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Abstract—In this paper, a downlink multiple input multiple
output (MIMO) non-orthogonal multiple access (NOMA) wireless
communication system is considered. In NOMA systems, the
base station has unicast data for all users, and multiple users
in a group share the same resources. The objective is to design
transmit precoders and power allocation coefficients jointly that
provide max-min fairness (MMF) among the strongest users in
each group, while maintaining minimum target rates for all
the other users. The problem is solved via two main iterative
approaches. The first method is based on semi-definite relaxation
(SDR) and successive convex approximation (SCA), and the
second method is based on the equivalency between achievable
rate and minimum mean square error (MMSE) expressions.
For the latter approach, Karush-Kuhn-Tucker (KKT) optimality
conditions are derived and the expressions satisfied by the
optimal receivers, MMSE weights and the optimal precoders are
obtained. Proposed algorithms are compared with rate-splitting
(RS), orthogonal multiple access (OMA) and multi-user linear
precoding (MULP) schemes in terms of MMF rates, energy
efficiency and complexity. It is shown that while RS has the best
MMF rates and energy efficiency, the MMSE approach based on
KKT optimality conditions has the least complexity. Moreover,
the SDR/SCA approach offers an excellent tradeoff. It offers high
MMF rates, low complexity and superior energy efficiency.

Index Terms—Max-min fairness, mean square error, MIMO,
NOMA, precoder design, quality-of-service, rate splitting, suc-
cessive convex approximation.

I. INTRODUCTION

The demand for data traffic is steadily increasing and

wireless networks of the next decade have to meet the high

data rate requirements for many different applications [1].

To handle this high data rate, non-orthogonal multiple access

(NOMA) is considered as a breakthrough technique, which

enables simultaneous multiple access in the power domain

for 5G wireless networks [2]. Specifically, downlink NOMA

is an application of broadcast channels [3] and it relies on

superposition coding (SPC) at the transmitter to transfer mul-

tiple data streams in the same resource block, and successive

interference cancellation (SIC) at the receiver to cancel co-

channel interference. NOMA has the potential to deliver higher

system throughput [4], [5] and higher ergodic sum capacity

[6], and to achieve better outage performance [7] compared

to the existing orthogonal multiple access (OMA) techniques.

In practical power domain NOMA schemes, more power is

allocated to users with poor channel conditions to guarantee
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their required minimum rates [8]. This way NOMA presents an

advantage in providing higher spectral efficiency and fairness.

A. Related Work

In NOMA systems, each user can have a dedicated precod-

ing vector, or a cluster of users can share the same precoding

vector. The former has the advantage of custom precoding for

each user, but suffers from the rank constraints in the downlink

multiuser MIMO broadcast channel [9]. The latter is not

limited by rank, but messages are not individually precoded,

so channel gain vectors and precoders are mismatched.

Assuming the transmit signals of each user are coded by

a dedicated precoding vector, sum rate maximization, total

power minimization and max-min fairness for NOMA systems

are studied under different constraints and with different

methods in the literature. The paper [9] solves the sum rate

maximization problem by approximating the problem with a

minorization-maximization algorithm. The paper [10] presents

a precoding design for maximizing the sum rate of all users

under decoding order and quality-of-service (QoS) constraints.

Similarly, to maximize sum rate, [11] studies the channel state

information based singular value decomposition precoding

scheme. Total power minimization with QoS requirements

and total power minimization under target interference level

constraints are respectively investigated in [12] and [13]. In

addition, a max-min fair (MMF) precoder design problem

for a multiple antenna base station is also studied in [12].

Power allocation (PA) problems for achieving MMF in NOMA

systems with single antenna transmitters are studied in [14]

and [15].

As mentioned above, in NOMA, a single precoder vector

can be shared by a cluster of users. For this case, weighted

sum rate optimization under a total power constraint when

two users exist in each cluster is studied in [16]. For clustered

downlink NOMA systems, a sub-optimal user clustering al-

gorithm is proposed and the optimal power allocation policy

that maximizes the weighted sum rate is derived in [17], [18].

Joint power allocation and precoder design to maximize the

strong users’ sum rate subject to QoS constraints on weak

users’ rates is solved via successive convex approximation

(SCA) and semi-definite relaxation (SDR) in [19]. The same

problem is generalized to the multi-cell networks in [20].

Finally, minimizing total transmission power for downlink

clustered NOMA is studied in [21] and [22].

B. Motivation and Contributions

In this work, we study downlink MIMO clustered NOMA

system from a fairness standpoint and we investigate joint

http://arxiv.org/abs/1911.09402v2
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precoder design and PA problem that provide MMF among

the strongest users in each cluster and ensure the minimum

rate requirements for all the other users. To the best of our

knowledge, there is no joint MMF precoder design and PA

optimization for a clustered downlink NOMA system. Our

contributions are listed below:

1) Firstly, we define a joint precoder design and PA prob-

lem to attain max-min fairness among the best users

in each cluster, while guaranteeing target data rates

for the rest of the users. Due to the non-convexity of

the defined problem, we apply Taylor series expansion,

SDR, to simplify the original problem. Next, we propose

a suboptimal iterative SCA based algorithm.

2) Secondly, we use the equivalency between weighted

mean square error (WMMSE) and achievable rate ex-

pressions, and restate the original problem as an equiv-

alent MMF WMMSE problem. To do that, we apply

the achievable rate-WMMSE relationship. Due to the

non-convexity of the main problem, we split it into

two different problems: i) to design optimal precoders

for given power allocation coefficients (PAC), and ii)

to obtain optimal PAC for given precoders. We derive

a sub-optimal PA scheme while designing the opti-

mal precoders. Employing the CVX toolbox to obtain

the precoders, we then propose a suboptimal iterative

WMMSE based algorithm, which updates transmit pre-

coders, receivers, weights and PAC sequentially.

3) Thirdly, employing the Karush-Kuhn-Tucker (KKT) op-

timality conditions, we find the expressions the optimal

receivers, MMSE weights and the optimal precoders

have to satisfy. Utilizing these expressions, we propose a

low-complexity iterative algorithm to evaluate precoders

and receivers. We use the exponential penalty method

to evaluate the Lagrange multipliers. We find that this

approach significantly decreases complexity, while en-

suring a similar MMF rate performance as the CVX

solution in the second item.

4) To the best of our knowledge, there is no work in the

literature, which studies both SDR/SCA and WMMSE

based approaches for the same optimization problem.

We discover that SDR/SCA performs better than the

latter as it solves a tighter approximation.

5) We compare the proposed schemes with and without

power allocation to observe that power optimization does

not significantly increase complexity and its advantages

in terms of MMF rates are justified.

6) We also compare our results with rate-splitting (RS)

[23], [24], OMA and multi-user linear precoding

(MULP) schemes in terms of MMF rates, complex-

ity and energy efficiency. Our results reveal that the

SDR/SCA based scheme offers an excellent tradeoff in

all three aspects.

Next, we explain the system model and define the optimiza-

tion problem in Section II. We propose the SDR/SCA and

WMMSE based precoder designs respectively in Sections III

and IV. We present the numerical results in Section V. Finally

we provide conclusions and future work in Section VI.

II. SYSTEM MODEL AND PROBLEM DEFINITIONS

In this paper, we investigate a downlink multiuser MIMO

system. The base station has M transmit antennas and com-

municates with K clusters. There are L single antenna users

in each cluster1 and each user belongs to only one cluster.

The base station aims to send the data sk,l to the l-
th user in the k-th cluster, for all l ∈ {1, . . . , L}, and

k ∈ {1, . . . ,K}. All sk,l are independent and E{sk,ls
∗
k,l} =

αk,l. Here αk,l is the ratio of power allocated to the

data stream sk,l. The PAC vector is defined as A =

[α1,1, . . . , α1,L, . . . , αK,1, . . . , αK,L]. Moreover,
∑L

l=1 αk,l =
1. To send all the messages, the base station superposes all

the messages in a cluster as sk =
∑L

l=1 sk,l and forms

s = [s1, . . . , sK ]
T
∈ CK×1. When pk ∈ CM×1 indicates the

precoder vector for the k-th cluster, the base station transforms

s with the precoder matrix P = [p1, . . . ,pK ] ∈ CM×K . Then,

the base station transmits x ∈ CM×1, which is equal to

x = Ps =

K
∑

k=1

pksk =

K
∑

k=1

L
∑

l=1

pksk,l. (1)

The base station has an average total power constraint Etx,

which is written as

E{xHx} = Tr(PPH) ≤ Etx. (2)

Then, the received signal at the l-th user in the k-th cluster

becomes

yk,l = hH
k,lpk

L
∑

l=1

sk,l + hH
k,l

K
∑

i=1,i6=k

pisi + nk,l. (3)

Here, hk,l ∈ CM×1 is the effective channel gain vector of

the l-th user in the k-th cluster. The effective channel gain

is defined as hk,l = h̃k,l/
√

dρk,l, where dk,l is the distance

between the l-th user in the k-th cluster and the base station,

and ρ is the path loss exponent. The entries in h̃k,l are

independent and identically distributed (i.i.d.) and complex

valued random variables. Moreover, the effective channel gain

magnitudes are ordered as |hk,L| > |hk,L−1| > . . . > |hk,1|.
It means that the user with the smallest effective channel gain

magnitude is the first user in a cluster and the L-th user has

the largest channel gain magnitude. The noise component nk,l

is a circularly symmetric complex Gaussian random variable

with zero mean and unit variance, and nk,l are i.i.d. for all k
and l. The base station is informed about all effective channel

gains hk,l, while the receivers know only their own hk,l.

A. Achievable Data Rates

For this NOMA system we investigate, the messages for

different clusters will be treated as noise, while SIC will be

carried out within a cluster to limit intra-cluster interference.

Due to SIC, in the k-th cluster, the l-th user’s message is

decoded at the i-th user, for which l ≤ i. In other words,

decoding is ordered and starts from the first user’s message.

1In fact, the results can easily be extended to cover for unequal number
of users in each group. However, to keep the notation simple we adhere to a
fixed number of users in each cluster.
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The first user in the cluster decodes its own message only, and

the L-th user decodes all users’ messages within the cluster.

To simplify the notation, we define the sets K , {1, ...,K},

L , {1, ..., L}, L̄ , {1, ..., L− 1} and I , {l, ..., L}. Then,

the signal to interference ratio (SINR) for decoding the l-th
user’s message at the i-th user in the k-th cluster, i ∈ I, l ∈
L, k ∈ K can be written as

γk,i→l = αk,l|h
H
k,ipk|

2r−1
k,i→l. (4)

In the above equation, rk,i→l is the effective noise variance

and is defined as

rk,i→l =

L
∑

j=l+1

αk,j |h
H
k,ipk|

2 +

K
∑

t=1,t6=k

|hH
k,ipt|

2 + 1. (5)

Then, in the k-th cluster, the i-th user’s achievable rate2 for

decoding the l-th user’s message is

Rk,i→l = log (1 + γk,i→l) . (6)

Overall, the achievable rate for the l-th user’s message in the

k-th cluster is defined as the minimum of all Rk,i→l, and is

denoted as

Rk,l = min
i,i∈I

Rk,i→l, ∀l ∈ L̄. (7)

Note that, due to this definition, Rk,L = Rk,L→L.

B. Max-Min Fair Problem Definition

In this subsection, we define the MMF rate optimization

problem, which aims to find the optimal precoder matrix P

and optimal PAC vector A, such that the minimum of the

strongest users’ rates is maximized subject to a total power

constraint and a minimum rate constraint for the rest of the

users. Then, the optimization problem is stated as

max
P,A

min
k∈K

Rk,L (8a)

s.t. Rth
k,l ≤ Rk,i→l, ∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I, (8b)

L
∑

l=1

αk,l = 1, αk,l ≥ 0, ∀k ∈ K, ∀l ∈ L, (8c)

Tr(PPH) ≤ Etx, (8d)

where Rth
k,l ≥ 0 is the threshold data rate that has to be

provided to the l-th user in the k-th cluster ∀k ∈ K, ∀l ∈ L̄.

Note that, due to SIC, the l-th user’s message in the k-th cluster

has to be decoded by all i, ∀i ∈ I, resulting in the inequality

in (8b). The equality in (8c) indicates that the superposed data

sk for the k-th cluster has normalized power. In addition, (8d)

is the total power constraint at the base station.

To solve this problem, we need to restate (8), as the

minimum operation in the objective function is not a convex

2In all the derivations, all rate expressions are expressed in nats/channel
use. In Section V, without loss of generality, simulation results are presented
in bits/channel use.

function. Thus, we add an auxiliary variable Rg and convert

(8) to a new constrained optimization problem as

max
P,A,Rg

Rg (9a)

s.t. Rg ≤ Rk,L, ∀k ∈ K, (9b)

(8b), (8c), (8d). (9c)

III. SUCCESSIVE CONVEX APPROXIMATION SOLUTION

The problem defined in (9) is still a non-convex optimization

problem. In this section, we further modify the optimization

problem in (9) to obtain an equivalent semi-definite program-

ming problem.

To achieve this objective, we introduce and optimize the

auxiliary optimization matrix Qk = pkp
H
k . Note that, Qk ∈

CM×M is a rank-one positive semi-definite matrix. Then, we

can rewrite our optimization problem as

max
Q,A,
Rg

Rg (10a)

s.t. Rg ≤ log (1 + γ̃k,L) , ∀k ∈ K, (10b)

Rth
k,l ≤ log (1 + γ̃k,i→l) , ∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I,

(10c)

L
∑

l=1

αk,l = 1, αk,l ≥ 0, ∀k ∈ K, ∀l ∈ L, (10d)

Qk � 0, ∀k ∈ K, (10e)

rank (Qk) ≤ 1, ∀k ∈ K, (10f)

K
∑

k=1

Tr (Qk) ≤ Etx, (10g)

where

γ̃k,L =
αk,Lh

H
k,LQkhk,L

∑K
t=1,t6=k h

H
k,LQthk,L + 1

, (11)

γ̃k,i→l =

αk,lh
H
k,iQkhk,i

∑L
j=l+1 αk,jh

H
k,iQkhk,i +

∑K
t=1,t6=k h

H
k,iQthk,i + 1

.

(12)

Convex optimization solvers are not efficient when operat-

ing with logarithmic functions. To eliminate the logarithms in

(10b) and (10c), we define a new auxiliary variable δ and new

constants ζk,l, ∀k ∈ K, ∀l ∈ L̄ as

δ = eRg − 1

ζk,l = eR
th
k,l − 1.

Then, we can reformulate (10) as

max
Q,A,δ

δ (13a)

s.t. δ ≤
αk,Lφk,L

ωk,L

, ∀k ∈ K, (13b)

ζk,l ≤
µk,lφk,i

ωk,i

∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I, (13c)

(10d), (10e), (10f), (10g), (13d)
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where

φk,l = hH
k,lQkhk,l (14)

ωk,i = 1 +

K
∑

t=1,t6=k

hH
k,iQthk,i (15)

µk,l = αk,l − ζk,l

L
∑

j=l+1

αk,j . (16)

The constraints (13b) and (13c) are not convex, since αk,Lφk,L

and µk,lφk,i are both bilinear functions. To change (13b) and

(13c) into convex constraints, we need to apply the Schur

complement [25]. Introducing new auxiliary variables τk,i,l,
we can replace (13b) and (13c) with the following 4 new

constraints

[

αk,L τk,L,L

τk,L,L φk,L

]

� 0, ∀k ∈ K (17)

[

µk,l τk,i,l
τk,i,l φk,i

]

� 0, ∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I (18)

and

δ ≤
τ2k,L,L

ωk,L

, ∀k ∈ K (19)

ζk,l ≤
τ2k,i,l
ωk,i

, ∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I. (20)

The right-hand side of (19) is convex in both τk,L,L and ωk,L,

and the right-hand side of (20) is convex in both τk,i,l and

ωk,i. In other words, right hand sides of both (19) and (20) are

difference-of-convex functions [26]. Therefore, we can apply

the first-order Taylor expansions [27] to obtain a tight lower

bound on these two functions. For given fixed points (τ̃k,L,L,

ω̃k,L) ∀k ∈ K and (τ̃k,i,l, ω̃k,i), ∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I, we

write

δ ≤
2τ̃k,L,L

ω̃k,L

τk,L,L −
τ̃2k,L,L

ω̃2
k,L

ωk,L ≤
τ2k,L,L

ωk,L

(21)

ζk,l ≤
2τ̃k,i,l
ω̃k,i

τk,i,l −
τ̃2k,i,l
ω̃2
k,i

ωk,i ≤
τ2k,i,l
ωk,i

(22)

where τ̃k,i,l ≥ 0 and ω̃k,i ≥ 1.

Finally, we relax the equality in (10d) as an inequality, omit

the constraint in (10f) and transform the optimization defined

in (10) as

Algorithm 1 SDR/SCA Based MMF Algorithm with PA

1: Input: A(0), Etx, Υ, Rth
k,l, nmax

2: Initialize: δ(0) = 0, ω̃
(0)
k,i , τ̃

(0)
k,i,l, and n = 0;

3: iterate ∀j, l, k;

4: n = n+ 1
5: Update

{

Q
(n)
k ,A(n), δ(n), τ

(n)
k,i,l

}

by solving (23)

for given τ̃
(n−1)
k,i,l and ω̃

(n−1)
k,i

6: Update τ̃
(n)
k,i,l and ω̃

(n)
k,i using (25)

7: If (δ(n) − δ(n−1))/δ(n−1) < Υ or n = nmax then

8: Terminate

9: else then

10: Go to Step 3

max
Q,A,δ,τ

δ (23a)

s.t. δ ≤
2τ̃k,L,L

ω̃k,L

τk,L,L −
τ̃2k,L,L

ω̃2
k,L

ωk,L, ∀k ∈ K, (23b)

ζk,l ≤
2τ̃k,i,l
ω̃k,i

τk,i,l −
τ̃2k,i,l
ω̃2
k,i

ωk,i,

∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I,
(23c)

[

αk,L τk,L,L

τk,L,L φk,L

]

� 0, ∀k ∈ K, (23d)

[

µk,l τk,i,l
τk,i,l φk,i

]

� 0, ∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I, (23e)

L
∑

l=1

αk,l = 1, αk,l ≥ 0, ∀k ∈ K, ∀l ∈ L, (23f)

Qk � 0, ∀k ∈ K, (23g)

K
∑

k=1

Tr (Qk) ≤ Etx. (23h)

The problem in (23) is a constrained convex optimization

problem when τ̃k,i,l and ω̃k,i are given. In [20], the authors

prove that omitting the rank constraint (10f) in (23) does not

alter the problem. They discuss that the solution is always

rank one. However, their proof assumes that the principle

eigenvalue of the positive semi-definite matrix in [20, eqn.

(33)] is always unique. This may not be the case and there

can be more than one principle eigenvalue. However, adding

independent rank one matrices in [20, eqn. (33)] results in

full rank matrices with very high probability and this does not

pose a significant issue.

The optimization problem (23) is an approximation to the

original problem in (8). To solve (8), we use Algorithm 1.

The algorithm solves (23) when τ̃k,i,l and ω̃k,i are given, and

updates these values in each iteration. While solving (23), we

employ the CVX optimization toolbox [28].

In Algorithm 1, we can initialize τ̃
(0)
k,i,l and ω̃

(0)
k,i arbitrarily,

as long as τ̃
(0)
k,i,l ≥ 0 and ω̃

(0)
k,i ≥ 1. However, one can initialize

τ̃
(0)
k,i,l and ω̃

(0)
k,i more efficiently. To do so, we create a random

rank one positive semi-definite matrix for each Qk and a

uniform vector A, calculate φ
(0)
k,l and ω

(0)
k,i and compute τ̃

(0)
k,i,l
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and ω̃
(0)
k,i as

τ̃
(0)
k,i,l =







√

αk,Lφ
(0)
k,L, i = l = L

√

µk,lφ
(0)
k,i , l ≤ i, l < L

and ω̃
(0)
k,i = ω

(0)
k,i

(24)

In (24), the τ̃
(0)
k,i,l values satisfy (23d) and (23e) with equality.

Using the randomly generated matrices for Qk, we calculate

ω̃
(0)
k,i using (15). After initialization, in Algorithm 1, we update

τ̃k,i,l and ω̃k,i in each iteration as

τ̃
(n)
k,i,l = τ

(n−1)
k,i,l and ω̃

(n)
k,i = ω

(n−1)
k,i . (25)

This way, the bounds in (23b) and (23c) become tighter in

each iteration. The algorithm convergence can be proved in a

similar manner as in [20].

IV. WMMSE BASED SOLUTIONS

In this section, we provide an alternative solution to the

MMF problem defined in (8) using the MMSE approach. In

this approach, we utilize the relation between mutual infor-

mation and MMSE [29], [30]. We can state Rk,i→l in terms

of error variances, assuming MMSE receivers are employed

at the receivers.

We remind that the effective channel gain magnitudes are

ordered as |hk,L| > |hk,L−1| > . . . |hk, 1| as described in

Section II. Therefore, the l-th user in the k-th cluster decodes

messages in order starting from the first user’s message, and

decodes its own message in the last step. SIC is employed in

each step. In other words, to estimate the l-th user’s message,

the i-th user (i ∈ I) in the k-th cluster employs the SIC

receiver Vk,i→l on its equivalent received signal ŷk,i where

ŷk,i = yk,i − hH
k,ipk

l−1
∑

j=1

sk,j . (26)

The i-th user’s estimate ŝk,i→l about sk,l becomes

ŝk,i→l = Vk,i→lŷk,i. (27)

Then, the MSE of the i-th user’s estimate of the l-th user’s

message in the k-th cluster can be written as

εk,i→l = E
{

||ŝk,i→l − sk,l||
2
}

= |Vk,i→l|
2Tk,i→l + αk,l − 2R

{

αk,lVk,i→lh
H
k,ipk

}

,
(28)

where Tk,i→l = |k,ipk|
2αk,l+rk,i→l. Given above, the optimal

MMSE receiver is

V mmse
k,i→l = arg min

Vk,i→l

εk,i→l = αk,lp
H
k hk,iT

−1
k,i→l. (29)

When this MMSE receiver in (29) is employed, the resulting

error variance expression in (28) becomes

εmmse
k,i→l =

(

1

αk,l

+ |hH
k,ipk|

2r−1
k,i→l

)−1

. (30)

As the message for the l-th user has to be decoded by all users

i for which i ≥ l in the k-th cluster, we define εmmse
k,l as

εmmse
k,l = max

i,i∈{l,...,L}
εmmse
k,i→l . (31)

Note that, by simply comparing the rate and MMSE expres-

sions in (6) and (30) we observe that

Rk,i→l = log
[

αk,lε
mmse−1

k,i→l

]

. (32)

A. Equivalent MMF WMMSE Problem

To convert (9) into an equivalent WMMSE problem, we

use the above relation between rate and MMSE. We define

the augmented weighted MSE [30] as

ξk,i→l = bk,i→lεk,i→l − log(αk,lbk,i→l), (33)

where bk,i→l > 0 is the weight for MSE. We also define the

minimum of the augmented WMSEs as

ξmmse
k,i→l , arg min

{bk,i→l,Vk,i→l}
ξk,i→l, (34)

= bmmse
k,i→l ε

mmse
k,i→l − log(αk,lb

mmse
k,i→l ). (35)

It is seen that the augmented WMSE ξk,i→l is convex in

the receiver Vk,i→l. Solving for the first order optimality

conditions in (33), we find the optimum receiver in (35) as

V ⋆
k,i→l = Vmmse

k,i→l and the optimum weights as

b⋆k,i→l = bmmse
k,i→l =

1

εmmse
k,i→l

, (36)

where the MMSE receiver V mmse
k,i→l is given in (29) and the

MMSE error variance εmmse
k,i→l is given in (30).

One can obtain the relation between rate expressions and

augmented WMSEs by checking the first order optimality

conditions [30] to find that

ξmmse
k,i→l = 1−Rk,i→l. (37)

Utilizing the equality in (37), the optimization problem in

(9) can be written as:

max
P,A,
R,Rg

Rg (38a)

s.t. Rg ≤ Rk,L, ∀k ∈ K, (38b)

Rth
k,l ≤ Rk,l, ∀k ∈ K, ∀l ∈ L̄, (38c)

Rk,l ≤ 1− ξmmse
k,i→l , ∀k ∈ K, ∀l ∈ L, ∀i ∈ I, (38d)

(8c), (8d), (38e)

where R = [R1,1, . . . , R1,L, . . . , RK,1, . . . , RK,L] is a new

auxiliary variable vector.

The optimization problem in (38) assumes that the optimal

MMSE receiver defined in (29) is employed at all users,

and finds the optimal precoders at the transmitter. Below, we

first define a generalized problem which allows for arbitrary

receivers Vk,i→l that attain εk,i→l in (28).

max
P,A,R,
Rg ,V

Rg (39a)

s.t. Rg ≤ Rk,L, ∀k ∈ K, (39b)

Rth
k,l ≤ Rk,l, ∀k ∈ K, ∀l ∈ L̄, (39c)

Rk,l ≤ 1− ξk,i→l, ∀k ∈ K, ∀l ∈ L, ∀i ∈ I, (39d)

(8c), (8d). (39e)
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The problem defined in (39) is hard to solve and there are

no closed form expressions for the optimal precoders and PAC.

Instead, in this section we propose an iterative precoder design

algorithm. To do that, we need to split this problem into two

different problems. In the first part of (39), we investigate the

optimal precoders for a given set of PAC. Then, we update

PAC using the updated precoders. For the first part we assume

A is given and solve

max
P,R,
Rg ,V

Rg (40a)

s.t. Rk,l ≤ 1− ξk,i→l, ∀k ∈ K, ∀l ∈ L, ∀i ∈ I, (40b)

(39b), (39c), (8c), (8d). (40c)

where V = [V1,1→1, . . . , VK,L→L] and b =
[b1,1→1, . . . , bK,L→L] consist of all receivers and weights

respectively. The optimization problem in (40) is convex if

either the precoder matrix P or the receiver matrix V is given.

Thus, an iterative algorithm can solve (40) sub-optimally,

starting from an initial precoder Pinit. In each iteration,

the algorithm can update V and P using a standard convex

program solver such as CVX [28].

B. Power Allocation for WMMSE

In this subsection, we discuss the optimal PAC selection for

the second part of (39) for given precoders and receivers, and

weights bk,i→l, which are already calculated using (36).

Note that, PAC in each cluster are not related with the

coefficients in other clusters, as inter-cluster power allocation

is already a part of the precoder optimization in (40). There-

fore, we can consider PAC optimization as intra-cluster power

allocation and write a simplified problem for each cluster k
as

max
A

Rk,L (41a)

s.t. Rth
k,l ≤ Rk,i→l, ∀l ∈ L̄, ∀i ∈ I, (41b)

L
∑

l=1

αk,l = 1, αk,l ≥ 0, ∀l ∈ L. (41c)

Although this problem is non-convex, we can make it affine

using (32). Then, (41) becomes

max
A

log (αk,Lbk,L→L) (42a)

s.t. Ψk,l ≤ log (αk,lbk,i→l) , ∀l ∈ L̄, ∀i ∈ I, (42b)

L
∑

l=1

αk,l = 1, αk,l ≥ 0, ∀l ∈ L. (42c)

Here, Ψk,l = Rth
k,l

3. The objective function in (42a) is

monotonically increasing in αk,L. As

αk,L = 1−

L−1
∑

l=1

αk,l, (43)

3In the next subsection, we will alter this definition.

Algorithm 2 WMMSE1: MMF Algorithm with PA

1: Init: A(0), Etx, Υ, P(0), Rth
k,l, R

(0)
g = 0, nmax, n = 0;

2: iterate ∀j, l, k;

3: n = n+ 1
4: Compute V

(n)
k,i→l using (29)

5: Compute ε
(n)
k,i→l using (28)

6: Compute b
(n)
k,i→l using (36)

7: Update
{

P
(n)
k , R

(n)
g

}

by solving (40) for given

V
(n)
k,i→l and b

(n)
k,i→l

8: Update A(n) using (46)

9: If (R
(n)
g −R

(n−1)
g )/R

(n−1)
g < Υ or n = nmax then

10: Terminate

11: else then

12: Go to Step 2

we can restate (42) as

min
A

L−1
∑

l=1

αk,l (44a)

s.t.
eΨk,l

bk,i→l

≤ αk,l, ∀l ∈ L̄, ∀i ∈ I, (44b)

αk,l ≥ 0, ∀l ∈ L. (44c)

Then, we can obtain the optimal PAC as

αopt
k,l = max

i∈I

eΨk,l

bk,i→l

, ∀l ∈ L̄. (45)

and αopt
k,L can be obtained using (43). The optimal αopt

k,l always

satisfies (44c) ∀l ∈ L̄. However, this may not be true for the

L-th user in each cluster k. Therefore, we update α
(n)
k,l as

α
(n)
k,l =

{

α
(n−1)
k,l , αopt

k,L ≤ 0

αopt
k,l , otherwise

, ∀l ∈ L. (46)

C. A Low Complexity WMMSE Solution

Algorithm 2 resorts to convex solvers in Step 7 to solve (40)

for given receivers and MMSE weights. Although, this results

in the optimal solution in Step 7, it significantly increases

computational complexity. In this subsection, we propose a

low complexity solution. As the objective function and the

constraints in (40) are all continuously differentiable, we can

make use of the KKT conditions to reduce the search space

and thus to decrease complexity.

When θk,Γk,l, ηk,i→l and β denote Lagrange multipliers,

the Lagrangian objective function of (40) is written as

h(P,R, Rg,V) = −Rg +

K
∑

k=1

θk(Rg −Rk,L)

+

K
∑

k=1

L
∑

l=1

L
∑

i=l

ηk,i→l(Rk,l − 1 + ξk,→l)

+

K
∑

k=1

L−1
∑

l=1

Γk,l(R
th
k,l −Rk,l) + β(Tr(PPH)− Etx). (47)
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The optimal precoders and the receivers have to satify the KKT

conditions for (47), and are given in the following theorem.

Theorem 1: For the optimization problem defined in (40),

the following receivers Vk,i→l, the Lagrange multiplier β, and

the transmit precoder vectors pk satisfy the KKT conditions.

Vk,i→l = αk,lp
H
k hk,iT

−1
k,i→l, (48)

β =
1

Etx

[

K
∑

k=1

L
∑

l=1

L
∑

i=l

ηk,i→lbk,i→l|Vk,i→l|
2

]

, (49)

pk =

[

βI+

L
∑

l=1

L
∑

i=l

L
∑

j=l

αk,jηk,i→lbk,i→lhk,i|Vk,i→l |
2hH

k,i

+
L
∑

t=1,t6=k

L
∑

l=1

L
∑

i=l

ηt,i→lbt,i→lht,i|Vt,i→l|
2hH

t,i

]−1

×

[

L
∑

l=1

L
∑

i=l

ηk,i→lbk,i→lαk,lhk,iV
∗

k,i→l

]

. (50)

Proof: The proof is provided in Appendix A.

Remark 1: The receiver Vk,i→l in (48) is exactly equal to

the MMSE receiver V mmse
k,i→l given in (29).

Remark 2: When the optimal MMSE receiver Vmmse
k,i→l and

the weights bmmse
k,i→l in (36) are substituted in ξk,i→l of (33),

then ξk,i→l becomes equal to ξmmse
k,i→l .

Utilizing Theorem 1, we propose solving for the receivers

(48), the Lagrange multiplier (49) and the precoders (50)

in an iterative fashion in Algorithm 3. However, calculating

the Lagrange multipliers set {θk,Γk,l, ηk,i→l, ∀i, l, k} is not

trivial. In [31], an exponential penalty method is suggested to

solve min-max type problems. According to the exponential

penalty method, in each iteration of the algorithm, we update

{θk,Γk,l, ηk,i→l} as

θk =
exp {ν (Rg −Rk,L)}

∑K
k=1 exp {ν (Rg −Rk,L)}

, ∀k ∈ K, (51)

Γk,l = exp
{

ν
(

Rth
k,l −Rk,l

)}

, ∀k ∈ K, ∀l ∈ L̄, (52)

ηk,i→l = Γk,l

exp {ν (Rk,l −Rk,i→l)}
∑L

i=l exp {ν (Rk,l −Rk,i→l)}
,

ηk,L→L = θk, ∀k ∈ K, ∀l ∈ L̄, ∀i ∈ I. (53)

In the above equations, ν is a constant and as long as

ν ≥ (logKL)/ǫ, the solution is ǫ-optimal. Note that, this

choice satisfies the KKT conditions on {θk,Γk,l, , ηk,i→l}

since
∑K

k=1 θk = 1,
∑L

i=l ηk,i→l = Γk,l, ∀l ∈ L̄ and

ηk,L→L = θk, θk ≥ 0,Γk,l ≥ 0, ηk,i→l ≥ 0.

In each iteration, Algorithm 3 increases the objective func-

tion, since there is a total power constraint. Thus, the proposed

WMMSE algorithm converges to an upper limit. This limit

is within an ǫ neighborhood of a local optimum, as the

algorithm utilizes the equations found via the KKT conditions,

and the exponential penalty method is employed. Following

similar steps as in [30, Section IV-A] and [32], one can prove

convergence in full detail.

1) Power Allocation for Low Complexity WMMSE: Algo-

rithm 2 always returns a solution at Step 7, as the CVX

approach returns the final result for (40) for given receivers

and weights. On the other hand, the low-complexity WMMSE

Algorithm 3 WMMSE2: Low Complexity MMF Algorithm

with PA

1: Init: ǫ, A(0), Etx, Υ, ∆, P(0), Rth
k,l, R

(0)
g = 0,

ν = log(KL)/ǫ, nmax, n = 0;
2: iterate ∀j, l, k;

3: n = n+ 1
4: Compute V

(n)
k,i→l using (48)

5: Compute ε
(n)
k,i→l using (28)

6: Compute b
(n)
k,i→l using (36)

7: Compute Γ
(n)
k,l using (52)

8: Compute θ
(n)
k using (51)

9: Compute η
(n)
k,i→l using (53)

10: Compute β(n) using (49)

11: Compute P(n) using (50)

12: Scale P(n) such that Tr(P(n)P(n)H ) = Etx

13: Update A(n) using (46)

14: If (R
(n)
g −R

(n−1)
g )/R

(n−1)
g < Υ or n = nmax then

15: If (38c) satisfied then

16: Terminate

17: else then

18: ν = ν +∆, Go to Step 2

19: else then

20: Go to step 2

approach may not be feasible in each iteration, as it only

provides a step in the favorable direction in each iteration.

Therefore, in Algorithm 3 at Step 12, the updated precoder

P(n) may not satisfy the threshold rate constraints in (38c),

and the algorithm may not find a feasible PAC at Step 13. One

approach would be to skip power optimization, immediately

update ν and proceed with the next iteration. However, we

choose to find the best PAC that satisfies the current achievable

rates. Thus, we update Ψk,l in (42b) in each iteration as

Ψ
(n)
k,l = min

(

Rth
k,l, R

(n)
k,l

)

. (54)

V. NUMERICAL RESULTS

In this section, we present numerical results to evaluate

the performance of the proposed transmission strategies given

in Algorithms 1, 2 and 3. We compare these algorithms

with OMA, MULP and RS in terms of MMF rates, energy

efficiency and computational complexity. All three algorithms

we propose carry out power optimization. We also compare

them with their fixed power allocation versions.

A. Orthogonal Multiple Access, Multiuser Linear Precoding

and Rate Splitting

Before presenting any simulation results, in this subsection,

we first describe the schemes used as benchmarks: OMA,

MULP and RS.

1) OMA: In OMA, the transmission time is divided into

L equal slots. The base station communicates with the l-
th strongest users in each cluster in each time slot-l. The

input data vector for time slot l is denoted as sl,OMA =
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[s1,l, . . . , sK,l]
T

∈ CK×1. We assume all sk,l are indepen-

dent and E{sk,ls
∗
k,l} = 1. The input data vector sl,OMA

is linearly processed by a precoder matrix Pl,OMA =
[pl,OMA

1 , . . . ,pl,OMA
K ] ∈ C

M×K , where the precoding vector

p
l,OMA
k ∈ CM×1 is dedicated to the k-th user in time slot-l.

The overall transmit data vector xl,OMA ∈ CM×1 at the base

station can be written as xl,OMA = Pl,OMAsl,OMA. Then,

the SINR at user-k in time slot-l is given by

γl,OMA
k =

∣

∣

∣
hH
k,lp

l,OMA
k

∣

∣

∣

2

∑K
i=1,i6=k

∣

∣

∣
hH
k,lp

l,OMA
i

∣

∣

∣

2

+ 1
(55)

and the corresponding rate expression is calculated as

ROMA
k,l = 1

L
log(1 + γl,OMA

k ).

Given these assumptions, the MMF OMA problem is equiv-

alent to providing fairness in the last time slot, while satisfying

the threshold rate constraints in earlier time slots. We can

formulize the MMF OMA optimization problem as

max
Pl,OMA,∀l∈L

min
k∈K

ROMA
k,L (56a)

s.t. Rth
k,l ≤ ROMA

k,l , ∀k ∈ K, ∀l ∈ L̄ (56b)

Tr(Pl,OMAPl,OMAH

) ≤ Etx, ∀l ∈ L. (56c)

Then, the MMF OMA rate ROMA can be calculated as

ROMA = min
k∈K

ROMA
k,L

using the optimal precoders Pl,OMA∗
, ∀l ∈ L that solve

(56). Note that precoders Pl,OMA∗
, ∀l ∈ L̄ are required

to satisfy the rate constraints in (56b), whereas PL,OMA∗

provides fairness among the strongest users in each cluster.

2) MULP: In MULP precoding, the base station transmits

data to all KL users simultaneously. The input data vector

is denoted as sMULP = [s1,1, . . . , s1,L, . . . , sK,1, . . . , sK,L]
T

∈ CKL×1. We assume all sk,l are independent and

E{sk,ls
∗
k,l} = 1. The input data vector sMULP is

linearly processed by a precoder matrix PMULP =
[pMULP

1,1 , . . . ,pMULP
1,L , . . . ,pMULP

K,1 , . . . ,pMULP
K,L ]

∈ CM×KL, where the precoding vector pMULP
k,l ∈ CM×1 is

dedicated to the l-th user in the k-th cluster. Then, the overall

transmit data vector xMULP ∈ CM×1 at the base station can

be written as xMULP = PMULP sMULP . The SINR at user-l
in the k-th cluster is given by

γMULP
k,l =

|hH
k,lp

MULP
k,l |2

∑L
j=1
j 6=l

|hH
k,lp

MULP
k,j |2 +

∑K
i=1
i6=k

∑L
l=1 |h

H
i,lp

MULP
i,l |2 + 1

,

(57)

and the corresponding rate expression is calculated as

RMULP
k,l = log(1 + γMULP

k,l ).

For a fair comparison, we assume that fairness among

the strongest users is needed while satisfying the threshold

rate constraints on other users. The MMF MULP problem is

written as

max
PMULP

min
k∈K

RMULP
k,L (58a)

s.t. Rth
k,l ≤ RMULP

k,l , ∀k ∈ K, ∀l ∈ L̄ (58b)

Tr(PMULPPMULPH

) ≤ Etx. (58c)

Then, the MMF MULP rate RMULP can be calculated as

RMULP = min
k∈K

RMULP
k,L

using the optimal precoder PMULP ∗
that solve (58).

3) 1-Layer RS: In 1-Layer RS, we use the same signal

model proposed in [23]. In this strategy, the message stream

of the l-th user in the k-th cluster is split into common and

private parts. The common part is at rate CRS
k,l and the private

part is at rate RRS
k,l . The common parts are collectively encoded

as a common message sc at rate RRS
c =

∑

k∈K

∑

l∈L CRS
k,l .

The private messages are encoded as sk,l,p. To send all

the messages, the base station encodes the input data

vector sRS = [sc, s1,1,p, . . . , s1,L,p, . . . , sK,1,p . . . , sK,L,p]
T

∈ C
(KL+1)×1 by a precoder matrix PRS =

[pRS
c ,pRS

k,1 , . . . ,p
RS
k,L, . . . ,p

RS
K,l, . . . ,p

RS
K,L]. Here, pRS

c

and pRS
k,l ∈ CM×1 respectively indicate the precoder vectors

for the common data sc and the private data sk,l,p. The

base station transmits xRS ∈ CM×1, which is equal to

xRS = PRSsRS Then, the SINR at the l-th user in the k-th

cluster for common and private data messages respectively

become

γRS
k,l,c =

|hH
k,lp

RS
c |2

∑K

i=1

∑L
l=1 |h

H
k,lp

RS
k,l |

2 + 1
, (59)

γRS
k,l,p =

|hH
k,lp

RS
k,l |

2

∑L
j=1
j 6=l

|hH
k,lp

RS
k,j |

2 +
∑K

i=1
i6=k

∑L
l=1 |h

H
i,lp

RS
i,l |

2 + 1
, (60)

and the corresponding rate expressions are calculated as

RRS
k,l,c = log(1 + γRS

k,l,c) and RRS
k,l,p = log(1 + γRS

k,l,p). As

the common rate has to be decoded by all users, we define

RRS
c = mink∈K minl∈L RRS

k,l,c. Then, the MMF RS problem

can be stated as

max
PRS

min
k∈K

(

CRS
k,L +RRS

k,L

)

(61a)

s.t. Rth
k,l ≤

(

CRS
k,l +RRS

k,l

)

, ∀k ∈ K, ∀l ∈ L̄ (61b)
∑

k∈K

∑

l∈L

CRS
k,l ≤ RRS

c , (61c)

0 ≤ CRS
k,l , ∀k ∈ K, ∀l ∈ L (61d)

Tr(PRSPRSH

) ≤ Etx. (61e)

As a result, the MMF RS rate RRS becomes

RRS = min
k,∈K

(

CRS
k,L +RRS

k,L

)

employing the optimal precoder that solves (61).

To solve all optimization problems stated for OMA, MULP

and RS, we first find their equivalent weighted MMSE prob-

lems and solve them in an iterative fashion as done in

Algorithm 2 in Section IV.
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Fig. 1. MMF rate convergence performance of proposed algorithms for M =

K = 3, L = 2, Rth
k,l

= 0.1 bpcu. Transmit SNR is set to 15 dB.

B. Assumptions

In the simulations, the entries in h̃k,l are assumed to be i.i.d.

circularly symmetric complex Gaussian random variables with

zero mean and unit variance. The path loss exponent is set to

ρ = 4. The users are uniformly distributed in a circular region

of radius 1. These users are clustered according to the scheme

proposed in [17, Algorithm 1, Figure 3]. In this clustering

scheme, the aim is to put users, which have highly different

effective channel gain magnitudes in the same cluster. For

example, for L = 2, the base station puts the user with the

highest effective channel gain magnitude in the same cluster

with the worst user among all users. The second best and and

the second worst users are grouped as a second cluster. The

remaining clusters are formed in a similar fashion. Note that

for all the NOMA schemes, the base station has to inform the

users about their order and the other users in their own cluster

so that users within a cluster can perform SIC.

For the fixed power allocation versions of Algorithms 1, 2

and 3, we assume the power allocation scheme suggested in

[17, Table 1], which assigns more power to weak users and

less power to strong users. This idea is in line with power

domain NOMA and widely used in the literature [16], [18].

This fixed power allocation vector is also used as the initial

value of A(0) in Algorithms 1, 2 and 3.

For Algorithms 1, 2 and 3, the presented results are av-

eraged over 102 channel realizations. The maximum number

of iterations nmax is limited to 100 and Υ are set to 10−3.

The transmit signal to noise ratio (SNR) is defined as Etx/σ
2.

Here σ2 is the noise variance and set to 1. For Algorithm 3, ǫ
and ∆ are set to 10−3 and 3 respectively. The parameter ∆ is

used to tune the algorithm to satisfy the rate constraint Rth
k,l.

Finally, if a particular algorithm is infeasible, we set its MMF

rate to zero to make a fair comparison among all algorithms

under consideration [20].

In the following simulation results, we consider algorithm

convergence, MMF rate and energy efficiency results for
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Fig. 2. MMF rates for different precoder schemes for M = K = 3, L = 2,
Rth

k,l
= 0.1 bpcu.
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Fig. 3. MMF rates for different precoder schemes for M = K = 4, L = 2,
Rth

k,l
= 0.1 bpcu.

different settings. Rates are expressed in terms of bits per

channel use (bpcu).

C. Simulation Results

Fig. 1 shows the convergence behavior of the proposed

schemes given by Algorithms 1, 2 and 3 with and without PA

for M = 3,K = 3, L = 2, Rth
k,l = 0.1 ∀k ∈ K, ∀l ∈ L̄, when

the total transmit power is set to 15 dB. The initial precoder

matrix, P(0) in Algorithms 1, 2 and 3 is assumed to be the

identity matrix, scaled to satisfy the power constraint. The

figure confirms that the proposed algorithms converge fast.

Figs. 2 and 3 compare MMF rates for the proposed al-

gorithms with 1-layer RS, OMA and MULP schemes for

Rth
k,l = 0.1 bits ∀k ∈ K, ∀l ∈ L̄ for M = 3,K = 3, L = 2,

and for M = 4,K = 4, L = 2 respectively. We observe

that 1-layer RS has the best performance in terms of MMF
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RUN TIME IN SECONDS

ALGORITHM M = K = 3, L = 2 M = K = 4, L = 2

WMMSE2 6.38 13.42

WMMSE2 w/PA 38.35 51.52

SDR/SCA 442.13 591.21

SDR/SCA w/PA 491.23 677.29

WMMSE1 2134.45 3743.80

WMMSE1 w/PA 2752.55 4167.50

1-layer RS 60457.80 75994.30

TABLE I
COMPLEXITY OF ALGORITHMS

rates. It can effectively mitigate interference by adjusting the

common message rate. Algorithm 1 (SDR/SCA w/PA) has

similar performance with 1-layer RS and as SNR increases the

gap between the two algorithms diminish. Both Algorithms 2

(WMMSE1 w/PA) and 3 (WMMSE2 w/PA) perform worse

than Algorithm 1. This is because semi-definite program-

ming with successive convex approximation is an effective

approximation. In each iteration, the constraints in (23b)

and (23c) become tighter and (23) approaches the original

optimization problem in (8). As expected, Algorithms 2 and 3

have similar results. All algorithms are several dB better than

their fixed power allocation versions (SDR/SCA, WMMSE1,

WMMSE2). MULP is very inefficient in interference manage-

ment, and displays very poor performance. The MMF rate for

MULP converges for high SNR.

From Figs. 2 and 3 we also observe that all Algorithms

1, 2 and 3 (with or without power allocation) and the RS

scheme present full degrees of freedom (DoF); i.e. 1. DoF

is calculated as the MMF rate (in bpcu) over log2 SNR [33].

While OMA can accommodate all users in each time slot,

it suffers from time division and its DoF is limited with

0.5. Although a detailed DoF analysis is out of the scope

of this paper, we conjecture that the DoF for MULP for the

overloaded settings in Figs. 2 and 3 is 0. This is because,

the MMF rate calculation for MULP is similar to the MMF

rate calculation for the designated beamforming scheme in the

multigroup multicasting scenario examined in [33]. For the

latter, the DoF is proved to be 0 either for M = 3 and there

are 3 groups with 2 users each or for M = 4 and there are 4

groups with 2 users each.

Figs. 2 and 3 should be interpreted together with the com-

plexity results given in Table I. Table I shows the complexity of

all the algorithms under consideration. We observe that Algo-

rithm 3 has the least complexity either with or without power

optimization. For Algorithms 1, 2 and 3, power optimization

does not change algorithm complexity and run time values are

on the same order. Although 1-layer RS has the highest MMF

rates in Figs. 2 and 3, it also has the highest complexity. The

run time for 1-layer RS is 3-4 orders of magnitude larger than

the run time for Algorithm 3, which is based on the closed

form expressions of Theorem 1. Algorithm 2 has 2 orders

of magnitude larger complexity than Algorithm 3 either with

or without power optimization. As they achieve similar MMF

rates, we conclude that Algorithm 3 is more advantageous than

Algorithm 2. In conclusion, 1-layer RS has the best MMF

rate performance, Algorithm 3 has the least complexity, and
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Fig. 4. MMF rates for different precoder schemes for M = 6, K = 3, L = 2,
Rth

k,l
= 0.1 bpcu.

Algorithm 1 provides a good tradeoff between complexity and

MMF rates. It performs almost the same as 1-layer RS in MMF

rates, and its complexity is only an order of magnitude larger

than that of Algorithm 3.

Note that, while solving (61) with the MMSE approach,

one could apply the KKT optimality conditions and the

ordinary penalty method, instead of calling for CVX. However,

the common and private rate expressions for rate splitting

are complex and numerous, and finding the expressions the

optimal precoders, receivers, weights and Lagrange multipliers

as in Theorem 1 is complicated, keeping the complexity for

1-layer RS high.

Figs. 2 and 3 are for overloaded systems. Fig. 4 shows how

the MMF rates change, when M is at least as large as KL.

In the figure M = 6, K = 3 and L = 2 and Rth
k,l = 0.1

bpcu ∀k ∈ K and ∀l ∈ L̄. For this setting, the system is not

overloaded, intense interference mitigation is not necessary,

and benefits of rate splitting is less. Thus, SDR/SCA and

WMMSE based schemes with or without power optimization

are closer to 1-layer RS. RS and all the algorithms have

full DoF equal to 1. OMA, by definition, still suffers from

time division and its DoF is limited with 0.5. As the number

of base station antennas is sufficient to serve all the users

simultaneously, MULP also presents full DoF. This result is

expected because the DoF for the designated beamforming

scheme in [33] is proved to be 1, when there is a single user

in each group and the number of base station antennas is equal

to the number of groups. However, MULP does not achieve

this performance easily, its DoF result does not converge until

30 dB or higher. MULP is quite inefficient in interference

mitigation and the additional threshold rate constraints for the

weakest users in each group makes the MULP problem in (58)

harder to solve especially for low to medium SNR.

Fig. 5 shows that MMF rates decrease, when the threshold

rates Rth
k,l, which is assumed to be the same ∀k ∈ K and

∀l ∈ L̄, increase from 0.1 to 0.4 bpcu for M = 3, K = 3
and L = 2. The transmit SNR is set to 15 dB. Note that,
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3, L = 2. Transmit SNR is set to 15 dB.
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Fig. 6. MMF rates for different precoder schemes for M = 2,K = 2, L =

{2, 3, 4}, Rth
k,l

= 0.1 bpcu.

one could expect MMF rate for OMA to be constant with

increasing SNR. Time is divided into slots and all the strongest

users are served in the last time slot, seemingly unaffected

from all the other users. However, unless all the threshold

rate constraints are satisfied, OMA is infeasible and MMF

rate for OMA is zero. Therefore, MMF rate for OMA also

decreases with increasing Rth
k,l. MULP rates decrease much

faster than other schemes as the feasible set quickly shrinks

with increasing Rth
k,l.

Fig. 6 presents the effect of increasing number of users in

each cluster for M = 2,K = 2, L = {2, 3, 4}, Rth
k,l = 0.1

bpcu ∀k ∈ K and ∀l ∈ L̄. The decrease in MMF rates for

1-layer RS is much slower than all the other schemes as it

provides excellent interference mitigation.

Finally, in Fig. 7, we compare all the schemes in terms of
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Fig. 7. Energy efficiency for different precoder schemes for M = K =

3, L = 2, Rth
k,l

= 0.1 bpcu.

energy efficiency. Energy efficiency is defined as

EE =

∑

k∈K

∑

l∈L Rk,l

Tr (PPH)
(62)

for all precoding schemes. We observe that Algorithm 1 has

the same energy efficiency as 1-layer RS. The results show

that the gap between the algorithms are smaller. Together with

the results in Figs. 2 and 3, and Table I, we conclude that

SDR/SCA with power allocation is an excellent scheme with

high MMF rates, low complexity and high energy efficiency.

VI. CONCLUSION

We consider a joint precoder and power allocation design

problem in downlink MIMO-NOMA to achieve max-min fair-

ness among the strongest users in each cluster, while satisfying

threshold rate constraints for all the other users. We propose 3

algorithms: (i) SDR/SCA, (ii) WMMSE1 and (iii) WMMSE2.

The first algorithm is based on semi-definite relaxation and

successive convex approximation, and the latter two are based

on the relation between rate and minimum mean square error.

WMMSE2 incorporates further simplifications in WMMSE1

based on the KKT optimality conditions and the ordinary

penalty method. We compare our results with RS, OMA and

MULP schemes. The results reveal that SDR/SCA scheme

offers high MMF rates and superior energy efficiency at very

low complexity. Future work includes designing precoders for

imperfect channel state information and for finite block length

channel coding.

APPENDIX A

In this appendix, we prove Theorem 1. Taking the derivative

of the objective function h in (47) with respect to Vk,i→l, then
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equating it to zero, we obtain

αk,lp
H
k hk,i =

L
∑

j=l

αk,jh
H
k,ipkp

H
k hk,iVk,i→l

+
K
∑

t=1,t6=k

hH
k,iptp

H
t hk,iVk,i→l + Vk,i→l.

(63)

Then, when ηk,i→l > 0,

Vk,i→l = αk,lp
H
k hk,iT

−1
k,i→l. (64)

Secondly, taking the gradient of (47) with respect to pH
k , and

equating it to zero, we have the following equation

L
∑

l=1

L
∑

i=l

ηk,i→lbk,i→lhk,iV
∗
k,i→lαk,l

=

L
∑

l=1

L
∑

i=l

L
∑

j=l

αk,jηk,i→lbk,i→lhk,iV
∗
k,i→lVk,i→lh

H
k,ipk

+

K
∑

t=1
t6=k

L
∑

l=1

L
∑

i=l

ηt,i→lbt,i→lht,i|Vt,i→l|
2hH

t,ipk + βpk.

(65)

Then,

pk =

[

βI+

L
∑

l=1

L
∑

i=l

L
∑

j=l

αk,jηk,i→lbk,i→lhk,i|Vk,i→l|
2hH

k,i

+

K
∑

t=1,t6=k

L
∑

l=1

L
∑

i=l

ηt,i→lbt,i→lht,i|Vt,i→l|
2hH

t,i

]−1

×

[

L
∑

l=1

L
∑

i=l

αk,lηk,i→lbk,i→lhk,iV
∗
k,i→l

]

. (66)

To calculate β, we post-multiply both sides of (63) by

V ∗
k,i→lηk,i→lbk,i→l and perform

∑K
k=1

∑L
l=1

∑L
i=l on both sides. We also pre-multiply (65)

with pH
k and sum over k, k = {1, 2, . . . ,K}. After calculating

the trace of these two resulting equations, we observe that the

left sides of both equations are equal. Then, the right sides

are also equal to each other. As we assume that the power

constraint in (2) is satisfied with equality we can find that

β =
1

Etx

[

K
∑

k=1

L
∑

l=1

L
∑

i=l

ηk,i→lbk,i→l|Vk,i→l|
2

]

. (67)
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