
is functionally verified. During the functional test of the switch, the sub-blocks that
compose the switch are tested one by one with their own testbenches and it is checked
whether they meet the desired function or not. However, the fact that all blocks can
achieve the desired task on their own does not mean that the overall design will work
as desired functionally. At the same time, there is a need to know whether the design

can be tested under the desired conditions. For these reasons, a verification design
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should be developed for the overall design of the switch.

The on-chip switch design is developed with Vivado 2020.2 tool. Behavioral
simulations of the sub-blocks that compose on-chip switch are performed with
testbenches created in the internal simulator in the Vivado 2020.2 tool. The tests of
the sub-blocks are achieved thanks to the signal wave-forms that are output from the
simulator. Overall switch verification test bench is developed using the SystemVerilog
verification architecture. The testbench structure developed for the switch verification
can be seen in Figure[d.1] Modelsim SE-64 10.1d is used to verify the overall on-chip

switch design and obtain coverage results.

TestBench scoreboard
mailbox [8:0]

A
RAB | sv_switch| |Scoreboard ||

mailbox [8:0]" -

Monitor —

A

Y

Generator > Driver

Interface

DUT

Figure 4.1: Switch Testbench Architecture

Thanks to Generator, the input data to be sent to the on-chip switch design (DUT)
is generated. Generator is a class of various functions in it to generate input
data. Since the on-chip switch input ports accept data by acting as AXI4-Stream
slaves, the necessary signals for this interface are generated through the functions in
Generator. s_tid, s_tdest, s_tdata, s_tkeep, s_tlast and s_tvalid are required
to provide the data generated for testing purposes in an appropriate AXI4-Stream
format. To achieve this, there are 4 functions in Generator class. get_s_tid
function prepares the previously defined identification information for each input port.
get_s_tdest is a function that generates random identification numbers that indicate
which output block the incoming data wants to go to. Since the switch has 9 input

and output ports, it randomly generates a value within 9 different port identification
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numbers. The get_s_tdata is a function that randomly generates 256 bits of data.
The task of the get_s_tkeep function is to generate random data for the keep signal,
which specifies the information of the current bytes in the data. get_packet_length
function randomly generates the total number of flit numbers in a packet to be sent to
the switch for testing purposes. The level of the s_tlast and s_tvalid signals should
be set by Driver when sending the generated flits to the DUT.

The randomly generated input data in the Generator is transmitted to the DUT by
Driver. Driver class is responsible for sending data to the on-chip switch at the
appropriate timing in a loop. A Generator class instance is created in Driver
class. s_tid, s_tdest, s_tdata and s_tkeep signals and flit length information are
generated randomly from the functions in Generator using this instance. After
s_tdest and flit length information are generated randomly once, the value of s_tdest
remains constant until all flits of that packet are sent. Flit length information is
reduced at each transmitted clock cycle. Data and keep values are generated randomly
in each clock cycle. When the flit length number to be sent is 0, s_tdest and flit length
information are generated randomly again. After the desired signals are produced,
s_tready signal at the input ports of the DUT is sampled in accordance with the
AXI4-Stream standard. If there is a valid s_tready signal, that is, if the value of
s_tready is logic high and the flit length number to be sent is greater than 0, the data
is transmitted to the DUT. In addition, the value of the s_tlast and s_tvalid signals in
each clock cycle is determined by Driver. With the help of the flit information to be
sent, appropriate values for these signals are determined. If the remaining flit length
information to be sent is greater than 0, s_tvalid signal is set as logic high, otherwise,
it is set as logic low. s_tlast signal is set to logic high while the last remaining flit is

sent. In other cases, s_tlast signal has a logic low level.

In addition, Driver sends the same data sent to the DUT to the VOQ mailbox in
the testbench. Thus, the same test data can be sent to the golden model and device
under test in the testbench for verification. It is the task of Driver to send the
incoming flits to the relevant VOQ mailbox if there is free space. Thus, the task of

the VOQ Controller block on the on-chip switch is modeled in this way.
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Mailboxes are containers used in SystemVerilog to exchange data between processes.
Mailboxes work with the first in first out method. While the process that wants to
send data puts the desired data in a mailbox, the process that wants to receive the data
can get this data from the mailbox. Mailboxes are used to model block RAMs in the
on-chip switch design. VOQ mailbox acts as virtual output queue structures used
to avoid the head of line blocking problem in the on-chip switch. Driver puts test
data generated in Generator into a container named VOQ mailbox to be sent
to sv_switch, the testbench switch model. Each input port on the on-chip switch
has a dedicated VOQ mailbox. The depth of VOQ mailboxes can be changed
with a generic parameter. In addition, the ability to check the number of flits in the
mailboxes at any time allows the differences that occur during the verification process

to be found quickly.

Packets split into flits at inputs of the on-chip switch are stored to reassembly at the
output ports. RAB mailbox, on the other hand, is used to model the structures
of reassembly buffers. RAB mailbox have the same features as VOQ mailbox.
Since the on-chip switch has 9 output ports, the verification testbench of the on-chip

switch has a total of 9 RAB mailboxes.

After the input data is processed in the DUT, the testbench needs golden results or
another verification model with the same characteristics as the on-chip switch to
check the correctness of the output data of the DUT. For this reason, sv_switch
class has been developed. The sv_switch works in coordination with the DUT in
each clock cycle. Crossbar Fabric, Arbiter (DRR with 3 iterations), RAB Controller
and RA Scheduler sub-blocks of the on-chip switch in Chapter [3] are performed in
parallel in sv_switch. Input flits received from VOQ mailbox are prioritized
with the DRR method, passed through the crossbar fabric, and stored in
RAB mailbox. Packets with all flits passed through the crossbar fabric are
reassembled and sent to the output port. On the other hand, information of dropped
flits is also obtained in sv_switch since there is no free space in the

RAB mailboxes.

scoreboard mailbox is the mailbox where the expected data from output ports

of DUT sent from sv__switch are stored. Scoreboard compares the experimental
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DUT results obtained by Mon it or and the theoretically expected results stored in the
scoreboard mailbox. As a result of the comparison, the verification score of
the DUT performance is calculated. Scoreboard also makes it possible to observe
the number of flits compared, the number of successful/failed results, the number of
flits dropped on the switch, and the contents of all flits. It then prints a summary report
containing this information and the test result to a console screen. If the verification
test result is unsuccessful, some guiding information about why the flits could not

pass through the switch may also be included in the result report.

While the verification test is in progress, the instantaneous comparison result of
sv_switch and DUT results may also be observed with the outputs printed on the
console screen. Figure #.2]shows a sample instant console output. The message with
the "SUCCESS" tag contains information that the sv_switch and DUT outputs are
consistent. The instant flit value is also displayed. The message with the "ERROR"
tag indicates a difference between the sv_switch and DUT output. Also, thanks
to this message, the output flit values of the testbench model and DUT can be seen.
Another instantaneous message is the information of the dropped flits on the switch.
It is also reported that the dropped flit goes from which input port to which output

port. In addition, the data value of this flit is also printed on the console screen.

SUCCESSED: PORT: 5->8
predicted_data:0x00000000000000000000000000000000000000000000000000000000b7366c6e when
data:0x00000000000000000000000000000000000000000000000000000000b7366C6e

ERROR: PORT: 5->8
predicted_data:0x00000000000000000000000000000000000000000000000000000000a95419¢5 when
data:0x0000000000000000000000000000000000000000000000000000000060907114

Dropped Packet: PORT: 0->8 packet
data:0x000000000000000000000000000000000000000000000000000000002a517354

Figure 4.2: Instant Console Display Messages of Verification Test

In addition, it is important to monitor whether the design can be tested with the desired
input conditions. For this reason, the desired input conditions are determined as a

coverage rule in Coverage class before the test. Also, at the end of the test, the test
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coverage results can be analyzed in detail as a report of whether each of the specified

conditions was hit.

The tested on-chip switch (DUT) and switch model of the testbench should have
exactly the same functional characteristics. However, after the model is developed
in SystemVerilog, there may be cases where there is a difference between the DUT
and sv_switch results at first. In this case, one or both of the results may be
incorrect. At this point, first of all, output values for test input data should be checked
manually. Thus, it is determined which result is wrong. sv_switch has been
developed in an object-oriented way. In addition, thanks to the SystemVerilog console
outputs, messages can be printed visually at any time. For these reasons, in case of
inconsistency between theoretical and experimental results, it is easier to first check
sv_switch model in SystemVerilog. If there is an error with the theoretical output
values in sv_switch, the verification test should be repeated after sv_switch
has been modified. On the other hand, if the output values in sv_switch are
correct, the on-chip switch design needs to be analyzed. The source of the error in the
on-chip switch may be found with the help of a simulation waveform. After the error
in the on-chip switch design is corrected, the test should be repeated. If there is
still a difference between the theoretical and experimental results, the steps described
above are repeated until the testbench model and DUT results are consistent. After
modifying the design with error, the test should be repeated with the same test input
data where the difference is found. Although Generator generates the input data
randomly, a specific seed value is used for randomness. Therefore, it is possible to

repeat a verification test with the same test input data, thanks to its own seed value.

The verification report first shows the percentage of completion of the test. A test
completion percentage of 100% means that all test data created in Generator is
processed in both the DUT and sv_switch. In the test report, T'otal Number
of Generated Input Flits represents the total number of input test flits generated in
Generator. Total Number of Tested Flits indicates the number of experimental
(DUT) and theoretical (sv_switch) output flits compared in Scoreboard. The value
of Total Number of Tested Flits is calculated by summing the values Number
of Successful Flits, Number of Failed Flits, Number of Dropped Flits, and

Number of Flits on switch. If the output value of experimental and theoretical
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results have the same data for a flit, this is considered successful. The total number of
successful flits according to the test result is indicated by the Number of Success ful
Flits. If there is a difference between the instantaneous theoretical and experimental
output results, it is evaluated as failed. Number of Failed Flits gives the total
number of different output flits between results. The value of Number of Failed
Flits must be "0". If this value is different from "0", it means that the on-chip switch
used as DUT and its verification model sv_switch designs have functionally
different characteristics. If this value is different than "0", the test fails. The Number
of Dropped Flits indicates the number of dropped flits as they pass through the
switch. Dropping of flits on the switch usually occurs when VOQ or RAB block RAMs
are full. In these cases, if a new flit is desired to be written, the desired flit is dropped
because there is no empty space. In Chapter it is explained that Reassembly
Scheduler block reassembles the packet divided into flits after the last flit of the
respective packet arrives in RAB RAM. If the last flit of a packet is dropped before
it is written to RAB RAM, other flits in the packet wait for the last flit of the following
packet to be reassembled. Number of Flits on switch displays the number of flits
remaining in RAB RAM due to the last flit dropped. There may be some flits remaining
in RAB RAM:s in the switch when the test is finished before the last flit of the following
packet arrives at the same output port. Test results are determined according to the
numbers explained in detail so far. There are two different reasons for the test result
to be determined as "FAILED". The first reason is that Number of Failed Flits
is greater than "0". The other reason is that T'otal Number of Generated Input
Flits and Total Number of Tested Flits are not equal even if Number of Failed
Flits is equal to 0. This means that more flits than expected are in the switch or
dropped across the switch. When T'otal Number of Generated Input Flits and
Total Number of Tested Flits are equal to each other and Number of Failed
Flits value equal to "0", the test result is determined as "SUCCESSFUL".

A test result of PASSFED means that the on-chip switch and its SystemVerilog
model, sv_switch, are functionally identical. However, this result does not mean
that all flits are successfully passed through the on-chip switch. Because FPGA has
a limited hardware resource, there is no unlimited block RAM for VOQ and RAB.

For this reason, there may be dropped flits while transmitting packets through the
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switch. For such a situation, some feedback is given about the flits dropping in the
switch or the flits remaining in the switch as a result of the verification test. Thus, the
shortcomings of the on-chip switch design are shown as a result of the test. Also, the
switch verification test report includes information about the remaining flit numbers

in RAB RAMs.

We perform the following experiment for the verification of a DUT, whose VOQ; ;
depth is 112 flits for j € (0...3) and 320 flits for j € (4...8) for all input ports is
evaluated. The DUT also has RAB;; regions with 113 flits depth for each input port
i € (0...8) in all output ports. While selecting the depths of VOQ; fori € (0...8)
and RAB; for j € (0...8) block RAMs, care is taken to select areas that are close to
the powers of 2 to ensure efficient FPGA resource consumption. In the verification
process, the test lasts a total of 14070 clock cycles. The experiment report printed on

the Modelsim SE-64 console as a result of the verification test is shown in Figure 4.3

Firstly, we perform the following experiment for the verification of a DUT, whose
VO0Q; ; depth is 112 flits for j € (0...3) and 320 flits for j € (4...8) for all input
ports is evaluated. The DUT also has RAB;; regions with 113 flits depth for each
input port 7 € (0...8) in all output ports. While selecting the depths of VOQ, for
i € (0...8) and RAB; for j € (0...8) block RAMs, care is taken to select areas
that are close to the powers of 2 to ensure efficient FPGA resource consumption.
Although the application running on the reconfigurable regions (RR) and the data
generated in the RR are under the designer’s control, we assume that this is not the
case in data communication made from other interfaces. According to the simulator
results we presented in [30], an average of 16.21 cell queues is observed under 95%
maximum load. For these reasons, block RAM with 2048 depth is used for each input
porti € (0...8) VOQ;. 112 of 2048 depth are allocated for the designer-controlled
RR inputs whereas 320 of 2048 depth for the other input ports. For the output ports
used in this experiment, each RAB; size is chosen to be 1024. 1024 depth is allocated
to equal regions with 113 depth for 9 output ports. In the verification process, the test
lasts a total of 14070 clock cycles. The experiment report printed on the Modelsim

SE-64 console as a result of the verification test is shown in Figure 4.3}
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100% completed!

—————————— Teat Report - -———————-

_ Total Humker of Generated Input Flits = 80075
__ Total MNumker of Tested Flits = 90075
__HNumber of Successful Flits = 80075
__ Number of Failed Flits = a
__HNumber of Dropped Flits = a
__HNumber of Flits on switch = ]

————— > Test result : PRSSED!
-R11 input £flits are transferred toc output ports succesfully.

EABE REM Flits details:

Number of Flits in BRAR BREM[ 0] ->
Number of Flits in BAB BRM[ 1] ->
Number of Flits in RAR BREM[ 2] ->
Number of Flits in BAB BREM[ 3] ->
Number of Flits in RAB BRM[ 4] ->
Number of Flits in RLB BRM[ 5] ->
Number of Flits in BELB BRM[ &] ->
Number of Flits in RAB BREM[ 7] ->
Number of Flits in RABR BREM[ B8] ->

DDDDPDDGD
DDDDPDDGD
DDDDPDDGD
DDDDFDDGD
DDDDPDDGD
DDDDPDDGD
DDDDFDDGD
DDDDPDDGD
L T N o N e N e N v N Y T i

Figure 4.3: Verification Test Report of the First Experiment

57



In this experiment, random 90075 flits are generated to create uniform traffic and
the DUT is tested with these flits. The number of flits tested is 90075. Also, all
sv_switch and DUT output flits are exactly the same. On the other hand, no flits
passing through the switch are dropped or remain in the storage areas on the switch.
Thus, when these results were evaluated, the verification test result is determined as
PASSED. In addition, the numbers of flits produced for the test are given in Table
It is observed that approximately 10000 flits are produced for each port. Thus,

each port is faced a similar traffic load.

Table 4.1: Generated Test Input Flit Numbers for Input Ports

Input Port | Number of Tested Flits
0 9864

9844

10034

10023

10242

10020

9989

9937

10122

0| NN || W=

According to the verification test result, the on-chip switch successfully forwards all
the flits from the input ports to the output ports. However, this does not give any
information about the test input data diversity. For this reason, while performing
the verification test, the Coverage test is also performed. The test data produced in
Generator is sent to the DUT over the interface. Coverage observes the test data
by sampling the input lines of the DUT in the interface. It can be observed whether
the previously defined conditions as coverage are met, or if so, how many times the
specified condition has been hit. Therefore, the coverage test result is as important as

the verification test result for the design verification process.

For this experiment, two different covergroups are defined in Coverage. These
covergroups are source_coverage and destination_coverage. There are nine

coverpoints in the source_coverage covergroup. Each coverpoint samples the
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s_axis_tid_i signal where ¢ € (0...8) when the s_axis_tvalid_i signal is logic
high. Thus, it is monitored whether any flit is sent to the input ports and if so how
many flits are sent. In destination_coverage there is a separate coverpoint for each
input line s_axis_tdest_i where i € (0...8). There are 9 bins in each coverpoint.
Each bin value represents the output port number j where j € (0...8). Thus, the
condition of sending flits to 9 different outputs for the input port 7 can be observed
thanks to the bins. Additionally, another coverpoint named cross_s_axis_tdest is
defined in destination_coverage. cross_s_axis_tdest  cross-samples
s_axis_valid_u signals. Thus, information on how many of the 9 input ports have
flit at the same time can be found. The cross_s_axis_tdest coverpoint automatically

contains as much as 2 to the power 9 bins for different conditions.

The coverage report for the covergroup source_coverage is shown in Figure [{.4]
CVP stands for coverpoint. 100% coverage is achieved for each CVP. This means
that data has been successfully driven from all input ports. The coverage report
for destination_coverage’ is shown in Figure It is observed from the 100%
coverage result that all of the s_axis_tdest_i CVPs are hit. Also,
cross_s_axis_tdest coverage is 100%. This means that the design is driven with
the test data coming in 2 to the power 9 different input conditions. More detailed
test results showing bin conditions can also be generated as a coverage report.

However, coverage information can be seen in summary in Figure @.4] and

Figure
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1'1Name Coverage |Goal |%0FGnaI |51311.IS |
:]—# fswitch_package/coverage

+ @l TYPE destination_coverage 100,0%: w0 100.0%
= F TYPE source /erage 100,0% 100.0%

Bl CVP source_coverage::s_axis_tid_0 100,0% 100 100.0%

B CVP source_coverage:is_axis_tid_1 100,0% 100 100.0% [

Bl COVP source_coverage::s_axis_tid_2 100,0% 100 100.0% [

Bl CVP source_coverage::s_axis_tid_3 100,0% 100 100.0%

B CVP source_coverage::s_axis_tid_4 100,0% 100 100.0% [

Bl CVP source_coverage:is_axis_tid_5 100,0% 100 100.0%

— Bl VP source_coverage::s_axis_tid_6 100,0% 100 100.0%

B CVP source_coverage:is_axis_tid_7 100,0% 100 100.0% [

Bl CVP source_coverage:s_axis_tid_8 100,0% 100 100.0%

;]-“ INST \fswitch_package::coverage::source_coverage 100,086 100 100.0%

-l CVPs_axis_tid 0 100,0% 100 100.0% I

+ o CVPs_axis_tid_1 100,0% 100 100.0% N

ol OVPs_ais_tid 2 100,0% 100 100.0%

+ ol CVPs_axis_tid_3 100,0% 100 100.0% DD

+ o CVPs_axis_tid_4 100,0% 100 100.0% D

ol OVP s _ais_tid_5 100,0% 100 100.0%

+ 5l CVPs_axis_tid_6 100,0% 100 100.0% DD

o CVPs axis td 7 100,0% 100 100.0% D

[+} 5 CVPs_axis_tid_& 100,0% 100 100.0% N

Figure 4.4: Coverage Report for source_coverage
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"IName Coverage |Gnal |%nfGnaI |513tus |
=@l [switch_packagefcoverage
M 7 TYPE destination_g g 100,09% 100  100.08
— Bl CVP destination_coverage::s_axis_tdest_0 100,0% 100 100.0%
B CVP destination_coverage::s_axis_tdest 1 100,0% 100 100.0%
— Bl CVP destination_coverage::s_axis_tdest_2 100,0% 100 100.0%
Bl CVP destination_coverage::s_axis_tdest_3 100,0% 100 100.0%
B CVP destination_coverage::s_axis_tdest_4 100,0% 100 100.0%
— Bl CVP destination_coverage::s_axis_tdest_5 100,0% 100 100.0%
Bl CVP destination_coverage::s_axis_tdest & 100,0% 100 100.0%
— Bl CVP destination_coverage::s_axis_tdest_7 100,0% 100 100.0%
— Bl CVP destination_coverage::s_axis_tdest_8 100,0% 100 100.0% ]
|l CVP destination_coverage::s_axis_valid_0 100,0% 100 100.0%
— Bl CVP destination_coverage::s_axis_valid_1 100,0% 100 100.0%
@l CVP destination_coverage::s_axis_valid_2 100,0% 100 100.0%
Bl CVP destination_coverage::s_axis_valid_3 100,0% 100 100.0%
— Bl CVP destination_coverage::s_axis_valid_4 100,0% 100 100.0%
|l CVP destination_coverage::s_axis_valid_5 100,0% 100 100.0%
Bl CVP destination_coverage::s_axis_valid_g 100,0% 100 100.0%
@l CVP destination_coverage::s_axis_valid_7 100,0% 100 100.0%
Il CVP destination_coverage::s_axis_valid_3 100,0% 100 100.0% |
Bl CROSS destination_roverage::cross_s_axis_tdest 100,0% 100 100.0%
;}-! INST \fswitch_package::coverage::destination_coverage... 100,0%: W00 100.0% [
++ ol CVP s_anis_tdest_0 100,0% 100 100.0% [
(-l CVPs_axis_tdest_1 100,0% 100 100.0% [
+ ol CVP s_axis_tdest_2 100,0% 100 100.0% [
-l OVPs_avis_tdest 3 100,0% 100 100.0% (I
+ ol CVPs_anis_tdest_4 100,0% 100 100.0% [
+ ol CVP s_anis_tdest_5 100,0% 100 100.0% [
+ 5l CVP s_axis_tdest_6 100,0% 100 100.0% [l
+ ol CVPs_axis_tdest_7 100,0% 100 100.0% [
-l OVPs _avis_tdest 100,0% 100 100.0% (I
+ 5l CVP s_axis_valid_D 100,0% 100 100.0% [
- CVPs_axis_valid_1 100,0% 100 100.0% [
+ ol CVP s_axis_valid_2 100,0% 100 100.0% [l
-l CVPs_axis valid_3 100,0% 100 100.0% [
+ gl OvP s_anis_valid_4 100,0% 100 100.0% [
(-l CVPs_axis_valid_S 100,0% 100 100.0% [
+ ol CVP s_axis_valid_5 100,0% 100 100.0% [
-l OVPs_axis_valid 7 100,0% 100 100.0% (I
+ ol CVP s_axis_valid_8 100,0% 100 100.0% [
[+ gl CROSS cross_s_axis_tdest 100,0% W00 100.0%

Figure 4.5: Coverage Report for destination_coverage
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The second experiment performs another verification test of the on-chip switch. In
some situations, all flits are not successfully passed through on-chip switch since
FPGA has a limited hardware resource, there is no unlimited block RAM for VOQ
and RAB. For this reason, there may be dropped flits while transmitting packets
through the switch. In this experiment, the verification test result is shown when the
Reassembly Buffer (RAB) depth is insufficient and therefore some flits are dropped.
To see the verification test result for the case of flit drops, the switch is tested with
an offered load close to 100%. As explained reasons in the previous experiment, the
depth of VOQ; ; on all input ports is 112 flits for output ports j € (0. .. 3) and 320 flits
for output ports j € (4...8). DUT also has RAB;; regions with a depth of 113 flits

for input ports i € (0...8) on all output ports. The verification test result is shown in

Figure .6

100% completed!

—————————— Test Report ————-————-

__ Totel Humber of Generated Input Flits = 14761
__ Total NHumber of Tested Flits = 14781
__HNumber of Successful Flits = 14752
__ Humber of Failed Flits = ]
__Numker of Dropped Flits = T
__Humber of Flits on switch = 2

————— » Test result : PASSED!
- Some input flits are dropped on switch. Please increase ERE RREM =zize.
- Each flit"s test history on switch can be seen on conscle prints.

EAR EREM Flits details:
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Figure 4.6: Verification Test Report for RAB with 113 flits
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During the test, 14761 flits arrive at the switch. 14752 flits are successfully transmitted
across the switch and sent to the output lines. On the other hand, 7 flits are dropped in
the switch. When more detailed information with dropped flits is examined from the
instant test console outputs, it is seen that there are flits that want to go from input port
7 to output port 3. Also, Number of Flits on Switch is 2. It shows the remaining
flits in the switch as a result of the test. There is also warning information about these
flits in the test report. In addition, it is seen in detail in which RAB regions these flits
are located. The remaining flits in the switch are the flits that cannot be sent since the
last flit of the relevant packet has been dropped. Then, these flits will be sent to the
output line when the successful last flit in the next packet, which wants to go from
the same input port to the same output port as them, arrives in RAB. The test result
is PASSED because the experimental results and theoretical results are consistent

with each other.

Since the depth of the RAB regions is limited, the dropped flit information on the
switch can be seen in Figure 4.6 To prove the accuracy of this inference, a test is
performed with different RAB depths. In the third example, the second experiment
test conditions are repeated with the same test data for RAB regions with greater
depth. This time, the switch has RAB; regions with a depth of 2048 flits, twice the
depth in the second experiment in all output ports. 2048 depth is allocated to equal
regions with 227 depth for 9 input ports. Hence, the switch has RAB; ; regions with a

depth of 227 flits for ¢ € (0. .. 8) input ports in all output ports.

This verification test result is shown in Figure 4.7 When the test is repeated with
the same traffic and input data, it is seen that all 14761 flits are successful. Number
of Failed Flits, Number of Dropped Flits, and Number of Flits on switch
values are all 0. Therefore, as a result of all these values, the verification test result is
determined as PASSED. Thus, when the switch is faced with an offered load close
to 100%, it is seen that the packages drop at the switch after a certain time due to the

limited depth of RAB.
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100% completed!
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Figure 4.7: Verification Test Report for RAB with 227 flits
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4.1.2 Performance of the On-chip Switch

The performance of the high speed on-chip switch is evaluated by keeping statistical
information in the verification infrastructure developed with SystemVerilog in
Modelsim tool. We perform the next experiments to evaluate the flit latency and
throughput performance of the on-chip switch. In this experiment, as explained in
Chapter 4.1.1} the depth of VOQ; ; is 112 flits for each output port j € (0...3) and
320 flits for for each output port j € (4...8) for all input ports is evaluated. The
switch has RAB;; regions with 113 flits depth for each input port i € (0...8) in all

output ports.

The rate of the traffic in bps arriving on the 40 Gbps input lines is called of fered
load. In other words, the rate of incoming flits divided by the line rate is calculated
as offered load. Flit latency is calculated for a flit as the difference between the time
the flit is fed from the switch input port and the time it is observed at the switch
output port. Average flit latency value is obtained by calculating the average of the
flit latency values for each flit. Average flit latency values measured under different
offered load is shown in Figure 4.8] As seen in Figure 4.8] similar average flit delay
measurements are obtained with respect to the line load. As the offered load increases,
the value of average flit latency increases as expected. In the case of offered load
above 80%, the value of average flit latency increases more. In the on-chip switch, a
pipeline structure is used for the transmission of flits over the switch. In other words,
the transmission of flits and the next matching decision are two different processes
that occur simultaneously. Dual Round Robin with 3 iterations is used as the arbiter
method of the switch. Thanks to the pipeline structure, until the decision-making
stages are completed, the transfer of the flits is made according to the matching result
of the previous decision. Therefore, a matching decision is made and the current
input-output matching continues until the next decision. For this reason, flit latency
does not increase much as the offered load increases until a certain input traffic load.
But after a certain traffic load, 80% in Figure 4.8] a dramatic increase in average flit
latency is observed as the offered load increases. The reason for this delay is the
increase in the offered load from all input ports to all output ports. Thanks to the

DRR method, when an input port is matched with an output port, the pointers are
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mutually updated with the least priority for the most recently matched port. In cases
where the input traffic load is high after an input port matches with a specific output
port, the time taken for new matching of the same ports increases. In other words,
the average flit latency of the on-chip switch increases dramatically to a large value
because of the saturation as a result of decreased matching efficiency for DRR. In
summary, as expected, the increase in average flit latency with respect to the traffic

load to the on-chip switch is seen in Figure {.§]

Average Flit Latency vs Load
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Figure 4.8: Average Flit Latency of On-chip Switch under Uniform Traffic

In the next experiment, throughput values under different load values are evaluated.
Figure [4.9] shows the throughput of an output port j with DRR under uniformly
distributed input traffic load. DRR arbiter is used with 3 iterations. Throughput is
calculated as the rate of coming out bits per second from the output port 5. Offered
load is measured as the rate of incoming bits to input ports are divided by the rate of
the full capacity of input ports, then multiplied by 100 to obtain a percentage. Under
uniform input traffic, as offered load increases the value of throughput also increases
as expected. When the offered load is about 100%, the throughput is also very close
to 40 Gbps output port j. This result shows DRR method used in the on-chip switch

is work conserving.
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Throughput vs Offered Load
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Figure 4.9: Throughput of On-chip Switch under Uniform Traffic

Finally, an experiment is conducted with different numbers of flits to observe the
number of dropped flits according to the depth of RAB. During the test, the input lines
are driven at 40 Gbps line speed under 100% offered load. All tests are repeated with
the same seed value for RAB BRAMs with depths of 512, 1024, and 2048. Thus,
designs with 3 different RAB depths are tested with the same input test loads. All
variables are the same in the designs, except for the RAB depths. For BRAM = 512
case, the switch has RAB, ; regions with 56 flits depth for each input port i € (0...8)
in all output ports. For BRAM = 1024 case, the switch has RAB;; regions with 113
flits depth for each input port i € (0. ..8) in all output ports. For BRAM = 2048 case,
the switch has RAB;; regions with 227 flits depth for each input port ¢ € (0...8) in

all output ports.

In Figure {.10] dropped flit numbers are shown according to different RAB BRAM
depths. As expected, as RAB depth increases, the number of dropped flits at the same
input load decreases. Due to the limited BRAM resource, flit drops occur after a while
under a continuous 100% offered load. According to the predicted offered load, the

appropriate RAB depth can be determined by simulations.
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Packet Drop vs RAB Depth
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Figure 4.10: Packet Drop vs RAB Depth

4.2 FPGA Hardware Implementation Evaluation

The on-chip switch design is developed in Vivado 2020.2 tool using Verilog language.
After the design verification test is successful, the codes are synthesized in the Vivado
tool by selecting the XC7Z100FFG1156-2 SoC of the Xilinx Zyng-7000 family as
the target. The design operating clock frequency is 156.25 MHz. There are available
277400 LUTs, 554800 FFs, and 755 BRAMs (36 Kb for each) in selected SoC.

As explained in Chapter [3) the switch can be easily converted to different
configurations with the help of generic parameters. The synthesis result for the switch
configuration with a VOQ depth of 2048 in each input port and a RAB depth of 1024
in each output port is shown in Table #.2] BRAM modules support two independent
18Kb blocks or a single 36Kb block of RAM [38]]. 36Kb BRAMs are 72 bits wide and
512 elements deep. 18Kb BRAMs are 36 bits wide and 512 elements deep. RAMs
with 36Kb are specified as 1 BRAM block, while BRAMs with 18Kb refer to 0.5
BRAM block. As detailed in Chapter [3.1.2] and Chapter respectively, VOQs
are 260 bits wide and RABs are 264 bits wide. According to Vivado tool synthesis
reports, 1 VOQ block consumes 14.5 BRAM resources, while 1 RAB block consumes
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7.5 BRAM resources. In total, 9 x (14.5 4 7.5) = 198 BRAMs are used for 9 input

and output ports.

Table 4.2: FPGA Implementation Results of On-chip Switch

Resource Utilization Available

LUT 47207 (17.02%) | 277400

FF 27060 (4.88%) | 554800

BRAM 198 (26.23%) 755

The target operating frequency of the on-chip switch design is 156.25 MHz. For
the synthesis of switch design, 156.25MHz is specified as the time constraint. The
synthesizer tool tries to synthesize the design so that it can operate at this frequency.
After the synthesis is completed, the design is examined by creating a timing report.
However, Vivado tool does not automatically calculate a maximum operating
frequency. In fact, it would be misleading to specify a term as maximum frequency.
Because the synthesizer tools take into account the specified timing constraints and
accordingly try to achieve the fastest design that consumes the least resources. Then,
in the timing reports produced as a result of the synthesis, it is indicated whether
there is a violation according to the entered time constraints. If it is desired to
calculate the maximum frequency value, it can be done by considering the slowest
path in the design. However, the maximum frequency value to be obtained here
shows the maximum operating frequency at which the synthesized design can be run.
However, this does not mean that the design cannot operate at higher frequencies. If
the synthesis is repeated by specifying the time constraint for a new frequency higher
than the calculated maximum frequency value, a new maximum frequency value for
the design can be obtained. This is because the synthesis tool is trying to meet the

new time constraint.

If it is desired to calculate the maximum operating frequency in the synthesized
design, Xilinx recommends a method [39] on how to calculate the maximum operating
frequency. According to this method, the maximum operating frequency is Frmaz =

1/(T —WNS). T in the equation is the target operating frequency, while W NS
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is the worst negative slack. As a result of the calculation made according to the
mentioned formula, the maximum operating frequency is calculated as
1/(6.4 — 1.95)ns = 224.71M Hz. The design is re-synthesized, specifying 224.71
MHz as the time constraint, to support the correctness of the case described above
with the maximum frequency. The calculated operating frequency for the design
synthesized  according to the method described in  [39] s
1/(4.450 — 0.090)ns = 229.35M Hz. As can be seen from the different values
calculated above, the synthesis tool tries to synthesize the design according to the
time constraint rule. Thus, different maximum operating frequencies are obtained
for different frequency values specified. In short, a maximum frequency for designs
simply indicates the maximum operating frequency of the hardware synthesized
according to the specified timing constraints. Since the clock frequency is 156.25
MHz for the synthesized on-chip switch design, it is appropriate to specify the

maximum operating frequency value as 224.71 MHz.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis proposes a complete design verification and evaluation workflow of an
on-chip packet switch to interconnect heterogeneous high-speed interfaces on a
System on Chip (SoC) platform. The design particularly addresses the requirements
of hardware accelerators implemented on an FPGA and served as a cloud computing
service by receiving and transmitting data over high-speed Ethernet interfaces. These
requirements include scalable, high-throughput interconnection, support of
heterogeneous interfaces, and low latency. Furthermore, the design should be
configurable in terms of the number of ports, buffer sizes, and data width to meet the
dynamic demands of the cloud applications and evolving hardware platforms. The
connected modules to the on-chip switch generate different types of workloads, with
different arrival patterns and packet sizes. To this end, another significant requirement
is a systematic verification procedure that ensures the functional correctness of the

implementation.

The proposed switch in this thesis addresses these requirements by a pipelined packet
switch architecture that runs at a line rate of 40 Gbps. The line rate operation provides
scalability without any internal speed-up and is enabled by implementing a fabric
arbiter that achieves 100% throughput. The on-chip switch has a Virtual Output
Queue (VOQ) organization to prevent head of line blocking problems for network
switches. Furthermore, the operation is in fixed size cycles to support the pipelined
operation. To this end segmentation and reassembly of the variable sized packets
are implemented with reassembly buffers at the switch outputs. The switch design is

parametrized and reconfigurable.
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The on-chip switch design is implemented on the XC7Z100FFG1156-2 SoC of the
Xilinx Zyng-7000 family. Pipelining is utilized to increase the efficiency of the
implementation. All design details and operation of the hardware components are
provided in the thesis. Different than previous work in the literature we perform a
systematic verification of the switch design using the SystemVerilog infrastructure.
We demonstrate that the switch functions correctly, supports 100% throughput at
40 Gbps line speed and a maximum latency around 1250 nsec by making use of
the statistics collected by SystemVerilog in Modelsim tool. Furthermore, the design
is verified using the SystemVerilog verification environment. The scoreboard and

coverage results of the verification test are displayed.

In the future work, we have both theoretical and practical studies. In the scope of
the theoretical contribution, a traffic monitoring module is planned to add the on-chip
switch that can dynamically adjust the buffer regions for virtual output queues and
reassembly buffers. One application to benefit from this contribution would be to
manage the memory of the on-chip switch efficiently. Hence, packet drops on-chip
switch due to lack of enough memory can be prevented by monitoring the traffic. The
second future theoretical contribution is adding a communication protocol to switch.
By this protocol, the information of dropped packets on the switch is collected. Then,
the block whose packet is dropped on the switch is informed about this situation. The
practical extension of this work includes testing the on-chip switch implementation on
FPGA in experimental hardware-accelerated cloud servers with real network traffic

and accelerator implementations.
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