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A Survey on Deep Learning-based Architectures for 
Semantic Segmentation on 2D Images
Irem Ulku a and Erdem Akagündüz b

aDepartment of Computer Engineering, Ankara University, Ankara, Turkey; bGraduate School of 
Informatics Middle East Technical University, Ankara, Turkey

ABSTRACT
Semantic segmentation is the pixel-wise labeling of an image. 
Boosted by the extraordinary ability of convolutional neural net
works (CNN) in creating semantic, high-level and hierarchical 
image features; several deep learning-based 2D semantic segmen
tation approaches have been proposed within the last decade. In 
this survey, we mainly focus on the recent scientific developments 
in semantic segmentation, specifically on deep learning-based 
methods using 2D images. We started with an analysis of the public 
image sets and leaderboards for 2D semantic segmentation, with 
an overview of the techniques employed in performance evalua
tion. In examining the evolution of the field, we chronologically 
categorized the approaches into three main periods, namely pre- 
and early deep learning era, the fully convolutional era, and the 
post-FCN era. We technically analyzed the solutions put forward in 
terms of solving the fundamental problems of the field, such as 
fine-grained localization and scale invariance. Before drawing our 
conclusions, we present a table of methods from all mentioned 
eras, with a summary of each approach that explains their con
tribution to the field. We conclude the survey by discussing the 
current challenges of the field and to what extent they have been 
solved.
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Introduction

Semantic segmentation has recently become one of the fundamental problems, 
and accordingly, a hot topic for the fields of computer vision and machine learning. 
Assigning a separate class label to each pixel of an image is one of the important 
steps in building complex robotic systems, such as driverless cars/drones, human- 
friendly robots, robot-assisted surgery, and intelligent military systems. Thus, it is 
no wonder that in addition to scientific institutions, industry-leading companies 
studying artificial intelligence are now summarily confronting this problem.

The simplest problem definition for semantic segmentation is pixel-wise label
ing. Because the problem is defined at the pixel level, finding only class labels that 
the scene includes is considered insufficient, but localizing labels at the original 
image pixel resolution is also a fundamental goal. Depending on the context, class 
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labels may change. For example, in a driverless car, the pixel labels may be human, 
road, and car (Siam et al. 2017), whereas for a medical system (Jiang et al. 2017; 
Saha and Chakraborty 2018), they could be cancer cells, muscle tissue, aorta 
wall etc.

The recent increase in interest in this topic has been undeniably caused by the 
extraordinary success seen with convolutional neural networks (LeCun et al. 
1989) (CNN) that have been brought to semantic segmentation. Understanding 
a scene at the semantic level has long been one of the main topics of computer 
vision, but it is only now that we have seen actual solutions to the problem.

In this paper, our primary motivation is to focus on the recent scientific 
developments in semantic segmentation, specifically on the evolution of deep 
learning-based methods using 2D images. The reason we narrowed down our 
survey to techniques that utilize only 2D visible imagery is that, in our opinion, 
the scale of the problem in the literature is so vast and widespread that it would 
be impractical to analyze and categorize all semantic segmentation modalities 
(such as 3D point clouds, hyper-spectral data, MRI, CT,1 etc.) found in journal 
articles to any degree of detail. In addition to analyzing, the techniques that 
make semantic segmentation possible and accurate, we also examine the most 
popular image sets created for this problem. Additionally, we review the per
formance measures used for evaluating the success of semantic segmentation. 
Most importantly, we propose a taxonomy of methods, together with a technical 
evolution of them, which we believe is novel in the sense that it provides insight 
to the existing deficiencies and suggests future directions for the field.

The remainder of the paper is organized as follows: in the following subsection, 
we refer to other survey studies on the subject and underline our contribution. 
Section 2 presents information about the different image sets, the challenges, and 
how to measure the performance of semantic segmentation. Starting with Section 
3, we chronologically scrutinize semantic segmentation methods under three main 
titles, hence in three separate sections. Section 3 covers the methods of pre- and 
early deep convolutional neural networks era. Section 4 provides details on the 
fully convolutional neural networks, which we consider a milestone for the 
semantic segmentation literature. Section 5 covers the state-of-the-art methods 
on the problem and provides details on both the architectural details and the 
success of these methods. Before finally concluding the paper in Section 7, Section 
6 provides a future scope and potential directions for the field.

Surveys on Semantic Segmentation

Very recently, driven by both academia and industry, the rapid increase of 
interest in semantic segmentation has inevitably led to a number of survey 
studies being published (Thoma 2016; Ahmad et al. 2017; Jiang et al. 2017; 
Siam et al. 2017; Garcia-Garcia et al. 2017; Saffar et al. 2018; Yu et al. 2018; Guo 
et al. 2018; Lateef and Ruichek 2019; Minaee et al. 2020).
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Some of these surveys focus on a specific problem, such as comparing 
semantic segmentation approaches for horizon/skyline detection (Ahmad 
et al. 2017), whilst others deal with relatively broader problems related to 
industrial challenges, such as semantic segmentation for driverless cars 
(Siam et al. 2017) or medical systems (Jiang et al. 2017). These studies are 
useful if working on the same specific problem, but they lack an over
arching vision that may ‘technically’ contribute to the future directions of 
the field.

Another group (Thoma 2016; Saffar et al. 2018; Yu et al. 2018; Guo et al. 
2018) of survey studies on semantic segmentation have provided a general 
overview of the subject, but they lack the necessary depth of analysis regarding 
deep learning-based methods. Whilst semantic segmentation was studied for 
two decades prior to deep learning, actual contribution to the field has only 
been achieved very recently, particularly following a revolutionary paper on 
fully convolutional networks (FCN) (Shelhamer, Long, and Darrell 2017) 
(which has also been thoroughly analyzed in this paper). It could be said 
that most state-of-the-art studies are in fact extensions of that same 
(Shelhamer, Long, and Darrell 2017) study. For this reason, without scrupu
lous analysis of FCNs and the direction of the subsequent papers, survey 
studies will lack the necessary academic rigor in examining semantic segmen
tation using deep learning.

There are recent reviews of deep semantic segmentation, for example, by 
(Garcia-Garcia et al. 2017) and (Minaee et al. 2020), which provide a compre
hensive survey on the subject. These survey studies cover almost all the 
popular semantic segmentation image sets and methods, and for all modal
ities, such as 2D, RGB, 2.5D, RGB-D, and 3D data. Although they are inclusive 
in the sense that most related material on deep semantic segmentation is 
included, the categorization of the methods is coarse, since the surveys attempt 
to cover almost everything umbrellaed under the topic of semantic segmenta
tion literature.

A detailed categorization of the subject was provided in (Lateef and Ruichek 
2019). Although this survey provides important details on the subcategories 
that cover almost all approaches in the field, discussions on how the proposed 
techniques are chronologically correlated are left out of their scope. Recent 
deep learning studies on semantic segmentation follow a number of funda
mental directions and labor with tackling the varied corresponding issues. In 
this survey paper, we define and describe these new challenges, and present the 
chronological evolution of the techniques of all the studies within this pro
posed context. We believe our attempt to understand the evolution of seman
tic segmentation architectures is the main contribution of the paper. We 
provide a table of these related methods, and explain them briefly one after 
another in chronological order, with their metric performance and 
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computational efficiency. This way, we believe that readers will better under
stand the evolution, current state-of-the-art, as well as the future directions 
seen for 2D semantic segmentation.

Image Sets, Challenges, and Performance Evaluation

Image Sets and Challenges

The level of success for any machine-learning application is undoubtedly 
determined by the quality and the depth of the data being used for training. 
When it comes to deep learning, data is even more important since most 
systems are termed end-to-end; thus, even the features are determined by the 
data, not for the data. Therefore, data is no longer the object but becomes the 
actual subject in the case of deep learning.

In this section, we scrutinize the most popular large-scale 2D image sets that 
have been utilized for the semantic segmentation problem. The image sets 
were categorized into two main branches, namely general-purpose image sets, 
with generic class labels including almost every type of object or background, 
and also urban street image sets, which include class labels such as car and 
person, and are generally created for the training of driverless car systems. 
There are many other unresolved 2D semantic segmentation problem 
domains, such as medical imaging, satellite imagery, or infrared imagery. 
However, urban street image is currently driving scientific development in 
the field because they attract more attention from the industry. Therefore, very 
large-scale image sets and challenges with crowded leaderboards exist, yet, 
only specifically for industrial users. Scientific interest for depth-based seman
tic segmentation is growing rapidly; however, as mentioned in the 
Introduction, we have excluded depth-based and 3D-based segmentation 
datasets from the current study in order to focus with sufficient detail on the 
novel categorization of recent techniques pertinent to 2D semantic 
segmentation.

General Purpose Semantic Segmentation Image Sets
• PASCAL Visual Object Classes (VOC) (Everingham et al. 2010): This image 
set includes image annotations not only for semantic segmentation, but for 
also classification, detection, action classification, and person layout tasks. The 
image set and annotations are regularly updated and the leaderboard of the 
challenge is public2 (with more than 140 submissions just for the segmentation 
challenge alone). It is the most popular among the semantic segmentation 
challenges and is still active following its initial release in 2005. The PASCAL 
VOC semantic segmentation challenge image set includes 20 foreground 
object classes and one background class. The original data consisted of 1,464 
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images for the purposes of training, plus 1,449 images for validation. The 1,456 
test images are kept private for the challenge. The image set includes all types 
of indoor and outdoor images and is generic across all categories.

The PASCAL VOC image set has a number of extension image sets, the 
most popular among these are PASCAL Context (Mottaghi et al. 2014) and 
PASCAL Parts (Chen et al. 2014b). The first (Mottaghi et al. 2014) is a set of 
additional annotations for PASCAL VOC 2010, which goes beyond the origi
nal PASCAL semantic segmentation task by providing annotations for the 
whole scene. The statistics section contains a full list of more than 400 labels 
(compared to the original 21 labels). The second (Chen e tal. 2014b) is also a 
set of additional annotations for PASCAL VOC 2010. It provides segmenta
tion masks for each body part of the object, such as the separately labeled limbs 
and body of an animal. For these extensions, the training and validation set 
contains 10,103 images, while the test set contains 9,637 images. There are 
other extensions to PASCAL VOC using other functional annotations such as 
the Semantic Parts (PASParts) (Wang et al. 2015) image set and the Semantic 
Boundaries Dataset (SBD) (Hariharan et al. 2011). For example, PASParts 
(Wang et al. 2015) additionally provides ‘instance’ labels, such as two instances 
of an object within an image are labeled separately, rather than using a single 
class label. However, unlike the former two additional extensions (Chen et al. 
2014b; Mottaghi et al. 2014), these further extensions (Hariharan et al. 2011; 
Wang et al. 2015) have proven less popular as their challenges have attracted 
much less attention in state-of-the-art semantic segmentation studies; thus, 
their leaderboards are less crowded. In Figure 1, a sample object, parts and 
instance segmentation are depicted.

• Common Objects in Context (COCO) (Lin et al. 2014): With 200 K 
labeled images, 1.5 million object instances, and 80 object categories, COCO 
is a very large-scale object detection, semantic segmentation, and captioning 
image set, including almost every possible types of scene. COCO provides 
challenges not only at the instance-level and pixel-level (which they refer to as 
stuff) semantic segmentation, but also introduces a novel task, namely that of 
panoptic segmentation (Kirillov et al. 2018), which aims at unifying instance- 
level and pixel-level segmentation tasks. Their leaderboards3 are relatively less 
crowded because of the scale of the data. On the other hand, for the same 
reason, their challenges are assessed only by the most ambitious scientific and 

Figure 1. A sample image and its annotation for object, instance and parts segmentations 
separately, from left to right.
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industrial groups, and thus are considered as the state-of-the-art in their 
leaderboards. Due to its extensive volume, most studies partially use this 
image set to pre-train or fine-tune their model, before submitting to other 
challenges such as PASCAL VOC 2012.

• ADE20K dataset (Zhou et al. 2019): ADE20K contains more than 20 K 
scene-centric images with objects and object parts annotations. Similarly to 
PASCAL VOC, there is a public leaderboard4 and the benchmark is divided 
into 20 K images for training, 2 K images for validation, and another batch of 
held-out images for testing. The samples in the dataset have varying resolu
tions (average image size being 1.3 M pixels), which can be up to 2400 � 1800 
pixels. There are total of 150 semantic categories included for evaluation.

• Other General Purpose Semantic Segmentation Image Sets: Although less 
popular than either PASCAL VOC or COCO, there are also some other image 
sets in the same domain. Introduced by (Prest et al. 2012), YouTube-Objects is 
a set of low-resolution (480 � 360) video clips with more than 10k pixel-wise 
annotated frames.

Similarly, SIFT-flow (Tighe and Lazebnik 2010) is another low-resolution 
(256 � 256) semantic segmentation image set with 33 class labels for a total of 
2,688 images. These and other relatively primitive image sets have been mostly 
abandoned in the semantic segmentation literature due to their limited resolu
tion and low volume.

Urban Street Semantic Segmentation Image Sets
• Cityscapes (Cordts et al. 2016): This is a large-scale image set with a focus on 
the semantic understanding of urban street scenes. It contains annotations for 
high-resolution images from 50 different cities, taken at different hours of the 
day and from all seasons of the year, and also with varying backgrounds and 
scene layouts. The annotations are carried out at two quality levels: fine for 
5,000 images and course for 20,000 images. There are 30 different class labels, 
some of which also have instance annotations (vehicles, people, riders, etc.). 
Consequently, there are two challenges with separate public leaderboards5: 
one for pixel-level semantic segmentation, and a second for instance-level 
semantic segmentation. There are more than 100 entries to the challenge, 
making it the most popular regarding semantic segmentation of urban street 
scenes.

• Other Urban Street Semantic Segmentation Image Sets: There are a 
number of alternative image sets for urban street semantic segmentation, 
such as Cam-Vid (Brostow, Fauqueur, and Cipolla 2009), KITTI (Geiger et 
al. 2013), SYNTHIA (Ros et al. 2016a), and IDD (Varma et al. 2018). These are 
generally overshadowed by the Cityscapes image set (Cordts et al. 2016) for 
several reasons. Principally, their scale is relatively low. Only the SYNTHIA 
image set (Ros et al. 2016a) can be considered as large scale (with more than 
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13k annotated images); however, it is an artificially generated image set, and 
this is considered a major limitation for security-critical systems like driverless 
cars.

Small-scale and Imbalanced Image Sets
In addition to the aforementioned large-scale image sets of different cate
gories, there are several image sets with insufficient scale or strong imbalance 
such that, when applied to deep learning-based semantic segmentation mod
els, high-level segmentation accuracies cannot be directly obtained. Most 
public challenges on semantic segmentation include sets of this nature such 
as the DSTL or RIT-18 (DSTLab; Kemker, Salvaggio, and Kanan 2018), just to 
name a few. Because of the overwhelming numbers of these types of sets, we 
chose to include only the details of the large-scale sets that attract the utmost 
attention from the field.

Nonetheless, being able to train a model that performs well on small-scale 
or imbalanced data is a correlated problem to ours. Besides conventional deep 
learning techniques, such as transfer learning or data augmentation; the 
problem of insufficient or imbalanced data can be attacked by using specially 
designed deep learning architectures such as some optimized convolution 
layer types (Chen et al. (2018a); He et al. (2015), etc.) and others that we 
cover in this survey paper. What is more, there are recent studies that focus on 
the specific problem of utilizing insufficient sets for the problem of deep 
learning-based semantic segmentation (Xia, Lu, and Gu 2019). Although we 
acknowledge this problem as fundamental for the semantic segmentation field, 
we leave the discussions on techniques to handle small-scale or imbalanced 
sets for semantic segmentation, beyond the scope of this survey paper.

Performance Evaluation

There are two main criteria in evaluating the performance of semantics 
segmentation: accuracy, or in other words, the success of an algorithm; and 
computation complexity in terms of speed and memory requirements. In this 
section, we analyze these two criteria separately.

Accuracy
Measuring the performance of segmentation can be complicated, mainly 
because there are two distinct values to measure. The first is classification, 
which is simply determining the pixel-wise class labels; and the second is 
localization, or finding the correct set of pixels that enclose the object. 
Different metrics can be found in the literature to measure one or both of 
these values. The following is a brief explanation of the principal measures 
most commonly used in evaluating semantic segmentation performance.
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• ROC-AUC: ROC stands for the Receiver-Operator Characteristic curve, which sum
marises the trade-off between true positive rate and false-positive rate for a predictive 
model using different probability thresholds; whereas AUC stands for the area under this 
curve, which is 1 at maximum. This tool is useful in interpreting binary classification 
problems and is appropriate when observations are balanced between classes. However, 
since most semantic segmentation image sets (Everingham et al. 2010; Mottaghi et al. 
2014; Chen et al. 2014b; Wang et al. 2015; Hariharan et al. 2011; Lin et al. 2014; Cordts et 
al. 2016) are not balanced between the classes, this metric is no longer used by the most 
popular challenges.

• Pixel Accuracy: Also known as global accuracy (Badrinarayanan, Kendall, and Cipolla 
2015), pixel accuracy (PA) is a very simple metric which calculates the ratio between the 
amount of properly classified pixels and their total number. Mean pixel accuracy (mPA), 
is a version of this metric which computes the ratio of correct pixels on a per-class basis. 
mPA is also referred to as class average accuracy (Badrinarayanan, Kendall, and Cipolla 
2015).

PA ¼
Pk

j¼1 njj
Pk

j¼1 tj
; mPA ¼

1
k

Xk

j¼1

njj

tj
(1) 

where njj is the total number of pixels both classified and labeled as class j. In 
other words, njj corresponds to the total number of True Positives for class j. tj 

is the total number of pixels labeled as class j.

• Intersection over Union (IoU): Also known as the Jaccard Index, IoU is a statistic used 
for comparing the similarity and diversity of sample sets. In semantics segmentation, it is 
the ratio of the intersection of the pixel-wise classification results with the ground truth, 
to their union.

IoU ¼
Pk

j¼1 njj
Pk

j¼1 ðnij þ nji þ njjÞ
; i�j (2) 

where, nij is the number of pixels, which are labeled as class i, but classified 
as class j. In other words, they are False Positives (false alarms) for class j. 
Similarly, nji, the total number of pixels labeled as class j, but classified as class i 
are the False Negatives (misses) for class j.

Two extended versions of IoU are also widely in use:

● Mean Intersection over Union (mIoU): mIoU is the class-averaged IoU, as 
in (3).

mIoU ¼
1
k

Xk

j¼1

njj

nij þ nji þ njj
; i�j (3) 
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� Frequency-weighted IoU (FwIoU): This is an improved version of MIoU 
that weighs each class importance depending on appearance frequency by 
using tj (the total number of pixels labeled as class j, as also defined in (1)). The 
formula of FwIoU is given in (4): 

FwIoU ¼
1

Pk
j¼1 tj

Xk

j¼1
tj

njj

nij þ nji þ njj
; i�j (4) 

IoU and its extensions, compute the ratio of true positives (hits) to the sum of 
false positives (false alarms), false negatives (misses) and true positives (hits). 
Thereby, the IoU measure is more informative when compared to pixel 
accuracy simply because it takes false alarms into consideration, whereas PA 
does not. However, since false alarms and misses are summed up in the 
denominator, the significance between them is not measured by this metric, 
which is considered its primary drawback. In addition, IoU only measures the 
number of pixels correctly labeled without considering how accurate the 
segmentation boundaries are.

• Precision-Recall Curve (PRC)-based metrics: Precision (ratio of hits over a 
summation of hits and false alarms) and recall (ratio of hits over a summation 
of hits and misses) are the two axes of the PRC used to depict the trade-off 
between precision and recall, under a varying threshold for the task of binary 
classification. PRC is very similar to ROC. However, PRC is more powerful in 
discriminating the effects between the false positives (alarms) and false nega
tives (misses). That is predominantly why PRC-based metrics are commonly 
used for evaluating the performance of semantic segmentation. The formula 
for Precision (also called Specificity) and Recall (also called Sensitivity) for a 
given class j, are provided in (5): 

Prec: ¼
njj

nij þ njj
; Recall ¼

njj

nji þ njj
; i�j (5) 

There are three main PRC-based metrics:

� F score : Also known as the ‘dice coefficient,’ this measure is the harmonic 
mean of the precision and recall for a given threshold. It is a normalised 
measure of similarity, and ranges between 0 and 1 (Please see (6)). 

Fscore ¼ 2�
Precision� Recall
Precisionþ Recall

(6) 

� PRC-AuC: This is similar to the ROC-AUC metric. It is simply the area 
under the PRC. This metric refers to information about the precision-recall 
trade-off for different thresholds, but not the shape of the PR curve.
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● Average Precision (AP): This metric is a single value that summarizes both 
the shape and the AUC of PRC. In order to calculate AP, using the PRC, 
for uniformly sampled recall values (e.g., 0.0, 0.1, 0.2, . . ., 1.0), precision 
values are recorded. The average of these precision values is referred to as 
the average precision. This is the most commonly used single value metric 
for semantic segmentation. Similarly, mean average precision (mAP) is 
the mean of the AP values, calculated on a per-class basis.

• Hausdorff Distance (HD): Hausdorff Distance is used incorporating the long
est distance between classified and labeled pixels as an indicator of the largest 
segmentation error (Jadon 2020; Karimi and Salcudean 2019), with the aim of 
tracking the performance of a semantic segmentation model. The unidirectional 
HDs as hdðX;YÞ and hdðY;XÞ are presented in (7) and (8), respectively. 

hd X;Yð Þ ¼ max
xεX

min
yεY

x � yk k2; (7) 

hd Y;Xð Þ ¼ max
yεY

min
xεX

x � yk k2: (8) 

where, X and Y are the pixel sets. The x is the pixel in the segmented counter X 
and y is the pixel in the target counter Y (Huang et al. 2020). The bidirectional 
HD between these sets is shown in (9), where the Euclidean distance is 
employed for (7), (8), and (9). 

HD X;Yð Þ ¼ max hd X;Yð Þ; hd Y;Xð Þð Þ: (9) 

IoU and its variants, along with AP, are the most commonly used accuracy 
evaluation metrics in the most popular semantic segmentation challenges 
(Everingham et al. 2010; Mottaghi et al. 2014; Chen et al. 2014b; Wang et al. 
2015; Hariharan et al. 2011; Lin et al. 2014; Cordts et al. 2016).

Computational Complexity
The burden of computation is evaluated using two main metrics: how fast the 
algorithm completes, and how much computational memory is demanded.

• Execution time: This is measured as the whole processing time, starting 
from the instant a single image is introduced to the system/algorithm right 
through until the pixel-wise semantic segmentation results are obtained. The 
performance of this metric significantly depends on the hardware utilized. 
Thus, for an algorithm, any execution time metric should be accompanied by a 
thorough description of the hardware used. There are notations such as Big-O, 
which provide a complexity measure independent of the implementation 
domain. However, these notations are highly theoretical and are predomi
nantly not preferred for extremely complex algorithms such as deep semantic 
segmentation as they are simple and largely inaccurate.
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For a deep learning-based algorithm, the offline (i.e., training) and online 
(i.e., testing) operation may last for considerably different time intervals. 
Technically, the execution time refers only to the online operation or acade
mically speaking, the test duration for a single image. Although this metric is 
extremely important for industrial applications, academic studies refrain from 
publishing exact execution times, and none of the aforementioned challenges 
was found to have provided this metric. A recent study, (Zhao et al. 2018a) 
provided a 2D histogram of Accuracy (MIoU%) vs frames-per-second, in 
which some of the state-of-the-art methods with open-source codes (including 
their proposed structure, namely image cascade network – ICNet), were 
benchmarked using the Cityscapes (Cordts et al. 2016) image set.

• Memory Usage: Memory usage is specifically important when semantic 
segmentation is utilized in limited performance devices, such as smartphones, 
digital cameras, or when the requirements of the system are extremely restric
tive. The prime examples of these would be military systems or security- 
critical systems, such as self-driving cars.

The usage of memory for a complex algorithm like semantic segmentation may 
change drastically during operation. That is why a common metric for this purpose 
is peak memory usage, which is simply the maximum memory required for the 
entire segmentation operation for a single image. The metric may apply to 
computer (data) memory or GPU memory depending on the hardware design.

Although critical for industrial applications, this metric is not usually made 
available for any of the aforementioned challenges.

Computational efficiency is a very important aspect of any algorithm that is to 
be implemented on a real system. A comparative assessment of the speed and 
capacity of various semantic segmentation algorithms is a challenging task. 
Although most state-of-the-art algorithms are available with open-source codes, 
benchmarking all of them, with their optimal hyper-parameters, seems implausi
ble. For this purpose, we provide an inductive way of comparing the computational 
efficiencies of methods in the following sections. In Table 1, we categorize methods 
into mainly four levels of computational efficiency and discuss our categorization 
related to the architectural design of a given method. This table also provides a 
chronological evolution of the semantic segmentation methods in the literature.

Before Fully Convolutional Networks

As mentioned in the Introduction, the utilization of FCNs is a breaking point 
for semantic segmentation literature. Efforts on semantic segmentation litera
ture prior to FCNs (Shelhamer, Long, and Darrell 2017) can be analyzed in 
two separate branches, as pre-deep learning and early deep learning 
approaches. In this section, we briefly discuss both sets of approaches.
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Table 1. State-of-the-art semantic segmentation methods, showing the method name and 
reference, brief summary, problem type targeted, and refinement model (if any).

Method Method Summary Rankings Eff.

MultiScale-Net. 
(Farabet et al. 
2013)

Multiscale convolutional network fused 
parallel with a segmentation framework 
(either superpixel or CRF-based). Relatively 
lower computational efficiency due to a 
CRF block.

68.7% mPA @SIFTflow ? ?

Recurrent CNN 
(Pinheiro and 
Collobert 2014)

Recurrent architecture constructed by using 
different instances of a CNN, in which each 
network instance is fed with previous label 
predictions (obtained from the previous 
instance). Heavy computational load when 
multiple instances (3 in their best 
performing experiments) are fed.

77.7% mPA @SIFTflow ?

FCN 
(Shelhamer, 
Long, and Darrell 
2017)

Fully convolutional encoder structure (i.e., no 
fully connected layers) with skip 
connections that fuse multiscale activations 
at the final decision layer. Relative fast due 
to no fully connected layers or a refinement 
block.

85.2% mPA @SIFTflow 
62.2% mIoU @PASCAL 
2012 
65.3% mIoU @CitySca. 
(w/o course) 
39.3% mIoU @ADE20K

? ? ?

DeepLab.v1 
(Chen et al. 
2014a)

CNN with dilated convolutions, succeeded by 
a fully-connected (i.e. Dense) CRF. Fast and 
optimized computation leads to near real- 
time performance.

66.4% mIoU @PASCAL 
2012

? ? ?

CMSA 
(Eigen and 
Fergus 2014)

Layers of a pyramidal input are fed to 
separate FCNs for different scales in 
parallel. These multiscale FCNs are also 
connected in series to provide pixel-wise 
category, depth and normal output, 
simultaneously. Relatively lower 
computational efficiency due to progressive 
processing of sequence of different scales.

83.8% mPA @SIFTflow 
62.6% mIoU @PASCAL 
2012

? ?

UNet (Ronneberger, 
Fischer, and Brox 
2015)

Encoder/decoder structure with skip 
connections that connect same levels of ED 
and final input-sized classification layer. 
Efficient computation load due to no fully 
connected layers or a refinement block.

72.7% mIoU @PASCAL 
2012 (tested by (Zhang 
et al. 2018c))

? ? ?

SegNet 
(Badrinarayanan, 
Kendall, and 
Cipolla 2015)

Encoder/decoder structure (similar to UNet) 
with skip connections that transmit only 
pooling indices (unlike U-Net, for which skip 
connections concatenate same-level 
activations. Efficient computation load due 
to no fully connected layers or a refinement 
block).

59.9% mIoU @PASCAL 
2012 
79.2% mIoU @CitySca. 
(w/o course)

? ? ?

DeconvNet 
(Noh, Hong, and 
Han 2015)

Encoder/decoder structure (namely ‘the Conv./ 
Deconv. Network’) without skip 
connections. The encoder (convolutional) 
part of the network is transferred from the 
VGG-VD-16 L. Efficient computation load 
due to no fully connected layers or a 
refinement block. (Simonyan and 
Zisserman 2015).

74.8% mIoU @PASCAL 
2012

? ? ?

MSCG 
(Yu and Koltun 
2015)

Multiscale context aggregation using only a 
rectangular prism of dilated convolutional 
layers, without pooling or subsampling 
layers, to perform pixel-wise labelling. 
Efficient computation load due to no fully 
connected layers or a refinement block.

67.6% mIoU @PASCAL 
2012 
67.1% mIoU @CitySca. 
(w/o course)

? ? ?

CRF-as-RNN 
(Zheng et al. 
2015)

Fully convolutional CNN (i.e., FCN) followed by 
a CRF-as-RNN layer, in which an iterative 
CRF algorithm is formulated as an RNN. 
Because of the RNN block, computational 
efficiency is limited.

65.2% mIoU @PASCAL 
2012 
62.5% mIoU @CitySca. 
(w/o course)

? ?

(Continued)
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Table 1. (Continued).
Method Method Summary Rankings Eff.

FeatMap-Net. 
(Lin et al. 2016a)

Layers of a pyramidal input fed to parallel 
multiscale feature maps (i.e., CNNS), and 
later fused in an upsample/concatenation 
(i.e. pyramid pooling) layer to provide the 
final feature map to a Dense CRF Layer. 
Well-planned but loaded architecture leads 
to moderate computational efficiency.

88.1% mPA @SIFTflow 
75.3% mIoU @PASCAL 
2012

? ?

Graph LSTM 
(Liang et al. 
2016)

Generalization of LSTM from sequential data 
to general graph-structured data for 
semantic segmentation on 2D still images, 
mostly people/parts. Graph-LSTM 
processing considerably limits computation 
efficiency.

60.2% mIoU @PASCAL 
Person/Parts 2010

?

DAG-RNN 
(Shuai et al. 
2016)

DAG-structured CNN+RNN network that 
models long-range semantic dependencies 
among image units. Due to chain 
structured sequential processing of pixels 
with a recurrent model, the computational 
efficiency is considerably limited.

85.3% mPA @SIFTflow ?

DeepLab.v2 
(Chen et al. 
2018a)

Improved version of DeepLab.v1, with 
additional ‘dilated (atrous) spatial pyramid 
pooling’ (ASPP) layer. Similar 
computational performance to DeepLab.v1.

79.7% mIoU @PASCAL 
2012 
70.4% mIoU @CitySca. 
(w/o course)

? ? ?

PSPNet 
(Zhao et al. 2017)

CNN followed by a pyramid pooling layer 
similar to (He et al. 2015), but without a 
fully connected decision layer. Hence, 
computational performance closer to FCN 
(Shelhamer, Long, and Darrell 2017).

85.5% mIoU @PASCAL 
2012 
81.2% mIoU @CitySca. 
(w. course) 
55.4% mIoU @ADE20K

? ? ?

DeepLab.v3 
(Chen et al. 2017)

Improved version of DeepLab.v2, with 
optimization of ASPP layer 
hyperparameters and without a Dense CRF 
layer, for faster operation.

85.7% mIoU @PASCAL 
2012 
81.3% mIoU @CitySca. 
(w. course)

? ? ?

DIS 
(Luo et al. 2017)

One network predicts labelmaps/tags, while 
another performs semantic segmentation 
using these predictions. Both networks use 
ResNet101 (He et al. 2016) for preliminary 
feature extraction. They declare similar 
computational efficiency to DeepLabv2 
(Chen et al. 2018a)

41.7% mIoU @COCO 
86.8% mIoU @PASCAL 
2012

? ? ?

Mask-RCNN 
(He et al. 2017)

Object Detector Fast-RCNN followed by ROI- 
pooling and Convolutional layers, applied 
to instance segmentation, with near real- 
time performance (see Figure 5.a).

37.1% mIoU @COCO 
tested by YOLACT2019

? ? ?

GCN 
(Peng et al. 2017)

Fed by an initial ResNet-based (He et al. 2016) 
encoder, GCN uses large kernels to fuse 
high- and low-level features in a multiscale 
manner, followed by a convolutional 
Border Refinement (BR) module. Its fully 
convolutional architectue allows near real- 
time performance.

83.6% mIoU @PASCAL 
2012 
76.9% mIoU @CitySca. 
(w/o course)

? ? ?

SDN 
(Fu et al. 2017)

UNET architecture that consists of multiple 
shallow deconvolutional networks, called 
SDN units, stacked one by one to integrate 
contextual information and guarantee fine 
recovery of localized information. 
Computational efficiency similar to UNET- 
like architectures.

83.5% mIoU @PASCAL 
2012

? ? ?

DFN 
(Yu et al. 2018b)

Consists of two sub-networks: Smooth Net 
(SN) and Border Net (BN). SN utilizes an 
attention module and handles global 
context, whereas BN employs a refinement 
block to handle borders. Limited 
computational efficiency due to an 
attention block.

86.2% mIoU @PASCAL 
2012 
80.3% mIoU @CitySca. 
(w.course)

? ?

(Continued)
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Table 1. (Continued).
Method Method Summary Rankings Eff.

MSCI 
(Lin et al. 2018)

Aggregates features from different scales via 
connections between Long Short-term 
Memory (LSTM) chains. Limited 
computational efficiency due to multiple 
RNN blocks (i.e. LSTMs).

88.0% mIoU @PASCAL 
2012

? ?

DeepLab.v3+ 
(Chen et al. 
2018b)

Improved version of DeepLab.v3, using special 
encoder-decoder structure with dilated 
convolutions (with no Dense CRF employed 
for faster operation).

87.3% mIoU @PASCAL 
2012 
82.1% mIoU @CitySca. 
(w. course)

? ? ?

HPN 
(Shi et al. 2018)

Followed by a convolutional ‘Appearance 
Feature Encoder,’ a ‘Contextual Feature 
Encoder’ consisting of LSTMs generates 
super-pixel features fed to a Softmax-based 
classification layer. Limited computational 
efficiency due to multiple LSTMs.

85.8% mIoU @PASCAL 
2012 
92.3% mPA @SIFTflow

? ?

EncNet 
(Zhang et al. 
2018a)

Fully connected structure to extract context is 
fed by dense feature maps (obtained from 
ResNet (He et al. 2016)) and followed by a 
convolutional prediction layer. Fully 
connected layers within their “Context 
Encoding Module” limits computational 
performance.

85.9% mIoU @PASCAL 
2012 
55.7% mIoU @ADE20K

? ?

PSANet 
(Zhao et al. 
2018b)

A convolutional point-wise spatial attention 
(PSA) module is attached to o pretrained 
convolutional encoder, so that pixels are 
interconnected through a self-adaptively 
learnt attention map to provide global 
context. Additional PSA module limits 
computational efficieny compared to fully 
convolutional architectures (e.g. FCN).

85.7% mIoU @PASCAL 
2012 
81.4% mIoU @CitySca. 
(w. course)

? ?

PAN 
(Li et al. 2018)

SPP layer with global pooling architecture. 
Similar architecture and thus, 
computational efficiency with PSPNet 
(Zhao et al. 2017).

84.0% mIoU @PASCAL 
2012 (taken from the 
paper, not listed in the 
leaderboard)

? ? ?

ExFuse 
(Zhang et al. 
2018c)

Improved version of GCN (Peng et al. 2017) 
for feature fusing which introduces more 
semantic information into low-level 
features and more spatial details into high- 
level features, by additional skip 
connections. Computational performance 
comparable to GCN.

87.9% mIoU @PASCAL 
2012

? ? ?

EMANet152 
(Li et al. 2019b)

Novel attention module between two CNN 
structures converts input feature maps to 
output feature maps, thus providing global 
context. Computationally more efficient 
compared to other attention governing 
architectures (e.g. PSANet).

88.2% mIoU @PASCAL 
2012 
39.9% mIoU @COCO

? ? ?

KSAC 
(Huang et al. 
2019)

Allows branches of different receptive fields to 
share the same kernel to facilitate 
communication among branches and 
perform feature augmentation inside the 
network. The idea is similar to ASPP layer of 
DeepLabv3 (Chen et al. 2017), hence 
similar computational performance.

88.1% mIoU @PASCAL 
2012

? ? ?

CFNet 
(Zhang et al. 
2019)

Using a distribution of co-occurrent features 
for a given target in an image, a fine- 
grained spatial invariant representation is 
learnt and the CFNet is constructed. Similar 
architecture to PSANet (Zhao et al. 2018b), 
hence similar (and limited) computational 
performance due to fully connected layers.

87.2% mIoU @PASCAL 
2012

? ?

(Continued)
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Table 1. (Continued).
Method Method Summary Rankings Eff.

YOLACT 
(Bolya et al. 
2019)

Object Detector YOLO followed by Class 
Probability and Convolutional layers, 
applied to instance segmentation (see 
Figure 5.b), with real-time semantic 
segmentation performance.

72.3% mAP 50 @PASCAL 
SBD 
31.2% mAP @COCO

? ? ? ?

ESE-Seg 
(Xu et al. 2019a)

ESE-Seg is an object detection-based 
approach that uses explicit shape encoding 
by explicitly decoding the multiple object 
shapes with tensor operations in real-time.

69.3% mAP 50 @PASCAL 
SBD 
21.6% mAP @COCO

? ? ?

?

SOLO 
(Wang et al. 
2019a)

The central idea of SOLO framework is to 
reformulate the instance segmentation as 
two simultaneous problems: category 
prediction and instance mask generation, 
using a single convolutional backbone. The 
model can run in real-time with proper 
parameter tuning.

37.8% mAP @COCO ? ? ?

EfficientNet-L2 
+ NASFPN + 
Noisy Student 
(Zoph et al. 
2020)

The study aims at understanding the effect of 
pre- and self training and apply this to 
semantic segmentation problem. For their 
experiment, they utilize a neural 
architecture search (NAS) strategy (Ghiasi, 
Lin, and Le 2019) with EfficientNet-L2 (Xie 
et al. 2020b) as the backbone architecture. 
The model is the leader of PASCAL VOC 
2012 challenge by the time this manuscript 
was written.

90.5% mIoU @PASCAL 
2012

? ? ?

DCNAS 
(Zhang et al. 
2020b)

Neural Architecture Search applied to 
MobileNetV3 (Howard et al. 2019), a 
densely connected search space for 
semantic segmentation. Although 
computational performance is not explicitly 
indicated, the resulting architecture 
possibly provides U-Net like computational 
efficiency for model inference.

86.9% mIoU @PASCAL 
2012 (taken from the 
paper, not listed in the 
leaderboard) 
83.6% mIoU @CitySca. 
(w. course)

? ? ?

SOLOv2 
(Wang et al. 
2020)

Updated, real-time version of SOLO (Wang et 
al. 2019a), empowered by an efficient and 
holistic instance mask representation 
scheme, which dynamically segments each 
instance in the image, without resorting to 
bounding box detection.

37.1% mAP @COCO ? ? ? ?

Deep Snake 
(Peng et al. 2020)

Deep Snake is a fully convolutional 
architecture with a contour-based 
approach for real-time instance 
segmentation.

62.1% mAP 50 @PASCAL 
SBD 
30.3% mAP @COCO

? ? ? ?

BlendMask 
(Chen et al. 2020)

Using both top-down and bottom-up instance 
segmentation approaches, BlendMask 
learns attention maps for each instance 
using a single convolution layer.

37.1% mAP @COCO ? ? ? ?

SwiftNetRN18-Pyr 
(Oršić and Šegvić 
2021)

Based on shared pyramidal representation 
and fusion of heterogeneous features, 
SwiftNetRN18-Pry fuses hybrid 
representation within a ladder-style 
decoder. Provides beyond real-time 
performance with modest accuracy.

35.0% mIoU @ADE20K ? ? ? ?

BOXInst 
(Tian et al. 2021)

Achieves mask-level instance segmentation 
with only bounding-box annotations for 
training. Core idea is to redesign the loss of 
learning masks in instance segmentation

61.4% mAP 50 @PASCAL 
SBD 
31.6% mAP @COCO

? ? ?
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Pre-Deep Learning Approaches

The differentiating factor between conventional image segmentation and 
semantic segmentation is the utilization of semantic features in the process. 
Conventional methods for image segmentation such as thresholding, cluster
ing, and region growing, etc., (please see (Zaitoun and Aqel 2015) for a survey 
on conventional image segmentation techniques) utilize handcrafted low-level 
features (i.e., edges and blobs) to locate object boundaries in images. Thus, in 
situations where the semantic information of an image is necessary for pixel- 
wise segmentation, such as in similar objects occluding each other, these 
methods usually return a poor performance.

Regarding semantic segmentation efforts prior to DCNNs becoming pop
ular, a wide variety of approaches (Fröhlich, Rodner, and Denzler 2013; He 
and Zemel 2008; Krähenbühl and Koltun 2011; Ladický et al. 2009; Lempitsky, 
Vedaldi, and Zisserman 2011; Mičušĺík and Košecká 2009; Montillo et al. 2011; 
Rav et al. 2016; Shotton, Johnson, and Cipolla 2008; Ulusoy and Bishop 2005; 
Vezhnevets, Ferrari, and Buhmann 2011; Xiao and Quan 2009; Yao, Fidler, 
and Urtasun 2012) utilized graphical models, such as Markov Random Fields 
(MRF), Conditional Random Fields (CRF) or forest-based (or sometimes 
referred to as ‘holistic’) methods, in order to find scene labels at the pixel 
level. The main idea was to find an inference by observing the dependencies 
between neighboring pixels. In other words, these methods modeled the 
semantics of the image as a kind of prior information among adjacent pixels. 
Thanks to deep learning, today we know that image semantics require abstract 
exploitation of large-scale data. Initially, graph-based approaches were 
thought to have this potential. The so-called ‘super-pixelisation,’ which is 
usually the term applied in these studies, was a process of modeling abstract 
regions. However, a practical and feasible implementation for large-scale data 
processing was never achieved for these methods, while it was accomplished 
for DCNNs, first by (Krizhevsky et al. 2012) and then in many other studies.

Another group of studies, sometimes referred to as the ‘Layered models’ 
(Arbeláez et al. 2012; Ladický et al. 2010; Yang et al. 2012), used a composition 
of pre-trained and separate object detectors so as to extract the semantic 
information from the image. Because the individual object detectors failed to 
classify regions properly, or because the methods were limited by the finite 
number of object classes provided by the ‘hand-selected’ bank of detectors in 
general, their performance was seen as relatively low compared to today’s 
state-of-the-art methods.

Although the aforementioned methods of the pre-deep learning era are no 
longer preferred as segmentation methods, some of the graphical models, 
especially CRFs, are currently being utilized by the state-of-the-art methods 
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as post-processing (refinement) layers, with the purpose of improving the 
semantic segmentation performance, the details of which are discussed in 
the following section.

Refinement Methods
Deep neural networks are powerful in extracting abstract local features. 
However, they lack the capability to utilize global context information, and 
accordingly cannot model interactions between adjacent pixel predictions 
(Teichmann and Cipolla 2018). On the other hand, the popular segmentation 
methods of the pre-deep learning era, the graphical models, are highly suited 
to this sort of task. That is why they are currently being used as a refinement 
layer on many DCNN-based semantic segmentation architectures.

As also mentioned in the previous section, the idea behind using graphical 
models for segmentation is finding an inference by observing the low-level 
relations between neighboring pixels. In Figure 2, the effect of using a graphi
cal model-based refinement on segmentation results can be seen. The classifier 
(see Figure 2.b) cannot correctly segment pixels where different class labels are 
adjacent. In this example, a CRF-based refinement (Krähenbühl and Koltun 
2011) is applied to improve the pixel-wise segmentation results. CRF-based 
methods are widely used for the refinement of deep semantic segmentation 
methods, although some alternative graphical model-based refinement meth
ods also exist in the literature (Liu et al. 2015; Zuo and Drummond 2017).

CRFs (Lafferty, McCallum, and Pereira 2001) are a type of discriminative 
undirected probabilistic graphical model. They are used to encode known 
relationships between observations and to construct consistent interpreta
tions. Their usage as a refinement layer comes from the fact that, unlike a 
discrete classifier, which does not consider the similarity of adjacent pixels, a 
CRF can utilize this information. The main advantage of CRFs over other 
graphical models (such as Hidden Markov Models) is their conditional nature 
and their ability to avoid the problem of label bias (Lafferty, McCallum, and 
Pereira 2001). Even though a considerable number of methods (see Table 1) 
utilize CRFs for refinement, these models started to lose popularity in rela
tively recent approaches because they are notoriously slow and very difficult to 
optimize (Teichmann and Cipolla 2018).

Figure 2. Effect of using graphical model-based refinement on segmentation results.
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Early Deep Learning Approaches

Before FCNs first appeared in 2014,6 the initial few years of deep convolutional 
networks saw a growing interest in the idea of utilizing the newly discovered 
deep features for semantic segmentation (Ciresan et al. 2012; Farabet et al. 
2013; Ganin and Lempitsky 2014; Hariharan et al. 2014; Ning et al. 2005; 
Pinheiro and Collobert 2014). The very first approaches, which were published 
prior to the proposal of a Rectified Linear Unit (ReLU) layer (Krizhevsky et al. 
2012), used activation functions such as tanh (Ning et al. 2005) (or similar 
continuous functions), which can be computationally difficult to differentiate. 
Thus, training such systems were not considered to be computation-friendly, 
or even feasible for large-scale data.

However, the first mature approaches were just simple attempts to convert 
classification networks such Alex-Net and VGG to segmentation networks by 
fine-tuning the fully connected layers (Ciresan et al. 2012; Ganin and 
Lempitsky 2014; Ning et al. 2005). They suffered from the overfitting and time- 
consuming nature of their fully connected layers in the training phase. 
Moreover, the CNNs used were not sufficiently deep so as to create abstract 
features, which would relate to the semantics of the image.

There were a few early deep learning studies in which the researchers 
declined to use fully connected layers for their decision-making. However, 
they utilized different structures such as a recurrent architecture (Pinheiro and 
Collobert 2014) or using labelling from a family of separately computed 
segmentations (Farabet et al. 2013). By proposing alternative solutions to 
fully connected layers, these early studies showed the first traces of the 
necessity for a structure like the FCN, and unsurprisingly they were succeeded 
by (Shelhamer, Long, and Darrell 2017).

Since their segmentation results were deemed to be unsatisfactory, these 
studies generally utilized a refinement process, either as a post-processing 
layer(Ciresan et al. 2012; Ganin and Lempitsky 2014; Hariharan et al. 2014; 
Ning et al. 2005) or as an alternative architecture to fully connected decision 
layers (Farabet et al. 2013; Pinheiro and Collobert 2014). Refinement methods 
varied, such as Markov random fields (Ning et al. 2005), nearest neighbor- 
based approach (Ganin and Lempitsky 2014), the use of a calibration layer 
(Ciresan et al. 2012), using super-pixels (Farabet et al. 2013; Hariharan et al. 
2014), or a recurrent network of plain CNNs (Pinheiro and Collobert 2014). 
Refinement layers, as discussed in the previous section, are still being utilized 
by post-FCN methods, with the purpose of increasing the pixel-wise labelling 
performance around regions where class intersections occur.
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Fully Convolutional Networks for Semantic Segmentation

In (Shelhamer, Long, and Darrell 2017), the idea of dismantling fully con
nected layers from deep CNNs (DCNN) was proposed, and to imply this idea, 
the proposed architecture was named as ‘Fully Convolutional Networks’ (see 
Figure 3). The main objective was to create semantic segmentation networks 
by adapting classification networks such as AlexNet (Krizhevsky et al. 2012), 
VGG (Simonyan and Zisserman 2015), and GoogLeNet (Szegedy et al. 2015) 
into fully convolutional networks, and then transferring their learnt represen
tations by fine-tuning. The most widely used architectures obtained from the 
study (Shelhamer, Long, and Darrell 2017) are known as ‘FCN-32s,’ ‘FCN16s,’ 
and ‘FCN8s,’ which are all transfer-learnt using the VGG architecture 
(Simonyan and Zisserman 2015).

FCN architecture was considered revolutionary in many aspects. First of all, 
since FCNs did not include fully connected layers, inference per image was 
seen to be considerably faster. This was mainly because convolutional layers 
when compared to fully connected layers, had a marginal number of weights. 
Second, and maybe more significant, the structure allowed segmentation maps 
to be generated for images of any resolution. In order to achieve this, FCNs 
used deconvolutional layers that can upsample coarse deep convolutional layer 
outputs to dense pixels of any desired resolution. Finally, and most impor
tantly, they proposed the skip architecture for DCNNs.

Skip architectures (or connections) provide links between nonadjacent 
layers in DCNNs. Simply by summing or concatenating outputs of uncon
nected layers, these connections enable information to flow, which would 
otherwise be lost because of an architectural choice such as max-pooling layers 
or dropouts. The most common practice is to use skip connections preceding a 
max-pooling layer, which downsamples layer output by choosing the max
imum value in a specific region. Pooling layers helps the architecture create 
feature hierarchies, but also causes loss of localized information, which could 

Figure 3. Fully convolutional networks (FCNs) are trained end-to-end and are designed to make 
dense predictions for per-pixel tasks like semantic segmentation. FCNs consist of no fully con
nected layers.
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be valuable for semantic segmentation, especially at object borders. Skip 
connections preserve and forward this information to deeper layers by way 
of bypassing the pooling layers. Actually, the usage of skip connections in 
(Shelhamer, Long, and Darrell 2017) was perceived as being considerably 
primitive. The ‘FCN-8s’ and ‘FCN-16s’ networks included these skip connec
tions at different layers. Denser skip connections for the same architecture, 
namely ‘FCN-4s’ and ‘FCN-2s,’ were also utilized for various applications (Lee 
et al. 2017; Zhong et al. 2016). This idea eventually evolved into the encoder- 
decoder structures (Badrinarayanan, Kendall, and Cipolla 2015; Ronneberger, 
Fischer, and Brox 2015) for semantic segmentation, which are presented in the 
following section.

Post-FCN Approaches

Almost all subsequent approaches on semantic segmentation followed the idea 
of FCNs; thus it would not be wrong to state that decision-making with fully 
connected layers effectively ceased to exist7 following the appearance of FCNs 
to the issue of semantic segmentation.

On the other hand, the idea of FCNs also created new opportunities to 
further improve deep semantic segmentation architectures. Generally speak
ing, the main drawbacks of FCNs can be summarized as inefficient loss of label 
localization within the feature hierarchy, inability to process global context 
knowledge, and the lack of a mechanism for multiscale processing. Thus, most 
subsequent studies have been principally aimed at solving these issues through 
the proposal of various architectures or techniques. For the remainder of this 
paper, we analyze these issues under the title, ‘fine-grained localisation.’ 
Consequently, before presenting a list of the post-FCN state-of-the-art meth
ods, we focus on this categorization of techniques and examine different 
approaches that aim at solving these main issues. In the following, we also 
discuss scale invariance in the semantic segmentation context and finish with 
object detection-based approaches, which are a new breed of solution that aim 
at resolving the semantic segmentation problem simultaneously with detecting 
object instances.

Techniques for Fine-grained Localisation

Semantic segmentation is, by definition, a dense procedure; hence, it requires 
fine-grained localisation of class labels at the pixel level. For example, in 
robotic surgery, pixel errors in semantic segmentation can lead to life or 
death situations. Hierarchical features created by pooling (i.e., max-pooling) 
layers can partially lose localisation. Moreover, due to their fully convolutional 
nature, FCNs do not inherently possess the ability to model global context 
information in an image, which is also very effective in the localisation of class 
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labels. Thus, these two issues are intertwined in nature, and in the following, 
we discuss different approaches that aim at overcoming these problems and to 
provide finer localisation of class labels.

Encoder-Decoder Architecture
The so-called Encoder-Decoder (ED) architectures (also known as the U-nets, 
referring to the pioneering study of (Ronneberger, Fischer, and Brox 2015)) 
are comprised of two parts. Encoder gradually reduces the spatial dimension 
with pooling layers, whilst the decoder gradually recovers the object details 
and spatial dimension. Each feature map of the decoder part only directly 
receives the information from the feature map at the same level of the encoder 
part using skip connections, thus EDs can create abstract hierarchical features 
with fine localisation (see Figure 4.a). U-Net (Ronneberger, Fischer, and Brox 
2015) and Seg-Net (Badrinarayanan, Kendall, and Cipolla 2015) are very well- 
known examples. In this architecture, the strongly correlated semantic infor
mation, which is provided by the adjacent lower-resolution feature map of the 
encoder part, has to pass through additional intermediate layers in order to 
reach the same decoder layer. This usually results in a level of information 
decay. However, U-Net architectures have proven very useful for the segmen
tation of different applications, such as medical images (Ronneberger, Fischer, 
and Brox 2015), street view images (Badrinarayanan, Kendall, and Cipolla 
2015), satellite images (Ulku et al. 2019), just to name a few. Although earlier 

Figure 4. Different architectures for fine-grained pixel-wise label localisation.
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ED architectures were designed for object segmentation tasks only, there are 
also modified versions such as “TernausNetV2” (Iglovikov et al. 2018), that 
provide instance segmentation capability with minor architectural changes.

Spatial Pyramid Pooling
The idea of constructing a fixed-sized spatial pyramid was first proposed by 
(Lazebnik, Schmid, and Ponce 2006), in order to prevent a Bag-of-Words 
system losing spatial relations among features. Later, the approach was 
adopted to CNNs by (He et al. 2015), in that, regardless of the input size, a 
spatial pyramid representation of deep features could be created in a Spatial 
Pyramid Pooling Network (SPP-Net). The most important contribution of the 
SPP-Net was that it allowed inputs of different sizes to be fed into CNNs. 

Figure 5. Different architectures for object detection-based semantic segmentation methods.
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Images of different sizes fed into convolutional layers inevitably create differ
ent-sized feature maps. However, if a pooling layer, just prior to a decision 
layer, has stride values proportional to the input size, the feature map created 
by that layer would be fixed (see Figure 4.b). By (Li et al. 2018), a modified 
version, namely Pyramid Attention Network (PAN) was additionally pro
posed. The idea of PAN was combining an SPP layer with global pooling to 
learn a better feature representation.

There is a common misconception that SPP-Net structure carries an inher
ent scale-invariance property, which is incorrect. SPP-Net allows the efficient 
training of images at different scales (or resolutions) by allowing different 
input sizes to a CNN. However, the trained CNN with SPP is scale-invariant if, 
and only if, the training set includes images with different scales. This fact is 
also true for a CNN without SPP layers.

However, similar to the original idea proposed in (Lazebnik, Schmid, and 
Ponce 2006), the SPP layer in a CNN constructs relations among the features 
of different hierarchies. Thus, it is quite similar to skip connections in ED 
structures, which also allow information flow between feature hierarchies. The 
most common utilization of an SPP layer for semantic segmentation is pro
posed in (He et al. 2015), such that the SPP layer is appended to the last 
convolutional layer and fed to the pixel-wise classifier.

Feature Concatenation
This idea is based on fusing features extracted from different sources. For 
example, in (Pinheiro, Collobert, and Dollar 2015) the so-called ‘DeepMask’ 
network utilizes skip connections in a feed-forward manner, so that an 
architecture partially similar to both SPP layer and ED is obtained. The 
same group extends this idea with a top-down refinement approach of the 
feed-forward module and propose the so-called ‘SharpMask’ network 
(Pinheiro et al. 2016), which has proven to be more efficient and accurate in 
segmentation performance. Another approach from this category is the so- 
called ‘ParseNet’ (Liu et al. 2015), which fuses CNN features with external 
global features from previous layers in order to provide context knowledge. 
Another approach by (Wang et al. 2020) is to fuse the “stage features” (i.e. deep 
encoder activations) with “refinement path features” (an idea similar to skip 
connections), using a convolutional (Feature Adaptive Fusion FAF) block. 
Although a novel idea in principle, feature fusion approaches (including SPP) 
create hybrid structures; therefore, they are relatively difficult to train.

Dilated Convolution
The idea of dilated (atrous) convolutions is actually quite simple: with con
tiguous convolutional filters, an effective receptive field of units can only grow 
linearly with layers; whereas with dilated convolution, which has gaps in the 
filter (see Figure 4.c), the effective receptive field would grow much more 
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quickly (Chen et al. 2018a). Thus, with no pooling or subsampling, a rectan
gular prism of convolutional layers is created. Dilated convolution is a very 
effective and powerful method for the detailed preservation of feature map 
resolutions. The negative aspect of the technique, compared to other techni
ques, concerns its higher demand for GPU storage and computation, since the 
feature map resolutions do not shrink within the feature hierarchy (He et al. 
2016).

Conditional Random Fields
As also discussed in Section 3.1.1, CNNs naturally lack mechanisms to speci
fically ‘focus’ on regions where class intersections occur. Around these regions, 
graphical models are used to find inference by observing low-level relations 
between neighboring feature maps of CNN layers. Consequently, graphical 
models, mainly CRFs, are utilized as refinement layers in deep semantic 
segmentation architectures. As in (Rother, Kolmogorov, and Blake 2004), 
CRFs connect low-level interactions with output from multiclass interactions, 
and in this way, global context knowledge is constructed.

As a refinement layer, various methods exist that employ CRFs to DCNNs, 
such as the Convolutional CRFs (Teichmann and Cipolla 2018), the Dense 
CRF (Krähenbühl and Koltun 2011), and CRN-as-RNN (Zheng et al. 2015). In 
general, CRFs help build context knowledge and thus a finer level of localisa
tion in class labels.

Recurrent Approaches
The ability of Recurrent Neural Networks (RNNs) to handle sequential infor
mation can help improve segmentation accuracy. For example, (Pfeuffer, 
Schulz, and Dietmayer 2019) used Conv-LSTM layers to improve their seman
tic segmentation results in image sequences. However, there are also methods 
that use recurrent structures on still images. For example, the Graph LSTM 
network (Liang et al. 2016) is a generalization of LSTM from sequential data or 
multidimensional data to general graph-structured data for semantic segmen
tation on 2D still images. Graph-RNN Shuai2016 is another example of a 
similar approach in which an LSTM-based network is used to fuse a deep 
encoder output with the original image in order to obtain a finer pixel-level 
segmentation. Likewise, in (Lin et al. 2018), the researchers utilized LSTM- 
chains in order to intertwine multiple scales, resulting in pixel-wise segmenta
tion improvements. There are also hybrid approaches where CNNs and RNNs 
are fused. A good example of this is the so-called ReSeg model (Visin et al. 
2016), in which the input image is fed to a VGG-like CNN encoder, and is then 
processed afterwards by recurrent layers (namely the ReNet architecture) in 
order to better localize the pixel labels. Another similar approach is the DAG- 
RNN (Shuai et al. 2016), which utilize a DAG-structured CNN+RNN network, 
and models long-range semantic dependencies among image units. To the best 
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of our knowledge, no purely recurrent structures for semantic segmentation 
exist, mainly because semantic segmentation requires a preliminary CNN- 
based feature encoding scheme.

There is currently an increasing trend in one specific type of RNN, namely 
‘recurrent attention modules.’ In these modules, attention (Vaswani et al. 
2017) is technically fused in the RNN, providing a focus on certain regions 
of the input when predicting a certain part of the output sequence. 
Consequently, they are also being utilized in semantic segmentation (Li et al. 
2019b; Zhao et al. 2018b; Oktay et al. 2018).

Scale-Invariance

Scale Invariance is, by definition, the ability of a method to process a given 
input, independent of the relative scale (i.e. the scale of an object to its scene) 
or image resolution. Although it is extremely crucial for certain applications, 
this ability is usually overlooked or is confused with a method’s ability to 
include multiscale information. A method may use multiscale information to 
improve its pixel-wise segmentation ability, but can still be dependent on scale 
or resolution. That is why we find it necessary to discuss this issue under a 
different title and to provide information on the techniques that provide scale 
and/or resolution invariance.

In computer vision, any method can become scale invariant if trained with 
multiple scales of the training set. Some semantic segmentation methods, such 
as (Eigen and Fergus 2014; Farabet et al. 2013; Lin et al. 2016a; Pinheiro and 
Collobert 2014; Yu and Koltun 2015) utilize this strategy. However, these 
methods do not possess an inherent scale-invariance property, which is usually 
obtained by normalization with a global scale factor (such as in SIFT by (Lowe 
2004)). This approach is not usually preferred in the literature on semantic 
segmentation. The image sets that exist in semantic segmentation literature are 
extremely large in size. Thus, the methods are trained to memorize that 
training set, because in principle, overfitting a large-scale training set is 
actually tantamount to solving the entire problem space.

Object Detection-based Methods

There has been a recent growing trend in computer vision, which aims at 
specifically resolving the problem of object detection, that is, establishing a 
bounding box around all objects within an image. Given that the image may or 
may not contain any number of objects, the architectures utilized to tackle 
such a problem differ to the existing fully-connected/convolutional classifica
tion or segmentation models.
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The pioneering study that represents this idea is the renowned ‘Regions 
with CNN features’ (RCNN) network (Girshick et al. 2013). Standard CNNs 
with fully convolutional and fully connected layers lack the ability to provide 
varying length output, which is a major flaw for an object detection algorithm 
that aims to detect an unknown number of objects within an image. The 
simplest way to resolve this problem is to take different regions of interest 
from the image, and then to employ a CNN in order to detect objects within 
each region separately. This region selection architecture is called the ‘Region 
Proposal Network’ (RPN) and is the fundamental structure used to construct 
the RCNN network (see Figure 5.a). Improved versions of RCNN, namely 
‘Fast-RCNN’ (Girshick et al. 2013) and ‘Faster-RCNN’ (Ren et al. 2015) were 
subsequently also proposed by the same research group. Because these net
works allow for the separate detection of all objects within the image, the idea 
was easily implemented for instance segmentation, as the ‘Mask-RCNN’ (He et 
al. 2017).

The basic structure of RCNNs included the RPN, which is the combination 
of CNN layers and a fully connected structure in order to decide the object 
categories and bounding box positions. As discussed within the previous 
sections of this paper, due to their cumbersome structure, fully connected 
layers were largely abandoned with FCNs. RCNNs shared a similar fate when 
the ‘You-Only-Look-Once’ (YOLO) by (Redmon et al. 2016) and ‘Single Shot 
Detector’ (SSD) by (Liu et al. 2016) were proposed. YOLO utilizes a single 
convolutional network that predicts the bounding boxes and the class prob
abilities for these boxes. It consists of no fully connected layers, and conse
quently provides real-time performance. SSD proposed a similar idea, in 
which bounding boxes were predicted after multiple convolutional layers. 
Since each convolutional layer operates at a different scale, the architecture 
is able to detect objects of various scales. Whilst slower than YOLO, it is still 
considered to be faster then RCNNs. This new breed of object detection 
techniques was immediately applied to semantic segmentation. Similar to 
MaskRCNN, ‘Mask-YOLO’ (Sun 2019) and ‘YOLACT’ (Bolya et al. 2019) 
architectures were implementations of these object detectors to the problem 
of instance segmentation (see Figure 5b). Similar to YOLACT, some other 
methods also achieve fast, real-time instance segmentation such as: ESE-Seg 
(Xu et al. 2019a), SOLO (Wang et al. 2019a), SOLOv2 (Wang et al. 2020a), 
DeepSnake (Peng et al. 2020), and CenterPoly (Perreault et al. 2021).

Locating objects within an image prior to segmenting them at the pixel level 
is both intuitive and natural, due to the fact that it is effectively how the human 
brain supposedly accomplishes this task (Rosenholtz 2016). In addition to 
these two-stage (detection+segmentation) methods, there are some recent 
studies that aim at utilizing the segmentation task to be incorporated into one- 
stage bounding-box detectors and result in a simple yet efficient instance 
segmentation framework (Xu et al. 2019a; R. Zhang et al. 2020a; Lee and 
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Park 2020; Xie et al. 2020a). However, the latest trend is to use global-area- 
based methods by generating intermediate FCN feature maps and then assem
bling these basis features to obtain final masks (Chen et al. 2020; Ke, Tai, and 
Tang 2021; Kim et al. 2021).

In recent years, a trend of alleviating the demand for pixel-wise labels is 
realized mainly by employing bounding boxes, and by expanding from seman
tic segmentation to instance segmentation applications. In both semantic 
segmentation and instance segmentation methods, the category of each pixel 
is recognized, and the only difference is that instance segmentation also 
differentiates object occurrences of the same category. Therefore, weakly- 
supervisedinstance segmentation (WSIS) methods are also utilized for 
instance segmentation. The supervision of WSIS methods can use different 
annotation types for training, which are usually in the form of either bounding 
boxes (Khoreva et al. 2017; Hsu et al. 2019; Arun, Jawahar, and Kumar 2020; 
Tian et al. 2021; Lee et al. 2021; Cheng et al. 2021b) or image-level labels (Liu 
et al. 2020; Shen et al. 2021b; Zhou et al. 2016; Shen et al. 2021a). Hence, 
employing object detection-based methods for semantic segmentation is an 
area significantly prone to further development in near future by the time this 
manuscript is prepared.

Evolution of Methods

In Table 1, we present several semantic segmentation methods, each with a 
brief summary, explaining the fundamental idea that represents the proposed 
solutions, their position in available leaderboards, and a categorical level of the 
method’s computational efficiency. The intention is for readers to gain a better 
evolutionary understanding of the methods and architectures in this field, and 
a clearer conception of how the field may subsequently progress in the future. 
Regarding the brief summaries of the listed methods, please refer to the 
categorizations provided earlier in this section.

Table 1 includes 34 methods spanning an eight-year period, starting with 
early deep learning approaches through to the most recent state-of-the-art 
techniques. Most of the listed studies have been quite successful and have 
significantly high rankings in the previously mentioned leaderboards. Whilst 
there are many other methods, we believe this list to be a clear depiction of the 
advances in deep learning-based semantic segmentation approaches. In Figure 
6, a sample image from the PASCAL VOC validation set, its semantic seg
mentation ground truth and results obtained from some of the listed studies 
are depicted. Figure 6 clearly shows the gradually growing success of different 
methods starting with the pioneering FCN architectures to more advanced 
architectures such as DeepLab (Chen et al. 2014a, Chen et al. 2018a) or CRF-as 
-RNN (Zheng et al. 2015).
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Judging by the picture it portrays, the deep evolution of the literature clearly 
reveals a number of important implications. First, graphical model-based 
refinement modules are being abandoned due to their slow nature. A good 
example of this trend would be the evolution of DeepLab from (Chen et al. 
2014a) to (Chen et al. 2018b) (see Table 1). Notably, no significant study 
published in 2019 and 2020 employed a CRF-based or similar module to refine 
their segmentation results. Second, most studies published in the past two 
years show no significant leap in performance rates. For this reason, research
ers have tended to focus on experimental solutions such as object detection- 
based or Neural Architecture Search (NAS)-based approaches. Some of these 
very recent group of studies (Zhang et al. 2020b; Zoph et al. 2020) focus on 
(NAS)-based techniques, instead of hand-crafted architectures. EfficientNet- 
NAS (Zoph et al. 2020) belongs to this category and is the leading study in 
PASCAL VOC 2012 semantic segmentation challenge at the time the paper 
was prepared. We believe that the field will witness an increasing interest in 
NAS-based methods in the near future. In general, considering all studies of 
the post-FCN era, the main challenge of the field still remains to be efficiently 
integrating (i.e. in real-time) global context to localisation information, which 
still does not appear to have an off-the-shelf solution, although there are some 
promising techniques, such as YOLACT (Bolya et al. 2019).

Figure 6. (a) A sample image from the PASCAL VOC validation set, (b) its semantic segmentation 
ground truth, and results obtained from different studies are depicted: c) FCN-32S (Shelhamer, 
Long, and Darrell 2017), d) FCN-8S (Shelhamer, Long, and Darrell 2017), e) CMSA (Eigen and Fergus 
2014), f) DeepLab-v1 (Chen et al. 2014a), g) CRF-as-RNN (Zheng et al. 2015), h) DeepLab-v2 (Chen 
et al. 2018a), i) DeepLab-v2 with CRF refinement (Chen et al. 2018a), (j) PAN (Li et al. 2018).
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In Table 1, the right-most column represents a categorical level of compu
tational efficiency. We use a four-level categorization (one star to four stars) to 
indicate the computational efficiency of each listed method. For any assigned 
level of the computational efficiency of a method, we explain our reasoning in 
the table with solid arguments. For example, one of the four-star methods in 
Table 1 is “YOLACT” by (Bolya et al. 2019), which claims to provide real-time 
performance (i.e. > 30fps) on both PASCAL VOC 2012 and COCO image 
sets.

Future Scope and Potential Research Directions

Although tremendous successes have been achieved so far in the semantic 
segmentation field, there are still many open challenges in this field due to 
hard requirements time-consuming pixel-level annotations, lack of general
ization ability to new domains and classes, and need for real-time performance 
with higher segmentation accuracies. In this section, we categorize possible 
future directions under different titles by providing examples of recent studies 
that represent that direction.

Weakly-Supervised Semantic Segmentation (WSSS)

Over the last few years, there has been an increasing research effort directed 
toward the approaches that are alternative to pixel-level annotations such as; 
unsupervised, semi-supervised (He, Yang, and Qi 2021) and weakly- 
supervised methods. Recent studies show that, WSSS methods usually perform 
better than the other schemes (Chan, Hosseini, and Plataniotis 2021) where 
annotations are in the form of image-level labels (Kolesnikov and Lampert 
2016; Pathak, Krahenbuhl, and Darrell 2015; Pinheiro and Collobert 2015; 
Wang et al. 2020b; Ahn and Kwak 2018; Li et al. 2021b; Chang et al. 2020; Xu 
et al. 2021; Yao et al. 2021; Jiang et al. 2021), video-level labels (Zhong et al. 
2016b), scribbles (Lin et al. 2016a), points (Bearman et al. 2016), and bounding 
boxes (Dai, He, and Sun 2015; Khoreva et al. 2017; Xu, Schwing, and Urtasun 
2015). In case of image-level labels, class activation maps (CAMs) (Zhou et al. 
2016) are used to localize the small discriminative regions, which are not 
suitable particularly for the large-scale objects, but can be utilized as initial 
seeds (pseudo-masks) (Araslanov and Roth 2020; Fan et al. 2020; Kweon et al. 
2021; Sun et al. 2021).

Zero-/Few-Shot Learning

Motivated by humans’ ability to recognize new concepts in a scene by using 
only a few visual samples, zero-shot and/or few-shot learning methods have 
been introduced. Few-shot semantic segmentation (FS3) methods (Wang et al. 
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2019a; Xie et al. 2021) has been proposed to recognize objects from unseen 
classes by utilizing few annotated examples; however, these methods are 
limited to handling a single unseen class only. Zero-shot semantic segmenta
tion (ZS3) methods have been developed recently to generate visual features by 
exploiting word embedding vectors in the case of zero training samples 
(Bucher et al. 2019; Lu et al. 2021; Pastore et al. 2021; Xian et al. 2019). 
However, the major drawback of ZS3 methods is their insufficient prediction 
ability to distinguish between the seen and the unseen classes even if both are 
included in a scene. This disadvantage is usually overcome by generalized ZS3 
(GZS3), which recognizes both seen and unseen classes simultaneously. GZS3 
studies mainly rely on generative-based methods. Feature extractor training is 
realized without considering semantic features in GZS3 adopted with genera
tive approaches so that the bias is introduced toward the seen classes. 
Therefore, GZS3 methods result in performance reduction on unseen classes 
(Pastore et al. 2021). Much of the recent work on ZS3 has involved such as: 
exploiting joint embedding space to alleviate the seen bias problem (Baek, Oh, 
and Ham 2021), analyzing different domain performances chan2021compre
hensive, and incorporating spatial information (Cheng et al. 2021a).

Domain Adaptation

Recent studies also rely on the use of synthetic large-scale image sets such as 
GTA5 (Richter et al. 2016) and SYNTHIA (Ros et al. 2016b) because of their 
capability to cope with laborious pixel-level annotations. Although these rich- 
labeled synthetic images have the advantage of reducing the labeling cost, they 
also bring about domain shift while training with unlabeled real images. 
Therefore, applying domain adaptation for aligning the synthetic and the 
real image sets is of much importance (Zhao et al. 2019; Kang et al. 2020; 
Wu et al. 2021; Wang et al.2021; Shin et al. 2021; Fleuret et al. 2021). 
Unsupervised domain adaptation (UDA) methods are widely employed in 
semantic segmentation (Cheng et al. 2021c; Liu, Zhang, and Wang 2021; Hong 
et al. 2018; Vu et al. 2019; Pan et al. 2020; Wang et al. 2021; Saporta et al. 2021; 
Zheng and Yang 2021).

Real-Time Processing

Adopting compact and shallow model architectures (Zhao et al. 2018a; Orsic 
et al. 2019; Yu et al. 2018a; Li et al. 2019a; Fan et al. 2021) and restricting the 
input to be low-resolution (Marin et al. 2019) are brand new innovations 
proposed very recently to overcome the computational burden of large-scale 
semantic segmentation. To choose a real-time semantic segmentation strategy, 
all aspects of an application should be considered, as all of these strategies 
somehow correlate with decreasing the model’s discriminative ability and 
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losing information of object boundaries or small objects to some extent. Some 
other strategies have also been proposed for the retrieval of rich contextual 
information in real-time applications including attention mechanisms (Ding 
et al. 2021; Hu et al. 2020), depth-wise separable convolutions (Chollet 2017; 
Howard et al. 2019), pyramid fusion (Oršić and Šegvić 2021; Rosas-Arias et al. 
2021), grouped convolutions (Zhang et al. 2018b; Huang et al. 2018) neural 
architecture search (Zoph et al. 2018) and, pipeline parallelism (Chew, Ji, and 
Zhang 2022).

Contextual Information

Contextual information aggregation with the purpose of augmenting pixel 
representations in semantic segmentation architectures is another promising 
research direction in recent years. In this aspect, mining contextual informa
tion (Jin et al. 2021), exploring context information on spatial and channel 
dimensions (Li et al. 2021c), focusing on object-based contextual representa
tions (Yuan, Chen, and Wang 2020) and capturing the global contextual 
information for fine-resolution remote sensing imagery (Li et al. 2021a) are 
some of the recent studies. Alternative methods of reducing dense pixel-level 
annotations in semantic segmentation have been described which are based on 
using pixel-wise contrastive loss (Chaitanya et al. 2020; Zhang et al. 2021; Zhao 
et al. 2021).

Conclusions

In this survey, we aimed at reviewing the current developments in the litera
ture regarding deep learning-based 2D image semantic segmentation. We 
commenced with an analysis of the public image sets and leaderboards for 
2D semantic segmentation and then continued by providing an overview of 
the techniques for performance evaluation. Following this introduction, our 
focus shifted to the 10-year evolution seen in this field under three chronolo
gical titles, namely the pre- and early-deep learning era, the fully convolutional 
era, and the post-FCN era. After a technical analysis on the approaches of each 
period, we presented a table of methods spanning all three eras, with a brief 
summary of each technique that explicates their contribution to the field.

In our review, we paid particular attention to the key technical challenges of 
the 2D semantic segmentation problem, the deep learning-based solutions that 
were proposed, and how these solutions evolved as they shaped the advance
ments in the field. To this end, we observed that the fine-grained localisation of 
pixel labels is clearly the definitive challenge to the overall problem. Although 
the title may imply a more ‘local’ interest, the research published in this field 
evidently shows that it is the global context that determines the actual perfor
mance of a method. Thus, it is eminently conceivable why the literature is rich 
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with approaches that attempt to bridge local information with a more global 
context, such as graphical models, context aggregating networks, recurrent 
approaches, and attention-based modules. It is also clear that efforts to fulfill 
this local-global semantics gap at the pixel level will continue for the foresee
able future.

Another important revelation from this review has been the profound effect 
seen from public challenges to the field. Academic and industrial groups alike 
are in a constant struggle to top these public leaderboards, which has an 
obvious effect of accelerating development in this field. Therefore, it would 
be prudent to promote or even contribute to creating similar public image sets 
and challenges affiliated to more specific subjects of the semantic segmentation 
problem, such as 2D medical images.

Considering the rapid and continuing development seen in this field, there 
is an irrefutable need for an update on the surveys regarding the semantic 
segmentation problem. However, we believe that the current survey may be 
considered as a milestone in measuring how much the field has progressed 
thus far, and where the future directions possibly lie.

Notes

1. We consider MRI and CT essentially as 3D volume data. Although individual MRI/CT 
slices are 2D, when doing semantic segmentation on these types of data, neighbourhood 
information in all three dimensions are utilised. For this reason, medical applications are 
excluded from this survey.

2. http://host.robots.ox.ac.uk:8080/leaderboard/main_bootstrap.php
3. http://cocodataset.org
4. http://sceneparsing.csail.mit.edu/
5. https://www.cityscapes-dataset.com/benchmarks/
6. FCN (Shelhamer, Long, and Darrell 2017) was officially published in 2017. However, the 

same group first shared the idea online as pre-printed literature in 2014 (Long, 
Shelhamer, and Darrell 2014).

7. Many methods utilise fully connected layers such as RCNN (Girshick 2015), which are 
discussed in the following sections. However, this and other similar methods that 
include fully connected layers have mostly been succeeded by fully convolutional ver
sions for the sake of computational efficiency.
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