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ABSTRACT

DYNAMICS OF FLEXIBLE MEMBRANES WITH
HOLES DUE TO TRANSVERSE IMPACT

Umut Omiir
Ph.D., Department of Mathematics
Supervisor: Asst.Prof.Dr. Tanil Ergeng

Co-Supervisor: Prof.Dr. Barat Nuriyev

January 1996, 96 pages

In the thesis, the problems of transverse impact to the flexible elastic
membranes possessing a hole are investigated. In general the dynamics of the
membrane is described by three sets of partial differential equations in three
different regions with a priori unknown boundaries. The impact velocity is
assumed to be high, so that one of the regions degenerates into a line of a
strong discontinuity across which some nonlinear relations , following from
the equations of motion, hold. Two different type problems, appropriate
for two different type of boundary conditions on the hole are studied. The
exact solutions to the problems on the radial wavefront are obtained, which,
in particular, show that for a rigid hole the radial wavefront is a strong
discontinuity wave, while for a free hole the derivatives of unknown functions
are continuous. The transverse wavefront is the strong discontinuity wave

for both cases.
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The principle difference of the problems studied in the thesis from the
already solved problems in dynamics of membranes is that the problems
considered in the thesis do not possess a similarity solution like the problems
studied previously and hence one has to deal with the nonlinear initial and
boundary value problems for a set of partial differential equations in regions

with a priori unknown boundaries.

The algorithms for the numerical solution to the problems are worked
out. The numerical algorithms are based on the characteristic method of so-
lution of the hyperbolic type of systems by making use of the jump conditions

on the unknown boundary of regions.

The equations that appear in two different regions which are investi-
gated in the thesis can also be viewed as a set of equations in one large region
but in the latter case the coeflicients become the impulsive type of functions.
In the transition through the strong discontinuity wave the coeflicients of the
equations change impulsively. In this sense the problems considered in the
thesis are related to the study of initial and boundary value problems for

impulsive partial differential equations.

In the thesis the numerical solutions to the problems are obtained and
the different graphs of the unknown quantities are brought. The convergence

and stability of the numerical solutions have been established.

Keywords: Transverse impact, flexible elastic membrane, impact ve-
locity, strong discontinuity, radial wavefront, transverse wavefront, similarity

solution, characteristic method, hyperbolic type of system.
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O%Z

CAPRAZ ETKIDEN DOLAYI DELIKLI ZARLARIN
DINAMIGI

Umut Omiir
Doktora, Matematik Bolumu
Tez Yoneticisi: Yard.Do¢.Dr. Taml Ergeng

Ortak Tez Yoneticisi: Prof.Dr. Barat Nuriyev

Ocak 1996, 96 sayfa

Bu tezde delikli esnek zara uygulanan dik g¢arpmanin neden oldugu
problemlerle ugragildi. Genelde zarin dinamigi, sinirlar: 6nceden bilinmeyen
¢ degisik bolgedeki ii¢ kismi diferansiyel denklem sistemi ile tamimlanir.
Carpma hizinin yiiksek kabul edildigi durumda ise bolgelerden biri kuvvetli
streksizligin kargilagildigs bir egri haline gelir. Burada delik {izerindeki
iki farkli sinir kogulu ile tanimlanan iki farkli problem tizerinde galigilda.
Radyal dalga-6niinde problemlerin kesin ¢oziimleri elde edildi. Bu ¢oziimler,
carpma ile cap1 degismeyen dalga probleminde radyal dalga-ontiniin kuvvetli
sireksizlik oldugunu gosterdi. Diger yandan delikteki mukavemetin sifir
oldugu durumda ise fonksiyonlarin kismi tiirevlerinin bu dalga 6niinde siirekli
oldugu sonucunu elde ettik. Her iki problemde de dik dalga-6nii kuvvetli

stureksizliktir.



Tezde caligilan problemlerin zarlarin dinamigi ile ilgili ¢6zilmis prob-
lemlerden temel farki, benzerlik ¢ozlimlerinin olmamasidir. Bu problemler,
sinirlar: 6nceden bilinmeyen bolgelerdeki kismi diferansiyel denklem sistemi

i¢in baglangic ve sinir kogullu problemler olarak ele alndi.

Problemlerin sayisal ¢oziimlerini elde etmek i¢in sayisal algoritmalar
verildi. Bu algoritmalar hiperbolik denklemlerin karakteristikler yardimiyla

¢ozumi yontemine dayanmaktadir.

Bu tezde iki farkli bdlgede incelenen denklemlere bir biiyik bolgedeki
denklem sistemi olarak bakilabilir. Bu amagla yeni bir fonksiyon tanimu ile
katsayilar, impulsif fonksiyonlar haline getirildi. inceledigimiz iki problem,
bu goriis ile baglangi¢ ve simir kogullu impulsif kismi diferansiyel denklemler

olarak ele alindi.

Tezde caligilan problemlerin sayisal c¢oziimleri elde edildi. Sayisal

yontemlerin yakisamasi ve kararliligi incelendi. ilgili grafikler verildi.

Anahtar Kelimeler: Dik carpma, esnek zar, ¢arpma hizi, kuvvetli
stireksizlik, radyal dalga-onii, enine dalga-6nii, benzerlik ¢oziimii, karakteris-

tikler yontemi, hiperbolik sistem.
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CHAPTER 1

INTRODUCTION

Classical linear wave equations in one and two space dimensions de-
scribe wave propagation in flexible strings and membranes, respectively, and

have the forms
Py 0%

~5t—2— = qa a—wz- (1.1)
0%y % 0%u
52 = a’ (a—xi il 8_g/2> (1.2)

where the unknown function u is the transverse displacement of particles of
the string or membrane, a is some physical constant known as wave speed
in the material of the string or membrane, ¢ is time,  and y are Cartesian

coordinates in some reference system.

Both equations (1.1) and (1.2) are derived under the following assump-

tions (see, for instance Tikhonov, A. and Samarski, A. [32])

1. All particles of the string or membrane move only in transverse direc-
tion and hence displacements of all particles are described by one scalar

function u.

92 ay‘ < 1 and

2. Deflections are small, in other words

)\ ou\? i
[+ (3 (&) =

Bul ’6u
— < 1, |=



3. The law of deformation is linear elastic and hence tractions are propor-

tional to the strains.

From the first two assumptions it follows that the length of an initial recti-
linear element of the string AB (or the area of the initial plane element of
the membrane) does not change during the motion, in the process of which

those elements become curvilinear (element A’'B’); this fact is an obvious
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-
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Figure 1.1: Change in the lenght of the string AB after impact

contradiction. All these assumptions of linear theory are not correct and
hence cannot be used to describe the motion of strings and nmiembranes sub-

jected to the high transient loading.

To study the large displacements of strings under the transverse impact
Rakhmatulin derived exact equations of plane motion of string [26, 27] in

1945, which have the form

a2_l—i( ) 1.3
Po 17~ Dsg o Cosyp (1.3)



0%y 0

P = 5oc 750 %) (1.4)
g—; =(l+¢)cosp (1.5)
%: (14+¢)sine (1.6)

o =o(e) (1.7)

where pg is the initial density of the string, ¢ is time, so is the Lagrangian
coordinate, z and y are Eulerian coordinates of the particle 5o at time ¢, €
is the strain, o is the stress and ¢ is the angle that tangent to the string
at (so,t) makes with the initial rectilinear position of the string. The last
equation is the state equation which for linear elastic deformation takes the

form

o= Fe (1.8)

where E is some constant of the string’s material, known as -Young’s mod-
ulus. It should be noted that the equations (1.3)—(1.6) as well as the equa-
tions (1.1) and (1.2) are derived for a flexible string or membrane, the math-
ematical formulation of which is the statement that tension force is tangent

to the current position of the string or membrane.

The exact solution to the equations (1.3)—(1.7) for an arbitrary de-
pendence of o = o(e) corresponding to transverse impact with a constant
velocity is obtained by Rakhmatulin [26, 27, 32]. The space motion of strings
was investigated by Agalarov, Nuriyev and Rakhmatulin [1], [17], [18], etc.
Since then the analogous problem for a membrane has been investigated by

many authors [28], [5], [8], [10]—[11], [19]—[24], [29]—[31].



The exact equations of the axi—symmetrical motion of a membrane
derived by Rakhmatulin, have the form

0%z  10(o,rcosy) oy

P ~ or r (L9)
0%  10(o,rsiny)
T R » (1.10)
Oz
o= (1+e,)cosy (1.11)
g—g =—(1+4e¢,)siny (1.12)
go=——1 (1.13)

P

where the independent variables ¢ and r are time and Lagrangian coordi-
nate of particles of a membrane, the distance of an arbitrary particle of the
membrane from its some fixed point—point of impact, at the initial instant
of time; z is the radial coordinate, while y is the vertical coordinate in the
direction of impact velocity vo; €, and €y are meridional and circumferential
components of the strain tensor, while o, and oy are corresponding stress ten-
sor components, v is the angle made by the tangent plane to the membrane

with z—axis (Fig. 1.2). In (1.9)— (1.13) the unknowns are the functions

z(r,t),y(r, t),v(r,t),e.(r, 1), €0(r, ), 0.(r, t) and og(r,1).

The lacking equations are state equations of the membrane. For lin-
ear elastic deformations these equations are generalized Hook’s law—linear
relations between the stress and strain tensor components. These relations
under the assumption of o3 ~ 0, where o3 is the stress tensor component

along the thickness of the membrane, yield

(er + veg) (1.14)

oy =
1 -2
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E
gg =

T -2

(¢ + ver) (1.15)
g3 = —v(e, + cp) (1.16)

where the material constants F and v are Young’s modulus and Poisson’s

ratio, while g3 is the normal strain along the thickness of the membrane

(1.17)

where &g and § are the initial and current thicknesses of the membrane.

Figure 1.2: Wave scheme of motion of a membrane

In [10] a simplified solution was obtained by neglecting the circumferential
component of stress tensor. But as shown in [8] in this problem the circum-
ferential stress cannot be neglected by any means. In [8] an approximate
solution to the problem is obtained. But the equations of motion of mem-
brane under transverse impact given by (1.9)—(1.15) was derived in [28].
Further studies of the problem were devoted to the propagation of linear

elastic waves in the membrane subjected to a transverse impact [8], [10]-[11],



[19]-[24], [29]-[31]. Many authors have considered various dynamic problems
of membrane by making use of some simplifying assumptions [24, 29]. In [11]
the numerical method of solution to the problem has been suggested. But all
this authors and many others did not succeed in getting neither analytical
nor numerical solution to the problem even for linearly elastic membrane.
Numerical method suggested in [11] considers the transverse wavefront as
a strong discontinuity wave like the analogous problem for strings. But as
shown in [21] the transverse wavefront in the membrane subjected to the
transverse impact for any constitutive equation is not a strong discontinuity
wave, precisely it is shown that the conditions of dynamic and kinematic
compatibility for the strong discontinuity wave on the transverse wavefront
contradicts the equations of motion. Hence the numerical method suggested

in [11] could not lead to the solution of the problem.

The solution to the problem for elastic membrane has obtained recently
in [21]. In [22] the solution to the problem for perfectly plastic membrane is
obtained. The analogous problem, but with the assumption that the radial
displacement is small, has studied also in [31], where it is assumed that the
radial stress is greater than the circumferential one. But in [22, 23] making
use of the exact equations of motion it is shown that there is no region of
plastic deformations where the radial stress exceeds the circumferential one.

In [23] the solution to the problem for elastic-plastic membranes is obtained.

Equations (1.9)—(1.15) compose a closed set of nonlinear equations
with respect to the unknown functions z(r,t), y(r,t), y(r,t), &, (r, 1), €a(r, 1),

o.(r,t) and gy(r,t). After solving these equations under the appropriate ini-



tial and boundary conditions, €3 as well as current thickness of the membrane

are easily evaluated by the formulae (1.16)—(1.17) which yield
8(r,t) = éo(1 — ve, — veg) (1.18)

Besides the equation of conservation of mass yields the equation for defining

the current density of the membrane [18]

_ Po
plrt) = (14&)(1+€p)(1 +e3) (1.19)

In all of investigated problems the membrane is assumed to be initially at

rest, that is initial conditions are homogeneous

z(r,0)=r, y(r,0)=0, (r,0)=0, &(r,0)=0, &(r,0)=0 (1.20)

oz r Oy _
a(ra O) =0, ot (T’, 0) =0 (121)

It was also assumed that the membrane is impacted by a costant ve-

locity vo and hence the boundary conditions have the form

Oz Q_y_

a00=0 3

(O,t) = —7p (122)
Thus the problem leads to the solution of equations (1.9)—(1.15) subject to
the initial and boundary conditions (1.20)—(1.22) in the region 0 < r < oo,

t>0.

A brief discussion of the attempts of many authors to solve the above
stated problem will be done in the following chapter. Here we only note
that the above stated problem turns to have only similarity solution. The

last circumstance allows one to reduce the set of nonlinear partial differential



equations (1.9)—(1.15) to a set of nonlinear ordinary differential equations for
some similarity variables and then investigate the corresponding boundary
value problem for a set of ordinary differential equations in the regions with

unknown boundaries.

The topics of this thesis are the analogous problems for the membranes
with a hole of finite radius R. In the latter case the problem ceases to possess
a similarity solution and we have to deal with the initial and boundary value
problem in the region R < r < oo, ¢ > 0 for a set of nonlinear partial differen-
tial equations (1.9)—(1.15) and subject to the initial conditions (1.20)-(1.21)
and some boundary conditions at the finite boundary r = R, which of course,

differ from the conditions (1.22).

The boundary » = R may be rigidly fixed or free of stresses. In the

first case on the boundary we have the boundary condition

eo(R,t) =0 (1.23)
In the latter case the boundary condition has the form

o (R,t) =0 (1.24)

Solution of the problem with the boundary condition (1.23) is given in
Chapter 3, while Chapter 4 is devoted to the analytico— numeric solution
of the equations (1.9)— (1.15) subject to the initial and boundary condi-
tions (1.20), (1.21) and (1.24).

In the both cases the characteristic form of the equations of motion are

derived, the possible wave schemes are established, the exact solution of the

8



problem on the radial wavefront are obtained and the algorithms of numerical
solutions of the problems are worked out. The questions of convergence and
stability of numerical schemes are investigated as well. At the end of each
chapter the numerical results obtained by using computers are discussed and

the necessary graphs are plotted.



CHAPTER 2

NONLINEAR THEORY OF ENTIRE MEMBRANES
SUBJECT TO A TRANSVERSE IMPACT

The chapter is devoted to the description of motion of entire membranes
subject to the transverse impact by a cone. The pecularities of the problem
as well as the possible wave schemes of motion are analyzed in full detail
with necessary references. At the end the open problems are brought and

outline of the work done in the thesis is given.

2.1 On Wave Propagation in Linear Elastic Membranes due to

Transverse Impact

As was noted in Chapter 1 exact equations of motion of particles of
an elastic membrane subject to the transverse impact are described by the

following set of equations

%z 10(o,rcosy) o
P T r or o (2.1)
2 .
0%y _ _19(orrsiny) (2.2)

po ot r or

Oz

e (1 +¢,)cosy (2.3)
0
a—’: = —(1+e¢,)siny (2.4)
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z

= —— 2.
Ep ” 1 ( 5)
Or =173 (er + veg) (2.6)
E
op = m(eg + ve,) (2.7)

where we have used the same notations as in Chapter 1. In the equa-
tions (2.1)—(2.7) the unknowns are the functions z(r,t), y(r,t), ~v(r,1),
o.(r,t), og(r,t), e-(r,t) and e4(r,t) and they compose a closed set of nonlin-
ear partial differential equations. It is assumed that the membrane initially

was at rest. Consequently initial conditions take the form at t=0
z(r,0)=r, y(r,0)=0, ~(r,0)=0, &(r,0)=0, &r,0)=0

oz Jy

—(7‘, 0) = 07 _8?

— (r,0) =0 (2.8)

The membrane is assumed to be of infinite extend and subject to the
transverse ‘point’ impact at the point r = 0 with the constant velocity vg.

Hence the boundary conditions take the form
z(0,t) =0, y(0,t) = vot (2.9)

Thus the problem leads to the solution of equations (2.1) — (2.7) under the
initial and boundary conditions (2.8) and (2.9).

As was shown in [28] the solution to the problem is the similarity so-

lution, i.e. all dimensionless functions z¢ = —, yo = —, 4, &, €9 Where

E aot aot
r
m depend OIlly on z = a,—ot

2 _
(10—

11



Consequently the equations (2.1) — (2.7) in new variables become the set of

ordinary differential equations and one gets

1d(o,02co87) 0o
IR — e e et AN 2.1
o=y dz z (2.10)
2 _ 1d(orozsin o) (2.11)
Yo z dz '
zo = (1 + &,0) cOs Yo (2.12)
Yo = (1 4 &0)sinyo (2.13)
e = 2 — 1 (2.14)
z
Oro = €0 + VEgo (2.15)
Ogp = Ego + VELo (216)
o (1 —v? og(l — 12 r " .
where 0,0 = —(—E—), Ogo = Q(—El, Yo = ’)’(a—ot), etc. Initial condi-
tions (2.8) yield
. Zo
zl_lglo — = 1, yo(o0) =0, ~(c0)=0
gro(00) =0, €go(o0) =0 (2.17)
The boundary conditions (2.9) take the form
Vo
:130(0) = 0, yo(O) = '(% (218)

Thus, one has to solve the problem (2.10) — (2.18). Till the first half of the

1980’s it was assumed that the boundary conditions (2.9) and hence (2.18)

12



are correct (see, [28], [10], [8] etc.). But as shown by Nuriyev (see, [21])
the ‘point’ impact is impossible. In other words, if one considers an impact
by a cone with the vertex angle 2«, for all values of vy and other physical
parameters pg, E, v there will exist some region of contact around the point
r = 0. Furthermore the measure of the contact region does not approach zero
when a — 0. The proof is based on the asymptotic behaviour of solutions of
the equations (2.10) — (2.16) under the boundary conditions (2.18). In [21]

the following asymptotic expression for z — 0 is obtained:

1— 9\ v/2
tan 122 = const ( 22 ) (2.19)

Z

From (2.19) it follows that
lir% Yo(z) =7 (2.20)

which contradicts the real geometrical picture of the phenomenon, since

sup yo(2) < %

To resolve the contradiction Nuriyev suggested that near the impact
point there appears some region of contact with unknown boundary. In this
region of contact y(r,t) = const. = —725 ~ a and hence is known. But in
the contact region a new unknown quantity—the reaction force of the cone

(pressure) comes into play. Hence the full set equations of motion in the

region of contact takes the form (see [29])

0%z 10(o,rsina) o5 Pcosa

po ot? ~r or r éo

(2.21)

0%y 19(o,rcosa)  Psina
g _Z 2.22
POtz r or + o (222)
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or
Ay
e —(1+e¢,)cosa
Eg = E——-1
r
E
or = 73 (er +veo)
E
Op = 1_y2(59+l/5r)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

where 6y is the initial thickness of the membrane, « is the semivertex angle

of the cone, P is the pressure exerted upon the membrane by a cone. The

unknowns in (2.21) — (2.27) are z,y, 0r, 04, P, &, and &.

Since the impacting cone has a constant velocity vy, then the normal

velocity of the particles in the contact region is also constant and equal to

vo sin . Hence
zcos a + ysina = vgt sin o
Upon employing (2.28) from (2.21) — (2.22) we get

Ty
P = —éycos
r

po 0%z 10(o,r) op .
. == — —sino
sin o Ot? r Or r

Equations (2.23),(2.24) by virtue of (2.28) yield

! a—x—1+e
sina Or !

14

(2.28)

(2.29)

(2.30)

(2.31)



y(r,t) = vot — z(r,t) cot (2.32)

Thus in the contact region aside from (2.29) and (2.32) we have fol-
lowing closed set of equations with respect to the unknown functions

z(r,t),e.(r,t),e9(r, ), 0.(r,t) and og(r,t).

po &z 10(oyr) o9

sina 012 r Or 7sina (2.33)
sirllag—: “14e, (2.34)

€ = % —1 (2.35)

o, = %(57 + veg) (2.36)

0o = 7 _E,,z (eg + ve,) (2.37)

Initial and boundary conditions (2.8) and (2.9) retain their form.

The region of contact, where the equations (2.33) — (2.37) are valid
we denote as region I. By region II, we denote the region of free transverse

motion, where we have the nonlinear set of equations (2.1) — (2.7)

On the common unknown boundary of regions I and II, r = r*(¢) we
have the continuity of the displacements and smoothness of the membrane,
which is equivalent to the continuity on ¥(r, t). Hence on the unknown bound-

ary r = r*(t)

y(r*(t),t) = - -« (2.38)



2(r*(t) — 0,8) = z(r*() + 0,1) (2.39)

y(r*(¢) + 0,t) = vot — z(r*(¢t) — 0,%) cot « (2.40)

Thus in real statement of the problem of transverse impact by a cone to an
elastic membrane leads to the integration of pair of system equations (2.1) —
(2.7) and (2.33)—(2.37) under the initial and boundary conditions (2.8), (2.9)
and (2.38) — (2.40).

2.2 Characteristics and Characteristic Relations

First we investigate the nonlinear set of equations (2.1) — (2.7). In
[20] upon introducing two new functions w(r,t) and w(r,t), which denote

the normal and tangential velocities of particles of the membrane, by the

formulae
u(r,t) = gjcosv—gt sin (2.41)

w(r,t) = 2‘: sinry—g‘;} cosy (2.42)

po(%—l:-l- ZZ) JT%+%sina (2.44)

861:‘[' g: (1+e )gz (2.46)
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e _ 1
ot r
By making use of (2.6) — (2.7) equations (2.43) — (2.47) constitute a closed

(ucosy — wsinvy) (2.47)

set of five nonlinear first order partial differential equations with respect to

the unknown functions u(r,t),w(r,t),y(r,t),e.(r,t),€0(r, 1)

Equations (2.43) — (2.47) can be written as
ov ov

A—+B—=C 2.48
ot + or (248)
where
(10 —w 00
01 U 0 0
A=|00 14& 0 0 (2.49)
0 0 0 10
(00 0 01
0 0 0 —ad2 —adv )
0 0 —— 0 0
Po
B=|9 -1 —u 0 0 (2.50)
-1 0 w 0 0
0 0 0 0 0
[ O, — 0 COS7Y i
T Po [ u b
S b
C = Tpo , V=1 4 (2.51)
0
Er
0
. 59 -l
i ;(ucos*y — wsin-y) ]
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Wave speed A = j—; obtained from [AA — B| =0 are

A1,2 = tao (2.52)

a,
Aaq ==+ Z 2.53
4 po(1 +e,) (2:53)
As =0 (2.54)

Characteristic relations along the each characteristic curves are

1 Oy — 09 COS7Y

—_—— r — d = ——— t = .
du ™) do. w - dt along A= tag (2.55)
dw + [u— A1 +¢)|d % Sin~dt al PRy | ML (2.56)

J— = — on = .

[t & po(l +¢;)
1 .

deg = ;(u cosy —wsiny)dt along A=0 (2.57)

Thus equations (2.43) — (2.47) are totally hyperbolic.

It is clear that g—f < 0 and &y < 0. This follows from the fact that the

wave is stretching one, i.e. particles of the membrane move towards to the

impact point r = 0. Hence we have

[ or e+ veg | &
bop=,/———= = < < 2.58
° po(l+e) OV 1+e ~®Vi+4e °% (2.58)

Consequently sup by < ao

But sup by = b, is the velocity of transverse wavefront. Then in the

d
region b, < d—: < ag transverse displacement y(r,¢) = 0. Therefore in
this region w(r,t) = 0,v(r,t) = 0. This region we denote by region IIL

18



Equations, that describe the motion of a membrane in region III, can be
obtained from (2.1) — (2.7) upon putting y(r,t) = 0,v(r,t) = 0 thereon,
which yield

0*xz 0o, o,— o0

oE o Ty (2.59)
6, = g-f —1 (2.60)

€ = % ~1 (2.61)

On = v _EV2 (&, + veg) (2.62)
00 = T (e0 + 1) (2.63)

The common boundary of regions II and III where % = by is also unknown
in advance. The question arises and this question is what kind of wave is the
boundary of regions II—III. The matter is that for the strings this is a strong
discontinuity wave, since on that wave at least v has a jump for any value of
impact velocity vy (see,[28]). With great due to this fact until the first half
of 1980’s it was accepted that the same is true also for the membranes, i.e.,
transverse wavefront in membranes is a strong discontinuity wave. Using this
fact Grigoryan,S. and Grigoryan,D. [11] suggested some numerical algorithm
of solution to the problem, but never published the results of computations.

In 1982 Nuriyev [20] upon employing the equations (2.43) — (2.46) exactly

proved that on the transverse wavefront

opsiny =0 (2.64)
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From (2.64) it follows that if oy 7 0 then v = 0 on the transverse wavefront.
But ahead of transverse wavefront v = 0 and hence v is continuous thereon.
Then it can easily be shown that the continuity of v yields the continuity of
u, w, &,. Hence the transverse wavefront is not the strong discontinuity wave.
The last circumstance turned to be the main obstacle, that didn’t allow the
authors [11] and many others to get any numerical results. The solutions to
the problem for linear elastic, perfectly plastic and elastic—plastic membranes

are given in [21], [22] and [23].
2.3 Wave Schemes of Motion

Thus in general, study of the problem of transverse impact by a cone
to an elastic membrane leads to the solution of three set of equations: (2.1) —
(2.7), (2.33)—(2.37) and (2.59) —(2.63) in three different regions I, I and III
with a prior unknown boundaries. The initial conditions are homogeneous,
while the boundary conditions have the form (2.9),(2.38) — (2.40) plus the
conditions of continuity of «,w,u,&s (and hence ¢,,0,) on the transverse
wavefront. As the formula (2.58) shows supby = b, < ap and hence is
bounded for all values of o and vg. The velocity of the points of the cone
corresponding to y = 0 has the velocity component along z axis equal to

votan a. Upon increasing vo and/or « one easily may get

votan a > by (2.65)

In the latter case region II disappears altogether and we get a problem,
where the whole region of transverse motion turns to be in contact with an

impacting cone. In this region we have a closed set of equations (2.33) —
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(2.37). Ahead of the transverse wavefront the motion of particles of the
membrane is pure radial motion which is described by the equations (2.59) —
(2.63). But in this case the common boundary of the regions-transverse
wavefront becomes strong discontinuity wave, since at least 4 has a jump

thereon
YV =5-0a 17=0 (2.66)

The boundary conditions on the transverse wavefront have the form ([28],

[20])
ozt oz
—at-— + bOW = Vo tan « (267)
oz~ Oz~
' + bo—ér— = ygtan a (2.68)
pobZ [(1 +¢&)—(1+¢&f)sin a] =0, —ofsina (2.69)

The first two conditions (2.67) and (2.68) are the results of continuity of
displacements (equivalently, the law of conservation of mass) on the trans-
verse wavefront, while the relation (2.69) is the law of conservation of the

momentum on the transverse wavefront.

On the longitudinal wavefront where r = aot we have the condition of

continuity of displacements
z(aot,t) = aot (2.70)

The problem for linear elastic membrane has been solved analytically by
Pavlenko, A. [24], while for pure plastic and elastoplastic membranes by

Nuriyev, B. [18].
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In the case of plastic deformations it has been proven in [18] that oy >

o, while for linear elastic deformations we have the inverse relation: o, > oy.

In the following two chapters we will give the solution of two new prob-
lems for membranes subjected to transverse impact by a cone: namely we
will assume that the membrane initially possesses a hole of radius R. Chap-
ter 3 will be devoted to the solution of problem of transverse impact to
membranes with a rigid hole, while in Chapter 4 we study the dynamics of
membrane with a free hole. The latter both problems differ from the previ-
ous solved problems in that, that dynamics of membranes with holes do not
possess a similarity solution and hence one has to deal with the nonlinear
initial-boundary value problems for two sets of partial differential equations,

in different regions with unknown boundaries.
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CHAPTER 3

DYNAMICS OF A MEMBRANE WITH A FIXED
HOLE DUE TO TRANSVERSE IMPACT

In this chapter, we deal with the solution of a problem of transverse
impact to membranes with a rigid hole. The possible wave schemes of motion
of the membranes are analyzed. Since problem does not possess similarity
solution, an algorithm of numerical solution to the problem is suggested.
Convercency and stability of the numerical scheme are investigated. At the
end the numerical results obtained by using computers are discussed and the

necessary grahs are plotted.
3.1 Problem Statement

We consider an infinite and initially planar membrane with a rigid hole
which is at rest. We assume that at the moment { = 0 the membrane is
subjected to the transverse impact by cone with constant velocity vo. The
motion of the membrane is covered by two different regions. In the region
of transverse motion, labelled by I, membrane is in contact with the cone.
In region II, the motion of the particles of the membrane is pure radial (see
Fig 3.1). It is of interest to note that transverse wavefront RB is a strong
discontinuity wave, since the angle v(r,t) is discontinuous thereon. Besides

this common boundary of regions I and II is a priori unknown.
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II

Figure 3.1: Wave scheme of motion of a membrane with hole

The equations of transverse motion in region I, can be written as

O*u  do, o0,—ogsina

= 3.1

po ot? or y r (3.1)

0 .

e = 5; 1, ep=—sina—1 (3.2)

Or = T s(er +veg), o= T (eg + ve,) (3.3)
where u = .a: .
sin o

If we substitute equations (3.2) and (3.3) into (3.1) we obtain

1% 0w 10w uw ., 14w
a2 ot Or:  ror r?

(1 —sina) (3.4)

In region II, the radial motion is described by the equations

0*x _ dor1 01— 0O

P = “or r (3:5)
Er1 = 'a—az - ]-’ €1 = f -1 (36)
or T
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oy = —— (&1 + veo1), om = (g1 + ver) (3.7)

1 —v2 1 —v?
or by a single equation if one employs the relations (3.6) — (3.7) in (3.5)

2 2
10% 0% 10z z (3.8)

az o o2 ' ror 12

Initial conditions at £ = 0 are

oz r ou
:17(7‘, 0) =7 5{(7', O) =0, U(T‘, 0) T sna’ E(ra 0) =0 (39)
Boundary condition at r = R

eo(R,t) =0 (3.10)

If we introduce a new variable
YOm fay i (3.11)

=u —_—— .
’ ’ 1 +sina

then the governing equations as well as initial and boundary conditions of

motion become:

In region I
v _9% %% Znta (3.12)

In region 11

10% 8% 10z =z

—_—— = - — 3.13
ad0t2  Or?  ror r? (3.13)
Initial conditions at ¢ = 0 are
z(r,0) =r, %:—(7‘,0) =0
r 1+v ow
_ _ oW o) = 14
w(r,0) sina¢  1+sin o ot (r,0)=0 (3.14)
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Boundary condition at r = R is

eo(R,1) =0 (3.15)

The last condition implies that the boundary r = R of the membrane is fixed

rigidly, i.e. the circle r = R all time of motion has the same lenght.
3.2 Characteristics and Characteristic Relations
Upon introducing « and v such that

U=w, V=W

equation (3.12) can be written in the form

ovi i
where
1 0 0 —ag
A = , By = (3.17)
01 -1 0
1 W, 4
—w, — —sin’ « u
Co=1| T r2 , V= (3.18)
0 v

d
Characteristic speeds A = d—: obtained by |AA; — By| = 0 are

A = %o (3.19)

Characteristic relations which replace the equations (3.16) and hence (3.12)
take form
dw; = *apdw, + adt along X = +tag (3.20)
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1 w o,
where a = ag(;w, = sin @)
Equation (3.13) can also be written as a system of first order equations

by introducing two new functions by v’ = z;, v’ =z,

Ve AV,
Arsl + Bas? = O (3.21)

where A; and B, are same as A; and B, respectively, given in (3.17) and

1 T ,
Co=|7r" |, V%= (3.22)
0 v
Characteristic velocities are
A = +ag (3.23)
and characterictic relations become
dr; = taedz, + ardt along A= Fao (3.24)

1
where a1 = ag(—:cT — %)
r r?

3.3 Solution on the Radial Wavefront

Since the displacement z(r, t) is continuous on the radial wavefront RA
as well as everywhere else, along the wavefront RA where r = R + aot we

have
z(R+ aot,t) = R+ aot (3.25)
Let’s consider the characteristic relation (3.24) on r = R+ aot

d.’L‘t = (lod.’l?r + aldt (326)
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Total derivative of the equation (3.25) is

d_xl _ Oz Oz
dt 'T=Freet T gy

Equation (3.26) can be written as

4 (o) _ 4 [0z}
#\ot) D@ \or) ™

and

2
1 x ag

2
allr=R+aot = Qg (;xr - 7‘_2> |r=R+aot = R T aot

From the equation (3.27) we get

Oz _ [0z
ot po or

Let
Oz
E—~1=1/) along A =ag
then,
Oz
52 = —(1077[)

(

oz

o

)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

Substitution of the equations (3.29),(3.32) and (3.31) into (3.28) yields the

first order linear ordinary differential equation with respect to (%)

dzﬁ ap _
a 2(R+ aot)’/’ =0

General solution to the equation (3.33) is

1
\/R + (lot
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If we choose C' = CovVR , then

oz R

— = 3.3
3r 1 + OO R + ot ( 5)
Oz R

= 9O B ant (3:36)

Thus, by using the equations (3.25) and (3.35) we obtained the value of &,

and 4, depending on Cy and ¢ on the radial wavefront RA.

d
In this problem transverse wavefront RB with velocity T by is a

di

strong discontinuity wave and shock condition on RB is

po(—bo) (%2—:— b g—: sin & — vg COS a) =0, —0pSina (3.37)

If we solve (3.37) we obtain

oy — Oy SID QX

2
pobo = (1+e)—(14+¢&m)sine (85
On the transverse wavefront, z and w can be defined as
z(r«(t),t) = R+ vot tan & (3.39)
R+ vttan o 14+v
w(rye(t),t) = r (3.40)

sin &  l4sina *
By taking total derivatives of the equations (3.39) and (3.40) we get partial

time derivatives of ¢ and w, respectively, as

Oz Oz

Frie votan o — bog (3.41)
ow Vg Oow 1+v
Ot  cosa bo (E + 1 + sin oz) (342)
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On the boundary » = R from the equations (3.2) (3.10) and (3.11) we get

w(R, 1) = R 1+v

sina 14+sina

This means that w is time independent on Rt

ow
E(R’t) =0

Thus we have the following boundary conditions

On Rt where r=R

Oow
dr,
On RB where T bo

g—: = vgtan & — bo(1 + &,1)
aw Vo
Bt cosa ol TeE)

52 _ o, — OpSiD

podo = (14+e)~(1+en)sina

On RA where r = R + apt

Oz R
1

37’ + CO R + agt
Oz R
gt = w0\ R + agt

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

Now we define the values of unknown functions at r = R and ¢ = 07 that is

immediately after the impact. (It should be noted that impact loading causes

the discontinuity of some quantities like velocity, radial strain at ¢ = 0).
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Since the displacement is assumed to be continuous (the main assump-

tion of continuum mechanics), due to the (3.2) we have

tl_if(% eg(r,t) =0 (3.51)
and hence, in particular
gg(R,07) =0 (3.52)

The same is true in region II
go1(R,07) =0 (3.53)

In relations (3.46), (3.47) and (3.48) passing to the as limit r — R, t — 0%

we get
oz A Oz +
E(R’ 07) = votana — 605;(}2, o) (3.54)
oz 5
Zo(R,0*) = 1+ Co (3.55)
%—:;(R, 0+) = —0/000 (356)

The same operation in equations (3.6) and (3.55) yield
en1(R,0%) = Cy (3.57)
Upon substituting the equations (3.55) and (3.56) into (3.54) we will get
—aoCy = votan o — by(1 + Cp) (3.58)

Now approaching  — R and t — 0% in (3.47) and taking into account
(3.45) we obtain

bo(1 + &) = —2 (3.59)

cos &@
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Besides from (3.48) by making use of (3.57) we get

— Cpsina
B2 = gl 3.60
0 ao(l—l—sr)—(l-l—Co)sina (3.60)
Equations (3.58),(3.59) and (3.60) constitute three equations with respect
to Cy, bo and &, (for given vy, ao and «). By solving these three equations we

define bo(R,0%), Co and &,(R,07).

Thus the equations (3.58), (3.59), (3.60), (3.52), (3.54), (3.57) define
the values of all unknown quantities at the boundary r = R immediately
after impact. Besides according to the formulae (3.49), (3.50) the functions
Oz Oz

— and — on the whole line RA become known functions of t for all time

ot or

of motion.
3.4 Algorithm of Numerical Solution to the Problem

The above stated problem has no similarity solution. Due to this reason,
we want to obtain numerical solution to the problem by using the character-

istic method.

The equations of characteristic curves and radial wavefront RA are
known in advance but the transverse wavefront RB is unknown. Our aim is
to construct unknown curve RB and to find values of all unknown functions

at nodal points in regions I and II as well as on the transverse wavefront RB.

Initially, we construct characteristic curves with the slopes ag and —aq
and radial wavefront with a slope ag. Since these are straight lines, co-
ordinates of the nodal points, r;; and ¢;;, can be easily calculated as the

intersection of two lines.
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We need some values at the point R, namely b, vg, Co and €,. These

are evaluated by using the equations (3.58), (3.59) and (3.60).

On the radial wavefront RA, the nodal values of z; and z, are obtained

by using the equations (3.49) and (3.50).

At the first step, we draw the characteristic line with a slope —aq.
Intersection of this line with ¢—axis and with radial wavefront are labelled
by C; and A;, respectively. Its intersection with r—axis denoted by R + b,
where h is a chosen step size along the r—axis which is constant. From
C:, we draw the characteristic line with the slope ag which is parallel to
the radial wavefront. Now we can construct RB with initial slope bo(R,07).
Intersection of RB with C;A; is labelled by B;. Coordinates of By, i.e.,rg,

and tp, can be calculated by Euler’s method (see Fig.3.2).

From the characteristic relation (3.24), we write the equation along

B A
zi(B1) — z:(A1) = —ao(2(B1) — z.(A1)) + a1(A1)(t, —ta,)  (3.61)

where

ax(Ar) = a2 (%(Al) ~ x(A1)>

2
rAl rAl

2(A1) = zi(A1)ta, + @ (A1)(ra, — R) + 2(R)
Second equation at point B; can be written by using (3.41)

z4(B1) + bo(R)z,.(B1) = vo tan « (3.62)
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Figure 3.2: Construction of scheme at first two steps

Thus at the first step we get two equations in two unknowns, z¢(B;) and

z.(By). The determinant of the coefficients is not zero. Indeed

1 ap
A, =
1 b(R)
Aa; = bo(R) —ag < 0, (bo < ao) (363)

So, the unknowns z;(B;) and z,.(B;) are uniquely determined from (3.61)
and (3.62).

The equation along BiC; can be written by using the characteristic

relation (3.20) as

wy(B1) — wi(C1) = —ao(w,(B1) — w,(C1)) + a(Cy)(tp1 —tc,)  (3.64)
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where

By using (3.42) we write the second equation along RB;

wi(Br) + bo(R)w, (By) = —2— — 1Y 4(R) (3.65)

cosa 1-+sina

Now we have two equations (3.64) — (3.65) in three unknowns, namely in
wy(B1), we(B1) and w,(Cy). Since system is totally hyperbolic we may con-
struct an extra equation to obtain the unique solution. We draw another
characteristic line with the slope ag which passes through B;. Its intersec-
tion with t—axis is labelled by Ci;. Then the characteristic relation along

B, Cy takes the form
wi(B1) — wi(Ci1) = ao(w,(B1) — w,(Cu1)) + a(Cu1)(tp, — toy)  (3.66)

where

’wt(Cu) =0

to, —t t
w,(C11) = wT(R)C—tC& + w,(C1) tcgl
1 1

Now we have three equations and three unknowns. The principal de-

terminant is not zero.

1 b(R) 0
Aw =11 -—ag Allt—c;b'u‘
1 agp —A12
[2
Aw = ((lo -+ bo(R)) A12 — (ao — bo(R)) A11 c};ll (367)
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where

a

Ay = ag — > (tB1 - tCl)
LT
ao

A1z = ao+ —(tB, — to,)
11

Since 0 < tg, —tc, < 1, =1 < tp, —tc, <0, r¢, = R, r¢;, = R then Ay and
Aj are bounded by 1 (0 < Ay1 < ag, 0 < Ajz < ag). Also ap + bg(R) and
ao — bo(R) are bounded (ag < ag + bo(R) < 2a0, 0 < ag — bo(R) < ag). All
these imply that A, > 0. So, we determine the unknowns w(Bi), w,(B)

and w,(C7) uniquely.

The values of z and w at the point B; can be easily evaluated by using

values of their partial derivatives at that point, namely we put

z(B1) = z(B1)ts, + z.(B1)(re, — R) + z(R) (3.68)

w(By) = w(B1)tg, + w,(B1)(re, — R) + w(R) (3.69)

By using these values, the unknown functions ¢., €g, o, 09, €r1, €61, Or1, 1
as well as by are easily evaluated from equations (3.2), (8.3), (3.6), (3.7)
and (3.48) at the point B;.

At the second step we draw another characteristic line with the slope
—agp which is parallel to C;A; and intersects r—axis at the point B+ 2h. Its
t—intersection is labelled by C; and its intersection with radial wavefront is
labelled by A,. From the point Cj , we draw a characteristic line with slope
ap. The unknown curve RB is constructed with the slope bo(B;). Intersection

of RB with C2A, is labelled by B, (see Fig. 3.2). There are three possibilities

for the position of Bj:
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The first possibility of the location of Bj is ro1 < rp, < T4,;

The equation along By Ay can be written from equation (3.24)
21(By) — x:(A2) = —ao(z,(B2) — z,(A2)) + a1(A2) (B, —ta,)  (3.70)
and the second equation at By can be written by using (3.30) as
z:(B3) + bo(B1)z,(B2) = vo tan « (3.71)

Since we have two equations in two unknowns , z;(Bs), and z,(Bs), we easily

get the unknown values of z;(B2) and z.(Bs).

1 ag
Ay =
1 bo(B1)
Am = bo(Bl) —ag < 0 (372)

By using equations (3.20) and (3.42), we write the equations along
B2P21 y P2101, P2102 and at Bg as

wi(By) — wi(2,1) = —ao(wr(B2) — w,(2,1)) + a(2,1)(tB, — t21) (3.73)

where

(2, 2,1) .
a(2,1) = a} (w @.1) _ w > D sin? a)
r21 21

w(2,1) = wy(2, 1)(ta1 — tey) + wr(2, 1) (rs1 — rey) + w(Ch)

wi(2,1) — we(C1) = ag(wr(2,1) — w,(C1)) + a(C1)(tar — tc,)  (3.74)

wi(2,1) — wi(Cy) = —ao(wr(2,1) — w,(Ca)) + a(Ca)(tar — tey)  (3.75)
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where

1+
'wt(Bg) + bo(Bl)'wr(Bg) = C(;l)S(]Oz — 1 n SiZabO(Bl) (376)

wi(Bs) — wy(Caz) = ao(w,(Bz) — w,(Ca2)) + a(Ca2)(tB, — top,)  (3.77)

where

(C Ca2) .
a(Co) = a (u) (Cn) — w(2 2) sin? a)
rOZ? TOQQ
wr(Ca) = w,(By)er + w,(C1)ea
wi(Caz) = wi(B)ey + we(Ch)ea
’LU(sz) = ’LU(R)
¢ = (7'022 P rol) (t022 - tC’l) + lcs
rp, —Tcy tBl — tcl 2
<7'022 - rBl) (tczz — tBl) + lcs
e, — B, tcl =i tBl 2
cs = (rozz — rCl) (tc'zz — tB1) + (7'022 — rBl) (tc'zz — tol)
rB, —To; tc, — tm, re, — B, i, — to,

We have five equations in five unknowns namely, wi(Bs), w,(Bs), w:(2,1),

C2

w,(2,1), w,(C2). The principal determinant is not zero. So the unknown

values are uniquely determined. Indeed

[—

bo(By) O 0 0
1 —ag 0 0 0
Ay=11 ao —Ay —Ag 0
0 0 1 —dy 0
0 0 1 ag —As
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Ay, = (ao + bo(B1))(A21 Azs + Az Ass) (3.78)

where

(12

A21 = dag — rTo(tzl —_ tc’l)(th - t21) Si]l2 o
21
2

a a .
A22 = dg + -—O(tB2 — t21) — 70(7’21 — T'Ol)(th — t21) SlIl2 (8%
a1 L3

a
Ags = ag + —E*(tm —to,)
re,

Since 0 <ty —tg, < 1, =1 < tp,—tn <0,0<sin®a <1,0<ry—rg <1,
—1 < ty1 —tg, < 0 then Ay, A2y and Agz are bounded (ap < A2 < 2aq,
0< A22 < ap, 0 < A23 < ao). These mean that A21A23 + A22A23 > 0. Also

ag < ag + bo(B1) < 2aq. So the principle determinant A,, > 0.
The second possible location of By is rp, = rox;
The first equation along By A, gives
z4(Ba) — z:(Az) = —ao(zr(B2) — ©,(A2)) + a1(A2)(tB, — t4,) (3.79)
The second equation is written at point B, as
z4(Bs) + bo(B1)z+(B;) = vptan « (3.80)

The equations on the left of the transverse wavefront (along B,C; , ByCh

and at By) have the following difference form

wy(Bz) — we(C1) = ao(w,(Bs) — w,(C1)) + a(C1)(tp, —tc,)  (3.81)

wi(Bz) — wi(Ca) = —ao(w,(Bs) — w,(Cy)) + a(Ca)(ts, —tc,)  (3.82)

wi( Ba) + bo( B )w, (Ba) = —2— — —+¥_4(B)) (3.83)

cosa 1+sina
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The equations (3.79)—(3.83) constitute a closed set of five algebraic equations
with respect to five unknowns z;(B3), z,(Bs), wi(Bs), w,(B2) and w,(Ca).

The principle determinants are not zero.

1 ag
A, =
1 bo(B)
Aw = bo(Bl) —ap < 0 (384)
1 bo(Bl) 0

Aw =11 —dag 0
1 ag —= A21

Aw = (ao 4+ bo(Bl))Azl (385)

where

a
Ay = ao+ “9‘@32 —to,)
re,

Since —1 < tg, —tg, < 0 and 0 < Az < ap. Then the determinant of

coefficients A,, > 0.

The third possibility for the location of B, is r¢, < rp, < r21; The
equations along By Py , Po1B1a , Pa1As , BoCy , BaChy and at point B, are

written as
LEt(Bz) — mt(2, 1) = ~ao(.’l,’,~(Bz) — .’117(2, 1)) + (7,1(2, 1)(th — t21) (386)

where

(1) = @ (W ) _ s, 1))

2
21 21

2(2,1) = z4(2,1)(ta1 — tBy,) + 2+(2,1)(ra1 — 7B,;) + 2(Bir2)
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ZI}(Blz) = x(Bl)al + CC(Bz)az
x(B2) = xt(B2)(th - tBl) + .'177.(7’32 - rBl) + "E(Bl)
24(2,1) — 2(B12) = ao(2+(2,1) — @,(B12)) + 01(B12)(ta1 — 1B,,)  (3.87)

where

z4(B12) = z4(B1)ay + z4(Ba)as

z,(B12) = z.(B1)a1 + z,(Bz2)as
_ <TB12 — rBz) (tBlz — th) 1 (TB12 — rBz) (tBlz - tB1)
a, = + =
’l"B1 —_ 7’32 tBl —_ t32 2 T’Bl - 7’32 th — tBl
_ | TBix = 7B tBlZ - tBl L TBi; — B tBlZ - th
a9 = + =
B, — B, i, —imB, 2 rB, —TB; ip, — B,

xt(2, 1) - .’Bt(Ag) = —ao($¢(2, 1) i .’177»(14.2)) + al(Az)(t21 — tAz) (388)

z4(B2) + bo(B1)z,(B2) = vo tan « (3.89)

There are four equations and four unknowns, namely z,(B3), z.(Bz), z+(2, 1),
z.(2,1). Since determinant of the coefficient matrix is not zero, these un-

known values are obtained uniquely.

1 b(By) O 0
By By —Bys —By
Bys By 1 —@ap

0 0 1 ao

Ay = 2(Bgg — bo(B1)Ba1) + (Bas — Baa)(Bas — bo(B1)Bss) (3.90)

where
2

a
By =1+ rTo(th —t8,)(tB, — ta1)az
21
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a?

By = ap + TTO(TBQ — 1B, )(tB, — ta1)az
21
aj
Bys =1— T(t21 - tBlz)(th - t21)

L1

ap a’

Bos = ag + —(tB, — t21) — —5-(r21 — By, )(tB, — ta1)
21 21
2

a,

"Bz
ag a%
Bys = a3a0 — a3—(ta1 — tB,,) + a2—5—(rB, — B, )(t21 — iB,,)
B12 rBlz
) B, — T i, —1 tp, —1
Since 0 < 22 Bt 1 g BT B g g Bu B oo g <
rB2 - rB] th - tBl tBl — By

rg, —rp, < 1,0 <tp, —tp < 1,0 <1ip, —la1 < 1,0 < iy —itp, <1,
0<T’21—7’312 < 1, r91 > R, TBiy = R then Bzg—bole >0, Bos — Byy < 0

and B26 - bo(Bl)B25 < 0. So Aw > 0.

Since z4(2,1) and z,(2,1) are evaluated and all nodal values of z; and

z, are calculated on j = 1 recursively, as

zi(k, 1) — zi(k — 1,1) = ao (2. (k,1) — 2, (k — 1,1)) +

al(k —_ 1, 1)(t1c’1 — tk—-],l) (391)

zi(k,1) — z,(k,0) = —ao (z-(k, 1) — 2,(k,0)) +
al(k, 0)(tk,1 — tk’o) (392)

for k = 3,4, ...,n. Besides

x(ka 1) = xt(k, 1)(tk,l - tk—l,l) + éUr(T’kJ - 7‘k-1,1) + Ji(k -1, 1)
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Since determinant of the coefficients is not zero, the unknowns z(k,1) and

z.(k,1) can be determined uniquely.

1 —dyg

Am: = 2a9 >0

1 ag
The difference equations along B2Cs, ByCyy and at By

wi(Bz) — wi(Cy) = —ao(wr(Bs) — wr(Cy)) + a(Co) (s, —tc,)  (3.93)

wy(Bz) — wi(Caz) = ao(wr(Bz) — w,(Ca2)) + a(Ca2)(ts, —taz)  (3.94)

where

a(Cy2) = a? <w,(022) C w(zc’zz) sin? oz)
rC22 r022
wt(ng) = O, w(ng) = w(R)

V) 14+v
wi(Bs) + bo(By)w,(By) = cos"a — 1—|—sinabo(Bl) (3.95)

The equations (3.93) — (3.95) constitute a closed set of three algebraic equa-
tions with respect to three unknowns, w;(Bz), w.(Bs2) and w,(C3). The

principle determinant is not zero.

1 bo(B) 0
A‘w =1 —ag A21 (t_(r}?z — 1)
1 Qo — Az
i
Aw = (CLO + bg(Bl))A22 — (ao —_ bo(Bl))Azl ( (;;22 — 1) (396)
where
Ay =ap— E'O_(th - tC’zz)
rc,

43



a
Az = ao + —O(th —1c,)
22
Since 0 < tg, —tc,, < 1, =1 < tg, —tc, < 0, rg, > R, r¢y, = R, =1 <
i
—%—1 <0, thenO<A21 < ag andO<A22<a0. SOAw>O. Hence we

obtain the unique solution.

On continuing this algorithm we can get the numerical solution to the
problem at any point of regions I and II as well as on the strong discontinuity
wave RB. Indeed suppose that the solution to the problem in regions enclosed

into the triangle RC,A,, including the line C, A, is known (see, Fig.3.3).

From B, we draw an element B, B, of the wave RB with the slope
bo( B,,) so that the point B,41 be on the characteristics Ay41Chy1, which have
a slope —ag and the distance A, A1 is chosen to be equal to the required
step of numerical calculation along RA. The solution to the problem in
region II is found easily at any point of the characteristic net by knowing
the values z, z; and z, on the neighboring points just behind and below that

point. First we write the characteristic conditions at A1,

Zi(Ant1,1) — 24(An1) = ao(@r(Ant11) — 2 (Ana)) +

a’l(An»l)(tAn+l,l - tAn,l) (397)

Te(Ant1,1) — Te(Ans1) = —ao(2r(Ant1,1) — 2r(Ant1)) +

a1 (An-i-l ) (tAn+1,1 - tAn+1 ) (398)

Besides we have

w(An+1,1) = :I}(An,l) + wt(An+1v1)(tAn+1,1 - tAn,l) +

Ty (An+1,1)(7'/1n+1,1 - rAn,l) (3-99)
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C1n+1
n+1
o
B,
n+1,2
An2 nt+1,1
C12 A An+1
B, '
An
Ci
B
Az
Ay r

Figure 3.3: Construction of scheme in general

In (3.97) — (3.99) the values of all functions at A,4; is known from the
boundary conditions (3.49) — (3.50). Hence, from (3.97) — (3.99) we easily
define z¢(Ant1,1), Zr(Ant1,1) and z(Any1,1) as solution of three consistent

linear algebraic equations.

Then upon writing characteristic relations along An’2An+1’2 and
Apy1,1A5412 as well as finite differential form of the total differential of z(r,t)
at A,y12 analogous to (3.99) we again get the set of three linear algebraic
equations with respect to the unknowns z;(Ant12), r(Ans1,2) and z(Any1,2)

and solving these equations we get their values. By this way at each interior
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point of the region I we get a system of three equations with three unknowns

and hence get the solution to the problem in region II.

On the boundary point B, 1 there are two different sets of equations
depending on the position of B,B, ;1. In the first case we have only one
relation from the region II, namely the characteristic relation (3.24) along

Apt1 g Brt1, since the other characteristics with the slope ag lies in region L.
The characteristic relation (3.24) along the line A, 41,5Bnt+1 gives
2(But1) — e(Ansr,e) = —ao0 (€(Bat1) — 2r(Ant1,6)) +

@1 (Ant1,6)(EBrys — tAnsrs) (3.100)

At B, +1 we have the boundary condition (3.46)
z4(Br+1) = votan a — bo(B,,)z,(Bpt1) (3.101)

Besides

2(Bust) = 2(Ba) + 6(Buss) tags — t52) + r(Bas)(rpes — 15,)(3.102)

Since the values of all fuctions at A,+1,% and B, are known, from (3.100) —
(3.102) we easily determine the values z¢(Bpt1), z,(Bns1) and z(Bpy1). Ac-
tually the value of z(By41) is determined. The same is true with respect to

the interior points where we have equations analogous to (3.97) — (3.99).

In the second case, we have two relations from the region II, namely
condition along Ant1,5Bn+1 and Ant1x Ant1e-1- The characteristic relation
(324) a,long the line An+1’an+1 and An+1,kAn+1,k—1 giVes

2t(Bnt1) — z(Any1,k) = —ao (zr(Bnt1) — 2r(Antrp)) +

(At ) (1B — thnyrs)  (3:103)
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Zi(Ant+1,k) — Te(Angi,k—1) = o (zr(Ant1,k) — Tr(Ant1,6-1)) +

a1 (An+1,k—1)(t4n+1,k - tAn+1,k—1) (3‘104)
At B, we have the boundary condition (3.46)
zi(But1) = votan a — bo(By)r(Bn1) (3.105)

We have three equations in four unknowns. To obtain unique solution we
need another one. This point is chosen as the intersection of B,B,1 with
kth. characteristic having the slope ag, labelled by By, »4+1. Then the charac-

teristic relation (3.24) along A,41,kBnnt1 is written as

Zi(Ant1,k) — e(Bnpt1) = o (2 (Ant1,k) — Z(Brnt1)) +

a1 (Bn,n+1)(tAn+1’k - tBn‘n+1) (3.106)
where
xt(Bn,n+1) = "Et(Bn)all + $t(Bn+1)042
x"'(B"‘v""H) = m"‘(B'ﬂ)a] + wr(Bn+1)a2
a; = (an,n+1 _ an) (tBn,n-l-l - tBn)..l.l (an,n-l-l - an+1) (tBn,n-l-l - tBn)
an"‘l - TB”" tBn+1 - tBn 2 an - an-l-l tBn+1 - tBn
ag = (TB“:"‘H — an+1) (tBn,n+1 - tBn+1)+l (an,'n-l-l — an-l-l) (tBn,n+1 - tBn)
"Bn = "Bty tBn — tBn'H 2 TBn =~ TBpy: tBn+1 — 1B,

Now we have four equations with four unknowns. The values of all functions

at B, and A1 -1 are known, so we easily determine the values of z¢(Bpn1),

Zr(Bnt1), Te(Ans1,k) and zr(Anta,k)-
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The principle determinant of the systems in interior points is

1
Al‘i = = 2&0 7é 0
1 ag

while the principle determinant of (3.92) — (3.94) is

1 ao
A, = = bo(Bn) —ap <0
1 bo(By)

On the other hand the principle determinant of (3.103) — (3.106) is
1 b(B,) 0 0
By By —Bi —Bx
Bys  Bas 1 —ag
0 0 1 ao

Ay = 2 (B — bo(B,)B21) + (Baz — Bas) (Bas — bo(By,) Bas)

where
2
g
B21 =1 + 2 a2(tBn+1 - tBn)(tBn+1 - tn+11n)
rn+1,n
2
)
By = ao + < (7'Bn+1 - an)(tBn+1 - tn+1,n)a2
7"n+1,n
2
Gg
Bz =1 — 2 az (tn+1,n - tBn,n-l-l )(tBn+l - tn+1’n)
rn+1,n
ag a%
Baa = o+ —2—(t541 — batn) = 2 (Pt = PBys) (s — bt
rn+1,n rn+1,n ’
ag
B25 = —ay + a27'2_(tBn+1 - tBn)(t'""i'ly'”' - tBn»n'*'l)
Bn,n+1
ag a(2)
Bys = —az—ay (tn+l,n_tBn n+1 )+a’2—(TBn 1 _TBn)(tn‘l’l’"_tBn n 1)
r st 2 + s
Bn,n+1 Bn,n+1

Since 0 < a3 < 1,0 < tg,,;, —tagin < 1,0 < tng1n — 1B, < 1,0 <

Tn+1,n - an,n+l < 17rn+1’n > R7an,n+1 > R then B22 - bO(BTL)B21 > 07
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Bz — Boy < 0 and Bag — bo(B,,)Bas < 0. Hence all these linear algebraic

equations possess unique solutions.

Passing to the region I we note that at each interior point of the line
Cry1Bny1 we have two characteristic relations which yield two linear alge-

braic equations with respect to two new unknowns w;(Cpt1,) and w,(Cri1,:)

wt(Cn+1,z'+1) - wt(Cn+1,i) = —Qp (wr(Cn+l,i+1) - wr(0n+1,z‘)) +

a(Cn+1»i)(tCn+1,i+1 - tCn+1,i) (3'107)

Wi(Crg1,it1) — wi(Cryi) = ao (W (Cryritr) — We(Cry1,3)) +

a(On,i)(tC’nH,iH — tC’n,,;) (3.108)
Besides

W(Cri1,i41) = W(Crit1) + Wi Crt1i41) (ECnprins — LOnina) T

wT(On+1»’i+1)(rCn+1,i+1 - 7'C'n,z'+1) (3109)

At the boundary point B,.; we have three conditions: The same relations
(3.107) — (8.109) for Cpt1,m (m is the number of interior points of the net in

region I) plus the boundary condition (3.47)

Vo

1+v )

— A1
1+ sina (3 0)

wi(Buss) = = = bo(By) (wr(Bua) +

cos &
Besides at the point C,4 on the Rt line we have the boundary condition
(3.45)

ow

(1) =0 (3.111)
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where w(Cpry1) can be computed as

R 1+v

— 112
sina 14+sino (3 )

w(Cnt1) =

Thus, in region I at the (n 4 1)st. step we get a system of 2m + 3 linear
algebraic equations (3.107), (3.108), and (3.110) with respect to 2m +3 num-
ber of unknowns w;(Cri1), Wr(Cry1), We(Cri14)y Wr(Crgis) (E=1,2,...,m),

wt(Bn+1 ) and Wy (Bn+1 ) .

The principle determinant as follows from the mentioned equations has

a form (written in the order (3.110), (3.107) and (3.108)).

1 bo(B.) 0 0 00 0 0 0

1 —ao 0 0 00 0 0 0

1 ao  —Anp1a —Angrz 0 0 0 0 0
a0 1 —ae 0 0 0 0 0

0 0 0 0 00 ... 1 —a 0

0 0 0 0 00 ... 1 a —Appioen

Aw = (ag -+ bo(Bn)) (An+1’1An+1,3An+1’5...
Aptign—1Ant1,2n+1 + Ant114n+1,3A041,5---
Anti2n—14nt120 A1 2041 + oo + Ang11Ang1,4An 11,60
AntionAnt12n+1 + oo + Ang1 2404134041500
Ani12n-1Antiont1 + oo + Ang12An1,4 40416

Ant1,2nAnt1,2n41) (3.113)
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where

aZ

0 . 2
Apy11 = ao — -z (tnt1,1 — tn1)(tBoyy — tng1) sin” @
n1,1
o af 2
Anti2 = ag+ roi (tBppr —tnt11) — 2 (Pag1,1 =71 ) (EBpy; —tn1,1) sin” o
T 3 "L+1,1

for1=2,3,...,n

2
g <2
Ant12i-1 = to — =5 (tng1,0 — tnt)(Engr,11 — Tnga) sin” o

rn+1,l
Ani12 = ao+ (tnt1,-1—tnt1,0) — 5 (Pra1,0=Tnt) (Ergt o1 —Eng1,) sin” &
Tnt1,! Tpt1,l
Qo
Aptiontl = Go+ (tntin — t0nps)
Crnt1
Since 0 < tn+1,1 = tn,l < 1, -1 < tBn+1 = tn+1’1 < 0, R < Tn+1,5 (] =

,2,.m+1),0 < rpg1j—7mn; <1 (G =1,2,,n+1), 0 < sin’a <1,
0 <tppri—tng <1 (1=2,3,..,n), =1 < tpt1, 101 —tnp1, < 0 (1 = 2,3,...,n),
0 < rpg1— Ty < 1 (I =23,...,n), and =1 < tpy10 — to,,, < 0 then
ag < Apt11 < 2a9, 0 < Apy12 < ag, for { = 2,3,...,n ag < Ant1,20-1 < 2a0,
0 < Any121 < ao and 0 < Ayq12041 < Go. So the principle determinant

Ay > 0.
Hence the mentioned system possesses a unique solution.

Thus, according to the method of mathematical induction the algorithm

gives the unique solution to the problem in the both regions I and II.

No restrictive conditions to ensure stability and convergence are to be
expected for this method since it is based on a network which approximates

that of characteristic curves.
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3.5 Convergence of the Numerical Algorithm

Let us study the convergence of the suggested algorithm. In the con-
tinuum mechanics the displacement vector and hence  and w are continu-
ous everywhere. But their partial derivatives may have jump discontinuities
across the characteristics of the equations since it is well known that disconti-
nuities in any quantity described by the hyperbolic type equations propagate
along the characteristic lines. These discontinuity lines degenerate into the
wavefronts-shocks. In our problem the both wavefronts are strong disconti-

. . 0 0
nuity waves. On the radial wavefront where ¢ = R + agt, %2 and ZZ have

or gt
. . . . w Ow
jump discontinuity, while across the transverse wavefront ¢,, o,, oy, B
r
as well as v undergo jump discontinuities. Hence in the suggested algorithm
the wavefronts are considered as boundaries possessing two shores. Hence by

the closed regions we mean the regions plus the corresponding shore of the

wavefronts.

On RA, |z.| < 14 Gy, |z:] < aoCo, Yt from the equations (3.49) and
(3.50). On Rt-line w is constant and w; = 0 (see, equations (3.43), (3.45)).
Immediately after impact all unknown functions are constants (see, (3.57),

(3.58) and (3.60)) and hence absolutely bounded.

Let D be a closed domain defined as

D: [R, rmax] X [07 tmax]

For any finite ryax, tmax D consists of two compacts (in the above sense)
and hence is the compact. In the problem solution D is divided into two

subregions, region I and region II with transverse wavefront. The unknown
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functions w;, w,, z; and z, and their first derivatives are continuous in region
I and in region II respectively. But they have jump discontinuities across the
transverse wavefront. So they are uniformly bounded in each region. Besides
the discontinuities are of first order. In other words, all functions occuring

in the problem are uniformly bounded.

The determinant of the coefficients of the equations (3.20) and (3.24)
is
1 —ag

A= =2ag >ap >0
1 ag

Since unknown functions wy, w,, z;, =, and their first derivatives are
uniformly bounded in the open neighborhood of ( R, 0) so the difference forms
are uniformly bounded in this neighborhood. These bounds don’t depend on
h but depend only on the measure of the domain. Then the differences of
unknown functions form uniformly bounded sequences. By using the fact
that every uniformly bounded sequences have some uniformly convergent

subsequence in a compact domain, and introducing the subsequences

wth) wrh) xths x?‘h

WO
where
w(r,t+ k) — w(r,t) w(r + h,t) — w(r,t)
T h > h
z(r,t + h) — z(r,t) z(r + h,t) — z(r,t)
o = B I B



ol w(r,t + h) — 2w(r,t) + w(r,t — h)

tp, h
m _ w(r+ht) = 2w(r, h) + w(r — h,t)
wh! = 3
np _ z(r,t+h) —2z(r,t) + z(r,t = h)
:Cth = h
n_ 2(r+h,t) —2z(r,t) + z(r — h,t)
T = ;

we see that because of the continuity of the unknown functions these subse-

quences uniformly converge to definite values which we denote by

wth_‘)Fla w'rh_)F27 xth_)FZ%a x'/'h_)Fll

Because of the uniquness of the limit point we have
By = limwy,, F=limwn,
Similarly the subsequences of the second differrence quotients converge
uniformly to the second partial derivatives.

We also have

Zhwth — /wtdt, Zhwrh — /wrdr
A h

hxy, — [ z.dt, hz,, — [ z.dr
R

Similarly multiplication of the sum of second differences with A converges

uniformly to the integral of the second derivatives.

Now, we will obtain some bounds for the diagonals B,Ci, B;C ,...,

BnCn, A1B1, Asz, seey AnC’n and AlAn-l-la A2,1An+1,1, ceey An,kAn-!-l,k
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Along B;C; we have the following relations

o n 1+v
cosax 1 +cosa

wi(Br) — wy(Ch) + ao(w,(B1) — w.(Ch))

—a(C1)(ts, — to,) = 0 (3.115)

wt(Bl) - wt(Oll) - aO(w'r(Bl) - w’r(Cll))

—a(Cu)(ts, —toy,) (3.116)

wi(Bi), w,(B1) and bo(R) are bounded. So the relation (3.114) is bounded.
wi(By) — wi(Ch) and wr(B1) = w,(C1) are bounded by Mean Value The-

i, — to, i, — 1o,
B - 7 - Wy
orem. Similarly, wi(By) ~ wi(Cn1) and |2 (B1) — w(Cr) are bounded.
tB, — oy, tB, —toy,
la(Cy)| = |al ('wr(C’l) - w(201) sin? a)
rCl rcl

< a3 (lw(C)| + [w(Ch)))

< aj(Ky + K;) < alK

la(C11)| =

ag (wr(on) _ w(2011) sin? a)

TC11 TCn

< ag (Jwr(Cir)| + Jw(Cu)|)
S a(z,(Ll + Lz) S agL
Thus (3.115) and (3.116) are bounded. Let M is the maximum of these
bounds. So all linear combinations along B;C; is bounded by M;.
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Along A;A,;1, all unknowns are bounded (Jz:| < @oCo and |z.| <

14 Cy). Let Ny is the maximum of these bounds.

Along Ay By the relations are

ZI?t(Bl) + bo(R):lL,-(Bﬂ — Vg tana =10 (3117)

z4(B1) — z4( A1) + ao(z,(B1) — z-(A1))

—al(Al)(tBl — tAl) =0 (3118)

These two are bounded. (The quantities z;(B1), z.(B1) and bo(R) are
z(B1) — z(A1) | | 2r(Br) — & (Ad)

bounded). By mean value theorem

tBl - tAl tBl - tAl
are bounded.
x,(Al) z( A1)
N

< a (|2 (A1) + |z(A41)])

<alK'

Along the characteristic BoC; the relations are

Vo 1+l/
cosae 1+sina

w,;(Bg) + 60(31)wr(B2) - bg(Bl) =0 (3119)

wi(Bz) — wi(2, 1) + ao(w,(Bs) — wn(2, 1))

—a(2, 1)(t32 - t21) = 0 (3120)

wi(2,1) — wi(Cy) — ao(wr(2,1) — w.(C1))

—a(Cl)(tzl - tc’l) =0 (3121)
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wt(2, 1) — ’wt(Cz) + ao(w,,.(Z, 1) — 'LU,,-(Og))

—0(02)(t21 — tcz) =0 (3122)

wt(Bz) - 'wt(C22) - aO(wr(BZ) - wr(sz))

—a(Ca) (B, — toy) = 0 (3.123)

The relation (3.119) is bounded (w¢(Bz), w,(Bs), bo(B1) are bounded).
Also (3.123) is bounded by mean value theorem and |a(C2)| is bounded.

Addition of (3.120), (3.121) and (3.122) will yield

wi(B2) — wi(2,1)  wy(2,1) — wi(Co) wr(Bz2) — wr(2,1)
h X h o R

1) 0l _ 45,1 - o(s) =

wt(2) 1) - wt(Ol) wr(23 1) - wT(Cl)

- - + ag 7 +a(Cy) (3.124)

where h = tg, — ta1 = tg, — t21 = ta1 — to,

we(2,1) — wi(Ch) < pra M, wr(2,1) — w.(Cy) < pzszl
h h ao
’w,,-(Ol) ’LU(Cl) .
la(Ch)| = |ag ( ror ", sin® o
b
< ag (Jw(C)| + |w(C)]) < a%;Ml = bM; (3.125)
0
Then the bound for B,C; can be written as
M, = cM; (3.126)
D292
where ¢ = (p1q1 + o + b) does not depend on A.
0
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So for the characteristic Byt1Chnt1

M'n,+1 =cM,

Mn+1 = Can (3127)

For each mesh size, the bound at (n + 1)st step depends only on the bound
at the first step.

The relations for Az A,t1,1 are

$t(An+1,1) - $t(An+1) - ao($r(An+1,1) - $r(An,1))

_al(An,l)(tAn.{.l’l - tn,]) =0 (3.128)

il?t(An+1,1) - $t(An+1) =3 ao(xr(AnH,l) - $r(An+1))
_al(An+1)(tAn+1,1 - tAn+1) =0 (3129)
Addition these two relations will give

T An — An r An L An
t( +1’1)h t( ,1) _aox ( +1,1)h zr(An1) —a1(An1) =
xt(Anﬂ,l)h— Ti(Ant1) aomr(AnH,l)h— Zr(Ans1) a1(Ans1) (3.130)

By the mean value theorem

zi(Ant1,1) — Ti(Angr) 2 (Ans11) — T (Anta)

A < Slthh A < Sztle
z. (A, z(A,
o) = o (20m22) _ 2]}
TAnt1 rAn.H
< a(z) (|$T(An+1)| + l$(An+1)|)
S a(z)_b_lle = b1N1
Qg
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Then the bound for Ay A,q1,1 is
N, = dN; (3.131)

where d does not depend on the step size h.

The relations along A, B, are

z(By) + bo(B1)x,(Bz) —votana =0 (3.132)

z:(Bs) — z:(As) + ao(z,(Bz) — z,(Az2))

—a(Ay)(ts, — ta,) =0 (3.133)

The relations (3.132) and (3.133) are bounded. (z:(B,), z.(B2) and by(B1)

are bounded in the given domain).

From the equation (3.131) the bound at the (k+1)st step can be written

as

Niy1 = dNg

Nipr = d* Ny (3.134)

By using the equations (3.127) and (3.134) we can conclude that the
linear combinations in whole domain are bounded. If the differences of un-
known functions are initially bounded then all linear combinations of the

difference quotients are bounded at each step.
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3.6 Discussion of the Numerical Results

The results of numerical sclutions for different values of parameters
are brought in Figures 3.4-3.15. The algorithm is comprised by three sub-
algorithms: Subalgorithms for regions I and II and a subalgorithm for the
unknown boundary of regions I-II. At each step the algorithm for the un-
known boundary comprise three nonlinear relations and are studied easily.
Upon finding the boundary values of z; and z, from the mentioned set of
equations on the unknown boundary, the main body of the algorithm in re-
gion II at each step reduces to the set of three linear relations with respect
to three unknowns of region II. And this algorithm a,ilows one to continue
the computations for any value of r but along the characteristics (—i; = ayg,

taking its origin from the boundary point, where z; and z, are known from

the previous subalgorithm.

The main computational difficulty arises in computing the nodal values
of the unknown functions in region I. The matter is that the number of solving
equations in region I is incereasing from step to step. But these relations are
linear and as shown in the process of setting the algorithm they are closed
set of linear equations with nonzero principal determinant and hence possess

a unique solution.

The surface and contour plots of &., &g, 0., 0y are brought in ig-
ures 3.4-3.6, in Figures 3.7-3.9, in Figures 3.10-3.12, and in Figures 3.13-3.15,
respectively for v = 0.33, for o = 30° and for by = 0.8,0.75,0.72.

It is proven rigoriously that the Poisson’s ratio satisfies the condition:
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0 < v < 0.5. But for most real materials 0.3 < v < 0.45. We choose step
size h is chosen as 0.0001. Since the problem is sensitive to step size. Here

we bring the solution to the problem is for 0.7 < by < 0.8 and o = 30°.

Since the thesis is on mathematics we don’t pay much attention to
the dependence of the unknown functions on the variations of all of the
parameters of the problem. We only note that by increasing impact velocity
vo the &, 0, and oy increase in region 1. Besides at ¢ increases the stress and
strains decrease at fixed points. The programs of computation written in
FORTRAN are available at the Mathematics department, METU and any
interested person may use it to get the numerical results for some needed

values of the parameters.
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CHAPTER 4

DYNAMICS OF A MEMBRANE WITH A FREE
HOLE SUBJECT TO A TRANSVERSE IMPACT

In Chapter 3, the motion of a membrane with a rigidly fixed hole is
considered. In this chapter the motion of the membranes with a free hole
and the possible wave scheme of motion of the membranes are studied. This
problem has no similarity solution either. The numerical solution to the

problem is obtained by employing the method of characteristics.
4.1 Problem Statement

We consider initially planar membrane with a free hole of infinite extend
which is at rest. At time ¢ = 0 the membrane is subjected to the transverse
impact with constant velocity vg by a cone. The motion of the membrane
is covered by two different regions as in Section 3.1 (see, Fig 3.1). In region
I, there is transverse motion and membrane is contact with the cone. In
the region II, motion is pure radial. The transverse wavefront is the strong

discontinuity wave.

The equations of transverse motion, in region I, can be written as

0*uv Oo, o,—o0psina

= 4.1

P52 = or r (+1)
Ou u

20 = Ysina— 4.2

& = o 1, e _sina 1 (4.2)



E
(er +veg), o= 1—_-1;5(69 + ve,)

oy =

1 -2
If we substitute the equations (4.2) and (4.3) into (4.1) we obtain

10 0% 10u wu 2 1+v
a2 0t Or:  ror r? r

(1 —sina)

In region II, the radial motion is described by equations

6237 _ aarl Or1 — 0g1

po o2~ Or r
oz z
=1, =——1
Er1 ar €0 -
Op = 1—_—1/2‘(&1 +vep), op = 12 (eo1 + ver)

(4.4)

(4.5)

(4.6)

(4.7)

From equations (4.5), (4.6) and (4.7) we can write the following equation

10% 0%z 10z =

a_gw_ﬁ rdr r?

Initial conditions at ¢ = 0 are

oz
z(r,0) =r, —(—9?(7',0) =0

r ou
U(T', 0) " sina’ E(ra 0) =0
The boundary condition at r = R
o.(R,t) =0
If we introduce the new variable
14+v
’U)(T, t) = U(T, t) _ m?’
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(4.10)
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and substitute into equation (4.4), the equations of motion will yield

In region I

1Pw Pw 10w w .,
e I 4.12
a3 Ot2  Or? + ror 2o (+12)

In region II

10% 0% 10z =z

e = = — 4.13
a2 otz Or2  ror r? ( )
[nitial conditions at ¢ = 0 are
z(r,0) =r, g—:(r, 0)=0
r 14+v ow

w(r,0) = sne  1tsma’ —87(7', 0)=0 (4.14)

The boundary condition at r = R
or(Ryt) =0 (4.15)

As shown in Chapter 3, the equations (4.12) and (4.13) are of hyperbolic

type with the characteristic velocities
A= *ag (4.16)
Characteristic relations have a form
In region I
dw; = *agdw, + adt along X = *ag (4.17)
2 (1 w o, )
where a = af | —w, — — sin” «
r r
In region 11
dz; = £dz, + a1dt  along A = tao (4.18)
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1 T
where a; = a(z, (—mr - —2)
r r

4.2 Solution to the Problem on the Radial Wavefront

Since the displacement z(r, t) is continuous on the radial wavefront RA,

we have
.’II(R + aot,t) =R + aot
Total derivative of equation (4.19) will yield
oz Oz 1
ot~ “\or
Characteristic relation along r = R + aot is
9 (1 z
dz: = aodz, + ag | -z, — —2> dt
r i

substitution of the equation (4.20) into (4.21) yield

d(z, —1)  dr

z, — 1 ——-2—7’

If we solve the equation (4.22) we obtain

oz R
6_7' =1 + CO R-I— a()t
oz R
a9t = 0%\ R + aot

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

So, &,1 and €g; can easily be obtained from equations (4.19) and (4.23) which

depends on Cj and t.

From the boundary condition (4.10) at » = R we can write

er(R,t) + veg(R,t) =0

7

(4.25)



Equation (4.25) implies that

ow sin « w
— =(1 —v))———— —vsina— 4.2
87'(R’t) ( V)1—|—sina vsinap (4.26)
As in the previous case, in this problem transverse wavefront RB, — dt = b,
is a strong discontinuity wave. Shock condition on RB is
po(=bo)[V]=[T] +@Q (4.27)
solution of the equation (4.27) will give
w(t) — vo cos a
by =
1 2((L+é&m)sina—(1+¢,)) i
3
X ( w(t) — v cos o )
2((1+en)sina—(1+e))
or18ina — o,
+ . 4.28
po((1 +em)sina — (1+¢,)) ( )
ow
where w(t) = 5 —|r=R
dr,
On the boundary RB where I bo
z(re(t),t) = R+ vot tan o (4.29)
R+ vottan « 14+v
* t )t = . - . * 4.
w(ru(®),7) sin o 1+ sin ar ®) (4:30)
Total derivatives of the equations (4.29) and (4.30) yield, respectively
0z ox
Fri vo tan o — bOE (4.31)
ow Vg ow 1+v
bt — 4.32
ot cosa (37’ 1+sina) (4:32)



Thus, we have the following boundary conditions

On Rt where o,(R,t) = 0 implies that

ow oy Sino LW
5 = (1—-v )—————1 tena Vsmaﬁ
On RB we have
2—: = Vo tana — b0(1 + 6:,.1)

ow Vo

Ot  cosa —bo(l+er)
5 w(t) — vgcos &
O =

2((1+ep)sina—(1+¢,))

+J (2 (@ :e(?) ;{If’lcfsﬁ n <s,~)))2

o1 Sina — o,

+p0 (1 +epm)sina— (1 +e,))
On RA
Oz R
5; =1 + OO R+ agt

0 oCor]—2—
625_ o0 R+G,0t

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Now we define the value of unknown functions at r = R,¢ = 0% that is

immediately after the impact.

Displacements and hence e¢(r, t) are assumed to be continuous at every

point r for any time ¢ (the main assumption of continuum mechanics). Thus,

we have
tl_l)rg}r eo(r,t) =10
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in particular

go(R,07) =0 (4.40)
and

en(R,07) =0 (4.41)
as well the boundary condition (4.10) on Rt leads

&(R,0t) =0 (4.42)
Since boundary is free of stresses then

e1(R,07) =Co =0 (4.43)

In relations (4.34), (4.37) and (4.38) passing to the limit r — R,t — 0" we

get
Oz o Oz "
E(R’ 07) = votan a — by Em (R,07) (4.44)
g—f(R, 0ty =1 (4.45)
g—f(R, 07)=0 (4.46)
equations (4.44) — (4.46) yield
bo = vp tan « (4.47)

Now approaching r — R and ¢ — 07 in (4.35) and taking into account (4.42)
we get

a_w(R’ 0+) =

ot cos @

vo(l —sin ) (4.48)
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For given semivertex angle « and constant initial velocity vg, by can be eas-
ily evaluated by using the equation (4.47). Then from (4.48) w(R,07) is

calculated.

It is interest to note that for this problem the radial wavefront RA is
not a strong discontinuity wave. The derivatives of unknown functions are

continuous thereon.
4.3 Algorithm of Numerical Solution to the Problem

The algorithm given in Section 3.4 is used to obtain numerical solution
to the problem of free hole defined by the equations (4.1) —(4.10). There are
some differences between two algorithms. These differences are due to the
different boundary conditions defined on Rt line. For the problem of rigid

hole given by the equations (3.1) — (3.10), the boundary condition on Rt is
es(R,t) =0 (4.49)

The equation (4.49) implies that w is independent on ¢.

On Rt

ow

5—{(1{, t)=0 (4.50)
so

R 14+v
w(R,t) = sine  1+sina (4:51)

But for this problem the boundary condition on Rt is

o (R,t) =0 (4.52)
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By using (4.52) we obtain

sin o . w(R,t)
w(R,t) = (1 — Vz)m —vsina—

(4.53)

Thus the differences in this algorithm are only in region I. In region II,
we use the same relations given in Section 3.4. We showed that the unknowns

can be uniquely determined in region II.

The initial slope bo(R,0") of the unknown transverse wavefront RB
can be easily calculated from (4.47) for given vg and «. Since the boundary

is free of stresses then Cy = 0.

In this section we will show that this scheme has unique solution in

region [.

The difference equation along B;Ch, (see, Figure 3.2) can be written

by using the characteristic relation (4.17)

wi(B1) — wi(C1) = —ao(w,(Br1) — wr(Ch)) +

a(Ch)(ts, — to,) (4.54)
where
_ gy sina . w(Cy)
w(Cy)=(1—-v )——————-1 Tena Vsma—rc1

w(C1) = w(R) + w(C1)tc,

a(C) = a (“’"(Cl) _ ) e a>

rCl rcl

We write the second equation at point B; by using the equation (4.35)

wi( By) + bo(R)w, (Br) = —2— — ¥4 (R) (4.55)

cosae |+sina
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We have two equations in three unknowns, namely in w:(By), w,(By) and
w;(C1). Since system is totally hyperbolic we need another equation to obtain
the unique solution. We draw a characteristic line with slope ag which passes
through B; and parallel to RA. Its intersection with ¢-axis is labelled by C1;.

The characteristic relation along B;Cyy is

wi(B1) — wi(C11) = ao(w,(B1) — wr(C11)) +

a’(Oll)(tBl - ton) (456)
where

12 sina . wgy,

w,(C11)=(1—v» )——1 . vsina o,

tC’u - tC’l tC’n

wt(Ou) = wt(R)— + wt(CI)
te, te,
. . ley —to toy
t01 tCl

Now we have three equations in three unknowns. The principal deter-

minant is not zero.

1 bo(R) 0
Aw =11 —ag A]l
I as  Ag2
Aw = (bo(R) _— ao)A11 — (0,0 + bo(R))Alz (457)
where
A ——d—ﬂvs'nat d—l—ﬂ%—' (v +sina)tc,d
11 = 2 R 1 o, 42 stma Q)ic, G2
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2

a . a .
A= —1+ ?%u sin oo, + R—‘;(v + sin a)tc,
gy =" ton

to,

Since 0 < dy <1, =1 <sina <1,0 < tg,, 0 < v+ sinc then A;; < 0
and A2 < 0. Also ag + bo(R) > 0 and bo(R) — ag < 0. All these implay
that A, > 0. So we determine the unknowns w;(Bi), w,(B1) and w:(Cy)
uniquely.

At the second step, there are three possibilities for the position of Bs:
The first posssibility for the position of By is r91 < rg, < r20; By using
the equations (4.17) and (4.35), we write the equations along By Pay, Po1Chy,
Py Cy and at B, as

wi(By) — wi(2,1) = —ag(w,(B2) — w,(2,1)) +

a(2, 1)(t32 = tgl) (458)

where

a(2,1) = a? (wr(2’ D _ @) g a)

r21 21

w(2,1) = wy(2,1)(ta1 — te,) + wr(2,1)(ra1 — ey ) + w(Ch)

wi(2,1) — wy(Cy) = ao(wn(2,1) — w,(Cy)) +

a(Cy)(ta1 — toy,) (4.59)

wi(2,1) — wi(C2) = —ao(wr(2,1) — wr(C3)) +

0(02)(t21 — t02) (460)
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where

w,(Ca)  w(Cy)
a(Cs) = a ( o T sin® &
_ 1 gy Sina w(Cy)
w,(C2) = (1 )1 teina VS ron

Vg I1+v
cosa 1+sina

bo(B1) (4.61)

wi(Ba) + bo( B1)w,(Bs) =

wi(Bs) — wy(Ca2) = ao(iér(Bz) —w,(Ch)) +

a(022)(t32 - tc'zz) (4'62)

where

wr(Ca2) (022) sin? a)

7'022 rc’zg

(I/(Ozz) = (Zg (
w,(sz) = w,.(Bl)cl + wr(Cl)cz
wi(Ca2) = wi(B1)er + wi(Ch)er

’w(sz) = w(Bl)cl + w(01)02

(e=re) (=)
C + —cs
1= tp, — to; 2
(o= (=) +3
Cy + —¢s
—TB, to, —tB, 2
cs = (7'02 - 7'01) (tcz —tBl) + (7’02 — 7’31) (t02 — t01)
rB, — Ty ) \ley —tB, ro; — 7B/ \tB —tcy

We have five equations in five unknowns, namely w;(Bs), w.(Bs), w(2,1),

w,(2,1) and w;(C2). The principle determinant is not zero. So the unknown

values are uniquely determined.
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—

WB) 0 0 0
—dag 0 0 0
Aw =11 Qo —A21 — A22 0

[y

0 0 1 ~—ag 0
0 0 1 ag —Ags
Ay = (ao + bo(B1)) (A1 A2z + A Aszs) (4.63)

where
aj .2
A21 =1- T(t21 — tc'l)(th — t21) sSin- «
a1
2

a a .
Agg = agp + —(tm, — tn) — —2(ro1 — Ty )(tB, — ta1) sin’
2 Ta1
2

a . @y A 4
Ay =1— —u(tg, —to,)sina — —=sin a(v + sin &)(to, — toy ) (b — toy)
TCy a1

Since 0 < ty1 —tg, < 1, =1 < tpg, —ty < 0,0 < 7191 — 1, < 1,0 <
sinfa < 1,0 < tg, —tg, <1, —1 < tgy —tg, < 0 then 0 < Az, 0 < Ag,
0 < Ags. These mean that Az Agz + AzeAzz > 0. Also 0 < ag + be(B1). So
the principal determinant A, > 0 and we determine the unknowns w:(Bs),

wr(Bz), we(2,1), w,(2,1) and wy(C3) uniquely.

The second possible location of B; is rg, = r21; The difference equations

along ByCy, ByCs and at point By have the following form

’wt(Bz) - wt(Cl) = ao(wr(B2) - wr(01)) +

a(Cy)(tp, —tc,) (4.64)

w(Bs) — wi(Cs) = ao(wr(Bz) — wr(C2)) +
a(C2)(ts, — tc,) (4.65)
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Y 14+v
wy(By) + bo( By )w,(By) = COS"a e ~——bo(B1) (4.66)

These equations constitute a closed set of three algebraic equations
with respect to three unknowns wy(Bs), w,(B2) and w;(C3). The principal

determinant is not zero.

1 b(By) 0
Aw: 1 —ag 0
1 ag —A21

Aw = (ao + bo(Bl))Agl (467)

where

2
a . Qg . .
Ay = ag — —vsina(te, —te,) — —>=sin a(v + sin a)(tg, — to; ) (b — toy)
7"02 7'02
Since 0 < tg, —t¢, < 1 and —1 < &9 —tg, < 0 then 0 < Ay. So the

determinant of the coefficients A,, > 0 and the unknowns w;(Bs), w.(Bs),

and w;(Cy) are determined uniquely.
The third possible location for B; is r¢, < rp, < ra1; The equations

along B,Cy, B3Cy and at B, are

wi(Ba) — wi(Cs) = ao(w,(B2) — wi(C2)) +

a(C2)(th - tCz) (468)

wt(BZ) - wt(022) = aO(w'r(B2) - wr(022)) +

a’(022)(t32 - tC’zz) (4'69)
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where

o(C) = (wr(ozz) w(Cn) . » a)

T'Ca T'Coo
sin o . w(C
wr(sz) = (1 — l/)m — Vsin «& 7(.022)
22

w(Ca2) = w(Ch) + wi(Ca2)(toy, — toy)
wi(Caz) = wi(Ch) (w) wi(Cy) (M)

t — tC’2 - tC]_

we(By) + bo(Br)w,(B) = —2— — Y 4By - (4.70)

cosa 14sina

These three equations constitute a closed set of three algebraic equa-
tions with respect to the three unknowns, w;(Bz), w.(Bz2) and w¢(C3). The

principal determinant is not zero.

1 bo(By) 0
Ay =1 ey Axn
1 ag Agz
Aw = —(ao —_ bo(Bl))A21 —_ (ag —l— bg(Bl))Agz (471)

where

2

ap . )
Ay = —dy — EO sina(te, —to, )da + ﬁ sin a(v + sin a)dz (te, — te,)

2
ag .
Ay = —ag + EO sin a(t02 — tol) + ﬁ sin a(t02 — tc'l)(tB2 — tcz)
dy = toy, — Loy

t01 _t02
Since 0 < da < 1,0 < g, —tg, < 1, =1 < tg, —tc, < 0 then 0 < Ay and

0 < Agz. So A, > 0. Hence we obtain the unique solution.
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On continuing this algorithm we can get the numerical solution to the
problem at any point of regions I as well as on the strong discontinuity wave
RB. The algorithm gives the unique solution to the problem according to

the mathematical induction.

At each interior point of the line C,1B,4+1 we have two characteris-
tic relations which yield two linear algebraic equations with respect to the

unknowns w;(Cp41;) and w,(Cyry1,) (see Figure 3.3).

Wi(Crt1,ir1) — We(Cry1) = ao(wr(Cryriq1) — Wr(Cry1)) +

a(0n+1,i)(t0n+1,i+1 - t0n+1,i) (4‘72)

Wi(Crpt,iv1) — wWi(Cnyg) = ao(Wr(Crtr,i1) — wr(Cry)) +

a(Cn,i)(tCn+1,é+1—tcn’,») (4.73)

w(Cri1it1) = W(Crivr) + Wi Crtt i1 ) Bnt1i01 — bgigr) +

Wo(Crgtyitt (Tratjitr — Tgir1)  (4.74)

At the boundary point B,y; we have three conditions: The same relations
(4.72) — (4.74) for Cpy1,m (m is the number of interior points of the net in

region I) plus the boundary condition (4.35)

1+
wi(Bat1) + bo(Ba)wr(But1) = —— — ———by(B,) (4.75)

cose |+sina

Besides at the point C,11 on the Rt line we have the boundary condition,

66_w(0n+1) =(1- Vz)“'s' nE VSinaw(CnH)
T

4.
1+ sina R? (4.76)
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Thus, at the (n + 1)st. step we get a system of 2m + 3 linear algebraic
equations (4.72), (4.73) and (4.74) with respect to 2m + 3 number of un-
knowns wi(Cri1), Wr(Cri1)y Wi(Cut1s), Wr(Cryr) ¢ = 1,2,...,m, wi(Bpmy1)

and wy(Bpmt1)

The principal determinant of these equations has a form

1 bo(By) 0 0 00 0 0 0
1 —ag 0 0 00 0 0 0
1 ag _An+1,1 "An+1,2 0 0 0 0 0
0 0 1 —ag 0 0 0 0 0
Ay =
0 0 0 0 00 .-+ 1 =—ag 0
0 0 0 0 0 0 --- 1 ag _An+1,2n+1
Ay = (a0 + bo(Br))(Ant1,1An+1,34n41,5---
A1 2n-1Ant1 2041 + Ant1,1An+1,3A041,5.-
Antion—1Ant120Ant12n41 + oo + Ang1,1An 4144041600
Anti2nAnttontt + oo + Ang1,24n 413404150
Antign—1Antionsr + oo+ An124n+14 A0 116
An+1,2nAn+1 2n+1 ) (4 77)
where
aj .2
Apjrp =1~ 2—(tn+1,1 - tn,l)(tBn.H - tn+1,1) s o
Tnt1,1
dg ag
Ant12 = a0+ ———(tBpys — tat1,1) — 5 (Tn1,1 — Pn1) (EBryy — tng11)
Tn+1,1 41,1
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forl =2,3,...,n

a2

Apyi2i-1=1— T‘Q‘“(tn+1,l — ) (a1 i1 — tng1 ) (Bns1,i—1 — togr,) sin’ &
Tnt1,0
2

a )
(tng1,-1 _tn+1,l)_Z_O(rn+1,l—rn,l)(tn+1,l—l —tnt1,0) sin®
rn+1vl rn-l-l,l

2

Apii0 = aot

(47 . .
An+1,2n+1 = ao— —0(t0n+1 ——tcn)_ s1n a(V+Sln a) (tcn+1 “ton)(tn+1,n_t0n+1 )

TCrt1 TCrnya

Since 0 < tny11 —tn1 <1, =1 < i, —tay11 <0, R<rpy1 (0 = 1,2, .0+
1,0 <rmpr1; —Tu; <17 =12,cc.,n+1), 0 < tpg1 — oy, 1(I = 2,3...m),
—1 < tpg1im1 — g1y < 01 =2,3,..,0), 0 < rpj1y — oy < 1(1 = 2,3,...,n)
and —1 < tpy1n —to,,, < 0then 0 < Apy11, 0 < Appa2 for 1 =2,3,....n,
0 < Ant12i-1, 0 < Ayt and 0 < Appq,2041. So the principal determinant

A, > 0. Hence the unknowns are determined uniquely.

The convergence of the numerical algorithm can be proven analogous to
the Section 3.5. The only difference from the point of view of convergence is
in continuity of unknown functions on the radial wavefront which smoothness

the problem.

Because of the boundness of the volume of the thesis we don’t bring

here the results of numerical calculations for o,|,=g = 0.
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