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Abstract

In this letter, precoding for max-min fairness (MMF) for multi-group multicasting with a common

message is studied. The MMF problem is converted into a weighted mean square error minimization

problem. A rate-splitting solution is proposed. In rate-splitting, multicast messages for each group are

divided into private and common parts, and these common parts, together with the original common

message are combined as a super common message. This super common message is superposed on or

concatenated to the private multicast data vector, or it is transmitted via a mixed scheme. Simulations

show that RS demonstrates significant gains especially in overloaded systems.

Index Terms

Common message, max-min fairness, multi-group multicasting, multiple-input multiple-output, pre-

coding design, rate-splitting.

I. INTRODUCTION

In emerging applications such as intelligent transportation and public warning systems, on-

demand video, and applications for machine type communications, groups of users require the

same messages. To utilize system resources efficiently, these messages should be precoded in a

multicast fashion [1]–[3], specially designed for each network topology. In state-of-the-art, long

term evolution (LTE) systems, multicasting is achieved via the enhanced multimedia broadcast

multicast service (eMBMS) interface [4]. For fifth generation (5G) and beyond, it is essential to

advance these interfaces and the physical layer techniques to account for multigroup multicasting

as well.

Multi-group multicasting is first studied in [5]. Two optimization problems for multi-group

multicasting, minimizing transmission power under quality of service (QoS) constraints, and

http://arxiv.org/abs/1910.08760v1


2

maximizing fair rate under a total power constraint, are solved in [6]. This work is extended

for per antenna power constraints in [7]. Rate-splitting (RS) for multi-group multicasting is

proposed in [8] for better inter-group interference management. Multi-group multicasting with a

common message is studied in [9], and superposition coding is suggested as an efficient method

to transmit the common message. RS in a multiple input single output broadcast channel with a

common message is investigated in [10]. It shown that the successive interference cancellation

(SIC) architecture needed to separate the common message from the unicast streams can be

used more efficiently by adopting an RS based transmission strategy that encodes the common

message and part of the unicast messages into a super common message.

In this letter, we build upon the benefits demonstrated in [8]–[10] and look at RS in multi-

group multicasting with a common message. Compared to [8], this letter considers the presence

of a common message. Compared to [9], this letter considers an RS strategy. Finally, when

compared to [10], this letter considers multi-group multicasting. Moreover, in this letter, precoders

are designed based on RS and superposition ideas and three different schemes are compared:

(i) the super common message is superposed on the multicast messages, (ii) the super common

message is concatenated to the multicast message vector, and (iii) the super common message

is transmitted via a combination of both. The results show that RS introduces significant gains

in overloaded systems; i.e. when the total number of users is larger than the number of transmit

antennas.

The rest of the letter is organized as follows. The system model is described in Section II.

The optimization problem is defined in Section III. Simulation results are presented in Section

IV, and the letter is concluded in Section V.

II. SYSTEM MODEL

We consider a wireless system comprising of a single base station equipped with M antennas

and N single-antenna receivers indexed by the set N , {1, ..., N}. Receivers are grouped into

the K multicast groups G1, . . . ,GK , where Gk is the set of receivers belonging to the kth group,

k ∈ K, K , {1, ..., K}, and 1 ≤ K ≤ N . It is assumed that each receiver belongs to exactly

one group. Thus
⋃

k∈K Gk = N and Gk
⋂

Gj = ∅, ∀k, j ∈ K and k 6= j. Denoting the size of

the kth group by Gk = |Gk|, it is assumed without loss of generality that group sizes are in an

ascending order, i.e. G1 ≤ G2 ≤ . . . GK . To map users to their respective groups, we define

µ : N → K such that µ(n) = k for all n ∈ Gk.
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The base station wants to transmit a system-wide common message Sc intended for all N users

and K multicast messages S1, . . . , SK intended for different groups. Using RS, the multicast

message Sk intended for group k is split into a common part Sc,k and a private part Sp,k,

∀k ∈ K. The common parts of the multicast messages Sc,1, . . . , Sc,K are encoded along with

the system-wide common message Sc as a super-common message S0 = Sc

⋃

Sc,1

⋃

. . .
⋃

Sc,K .

This super common message is required to be decoded by all users. Note that S0 includes not

only the common message, but parts of the multicast messages intended for different groups.

The super-common message S0 and the private parts of the multicast messages Sp,1, . . . , Sp,K

are independently encoded into s0, sp,1, . . . , sp,K .

Superposition Coding Scheme (SC): In the first signal model, the base station employs a

2-layer superposition coding scheme, where the base layer carries the super common message

and the enhancement layer carries the private parts of the multicast data. The input data vector

is denoted as sSC = sSC0 + sSCp , where sSC0 = [s0, . . . , s0]
T ∈ CK and sSCp = [sp,1, . . . , sp,K]

T

∈ CK . We assume s0 and all sp,k are independent and E{s0s∗0} = α and E{sp,ks∗p,k} = ᾱ.

Here, ᾱ = 1−α and α is the ratio of power allocated to the super-common data. The input data

vector sSC is linearly processed by a precoder matrix PSC = [pSC
1 , . . . ,pSC

K ]. Each precoding

vector pSC

k ∈ CM is of size M × 1.

Concatenation Coding Scheme (CC): In this scheme, the input data vector is defined as

sCC = [s0, sp,1, . . . , sp,K]
T ∈ CK+1, where s0 and sp,k are the same as in the SC model. We

assume s0 and all sp,k are independent and E{|s0|2}=1 and E{sp,ks∗p,k} = 1. The input data

vector sCC is linearly processed by a precoder matrix PCC = [pCC
0 ,pCC

1 , . . . ,pCC

K ], where both

the precoding vector pCC

k for each private multicast message and pCC
0 for the super-common

message are of size M × 1.

Mix Coding Scheme (MC): Finally, in the third scheme, the input data vector is defined as

sMC = [s0, sp,1 + s0, . . . , sp,K + s0]
T ∈ CK+1. We assume s0 and all sp,k are independent and

E{s0s∗0} = α and E{sp,ks∗p,k} = ᾱ. The input data vector sMC is linearly processed by a

precoder matrix PMC = [pMC
0 ,pMC

1 , . . . ,pMC
K ], where both the precoding vector pMC

k for each

multicast data and pMC
0 for super-common data are of size M × 1.

Then, for the transmission schemes m∈{SC,CC,MC} the overall transmit data vector x ∈ CM

can be written as

xm = Pmsm = pm

As0 +
∑

k∈K

pm

k sp,k. (1)
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Here, pSC

A =
∑

k∈K pSC

k , pCC

A = pCC
0 and pMC

A = pMC
0 +

∑

k∈K pMC

k . Then, the average total power

constraint at the BS, E{xHx}, can be written as

Bm‖pm

A‖
2 + Cm

∑

k∈K

‖pm

k ‖
2 ≤ Etx. (2)

In (2), (BSC, CSC) = (α, ᾱ), (BCC, CCC) = (1, 1) and (BMC, CMC) = (α, ᾱ). The received signal

for the m-th scheme at user-n can be expressed as

ymn = hH
n p

m

As0 +
∑

k∈K

hH
n p

m

k sp,k + zn. (3)

In (3), hn ∈ C
M is the channel gain vector of the n-th user. The entries in hn and the noise

component zn are assumed to be independent and identically distributed (i.i.d.). We assume

perfect channel state information at the transmitter and the receivers (CSITR).

A. Achievable Data Rates

In this system, all users decode the super-common message. In addition to this, each user

subtracts this super-common message from its received signal to decode its private multicast

message using SIC. Then, the achievable rate for super-common and private multicast messages

for the n-th user for scheme m are respectively defined as Rm
0,n and Rm

p,n are given as

Rm

0,n = log
(

1 +Bmrm
−1

0,n

∣

∣hH
n p

m

A

∣

∣

2
)

, (4)

Rm

p,n = log
(

1 + Cmrm
−1

p,n

∣

∣hH
n p

m

µ(n)

∣

∣

2
)

. (5)

Here rm0,n and rmp,n are the effective noise variances for the super-common and private multicast

data at the n-th user for scheme m. They can be calculated as

rm0,n =
∑

k∈K

Cm
∣

∣hH
n p

m

k

∣

∣

2
+ 1, (6)

rmp,n = rm0,n − Cm
∣

∣hH
n p

m

µ(n)

∣

∣

2
. (7)

Then, the overall achievable rate for the super-common message is determined by the minimum

of all Rm
0,n, n ∈ N , and the achievable rate for private multicast message for group k, sp,k, is

determined by the minimum of all Rm
p,n, n ∈ Gk. Thus, we also define

Rm

0 = min
n∈N

Rm

0,n, (8)

Rm

k = min
n∈Gk

Rm

p,n. (9)

Note that, the achievable rate for the super-common message, Rm
0 , can also be written as a sum

of all common rates; i.e. the rate of Sc and Sc,k, ∀k, as follows:
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Rm

c +
∑

k∈K

Rm

c,k = Rm

0 . (10)

B. MSE Expressions

In this subsection, we will utilize the one-to-one correspondence between mutual information

and minimum mean square error [11], [12] to express the rates in (4) and (5) in terms of the

MMSE values.

For MSE estimation, the n-th user first processes its received signal ymn , with the super-

common data receiver Wm
n to form an estimate of s0, denoted as ŝ0,n = Wm

n ymn . Assuming

perfect successive interference cancellation, in the second stage, the n-th user forms an estimate

for the private multicast message sp,k as ŝp,k = V m
n

(

ymn − hH
n p

m

As0
)

.

The MSE expressions of super-common and private multicast data for the n-th user for scheme

m are respectively defined as εm0,n = E
{

‖ŝ0,n − s0‖
2}

, and εmp,n = E

{

∥

∥ŝp,n − sp,µ(n)
∥

∥

2
}

, and

for perfect SIC, their closed form expressions can be written as

εm0,n = |Wm

n |
2

(

Bm|hH
n p

m

A|
2 +

∑

k∈K

Cm|hH
n p

m

k |
2 + 1

)

− 2R
{

BmWm

n hH
n p

m

A

}

+Bm, (11)

εmp,n = |V m

n |
2

(

∑

k∈K

Cm|hH
n p

m

k |
2 + 1

)

− 2R
{

CmV m

n hH
n p

m

µ(n)

}

+ Cm. (12)

When these MSE values attain their minimum, the corresponding receivers are called the optimal

MMSE receivers and are defined as Wm,opt
n = argminWn

εm0,n and V m,opt
n = argminVn

εmp,n. The

closed form expressions for these MMSE receivers are then calculated as

Wm,opt
n = BmpmH

A hn

(

Bm
∣

∣hH
n p

m

A

∣

∣

2
+ rm0,n

)−1

, (13)

V m,opt
n = Cmp

(m)H

µ(n) hnr
m−1

0,n . (14)

Given that these MMSE receivers in (13) and (14) are employed, the resulting error variance

expressions in (11) and (12) become

εm,min
0,n =

(

1

Bm
+ rm

−1

0,n

∣

∣hH
n p

m

A

∣

∣

2
)−1

, (15)

εm,min
p,n =

(

1

Cm
+ rm

−1

p,n

∣

∣hH
n p

m

µ(n)

∣

∣

2
)−1

. (16)
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Comparing (4) and (5) with (15) and (16) we can write

Rm

0,n = − log
(

εm,min
0,n Bm−1

)

, (17)

Rm

p,n = − log
(

εm,min
p,n Cm−1

)

. (18)

III. PROBLEM DEFINITION

In this section, we define an optimization problem which aims to find the optimal precoders

Pm such that the minimum of all cluster rates is maximized subject to a total power constraint

and a minimum rate constraint for the common rate. This RS MMF problem is defined as

arg max
Pm,Rm

c

min
k∈K

(

Rm

c,k +min
i∈Gk

Rm

p,i

)

(19)

s.t. Rm

c +
∑

k∈K

Rm

c,k ≤ Rm

0,n, ∀n ∈ N , (19a)

0 ≤ Rm

c,k, ∀k ∈ K, (19b)

Rth
c ≤ Rm

c and (2) (19c)

where Rm
c = [Rm

c , R
m
c,1, . . . , R

m
c,K ] and Rth

c is the threshold rate constraint on the common

message. We now convert this problem into an equivalent problem as

arg max
Pm,Rm

c ,R
m

k
,Rm

g

Rm

g (20)

s.t. Rm

g ≤ Rm

c,k +Rm

k , ∀k ∈ K, (20a)

Rm

k ≤ Rm

p,i, ∀i ∈ Gk, ∀k ∈ K, (20b)

(19a), (19b) and (19c). (20c)

where Rm

k = [Rm
1 , . . . , R

m

K ], and Rm
g and Rm

k are introduced as auxiliary variables to convert the

problem.

The MMF problem defined in (20) is non-convex due to the non-convex rate expressions.

We solve this problem in an iterative fashion, utilizing the relation between mutual information

(rate) and MMSE. To do that, we introduce the augmented weighted MSEs (WMSE) defined

for the n-th user for the m-th signal model as:

ξm0,n = wm

n ε
m

0,n − log2(B
mwm

n ), (21)

ξmp,n = vmn ε
m

p,n − log2(C
mvmn ), (22)

where wm
n , v

m
n > 0 are the corresponding weights. Then, the minimum of the augmented WMSEs,
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defined as

ξm,min
0,n , min

wm
n ,Wm

n

ξm0,n, (23)

ξm,min
p,n , min

vmn ,V m
n

ξmp,n (24)

can be proved to be related with the rate expressions Rm
0,n and Rm

p,n as

ξm,min
0,n = 1− Rm

0,n, (25)

ξm,min
p,n = 1−Rm

p,n. (26)

This result is obtained by checking the first order optimality conditions. By closely examining

each augmented WMSE, it can be seen that ξm0,n and ξmp,n are respectively convex in Wm
n and

V m
n . Then, the optimum receivers in (23) and (24) can be found as Wm⋆

n = Wm,opt
n of (13), and

V m⋆
n = V m,opt

n of (14), and the optimum weights are found as

wm⋆
n = wm,min

n = 1/εm,min
0,n , (27)

vm⋆
n = vm,min

n = 1/εm,min
p,n , (28)

where εm,min
0,n and εm,min

p,n are respectively given in (15) and (16).

A. Equivalent WMSE Problem

Motivated by (25) and (26), an equivalent WMSE reformulation for problem (20) can be

written as:

max
Pm,Rm

c ,R
m

k
,Rm

g ,

Wm,Vm,wm,vm

Rm

g (29)

s.t. Rm

g ≤ Rm

c,k +Rm

k , ∀k ∈ K, (29a)

Rm

k ≤ 1− ξmp,i, ∀i ∈ Gk, ∀k ∈ K, (29b)

Rm

c +
∑

k∈K

Rm

c,k ≤ 1− ξm0,n, ∀n ∈ N , (29c)

(19b) and (19c). (30)

In problem (29), Wm = [Wm
1 , . . . ,Wm

N ], Vm = [V m
1 , . . . , V m

N ], wm = [wm
1 , . . . , w

m

N ] and vm =

[vm1 , . . . , v
m
N ]. The WMSE problem in (29) is also a non-convex problem. We solve this problem

via an alternating optimization (AO) algorithm given in Algorithm 1. In Algorithm 1, in each

iteration, the receivers Wm, V m and the weights wm, vm are updated for a given precoder.

Afterwards, the precoder Pm is updated by solving the problem in (29) for the given, newly found

receivers and weights. Note that, in each iteration, the problem is convex when the receivers and
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Algorithm 1 Proposed WMSE Based Algorithm

1: Initialize: α, ǫ, Etx, Pm, Rth
c , n = 1, R

(0)
g , R

(−1)
g ← 0

2: while
∣

∣R
(n−1)
g −R

(n−2)
g

∣

∣ > ǫ do

3: Compute Wm
n and V m

n by (13) and (14) for given Pm

4: Compute εm0,n and εmp,n by (11) and (12) for given Pm

5: Compute wm,opt
n and vm,opt

n by (27) and (28)

6: Update Pm solving (29) for given Wm
n , V m

n , wm
n , vmn

7: R
(n)
g ← output of the optimization (29)

8: n← n+ 1

9: end while

weights are fixed. Moreover, the algorithm converges to a local optimum. The upper bound on

the total power constraint, limits the objective function from above. Since the objective function

increases in each iteration of the algorithm, it converges to a local optimum.

IV. SIMULATION RESULTS

In this section we provide simulation results to compare the three different precoding schemes.

To emphasize that RS is employed in the precoding schemes, in the figures we denote these

precoders as RS− SC, RS− CC and RS−MC for signal models SC, CC and MC respectively. We

also compare these schemes with their counterparts with no RS and denote them as noRS−m,

m = SC,CC,MC. In the simulations, the entries in hn are assumed to be circularly symmetric

complex Gaussian distributed random variables with zero mean and unit variance, and are i.i.d..

Similarly, the noise components zn, n = 1, ..., N are i.i.d. circularly symmetric complex Gaussian

random variables with zero mean and unit variance. The presented results are averaged over 100

channel realizations. Ideal Gaussian codebooks are assumed. To solve (29) in Algorithm 1, CVX

toolbox [13] is used. In addition, we define the transmit SNR as Etx.

In Figs. 1 and 2, we consider a multi-group multicasting system respectively with M = 6 and

M = 2 transmit antennas in which N = 6 users are split into K = 3 groups with G1 = 1, G2 = 2

and G3 = 3 users in each group. In both figures, Rth
c is satisfied for all channel realizations, and

the system-wide common message rate is equal to Rth
c .

The system in Fig. 1 represents an underloaded system. It is observed that the proposed RS

schemes and no RS schemes with a system-wide common message have almost the same perfor-



9

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

Transmit SNR[dB]

R
at

e 
(b

its
/c

ha
nn

el
 u

se
)

 

 

RS−MC
RS−CC
RS−SC
NoRS−MC
NoRS−CC
NoRS−SC

R
c
th

Fig. 1. MMF Rate for M = 6, N = 6,K = [1, 2, 3], Rth
c = [0.5]. Optimal α is chosen for SC and MC schemes.

mance. On the other hand, Fig. 2 shows the results for an overloaded multi-group multicasting

system. In overloaded systems, interference management is crucial since the number of transmit

antennas is insufficient to serve all the users. In this figure, it is shown that RS is essential

for managing inter-group interference. There is a significant difference between RS and NoRS

schemes. While NoRS schemes saturate in the interference limited region (high SNR), the MMF

rate for RS schemes keeps increasing. Results confirm that observations of [8] on the usefulness

of RS in an overloaded multi-group multicast also carries on to the case where a common

message is additionally transmitted.

Fig. 2 also shows that when RS schemes are compared with each other in terms of their MMF

rates, the MC scheme is the best, and CC performs better than SC. However, when they are

compared in terms of their complexities, CC scheme is the best. This is because the optimal α

has to be found for MC and SC, while CC does not depend on the α parameter.
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Fig. 2. MMF Rate for M = 2, N = 6,K = [1, 2, 3], Rth
c = [0.3]. Optimal α is chosen for SC and MC schemes.

V. CONCLUSION

This letter investigates precoding for maximizing the minimum of all cluster rates in a multi-

group multicasting system with a system-wide common message. Three different precoding

schemes based on rate-splitting are suggested and an alternating optimization procedure is

proposed to solve for the maximally fair cluster rate. The proposed schemes are compared

with their counterparts with no rate-splitting. Simulation results show that rate-splitting is an

essential precoding technique especially in overloaded systems.
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[11] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum mean-square error in Gaussian channels,” IEEE

Transactions on Information Theory, vol. 51, no. 4, pp. 1261–1282, 2005.

[12] S. S. Christensen, R. Agarwal, E. D. Carvalho, and J. M. Cioffi, “Weighted sum-rate maximization using weighted MMSE

for MIMO-BC beamforming design,” IEEE Transactions on Wireless Communications, vol. 7, no. 12, pp. 4792–4799,

December 2008.

[13] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx,

Mar. 2014.

http://cvxr.com/cvx

	I Introduction
	II System Model
	II-A Achievable Data Rates
	II-B MSE Expressions

	III Problem Definition
	III-A Equivalent WMSE Problem

	IV Simulation Results
	V Conclusion
	References

