
A WORKFLOW FOR OFFERING HARDWARE ACCELERATORS AS A
CLOUD COMPUTING SERVICE: IMPLEMENTATION AND EVALUATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ANIL TIRLIOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2022

Approval of the thesis:

A WORKFLOW FOR OFFERING HARDWARE ACCELERATORS AS A
CLOUD COMPUTING SERVICE: IMPLEMENTATION AND EVALUATION

submitted by ANIL TIRLIOĞLU in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics
Engineering Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Şenan Ece Güran Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. Şenan Ece Güran Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. Cüneyt F. Bazlamaçcı
Computer Engineering, İYTE

Prof. Dr. Ali Ziya Alkar
Electrical and Electronics Engineering, HU

Dr. Serkan Sarıtaş
Electrical and Electronics Engineering, METU

Date: 10.02.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Surname: Anıl Tırlıoğlu

Signature :

iv

ABSTRACT

A WORKFLOW FOR OFFERING HARDWARE ACCELERATORS AS A
CLOUD COMPUTING SERVICE: IMPLEMENTATION AND EVALUATION

T�rl�o �glu, An�l

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Şenan Ece Güran Schmidt

February 2022, 77 pages

Cloud computing and hardware accelerators are two paradigm changes in the �eld of

information technologies and computers. Accordingly, this thesis proposes a

work�ow for offering users hardware accelerators implemented on FPGA as

computing resources in a heterogeneous cloud data center.

To this end, we perform the virtualization of FPGA resources as recon�gurable

regions (RRs) and provide these resources through OpenStack, an open-source cloud

resource management platform. Our work�ow is designed for SoC FPGA platforms

with a processor. The OpenStack module in the SoC processor is implemented as

embedded software that works with other OpenStack modules. An accelerator image

selected by the user can be programmed to an RR through OpenStack. The FPGA

platform in our architecture features 40 Gbps Ethernet IP Cores and an on-chip

switch that enables the communication of the RRs with each other, the SoC

processor and the 40 Gbps Ethernet. To this end, distributed accelerator

implementations can be realized on the same FPGA, and data received from the

users can be processed and delivered back to the user. We explore OpenCL-based

v

accelerator realization, which de�nes the data exchange between the accelerators

and the CPU software. Furthermore, we demonstrate the implementation of the

accelerators as stand-alone IP cores together with their wrappers in a more custom

design �ow. We implement the entire work�ow on the Xilinx ZC706 board. The

functional correctness and performance experiments are conducted throughout the

thesis work. The experiments cover the effects of the Ethernet interface on the

performance in accordance with the cloud data center operation.

Keywords: Hardware accelerator, hardware accelerated cloud data center, partial

recon�guration, FPGA virtualization

vi

ÖZ

DONANIM HIZLANDIRICILARININ BULUT B �IL �IŞ�IM SERV �IS�I OLARAK
SUNULMASI �IÇ �IN B �IR �IŞ AKIŞI: GERÇEKLEŞT �IR �IM VE

DE �GERLEND�IRME

T�rl�o �glu, An�l

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�gi Bölümü

Tez Yöneticisi: Prof. Dr. Şenan Ece Güran Schmidt

Şubat 2022 , 77 sayfa

Bulut bilişim ve donan�m h�zland�r�c�lar�, bilgi teknolojileri ve bilgisayar alan�ndaki

iki paradigma de�gişikli �gidir. Bu kapsamda, bu tez, kullan�c�lara heterojen bir bulut

veri merkezinde bilgi işlem kaynaklar� olarak FPGA üzerinde gerçeklenen donan�m

h�zland�r�c�lar�n� sunmak için bir iş ak�ş� önermektedir.

Bu amaçla FPGA kaynaklar�n�n yeniden yap�land�r�labilir bölgeler (RR'ler) olarak

sanallaşt�r�lmas�n� gerçekleştiriyor ve bu kaynaklar� aç�k kaynakl� bir bulut kaynak

yönetim platformu olan OpenStack üzerinden sa�gl�yoruz. �Iş ak�ş�m�z, işlemcili SoC

FPGA platformlar� için tasarlanm�şt�r. SoC işlemcisindeki OpenStack modülü, di�ger

OpenStack modülleriyle çal�şan bir gömülü yaz�l�md�r. Kullan�c� taraf�ndan seçilen

bir h�zland�r�c� imaj� OpenStack üzerinden RR üzerine yaz�labilir. Mimarimizdeki

FPGA platformu, 40 Gbps Ethernet IP Çekirdekleri ve RR'lerin birbirleriyle, SoC

işlemcisi ve 40 Gbps Ethernet ile iletişimini sa�glayan bir çip üzerinde anahtar içerir.

Bu amaçla ayn� FPGA üzerinde da�g�t�k h�zland�r�c� uygulamalar� gerçekleştirilebilir

ve kullan�c�lardan al�nan veriler işlenerek kullan�c�ya geri iletilebilir. H�zland�r�c�lar

vii

ve CPU yaz�l�m� aras�ndaki veri al�şverişini tan�mlayan OpenCL tabanl� h�zland�r�c�

gerçekleştirmeyi araşt�r�yoruz. Ayr�ca, h�zland�r�c�lar�n daha özel bir tasar�m

ak�ş�nda kabuk tasar�mlar�yla birlikte ba�g�ms�z IP çekirdekleri olarak uygulanmas�n�

gösteriyoruz. Tüm iş ak�ş�n� Xilinx ZC706 kart�nda uyguluyoruz. Tez çal�şmas�

boyunca işlevsel do�gruluk ve performans deneyleri yap�lm�şt�r. Deneyler, bulut veri

merkezi çal�şmas�na uygun olarak Ethernet arayüzünün başar�ma etkilerini de

kapsamaktad�r.

Anahtar Kelimeler: Donan�m H�zland�r�c�lar, donan�m h�zland�r�c�l� bulut veri

merkezi, k�smi yeniden yap�land�rma, FPGA sanallaşt�r�lmas�

viii

To my family

ix

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Prof. Dr. Şenan Ece Güran Schmidt

for her exceptional efforts. Her inspiring and friendly supervision has helped me

tremendously in cultivating and maintaining enthusiasm in our research. I am very

grateful to her for giving me an academic mindset.

I would also like to thank my colleague and mentor Alper Yazar, who contributed

greatly to the development of the work presented in this thesis, for his constant

support, constructive suggestions and patience.

A special thank to my colleagues Yunus Esergün and Fatih Yaz�c�, whom we worked

with on the ACCLOUD project, I am grateful for their contributions and cooperation

in the work.

This thesis was supported by the Scienti�c and Research Council of Turkey

(TUBITAK) [Project Code 117E667-117E668].

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 HARDWARE ACCELERATORS, HARDWARE VIRTUALIZATION,
AND HARDWARE ACCELERATORS AS A CLOUD SERVICE 9

2.1 FPGA Virtualization and Hardware Accelerator implementations On
FPGA . 10

2.2 Work�ows and Tools for FPGA Accelerator Realization 12

2.2.1 High-level Synthesis (HLS) 12

2.2.2 OpenCL . 14

2.2.3 IP Core Generation . 15

2.3 Hardware Accelerators as Cloud Service 16

2.4 ACCLOUD FPGA Platform . 19

xi

2.4.1 ACCLOUD On-chip Message Protocol 23

2.4.2 OpenStack Nova Compute Redesigned for Heterogeneous
Resources . 24

3 PROPOSED WORKFLOW FOR OFFERING HARDWARE
ACCELERATORS ON FPGA AS CLOUD COMPUTING SERVICE 27

3.1 Integrating FPGA Accelerators in OpenStack as a Computing Resource 28

3.2 Accelerator Development with IP Core Generation Method 32

3.2.1 FPGA Static Shell . 32

3.2.2 Recon�gurable Regions and Modules 32

3.2.3 The Sobel and the Gaussian Filter Examples 33

3.2.4 Ethernet Frame Processor Accelerator Example 35

3.3 Accelerator Development with OpenCL Based API: Canny Edge
Detector . 36

3.4 Discussion on Vitis Acceleration Flow and the Realization of Vivado
IP Flow in this Thesis . 38

4 EVALUATION . 41

4.1 Nova-Zynq Functional Correctness 41

4.2 Canny Edge Detector Performance Evaluation 45

4.3 Gaussian and Sobel Filter Evaluation 46

4.4 Ethernet Frame Processor Evaluation 47

4.5 Gaussian and Sobel Filters Co-Simulation 47

4.6 Reserving RR Resources on FPGA Floor-planning for Hardware
Accelerators . 50

4.7 Generating Hardware Accelerator Modules 51

4.8 Assigning Hardware Accelerator Modules to Reserved RR Resources 52

xii

4.9 Reusability of Recon�gurable Region Resources 56

4.10 Gaussian-Sobel Hardware Accelerators Functional Correctness . . . 56

4.11 Gaussian-Sobel Filters Workstation PC Implementation 64

5 CONCLUSION AND FUTURE WORK 67

REFERENCES . 71

xiii

LIST OF TABLES

TABLES

Table 2.1 Speci�cations of the Selected Hardware Accelerators 13

Table 3.1 Parameter De�nitions for the Gaussian and Sobel Filter HLS

Accelerators [1] . 34

Table 4.1 FPGA Image Recon�guration Duration 45

Table 4.2 Canny Hardware Accelerator Kernel Realization 46

Table 4.3 Gaussian Hardware Accelerator Realization 46

Table 4.4 Sobel Hardware Accelerator Realization 46

Table 4.5 Ethernet frame Processor Hardware Accelerator Realization 47

Table 4.6 Available Resources in Recon�gurable Regions 51

Table 4.7 Resource Utilizations on Recon�gurable Regions 53

Table 4.8 Available Resources in Recon�gurable Regions 54

Table 4.9 264 frames 128x128 Video Measurement CPP 61

Table 4.10 264 frames 128x128 Video Measurement Python 62

Table 4.11 128x128 Video Measurement on CPU 65

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Overview of Xilinx Tools Flow in Thesis Work 5

Figure 1.2 ZYNQ-7000 SoC Structure [2] 6

Figure 2.1 Vitis Acceleration Flow [3] . 15

Figure 2.2 ACCLOUD FPGA Platform. 20

Figure 2.3 ACCLOUD Protocol Packet Structures [4]. 24

Figure 2.4 Nova-G Compute [5]. 25

Figure 3.1 Nova-Zynq and FPGA Software architecture. 30

Figure 3.2 Nova-Zynq and Openstack Controller Test on Virtual

Environment . 31

Figure 3.3 Recon�gurable Module Structure 33

Figure 3.4 Work�ow for CED. 38

Figure 4.1 Horizon GUI OpenStack Module 42

Figure 4.2 Horizon, Launched Instances View 42

Figure 4.3 OpenStack CLI, Image List . 42

Figure 4.4 OpenStack CLI, Launching an Accelerator Instance 43

Figure 4.5 OpenStack CLI, Display Lauched Instances 43

xv

Figure 4.6 Nova-Zynq Debug Logs . 44

Figure 4.7 128x128.png Gaussian Filter 48

Figure 4.8 128x128 frame Sobel Filter . 49

Figure 4.9 Vivado Floor-planning View, Recon�gurable Regions 50

Figure 4.10 Vivado Floor Planning View Recon�gurable Modules Reside in

Recon�gurable Regions . 55

Figure 4.11 Vivado Floor Planning View of Implemented Full Design 55

Figure 4.12 Gaussian and Sobel Filter Image Processing Pipeline in FPGA . 57

Figure 4.13 End-to-End Image Processing Pipeline Path 58

Figure 4.14 Ethernet Type II Frame Structure 59

Figure 4.15 trafgen Packet Generator Tool Execution on Command Line . . . 63

Figure 4.16 40Gbps Melanox Switch Web Server Interface 64

xvi

LIST OF ABBREVIATIONS

ABBREVIATIONS

2-D Two Dimensional

ACCLOUD Accelerated Cloud

ALM Adaptive Logic Module

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ASIC Application Speci�c Integrated Circuit

AXI Advanced Extensible Interface

AWS Amazon Web Service

BRAM Block RAM

CK Canny Kernel

CPU Central Processing Unit

DCP Design Checkpoint

DDR Double Data Rate

DFX Dynamic Function Exchange

DMA DirectMemory Access

DSA Domain Speci�c Architecture

DSP Digital Signal Processor

DTS Device Tree Source

ETK Edge Tracing Kernel

FAC FPGA Accelerator Card

FF Flip Flop

FFT Fast Fourier Transform

xvii

FIFO First In First Out

FPGA Field Programmable Gate Array

FPS Frame Per Second

GbE Gigabit Ethernet

GMII Gigabit Media Independent Interface

GPU Graphics Processing Unit

HA Hardware Accelerator

HACDC Hardware Accelerated Cloud Data Center

HaaS Hardware as a Service

HAK Hardware Accelerator Kernel

HBM High Bandwidth Memory

HDL Hardware Description Language

HLS High Level Synthesis

IaaS Infrastructure as a Service

IDE Integrated Development Environment

II Input Image

IP Internet Protocol / Intellectual Property

KNN K-Nearest Neighbours

LUT Look Up Table

MAC Media Access Control

MC Main Code

MII Media Independent Interface

MPSOC Multiprocessor System-on-Chip

MTCNN Multi-task Cascaded Convolutional Networks

MQ Message Queue

OI Output Image

OpenCL Open Computing Language

xviii

PC Personal Computer

PCAP Processor Con�guration Access Port

PCIE Peripheral Component Interconnect Express

PR Partial Recon�guration

QOS Quality of Service

QSFP+ Quad Small Form-Factor Pluggable Plus

RAM Random Access Memory

RDMA Remote Direct Memory Access

RM Recon�gurable Module

PL Programmable Logic

RPC Remote Process Communication

RR Recon�gurable Region

PS Processing System

QEMU Quick Emulator

RTL Register Transfer Level

SOC System-on-Chip

SSR Super Sample DataRate

SW Software

TCL Tool Command Language

vFPGA Virtual FPGA

VHSIC Very High Speed Integrated Circuit Program

VHDL VHSIC Hardware Description Language

VM Virtual Machine

XBAR Crossbar

XRT Xilinx Runtime

xix

xx

CHAPTER 1

INTRODUCTION

The traditional approach to computer hardware, software, application and

computation functions is to be managed by the users and in the environment where

the users are located. In recent years, this traditional approach is increasingly

replaced by cloud computing, and it is preferred to offer these functions as a service

over the Internet in accordance with user demands. For this purpose, cloud service

providers establish cloud data centers (CDC) with thousands of servers and a a

high-speed networking infrastructure.

The most critical technology that makes cloud computing possible isvirtualization,

which enables using of hardware resources such as the number of processor cores,

memory and disk as independent and abstracted partitions. Virtualization is

accomplished by adding an abstraction software called thehypervisorbetween the

physical machine hardware and the operating system.

With the application of this technology on servers, virtual machines are created and

offered to users as infrastructure as a service (IaaS). To this end, OpenStack [6] is

an open source platform used in cloud-based data centers and private cloud systems

for offering IaaS services. OpenStack maintains a database of available computing

resources together withvirtual machine(VM) con�gurations. It instantiates the IaaS

requests by fetching VM images from a repository and instantiating them on physical

servers on demand.

Recently, cloud computing services include heterogeneous hardware resources

including GPUs or FPGAs as well as servers [7, 8, 9]. This trend is in line with the

prediction pointed out by [10] that hardware accelerators specially designed for a

1

given computation will outperform general-purpose processors in terms of power

and performance. FPGA platforms are preferred for accelerator implementation as

they offer software tools that facilitate the implementation of different applications

on the hardware. In this newheterogeneous cloud computing architecture, FPGA

resources must bevirtualized and presented to the user seamlessly with server

resources. Within the scope of IaaS, the user should be able to realize the

accelerators that he or she designed or bought as a service on the FPGA. SaaS

requests are ful�lled under the control of the cloud service manager and independent

of the user. In this case, hardware accelerators can also be used as less

power-consuming alternatives for SaaS requests.

FPGA accelerators can be set up as PCIe attached accelerator cards to a traditional

x86 processor or standalone network-attached devices tightly coupled with an SoC

processor. A single FPGA can host multiple hardware accelerators within its

dynamically programmable recon�gurable regions (RR) [11].

Constructing VMs with conventional cloud server resources such as CPU, memory

and disk is a well-established procedure that is supported by well-known Operating

Systems and smooth integration of the hypervisors. However, virtualization of

FPGA resources and offering them to the users transparently with the server

resources require hardware-speci�c implementations and extension of the cloud

service management infrastructure. FPGA virtualization should provide partitions of

FPGA resources that can be independently used. Furthermore, a seamless work�ow

is needed to implement hardware accelerators on the virtualized FPGA resources.

Such work�ow should produce accelerator bitstreams that can be instantiated on the

virtualized FPGA resources similar to VM images for conventional cloud server

resources.

This thesis makes the following contributions to address these problems that are

presented as a work�ow for offering hardware accelerators located in FPGA

accelerator cards as computing resources as a part of IaaS in cloud computing

platforms. The FPGA platform in this thesis is an SoC that features a CPU.

First, a speci�c implementation of the OpenStack software component, which we

call Nova-Zynq, to run on the FPGA SoC ARM processor is carried out. This

2

implementation is compatible with the rest of the OpenStack software by sending

and receiving messages in the format de�ned by the OpenStack APIs. Nova-Zynq

enables users to include the FPGA resources in their VMs and instantiate their

accelerators by downloading and programming bitstream from a repository in the

OpenStack platform. The virtualization of the resources in this thesis is done by

partial recon�guration. To this end, Nova-Zynq works together with other software

components that can program the hardware accelerator bitstream into the

recon�gurable regions (RRs). We provide the design of the static logic and the RMs.

We demonstrate the functional correctness of Nova-Zynq. Second, we explore two

different accelerator implementation �ows. The �rst �ow features the OpenCL

programming model, which incorporates the software code that runs on the CPU,

of�oading the process to the hardware and collecting the output. The second �ow

implements the accelerator as an IP core with a custom-designed wrapper to provide

the interface to the data exchange with the CPU or remote application. The �rst �ow

is meaningful to speed up the main software application function, where the data to

be processed is located close to the CPU and hardware accelerator, with a hardware

tightly coupled to the CPU. On the other hand, the second �ow; In cases where a

main application on the user side is accelerated or data is streamed by the user, it is

more suitable for accelerating it without any extra CPU intervention in hardware

accelerators located in the Cloud environment. Both of these �ows are demonstrated

with different accelerator applications. These applications are selected to

demonstrate different scenarios. The �rst scenario covers a distributed accelerator

implementation with two sub-components realized on two different RRs. The

components communicate by an on-chip switch that resides in the static logic. The

second scenario demonstrates the use of the hardware accelerator as a

bump-in-the-wire network packet processor. All the implementations except for the

static logic are carried out within the scope of this thesis. We demonstrate the

functional correctness of the accelerators together with their performance, including

resource use, throughput and latency with a series of experiments. In accordance

with the thesis focus of offering the hardware accelerators as a cloud service, all

experiments involve sending and receiving data for the accelerators through a 40

Gbps Ethernet Interface. We investigate the effects of various Ethernet frame sizes.

All the tests include software written in the scope of this thesis that packs or extracts

3

data to/from Ethernet frames. We emphasize that designing very ef�cient or

high-performance accelerators is not in the scope of this thesis.

We use Xilinx tools and the ZC706 Evaluation Kit [12] SoC evaluation board during

the thesis work. An FPGA tool ecosystem of Xilinx consists of Vivado, Vitis, Vitis

HLS, Petalinux but not limited to these. Vivado is a tool that synthesizes, simulates,

implements, and generates hardware binaries for programmable logic resources of

FPGA. HDL codes like Verilog and VHDL and built-in functional IP blocks are the

way to describe the hardware in the Vivado tool. Vitis is a software development

platform. Vitis compiler compiles the applications written in C/C++ targeting the

processing system of SoC. Vitis can also produce complete FPGA and ARM CPU

binaries when used in conjunction with Vivado artifacts. Vitis HLS compiler compiles

HLS codes, a subset of C/C++ language, into HDL codes or the Vivado RTL/block

design IP. Petalinux creates custom GNU Linux distributions for Xilinx SoC hardware

embedded systems. It can automatically generate bootloaders, kernel, device tree, and

root �le system for custom hardware generated by Vivado.

The SoC concept is used by many electronic component manufacturers for different

hardware chips. Basically, the SoC can be formed by connecting the main CPU and

other components such as GPU, FPGA, Signal Processors, analog-digital modem,

interface units, memory units with a common bus within a chip. The Zynq-7000 SoC

on the ZC706 Evaluation Kit used in this thesis consists of a processor and FPGA

structure called PS and PL, respectively. In this system, the application processor

cores are connected together with various peripherals as well as the PL domain with

the industry-standard AXI bus structure. ARM A series processors are GNU Linux

capable and can access peripherals, memories and custom hardware in the PL area

from the same address space via AXI bus.

SoCs with FPGAs generally have a similar structure to the Zynq-7000.

Zynq-Ultrascale+ [13] SoCs have a more advanced structure than Zynq-7000.

Zynq-Ultrascale+ features A and R family ARM processors, GPU, advanced

peripherals, transceivers and increased logic resources. AXI bus structure is similar

to the Zynq-7000 series. Intel has a similar architecture. For example, this can be

seen in Agilex SoCs [14]. This SoC structure also has ARM processors, AXI bus

4

Figure 1.1: Overview of Xilinx Tools Flow in Thesis Work

structure and FPGA area. The Microchip has a Polar�re [15] product family with

RISC-V processors and FPGA �eld structure connected by AXI bus. RISC-V soft

processor IPs [16] that can be implemented in FPGA areas are offered by vendors on

hardware that does not have a hard processor and only has FPGA domains. In this

way, it is possible to create similar SoC structures with different FPGA vendor

hardware.

The remainder of this thesis is organized as follows. Chapter 2 provides the

background on FPGA virtualization and the speci�cations of selected fundamental

hardware accelerators. We then introduce the work�ows and tools for FPGA

hardware accelerator realization in accordance to Figure 1.1. The implementations

and tests are carried out on an FPGA platform that is designed in the scope of a

Heterogeneous Cloud Data Center Architecture ACCLOUD. To this end, we

introduce the relevant features and components of the ACCLOUD architecture.

5

Figure 1.2: ZYNQ-7000 SoC Structure [2]

Chapter 3 presents our proposed work�ow for offering hardware accelerators as

cloud resources. To this end, this chapter presents Nova-Zynq and other software

tools that present the RRs on FPGA as standalone programmable hardware resources

to OpenStack. We describe the OpenCL based accelerator development with the

Canny Edge Detector application that is implemented in two kernels in two RRs. We

then provide a Gaussian Filter and a Sobel Filter implemented as IP cores together

with their wrappers on two RRs. These two �lters construct an image processing

pipeline. We provide the implementation of the Ethernet Packet Processor

Application. Chapter 4 describes the experiments that we conduct to demonstrate the

functional correctness of our work�ow. We further conduct experiments to measure

the data processing performance of the overall architecture, complete with the

frames received and sent through 40 Gbps Ethernet Interface as a part of cloud

6

service. Chapter 5 summarizes our �ndings and future works.

7

8

CHAPTER 2

HARDWARE ACCELERATORS, HARDWARE VIRTUALIZATION, AND

HARDWARE ACCELERATORS AS A CLOUD SERVICE

Moore's Law [17] and Dennard's Scaling [18] have been the de�ning rules of

hardware architectures for computing are for many years. There is a roughly 15-fold

gap between Moore's prediction and the current capability as of 2018. The

prediction of constant power per mm2 of silicon stated in Dennard scaling does not

hold anymore since 2012. Domain-speci�c architectures (DSA) are "tailored to a

speci�c problem domain and offer signi�cant performance (and ef�ciency) gains for

that domain". [10] propose DSA as a remedy for the gradual loss of relevance of

these rules and to continue improving performance and energy ef�ciency.

Performance improvement can be achieved by accelerating a component of an

application by a DSA with respect to executing the entire application on a

general-purpose CPU. Accordingly, DSA's including graphics processing units

(GPUs) or IP Cores on FPGA's are calledaccelerators.

The focus of this thesis is Hardware Accelerators that are realized on FPGA because

of their capability to realize different types of applications. Applications that use

operands with custom data widths, combinational logic problems, �nite state

machines, and parallel MapReduce problems are particularly �t for FPGA

implementation [19].

9

2.1 FPGA Virtualization and Hardware Accelerator implementations On

FPGA

FPGAs are competitive on energy ef�ciency compared to CPUs and GPUs for

machine learning and video processing problems. These problems feature integer

arithmetic, Hamming Distance, KNN voting, dot product, scalar multiplication,

vector addition, and binarized 2D convolution compute kernels [20]. Furthermore,

FPGAs can ef�ciently realize sort and search computations by parallel networks

[21].

[22] categorizes FPGA virtualization at the resource level, node level, and

multi-node level. Resource level virtualization includes overlays. "An FPGA overlay

is a virtual recon�gurable architecture that overlays on top of the physical FPGA

con�gurable fabric [23]." To this end, an FPGA overlay is between the user

application and the underlying physical FPGA. Rather than implementing the

application on the physical FPGA directly, the application is targeted toward the

overlay architecture independent of the physical FPGA features. The compilation

has a second step to translate this overlay architecture, together with the application

that runs on it, to the physical FPGA. Node level virtualization support at the node

level is hardware and software infrastructure to manage the resources related to a

single FPGA. Theshell is the static part of the FPGA system/bitstream and works as

a Hypervisor for vFPGAs. The shell provides the shared infrastructure required for

different applications including the I/O virtualization support, resource management,

and the drivers required to program the applications. These applications on a single

FPGA are realized on partial recon�gurable regions (RRs). Even though

virtualization with RRs provides more �exible resource management, a part of

FPGA needs to be used for the shell. Multi-node level virtualization involves

acceleration jobs across multiple FPGAs.

Virtualization can be done by presenting FPGA resources as partial recon�gurable

regions (RRs) and deploying the application on multiple FPGAs [9, 22, 24]. In such

an arrangement each RR acts as a single virtual FPGA (vFPGA).

FPGA accelerator realizations are evaluated with benchmark studies. [20] presents a

10

benchmark and performance evaluation on two different platforms. New generation

FPGAs [25] for accelerator development for direct cloud computing, which are

increasingly used today, are not discussed in this study. In [26], the accelerator is

implemented on different cards. Some of the applications discussed are not real

applications, they are for measurement purposes only. In this study, a matrix

multiplication application is presented.

Here we would like to focus on the realization of three representative applications

realized as hardware accelerators on FPGA [27]. We present a comparative summary

of these realizations in Table 2.1.

Matrix Multiplication: The matrix multiplication discussed in [26] multiplies

4096x4096 matrices as 8x8 blocks in the single-precision �oating-point data type

used in [28]. There are 3 pipelines in the accelerator core that are used. Two

different implementations were made using DDR and HBM2 memory types. The

HBM2-weighted implementation shows higher performance because the memory

used is faster. Throughput increased proportionally with frequency.

Face detection: Face detection is performed from 320x240 grayscale images with

the Viola-Jones algorithm in [20]. The used Viola-Jones Cascade classi�er

signi�cantly affects the performance. Existing resources are not suf�cient to

implement all classi�ers in parallel. The �rst three most invoked stages are

performed in parallel and they keep the data in registers. The remaining stages are

pipelined and the throughput is increased. The image is processed by dividing it into

sub-windows at each clock cycle. The MTCNN (Multi-task Cascaded Convolutional

Networks) inputs and outputs use three sequential neural networks in [29]. In their

parallelization method, the input and neural network weight values are kept in two

different buffers working with the ping-pong method, thereby reducing the memory

access delay. The computation time varies with the number and size of faces in the

input image. In the reported results, the UltraScale+ VU9P platform used in Amazon

Web Services (AWS) F1 type achieves higher performance than the Xilinx ZC706

XC7Z045 platform.

FFT: 1-dimensional FFTs of different sizes are calculated with pipeline

con�guration for a total of 2 GB data in [26]. Accordingly, eight values are written

11

to the global memory in each clock cycle, and �oating-point multiplication is

performed as complex as the logarithm of the FFT size (S). The calculation can be

made with more than one core. Two memory banks are required per core. The shift

register size used affects performance. The DSP library [30] provides a fully

synthesizable Super Sample Data Rate (SSR) FFT implementation. The systolic

architecture used processes multiple samples in a single clock cycle. The number of

samples (P) processed in a clock cycle depends on the SSR factor. FFT is

implemented as a C++ template function synthesized into a streaming

data-processing structure.

In [26], for the same size FFT, in the HBM2-weighted implementation, using 15 core

copies, the throughput increased more than 7 times compared to the DDR-weighted

implementation, which is a single-core copy. Implementations of [30] are made for

FFT sizes of 1024 and 4096 for differentP values. Here, whenP increased from 2

to 8, the frequency value did not decrease much, but the throughput increased with

the increasing amount of parallel processing. As the value ofP increases to 16, the

throughput stays almost the same while the frequency drops a lot.

2.2 Work�ows and Tools for FPGA Accelerator Realization

There are streamlined work�ows for FPGA accelerator realization and interfacing

with the CPU. We focus on two work�ows in this thesis that we call OpenCL-based

�ow and IP core generation �ow. Both �ows feature HLS (High-level Synthesis)

tools.

2.2.1 High-level Synthesis (HLS)

High-level synthesis (HLS) is a process that enables hardware-level de�nitions to be

made with high-level languages such as C/C++. HLS translates behavioral codes

written in high-level languages into Verilog/VHDL languages with cycle-accurate

digital design de�nitions. HLS is ideal for quickly implementing complex algorithms

and DSP applications on hardware that is more dif�cult to do with HDL. It stands out

with its rapid prototyping and easy simulation.

12

Ta
bl

e
2.

1:
S

pe
ci

�c
at

io
ns

of
th

e
S

el
ec

te
d

H
ar

dw
ar

e
A

cc
el

er
at

or
s

Ye
ar

,R
ef

er
en

ce
P

la
tfo

rm
W

or
kl

oa
d

R
es

ou
rc

e
U

se
(L

U
T,

F
F

:x
10

00
)

T
hr

ou
gh

pu
t

F
re

qu
en

cy

M
at

riX
M

ul
tip

lic
at

io
n

20
20

,[2
6]

X
ili

nx
A

lv
eo

U
28

0
D

D
R

40
96

×
40

96
m

at
rix

,B
lo

ck
si

ze
:8

[2
8]

LU
T

(5
69

),
F

F
(4

42
),

B
R

A
M

(6
66

),
D

S
P

(7
,6

83
)2

66
.9

G
F

LO
P

/s
10

0
M

H
z

X
ili

nx
A

lv
eo

U
28

0
H

B
M

2
LU

T
(4

99
),

F
F

(9
20

),
B

R
A

M
(6

66
),

D
S

P
(7

,6
83

)6
03

.9
G

F
LO

P
/s

23
6

M
H

z

F
ac

e
D

et
ec

tio
n

20
18

,[2
0]

X
ili

nx
Z

C
70

6

32
0x

24
0,

gr
ay

-s
ca

le
,V

io
la

Jo
ne

s

LU
T

(6
3)

,F
F

(8
4)

,B
R

A
M

(1
21

),
D

S
P

(7
9)

30
.3

fr
am

es
/s

14
0

M
H

z

AW
S

F
1

X
ili

nx
LU

T
(4

8)
,F

F
(5

4)
,B

R
A

M
(9

2)
,D

S
P

(7
2)

46
.5

fr
am

es
/s

25
0

M
H

z

V
irt

ex
U

ltr
aS

ca
le

+
V

U
9P

20
19

,[
29

]
X

ili
nx

Z
C

70
6

H
ig

h
re

so
lu

tio
n,

co
lo

r,
LU

T
(1

34
),

F
F

(2
22

),
B

R
A

M
(1

96
),

D
S

P
(8

80
)

11
.9

fr
am

es
/s

20
0

M
H

z

M
T

C
N

N
al

go
rit

hm
[3

1]

1
di

m
en

si
on

al
�o

at
in

g
po

in
tF

F
T

(S
:

F
F

T
si

ze
,K

:
N

um
be

r
of

ke
rn

el
sP

:
N

um
be

r
of

pa
ra

lle
ls

am
pl

es
pr

oc
es

se
d)

20
20

,[2
6]

X
ili

nx
A

lv
eo

U
28

0
D

D
R

K
:

1,
S

:5
12

[2
8]

LU
T

(8
3)

,F
F

(1
68

),
B

R
A

M
(3

9)
,D

S
P

(6
72

)
78

.3
G

F
LO

P
/s

24
8

M
H

z

X
ili

nx
A

lv
eo

U
28

0
H

B
M

2
K

:
15

,S
:3

2
[2

8]
LU

T
(6

02
),

F
F

(9
41

),
B

R
A

M
(4

05
),

D
S

P
(5

,2
80

)5
76

.2
G

F
LO

P
/s

25
4

M
H

z

20
20

,[3
0]

X
ili

nx
A

lv
eo

U
25

0

P
:2

,S
:1

02
4

LU
T

(4
5.

3)
,F

F
(9

1.
3)

,B
R

A
M

(2
4)

,D
S

P
(5

54
)

49
.9

G
F

LO
P

/s
50

0
M

H
z

P
:2

,S
:4

09
6

LU
T

(6
6)

,F
F

(1
10

),
B

R
A

M
(5

0)
,D

S
P

(6
70

)
57

.1
G

F
LO

P
/s

47
6

M
H

z

P
:8

,S
:1

02
4

LU
T

(1
29

.8
),

F
F

(2
47

),
B

R
A

M
(5

2)
,D

S
P

(1
42

4)
14

5.
9

G
F

LO
P

/s
36

7
M

H
z

P
:8

,S
:4

09
6

LU
T

(1
58

),
F

F
(2

68
),

B
R

A
M

(7
8)

,D
S

P
(1

60
6)

15
4.

5
G

F
LO

P
/s

32
2

M
H

z

P
:1

6,
S

:1
02

4
LU

T
(2

83
),

F
F

(5
20

),
B

R
A

M
(9

1)
,D

S
P

(3
07

2)
15

1.
4

G
F

LO
P

/s
19

2
M

H
z

P
:1

6,
S

:4
09

6
LU

T
(3

80
),

F
F

(5
92

),
B

R
A

M
(4

6)
,D

S
P

(3
66

4)
95

.6
G

F
LO

P
/s

10
0

M
H

z

13

2.2.2 OpenCL

OpenCL (Open Computing Language) is a framework for writing programs for

heterogeneous platforms consisting of central processing units (CPUs), graphics

processing units (GPUs), digital signal processors (DSPs), �eld-programmable gate

arrays (FPGAs). OpenCL speci�es C/C++-based languages and application

programming interfaces (APIs). OpenCL provides a standard interface for parallel

computing [32]. The executed functions are calledkernels. The OpenCL computing

model for Xilinx platforms can implement one or more compute kernels on the

FPGA.

For the FPGA platform, the data to be processed is �rst transferred from the host

memory to the global FPGA DDR memory. Then, the CPU triggers the compute

kernels on the FPGA to start processing. The kernel reads the data from the device

memory, processes it, and writes the results back to the device memory. If there is

more than one kernel, they can exchange data. Then, the results are transferred from

the FPGA global memory to the host memory and are available for the CPU [27, 21].

Xilinx provides an open-source HLS accelerator library called Vitis Libraries together

with a uni�ed software platform. This platform supports both the embedded software

development �ow and the Vitis application acceleration development �ow.

Vitis application acceleration development adopts this OpenCL �ow [33]. A Vitis

accelerated application has a software program and an FPGA binary containing

hardware-accelerated kernels provided in the library as shown in Figure 2.1. Here,

we note that the kernels in the Vitis Library can be implemented as IP Cores using

the IP Core Generation Method.

The software program is written in C/C++ and runs on a conventional CPU. The

software program uses user-space APIs implemented by the Xilinx Runtime library

(XRT) to interact with the acceleration kernel in the FPGA device. The hardware-

accelerated kernels can be written in C/C++ or RTL (Verilog or VHDL) and run

within the programmable logic part of the FPGA device. The kernels are integrated

with the Vitis hardware platform using standard AXI interfaces.

14

Host applications can of�oad functions that create performance bottlenecks in the

main application to the FPGA hardware accelerators. Data exchange between

hardware accelerator and CPU takes place via DDR memory. There is also an

additional direct interface path between CPU and hardware accelerator for control

information passing. PCIe attached FPGAs and embedded SoC platforms are

suitable for Vitis acceleration development �ow.

Vitis acceleration �ow requires GNU Linux operating system and Xilinx Runtime

Library (XRT) [34] Linux driver to handle high-level OpenCL communication

seamlessly between CPU and its couple hardware accelerators. When chosen Vitis

acceleration development �ow, Vitis HLS generates Xilinx object �le (.xo) from

HLS C/C++ codes. Xilinx object �les include compiled hardware accelerators. Vitis

compiler then linksxo �le with target hardware platform to a fully functional

platform binary.

Figure 2.1: Vitis Acceleration Flow [3]

2.2.3 IP Core Generation

Vivado IP generation �ow is another hardware accelerator development �ow. When

con�gured to generate Vivado IP, Vitis HLS can build standalone hardware

15

accelerators just like a regular Vivado IP that does not require high-level software

components like a Linux driver or OpenCL framework. Access to Vivado IPs written

in HDL or HLS is usually provided through the AXI interface of the IPs. For Vivado

IPs, communication with the CPU or any other FPGA interface is via the AXI

interface. Both hardware acceleration �ows, Vivado IP generation �ow and Vitis

application acceleration �ow are suitable for hardware kernel development with

Xilinx-provided HLS based libraries. Xilinx supports hardware accelerator

development on FPGA with Vitis Libraries [35] and aims to streamline and speed up

the FPGA design process [36, 37]. Due to the novelty of the libraries, accelerator

realizations using Vitis Libraries are limited in the literature. We refer to this method

as Vivado IP �ow as our development is based on Xilinx ecosystem.

2.3 Hardware Accelerators as Cloud Service

Hardware Accelerated Cloud Data Centers (HACDC) offer hardware accelerators

(HA) as computing resources in addition to memory, processor (CPU) and disk

[38, 9]. To this end, FPGA Accelerator Cards (FAC) can be installed in the servers

or FACs with an SoC processor can be directly connected to the HACDC network.

Multiple HAs can be instantiated on partially Recon�gurable Regions (RR) on the

same FPGA [11, 24, 39, 40]. Such organization requires high-speed data exchange

among FAC components andQuality of Service (QoS)support for both satisfying the

requirements of the applications and enabling bandwidth allocation for the Virtual

Machines [41].

In the study [9], an Altera Stratix V-based hardware accelerator card was added to

each compute node. All the network traf�c of the compute node is routed from the

NIC (Network Interface Card) to the FPGA with a 40 Gbps link. The FPGA is

directly connected to the data center switch. There is also a PCIe connection

between the CPU and the FPGA in the compute node. In the study, the FPGA can

locally accelerate an application running on the machine it is connected to, can be

used as a network appliance without putting a load on the CPU thanks to the direct

network switch connection, or it can run distributed applications on the FPGA by

communicating with other FPGAs to which it is connected with the network switch.

16

In this study, FPGA partial recon�guration and FPGA working alone without a

server are not considered.

[42] empirically quanti�es the FPGA instance performances of three major cloud

providers, namely, Amazon AWS, Alibaba and Huawei clouds over one year. They

observe that on average, the two compute-intensive workloads can achieve up to 40

times speed-up with respect to CPU implementations. This speed-up decreases if the

application is communication intensive. Here we provide the speci�cations of these

instances. Amazon EC2 F1.2xlarge (AWS F1), Alibaba Cloud ECS.f1-c8f1.2xlarge

(Ali F1) and Alibaba Cloud ECS.f2-c8f1.2xlarge (Ali F2) have Intel Xeon

E5-2686v4 processor and and Xilinx VU9P, Intel Arria 10 and Xilinx KU115 FPGA

cards respectively. Alibaba Cloud ECS.f3-c8f1.2xlarge (Ali F3) and Huawei Cloud

fp1c.2xlarge.11 (HW F1) both have Xilinx VU9P FPGA Card with Intel Xeon

Platinum 8163 and Intel Xeon E5-2697v4 processors respectively.

The abstraction, virtualization, and distribution of cloud resources to users involve

many sub-problems. For this purpose, cloud computing control platforms have been

developed. These platforms act as an operating system and offer cloud resources to

users. Among these platforms is Openstack [6], an open-source platform used in

cloud-based data centers and private cloud systems for Infrastructure as a Service

(IaaS) type services. OpenStack software runs distributed on the controller and

compute nodes. Accordingly, the OpenStack controller node is responsible for the

messaging infrastructure and database management. Computing nodes are also

responsible for providing cloud services to the user by communicating with the

controller node. OpenStack consists of sub-software components called projects.

Keystone, Glance, Placement, Nova-Controller projects run on the controller node.

The Keystone project is used as an authorization service in almost all of the

OpenStack architecture. In order to make any API call within the OpenStack

architecture, a current and valid token is taken from the Keystone service, and the

validity of the relevant token is checked at the place where the call is received. The

Glance project is a project that manages the image �les of the virtual machines to be

created. Virtual machines to be created must be initialized according to the relevant

image and this capability is provided by Glance. Neutron project provides network

17

management in OpenStack architecture. It can create virtual networks on top of

physical networks for created virtual machines. Placement project is a project

responsible for resource management of OpenStack architecture. Recognition of

heterogeneous physical resources such as Placement project FPGA and GPU in

OpenStack allows different physical resources to be used. Placement also provides

an API that allows incoming virtual machine requests to be initiated on explicitly

requested servers without forwarding them to Nova Scheduler. Nova-Controller is

responsible for the creation and maintenance of physical machines. A component of

Nova-Compute and Neutron is running on the compute node. According to the

orders from the Nova-Controller in the controller node, the relevant physical

resources are assigned for the creation of virtual machines. Virtual machines are

created and initialized according to their respective Glance images.

[43] utilizes the multiple recon�gurable regions on the FPGA and assigns them to

the user as IaaS/HaaS (Hardware as a Service) using OpenStack. For this purpose, it

runs on a software computing node with a function similar to the hypervisor and

communicates with OpenStack to con�gure the RRs according to the requests from

the user. Users can write their bitstreams on the FPGA. Implementation is done on

Xilinx Virtex V-based NetFPGA. In this study, the FPGA board's independent

operation from the CPU and performing network functions are not investigated. The

work is focused on OpenStack-managed IaaS applications. It is not explained how

FPGA resources are de�ned and assigned in the OpenStack nova scheduler. A

method that decides which resources to use by evaluating the virtual machine and

FPGA resources in the cloud computing system has not been de�ned.

[44] suggests hypervisor-like application implementation for FPGA in Xilinx

SDAccel environment. Partial recon�guration is not studied. This work implements

only pre-designed hardware accelerators on FPGA via OpenStack. There is no

offering of RRs as IaaS/HaaS to the user to run its bitstream. Implementation is done

on Xilinx Kintex-7 XC7K325T FPGA with 5Gbps network speed. Both [43] and

[44] use the cloud server's NIC for network access which slows down the CPU.

18

2.4 ACCLOUD FPGA Platform

The work in this thesis is developed in the scope of a research project titled

“ACCLOUD (Accelerated Cloud): A Novel, FPGA-Accelerated Cloud

Architecture” which offers users hardware accelerators implemented on FPGA as

computing resources with an innovative cloud computing approach [11].

ACCLOUD project proposes the virtualization of FPGA resources as recon�gurable

regions (RRs) and providing them through the OpenStack. The OpenStack module

in the SoC processor is implemented as embedded software that works with other

OpenStack modules. An accelerator image selected by the user can be written on the

RR. The FPGA platform in this architecture also acts as Network Interface with 40

Gbps Ethernet IP Cores. An on-chip switch is developed that provides 40 Gbps

communication between the RRs on the FPGA, PCIe, DDR, SoC processor, and 40

Gbps Ethernet. The entire architecture shown in Figure 2.2 is implemented on the

ZC-706 board with Xilinx XC7Z045 FPGA and tested in the laboratory environment

with cloud servers and a 40Gbps Ethernet switch for functional correctness and

performance.

FPGA Switch, is an on-chip switch [45, 46, 47] that is developed within the scope of

ACCLOUD architecture. The FPGA Switch consists of 7 input/output ports. Each

port can carry 256-bit wide data at 156.25 MHz (40 Gbps). Figure 2.2 shows the

number of each port (0-6).

RR0 and RR1, recon�gurable regions are the physical areas where accelerator

applications run. RR content(RM) can be changed (with partial recon�guration or

dynamic function exchange) without requiring a whole system reset or affecting the

static FPGA shell during its operation. RR areas and RM accelerators are designed

within the scope of this thesis. RMs are connected to the switch with Partial Region

Decoupler blocks. These blocks are available on Vivado, the IP blocks offered by

Xilinx; they are con�gured to be working suitable with RM interfaces. The purpose

of the decoupler blocks, which have a fundamental and straightforward function, is

to prevent the formation of "spurious" packets from RR to the switch or from the

switch to RMs in the "transient" period. At the same time, the contents of the RRs

are changed during the recon�guration. When the specialized Nova-compute

19

Figure 2.2: ACCLOUD FPGA Platform.

software running on ARM CPU con�gures the RR, it isolates the connections

between the RMs and the switch by taking the Decoupler blocks to the "decouple"

mode from the AXIL interface. The links are re-established when the con�guration

process completes by switching to the "couple" mode from the same interface.

In Figure 2.2, one interface of the ARM Block comes out of the FPGA and is

directly connected to the QSFP+ port, where 40 Gbps Ethernet cables are inserted.

The other side is going to the switch. This block consists of sub-blocks (7-8 pieces).

In order not to complicate the drawing, the details are not shown. Each sub-block is

an independent design. Sub-blocks such as MAC, PCS, PMA, PMD, Statistics

Monitor are basic blocks. Each sub-block is con�gured according to the project's

requirements with the software we prepared on the ARM processor from the AXI

Lite interface (settings such as Ethernet Padding, CRC Stripping).

20

The buffer memory on the receiving side of the 40G Ethernet Core is relatively tiny.

For this reason, data buffers are placed to reduce the possibility of packet dropping

on the receiving side. For this part, we used the AXI Stream FIFO IP core offered

by Xilinx, and we adjusted the IP Core buffer depth settings according to the design

needs. Another module called Dest Generator was designed on the receiving side

between Buffer and 40G Ethernet Core. In the ACCLOUD system, each Switch

port in the FPGA has a MAC address. The purpose of this module is to determine

which port of the Switch the incoming packet will be forwarded to by examining

the destination MAC address of the incoming Ethernet packets (generating the AXI

Stream interface tdest signal).

One of the interfaces connected to the switch is from DDR memory. Xilinx offers

DDR Cntrl as a Vivado IP block as shown in the Figure 2.2 named as DDR

controller block. Memory Interface Generator (MIG) 7 IP Core, established as the

part of this IP core that talks to RAM chips implement the DDR protocol, while the

other interface is AXIM (AXIMM). The module implements the DDR protocol and

acts as a "memory controller", it sorts the requests coming from the AXIM

memory-mapped interface and schedules the responses (write/read). This IP core

card offered by Xilinx has been adjusted according to the DDR ICs used and the

project requirements. The user interface of this block is AXIM, but the commonly

used interface in ACCLOUD is AXIS. For this reason, a module called DDR Bridge

is designed. The primary function of the DDR Bridge is to transform AXIS <->

AXIM interfaces following the ACCLOUD protocol. Since the module works

following the speci�ed protocol, it allows direct access to DDR from 40 Gpbs

Ethernet ports (read/write). This feature also works as a simple Remote DMA

(Direct Memory Access) Engine (RDMA Engine). With all this infrastructure, DDR

memory content (write/read) can be accessed and modi�ed directly from RMs

without using any extra resource, directly by the host computer, if any, via PCIe, and

from any of the two 40 Gbps Ethernet ports with RDMA logic without using any

other intermediary.

In the ACCLOUD architecture, it is recommended to use FPGA cards standalone

network-attached or by connecting them to a processor as an accelerator over PCIe.

The PCIe connection is an interface that makes sense when the FPGA card is attached

21

to a workstation. There is a hard-IP design embedded in silicon in the Zynq-7000

series for PCIe end-point functionality. This IP silicon is called PCIe E.P. as shown

in Figure 2.2. The PCIe DMA module offered by Xilinx, using this module and

working in harmony with the PCIe driver on the computer side, has been used in the

design. PCIe DMA IP Core is also con�gured to project design requirements. These

two IP blocks provide double-sided data �ow between the FPGA and the computer

CPU with the OS driver support on the computer side. Software drivers provided

by Xilinx are used on the computer side. Although the user interface of the PCIe

DMA module is AXIS, which is the primary interface, the bus width (128-bit) and

data structure are not directly compatible with the AXIS structure we designed (256-

bit, ACCLOUD protocol) for the ACCLOUD FPGA project. For this reason, the

PCIe Bridge module is designed. The main function of this module is to match two

AXIS interfaces with different features. All other ports (6 pcs) connected to the PCIe

interface and Switch can send and receive data. Therefore, like the Dest Generator on

the Ethernet side, this module multiplexes the traf�c from all ports before sending it

over PCIe and demultiplexes the packets coming from the computer according to the

packet contents allowing the Switch to exit from the correct port. Like DDR, thanks

to the ACCLOUD protocol, the PCIe interface can be accessed from all RMs and two

40 Gbps Ethernet ports (accessing a remote computer via Ethernet without any extra

modules).

There is an ARM processor on the Zynq-7000 as hard silicon. We developed a GNU

Linux distribution with the Xilinx Petalinux tool and named Zynqos runs on this

processor. In this project, the main task of the processor is to talk to the Openstack

Controller with the help of Nova-Zynq and con�gure RRs according to incoming

hardware accelerator requests from Cloud Interface. In addition, the processor can

change the con�guration settings of all the IP modules that can be con�gured with

the AXIL control interface. For AXIL connections, the infrastructure provided by

Xilinx, shown as AXI Xbar in the Figure 2.2, made up of sub-blocks such as AXI

Interconnect and Protocol Converter on Xilinx Vivado is used. The ARM processor

needs to talk to the OpenStack Controller. For this, the network interface connection

in the MII standard supported by ARM is included in the FPGA. To keep the

implementation simple and while the speed is suf�cient, MII operating at 100 Mbps

22

was preferred instead of the GMII interface, which increased to 1 Gbps. ARM does

not need higher bandwidth as only control messages going in and out from the

Controller forwarded. The MII interface includes a 4-bit wide bus running at 25

MHz in both reception and transmission directions. Since our FPGA design uses

256-bit wide, 40 Gbps data connections built on AXIS, we have developed the MII

Bridge module to harmonize these two interfaces.

2.4.1 ACCLOUD On-chip Message Protocol

FPGA design processes include also the ACCLOUD message protocol design. This

message protocol ensures that the internal switch, HDL blocks, and even other

boards or host applications designed ACCLOUD message protocol in mind works in

harmony. ACCLOUD message protocol enables, for example, the DDR memory of

the card can be accessed directly from a remote computer via the Ethernet

connection of an FPGA card, and cloud jobs can be sent and received to the

hardware accelerators running on the FPGA in RRs.

In FPGA, messages are transmitted with AXI Stream. Therefore, Ethernet frames

and PCIe packets coming from physical external interfaces to the FPGA should be

converted into AXI Stream data and AXI Stream side-channel signals. The Internal

Switch does not care about the message content, it performs forwarding by looking

at the value of the AXI Stream tdest signal. The "Dest Gen.", "DDR Bridge", and

"PCIe Bridge" modules, located between the internal switch and Ethernet, PCIe and

DDR, make sense of the relevant parts of the message packets and extract the AXI

Stream tdest signal from the packet content. For example, if an Ethernet frame

contains the destination MAC address "0x04, 0x00, 0x00, 0x05, 0x00, 0x00", "Dest

Gen." It detects tdest as 5 by looking at the 4th digit of the MAC address and the

internal switch forwards these message packets to RR0. If the destination MAC

address is "0x04, 0x00, 0x00, 0x06, 0x00, 0x00" then "Dest Gen." It detects tdest as

6 and the internal switch forwards these message packets to RR1. Similarly, in PCIe

and DDR messages, relevant signals and information are embedded in

predetermined �xed �elds in the message content as shown in Figure 2.3.

23

Figure 2.3: ACCLOUD Protocol Packet Structures [4].

2.4.2 OpenStack Nova Compute Redesigned for Heterogeneous Resources

[11] proposes that FPGA accelerators can work alone apart from the server. In this

case, OpenStack Nova Compute must run on the processor on the SoC. The

capabilities of this processor and the special operating system running on it may not

be compatible with the operating system and hypervisor software used in standard

cloud servers. To this end, [48, 5, 49] propose an extension of Nova Compute to

incorporate FPGA hardware accelerators in cloud resources. In this work, a new

lightweight project called Nova-G Compute is designed to replace the standard Nova

Compute for such heterogeneous hardware platforms. Nova-G Compute can work

with standard OpenStack projects by sending and receiving messages correctly. The

implementation of Nova-G is in Python and is OS-independent. In this way,

different hardware platforms can be supported.

Nova-G Compute can work with standard OpenStack projects by sending and

receiving messages correctly. The implementation of Nova-G is in Python and is OS

independent. In this way, different hardware platforms can be supported. The block

diagram of Nova-G Compute is presented in Figure 2.4.

Nova-G Compute communicates with other OpenStack projects using Rabbit

Message Queue as in the standard Nova application. The Nova-G Compute Message

Encoder module properly formats the messages and sends them to Rabbit-MQ.

Similarly, the Message Decoder module receives Messages from Rabbit-MQ and

parses them properly. Then, necessary operations are performed by Nova-G

24

Figure 2.4: Nova-G Compute [5].

Compute according to the content of the message. Standard OpenStack messages are

supported with extensions �avor data structures of the source database. OpenStack

communication is generally based on RPC (Remote Process Communication). The

Nova-G Compute core module can respond to these RPC requests and make RPC

requests to other OpenStack components.

The Nova-G Compute module can use APIs of other OpenStack components. Nova-G

Compute uses the Glance API to get the required VM (Virtual Machine) images.

Standard Nova Compute supports prede�ned hypervisors running on standard server

hardware. Nova-G Compute is designed to support non-standard hardware. To this

end, proper support is required for virtualizing this hardware with custom

hypervisors. For this purpose, a hypervisor driver module has been developed to

abstract the Nova-G Compute application from the custom hypervisor. The Nova-G

Compute kernel collects all the information and provides it to the hypervisor driver.

The hypervisor driver issues commands to the hypervisor speci�c for the particular

hardware type to start the desired VM. Also, the VM gets its state information from

the custom hypervisor.

25

26

CHAPTER 3

PROPOSED WORKFLOW FOR OFFERING HARDWARE

ACCELERATORS ON FPGA AS CLOUD COMPUTING SERVICE

The proposed work�ow in this thesis consists of offering the FPGA Partial

Recon�gurable Regions (RRs) as hardware resources to the cloud users through the

OpenStack resource management platform and realization of the hardware

accelerators on the RRs that are suitable to offer as cloud computing resources. To

this end, we develop the OpenStack Nova Compute project on the Zynq ARM SoC

processor and the hypervisor that enables virtualization of the FPGA RRs and offers

them to the cloud users. We then present accelerator development �ows by realizing

example applications. To this end, we propose the development of Recon�gurable

Modules (RMs) residing in the RRs and an access method to RMs. We select image

processing applications that can be distributed over two RMs to demonstrate how

accelerators on the same FPGA chip can work together by communication through

the FPGA switch. To this end, we implement a Gaussian Filter and a Sobel Filter

using the IP Core Generation Method. We also demonstrate the bump-in-the-wire

packet processing by implementing a representative Ethernet Packet Processor. We

then implement a Canny Edge Detector which is composed of two compute kernels

realized on two RRs using the OpenCL API Based Method. We describe each

software and hardware component in the work�ow in the remaining part of this

section.

27

3.1 Integrating FPGA Accelerators in OpenStack as a Computing Resource

In the scope of this thesis, we implemented a speci�c Nova Compute to run on Zynq

FPGA that we callNova-Zynq Computefor integrating FPGA accelerators as cloud-

computing resources. The development of Nova-Zynq Compute follows the Nova-G

architecture proposed in [5].

Nova-Zynq Compute requires extensions to Nova-G to run on real hardware. Like

other OpenStack services, Nova Compute exchanges messages via RabbitMQ

message queues. Messages are always published to “exchanges“ by services and

exchanges push messages to queues. The services than grabs the messages by

reading from their queues. In this context, the ability to create a “queue” and connect

with the relevant “exchange” is added to Nova-Zynq so that it can communicate with

RabbitMQ [50] in cases where it starts before the Openstack controller. In cases

where the connection with the Nova controller is not found and disconnected, the

errors that occur in Nova-Zynq are stabilized and Nova-Zynq is kept in a standby

state until the controller or the connection is active again.

Nova-Zynq Compute requires a particular image that have been given the hypervisor

that can communicate with the hypervisor drivers according to the generalized

OpenStack resource databases. In this thesis, FPGA is de�ned as a generalized

resource. Accordingly, a custom hypervisor calledFPGAvisor is developed to

demonstrate the features of our proposed extensions and Nova-Zynq Compute. To

this end, partially recon�gurable FPGA regions (RRs) are considered a single

generalized resource unit. Each RR can be programmed separately by FPGAvisor.

Nova-Zynq Compute's hypervisor driver controls FPGAvisor. Nova-Zynq Compute

presents the unique image for the recon�gurable region of the FPGA to the

FPGAvisor via the hypervisor driver. FPGAvisor is the closest software component

to the FPGA hardware of Nova-Zynq software. Its connection and location are

indicated in Figure 3.1. Next, FPGAvisor programs the selected region with the

FPGA image provided by Glance via the FPGA Manager kernel driver. The

programmed image can provide data exchange with the static design of the FPGA to

which it is connected via the AXI Stream interface. AXI Stream interface of the

28

programmed image; thanks to the MAC, IP and AXI Stream address it contains, it

can work in harmony with PCIe and Ethernet protocols.

In our prototype system, we have the ZC706 SoC FPGA board with Xilinx Zynq-

7000 [2]. Zynq has a dual-core ARM Cortex-A9 processor embedded in silicon. In

addition to the processor, there is an FPGA area with Xilinx 7 series architecture.

The main task of the ARM processor on the FPGA is to communicate with the

OpenStack controller and ful�ll the incoming requests for RRs. The software

running on the processor con�gures the RRs with the appropriate bitstreams (which

can be thought of as an image �le for the FPGA). At the same time, it also adjusts

the settings of static designs, like IPs with AXI Lite control and con�guration

interfaces.

Nova-Zynq compute runs on a GNU Linux distribution installed in the Zynq-ARM

processor. Considering the software features running on the Zynq ARM processor

and the development environment, we consider it appropriate to run an embedded

Linux on the ARM processor. Xilinx recommends its tool called Petalinux [51] to

developers who want to create an embedded Linux distribution on their products.

Petalinux provides opportunities such as creating a device tree (DTS) suitable for

embedded Linux in accordance with the FPGA design, adding the relevant drivers

to the distribution, easily con�guring the related components to the �le system (i.e.,

rootfs) in the created Linux image. Along with Petalinux comes a component called

FPGA Manager, which is developed by Xilinx, which also provides the opportunity to

upload images (bitstream) to the FPGA area on Zynq. For these reasons, the Petalinux

tool is preferred to create a GNU Linux distribution in this project.

Nova-Zynq is developed in Python language. Its main task is to respond to the

requests of the OpenStack controller and con�gure the FPGA side accordingly. Its

architectural drawing is given in Figure 3.1. “FPGA Visor” is located in Nova-Zynq

code and communicates with the FPGA Manager. “FPGA Manager” [52] performs

dynamic recon�guration of RR's with PCAP interface.

OpenStack components use a communication data structure called RabbitMQ

among themselves. Messages are transmitted in JSON format. When Petalinux is

29

used to compile an embedded Linux with default settings, RabbitMQ and

JSON-related components are not available in the rootfs. The python-JSON library

is added to the Linux distribution to process messages in JSON format. The JSON

library is a library that can be selected and distributed with the Petalinux

con�guration. We use Pika [53], a Python library that implements the AMQP

protocol to realize RabbitMQ communication. This library is downloaded from the

source code and added to the Linux distribution. We tested that Openstack messages

can be interpreted with the added libraries. Petalinux uses a compilation tool called

BitBake in the background, which is a component of the Yocto project [54]. With

this tool, the components in the custom GNU Linux distribution are compiled and

packaged by properly resolving their dependencies. Nova-Zynq software is also

added in the �nal distribution via BitBake recipes in the Linux compilation process.

Figure 3.1: Nova-Zynq and FPGA Software architecture.

The RabbitMQ messaging structure, which supports the AMQP protocol used by

OpenStack, is �rst created, virtualized and emulated very close to the actual system to

be installed. The test setup is shown in Figure 3.2. There is an Embedded Linux built

with Petalinux on ARM Cortex A9 processor virtualized on QEMU and Nova-Zynq

software on it. The only deviation from the actual physical system is the FPGAVisor.

Except for the FPGAVisor component, all Nova-Zynq components that communicate

with Openstack are tested. The test environment veri�ed that the controller computer

30

running Nova Compute and the ARM processor on the Zynq running the embedded

Linux distribution we created could talk to each other on the network according to

the standard OpenStack APIs [55].

Figure 3.2: Nova-Zynq and Openstack Controller Test on Virtual Environment

FPGA-Visor software is a module that is created as aHyperVisorDriver.py

�le inside the Nova-Zynq code and consists of shell commands. FPGA Manager

performs the command transfer to the Linux kernel driver for the con�guration of RR

via the following basic Python code snippet in Listing 1.

These commands provide the FPGA Manager's RR con�guration by passing the

commands in parentheses to the Linux Shell. PR Decoupler IPs are at addresses

“0x43c20000“ and “0x43c30000“ in the PS address map. Therefore, PR Decouplers

are activated during partial recon�guration. A waiting time of 5 seconds is set to

ensure that the Decoupling process is completed correctly. There is particular FPGA

partial con�guration commands passed to the FPGA Manager driver in the

remaining part.

os.system(�devmem 0x43c20000 w 1 && devmem 0x43c30000 w 1 && sleep 5�)

os.system(�echo 1 > /sys/class/fpga_manager/fpga0/flags�)

os.system(�mkdir -p /lib/firmware && cp image_received.bin /lib/firmware/

&& sync && echo image_received.bin >

/sys/class/fpga_manager/fpga0/firmware�)

,!

,!

os.system(�sleep 5 && devmem 0x43c20000 w 0 && devmem 0x43c30000 w 0�)

Listing 1: Python Code Snippet for Hypervisor

31

3.2 Accelerator Development with IP Core Generation Method

3.2.1 FPGA Static Shell

The static FPGA shell design includes core functionalities to provide a data

forwarding mechanism between recon�gurable module blocks, ARM CPU, 40 G

Ethernet interface, DDR memory, and PCIe interface. FPGA switch in Figure 2.2

has a data width of 256-bits. The switch has seven ports with AXI Stream interfaces.

All the message traf�c in the FPGA passes through the internal switch.

RRs are connected to switch through Partial Decoupler Modules. Partial Decouplers

isolate the unstable AXI Stream data interface of RRs during recon�guration.

Section 2.4 discusses static shell components in more detail.

3.2.2 Recon�gurable Regions and Modules

A Recon�gurable Region (RR) [56] de�nes FPGA resources bounded with a

user-de�ned square box in the physical placement of FPGA resources.

Recon�gurable Modules (RMs) are behavioral descriptions of hardware logic

resources within a RR. RRs that exist in complete FPGA design are runtime

recon�gurable. While the rest of the static design operates, RRs can be recon�gured

with compatible RMs. Hardware accelerators are physically located in RRs, and

their netlists terminologically correspond to RM.

In this thesis, hardware accelerator modules have standard interfaces to the rest of

the FPGA static design. Accelerator modules are wrapped with an AXI Stream

interface. Hardware accelerator samples have been determined and developed to be

used in evaluation for two different RRs de�ned on the FPGA. The hardware

accelerator instances are developed to have a standard interface to be programmed

into the identical RRs to replace each other. Since the ports of the internal switch

structure in the FPGA project to which the RMs will be connected supports the AXI

Stream protocol, the RM and the hardware accelerator interfaces are AXI Stream.

The simpli�ed structure of the RM is shown in Figure 3.3. Activation of the HLS

hardware accelerator while the complete FPGA project is running, assignments such

32

as clock assignment, AXI Stream source, and destination addresses are in the RM

shell written in the Verilog/HLS language shown as “RM Wrapper“ and hardware

accelerators written in C/C++ with the HLS concept are Vivado IP.

Figure 3.3: Recon�gurable Module Structure

3.2.3 The Sobel and the Gaussian Filter Examples

We implement Gaussian Filter and Sobel Filter accelerators which are hardware

accelerator kernels in Xilinx's Vitis Libraries [35]. We choose these two image

�lters to represent a distributed hardware accelerator application that is implemented

on more than one RRs. The frames that are received onto the FPGA go through an

image processing pipeline consisting of these two �lters consecutively and then

transmitted out of the FPGA. The interconnection between the Input Ethernet

interface, the Gaussian Filter, the Sobel Filter and the Ethernet Interface is realized

by the FPGA switch in Figure 2.2.

We use the HLS C/C++ language with reference to Vitis Libraries. Wrapper function

prototypes of two hardware accelerator examples are given in Listing 2 below. They

have an AXI Stream interface as in Figure 3.3, which is compatible with the FPGA

switch. On the standalone Vitis HLS IDE, design and simulations are conducted. Vitis

HLS IDE is a standalone tool to develop hardware accelerator kernels that comes with

Vitis installation similar to other Vivado, Petalinux, Vitis tools as shown in Figure 1.1.

Gaussian �lter and Sobel �lter are examples of edge detection applications widely

used in image processing. Usually, the picture is �rst blurred and smoothed through

a Gaussian �lter and then passed through a Sobel �lter for edge detection. These

33

void gaussian_filter_accel(hls::stream<ap_axiu<_WA, 1, 4, 4> >& img_inp,

hls::stream<ap_axiu<_WA, 1, 4, 4> >& img_out),!

void sobel_filter_accel(hls::stream<ap_axiu<_WA, 1, 4, 4> >& img_inp,

hls::stream<ap_axiu<_WA, 1, 4, 4> >& img_out),!

Listing 2: Function Prototypes for the Wrappers of Gaussian and Sobel Filters in HLS

accelerators are selected to demonstrate that two RRs can both exchange data and

work independently. To this end, they are realized as RMs in separate RRs. The

�lters are used to support single-channel image processing. The processed images

are grayscale.

Function prototypes of Gaussian and Sobel Hardware Accelerator Modules are given

in Listing 3. After the wrapper function receives the data from the FPGA switch,

it extracts the pixel values from the data and transmits them to the HLS accelerator

module. The Sobel Filter accelerator module calculates a frame's gradients in the

x-axis and y-axis. Then, the gradients created with the Sobel �lter for both the x-axis

and the y-axis were combined with theaddWeighted function in equal weights to

form the single processed frame.

Table 3.1: Parameter De�nitions for the Gaussian and Sobel Filter HLS Accelerators

[1]

Parameter Description

FILTER_SIZE, FILTER_TYPE Filter size. Filter size of 3 (XF_FILTER_3X3), 5 (XF_FILTER_5X5) and 7 (XF_FILTER_7X7) are supported.

BORDER_TYPE Border type supported is XF_BORDER_CONSTANT

SRC_T Input and Output pixel type. Only 8-bit, unsigned, 1 and 3 channels are supported (XF_8UC1 and XF_8UC3)

DST_T Output pixel type. Only 8-bit unsigned, 16-bit signed,1 and 3 channels are supported (XF_8UC1, XF_16SC1,XF_8UC3 and XF_16SC3)

ROWS Maximum height of input and output image.

COLS Maximum width of input and output image (must be a multiple of 8, for 8-pixel operation)

NPC Number of pixels to be processed per cycle; possible values are XF_NPPC1 and XF_NPPC8 for 1 pixel and 8 pixel operations respectively.

USE_URAM Enable to map storage structures to UltraRAM

src Input image

dst Output image

_dst_matx X gradient output image.

_dst_maty Y gradient output image.

sigma Standard deviation of Gaussian �lter

Alpha Weight applied on �rst image

Beta Weight applied on second image

gamma Scalar added to each sum

34

template <int FILTER_SIZE, int BORDER_TYPE,int SRC_T, int ROWS, int COLS,

int NPC = 1>,!

void GaussianBlur(xf::cv::Mat<SRC_T, ROWS, COLS, NPC> & src,

xf::cv::Mat<SRC_T, ROWS, COLS, NPC> & dst, float sigma),!

template <int BORDER_TYPE,int FILTER_TYPE, int SRC_T,int DST_T, int ROWS,

int COLS,int NPC=1,bool USE_URAM=false>,!

void Sobel(xf::cv::Mat<SRC_T, ROWS, COLS, NPC> &

_src_mat,xf::cv::Mat<DST_T, ROWS, COLS, NPC> &

_dst_matx,xf::cv::Mat<DST_T, ROWS, COLS, NPC> & _dst_maty)

,!

,!

template < int SRC_T , int DST_T, int ROWS, int COLS, int NPC=1>

void addWeighted(xf::cv::Mat<SRC_T, ROWS, COLS, NPC> & _src1, float alpha,

xf::cv::Mat<SRC_T, ROWS, COLS, NPC> & _src2, float beta, float gamma,

xf::cv::Mat<SRC_T, ROWS, COLS, NPC> & _dst)

,!

,!

Listing 3: Function prototypes of Gaussian and Sobel Hardware Accelerator Modules

in HLS OpenCV

3.2.4 Ethernet Frame Processor Accelerator Example

The FPGA board with the 40 Gbps Ethernet interfaces provides the Network

Interface to the cloud server. To this end, network packet processing functions can

be implemented as accelerators on the FPGA without slowing down the traf�c with

CPU interference. The second accelerator example is designed to show that Ethernet

frames can be processed transparently in hardware accelerators on FPGA and

implemented using HLS. In this example, the payload has a number. The hardware

accelerator modi�es this number in the payload by multiplying it by four and adding

�ve to it without interfering with the Ethernet destination, Ethernet source, and

protocol addresses.

void eth_pack_proc(hls::stream< ap_axiu<256,1,4,4> > &src, hls::stream<

ap_axiu<256,1,4,4> > &dst),!

Listing 4: Function Prototype for Ethernet Frame Processor in HLS

35

3.3 Accelerator Development with OpenCL Based API: Canny Edge Detector

Hardware acceleration aims to increase the data throughput and reducing the response

time. Vitis acceleration �ow provides a framework to accelerate overall C/C++ host

code by of�oading its suitable functions to FPGA. Code pro�ling tools can evaluate

C/C++ host code to �nd appropriate functions that create performance bottlenecks,

have the potential for concurrent execution, require data access locally more, and are

compute-intensive. These functions then can be implemented to work on the FPGA

accelerator kernel with HLS or HDL. The host application uses OpenCL API [57]

calls or Xilinx Runtime (XRT) [34] to communicate and control hardware accelerator

kernels running on the FPGA regions. XRT combines GNU Linux user and kernel-

level drivers to connect PL and application processors. Therefore, Vitis acceleration

�ow requires GNU Linux-based operating system to run the host application. XRT

can communicate between the host and the kernel through PCIe or AXI interfaces.

PCIe interface is used when the hardware platform is a PCIe-attached FPGA to CPU.

The communication channel is the AXI interface when the hardware platform is Zynq

SoC. Data �ow between hardware accelerator kernels, and application processors

occur through global memory. On the other hand, the control �ow occurs through

access ports and the AXI Lite interface of hardware accelerator kernels. A typical

acceleration follows that the host application �rst transfers data into global memory

and initiates the kernel to operate on the data; the hardware accelerator kernel then

stores results back into the global memory. Upon kernel completion, the host fetches

the results back.

Our third accelerator implementation is the Canny Edge Detector on Xilinx ZC706

[27]. The CED we implemented is derived from the open-source code in the HLS

language available in Vitis Library [58].

The CED application is a system application on a chip that is compiled with two

streams, the main code (MC) to run on the ARM processor on the ZC706 platform

and the hardware logic design to run on the FPGA area. The application developed

with C code to run on ARM is compiled with the “arm-linux-gnueabihf-g++“ cross

compiler. The hardware that runs on the FPGA area is created with the Vitis v++

compiler. As in other hardware accelerators, the data �ow control is done by the

36

application running on the processor while the calculations are made on the FPGA.

CED comprises two Kernels; hence similar to the Gaussian and Sobel Filters, it is a

representative application for multiple accelerators distributed over different FPGAs

or FPGA RRs for more scalable cloud services.

The CED implementation is performed with two hardware accelerator kernels (HAK)

running on the FPGA. The Canny Kernel (CK) performs edge detection, while the

Edge Tracer Kernel (ETK) connects the edges between strong pixels. A 3x3 Gaussian

mask and Sobel Filter are applied to the input image (II) for edge detection. Weak

pixels found by bidirectional gradient calculation are removed from the image using

“Non-maximal suppression”. Then, in the ETK, the connection of the edges of strong

pixels is completed.

CK and ETK work by communicating with each other and with the MC running on

the processor using OpenCL over AXI interfaces, as seen in Figure 3.4.

Using the write and read functions of the OpenCV library, MC readsn images to

be processed from the hard disk into a matrix array withimread , and the images

processed in HAKs are written to the processor global memory as a matrix array, and

then sent to the hard disk using theimwrite method.

Each input image in the matrix arrayII i ; i = 1; � � � ; n is written by MC withWi over

the AXI Stream interface to the global memory of the FPGA. MC transmits theII i

start address, output imageOI i start address in the global memory, image size, and

�lter parameters to HAK over the AXI Lite interface. The MC triggers the HAKs

to start working over the AXI Lite interface. CK processes theII i in the global

memory and transmits the generatedII CK
i over the AXI Stream interface to ETK for

processing. ETK writes theOI i generated after the processing to the global memory

and transmits the completion of the process to MC over the AXI Lite interface. MC

readsOI i from FPGA's global memory withRi and writes it into processor global

memory.

37

Figure 3.4: Work�ow for CED.

3.4 Discussion on Vitis Acceleration Flow and the Realization of Vivado IP

Flow in this Thesis

Vitis acceleration �ow and Vivado IP generation �ow have positive and negative

aspects. Both of these �ows have similar and distinctive features. Support for

Dynamic Function Exchange (DFX), formerly partial recon�guration, is available

for both �ows enabling them as cloud services. It is important to note that different

hardware accelerator modules can be created to be compatible with static FPGA

shell and con�gured interchangeably. In both �ows, hardware accelerators can be

developed with HDL or HLS. In the Vivado IP �ow, communication with hardware

accelerators can take place over a custom FPGA static shell and a custom message

protocol. In Vitis acceleration �ow, CPU and hardware accelerators exchange data

with AXI Memory Mapped interface over a memory. Here, we note that in our

Vivado IP �ow, the FPGA static shell and hardware accelerator interface are created

as AXI Stream. An accurate and ef�cient system design with the AXI Memory

Mapped interface is usually more complex. AXI Memory Mapped consists of 5

stream channels. These channels are Write Response Channel, Write Data Channel,

Write Address Channel, Read Address Channel and Read Response Channel. So it

consumes more routing resources. In order to minimize the overhead of this

interface, the communication should be performed in burst and the data�ow in

hardware accelerators should be con�gured in a pipelined manner. In the AXI

Stream interface, data can continuously be sent and received in burst form.

Hardware accelerators with AXI Stream interface should be implemented with

38

pipelined data �ow to increase throughput. The application to be CPU accelerated

developed in Vitis acceleration �ow has OpenCL, XRT and Embedded Linux

dependencies. On the other hand, our implementations in Vivado IP �ow only expect

the application to be accelerated on the user's side to provide data �ow following the

ACCLOUD messaging protocol, thanks to the Nova-Zynq and FPGA static shell

infrastructure. The Vitis acceleration �ow makes more sense to be preferred where

the data to be processed is local to the CPU and hardware accelerator. On the other

hand, our realization with custom shell, FPGAvisor and Vivado IP �ow generated

hardware accelerators; makes sense for the cases such as where the user streams data

are processed in hardware accelerators, without any extra CPU intervention, located

in the cloud-computing infrastructure.

39

40

CHAPTER 4

EVALUATION

OpenStack manages the cloud computing resources with Nova Project. Accordingly,

the Nova Conductor on the controller node communicates with the Nova Compute

instances on the compute nodes in the cloud over a RabbitMQ messaging interface.

Nova-Zynq is the hardware-speci�c Nova-Compute that is developed in the scope of

this thesis to run on the ARM processor of the Zynq SoC platform. In Section 4.1

we demonstrate the functional correctness of Nova-Zynq. In the remaining sections

of this chapter, we provide performance evaluations of the accelerators developed

and implemented within the scope of this thesis. To this end, we investigate metrics

including recon�guration speed, FPGA resource consumption, power, latency and

throughput.

4.1 Nova-Zynq Functional Correctness

Nova-Zynq works as a daemon application in the background after GNU Linux is

booted on the SoC board. It waits for messages from Nova Conductor to carry out

speci�c instance launching tasks. OpenStack provides the Horizon Project that

enables the cloud users to see an interface similar to Figure 4.1. Hardware

accelerator image is selected by user sent to a Nova-Zynq application through

OpenStack's RabbitMQ messaging tool, to be con�gured on an available FPGA

recon�gurable region.

OpenStack graphical user interface then shows the launched instances as shown in

Figure 4.2.

41

Figure 4.1: Horizon GUI OpenStack Module

Figure 4.2: Horizon, Launched Instances View

In a similar manner, OpenStack client commands can be used to view FPGA

hardware accelerator images and launch instances. Resource management of

OpenStack compute nodes via the GNU Linux command line using the OpenStack

Compute API [59] is shown in Figure 4.3 and Figure 4.4.

Figure 4.3: OpenStack CLI, Image List

42

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Hardware Accelerators, Hardware Virtualization, and Hardware Accelerators as a Cloud Service
	FPGA Virtualization and Hardware Accelerator implementations On FPGA
	Workflows and Tools for FPGA Accelerator Realization
	High-level Synthesis (HLS)
	OpenCL
	IP Core Generation

	Hardware Accelerators as Cloud Service
	ACCLOUD FPGA Platform
	ACCLOUD On-chip Message Protocol
	OpenStack Nova Compute Redesigned for Heterogeneous Resources

	Proposed WorkFlow for Offering Hardware Accelerators on FPGA as Cloud Computing Service
	Integrating FPGA Accelerators in OpenStack as a Computing Resource
	Accelerator Development with IP Core Generation Method
	FPGA Static Shell
	Reconfigurable Regions and Modules
	The Sobel and the Gaussian Filter Examples
	Ethernet Frame Processor Accelerator Example

	Accelerator Development with OpenCL Based API: Canny Edge Detector
	Discussion on Vitis Acceleration Flow and the Realization of Vivado IP Flow in this Thesis

	Evaluation
	Nova-Zynq Functional Correctness
	Canny Edge Detector Performance Evaluation
	Gaussian and Sobel Filter Evaluation
	Ethernet Frame Processor Evaluation
	Gaussian and Sobel Filters Co-Simulation
	Reserving RR Resources on FPGA Floor-planning for Hardware Accelerators
	Generating Hardware Accelerator Modules
	Assigning Hardware Accelerator Modules to Reserved RR Resources
	Reusability of Reconfigurable Region Resources
	Gaussian-Sobel Hardware Accelerators Functional Correctness
	Gaussian-Sobel Filters Workstation PC Implementation

	Conclusion and Future Work
	REFERENCES

