
DESIGN, IMPLEMENTATION AND VERIFICATION OF A HIGH-SPEED
ON-CHIP PACKET SWITCH

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYHAN SEFA YILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2022

Approval of the thesis:

DESIGN, IMPLEMENTATION AND VERIFICATION OF A HIGH-SPEED
ON-CHIP PACKET SWITCH

submitted by AYHAN SEFA YILDIZ in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics
Engineering Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Şenan Ece Güran Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Cüneyt F. Bazlamaçcı
Computer Engineering, İzmir Institute of Technology

Prof. Dr. Şenan Ece Güran Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. Ali Ziya Alkar
Electrical and Electronics Engineering, Hacettepe University

Assist. Prof. Dr. Serkan Sarıtaş
Electrical and Electronics Engineering, METU

Date: 09.02.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ayhan Sefa Yıldız

Signature :

iv

ABSTRACT

DESIGN, IMPLEMENTATION AND VERIFICATION OF A HIGH-SPEED
ON-CHIP PACKET SWITCH

Yıldız, Ayhan Sefa

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Şenan Ece Güran Schmidt

February 2022, 77 pages

In this thesis, an on-chip packet switch architecture to interconnect modules

on System on Chip (SoC) platforms at high line speeds is proposed. The particular

target application for the proposed on-chip switch is hardware accelerated cloud

computing systems. To this end, FPGA Accelerator Cards (FAC) are employed

in heterogeneous cloud data centers which implement hardware accelerators on the

FPGA. The data from the cloud user is brought on the accelerators and delivered

after processing through high-speed Ethernet Interfaces on the FAC. The FPGA has

other modules such as memory modules and SoC processor for supporting the cloud

services. To this end, a high-throughput on-chip packet switch is required to

interconnect heterogeneous interfaces. Furthermore, the switch design should be

scalable and configurable to meet the dynamically changing demands of the cloud

data center.

The contributions of this thesis are the design, verification and evaluation of an

on-chip packet switch that addresses these requirements. The switch is an

input-queued switch that operates at line rate to support scalability. The number of

v

ports, the data width and buffer sizes are parametrized and configurable. To the best

of our knowledge, there is no on-chip switch implementation presented together with

its systematic verification.

The on-chip switch design is implemented on the XC7Z100FFG1156-2 SoC of the

Xilinx Zynq-7000 family. The pipelined hardware architecture and the

memory organization are described in detail. The systematic verification is carried

out using the SystemVerilog infrastructure. We demonstrate that the switch supports

100% throughput at 40 Gbps line speed and a maximum latency around 1250 nsec by

making use of the statistics collected by SystemVerilog in Modelsim tool.

Keywords: On-chip switch, switch fabric arbitration, cloud computing, verification,

coverage

vi

ÖZ

YUKSEK HIZLI YONGA ÜSTÜ PAKET ANAHTARI TASARIMI,
GERÇEKLEŞTİRİMİ VE DOĞRULAMASI

Yıldız, Ayhan Sefa

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Şenan Ece Güran Schmidt

Şubat 2022 , 77 sayfa

Bu tezde, yüksek hat hızlarında System on Chip (SoC) platformlarındaki modülleri

birbirine bağlamak için bir yonga üstü paket anahtar mimarisi önerilmiştir.

Önerilen yonga üstü anahtar için özel hedef uygulama, donanım hızlandırmalı bulut

bilişim sistemleridir. Bu amaçla, FPGA üzerinde donanım hızlandırıcıları uygulayan

heterojen bulut veri merkezlerinde FPGA Hızlandırıcı Kartları (FAC)

kullanılmaktadır. Bulut kullanıcısından gelen veriler hızlandırıcılara getirilir ve FAC

üzerindeki yüksek hızlı Ethernet Arayüzleri aracılığıyla işlendikten sonra teslim edilir.

FPGA, bulut hizmetlerini desteklemek için bellek modülleri ve SoC işlemcisi gibi

başka modüllere sahiptir. Bu amaçla, heterojen arayüzleri birbirine bağlamak için

yüksek verimli bir yonga üstü paket anahtarı gereklidir. Ayrıca, anahtar tasarımı, bulut

veri merkezinin dinamik olarak değişen taleplerini karşılamak için ölçeklenebilir ve

yapılandırılabilir olmalıdır.

Bu tezin katkıları, bu gereksinimleri karşılayan bir yonga üstü paket anahtarının

tasarımı, doğrulanması ve değerlendirilmesidir. Anahtar, ölçeklenebilirliği

desteklemek için hat hızında çalışan giriş tamponlu bir anahtardır. Bağlantı noktası

vii

sayısı, veri genişliği ve arabellek boyutları parametrelendirilir ve yapılandırılabilir.

Bildiğimiz kadarıyla, sistematik doğrulamasıyla birlikte sunulan bir yonga üstü

anahtar uygulaması yoktur.

Yonga-üstü anahtar tasarımı, Xilinx Zynq-7000 ailesinin XC7Z100FFG1156-2 SoC

ürününde uygulanmaktadır. Boru hattı donanım mimarisi ve bellek organizasyonu

ayrıntılı olarak açıklanmıştır. Sistematik doğrulama, SystemVerilog altyapısı

kullanılarak gerçekleştirilir. Modelsim aracında SystemVerilog tarafından toplanan

istatistiklerden yararlanarak anahtarın 40 Gbps hat hızında 100% verimi ve 1250 ns

civarında maksimum gecikmeyi desteklediğini gösteriyoruz.

Anahtar Kelimeler: Yonga-üstü anahtar, anahtar örgüsü çekişmesi, bulut bilişim,

doğrulama, kapsam

viii

To my family

ix

ACKNOWLEDGMENTS

Before anything else, I would like to express my deepest thankfulness to my advisor

Prof. Dr. Ece Güran Schmidt who has always supported me with her vast knowledge

and motivation.

I would like to thank ASELSAN for its technical material support and for its

permission to attend the classes.

I also thank TÜBİTAK for their support with TÜBİTAK-BİDEB M.Sc. scholarship.

Also, I would like to thank my mother Aysel, father Şeref, and brother Onur Yıldız

who have always been by my side and supported me. I would like to thank my wife

Seda Nur Yıldız who is with me during my intense thesis process and give peerless

support.

I am thankful to my friends, Alper Yazar, Murat Akpınar, Emre Şahin, Ahmet Anıl

Dursun, and Ahmet Faruk Akyüz for their support throughout the development and

the improvement of this thesis.

This thesis was supported by the Scientific and Research Council of Turkey

(TUBİTAK) [Project Code 117E667-117E668].

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ALGORITHMS . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND PREVIOUS WORK 5

2.1 Packet Switching . 5

2.1.1 Packet Switching Basics . 6

2.1.2 Buffer Architecture . 7

2.1.3 Fabric Arbiters . 9

2.2 Network On-chip Packet Switches 11

2.3 SystemVerilog Verification . 14

xi

2.3.1 Testbench . 15

2.3.2 Coverage . 17

2.3.3 Assertions . 19

2.3.4 DPI . 19

2.4 Placement of the Thesis Work in the Literature 19

3 ON-CHIP SWITCH DESIGN . 23

3.1 Hardware Architecture of Switch 23

3.1.1 VOQ Controller . 27

3.1.2 Virtual Output Queue . 28

3.1.3 Crossbar Fabric . 30

3.1.4 Arbiter . 31

3.1.5 Reassembly Controller . 36

3.1.6 Reassembly Buffer . 38

3.1.7 Reassembly Scheduler . 39

3.1.8 Pipelined Switching Cycles 43

4 EVALUATION . 49

4.1 Performance Evaluation . 49

4.1.1 Verification of the On-chip Switch 49

4.1.2 Performance of the On-chip Switch 65

4.2 FPGA Hardware Implementation Evaluation 68

5 CONCLUSION AND FUTURE WORK 71

REFERENCES . 73

xii

LIST OF TABLES

TABLES

Table 2.1 Summary of Related Previous Work 21

Table 3.1 Bit Field of VOQ Flits . 28

Table 3.2 Bit Field of RAB Flits . 31

Table 3.3 On-chip Switch Pipeline Stages - 1 46

Table 3.4 On-chip Switch Pipeline Stages - 2 47

Table 3.5 On-chip Switch Pipeline Stages - 3 48

Table 4.1 Generated Test Input Flit Numbers for Input Ports 58

Table 4.2 FPGA Implementation Results of On-chip Switch 69

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Crossbar Fabric . 7

Figure 2.2 An Example of HoL Blocking Problem 8

Figure 2.3 Switch Buffer Organization . 9

Figure 2.4 Components of SystemVerilog Language 15

Figure 2.5 SystemVerilog Testbench Components 15

Figure 3.1 Switch Architecture . 26

Figure 3.2 VOQ Controller Block Diagram 27

Figure 3.3 Virtual Output Queue Architecture 29

Figure 3.4 Crossbar Switch Block Diagram 30

Figure 3.5 Arbiter Block Diagram . 32

Figure 3.6 Scheduler Cycles . 33

Figure 3.7 RAB Controller Block Diagram 36

Figure 3.8 Reassembly Buffer Architecture 38

Figure 3.9 Reassembly Scheduler Block Diagram 40

Figure 3.10 Reassembly Scheduler Arbitration Example 42

Figure 4.1 Switch Testbench Architecture 50

xiv

Figure 4.2 Instant Console Display Messages of Verification Test 53

Figure 4.3 Verification Test Report of the First Experiment 57

Figure 4.4 Coverage Report for source_coverage 60

Figure 4.5 Coverage Report for destination_coverage 61

Figure 4.6 Verification Test Report for RAB with 113 flits 62

Figure 4.7 Verification Test Report for RAB with 227 flits 64

Figure 4.8 Average Flit Latency of On-chip Switch under Uniform Traffic . 66

Figure 4.9 Throughput of On-chip Switch under Uniform Traffic 67

Figure 4.10 Packet Drop vs RAB Depth . 68

xv

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Coverage Class Definition Example Code 18

xvi

LIST OF ABBREVIATIONS

ABBREVIATIONS

3D Three Dimensional

40G 40 Gbps

ACCLOUD Accelerated Cloud

AXI Advanced Extensible Interface

BRAM Block RAM

BPS Bit per Second

CVP Coverpoint

DDR Double Data Rate

DRAM Distributed RAM / Dynamic RAM

DRR Dual Round Robin

DPI Direct Programming Interface

DUV Design Under Verification

DUT Design Under Test

FAC FPGA Accelerator Card

FF Flip Flop

FIFO First In First Out

FMAX Maximum Frequency

FPGA Field Programmable Gate Array

FSM Finite State Machine

GbE Gigabit Ethernet

GPU Graphics Processing Unit

HA Hardware Accelerator

xvii

HACDC Hardware Accelerated Cloud Data Center

HDL Hardware Description Language

HDVL Hardware Description and Verification Language

HOL Head-of-Line

IEEE The Institude of Electrical and Elecktronics Engineers

IP Intellectual Property

iSLIP Iterative Round Robin Matching with Slip

LAN Local Area Network

LUT Look Up Table

MHZ Mega Hertz

NOC Network-on-Chip

PCIE Peripheral Component Interconnect Express

RAM Random Access Memory

RA Reassembly

RAB Reassembly Buffer

RR Reconfigurable Region

SOC System-on-Chip

vFPGA Virtual FPGA

VHSIC Very High Speed Integrated Circuit Program

VHDL VHSIC Hardware Description Language

UVM Universal Verification Method

WNS Worst Negative Slack

VCT Virtual Cut-Through

VOQ Virtual Output Queue

XBAR Crossbar

xviii

CHAPTER 1

INTRODUCTION

Recently, in cloud computing services, hardware accelerators (HA) are also provided

as computing resources alongside conventional cloud server resources such as

memory, processor and disk [1, 2]. For this purpose, FPGA Accelerator Cards (FAC)

cards containing pure FPGA or FPGA with a processor (SoC) are directly connected

to the data center network without connecting to servers in the cloud data center [3].

Thanks to the partial reconfiguration feature of FPGAs, it allows for instantiation of

HAs on demand. Thus, it is possible to present multiple HAs performing different

tasks on the same FPGA.

In cloud computing systems, the FACs are sophisticated system on chip (SoC)

platforms. These platforms incorporate processors, hardware accelerators, memory

modules, and high speed Ethernet interfaces to enable receiving and delivering data

from the cloud users. To this end, on-chip switching is necessary to facilitate data

exchange among all these components. On the one hand, the heterogeneity of these

components and the application characteristics indicate that rather than the switches

for classical on-chip mesh networks that interconnect identical Processing Elements,

a switch architecture that is similar to computer network packet switches in terms of

buffer organization and fabric arbitration is more suitable. On the other hand, the

on-chip communication based on the amount of data that is transmitted within one

clock cycle, namely flit, should be maintained. Furthermore, the resource constraints

of the on-chip implementation together with the advantages of high-speed data

exchange via shared memory, registers and on-chip interconnects should be taken

into consideration.

1

Today, with increasing computing capacity applications, the size and complexity of

designs are increasing. This makes functional verification one of the most important

parts of the design development process. The most time-consuming process in the

design development process is design verification [4]. For design verification, the use

of universal verification methods is increasing to speed up the functional verification

and debugging process. SystemVerilog and Universal Verification Methodology

(UVM) are widely used tools developed to enable the integration of designers’ work

and system-level design verification [5]. An on-chip switch runs under different

types of workloads, with different arrival patterns and packet sizes. To this end, it

is important to have a systematic verification procedure that ensures the functional

correctness of the implementation [6]. Systematic verification refers to testing

predefined features and comparing them to a gold model or gold results. During

the testing phase, there should be functional coverage constraints that show that the

device under test is tested in all desired conditions. A result or report is then obtained

showing that all of these constraints are hit during the testing phase. In addition, the

results of the tested design and the golden results must be the same. In this way, the

design requirements are systematically verified.

In the work described throughout this thesis, we propose the design, implementation,

verification and performance evaluation of an on-chip packet switch architecture that

operates at the line rate of 40 Gbps and provides 100% throughput. The design

is configurable in terms of the number of ports, the data width, and the amount

of buffer memory. The on-chip packet switch design, implementation, verification

and performance evaluation are presented for FACs to be used in cloud computing

systems, which will enable communication between components implemented on

FPGA.

In our proposed architecture, the FPGA Accelerator Card (FAC) has two 40 Gbps

Ethernet interfaces that are implemented as IP Cores [7]. The first interface is to the

connected cloud server and the second interface is to the data center network. There

are four Reconfigurable Regions (RR) to implement hardware accelerators. There is

an SoC processor, a DDR interface and a PCIe interface. Accordingly, the switch is

designed with 9 input/output ports. All lines and the fabric work at the rate of 40

Gbps.

2

We implement an on-chip switch design on XC7Z100FFG1156-2 SoC of the Xilinx

Zynq-7000 family as the target device and present the hardware resource and

operating frequency results. The performance of our switch architecture is evaluated

with simulations under different load scenarios. Furthermore, the design is verified

using the SystemVerilog verification environment. Scoreboard values showing

verification test results and coverage results with the ability to observe generated test

data are also displayed.

To the best of our knowledge, the work in this thesis is a first work that addresses the

design and systematic verification of an on-chip switch for SoC systems.

The rest of the thesis is organized as follows:

In Chapter 2, firstly, basic information about packet switching and on-chip packet

switches is given. The reason for the head of line blocking problem and the buffer

structure developed to solve this problem are explained. Then, basic information

about fabric arbiter methods, which are widely used in the literature, is given. Next,

the motivation for design verification to have a vital place in the design development

processes is mentioned. Past studies on validation in the literature are described.

Finally, the SystemVerilog verification process and the basics of the sub-elements

used in the verification process are explained in detail.

The proposed on-chip switch design details are described in Chapter 3. First, the

on-chip switch architecture is mentioned. Then, all sub-blocks that make up the

design and the signals that provide communication between sub-blocks are explained

in detail. It is also mentioned that the packet transmitted over the switch is separated

into flits. Finally, the pipeline structure of the blocks on the switch is shown.

Chapter 4 describes the evaluation of the on-chip switch. While evaluating, the

latency and throughput of the on-chip switch performance evaluation are made. In

addition, in this section, the verification test method of the switch is explained in

detail. Then, the verification test result and test coverage information are displayed.

Chapter 5 presents the summary of the work in the thesis and the work planned for

the future.

3

4

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this part, we give an overview and fundamentals of the on-chip packet switch and

design verification process. To this end, we present the basic and important past work

for on-chip switch arbiters in network systems. Then, we focus on SystemVerilog

verification fundamentals and relevant previous studies. Finally, we explain the

contribution of the studies within the scope of the thesis.

2.1 Packet Switching

Packet transfers have gained an important place in developing network

structures recently. Many different systems transfer data within themselves or with

other systems. In cloud networks, embedded systems, the internet, and real-time

computer systems, packet exchanges with various features, large sizes, and high

speeds are needed. In these cases, packet switches that enable all

end-points to communicate with each other are needed. Packet switches receive the

packet from an input line and send it to an output packet [8]. For the packets to be

successfully transmitted over the packet switches, there is some control information

required in the packets because packet switches can only learn to which destination

the incoming packets want to go [9]. Packet switches decide the priority or order

of the packets is sent during data exchange with their arbitrary structure, which is

a predetermined decision-making method. Ethernet switches, also known as LAN

switches, and routers are the most well-known examples of packet switches.

5

2.1.1 Packet Switching Basics

The traditional packet switch structure has multiple input lines and multiple output

lines. In a NxN packet switch architecture, the packet on each input line i ∈
(0 . . . N −1) can send packets with any output line j ∈ (0 . . . N −1). The output line

to be sent is determined by the destination information in the package. Thus, a one-to-

one connection is established between the input line and the target output lines. The

dimensions of the packages to be sent may vary. For this reason, packets are divided

into smaller pieces of fixed size throughout the packet switch to ensure a deterministic

operation. Small pieces whose transmission is completed are reassembled before

being sent over the output lines.

It can be seen that more than one input line wants to send packets to the same output

line at the same time. Because packet switches can provide only a one-to-one match

between input and output ports at a time, a contention occurs in these cases. This

problem is solved by two different methods. The first method is to exchange packets

on the switch fabric faster than line speed C. In this case, the packet switch bandwidth

should be equal to NxC value to prevent packet dropping. The fact that the packet

switch connection speed depends on the number of ports N limits the scalability of the

switch. In addition, in cases where the connection speed is higher than the line speed,

buffers are needed to store the excess packets transmitted on the output lines. NxN

packet switches operating at NxC speed are called pure output queuing switches.

The second method for solving the contention occurring on the packet switch is to

store these packets in the buffers created on the input lines. In this case, the switch

operating speed can be equal to the line speed. In this case, there must be a crossbar

structure that can connect all input lines to all output lines. This crossbar connection

structure has a feature that can change dynamically. The current connection type

of the crossbar is determined by the arbiters. Due to its low complexity, crossbar

fabrics consist of Nx1 multiplexers as shown in Figure 2.1. Such switches are called

pure input queuing switches.

There are also NxN packet switches with fabric speed speed-up of 1 < S < N .

These switches are called combined input − output switches because they need

buffers on both the input and output ports. Since they operate at SxC speed, S unit

6

chips can be transferred on the switch at one unit line rate.

N
x1

N
x1

N
x1

Input 0

Input 1

Input N-1

Output 0

Output 1

Output N-1

S[0] S[1] S[N-1]

Figure 2.1: Crossbar Fabric

2.1.2 Buffer Architecture

The packet switch structure described in this thesis operates at line speed C and

includes crossbar fabric. For this reason, we focus on such packet switch structures

from now on.

The size of the packets passing through the packet switch may not be fixed. For this

reason, it is common practice to fragment packets into small units before switching

in the packet switch [9, 10]. Fixed-size units sent to the output lines need to be

reassembled on the output lines.

Packets arriving at the input lines of packet switches are stored in buffers after they

are fragmented into fixed-size units. In these buffers, they wait to be transmitted to

the output lines with the crossbar fabric. Basically, each input port can store buffers

input cells with a simple FIFO structure. However, a problem may arise with this

7

simple FIFO structure. This performance-limiting problem is called head − of −
line blocking (HOL). The head-of-line blocking problem occurs when the cell

waiting to be sent at the head of the FIFO is not sent due to congestion, even if

the other packets waiting in the back can be sent. An example of this problem can be

seen in Figure 2.2. The box in the middle of the figure shows the crossbar fabric. The

boxes to the left of the crossbar fabric indicate the buffers of the input ports, and the

numbers inside the boxes indicate the output lines that the fixed-size cells want to go

to. Head cell in buffer at input port 1 wants to go to output port 2, while head cells

of buffers of input port 0 and input port 2 want to go to output port 0. However, the

crossbar fabric is configured to establish a connection between output port 0 and input

port 0 according to the arbiter decision. Output port 1 could not establish a connection

with any input port. Although there is a packet on input port 1 to be sent to output port

1, it cannot send this packet to output port 1 because the cell located at the beginning

of the buffer of input port 1 blocks these next cells. Head− of − line blocking is a

problem that seriously reduces switch efficiency.

0

2

0

2

1

1 X

blocked cell

Arbiter
input - output

0 - 0
1 - 2
2 - X

Output 0

Output 1

Output 2

Input 0

Input 1

Input 2

Crossbar Fabric

Figure 2.2: An Example of HoL Blocking Problem

Special buffers are organized at the input ports to avoid the head-of-line problem.

These buffer structures are called V irtual Output Queues (V OQs). Thus, each

input port i has a different VOQi,j buffer for cells that want to go to each output port

j. Thus, even if the buffer sizes increase, the head cell of the buffer does not block

8

the cells that follow it.

To summarize, the reasons for the need for packet switches, the problems encountered

in packet switch structures, and their solutions have been explained. A switch structure

designed considering the mentioned critical buffer structure is shown in Figure 2.3.

This packet switch performs the switching operation periodically. First, the arbitrator

decides which input and output ports to match in this periodic cycle. Then, according

to this decision, the crossbar fabric establishes the physical connection between the

input and output lines. Finally, the cells stored in the VOQs on the input lines are sent

to the output lines.

VOQ0,0
.

.

.

VOQ0,N

Crossbar Fabric

VOQ1,0
.

.

.

VOQ1,N

Input Queue

Reassembly
Buffer

Reassembly
Buffer

.

.

.

.

.

.

Arbiter (Scheduler)

Input 0

Input N

Output 0

Output 1

Figure 2.3: Switch Buffer Organization

2.1.3 Fabric Arbiters

Nowadays, there has been a dramatic increase in the communication needs of

advanced systems. In particular, smart devices connected to each other over the

Internet and cloud computing are used a lot in daily life. These applications need

throughput and low packet delays. In this case, fabric arbiter designs have become

very important because fabric arbiter performance is a factor that directly determines

all on-chip switch performance. All of the fabric arbiters basically try to increase

efficiency by ensuring that the largest number of input-output lines are matched.

Fabric arbiters are fast and of low complexity so that packets can be sent over the

packet switch with low latency. They also ensure fairness between switching input

9

lines and prevent starvation of any input lines.

For input queued switches, an arbitration method that gives the highest priority to the

input line with the most packet in its VOQ is proposed in [11]. Also, this method

decides input-output match in a single iteration, reducing the packet delay on the

switch. It has less delay than other methods compared according to test results.

Another method providing a deadline guarantee for input queued switches is proposed

in [12]. However, it is very difficult to give Quality−of−Service guarantee because

the packet traffic is unknown in input queued switches [13].

Work − conserving arbiters are the decision mechanisms where the maximum

number of input and output ports are matched. Maximum input and output line

matching can only be given as a result of iterative decisions. Iterative steps continue

until no more input and output lines can be matched [8]. A fastest method for

maximum matching is suggested in [14]. Even if this algorithm gives confidence that

it will provide high efficiency, it is insufficient to prevent starvation on the switch.

Another method that offers maximum matching guarantee is Parallel Iterative

Matching [15]. In this method, the input and output ports are matched iteratively

with random priorities. For this reason, it cannot provide a fair Quality-of-Service

between the input and output ports. Iterative Round Robin Matching with Slip

(iSLIP) algorithms use a round robin sequence instead of [16, 17] random selection.

Thus, fairness is achieved between the input lines of the switch. But in this case, it

causes an increase in complexity. Additionally, another method commonly used in

network switches is Dual Round − Robin (DRR) [18]. [18] iteratively ensures

that the maximum input and output lines are matched. Also, the accept state in the

iSLIP method is not needed in DRR. Hence, DRR has low complexity and makes

matching decisions in a short time.

10

2.2 Network On-chip Packet Switches

Thanks to the sharp progress in silicon technology, it has become possible for

technology users to perform many calculations on a single chip. Today broadcasts

over the Internet, cloud computing, and artificial intelligence applications are the

most popular applications that users need to use. In this period, which is called

the information age, people need high throughput in such applications. Systems

where the required application can be realized on a single silicon chip are known

as System−on−Chip (SoC). Advanced System-on-Chips have multiple processors

and DSPs, re-programmable logic elements, high-speed communication blocks,

memory sticks, and multi-purpose I/O pins. These blocks communicate with each

other for high-capacity computational operations. This network structure on a single

chip is called Network − on− Chip (NoC). It can also exist on multiple networks

on a single chip [19]. In Network-on-Chips, a fixed size cell sent per unit time is

known as a flit.

Network-on-Chip (NoC) switches have several advantages and disadvantages over

computer switches. Since all units communicating in NoCs are on the same silicon

chip, networks with low packet delay and high communication speed can be

established. On the other hand, NoCs may face resource problems because they

have limited resources and also want to run other applications on the chip. There

are two basic types of on-chip switches. These are homogeneous and heterogeneous

switches. Homogeneous switches are regular network structures that enable

communication between similar computing cores. An example of these structures is

artificial neural network applications [20]. In heterogeneous switches, communication

takes place between blocks with different characteristics. For example, in a

heterogeneous network, a link is established between hardware accelerators, RAM,

and other high-speed communication interfaces.

The on-chip switch designed within the scope of this thesis has a heterogeneous

structure to ensure the communication between the reconfigurable regions in the

FPGA and between the processor, Ethernet, PCIe, and DRAM blocks. It is foreseen

to be used as a hardware accelerator in cloud platforms of reconfigurable regions

created in FPGA. Other blocks are used to enable these hardware accelerators to

11

perform their tasks efficiently.

These days, the need for faster computational calculations has increased in computer

architectures. For this reason, there are differences in the structures of traditional

computer architectures. Now, computer architectures that contain pure processors are

replaced by processors that also use auxiliary elements to speed up a certain process.

This creates highly efficient architectures that can successfully perform a specific

operation [21]. Components that can perform a specific task by helping processors are

generally called accelerators. Accelerators generally include graphics processing

units (GPUs), field programmable gate arrays (FPGAs), or many processors

with smaller capacities. The most suitable type of accelerator to be used varies

according to the intended application. Two decades ago, GPUs were predominantly

used for real-time 3D rendering. Today, it is widely preferred in artificial intelligence

applications, especially thanks to its parallel processing capability [22]. On the other

hand, FPGAs, which have the ability to perform parallel processing like GPUs, are

also used as accelerators. It offers high-performance gains to processors with its

parallel processing and superior combinational design capabilities [23]. FPGAs have

very low energy and resource consumption compared to GPUs and CPUs in image

processing, vector operations, and integer convolution operations [24]. In addition,

FPGAs and processors can easily work together. Processors can use FPGAs as

accelerators in a task or the whole service while performing a service. After the

processors write data to the RAMs of the FPGAs that have been previously configured

for a specific application, they trigger the FPGAs to start performing their tasks. Then,

when the application is terminated on the FPGA side, the processed data in the FPGA

memory is read by the processor [25, 26].

In cloud systems, which are increasingly used in computational operations, hardware

accelerators (HA) are used as much as processors and memories [2]. Hardware

Accelerated Cloud Data Centers (HACDC) uses FPGA Accelerator Cards

(FACs) with a processor as a hardware accelerator.Another reason why FACs are

preferred is that it is possible to implement multiple HAs on a single FAC with

SoC thanks to its Reconfigurable Regions (RR) [3, 27]. Such a cloud system needs

a structure that provides high-throughput communication between FACs. There

should also be an on-chip switch specially developed for these high-speed data

12

transfers [28, 29, 30].

A hardware accelerator design with multiple reconfigurable regions called vFPGAs

is proposed in [27]. In this design, all vFPGAs have external memory, PCIe interface,

and AXI-Stream interface with two neighboring vFPGAs. Data transfer between

these regions is realized with a switch applied on the FPGA. The switch arbiter

algorithm is Round Robin. In addition, the arbiter is customized to give high

bandwidth to the required vFPGA in the desired situation. These designs are

developed on the Xilinx VC709 FPGA board and its static resource consumption

is stated to be approximately equal to 7% of the FPGA.

The on-chip packet switch we designed for use in a hardware-accelerated cloud

service architecture, described in [3], is proposed in our previous work [29, 30]. This

on-chip switch is called ACCLOUD-SWITCH (Accelerated Cloud Switch). The

switch has 8 input and 8 output ports and operates at a line speed of 156.25 MHz.

Switch input and output lines are compatible with the AXI-Stream interface. The

switch provides data exchange between RRs, ARM processor, external RAM, PCIe,

and 40G Ethernet interfaces in the FAC. The switch has VOQs that are used to prevent

head-of-line (HoL) blocking. The flit size on the switch is 256 bits. Flits are stored in

reassembly buffers (RAB) for reassembly before being sent to the output lines of the

switches. ACCLOUD-SWITCH design is implemented in the Xilinx XC7Z100 SoC

programmable logic side on Vivado Design Suite 2016.4. The utilization rates of

FPGA LUT, FF, BRAM resources are approximately 7%, 8% and 30%, respectively.

The estimated power consumption is around 0.7 Watts. [31] proposes an on-chip

packet switch architecture with capabilities of offering different bandwidth allocations

to input-output port pairs. The focus of this work is the fabric scheduler that provides

the service differentiation and its dynamic buffer memory allocation. The architecture

is evaluated with a C++ performance simulator without a systematic verification

approach.

13

2.3 SystemVerilog Verification

With the increasing computational capacity applications, the size and complexity

of the designs have been increasing recently. Functional verification is a vital part

of systems as well as the design process. Research in [4] indicates that the most

time-consuming process in a project life-cycle is design verification. Complex designs

can be developed in a short time thanks to the IP cores that are reused during the

design phase. However, even if previously designed cores are used, that design

needs to be functionally verified again. After the design processes, there should be

a universal verification process to reduce the time spent on functional verification

and debugging [32, 33]. Thus, as a result of increasing system requirements, the

need for fast and accurate designs is also increasing. SystemV erilog and Universal

V erification Methodology (UVM) have become invaluable tools for the

integration of the work of collaborating designers and to overcome a system-level

design verification [5]. SystemVerilog is a combined Hardware Description and

V erification Language (HDV L) developed for system-level verification and

design purposes. SystemVerilog standardized as IEEE 1800 in 2005 [34]. It is a

language based on Verilog extensions. SystemVerilog is used by many verification

designers to functionally test complex systems [35].

[36] proposes a weighted Round-robin arbiter design and verification. There are only

arbiter and crossbar fabric designs in the design. However, there is no solution to the

head-of-line blocking problem. In the verification part, the accuracy of the contention

arbiter decisions is tested using the SystemVerilog language. An architectural solution

is not proposed for application to complex systems such as Network-on-Chip,

including the arbiter described.

SystemVerilog language consists of 5 basic components as shown in Figure 2.4.

These components are testbench, assertion, coverage, Verilog, and DPI (Direct

Programming Interface). V erilog is a well-known Hardware Description Language

(HDL). Components other than Verilog will be explained in more detail throughout

this section.

14

Testbench

Verilog Assertions

Coverage
DPI

Figure 2.4: Components of SystemVerilog Language

2.3.1 Testbench

Testbench or verification environment provides functional verification of designs

in a simulation environment. Testbench consists of classes with different tasks for

design and verification of the design. Testbench generates predefined input signals

for designs and drives the design with these input signals. Then, it captures the design

results and compares the results with the expected values. A standard SystemVerilog

testbench consists of different sub-components, shown in Figure 2.5.

Driver Monitor

Scoreboard
Generator

data
data

Environment
Test

Interface

DUT

Figure 2.5: SystemVerilog Testbench Components

Device Under Test (DUT) represents the design to be verified, developed with

one of the hardware design languages (Verilog or VHDL). It can also be called

Design Under V erification (DUV).

Interface is an important structure that facilitates the reusability of designs. It is

15

created to encapsulate the communication between blocks. Interface structures have

features such as parameters, variables, assignments, functions, and tasks. Thus, it is

suitable for testing system-level applications. Other modules in testbench can access

the information in the interface. They are especially helpful for applications with

functional coverage and assertions. The most important difference that distinguishes

the interface from other classes in testbench is that the interface is allowed to be

connected as a port. Interfaces can also be seen as a container in which all input and

output signals in the testbench are placed. Hence, DUTs are driven and monitored

through an interface.

Generator is one of the main classes of the testbench. Generator is responsible for

generating data transactions to be sent to the design to be verified. The data to be sent

to the DUT can be constrained or randomized by this class. Driver class receives

the transactions generated by Generator and drives the packet-level data to the DUT

through the interface.

The main purpose of verification is to obtain and evaluate the results of the DUT

driven by the input data. Monitor class is responsible for monitoring the input

data set to the DUT and the output data processed in the DUT to capture the design

behavior. Monitor achieves this by observing the activity of the DUT’s inputs and

outputs at pin level. It then sends these observed signals to the scoreboard component

to be checked.

Scoreboard is a class that checks whether the output data processed in the DUT

is in the expected behavior. It performs this control process in 2 different ways.

Scoreboard can compare the design output data with the expected output data thanks

to the golden data-set, which is the expected output data in return for the input data.

In another method, the scoreboard has a reference model with the expected behavior

of the DUT. Thus, the input data sent to the DUT is also sent to the scoreboard.

Then, it is checked whether the DUT outputs match the reference model outputs on

the scoreboard. If the design has a functional problem, it is determined in this way.

To summarize, a scoreboard is a class that compares the design results and expected

results and maintains a score based on these match results.

16

Environment is a higher-level container that contains verification components

Generator, Driver, Monitor, and Scoreboard classes. It also enables easy adaptation

of a previously used verification infrastructure to advanced versions of the project or

a different project. In short, the environment makes verification more scalable and

flexible.

Test component contains the environment that can be set with different configuration

settings. Test is a program that creates an object of environment. Thus, it starts the

process of configuring testbench and creating other components. It then triggers the

drive of the input data-set to be verified for the testbench. In a design that needs to be

tested many times, it is not feasible to change the environment for each test. Instead,

there are some parameters tweaked for each test the environment has. So, it will be

much easier to be able to test a design.

The testbench components described so far are commonly used components to verify

a design. As the complexity of the design to be verified increases, new custom

auxiliary components like classes may be defined that facilitate the testing process.

2.3.2 Coverage

Coverage is a feature that is used to measure the tested functional parts or features

of the design. Thus, it can be observed under which conditions the design can be

tested from the features desired to be verified. After specifying the constraints to be

observed, it can be concluded how many of these constraints have been achieved

as a result of the test. Coverage is divided into two parts. The first of these is

code coverage. Measures how much of the code coverage design code is hit. For

a designed Finite State Machine (FSM), the measurement of whether all states are

entered can be given as an example of code coverage. Functional coverage measures

the realization of a user-specified design metric.

The features to be measured in the design can be specified with coverage models.

Coverage models can be implemented with the help of Covergroups. There may

be more than one different situation to be measured within the covergroups defined

by the users. In this case, a separate coverpoint variable is defined for each feature.

17

Bins that can be defined within the coverpoints represent the results of the coverpoint

states. With bins, hitting only one result can be defined, or more than one result can be

defined with a single bin. An example of coverage class code is shown in Algorithm-1

to better understand the concepts of covergroup, coverpoint, and bin.

class myCoverage ;

rand bit [2:0] CovPoint ;

rand bit CovPoint1 ;

covergroup CovGroup ;

coverpoint CovPoint {

bins b1 = {0};
bins b2 = {1};
bins b3 = {2 : $};

}

coverpoint CovPoint1 {

bins d1 = {0};
bins d2 = {1};

}

endgroup

endclass
Algorithm 1: Coverage Class Definition Example Code

With the covergroup shown in Algorithm 1, two different coverpoints named CovPoint

and CovPoint1 are defined to observe whether the desired situations occur during

design verification. CovPoint is assumed to be a 3-bit wide variable. Thus, the

CovPoint variable can take 8 different values. If these 8 different values want to be

observed, an example coverage group can be as in the Algorithm-1. The bin variables

defined under CovPoint′s coverpoint show the values that CovPoint takes. If the

CovPoint variable takes the value 0, it means that bin b1 hit. Similarly, bin b2 reports

whether a value of 1 is observed. On the other hand, b3 is defined to check whether

it hits more than one result under a single bin. If values greater than 2 and 2 are

observed, it means that bin b3 has occurred. With CovPoint1, it can be checked

whether another situation has occurred.

18

Another feature of covergroups is that it can be cross-checked whether the conditions

specified in the bin definitions of other coverpoints are met at the same time in a

different coverpoint. In addition, it is provided by the functions defined in

SystemVerilog with different features that can be controlled such as the minimum

number of hits to a coverpoint bin metric.

2.3.3 Assertions

Assertions are used to control the desired behavior of a system. In this way, a desired

feature of the design can be verified in the simulation process. Additionally, checking

whether a condition has occurred can also be checked using assertions. Assertions

generate errors or warnings when an undesirable situation occurs. In other words,

assertions are representations that provide functional control of a feature of the design.

2.3.4 DPI

Direct Programming Interface (DPI) is the interface between one programming

language and another programming language. SystemVerilog Direct Programming

Interface refers to the interface between SystemVerilog and foreign programming

languages. Thanks to this interface, SystemVerilog codes can be called by C, and C

functions can be easily called by SystemVerilog. This allows users to reuse previously

produced codes. Hence, a faster code development process is possible.

2.4 Placement of the Thesis Work in the Literature

This thesis fills in the gap in the literature by addressing on-chip packet design and

verification together. The on-chip switch proposed in the thesis has generic parameters

for flexible implementation with different configurations on FPGA. Hence, the desired

number of input and output ports, buffer memory, and data width can be easily

selected with the help of defined parameters. In addition, the on-chip switch’s input

and output ports support the AXI4-Stream protocol, which is a standard interface

used in FPGAs to connect components that want to exchange data. Hence, general

19

IP cores and designs with AXI4-Stream communication standards can also be flexibly

connected to the on-chip switch. Furthermore, a verification design using

SystemVerilog infrastructure with cycle accuracy is developed to verify the on-chip

switch within the scope of the thesis. This verification design tests the on-chip switch

extensively with random input data. In addition, a detailed performance evaluation of

the design is obtained on the RTL simulator.

The works that cover verification are [36] and [37]. [36] proposes a Round Robin

arbiter design and verification of the arbiter in the SystemVerilog environment.

However, this study only verifies the contention arbiter method, a packet switch

architecture is not proposed. [37] focus on a verification methodology in the

SystemVerilog environment. However, it does not include detailed verification design

descriptions, test coverage, and scoreboard reports.

To the best of our knowledge, the design and the systematic verification using

the SystemVerilog environment of an on-chip switch with AXI interfaces is not

covered in the literature. We provide all design details together with the detailed

coverage and scoreboard reports.

Mentioned previous studies are summarized in Tables 2.1.

20

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
R

el
at

ed
Pr

ev
io

us
W

or
k

So
ur

ce
,Y

ea
r

D
es

ig
n

Im
pl

em
en

ta
tio

n
Pl

at
fo

rm
V

er
ifi

ca
tio

n
Pl

at
fo

rm
C

ov
er

ag
e

Sc
or

eb
oa

rd

[3
6]

,2
01

8
C

on
te

nt
io

n

A
rb

ite
r

A
SI

C
s

Sy
st

em
V

er
ilo

g
In

cl
ud

ed
In

cl
ud

ed

[3
7]

,2
01

0
E

th
er

ne
t

Sw
itc

h

N
et

FP
G

A
Sy

st
em

V
er

ilo
g

In
cl

ud
ed

In
cl

ud
ed

[2
9]

,2
02

0
O

n-
C

hi
p

Pa
ck

et
Sw

itc
h

X
ili

nx
Z

yn
q-

70
00

Fa
m

ily

X
C

7Z
10

0F
FG

11
56

-2
So

C

C
++

N
ot

A
pp

lic
ab

le
N

ot
A

pp
lic

ab
le

[*
],

20
22

O
n-

C
hi

p

Pa
ck

et
Sw

itc
h

X
ili

nx
Z

yn
q-

70
00

Fa
m

ily

X
C

7Z
10

0F
FG

11
56

-2
So

C

Sy
st

em
V

er
ilo

g
D

et
ai

le
d

C
ov

er
ag

e

C
on

st
ra

in
ts

an
d

R
ep

or
ts

In
cl

ud
ed

(*
)H

ig
h

Sp
ee

d
O

n-
C

hi
p

Pa
ck

et
Sw

itc
h

de
ve

lo
pe

d
in

th
e

sc
op

e
of

th
is

th
es

is
.

21

22

CHAPTER 3

ON-CHIP SWITCH DESIGN

In this chapter we present the design of the on-chip switch in detail. The on-chip

switch is designed with N = 9 lines and all lines are designed to operate at 40

Gbps. The switch interconnects 4 Reconfigurable Regions (RR) to implement the

hardware accelerators, ARM SoC processor, DDR, PCIe, and 2x 40 Gbps Ethernet

network interfaces. The switch is designed similar to a computer network switch

to interconnect such heterogeneous interfaces. The scalability is supported by the

line-speed operation of the switch without any internal speed-up. To this end, all the

buffers are at the input ports and organized as Virtual Output Queues (VOQs). We

implement Dual Roun Robin (DRR) [18] method for the fabric arbiter to achieve full

throughput. The switching of data is carried out in flits compatible with the on-chip

interconnection infrastructure. To this end, the variable size packets that are received

on the input interfaces are carried through the fabric interleaved by the fabric arbiter

and reassembled at the switch outputs in Reassembly Buffers (RABs).

3.1 Hardware Architecture of Switch

High Speed On-chip Switch block architecture is shown in Figure 3.1 for N = 9

ports. The design is detailed for the input line i and the output line j. The switch

fabric is designed to operate at line speed (c = 1) in a scalable way. The size flit,

which is the number of bits switched in one clock cycle, is selected as 256 bits. The

reason for this is that it is desired to develop a structure compatible with the 40 Gbps

IP Core [7] interface which is 256 bit wide.

Here, we first provide an overview of the blocks, then explain the on-chip switch

23

design in detail in the rest of this chapter.

In order to prevent the head of line blocking, virtual output queues are created at each

input i ∈ (0 . . . 8) to increase data output and prevent data loss. The virtual output

queue block at input port i is named as VOQi. VOQi is partitioned into 9 VOQi,j regions

for output port j ∈ (0 . . . 8) to stores the flits that are destined to output port j.

VOQ Controlleri module controls packets stored in VOQi. To this end, VOQ

Controlleri writes the flits arriving at input i, destined to output j to VOQi,j . In

addition, VOQi sends the information to Arbiter module that the input line i has

data ready to be sent to which output lines by empty_status_i signal. Crossbar

Fabric block is a basic crossbar structure that connects each input line to all output

lines with a multiplexer.

Arbiter module decides the one-to-one connection configuration for Crossbar

Fabric and sets the selection inputs of the multiplexers. VOQ Controlleri

block ensures that the data stored in VOQi,j is transmitted to the Crossbar Fabric

input ports according to the contention arbiter decision. The arbiter algorithm used

in the design is a well-known algorithm as the Dual Round Robin (DRR) approach in

the literature [18]. Arbiter uses the DRR approach with a maximum of 3 iterations

to increase switch efficiency in a decision-making phase.

Decision-making within the switch and data transmission over the crossbar fabric is

implemented with a pipeline method. Switching is accomplished with fixed size cells

to increase pipeline throughput and to make configuration changes often enough to

determine the appropriate configuration for packet arrival. The time spent calculating

the connection configuration and switching cells is what we call operation cycle

(op_cycle). We select an operation cycle of 14 clock cycles for both achieving

a high pipeline efficiency and frequent enough fabric arbitration to closely track

the incoming data traffic. Hence, each cell is 14 flits, 14 × 256/8 = 448 Bytes.

To this end, the configuration of the fabric during op_cyclen stays constant and is

updated in op_cyclen−1. During an op_cycle up to 448 Bytes are switched between

the connected input/output port pairs. We provide detailed operation of the pipeline

design in Section 3.1.8.

24

In some rare cases, there may be no flit left to send from VOQs. However, Crossbar

Fabric’s input and output ports are still connected. In order to control this situation,

with the help of a bit in the VOQ flit structure, the information of whether that

packet is valid is transmitted across the switch. When a valid flit is not observed

at Crossbar Fabric input, this flit is then ignored by Crossbar Fabric.

Flits delivered from input line i to output line j are stored at the reassembly buffers

as named RABj for output port j which is partitioned into regions RABj,i where

i ∈ (0 . . . 8). To this end, the flits arriving from input i are stored in RABj,i to be

reassembled into the original packet.

RAB Controllerj block controls RABj and directs the flits from input port i of

the Crossbar Fabric module to be stored in RABj,i region. The module that

reassembles the flits in the RABj is RA Schedulerj block. RA Schedulerj

module receives the information that the last flit of a packet has reached RABj by

last_flit_info_j signal from RAB Controllerj . It is possible that more than one

RABj,i have complete packets and are ready to go out of port j. For these reasons, RA

Schedulerj selects the next packet to be transmitted with a Round Robin approach

and transmits the reassembled packet to output line j with appropriate packet format

and timing.

25

Figure 3.1: Switch Architecture

26

3.1.1 VOQ Controller

VOQ Controlleri receives the packets arriving at input i, converts them to the

flit format that we show in Table 3.1, writes the flits in VOQi,j and sends them to

Crossbar Fabric according to the decision of Arbiter. In Figure 3.2, the

interface signals of VOQ Controlleri for input port i ∈ (0 . . . 8) are shown in

detail.

VOQ

Controllerİ

clk
rst

256 bit

1 bit

1 bit
1 bit

4 bit

32 bit

4 bit

260 bit

9 bit
9 bit

4 bit

4 bit

1 bit

1 bit
1 bit

4 bit
1 bit

260 bit

260 bit

s_axis_tready_i

s_axis_tkeep_i
s_axis_tdata_i

s_axis_tvalid_i
s_axis_tlast_i

s_axis_tdest_i
s_axis_tid_i

VOQ_packet_i

empty_status_i

match_valid_i

read_en_i

write_en_i

select_in_i

match_trigger

VOQ_data_in_i
write_add_i

full_status_i

VOQ_data_out_i
read_add_i

Figure 3.2: VOQ Controller Block Diagram

Input data of the on-chip switch is in AXI4-Stream standard. VOQ Controller

also supports AXI4-Stream standard communication. Thus, the source and destination

port information for the flits is obtained with a successful AXI4-Stream

communication.

The successfully received packets from input line i destined to output j are written

to the region VOQi,j as a VOQ flit thanks to VOQ Controlleri. The destination

region VOQi,j is determined by s_axis_dest_i signal value. VOQ flits have 260-bit

length data. It contains AXI4-Stream data, last and valid signal information as shown

in Table 3.1. Moreover, if there is not enough space in the destination region VOQi,j ,

this situation is indicated by pulling s_axis_ready_i signal into logic low signal level

according to AXI4-Stream protocol.

27

Table 3.1: Bit Field of VOQ Flits

259 258:257 256 255:0

valid reserved last data

The rising edge of the match_trigger signal indicates the start of a new match period.

At the start of a match period, the select_in_i signal is updated and displays the

current match until the next match period. When match_valid_i signal is logic high,

it means that there is a valid match for input port i. In this case, VOQ Controlleri

reads the flits stored in the corresponding region of the VOQi based on the destination

id info in select_in_i signal. Then, the flits are sent to the Crossbar Fabric. We

note that the fabric ports stay connected and switching goes on during the op_cycle.

Hence, if there are no more real flits to send, a fixed flit is sent to Crossbar

Fabric with the valid bit set to 0. Hence, Crossbar Fabric can ignore this

flit.

3.1.2 Virtual Output Queue

In a traditional Xilinx Block RAM (BRAM) resource, there are two signals that

indicate a BRAM is full and empty. Additionally, the depth of BRAMs is interpreted

as 2’s power. If we use a BRAM for each virtual output queue, it will consume BRAM

resources that are the power of 2, greater than the packet depth to be specified for the

VOQ. This limits the depth of each virtual output queue to 2’s power and leads to an

inefficient memory organization.

A special VOQ architecture is developed to increase resource efficiency and have

flexible virtual output queue depth. The VOQ architecture designed is shown for

the input port i ∈ (0 . . . 8) in Figure 3.3 with separate VOQi,j regions allocated for

each output port j ∈ (0 . . . 8). VOQi,j depths can be easily changed with the help

of a parameter located in the top module of the switch design. Furthermore, the

information that each VOQi,j region is full and empty can be sent to other blocks

28

in switch module by 9-bit empty_status_i and full_status_i signals. In short, all

VOQi,js can be implemented in a single Block RAM for an input port i which provides

more efficient resource consumption thanks to the VOQ architecture in Figure 3.3.

Data
0 1 2 259

VOQi

VOQi,0

VOQi,1

VOQi,8

VOQi,j

0
1
.

.

(r-1)

.

.

.

.

0
1
.

.

(p-1)

0
1
.

.

(r-1)

Addr
clk
rst

write_en_i
write_add_i

read_en_i
read_add_i

VOQ_data_in_i

VOQ_data_out_i

empty_status_i

full_status_i

1 bit

1 bit

4 bit

260 bit

4 bit

260 bit

9 bit

9 bit

Figure 3.3: Virtual Output Queue Architecture

Although the application running and the data produced on Reconfigurable Regions

are under the designer’s control, it is assumed that there is no such control in data

communication made from other interfaces. In traffic under 95% maximum load,

according to the simulator results [30], the VOQ size is 16 flits on lines connected

to RRs, and 512 flits on other lines. Hence, VOQi,j region size is reserved 16 flit for

i ∈ (0 . . . 3) and 512 flit i ∈ (4 . . . 8). Moreover, these sizes for VOQs are in a generic

structure. They can be adjusted via a parameter easily.

29

3.1.3 Crossbar Fabric

Crossbar Fabric has NxN port switch structure. In this thesis, we implement a

crossbar fabric with N = 9. Block diagram of Crossbar Fabric can be seen in

Figure 3.4. The fabric is capable of connecting all input ports i ∈ (0 . . . 8) to all output

ports j ∈ (0 . . . 8) with multiplexers. The multiplexer select inputs of Crossbar

Fabric are determined by Arbiter module matching decision. Input and output

ports of Crossbar Fabric operate at line speed 148.5MHz.

Crossbar Fabric

clk
rst

match_trigger
match_valid

VOQ_packet_0

select

VOQ_packet_1
VOQ_packet_2
VOQ_packet_3
VOQ_packet_4
VOQ_packet_5
VOQ_packet_6
VOQ_packet_7
VOQ_packet_8

RAB_packet_0
RAB_packet_1
RAB_packet_2
RAB_packet_3
RAB_packet_4
RAB_packet_5
RAB_packet_6
RAB_packet_7
RAB_packet_8

RAB_enable

260 bit

260 bit

260 bit

260 bit

260 bit

260 bit

260 bit

260 bit

260 bit

264 bit

264 bit

264 bit

264 bit

264 bit

264 bit

264 bit

264 bit

264 bit

9 bit
1 bit
9 bit

36 bit

Figure 3.4: Crossbar Switch Block Diagram

Crossbar Fabric ensures that the flits stored in the virtual output queues are

transmitted to the target reassembly buffers according to arbiter decision. Crossbar

Fabric input and output ports connection are configured according to the select

signals that have matching information as a result of Arbiter decision. Crossbar

Fabric configuration continues until the rising edge of the match_trigger signal

indicates the next match arrives. Crossbar Fabric input ports support data

format in VOQ flit standard. The bit field of VOQ flits can be seen in Table 3.1.

Output ports are connected to RABs. RAB flit width is 264 bits. The reason why the

RAB flit width differs from the VOQ flit width is due to the fact that the flits going

to the reassembly buffers also have input port information. The bit field of RAB Flits

30

is shown in Table 3.2. Crossbar Fabric also adds the input port id information

to the 260-bit input data before transferring input flits to output ports. Hence, the

Crossbar Fabric output port width is 264 bits.

Table 3.2: Bit Field of RAB Flits

263:260 259 258:257 256 255:0

source id valid reserved last data

All input and output ports of Crossbar Fabric may not be matched at each

match. To this end, the RAB_enable signal has been added to indicate the matched

ports. Each bit of the 9-bit RAB_enable signal indicates whether the data on the

corresponding output line is valid or not. In addition, the RAB_enable signal

indicates that there are no more valid flits at the output ports when the flits to be

sent from the VOQs are finished. In short, it is used to notify RAB Controller

when there are no valid flits on the output ports.

3.1.4 Arbiter

It is mentioned in the previous sections that packets from the on-chip switch input

ports are stored in VOQs. Arbiter decides an one-to-one input/output port

connection configuration. Crossbar Fabric configuration is updated after

Arbiter decides the matching status of the input and output ports. The input and

output ports of Arbiter module used in the design are shown in Figure 3.5.

The signal request_in_i indicates whether there are packets on the VOQi of input

port i to be sent to the output ports. request_in_i is a 9-bit signal and each bit

corresponds to the regions of the VOQi. For this reason, empty_status_i signal,

which shows the emptiness information of VOQi regions, is used as the request_in_i

signal of Arbiter. If there is no flit stored in the j region of the VOQi (VOQi,j),

the request_in_i[j] bit is equal to the logic low level. If there is at least one flit

to be sent in VOQi,j , request_in_i[j] signal is at logic high level. Thus, Arbiter

31

Figure 3.5: Arbiter Block Diagram

obtains the information to which output ports the input ports want to send flits. After

Arbiter has made a matching decision, matching information must be sent to

the relevant blocks in the on-chip switch to make other blocks ready for new flit

transfer. Matching information is transmitted with a 36-bit select signal. For each

input port, the information to which output port it can send packets includes 4-bit

output port id information. Since there are 9 input ports in total, the select signal is

36-bit. Each bit of the 9-bit match_valid signal indicates whether there is a valid

match for the input lines. If the ith bit of the match_valid signal is at the logic

high level, it means that the input line i is deserved to send packets as a result of

Arbiter decision. After Arbiter block has decided which input and output lines

will transfer data, Crossbar Fabric is reconfigured to allow flit transfer. This

configuration remains unchanged until Arbiter block makes its next decision. Each

new decision result of Arbiter block is indicated by match_trigger signal to other

blocks. Hence, other blocks in the switch can prepare themselves for the new match.

Arbiter used in this study is Dual Round Robin (DRR) [18] with a maximum

of 3 iterations. Arbiter notifies other blocks for new match information in every

op_cycle (14 clock cycles). The algorithm can be seen in detail in Figure 3.6.

Arbiter starts from Request state first after initial reset. In the Request state, the

information that the input ports have flits to send to which output ports is instantly

32

Figure 3.6: Scheduler Cycles

33

received and saved for use in other iterations. This request information is obtained

with request_in_i signals. request_in_i signals are not sampled in each iteration.

Requests are sampled only at the start of each new round of decision-making. Also,

the next thing to do in the Request state is to specify the output ports that the input

ports want to send flits to. Input ports may want to send flits to more than one output

port at the same time. However, according to the Dual Round Robin algorithm, one

output port is selected among all the output ports to be sent. In general, all output

ports are equal. There is a request pointer to decide between the output ports in a fair

way. The pointer initially gives priority to one output port. Then, the pointer value is

updated so that the output line that the flit is sent is the least prioritized for the next

matching decision. Since there are 9 output ports in the design, the pointer value for

the input port i is updated as (j + 1)mod 9 after sending a flit to the output port j.

Within 1 clock cycle, it is decided which output port all input ports want to send flits

to.

The state passed after the request information collected in Request state is Grant

state. In the Grant state, the output ports evaluate requests from input ports that want

to send flits to them. If there is only one input line that wants to send flits to an output

line, the output line accepts this request. However, if more than one input line wants

to send flits to the same output line at the same time, this causes a problem since an

output line can only be connected with a single input port at a time. This problem is

solved with the help of a pointer similar to the one used in the Request state. There

is a special grant pointer for each output port. If there is more than one input line

request for the same output line, this pointer gives priority to one line specific to that

match round. Then, in order to ensure fairness between the input ports, the grant

pointer is updated so that the input line that is decided as a result of the match has the

least priority. Since there are 9 output ports in the design, the grant pointer value is

updated as (i+ 1)mod 9 after the input port i sends a flit to the output port j. Within

1 clock cycle, it is decided that all output ports agree to send flits from which input

port.

There are basically 3 steps in the Accept state. In the first step, match information

is collected based on the approvals given in the Grant state. Then, the requests of

the matching input ports are deleted from the request information collected in the

34

Request state. In addition, requests to the matched output ports from input ports that

fail to match in the previous iteration are also discarded. The final step is to decide

whether a new iteration is needed. If there are unpaired input ports that want to send

flits to unpaired output ports, the efficiency of the switch can be increased with a

new iteration. Therefore, to start a new iteration, the Accept state is passed to the

Request state. Thus, an output port is determined for the input ports to which they

want to send flits again. If there is no need for a new iteration, it is passed from the

Accept state to the Match state. The design has been developed to make a maximum

of 3 iterations. After 3 iterations, it will switch from Accept state to Match state

regardless of whether there are still unmatched ports.

The match_trigger signal that notifies other blocks that there is a new match is driven

in Match state. On the rising edge of the match_trigger signal, the information

contained in the match_valid and select signals are sampled by other blocks.

Another task of the Match state is to ensure that the match rounds are completed at

the same time. As a result of one or two iterations, the lines that want to send flits can

be determined. In these cases, the timing of the decision rounds after three iterations

differs. However, such a situation is not desired for the switch design to work in a

deterministic way. In addition, if the matching round is completed as a result of one

or two iterations and the information that there is a new match is reported to the other

blocks, less time will be allocated for the flit transfer that took place as a result of

the previous match. This causes an unfairness between the input lines. The value

of period_counter, which is reset at the beginning of the match round and increases

with each clock cycle that passes in the match, is checked to ensure that each match

round is completed in an equal amount of time. When period_counter is 10, the

Wait state is passed from the Match state.

As a result of the decisions made by Arbiter, it takes time for the flits stored in the

VOQs to arrive at the Crossbar Fabric. At the same time, the fact that the read

requests sent in the previous matching round are not terminated also causes errors

in the value of the request signals collected from the VOQs. That’s why Arbiter

waits for packet reading from VOQs to start based on the current decision result

before starting a new round of decision making. Since these processes take 4 clock

cycles, the Wait state controls the period_cycle value to reach 14. After the value of

35

period_cycle reaches 14, the Request state is returned to start the new match round.

In this section, Arbiter working cycle is explained. More detailed information can

be found in Section 3.1.8 where the pipeline working cycle of the switch is explained.

3.1.5 Reassembly Controller

Reassembly controller for each output port j ∈ (0 . . . 8) named RAB Controllerj

basically performs two tasks. The first of these tasks is to send flits from Crossbar

Fabric with source port i to reassembly buffer RABj,i.

The other main task is to inform RA Schedulerj how many flits are in the packets

coming from Crossbar Fabric and the last flit of the current packet has arrived.

In Figure 3.7, the input and output signal interfaces of RAB Controllerj are

shown in detail.

Figure 3.7: RAB Controller Block Diagram

RAB Controller runs at line speed. Thus, each flit coming from Crossbar

Fabric is sent to the reassembly buffers with the same speed. RAB_packet_j

signal represents flit data from Crossbar Fabric. As shown in Table 3.2, bits

between 260 and 263 of the RAB_packet_j flit indicate which input port the flit

comes from. The id information of the input port in these bits is transferred to

the RAB_write_add_j signal in order to determine the destination region in RABj .

Although the reassembly buffers are implemented as Block RAM, it is sufficient to

36

send only the input port id information as a write address. The reason for this is that

the read and write pointers are stored in specially designed reassembly buffers. This

structure is explained in more detail in the Reassembly Buffer (RAB) section.

RAB_packet_j is sent to be stored in reassembly buffers by signal RAB_data_in_j.

The RAB_full_status_j signal indicates the fullness status of the regions in the

output port j reserved for all input ports. Bit i of RAB_full_status_j signal indicates

fullness status for ith region in RABj . Thanks to a write error counter kept in the RAB

controller, the number of unsuccessful write requests to the reassembly buffers of the

flit coming from the crossbar switch is calculated in case of no space in reassembly

buffers.

256th bits of the VOQ and RAB flits show whether that flit is the last flit of the

communication packet to be sent, as can be seen in Table 3.1 and Table 3.2. The

number of flits coming from each input port i is kept in the corresponding part of

the packet_length vector in RAB Controller. The number of flits is increased

until the last flit arrives. When the last flit arrives, the last flit information is reported

to RA Schedulerj with the rising edge of the last_flit_info_en_j signal. RA

Schedulerj obtains all flit information about the packet sent to the RABj by

sampling the signals last_flit_info_j and flit_length_j. The last_flit_info_j

signal indicates which input port it came from, while the flit_length_j signal shows

the number of flits the completed packet consists of.

37

3.1.6 Reassembly Buffer

A packet that is passing over the switch may consist of one or more flits. However,

all flits in a packet may not pass through the switch one after the other. This is due to

changes in the connection of Crossbar Fabric input and output ports. All flits

in a packet may not exit Crossbar Fabric in the same match cycle, or a packet

may contain more flits than the clock iteration in a matching cycle. In this case,

the integrity of the packets leaving Crossbar Fabric must be preserved. The

common solution to this problem is to store the flits passing through the switch in

one area and then assemble them to form a packet. The common name given to these

storage areas is the reassembly buffer. In summary, reassembly buffers are regions

where the flits are stored after leaving Crossbar Fabric.

Figure 3.8: Reassembly Buffer Architecture

In this study, reassembly buffers (RABj) store the flits sent by RAB Controller.

The stored flits are sent from RABjs with the read request of the RA Schedulerj .

It supports 264 bits of input data and output data and operates at a line rate. There

is a separate RABj,i in output port j for each input port i ∈ (0 . . . 8). A detailed

38

architectural representation showing the input and output ports and the regions where

the data is stored for output port j ∈ (0 . . . 8) is shown in Figure 3.8.

RABjs are also specially designed to reduce resource consumption such as virtual

output queues. Xilinx FPGA Block RAM modules have 1-bit standard logic signals

for showing the full and empty status of RAMs. For this reason, if RABjs are tried

to be implemented with a standard Block RAM, different storage resources must

be used for each RABj,i. In the RABj architecture shown in Figure 3.8, there is

a BRAM resource divided into regions. It is named RABj for each output port

j ∈ (0 . . . 8). In RABj structure, the regions specially reserved for the input port

i ∈ (0 . . . 8) are called RABj,i. Furthermore, there are special write (head_i) and

read (tail_i) pointers for regions in RABj in order to implement them for all input

ports in a single Block RAM. In addition, the relevant empty and full flags are

used for the fullness or emptiness status of the packets in the regions. The empty

(RAB_empty_status_j) and full (RAB_full_status_j) signals have a 9-bit width

to indicate the status in all regions reserved for input ports. Moreover, reassembly

buffer sizes can be changed generically, thanks to the RAM_depth parameter in the

project top module. The RAM_depth parameter is 2 or a power of 2 allows for more

efficient resource consumption. Otherwise, a minimum power of 2, which is larger

than the number in the parameter size, is already reserved for reassembly buffers.

3.1.7 Reassembly Scheduler

Packets passing through the switch may consist of one or more flits. There may also

be cases where the flits that make up the package do not pass through the switch one

after the other. In these cases, other flits are stored in reassembly buffers until the

last flit of the package arrives. After the last flit arrives, all flits must be sent to the

output ports. The structure that understands the last flit is coming and sends the flits to

the output ports is called the Reassembly Scheduler named RA Scheduler in this

design. It is explained in the Reassembly Buffer section that there are special regions

for all input ports in reassembly buffers. In the process of transmitting all the flits in

a packet sent from an input port to output ports, the last flits of the packets sent from

other input ports may also have arrived in the reassembly buffers. In short, packets

39

belonging to multiple input ports waiting to be sent to output ports may be ready in

reassembly buffers. In such a case, since only one packet can be sent at the same time

on the output port, there must be a decision mechanism for the packets to be sent.

Figure 3.9: Reassembly Scheduler Block Diagram

Reassembly Scheduler is the block that sends the flits stored in the reassembly buffers

to the output ports. While providing this transmission, it should have a fair decision

mechanism for the input ports. For this decision mechanism, Round Robin arbitration

(RR) is used to prioritize all options sequentially in a loop. In addition, since the

output ports of the on-chip switch design have communication in the AXI4-Stream

standard, data should be sent to the output ports in this standard.

There are 9 Reassembly Schedulers in total, one for each output port. The detailed

block diagram of RA Schedulerj for output port j where j ∈ (0 . . . 8) used in

the design is shown in Figure 3.9. RA Schedulerj can read the packets in the

desired region of RABj with the signals RAB_read_en_j and RAB_read_add_j.

The first 256-bit data piece of the 264-bit data in RAB_data_out_j signal is the data

information to be used in AXI4-Stream communication. The RAB_empty_status_j

signal indicates whether there are flits stored in the RABj regions. These signals are

between RA Schedulerj and RABj blocks of output port j. RA Schedulerj

block needs the information that the last flit of a communication packet is also stored

in RABj to start sending data to the output port. This information comes from RAB

40

Controller of output port j. The signal last_flit_info_en_j indicates that the

last flit has arrived. While last_flit_info_j signal indicates the input port id of the

last flit incoming packet, flit_length_j gives information about how many flits the

last flit incoming packet consists of. The bit field diagram of a flit read from RABj

is shown in Table 3.2. Bits 260 and 263 of the RAB_data_out_j signal carry the

input port id of the flit and are assigned to the output port m_axis_tid_j. Previously

assigned id information for output port j determines the value of m_axis_tdest_j

signal. m_axis_tlast_j signal points to the last flit of a communication packet and

takes value according to the 256th bit information, which is the last flit information in

the flit from RABj . m_axis_tready_j and m_axis_tvalid_j signals are the

handshaking mechanism signals in the AXI4-Stream protocol. The m_axis_tready_j

signal indicates that the slave side to which the switch wants to send flits is ready to

accept new data. The m_axis_tvalid_j signal means that new valid flit data is sent by

the master side, switch here. Valid flit exchange occurs when both m_axis_tready_j

and m_axis_tvalid_j signals are at a logic high level at the same time.

A total of 9 different reassembly buffer regions RABj,i where i ∈ (0 . . . 8), which

are special for each input, want to send packets to output port j. Here, the Round

Robin algorithm has to be a contention arbiter used to determine 1 port out of 9 input

reassembly buffer regions. For RA Scheduler, 9 reassembly buffer regions have

equal priority. For this reason, a region is prioritized for that decision cycle with the

help of the decision pointer, which is updated after each decision. Decision Pointer

has a circular structure that will follow the port numbers sequentially. If there is no

packet to be sent in the region that the pointer prioritizes, the pointer checks whether

there is a packet to be sent for the next region to complete the circle. In this way, the

next reassembly buffer region that will send packets to the output port in one clock

cycle time is selected. Then, the decision pointer is updated according to the selected

reassembly buffer region.

A working example of RA Schedulerj for output port j can be seen in the Figure

3.10. last_flit_info_i shows how many packets whose last flit arrived in RABj,i.

The packets that are ready for each reassembly RABj,i region are colored differently.

In addition, the numbers written in the packets indicate how many flits the packets

consist of. In the trapezoidal shape, the arrows indicate the RABj,i regions to be

41

Figure 3.10: Reassembly Scheduler Arbitration Example

42

prioritized for the decision pointer. The initial position of the decision pointer is

such that it prioritizes the RABj,0 region. This means that if there is a packet to be

transmitted to the output port j in RABj,0 region during the decision-making process,

RABj,0 region will win this decision cycle. When RA Schedulerj,i block starts

working with the traffic shown, the packet containing 14 flits in the RABj,0 region

is first sent to the output port j. Then, the decision pointer is updated to point to

the RABj,1 region. In the next decision cycle, since there is no packet in the RABj,1

region, RABj,2 region is entitled to send a packet to the output port. Next, the decision

pointer is updated to point to the RABj,3 region. In this way, the decision-making

mechanism continues to work until the completed packets in all of the RABj,i regions

are sent. The order of sending the packets to the output m_axis_tdataj port is shown

time sequentially in the table in Figure 3.10. The packet on the most left is the packet

sent first.

3.1.8 Pipelined Switching Cycles

We implement the on-chip switch in a pipeline structure. It is indicated that 14

clock cycles for both achieving a high pipeline efficiency and frequent enough fabric

arbitration to closely track the incoming data traffic is selected in Chapter 3.1. On the

other hand, the speed-up of the on-chip switch is 1. It means the operating rate of the

switch is equal to the line rate. Also, the 40 Gbps Ethernet IP operates at 156.25MHz

with 256 bit flit length. For all these reasons, the pipeline structure is developed to

run only at the rising edge of the 156.25 MHz main clock. Table 3.3, Table 3.4, and

Table 3.5 show the execution of the pipeline structure. The process of a packet

arriving at the input port i on the on-chip switch until it goes to the output port j

is explained in detail.

In the example given, the packet arriving at the on-chip switch consists of 6 flits.

Flits are labeled fi,j
n , where n ∈ (1 . . . 6). Packet’s last flit is specified as *fi,j

n .

The numbers in Cycle row refer to each clock cycle in the design. VOQi,j shows the

region reserved for output port j of input port i, while RABj,i, indicates the region

reserved for the input port i of output port j. An e flag indicates whether the VOQi,j

regions are empty, and an f flag indicates whether the RABj,i regions are full. A

43

indicates the stages of the arbiter block. In the Ak,l block, each k where k ∈ (1 . . . 3)

value represents kth iterations. A4 represents the matching state of Arbiter block

whereas A5 is represents the waiting state.

In Cycle 1, the first flit of the 6-flit packet reaches the input port i of the on-chip

switch. At this time, VOQi,j and RABj,i are empty. Therefore, ei,j is 1 for VOQi,j

and fj,i is 0 for RABj,i. In Cycle 2, the VOQ Controlleri block writes fi,j
1 flit to

the corresponding VOQi,j region. In Cycle 3, since fi,j
1 is written to VOQi,j , it is now

VOQi,j region is not empty. Thus, the value of ei,j becomes 0. In Cycle 4, A1,1, the

first stage of Arbiter block, collects the output port requests to which the flits on

the input ports want to go. In Cycle 5, output ports approve the input ports’ requests

according to grant pointers’ values in A1,2 stage. In Cycle 6, it is first checked to see

if a new iteration is needed in A1,3 stage. If a new iteration is required, the pipeline

proceeds to A2,1 stage. If not, the pipeline proceeds to the A4 stage and waits here

such that the arbitration cycle is completed at the same time for each arbiter decisions.

Also, in the A1,3 stage, signal values that inform the arbiter decision to other blocks

are set. In case of a new iteration is required, the requests of the matching input ports

in the current iteration are discarded. The incoming flits are simultaneously written

to the switch to the relevant VOQi,j regions by VOQ Controlleri thanks to the

pipeline structure.

In Cycle 7, if Arbiter is in A4 stage, it waits here until the end of Cycle 13. If

Arbiter is in A2,1 stage, the operations performed in A1,1, A1,2 and A1,3 stages are

repeated sequentially in A2,1, A2,2 and A2,3 stages for unconnected ports. At the end

of the A2,3 stage, it is checked again whether a new iteration is needed. If a new

iteration is required, A3,1, A3,2 and A3,3 stages are performed for the last iteration

cycle. In Cycle 13, A4 stage executes and the input and output port pairs information

is forwarded to other blocks in the on-chip switch design, according to the arbiter

decision. Before starting a new arbiter matching round, it waits for 4 cycles at the

A5 stage during Cycle 14 to Cycle 17. This time is for the current match information

to be transmitted to the other blocks in the on-chip switch and for them to prepare

themselves according to the new match configuration. Because VOQ regions are

implemented in BRAM structures, flits in VOQ regions are obtained 1 clock cycle

after read requests are sent by Arbiter. Thus, Crossbar Fabric is not updated

44

until the last flit for the previous match decision read from the VOQ reaches the

Crossbar Fabric. Also, according to the current match information, a new

flit read request is sent without updating Crossbar Fabric so that there is no

interruption between incoming flits to Crossbar Fabric. In other words, after

the matching information is sent to the blocks in the on-chip switch, 4 clock cycles

must pass before Crossbar Fabric structure is updated. VOQ empty signals are

also updated when flits are read from VOQ regions. Requests should not be collected

for the next match decision until the last flit for the previous match decision has

been removed from the VOQ region. For the reasons explained, the arbiter decision

is sent to all blocks in the on-chip switch in Cycle 13. At the end of Cycle 17,

Crossbar Fabric configuration is updated. Then, a new flit transfer through the

on-chip switch can start In Cycle 18.

In Cycle 18, fi,j
1 reaches the updated crossbar fabric’s input port. During Cycle 19

to Cycle 24, RAB Controllerj sends incoming flits to the corresponding RABj,i

regions. In Cycle 24, Reassembly Schedulerj receives the information that

the last flit of the relevant packet has also reached the RABj,i region. Since the output

ports are in the AXI4-Stream standard, it is assumed that the communication auxiliary

signals are valid for data transfer in order to send flit. In this case, Reassembly

Schedulerj sends a read request to RABj,i to transfer all the flits that make up the

packet to the output port. Because RABs are also implemented as BRAMs, flits can

arrive at Reassembly Schedulerj block in Cycle 26, 1 clock cycle after read

requests are sent. During Cycle 27 to Cycle 32, flits read from RABj,i are sent from

the output ports to the destinations in accordance with the AXI4-Stream standard.

To summarize, this section describes the movement of a packet containing 6 flits

through the switch from the packet that arrives at the input ports of the switch until

the packet is sent to the output ports of the on-chip switch.

45

Ta
bl

e
3.

3:
O

n-
ch

ip
Sw

itc
h

Pi
pe

lin
e

St
ag

es
-1

C
yc

le
1

2
3

4
5

6
7

8
9

10
11

In
pu

t
f
i,
j

1
f
i,
j

2
f
i,
j

3
f
i,
j

4
f
i,
j

5
∗f

i,
j

6

V
O

Q
V
O
Q

i,
j

V
O
Q

i,
j

V
O
Q

i,
j

V
O
Q

i,
j

V
O
Q

i,
j

V
O
Q

i,
j

C
on

tr
ol

le
r

←
f
i,
j

1
←

f
i,
j

2
←

f
i,
j

3
←

f
i,
j

4
←

f
i,
j

5
←
∗f

i,
j

6

V
O

Q
e i

,j
←

1
e i

,j
←

0

A
rb

ite
r

A
1
,1

A
1
,2

A
1
,3

A
2
,1
/A

4
A

2
,2
/A

4
A

2
,3
/A

4
A

3
,1
/A

4
A

3
,2
/A

4

X
B

A
R

R
A

B

C
on

tr
ol

le
r

R
A

B
f j

,i
←

0

R
A

Sc
he

du
le

r

O
ut

pu
t

46

Ta
bl

e
3.

4:
O

n-
ch

ip
Sw

itc
h

Pi
pe

lin
e

St
ag

es
-2

C
yc

le
12

13
14

15
16

17
18

19
20

21
22

In
pu

t

V
O

Q

C
on

tr
ol

le
r

V
O

Q

A
rb

ite
r

A
3
,3
/A

4
A

4
A

5
A

5
A

5
A

5

X
B

A
R

co
nfi

g
f
i,
j

1
f
i,
j

2
f
i,
j

3
f
i,
j

4
f
i,
j

5

R
A

B
R
A
B

j,
i

R
A
B

j,
i

R
A
B

j,
i

R
A
B

j,
i

C
on

tr
ol

le
r

←
f
i,
j

1
←

f
i,
j

2
←

f
i,
j

3
←

f
i,
j

4

R
A

B

R
A

Sc
he

du
le

r

O
ut

pu
t

47

Ta
bl

e
3.

5:
O

n-
ch

ip
Sw

itc
h

Pi
pe

lin
e

St
ag

es
-3

C
yc

le
23

24
25

26
27

28
29

30
31

32
33

In
pu

t

V
O

Q

C
on

tr
ol

le
r

V
O

Q
e i

,j
←

1

A
rb

ite
r

X
B

A
R

←
∗f

i,
j

6

R
A

B
R
A
B

j,
i

R
A
B

j,
i

C
on

tr
ol

le
r
←

f
i,
j

5
←
∗f

i,
j

6

R
A

B

R
A

la
st

fli
t

R
A
B

j,
i

R
A
B

j,
i

R
A
B

j,
i

R
A
B

j,
i

R
A
B

j,
i

R
A
B

j,
i

Sc
he

du
le

r
→

f
i,
j

1
→

f
i,
j

2
→

f
i,
j

3
→

f
i,
j

4
→

f
i,
j

5
→
∗f

i,
j

6

O
ut

pu
t

f
i,
j

1
f
i,
j

2
f
i,
j

3
f
i,
j

4
f
i,
j

5
∗f

i,
j

6

48

CHAPTER 4

EVALUATION

4.1 Performance Evaluation

The on-chip switch design in this thesis has 9x9 input and output ports. In addition,

the arbiter method is the basic Dual Round Robin (DRR) [18] with 3 iterations.

All ports are running at the line speed of 40 Gbps. We evaluate the proposed and

implemented on-chip switch for its functional correctness and performance. To this

end, we perform a systematic verification procedure. These design source codes are

generated and synthesized using the Vivado 2020.2 tool, and resource consumption

is obtained through this tool. Every sub-block is tested for functional correctness by

its own testbench in Vivado. Then, in Modelsim SE-64 10.1d, we verify the overall

on-chip switch design by a testbench using the SystemVerilog verification architecture.

Scoreboard and coverage reports are obtained from Modelsim SE-64 tool. We then

evaluate the throughput and latency of the switch under different traffic loads.

4.1.1 Verification of the On-chip Switch

Designs should be tested throughout the development process to verify that they

have the desired functionality. The on-chip switch design, detailed in Chapter 3,

is functionally verified. During the functional test of the switch, the sub-blocks that

compose the switch are tested one by one with their own testbenches and it is checked

whether they meet the desired function or not. However, the fact that all blocks can

achieve the desired task on their own does not mean that the overall design will work

as desired functionally. At the same time, there is a need to know whether the design

can be tested under the desired conditions. For these reasons, a verification design

49

should be developed for the overall design of the switch.

The on-chip switch design is developed with Vivado 2020.2 tool. Behavioral

simulations of the sub-blocks that compose on-chip switch are performed with

testbenches created in the internal simulator in the Vivado 2020.2 tool. The tests of

the sub-blocks are achieved thanks to the signal wave-forms that are output from the

simulator. Overall switch verification test bench is developed using the SystemVerilog

verification architecture. The testbench structure developed for the switch verification

can be seen in Figure 4.1. Modelsim SE-64 10.1d is used to verify the overall on-chip

switch design and obtain coverage results.

Generator

sv_switch

Monitor

Scoreboard

Interface

DUT

Test Result!

CoverageDriver

RAB

mailbox [8:0]

VOQ

mailbox [8:0]

scoreboard

mailbox [8:0]

TestBench

Figure 4.1: Switch Testbench Architecture

Thanks to Generator, the input data to be sent to the on-chip switch design (DUT)

is generated. Generator is a class of various functions in it to generate input

data. Since the on-chip switch input ports accept data by acting as AXI4-Stream

slaves, the necessary signals for this interface are generated through the functions in

Generator. s_tid, s_tdest, s_tdata, s_tkeep, s_tlast and s_tvalid are required

to provide the data generated for testing purposes in an appropriate AXI4-Stream

format. To achieve this, there are 4 functions in Generator class. get_s_tid

function prepares the previously defined identification information for each input port.

get_s_tdest is a function that generates random identification numbers that indicate

which output block the incoming data wants to go to. Since the switch has 9 input

and output ports, it randomly generates a value within 9 different port identification

50

numbers. The get_s_tdata is a function that randomly generates 256 bits of data.

The task of the get_s_tkeep function is to generate random data for the keep signal,

which specifies the information of the current bytes in the data. get_packet_length

function randomly generates the total number of flit numbers in a packet to be sent to

the switch for testing purposes. The level of the s_tlast and s_tvalid signals should

be set by Driver when sending the generated flits to the DUT.

The randomly generated input data in the Generator is transmitted to the DUT by

Driver. Driver class is responsible for sending data to the on-chip switch at the

appropriate timing in a loop. A Generator class instance is created in Driver

class. s_tid, s_tdest, s_tdata and s_tkeep signals and flit length information are

generated randomly from the functions in Generator using this instance. After

s_tdest and flit length information are generated randomly once, the value of s_tdest

remains constant until all flits of that packet are sent. Flit length information is

reduced at each transmitted clock cycle. Data and keep values are generated randomly

in each clock cycle. When the flit length number to be sent is 0, s_tdest and flit length

information are generated randomly again. After the desired signals are produced,

s_tready signal at the input ports of the DUT is sampled in accordance with the

AXI4-Stream standard. If there is a valid s_tready signal, that is, if the value of

s_tready is logic high and the flit length number to be sent is greater than 0, the data

is transmitted to the DUT. In addition, the value of the s_tlast and s_tvalid signals in

each clock cycle is determined by Driver. With the help of the flit information to be

sent, appropriate values for these signals are determined. If the remaining flit length

information to be sent is greater than 0, s_tvalid signal is set as logic high, otherwise,

it is set as logic low. s_tlast signal is set to logic high while the last remaining flit is

sent. In other cases, s_tlast signal has a logic low level.

In addition, Driver sends the same data sent to the DUT to the VOQ mailbox in

the testbench. Thus, the same test data can be sent to the golden model and device

under test in the testbench for verification. It is the task of Driver to send the

incoming flits to the relevant VOQ mailbox if there is free space. Thus, the task of

the VOQ Controller block on the on-chip switch is modeled in this way.

51

Mailboxes are containers used in SystemVerilog to exchange data between processes.

Mailboxes work with the first in first out method. While the process that wants to

send data puts the desired data in a mailbox, the process that wants to receive the data

can get this data from the mailbox. Mailboxes are used to model block RAMs in the

on-chip switch design. VOQ mailbox acts as virtual output queue structures used

to avoid the head of line blocking problem in the on-chip switch. Driver puts test

data generated in Generator into a container named VOQ mailbox to be sent

to sv_switch, the testbench switch model. Each input port on the on-chip switch

has a dedicated VOQ mailbox. The depth of VOQ mailboxes can be changed

with a generic parameter. In addition, the ability to check the number of flits in the

mailboxes at any time allows the differences that occur during the verification process

to be found quickly.

Packets split into flits at inputs of the on-chip switch are stored to reassembly at the

output ports. RAB mailbox, on the other hand, is used to model the structures

of reassembly buffers. RAB mailbox have the same features as VOQ mailbox.

Since the on-chip switch has 9 output ports, the verification testbench of the on-chip

switch has a total of 9 RAB mailboxes.

After the input data is processed in the DUT, the testbench needs golden results or

another verification model with the same characteristics as the on-chip switch to

check the correctness of the output data of the DUT. For this reason, sv_switch

class has been developed. The sv_switch works in coordination with the DUT in

each clock cycle. Crossbar Fabric, Arbiter (DRR with 3 iterations), RAB Controller

and RA Scheduler sub-blocks of the on-chip switch in Chapter 3 are performed in

parallel in sv_switch. Input flits received from VOQ mailbox are prioritized

with the DRR method, passed through the crossbar fabric, and stored in

RAB mailbox. Packets with all flits passed through the crossbar fabric are

reassembled and sent to the output port. On the other hand, information of dropped

flits is also obtained in sv_switch since there is no free space in the

RAB mailboxes.

scoreboard mailbox is the mailbox where the expected data from output ports

of DUT sent from sv_switch are stored. Scoreboard compares the experimental

52

DUT results obtained by Monitor and the theoretically expected results stored in the

scoreboard mailbox. As a result of the comparison, the verification score of

the DUT performance is calculated. Scoreboard also makes it possible to observe

the number of flits compared, the number of successful/failed results, the number of

flits dropped on the switch, and the contents of all flits. It then prints a summary report

containing this information and the test result to a console screen. If the verification

test result is unsuccessful, some guiding information about why the flits could not

pass through the switch may also be included in the result report.

While the verification test is in progress, the instantaneous comparison result of

sv_switch and DUT results may also be observed with the outputs printed on the

console screen. Figure 4.2 shows a sample instant console output. The message with

the "SUCCESS" tag contains information that the sv_switch and DUT outputs are

consistent. The instant flit value is also displayed. The message with the "ERROR"

tag indicates a difference between the sv_switch and DUT output. Also, thanks

to this message, the output flit values of the testbench model and DUT can be seen.

Another instantaneous message is the information of the dropped flits on the switch.

It is also reported that the dropped flit goes from which input port to which output

port. In addition, the data value of this flit is also printed on the console screen.

Figure 4.2: Instant Console Display Messages of Verification Test

In addition, it is important to monitor whether the design can be tested with the desired

input conditions. For this reason, the desired input conditions are determined as a

coverage rule in Coverage class before the test. Also, at the end of the test, the test

53

coverage results can be analyzed in detail as a report of whether each of the specified

conditions was hit.

The tested on-chip switch (DUT) and switch model of the testbench should have

exactly the same functional characteristics. However, after the model is developed

in SystemVerilog, there may be cases where there is a difference between the DUT

and sv_switch results at first. In this case, one or both of the results may be

incorrect. At this point, first of all, output values for test input data should be checked

manually. Thus, it is determined which result is wrong. sv_switch has been

developed in an object-oriented way. In addition, thanks to the SystemVerilog console

outputs, messages can be printed visually at any time. For these reasons, in case of

inconsistency between theoretical and experimental results, it is easier to first check

sv_switch model in SystemVerilog. If there is an error with the theoretical output

values in sv_switch, the verification test should be repeated after sv_switch

has been modified. On the other hand, if the output values in sv_switch are

correct, the on-chip switch design needs to be analyzed. The source of the error in the

on-chip switch may be found with the help of a simulation waveform. After the error

in the on-chip switch design is corrected, the test should be repeated. If there is

still a difference between the theoretical and experimental results, the steps described

above are repeated until the testbench model and DUT results are consistent. After

modifying the design with error, the test should be repeated with the same test input

data where the difference is found. Although Generator generates the input data

randomly, a specific seed value is used for randomness. Therefore, it is possible to

repeat a verification test with the same test input data, thanks to its own seed value.

The verification report first shows the percentage of completion of the test. A test

completion percentage of 100% means that all test data created in Generator is

processed in both the DUT and sv_switch. In the test report, Total Number

of Generated Input F lits represents the total number of input test flits generated in

Generator. Total Number of Tested F lits indicates the number of experimental

(DUT) and theoretical (sv_switch) output flits compared in Scoreboard. The value

of Total Number of Tested F lits is calculated by summing the values Number

of Successful F lits, Number of Failed F lits, Number of Dropped F lits, and

Number of F lits on switch. If the output value of experimental and theoretical

54

results have the same data for a flit, this is considered successful. The total number of

successful flits according to the test result is indicated by the Number of Successful

F lits. If there is a difference between the instantaneous theoretical and experimental

output results, it is evaluated as failed. Number of Failed F lits gives the total

number of different output flits between results. The value of Number of Failed

F lits must be "0". If this value is different from "0", it means that the on-chip switch

used as DUT and its verification model sv_switch designs have functionally

different characteristics. If this value is different than "0", the test fails. The Number

of Dropped F lits indicates the number of dropped flits as they pass through the

switch. Dropping of flits on the switch usually occurs when VOQ or RAB block RAMs

are full. In these cases, if a new flit is desired to be written, the desired flit is dropped

because there is no empty space. In Chapter 3.1.7, it is explained that Reassembly

Scheduler block reassembles the packet divided into flits after the last flit of the

respective packet arrives in RAB RAM. If the last flit of a packet is dropped before

it is written to RAB RAM, other flits in the packet wait for the last flit of the following

packet to be reassembled. Number of F lits on switch displays the number of flits

remaining in RAB RAM due to the last flit dropped. There may be some flits remaining

in RAB RAMs in the switch when the test is finished before the last flit of the following

packet arrives at the same output port. Test results are determined according to the

numbers explained in detail so far. There are two different reasons for the test result

to be determined as "FAILED". The first reason is that Number of Failed F lits

is greater than "0". The other reason is that Total Number of Generated Input

F lits and Total Number of Tested F lits are not equal even if Number of Failed

F lits is equal to 0. This means that more flits than expected are in the switch or

dropped across the switch. When Total Number of Generated Input F lits and

Total Number of Tested F lits are equal to each other and Number of Failed

F lits value equal to "0", the test result is determined as "SUCCESSFUL".

A test result of PASSED means that the on-chip switch and its SystemVerilog

model, sv_switch, are functionally identical. However, this result does not mean

that all flits are successfully passed through the on-chip switch. Because FPGA has

a limited hardware resource, there is no unlimited block RAM for VOQ and RAB.

For this reason, there may be dropped flits while transmitting packets through the

55

switch. For such a situation, some feedback is given about the flits dropping in the

switch or the flits remaining in the switch as a result of the verification test. Thus, the

shortcomings of the on-chip switch design are shown as a result of the test. Also, the

switch verification test report includes information about the remaining flit numbers

in RAB RAMs.

We perform the following experiment for the verification of a DUT, whose VOQi,j

depth is 112 flits for j ∈ (0 . . . 3) and 320 flits for j ∈ (4 . . . 8) for all input ports is

evaluated. The DUT also has RABj,i regions with 113 flits depth for each input port

i ∈ (0 . . . 8) in all output ports. While selecting the depths of VOQi for i ∈ (0 . . . 8)

and RABj for j ∈ (0 . . . 8) block RAMs, care is taken to select areas that are close to

the powers of 2 to ensure efficient FPGA resource consumption. In the verification

process, the test lasts a total of 14070 clock cycles. The experiment report printed on

the Modelsim SE-64 console as a result of the verification test is shown in Figure 4.3.

Firstly, we perform the following experiment for the verification of a DUT, whose

VOQi,j depth is 112 flits for j ∈ (0 . . . 3) and 320 flits for j ∈ (4 . . . 8) for all input

ports is evaluated. The DUT also has RABj,i regions with 113 flits depth for each

input port i ∈ (0 . . . 8) in all output ports. While selecting the depths of VOQi for

i ∈ (0 . . . 8) and RABj for j ∈ (0 . . . 8) block RAMs, care is taken to select areas

that are close to the powers of 2 to ensure efficient FPGA resource consumption.

Although the application running on the reconfigurable regions (RR) and the data

generated in the RR are under the designer’s control, we assume that this is not the

case in data communication made from other interfaces. According to the simulator

results we presented in [30], an average of 16.21 cell queues is observed under 95%

maximum load. For these reasons, block RAM with 2048 depth is used for each input

port i ∈ (0 . . . 8) VOQi. 112 of 2048 depth are allocated for the designer-controlled

RR inputs whereas 320 of 2048 depth for the other input ports. For the output ports

used in this experiment, each RABj size is chosen to be 1024. 1024 depth is allocated

to equal regions with 113 depth for 9 output ports. In the verification process, the test

lasts a total of 14070 clock cycles. The experiment report printed on the Modelsim

SE-64 console as a result of the verification test is shown in Figure 4.3.

56

Figure 4.3: Verification Test Report of the First Experiment

57

In this experiment, random 90075 flits are generated to create uniform traffic and

the DUT is tested with these flits. The number of flits tested is 90075. Also, all

sv_switch and DUT output flits are exactly the same. On the other hand, no flits

passing through the switch are dropped or remain in the storage areas on the switch.

Thus, when these results were evaluated, the verification test result is determined as

PASSED. In addition, the numbers of flits produced for the test are given in Table

4.2. It is observed that approximately 10000 flits are produced for each port. Thus,

each port is faced a similar traffic load.

Table 4.1: Generated Test Input Flit Numbers for Input Ports

Input Port Number of Tested Flits
0 9864
1 9844
2 10034
3 10023
4 10242
5 10020
6 9989
7 9937
8 10122

According to the verification test result, the on-chip switch successfully forwards all

the flits from the input ports to the output ports. However, this does not give any

information about the test input data diversity. For this reason, while performing

the verification test, the Coverage test is also performed. The test data produced in

Generator is sent to the DUT over the interface. Coverage observes the test data

by sampling the input lines of the DUT in the interface. It can be observed whether

the previously defined conditions as coverage are met, or if so, how many times the

specified condition has been hit. Therefore, the coverage test result is as important as

the verification test result for the design verification process.

For this experiment, two different covergroups are defined in Coverage. These

covergroups are source_coverage and destination_coverage. There are nine

coverpoints in the source_coverage covergroup. Each coverpoint samples the

58

s_axis_tid_i signal where i ∈ (0 . . . 8) when the s_axis_tvalid_i signal is logic

high. Thus, it is monitored whether any flit is sent to the input ports and if so how

many flits are sent. In destination_coverage there is a separate coverpoint for each

input line s_axis_tdest_i where i ∈ (0 . . . 8). There are 9 bins in each coverpoint.

Each bin value represents the output port number j where j ∈ (0 . . . 8). Thus, the

condition of sending flits to 9 different outputs for the input port i can be observed

thanks to the bins. Additionally, another coverpoint named cross_s_axis_tdest is

defined in destination_coverage. cross_s_axis_tdest cross-samples

s_axis_valid_i signals. Thus, information on how many of the 9 input ports have

flit at the same time can be found. The cross_s_axis_tdest coverpoint automatically

contains as much as 2 to the power 9 bins for different conditions.

The coverage report for the covergroup source_coverage is shown in Figure 4.4.

CVP stands for coverpoint. 100% coverage is achieved for each CVP. This means

that data has been successfully driven from all input ports. The coverage report

for destination_coverage’ is shown in Figure 4.5. It is observed from the 100%

coverage result that all of the s_axis_tdest_i CVPs are hit. Also,

cross_s_axis_tdest coverage is 100%. This means that the design is driven with

the test data coming in 2 to the power 9 different input conditions. More detailed

test results showing bin conditions can also be generated as a coverage report.

However, coverage information can be seen in summary in Figure 4.4 and

Figure 4.5.

59

Figure 4.4: Coverage Report for source_coverage

60

Figure 4.5: Coverage Report for destination_coverage

61

The second experiment performs another verification test of the on-chip switch. In

some situations, all flits are not successfully passed through on-chip switch since

FPGA has a limited hardware resource, there is no unlimited block RAM for VOQ

and RAB. For this reason, there may be dropped flits while transmitting packets

through the switch. In this experiment, the verification test result is shown when the

Reassembly Buffer (RAB) depth is insufficient and therefore some flits are dropped.

To see the verification test result for the case of flit drops, the switch is tested with

an offered load close to 100%. As explained reasons in the previous experiment, the

depth of VOQi,j on all input ports is 112 flits for output ports j ∈ (0 . . . 3) and 320 flits

for output ports j ∈ (4 . . . 8). DUT also has RABj,i regions with a depth of 113 flits

for input ports i ∈ (0 . . . 8) on all output ports. The verification test result is shown in

Figure 4.6.

Figure 4.6: Verification Test Report for RAB with 113 flits

62

During the test, 14761 flits arrive at the switch. 14752 flits are successfully transmitted

across the switch and sent to the output lines. On the other hand, 7 flits are dropped in

the switch. When more detailed information with dropped flits is examined from the

instant test console outputs, it is seen that there are flits that want to go from input port

7 to output port 3. Also, Number of F lits on Switch is 2. It shows the remaining

flits in the switch as a result of the test. There is also warning information about these

flits in the test report. In addition, it is seen in detail in which RAB regions these flits

are located. The remaining flits in the switch are the flits that cannot be sent since the

last flit of the relevant packet has been dropped. Then, these flits will be sent to the

output line when the successful last flit in the next packet, which wants to go from

the same input port to the same output port as them, arrives in RAB. The test result

is PASSED because the experimental results and theoretical results are consistent

with each other.

Since the depth of the RAB regions is limited, the dropped flit information on the

switch can be seen in Figure 4.6. To prove the accuracy of this inference, a test is

performed with different RAB depths. In the third example, the second experiment

test conditions are repeated with the same test data for RAB regions with greater

depth. This time, the switch has RABj regions with a depth of 2048 flits, twice the

depth in the second experiment in all output ports. 2048 depth is allocated to equal

regions with 227 depth for 9 input ports. Hence, the switch has RABj,i regions with a

depth of 227 flits for i ∈ (0 . . . 8) input ports in all output ports.

This verification test result is shown in Figure 4.7. When the test is repeated with

the same traffic and input data, it is seen that all 14761 flits are successful. Number

of Failed F lits, Number of Dropped F lits, and Number of F lits on switch

values are all 0. Therefore, as a result of all these values, the verification test result is

determined as PASSED. Thus, when the switch is faced with an offered load close

to 100%, it is seen that the packages drop at the switch after a certain time due to the

limited depth of RAB.

63

Figure 4.7: Verification Test Report for RAB with 227 flits

64

4.1.2 Performance of the On-chip Switch

The performance of the high speed on-chip switch is evaluated by keeping statistical

information in the verification infrastructure developed with SystemVerilog in

Modelsim tool. We perform the next experiments to evaluate the flit latency and

throughput performance of the on-chip switch. In this experiment, as explained in

Chapter 4.1.1, the depth of VOQi,j is 112 flits for each output port j ∈ (0 . . . 3) and

320 flits for for each output port j ∈ (4 . . . 8) for all input ports is evaluated. The

switch has RABj,i regions with 113 flits depth for each input port i ∈ (0 . . . 8) in all

output ports.

The rate of the traffic in bps arriving on the 40 Gbps input lines is called offered

load. In other words, the rate of incoming flits divided by the line rate is calculated

as offered load. Flit latency is calculated for a flit as the difference between the time

the flit is fed from the switch input port and the time it is observed at the switch

output port. Average flit latency value is obtained by calculating the average of the

flit latency values for each flit. Average flit latency values measured under different

offered load is shown in Figure 4.8. As seen in Figure 4.8, similar average flit delay

measurements are obtained with respect to the line load. As the offered load increases,

the value of average flit latency increases as expected. In the case of offered load

above 80%, the value of average flit latency increases more. In the on-chip switch, a

pipeline structure is used for the transmission of flits over the switch. In other words,

the transmission of flits and the next matching decision are two different processes

that occur simultaneously. Dual Round Robin with 3 iterations is used as the arbiter

method of the switch. Thanks to the pipeline structure, until the decision-making

stages are completed, the transfer of the flits is made according to the matching result

of the previous decision. Therefore, a matching decision is made and the current

input-output matching continues until the next decision. For this reason, flit latency

does not increase much as the offered load increases until a certain input traffic load.

But after a certain traffic load, 80% in Figure 4.8, a dramatic increase in average flit

latency is observed as the offered load increases. The reason for this delay is the

increase in the offered load from all input ports to all output ports. Thanks to the

DRR method, when an input port is matched with an output port, the pointers are

65

mutually updated with the least priority for the most recently matched port. In cases

where the input traffic load is high after an input port matches with a specific output

port, the time taken for new matching of the same ports increases. In other words,

the average flit latency of the on-chip switch increases dramatically to a large value

because of the saturation as a result of decreased matching efficiency for DRR. In

summary, as expected, the increase in average flit latency with respect to the traffic

load to the on-chip switch is seen in Figure 4.8.

Figure 4.8: Average Flit Latency of On-chip Switch under Uniform Traffic

In the next experiment, throughput values under different load values are evaluated.

Figure 4.9 shows the throughput of an output port j with DRR under uniformly

distributed input traffic load. DRR arbiter is used with 3 iterations. Throughput is

calculated as the rate of coming out bits per second from the output port j. Offered

load is measured as the rate of incoming bits to input ports are divided by the rate of

the full capacity of input ports, then multiplied by 100 to obtain a percentage. Under

uniform input traffic, as offered load increases the value of throughput also increases

as expected. When the offered load is about 100%, the throughput is also very close

to 40 Gbps output port j. This result shows DRR method used in the on-chip switch

is work conserving.

66

Figure 4.9: Throughput of On-chip Switch under Uniform Traffic

Finally, an experiment is conducted with different numbers of flits to observe the

number of dropped flits according to the depth of RAB. During the test, the input lines

are driven at 40 Gbps line speed under 100% offered load. All tests are repeated with

the same seed value for RAB BRAMs with depths of 512, 1024, and 2048. Thus,

designs with 3 different RAB depths are tested with the same input test loads. All

variables are the same in the designs, except for the RAB depths. For BRAM = 512

case, the switch has RABj,i regions with 56 flits depth for each input port i ∈ (0 . . . 8)

in all output ports. For BRAM = 1024 case, the switch has RABj,i regions with 113

flits depth for each input port i ∈ (0 . . . 8) in all output ports. For BRAM = 2048 case,

the switch has RABj,i regions with 227 flits depth for each input port i ∈ (0 . . . 8) in

all output ports.

In Figure 4.10, dropped flit numbers are shown according to different RAB BRAM

depths. As expected, as RAB depth increases, the number of dropped flits at the same

input load decreases. Due to the limited BRAM resource, flit drops occur after a while

under a continuous 100% offered load. According to the predicted offered load, the

appropriate RAB depth can be determined by simulations.

67

Figure 4.10: Packet Drop vs RAB Depth

4.2 FPGA Hardware Implementation Evaluation

The on-chip switch design is developed in Vivado 2020.2 tool using Verilog language.

After the design verification test is successful, the codes are synthesized in the Vivado

tool by selecting the XC7Z100FFG1156-2 SoC of the Xilinx Zynq-7000 family as

the target. The design operating clock frequency is 156.25 MHz. There are available

277400 LUTs, 554800 FFs, and 755 BRAMs (36 Kb for each) in selected SoC.

As explained in Chapter 3, the switch can be easily converted to different

configurations with the help of generic parameters. The synthesis result for the switch

configuration with a VOQ depth of 2048 in each input port and a RAB depth of 1024

in each output port is shown in Table 4.2. BRAM modules support two independent

18Kb blocks or a single 36Kb block of RAM [38]. 36Kb BRAMs are 72 bits wide and

512 elements deep. 18Kb BRAMs are 36 bits wide and 512 elements deep. RAMs

with 36Kb are specified as 1 BRAM block, while BRAMs with 18Kb refer to 0.5

BRAM block. As detailed in Chapter 3.1.2 and Chapter 3.1.7, respectively, VOQs

are 260 bits wide and RABs are 264 bits wide. According to Vivado tool synthesis

reports, 1 VOQ block consumes 14.5 BRAM resources, while 1 RAB block consumes

68

7.5 BRAM resources. In total, 9 × (14.5 + 7.5) = 198 BRAMs are used for 9 input

and output ports.

Table 4.2: FPGA Implementation Results of On-chip Switch

Resource Utilization Available

LUT 47207 (17.02%) 277400

FF 27060 (4.88%) 554800

BRAM 198 (26.23%) 755

The target operating frequency of the on-chip switch design is 156.25 MHz. For

the synthesis of switch design, 156.25MHz is specified as the time constraint. The

synthesizer tool tries to synthesize the design so that it can operate at this frequency.

After the synthesis is completed, the design is examined by creating a timing report.

However, Vivado tool does not automatically calculate a maximum operating

frequency. In fact, it would be misleading to specify a term as maximum frequency.

Because the synthesizer tools take into account the specified timing constraints and

accordingly try to achieve the fastest design that consumes the least resources. Then,

in the timing reports produced as a result of the synthesis, it is indicated whether

there is a violation according to the entered time constraints. If it is desired to

calculate the maximum frequency value, it can be done by considering the slowest

path in the design. However, the maximum frequency value to be obtained here

shows the maximum operating frequency at which the synthesized design can be run.

However, this does not mean that the design cannot operate at higher frequencies. If

the synthesis is repeated by specifying the time constraint for a new frequency higher

than the calculated maximum frequency value, a new maximum frequency value for

the design can be obtained. This is because the synthesis tool is trying to meet the

new time constraint.

If it is desired to calculate the maximum operating frequency in the synthesized

design, Xilinx recommends a method [39] on how to calculate the maximum operating

frequency. According to this method, the maximum operating frequency is Fmax =

1/(T −WNS). T in the equation is the target operating frequency, while WNS

69

is the worst negative slack. As a result of the calculation made according to the

mentioned formula, the maximum operating frequency is calculated as

1/(6.4− 1.95)ns = 224.71MHz. The design is re-synthesized, specifying 224.71

MHz as the time constraint, to support the correctness of the case described above

with the maximum frequency. The calculated operating frequency for the design

synthesized according to the method described in [39] is

1/(4.450− 0.090)ns = 229.35MHz. As can be seen from the different values

calculated above, the synthesis tool tries to synthesize the design according to the

time constraint rule. Thus, different maximum operating frequencies are obtained

for different frequency values specified. In short, a maximum frequency for designs

simply indicates the maximum operating frequency of the hardware synthesized

according to the specified timing constraints. Since the clock frequency is 156.25

MHz for the synthesized on-chip switch design, it is appropriate to specify the

maximum operating frequency value as 224.71 MHz.

70

CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis proposes a complete design verification and evaluation workflow of an

on-chip packet switch to interconnect heterogeneous high-speed interfaces on a

System on Chip (SoC) platform. The design particularly addresses the requirements

of hardware accelerators implemented on an FPGA and served as a cloud computing

service by receiving and transmitting data over high-speed Ethernet interfaces. These

requirements include scalable, high-throughput interconnection, support of

heterogeneous interfaces, and low latency. Furthermore, the design should be

configurable in terms of the number of ports, buffer sizes, and data width to meet the

dynamic demands of the cloud applications and evolving hardware platforms. The

connected modules to the on-chip switch generate different types of workloads, with

different arrival patterns and packet sizes. To this end, another significant requirement

is a systematic verification procedure that ensures the functional correctness of the

implementation.

The proposed switch in this thesis addresses these requirements by a pipelined packet

switch architecture that runs at a line rate of 40 Gbps. The line rate operation provides

scalability without any internal speed-up and is enabled by implementing a fabric

arbiter that achieves 100% throughput. The on-chip switch has a Virtual Output

Queue (VOQ) organization to prevent head of line blocking problems for network

switches. Furthermore, the operation is in fixed size cycles to support the pipelined

operation. To this end segmentation and reassembly of the variable sized packets

are implemented with reassembly buffers at the switch outputs. The switch design is

parametrized and reconfigurable.

71

The on-chip switch design is implemented on the XC7Z100FFG1156-2 SoC of the

Xilinx Zynq-7000 family. Pipelining is utilized to increase the efficiency of the

implementation. All design details and operation of the hardware components are

provided in the thesis. Different than previous work in the literature we perform a

systematic verification of the switch design using the SystemVerilog infrastructure.

We demonstrate that the switch functions correctly, supports 100% throughput at

40 Gbps line speed and a maximum latency around 1250 nsec by making use of

the statistics collected by SystemVerilog in Modelsim tool. Furthermore, the design

is verified using the SystemVerilog verification environment. The scoreboard and

coverage results of the verification test are displayed.

In the future work, we have both theoretical and practical studies. In the scope of

the theoretical contribution, a traffic monitoring module is planned to add the on-chip

switch that can dynamically adjust the buffer regions for virtual output queues and

reassembly buffers. One application to benefit from this contribution would be to

manage the memory of the on-chip switch efficiently. Hence, packet drops on-chip

switch due to lack of enough memory can be prevented by monitoring the traffic. The

second future theoretical contribution is adding a communication protocol to switch.

By this protocol, the information of dropped packets on the switch is collected. Then,

the block whose packet is dropped on the switch is informed about this situation. The

practical extension of this work includes testing the on-chip switch implementation on

FPGA in experimental hardware-accelerated cloud servers with real network traffic

and accelerator implementations.

72

REFERENCES

[1] “Amazon ec2 instance types – amazon web services (aws).”

https://aws.amazon.com/ec2/instance-types/, Amazon, Accessed: 2020-08-20.

[2] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,

S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, et al., “A cloud-scale acceleration

architecture,” in The 49th Annual IEEE/ACM International Symposium on

Microarchitecture, p. 7, IEEE Press, 2016.

[3] A. Yazar, A. Erol, and E. G. Schmidt, “Accloud (accelerated cloud): A novel

fpga-accelerated cloud archictecture,” in 2018 26th Signal Processing and

Communications Applications Conference (SIU), pp. 1–4, IEEE, 2018.

[4] D. Rich, “The unique challenges of debugging design and verification code

jointly in systemverilog,” in Proceedings of the 2013 Forum on specification

and Design Languages (FDL), pp. 1–7, 2013.

[5] S. Marconi, E. Conti, J. Christiansen, and P. Placidi, “Reusable systemverilog-

uvm design framework with constrained stimuli modeling for high energy

physics applications,” in 2015 IEEE International Symposium on Systems

Engineering (ISSE), pp. 391–397, 2015.

[6] I. Assayad, L. Eljadiri, and A. Zakari, “Systematic verification of embedded

components with re-usable properties,” in 2017 International Conference on

Wireless Networks and Mobile Communications (WINCOM), pp. 1–7, 2017.

[7] H. Systems, “40Gbps Ethernet Solution.” https://hiteksys.com/pdf/

40G-Ethernet-Verification-Report.pdf. Accessed: 2021-12-29.

[8] H. J. Chao and B. Liu, High performance switches and routers. John Wiley &

Sons, 2007.

[9] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach. Pearson,

8 ed., 2021.

73

https://hiteksys.com/pdf/40G-Ethernet-Verification-Report.pdf
https://hiteksys.com/pdf/40G-Ethernet-Verification-Report.pdf

[10] M. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,

“Packetmode scheduling in input-queued cell-based switches,” IEEE/ACM

Transactions, vol. 10, no. 5, pp. 666–678, 2002.

[11] B. Hu, F. Fan, K. L. Yeung, and S. Jamin, “Highest rank first: A new class of

single-iteration scheduling algorithms for input-queued switches,” IEEE Access,

vol. 6, pp. 11046–11062, 2018.

[12] Y. Lee, J. Lou, J. Luo, and X. Shen, “An efficient packet scheduling algorithm

with deadline guarantees for input-queued switches,” IEEE/ACM Transactions

on Networking, vol. 15, no. 1, pp. 212–225, 2007.

[13] M. Akpinar, “Switch fabric schedulers with intelligent multi-class support:

Design, implementation and evaluation on fpga,” Master’s thesis, Middle East

Technical University, Turkey, 9 2014.

[14] J. E. Hopcroft and R. M. Karp, “An algorithm for maximum matchings in

bipartite graphs,” in Soc. Ind. Appl. Math J. Computation, vol. 2, pp. 225–231,

1973.

[15] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-speed switch

scheduling for local-area networks,” ACM Transactions on Computer Systems

(TOCS), vol. 11, no. 4, pp. 319–352, 1993.

[16] N. McKeown, “The islip scheduling algorithm for input-queued switches,”

IEEE/ACM transactions on networking, no. 2, pp. 188–201, 1999.

[17] N. McKeown, “The islip scheduling algorithm for input-queued switches,”

IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp. 188–201, 1999.

[18] J. Chao, “Saturn: a terabit packet switch using dual round robin,” IEEE

Communications Magazine, vol. 38, no. 12, pp. 78–84, 2000.

[19] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture for

gigascale systems-on-chip,” IEEE Circuits and Systems Magazine, vol. 4, no. 2,

pp. 18–31, 2004.

[20] A. Olofsson, “Epiphany-v: A 1024 processor 64-bit risc system-on-chip,” arXiv

preprint arXiv:1610.01832, 2016.

74

[21] J. L. Hennessy and D. A. Patterson, “A new golden age for computer

architecture,” Communications of the ACM, vol. 62, no. 2, pp. 48–60, 2019.

[22] Intel, “What Is a GPU?.” https://www.intel.com.tr/content/

www/tr/tr/products/docs/processors/what-is-a-gpu.

html. Accessed: 2021-12-10.

[23] M. Vestias and H. Neto, “Trends of cpu, gpu and fpga for high-performance

computing,” in 2014 24th International Conference on Field Programmable

Logic and Applications (FPL), pp. 1–6, IEEE, 2014.

[24] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston, Y.-H.

Lai, G. Liu, G. A. Velasquez, et al., “Rosetta: A realistic high-level synthesis

benchmark suite for software programmable fpgas,” in Proceedings of the 2018

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

pp. 269–278, 2018.

[25] A. Tırlıoğlu, O. B. Demir, A. Yazar, and E. G. Schmidt, “Hardware accelerators

for cloud computing: Features and implementation,” in 2021 29th Signal

Processing and Communications Applications Conference (SIU), pp. 1–4, 2021.

[26] M. Owaida, G. Alonso, L. Fogliarini, A. Hock-Koon, and P.-E. Melet,

“Lowering the latency of data processing pipelines through fpga based hardware

acceleration,” Proceedings of the VLDB Endowment, vol. 13, no. 1, pp. 71–85,

2019.

[27] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized fpga accelerators for

efficient cloud computing,” in 2015 IEEE 7th International Conference on

Cloud Computing Technology and Science (CloudCom), pp. 430–435, IEEE,

2015.

[28] T. Hanawa, Y. Kodama, T. Boku, and M. Sato, “Interconnection network for

tightly coupled accelerators architecture,” in 2013 IEEE 21st Annual Symposium

on High-Performance Interconnects, pp. 79–82, IEEE, 2013.

[29] F. Yazıcı, A. S. Yıldız, A. Yazar, and E. G. Schmidt, “A novel scalable on-

chip switch architecture with quality of service support for hardware accelerated

75

https://www.intel.com.tr/content/www/tr/tr/products/docs/processors/what-is-a-gpu.html
https://www.intel.com.tr/content/www/tr/tr/products/docs/processors/what-is-a-gpu.html
https://www.intel.com.tr/content/www/tr/tr/products/docs/processors/what-is-a-gpu.html

cloud data centers,” in 2020 IEEE 9th International Conference on Cloud

Networking (CloudNet), pp. 1–4, IEEE, 2020.

[30] F. Yazıcı, A. S. Yıldız, A. Yazar, and E. G. Schmidt, “An on-chip switch

architecture for hardware accelerated cloud computing systems,” in 2020 28th

Signal Processing and Communications Applications Conference (SIU), pp. 1–

4, 2020.

[31] F. Yazıcı, “A novel flexible on-chip switch architecture for reconfigurable

hardware accelerators,” Master’s thesis, Middle East Technical University, 2021.

[32] M. Rashid, M. W. Anwar, and F. Azam, “Expressing embedded systems

verification aspects at higher abstraction level — systemverilog in object

constraint language (svocl),” in 2016 Annual IEEE Systems Conference

(SysCon), pp. 1–7, 2016.

[33] M. W. Anwar, M. Rashid, F. Azam, and M. Kashif, “Model-based design

verification for embedded systems through svocl: an ocl extension for

systemverilog,” Design Automation for Embedded Systems, vol. 21, pp. 1–36,

2017.

[34] “Ieee standard for systemverilog–unified hardware design, specification, and

verification language,” IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012),

pp. 1–1315, 2018.

[35] S. R, J. S, R. A. Rahiman, R. Karthik, A. M. S, and S. S. S, “Verification of a

risc processor ip core using systemverilog,” in 2016 International Conference

on Wireless Communications, Signal Processing and Networking (WiSPNET),

pp. 1490–1493, 2016.

[36] A. Toe, “Design and verification of a round-robin arbiter,” Master’s thesis,

Rochester Institute of Technology, New York, 8 2018.

[37] J. Tonfat and R. Reis, “Design and verification of a layer-2 ethernet mac

classification engine for a gigabit ethernet switch,” in 2010 17th IEEE

International Conference on Electronics, Circuits and Systems, pp. 146–149,

2010.

76

[38] Xilinx, “57304 - Vivado Timing - Where can I find the Fmax in

the timing report?.” https://support.xilinx.com/s/article/

57304?language=en_US. Accessed: 2021-12-28.

[39] Xilinx, “7 Series FPGAs Memory Resources.” https://www.xilinx.

com/support/documentation/user_guides/ug473_7Series_

Memory_Resources.pdf. Accessed: 2021-12-28.

77

https://support.xilinx.com/s/article/57304?language=en_US
https://support.xilinx.com/s/article/57304?language=en_US
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Background and Previous Work
	Packet Switching
	Packet Switching Basics
	Buffer Architecture
	Fabric Arbiters

	Network On-chip Packet Switches
	SystemVerilog Verification
	Testbench
	Coverage
	Assertions
	DPI

	Placement of the Thesis Work in the Literature

	 On-Chip Switch Design
	Hardware Architecture of Switch
	VOQ Controller
	Virtual Output Queue
	Crossbar Fabric
	Arbiter
	Reassembly Controller
	Reassembly Buffer
	Reassembly Scheduler
	Pipelined Switching Cycles

	Evaluation
	Performance Evaluation
	Verification of the On-chip Switch
	Performance of the On-chip Switch

	FPGA Hardware Implementation Evaluation

	Conclusion and Future Work
	REFERENCES

