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Abstract (124/150 words) 18 

Developmental trajectories of gene expression may reverse in their direction during ageing, a 19 

phenomenon previously linked to cellular identity loss. Our analysis of cerebral cortex, lung, liver and 20 

muscle transcriptomes of 16 mice, covering development and ageing intervals, revealed widespread 21 

but tissue-specific ageing-associated expression reversals. Cumulatively, these reversals create a 22 

unique phenomenon: mammalian tissue transcriptomes diverge from each other during postnatal 23 

development, but during ageing, they tend to converge towards similar expression levels, a process 24 

we term Divergence followed by Convergence, or DiCo. We found that DiCo was most prevalent 25 

among tissue-specific genes and associated with loss of tissue identity, which is confirmed using data 26 

from independent mouse and human datasets. Further, using publicly available single-cell 27 

transcriptome data, we showed that DiCo could be driven both by alterations in tissue cell type 28 

composition and also by cell-autonomous expression changes within particular cell types. 29 
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Introduction 33 

 34 

Development and ageing in multicellular organisms are highly intertwined processes. On the one 35 

hand, certain ageing-related phenotypes, such as presbyopia and osteoporosis (Luegmayr et al. 36 

2004) are believed to represent the continuation of developmental processes into adulthood 37 

(Blagosklonny 2006; de Magalhães and Church 2005)). Such cases of “runaway development” or 38 

higher than optimal function during ageing (recognized as the hyperfunction theory of ageing (Gems 39 

and Partridge 2013)), may arise due to declined natural selection pressure failing to optimise 40 

expression regulation after sexual reproduction starts (Fisher, 1930; Medawar, 1953; Williams, 1957). 41 

Indeed, recent experimental studies in C. elegans show that senescence phenotypes promoted by 42 

insulin-IGF-1 signalling pathways support the hyperfunction theory (Lind et al. 2019; Ezcurra et al. 43 

2018)). On the other hand, molecular studies have also reported a reversal of the ageing 44 

transcriptome towards pre-adult levels in various contexts, including primate brain regions (Somel et 45 

al. 2010; Dönertaş et al. 2017; Colantuoni et al. 2011), and mouse liver and kidney (Anisimova et al. 46 

2020). Studying the functional consequences of this reversal pattern in the ageing human brain, we 47 

previously interpreted it as an indication of loss of cellular identity in neurons, possibly exacerbated by 48 

a reduction in the relative frequencies of neurons (Dönertaş et al. 2017). Such changes, in turn, could 49 

be caused by the accumulation of stochastic damage at the genetic, epigenetic, and proteomic levels 50 

over an adult lifetime, causing deregulation of gene expression networks.  51 

 52 

Several major questions remain. First, the prevalence of reversal phenotypes across tissues is 53 

unclear, as most research has been conducted in the brain (Somel et al. 2010; Dönertaş et al. 2017). 54 

A second question pertains to the similarity of reversal-exhibiting genes and pathways across tissues. 55 

Ageing-related expression changes are partly shared among organs (Zahn et al. 2007), and reversal 56 

trends are also shared across different regions of the primate brain (Dönertaş et al. 2017). Distinct 57 

tissues might hence show parallel reversal patterns. Alternatively, as mammalian tissues diverge from 58 

each other during development in their transcriptome profiles (Cardoso-Moreira et al. 2019), one may 59 

hypothesise that during ageing, tissues converge back toward similar transcriptome profiles. Such a 60 

putative late-age convergence phenomenon would be consistent with the notion of ageing-related 61 

cellular identity loss (Yang et al. 2019; Dönertaş et al. 2017). A final question concerns the 62 
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mechanism behind the observed reversal trends at the bulk tissue level. Specifically, the contribution 63 

of cell type composition and cell-autonomous changes to the reversals at the tissue level remains 64 

unexplored.  65 

 66 

Documenting the reversal phenomenon is critical to better understand the proximate mechanisms of 67 

mammalian ageing, and its ultimate mechanisms, such as the stochastic disruption versus continued 68 

expression of developmental genes. However, such work has been limited by the scarcity of studies 69 

that include both development and ageing periods of the same organism and across different tissues. 70 

This work presents an age-series analysis of bulk transcriptome profiles of mice, including samples of 71 

four tissues across postnatal development and ageing periods covering the whole postnatal lifespan. 72 

Using this dataset, we study the prevalence, mechanisms, and functional consequences of the 73 

reversal phenomenon in different mouse tissues. We further test the related hypothesis of tissue 74 

convergence during ageing and investigate the contribution of cell type composition and cell-75 

autonomous changes. 76 

 77 

Results 78 

 79 

We generated bulk RNA-seq data from 63 samples covering the cerebral cortex (which we refer to as 80 

cortex), liver, lung, and skeletal muscle (which we refer to as muscle) of 16 male C57BL/6J mice, 81 

aged between 2 to 904 days of postnatal age (Methods). As mice reach sexual maturity by around 82 

two months (Tacutu et al. 2018), we treated samples from individuals aged between 2 and 61 days 83 

(n=7) as the development series, and those aged between 93 and 904 days (which roughly 84 

correspond to 80-year-old humans (Flurkey, M. Currer, and Harrison 2007)) (n=9) as the ageing 85 

series (Figure 1-figure supplement 1). The final dataset contained n=15,063 protein-coding genes 86 

expressed in at least 25% of the 63 samples (one 904 days old mouse lacked cortex data).  87 

 88 

Tissues diverge during postnatal development. Consistent with earlier work (Brawand et al. 2011; 89 

Cardoso-Moreira et al. 2019), we found that variation in gene expression is largely explained by tissue 90 

differences, such that the first three principal components (PCs) separate samples according to tissue 91 

(ANOVA p<10
-20

 for PC1-3, Figure 1-source data), with the cortex most distant from the others 92 
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(Figure 1a). Meanwhile, PC4, which explains 8% of the total variance, displayed a shared age-effect 93 

across tissues in development (Spearman’s correlation coefficient ⍴=[-0.88, -0.99], nominal p<0.01 for 94 

each test; Figure 1b). Also, after the tissue effect was removed by standardisation, principal 95 

components analysis (PCA) showed a strong influence of age on the first two PCs, which explains 96 

31% of the variance in total (Figure 1-figure supplement 2). We further observed higher similarity 97 

among tissues at the juvenile stage compared to the young-adult stage. In other words, distances 98 

between tissues increased with age (change in mean Euclidean distance among tissues with age 99 

during development in PC1-PC4 space ⍴dev=0.99, pdev=1.5x10
-5

, Figure 1-source data), which 100 

resonates with previous reports of inter-tissue transcriptome divergence during development 101 

(Cardoso-Moreira et al. 2019). This divergence pattern was also observed when PCA was performed 102 

with developmental samples only (days 2 to 61: change in mean Euclidean distance among tissues in 103 

PC1-PC4 space; ⍴=0.95, p=0.0008; Figure 1-figure supplement 3a-b).   104 

 105 

Tissues involve common gene expression changes with age. We next characterised age-related 106 

changes in gene expression shared across tissues by i) studying overall trends at the whole 107 

transcriptome level and testing their consistency using permutation tests, and ii) studying statistically 108 

significant changes at the single gene level. First, we investigated similarities in overall trends of gene 109 

expression changes with age using the Spearman’s correlation coefficient (⍴) between expression 110 

levels and age, for each gene, in each tissue, separately for the developmental and ageing periods 111 

(Methods; tissue-specific age-related gene expression changes and functional enrichment test results 112 

are available as Supplementary File 1). We then examined transcriptome-wide similarities across 113 

tissues during development and ageing by comparing these gene-wise expression-age correlation 114 

coefficients (Figure 1c). Considering the whole transcriptome without a significance cutoff, we found 115 

a weak correlation of age-related expression changes in tissue pairs, both during development 116 

(⍴=[0.17, 0.39], permutation test p<0.05 for all the pairs, Figure 1-source data), and ageing (⍴=[0.23, 117 

0.33], permutation test p<0.05 in 4/6 pairs, Figure 1-source data). We then tested whether 118 

developmental patterns among tissues may be shared more than ageing-associated patterns, but we 119 

did not find significant difference between inter-tissue similarities within the development and those 120 

within ageing (Wilcoxon signed-rank test, p=0.31). Moreover, the number of genes with the same 121 

direction of change (without applying a significance cutoff) across four tissues was consistently more 122 
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than expected by chance (permutation test p<0.05), except for genes upregulated in ageing (Figures 123 

1e, Figure 1-figure supplement 4). This attests to overall similarities across tissues both during 124 

postnatal development and during ageing, albeit of modest magnitudes. We obtained similar results 125 

using another normalisation approach, variance stabilising transformation or VST from the DESeq2 126 

package (Love et al. 2014), and confirmed that the observed patterns are not affected by the choice 127 

of normalisation method (Figure 1-figure supplement 10-11). 128 

 129 

In the second approach, we focused on genes showing a significant age-related expression change, 130 

identified separately during development or during ageing (using Spearman’s correlation coefficient 131 

and false-discovery rate (FDR) corrected p-value<0.1, Figure 1d). We found that the developmental 132 

period was accompanied by a large number of significant changes (n=[1,941, 6,151], 13-41% across 133 

tissues), with the most manifest changes detected in the cortex. The genes displaying significant 134 

developmental changes across all four tissues also showed significant overlap (Figure 1-figure 135 

supplement 5a, Figure 1-figure supplement 6; permutation test: pshared_up=0.027, pshared_down<0.001). 136 

Using the Gene Ontology (GO), we found that shared developmentally up-regulated genes were 137 

enriched in functions such as hormone signalling pathways and lipid metabolism (FDR-corrected p-138 

value<0.1). Meanwhile, shared developmentally down-regulated genes were enriched in functions 139 

such as cell cycle and cell division (FDR-corrected p-value<0.1; Supplementary File 2). Contrary to 140 

widespread expression change during development (13-41%), the proportion of genes undergoing 141 

significant expression change during ageing was between 0.013-15% (Figure 1d). This contrast 142 

between postnatal development and ageing was also observed in previous work on the primate brain 143 

(Somel et al. 2010; Işıldak et al. 2020). In terms of the number of genes with a significant ageing-144 

related change, the most substantial effect we found was in the lung (n=2,319), while close to no 145 

genes showed a statistically significant change in the muscle (n=2), a tissue previously noted for 146 

displaying a weak ageing transcriptome signature across multiple datasets (Turan et al. 2019). Not 147 

unexpectedly, we found no common significant ageing-related genes across tissues (Figure 1-figure 148 

supplement 5a). Considering the similarity between the ageing and development datasets (Figure 149 

1c) and the similar sample sizes in development (n=7) and ageing periods (n=9), the lack of overlap 150 

in significant genes in ageing might be due to low signal-to-noise ratios in the ageing transcriptome, 151 

as ageing-related changes are subtler compared to those in development (Figure 1-figure 152 

https://paperpile.com/c/fO8Zuo/CSLde
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supplement 5b).  153 

 154 

Gene expression reversal is a common phenomenon in multiple tissues. We then turned to 155 

investigate the prevalence of the reversal phenomenon (i.e. an opposite direction of change during 156 

development and ageing) across the four tissues. We first compared the trends of age-related 157 

expression changes between development and ageing periods in the same tissue, without a 158 

significance cutoff, to assess transcriptome-wide reversal patterns (Figure 1c). This revealed weak 159 

negative correlation trends in liver and muscle (though not in the lung and cortex), i.e. genes up- or 160 

down-regulated during development tended to be down- or up-regulated during ageing, respectively. 161 

These reversal trends were comparable when the analysis was repeated with the genes showing 162 

relatively high levels of age-related expression change (|⍴|>0.6 in both periods; Figure 1-figure 163 

supplement 7). We further studied the reversal phenomenon by classifying each gene expressed per 164 

tissue (n=15,063) into those showing up- or down-regulation during development and during ageing. 165 

Here, again, we did not use a statistical significance cutoff and summarised trends of continuous 166 

change versus reversal in each tissue. This approach follows Dönertaş et al. (2017) and focuses on 167 

global trends instead of single genes. In line with the above results, as well as earlier observations in 168 

the brain, kidney, and liver (Dönertaş et al. 2017; Anisimova et al. 2020), we found that ~50% (43-169 

58%) of expressed genes showed reversal trends (Figure 1f), although these proportions were not 170 

significantly more than randomly expected in permutation tests (Figure 1-figure supplement 8, 171 

Methods). Overall, we conclude that although the reversal pattern is not ubiquitous, the expression 172 

trajectories of the genes do not necessarily continue linearly into the ageing period. 173 

 174 

Pathways related to development, metabolism and inflammation are associated with the 175 

reversal pattern. We then asked whether genes displaying reversal patterns in each tissue may be 176 

enriched in functional categories. Our earlier study focusing on different brain regions had revealed 177 

that up-down genes, i.e. genes showing developmental up-regulation followed by down-regulation 178 

during ageing, were enriched in tissue-specific pathways, such as neuronal functions (Dönertaş et al. 179 

2017). Analysing up-down genes compared to all genes up-regulated during development, we also 180 

found significant enrichment (FDR corrected p-value<0.1) in functions such as “synaptic signaling” in 181 

the cortex, as well as “tube development” and “tissue morphogenesis” in the lung, “protein catabolic 182 
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process” in the liver and “cellular respiration” pathways in the muscle (Supplementary File 3). 183 

Meanwhile, down-up genes (down-regulation during development followed by up-regulation during 184 

ageing) showed significant enrichment in functions such as “wound healing”, and “peptide metabolic 185 

process” in the cortex, “translation” and “nucleotide metabolic process” in the lung, “inflammatory 186 

response” in the liver and ‘leukocyte activation’ in the muscle (Supplementary File 3).  187 

 188 

Genes showing a reversal pattern are not shared among tissues. As tissues displayed modest 189 

positive correlations in their development- or ageing-related expression change trends (Figures 1c, 190 

Figure 1-figure supplement 7), and as we had previously observed that distinct brain regions show 191 

similarities in their reversal patterns (i.e. the same genes showing the same reversal type), different 192 

tissues might also be expected to show similarities in their reversal patterns. Interestingly, we found 193 

no overlap between gene sets with the reversal pattern (up-down or down-up genes) across tissues, 194 

relative to random expectation (permutation test, pup-down=0.08, pdown-up=0.53; Figure 1-figure 195 

supplement 9). Such a lack of overlap might be explained if genes showing reversal patterns in each 196 

tissue tend to be tissue-specific. It would also be consistent with the notion that reversals involve loss 197 

of cellular identities gained in development, during which tissue transcriptomes appear to diverge from 198 

each other (Figures 1a, Figure 1-figure supplement 3) (Cardoso-Moreira et al. 2019). This result led 199 

us to ask whether, in accordance with the reversal phenomenon, inter-tissue transcriptome 200 

divergence may be followed by increasing inter-tissue similarity, or convergence, during ageing.  201 

 202 

Inter-tissue divergence during development and convergence during ageing. We studied the 203 

inter-tissue divergence/convergence question using two approaches. In the first, we analysed how 204 

transcriptome-wide expression variation among tissues changes with age regardless of their age-205 

related expression patterns in any particular tissue. To do this, for each individual, we calculated the 206 

coefficient of variation (CoV) across the four tissues for each commonly expressed gene (n=15,063), 207 

which represents a measure of expression variation among tissues. Then, we assessed how such 208 

inter-tissue variation changes over the lifetime, by calculating the Spearman’s correlation coefficient 209 

between CoV and age, separately for development and ageing periods (correlation values for all 210 

genes are given in Figure 2-source data).  211 

 212 

https://paperpile.com/c/fO8Zuo/HS8By
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Using the CoV values calculated across all 15,063 genes (excluding one 904 days-old individual for 213 

which we lacked the cortex data), we observed a significant mean CoV increase in development 214 

(Spearman’s correlation coefficient ⍴=0.77, two-sided p=0.041), confirming that tissues diverge as 215 

development progresses (Figure 2a). Interestingly, during ageing, we observed a decrease in mean 216 

CoV with age, albeit not significant (⍴=-0.50, p=0.204, Figure 2a), suggesting that tissues may tend to 217 

converge during ageing. This was also supported by the PCA analysis in which we observed a trend 218 

of ageing-associated decrease in mean Euclidean distance among tissues (using PC1-PC4 space 219 

with quantile normalised data: ⍴=-0.87, p=0.0026; with VST normalised data ⍴=-0.58, p=0.102, Figure 220 

1-source data). We obtained the same divergence-convergence pattern by calculating the median 221 

CoV values for each individual instead of the mean (Figure 2-figure supplement 1). Figure 2b 222 

exemplifies this pattern of increasing and then decreasing CoV through lifetime for the gene 223 

displaying the strongest such signal. 224 

 225 

We identified n=9,058 genes showing divergent trends among tissues in development based on their 226 

CoV change with age (without using a significance cutoff per gene). Among these, n=4,802 showed 227 

convergent trends in ageing, which we refer to as divergent-convergent (DiCo) genes. We next 228 

studied the transition points between divergence and convergence by clustering genes showing the 229 

DiCo pattern (n=4,802) based on their CoV values (Figure 2-figure supplement 2). Notably, Cluster 230 

1, which shows a slightly delayed divergence starting after 8-days and peaks around 3-months, was 231 

associated with metabolic and respiration-related processes (FDR-corrected p-value<0.1), and 232 

Cluster 5, which shows a relatively delayed convergence after 4 months, was enriched in categories 233 

related to vascular development (FDR-corrected p-value<0.1) (Supplementary File 4). To assess the 234 

contribution of different tissues to the DiCo pattern, we further clustered DiCo-displaying genes 235 

(n=4,802) based on their expression levels (Figure 2-figure supplement 3). Not surprisingly, the 236 

clusters with relatively higher expression levels of a tissue (e.g. muscle in Cluster 9) were enriched in 237 

functional categories (FDR-corrected p-value<0.1) related to that tissue (e.g. muscle cell 238 

development) (Supplementary File 5). 239 

 240 

We then studied DiCo at the single-gene level. We tested each gene for a significant CoV change in 241 

their expression levels (i.e. divergence or convergence) in development and ageing (Spearman’s 242 



9 

correlation test with FDR corrected p-value<0.1). We found that the ratio of divergent and convergent 243 

genes differed significantly between development (70% divergence among 2,581 significant genes) 244 

and ageing (68% convergence among 62 significant genes) (Figure 2d-e). The same pattern was 245 

also observed without using significance cutoff (Figure 2-figure supplement 4). We also confirmed 246 

that this pattern is also observed with VST-normalised data (Methods), and is thus not affected by the 247 

data preprocessing approach (Figure 2-figure supplement 14).  248 

 249 

To our knowledge, inter-tissue convergence during ageing is a novel phenomenon. We first 250 

considered the possibility that convergence during ageing could be explained by heteroscedasticity 251 

which could arise due to increased inter-individual variability in gene expression during ageing (Somel 252 

et al. 2006). To test this hypothesis, we compared expression-age heteroscedasticity levels between 253 

two gene sets; 1) genes with the DiCo pattern, 2) genes showing divergent patterns throughout 254 

lifetime (DiDi, n=4,182) for each tissue, separately (Methods). We did not observe any significant 255 

difference in heteroscedasticity between DiCo and DiDi genes in any of the tissues (two-sided KS 256 

test, p>0.05 in all tissues, Figure 2-figure supplement 15), which suggests that heteroscedasticity 257 

due to increased inter-individual variability probably does not drive the observed age-related 258 

convergence during ageing. Visual inspection of gene expression clusters also suggested that the 259 

DiCo pattern is not particularly associated with non-linear changes in gene expression with age 260 

(Figure 1-figure supplement 12-15).  261 

 262 

In order to further verify the DiCo pattern, we used a second approach to test it in our mouse dataset. 263 

For each individual, we calculated correlations between pairs of tissues across their gene expression 264 

profiles. Under the DiCo pattern, we would expect pairwise correlations to decrease during 265 

development and increase during ageing. Among all pairwise comparisons, we observed a strong 266 

negative correlation during development (⍴=[-0.61, -0.9], nominal p<0.05 in 5 out of 6 tests), while 267 

during ageing, 4 out of 6 comparisons showed a moderate positive correlation (⍴=[0.16, 0.69], 268 

nominal p<0.05 in 1 out of 6 comparisons, Figure 2-figure supplement 5). Calculating the mean of 269 

pairwise correlations among tissues for each individual, we observed the same DiCo pattern (nominal 270 

p<0.05 for both periods, Figure 2-figure supplement 6).  271 

 272 
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The divergence-convergence (DiCo) pattern indicates loss of tissue-specificity during ageing. 273 

Potential explanations of the DiCo pattern involve two scenarios consistent with the age-related loss 274 

of identity: i) decreased expression of tissue-specific genes in their native tissues, or ii) non-specific 275 

expression of tissue-specific genes in other tissues. To test these predictions, we first identified 276 

tissue-specific gene sets based on relatively high expression of that gene in a particular tissue 277 

(cortex: 1,175, lung: 839, liver: 986, muscle: 766 genes). We noted that tissue-specific genes show 278 

clear up-down reversal patterns, being mostly up-regulated during development, and down-regulated 279 

during ageing (Figure 3, 57-89%). The up-down reversal pattern was particularly strong among 280 

tissue-specific genes for the three of four tissues tested (OR = [1.65, 6.52], p<0.05 for each tissue 281 

except in liver: OR=0.87, p=0.09, Figure 3-source data). Tissue-specific genes were also enriched 282 

among DiCo genes (Figure 3-source data, OR=1.56, Fisher’s exact test p<10
-16

).  283 

 284 

We then tested our initial prediction that the DiCo pattern is related to tissue-specific genes losing 285 

their expression in their native tissue and/or gaining expression in non-native tissues during ageing. 286 

We first tested this hypothesis by considering all tissue-specific genes. We found a positive odds ratio 287 

between loss of expression in native tissue and gain in other tissues during ageing (OR = 5.50, 288 

Fisher’s exact test p=2.1x10
-129

, Figure 4a). The same analysis conducted with only the DiCo genes 289 

yielded a much stronger association (OR=74.81, Fisher’s exact test p=5.9x10
-203

, Figure 4b). This 290 

suggests that loss of tissue-specific expression is observed across the transcriptome, with a 291 

particularly strong association among DiCo genes. Figure 4c-f exemplifies the expression trajectories 292 

of genes chosen from each group defined in Figure 4b.  293 

 294 

We then asked whether genes displaying the DiCo pattern may be related to specific functional 295 

pathways or share specific regulators. Using GO, we searched for functional enrichment among 296 

convergent genes during ageing, using developmentally divergent genes as the background 297 

(Methods). We found enrichment for 184 GO Biological Process (BP) categories for the DiCo pattern 298 

(Kolmogorov-Smirnov (KS) Test, FDR-corrected p-value<0.1, Figure 4-source data) and 299 

summarised enriched categories by clustering them based on the number of genes they share. We 300 

then studied the trends of gene expression changes with age (without a significance cutoff) in each 301 

representative category for each tissue (Methods) (Figure 4h; we provide detailed clustering for the 302 
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categories in ‘Other GO’ (Figure 4-figure supplement 1)). On average, energy metabolism, 303 

mitochondria and tissue function-related categories, as well as immune response-related categories, 304 

exhibit DiCo type expression changes over time and across tissues, where temporal changes in 305 

different tissues occur in opposite directions. Notably, for the majority of representative GO 306 

categories, the lung had the most distinct expression patterns in both periods (Figure 4h, Figure 4-307 

figure supplement 1).  308 

 309 

Contrary to the functional enrichment results, we did not find any specific regulators (miRNA or 310 

transcription factors) associated with DiCo using the same background as above (at 235 tests for 311 

miRNA and 158 tests for TF, FDR corrected p-value>0.1 for both tests) (Methods), which suggests 312 

that DiCo pattern may not be driven by a limited number of specific regulators, but may instead be a 313 

transcriptome-wide phenomenon. 314 

 315 

Additional mouse and human datasets confirm the association between loss of tissue-316 

specificity and inter-tissue convergence during ageing. We investigated inter-tissue convergence 317 

during ageing in three additional datasets where multiple tissue samples were available for the same 318 

individuals (Table 2). We conducted the analysis using a subset of the same four tissues in our 319 

dataset and also larger sets when additional samples were available. Age-related expression changes 320 

showed small to moderate correlations among all datasets analysed, with our dataset being most 321 

similar to the mouse dataset from Jonker et al., while the GTEx human dataset was the most distinct 322 

(Figure 4-figure supplement 2a).  323 

 324 

First, using the Jonker et al. dataset (Jonker et al. 2013) comprising 5 tissues (Table 2), we observed 325 

transcriptome-wide convergence during ageing with a significant decline in mean Euclidean distance 326 

between PCs (⍴ = -0.57, p = 0.014, Figure 2-figure supplement 7a-c) and a strong decrease in 327 

mean CoV during ageing (⍴ = -0.48, p = 0.044, Figure 2-figure supplement 7d). Moreover, we found 328 

that 7/10 tissue pairs showed increased pairwise tissue correlations during ageing, although none of 329 

them was significant after multiple testing correction (Figure 2-figure supplement 7f). Sixty-six 330 

percent of the genes with a significant change in CoV were convergent, comparable to our dataset 331 

showing 68% convergence among significant changes. We also tested the association between the 332 

https://paperpile.com/c/Gx8LOa/0eWT
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loss of identity and convergence pattern by repeating the same analysis as in Figure 4b with the 333 

Jonker et al. dataset, using only the convergent genes in ageing as we lack developmental period. 334 

We again found strong association, consistent with convergent genes losing expression in their native 335 

tissue and gaining in other tissues during ageing (OR=7.52, p<10
-16

, Figure 4c). The results are 336 

summarised in Table 1.  337 

 338 

Next, we used another mouse dataset by Schaum et al. (Schaum et al. 2020) (Table 2). Repeating 339 

the analysis on the same 4 tissues and also a larger set of 8 tissues, we did not find support for 340 

transcriptome-wide convergence (Table 1, Figure 2-figure supplement 17, 19). In the 4-tissue 341 

comparison 4/6 tissue-pairs, and in the 8-tissue comparison only 16/28 tissue-pairs showed positive 342 

correlations, supporting the inter-tissue convergence during ageing (Figure 2-figure supplement 343 

18c, 20c). Interestingly, 75% of the negative correlations involved muscle and subcutaneous fat. 344 

Convergence ratios among genes showing significant change in CoV (FDR corrected p-value<0.1) 345 

were marginally above 50%. Although we did not observe widespread convergence during ageing in 346 

this dataset, we still detected strong associations between convergence in ageing and tissue 347 

specificity (OR4-tissue=1.33, p = 1.08x10
-8

) and identity loss (OR4-tissue=58.3 p < 10
-16

; OR8-tissue=84.2 p < 348 

10
-16

) (Figure 4c). 349 

 350 

Lastly, we used the GTEx dataset to investigate inter-tissue convergence during ageing in humans. 351 

Calculating the change in mean Euclidean distance based on PCA and mean CoV values, we found a 352 

non-significant tendency towards convergence across the whole transcriptome in the same 4 tissues 353 

and a larger set of 10 tissues (Table 1, Figure 2-figure supplement 8, 10). We also performed the 4-354 

tissue comparison with female and male individuals separately and observed relatively strong inter-355 

tissue convergence among ageing females (⍴female= -0.58, pfemale=0.059) but less in males (⍴male= -356 

0.052, pmale=0.77) which lack individuals at the youngest and oldest age groups (Figure 2-figure 357 

supplement 16). Moreover, 5/6 and 29/45 tissue-pairs showed increased correlation with age in 4-358 

tissue and 10-tissue comparisons, consistent with inter-tissue convergence during ageing (Figure 2-359 

figure supplement 9, 11). Notably, 8 of 16 negative correlations in the 10-tissue comparison involved 360 

the skin tissue (Figure 2-figure supplement 11c). We also studied significant changes in CoV per 361 

gene, but found no significant gene in the 4-tissue comparison and only 3 genes in the 10-tissue 362 

https://paperpile.com/c/Gx8LOa/u0tZ


13 

comparison, all of which were convergent. Finally, we tested the association between the loss of 363 

expression in native tissue and gain in other tissues during ageing among convergent genes, 364 

confirming the association with the tissue identity (Figure 4c, Table 1).  365 

 366 

Overall, analysis of these three additional datasets indicates that inter-tissue convergence during 367 

ageing is commonly, but not always, observed at the transcriptome-wide level in mice and in humans. 368 

Notably, the transcriptome-wide trend was weak in the Jonker et al. and GTEx datasets and not 369 

evident in the Schaum et al. dataset. The association between the loss of identity and convergence, 370 

on the other hand, was strong across all datasets (Table 1). 371 

 372 

We further asked whether convergent gene sets identified in different datasets overlap. Eleven of 15 373 

comparisons were significant, but the effect sizes were small (Figure 4-figure supplement 2b). We 374 

reason that the low overlap across datasets might reflect that transcriptome-wide convergence was 375 

weak and that we lack the developmental samples for the external datasets, i.e. we can only compare 376 

convergence during ageing but not the DiCo pattern. Noteworthy, only 62% of convergent genes in 377 

ageing are divergent during development in our dataset, and low overlap between convergence does 378 

not rule out overlap across DiCo genes. 379 

 380 

These results suggest that inter-tissue convergence in ageing may be a weak but widespread 381 

phenomenon and associated with the loss of tissue identity. Overall, while mouse and human tissues 382 

display divergence in development (Figures 1a, 2a, (Cardoso-Moreira et al. 2019)), this appears to 383 

be followed by a trend towards inter-tissue convergence in ageing (Figures 2a, Figure 2-figure 384 

supplement 1-20), and could be linked to loss of tissue identity. 385 

 386 

Changes in cellular composition and cell-autonomous expression can both explain the 387 

divergence-convergence pattern. Ageing-related transcriptome changes observed using bulk tissue 388 

samples may be explained by temporal changes in cell type proportions within tissues, by cell-389 

autonomous expression changes, or both. To explore whether the observed inter-tissue DiCo patterns 390 

may be attributed to changes in cell type proportions, we used published data from a mouse single-391 

cell RNA-sequencing experiment (Tabula Muris Consortium 2020). For each of the four tissues in our 392 

https://paperpile.com/c/fO8Zuo/biyFf
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original experiment, we collected cell type-specific expression profiles from 3-month-old young adult 393 

mice in the Tabula Muris Senis dataset. We deconvoluted bulk tissue expression profiles in our 394 

mouse dataset using the corresponding tissue’s cell type-specific expression profiles by regression 395 

analysis (Methods), and studied the relative contributions of each cell type to tissue transcriptomes 396 

and how these change with age. The analysis was performed with three gene sets; all genes 397 

(n=[12,492, 12,849]), DiCo (n=[4,007, 4,106]) and non-DiCo genes (n=[8,485, 8,743]). Studying these 398 

deconvolution patterns, we observed a weak but consistent trend involving the most common cell 399 

types in different tissues. For instance, analysing DiCo genes in the liver and lung, we found that the 400 

most common cell type’s contribution (hepatocyte in the liver, and bronchial smooth muscle cell in the 401 

lung) tends to increase during development (Spearman’s correlation coefficient ⍴liver=0.95, ⍴lung=0.81, 402 

nominal p<0.05). This contribution then decreases during ageing (⍴liver=-0.77, ⍴lung=-0.86, nominal 403 

p<0.05) (Figure 5a, Figure 5-figure supplement 1). This pattern was also observed in muscle and 404 

cortex, albeit not significantly (Figure 5a, Figure 5-figure supplement 1). These changes most likely 405 

reflect shifts in cellular composition, some of which were demonstrated directly in mice using in situ 406 

RNA staining (Tabula Muris Consortium 2020). Repeating the analysis with non-DiCo genes resulted 407 

in highly similar patterns considering the most common cell types in tissues, except in muscle ageing 408 

in which the age-related decrease was significantly higher with DiCo genes than the non-DiCo genes 409 

(permutation test with re-sampling all genes, pskeletal-muscle-satellite-cell=0.04) (Figure 5a, Figure 5-figure 410 

supplement 1, Figure 5-figure supplement 2-5). These results indicate that the observed cellular 411 

composition changes may partly explain DiCo, although the influence of composition changes is not 412 

exclusive to genes displaying the DiCo pattern. 413 

 414 

Next, we investigated the possible role of cell-autonomous changes in the DiCo pattern. Cell-415 

autonomous changes could contribute to inter-tissue convergence during ageing in two ways. First, 416 

expression profiles of similar cell types shared across different tissues, such as immune cells, might 417 

converge with age. Another possible scenario, consistent with the notion of age-related cellular 418 

identity loss, is that the expression profiles of unrelated cell types, such as tissue-specific cell types in 419 

different tissues converge with age. To test these scenarios, we first ordered the pairwise correlations 420 

between cell types in different tissues at 3 months age group to determine the most similar and 421 

dissimilar cell types across tissues (Methods). Then, we studied how these similarities (i.e. pairwise 422 
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correlations) change with age (Figure 5b). Intriguingly, we found that pairs of similar cell types (i.e. 423 

those with the highest correlations) among tissues tend to become less similar with age (36/54 [67%] 424 

of pairwise comparisons, Figure 5-source data). On the contrary, the most distinct cell types (i.e. 425 

those with the lowest correlations) among tissues become more similar with age (45/54 [83%], Figure 426 

5-source data). Repeating the analysis considering DiCo genes only yielded a similar trend (30/54 427 

[56%] decrease in correlation among the most similar cell types, permutation test with re-sampling 428 

non-DiCo genes, p>0.1; and 47/54 [87%] increase in correlation among the most distinct cell types, 429 

permutation test, p>0.1). These trends are consistent with age-related cellular identity loss, and they 430 

suggest that cell-autonomous changes may also contribute to inter-tissue convergence during ageing, 431 

although further data and analyses would be needed to fully establish their validity. 432 

 433 

Finally, we tested the possibility of intra-tissue convergence of cell types in the Tabula Muris Senis 434 

dataset, by calculating expression variation among cell types using the CoV measure for each 435 

individual. However, we did not observe a consistent trend of increasing similarity among cell types 436 

within tissues from 3m- to 24m-old mice (Figure 5-figure supplement 6). 437 

 438 

Discussion 439 

Our findings confirm a number of ageing-associated phenomena identified earlier, while also 440 

revealing new patterns. First, we report parallel age-related expression changes among the four 441 

tissues studied, during development, as well as in ageing. The inter-tissue correlation distributions 442 

were modest and also comparable between development and ageing (Figure 1c). This last point may 443 

appear surprising at first glance, given the stochastic nature of ageing relative to development (Bahar 444 

et al. 2006; Martinez-Jimenez et al. 2017; Angelidis et al. 2019; Somel et al. 2006; Feser et al. 2010; 445 

Kim, Villeponteau, and Jazwinski 1996; Enge et al. 2017), and also given earlier observations that 446 

developmental expression changes tend to be evolutionarily conserved, while ageing-related changes 447 

much less so (Zahn et al. 2007; Somel et al. 2010). At the same time, when we consider that tissues 448 

diverge during development, and also that ageing is characterised by parallel expression changes 449 

among tissues related to damage response, inflammation, and reduced energy metabolism (Zahn et 450 

al. 2007; Yang et al. 2015), similar magnitudes of correlations during development and ageing may be 451 

expected. 452 
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 453 

Second, we verify the generality of the reversal pattern, i.e. up-down or down-up expression change 454 

patterns across the lifetime, among distinct mouse tissues that include both highly mitotic (lung and 455 

liver) and less mitotic ones (skeletal muscle and cortex). Consistent with earlier observations in fewer 456 

tissues (Anisimova et al. 2020; Dönertaş et al. 2017), we find that about half the expressed genes 457 

display reversal in all cases studied. Importantly, expression reversal is not ubiquitous across all 458 

genes and our findings do not necessarily contradict the hyperfunction theory. Instead, we suggest 459 

that reversal is a common phenomenon that influences a notable fraction of the transcriptome and is 460 

a likely contributor to mammalian ageing. 461 

 462 

Two observations here are notable. One is that reversal-displaying genes, especially those displaying 463 

the up-down pattern in each tissue, can be associated with tissue-specialisation-related pathways 464 

(e.g. morphogenesis) and tissue-specific functions (e.g. synaptic activity). The second observation is 465 

the lack of significant overlap among reversal genes among tissues. We thus hypothesised that 466 

reversals might be reflecting tissue specialisation during development (hence lack of overlap among 467 

tissues), and loss of specialisation during ageing. These processes could manifest themselves as 468 

inter-tissue divergence and convergence patterns over lifetime. We indeed observed that the up-down 469 

reversal pattern is enriched in tissue-specific genes, except in the liver. Studying inter-tissue similarity 470 

across mouse lifespan, we further found that the four tissues’ transcriptomes diverged during 471 

postnatal development, and we further detected a trend towards inter-tissue convergence during 472 

ageing. We then further investigated this phenomenon through different approaches: i) by studying 473 

overall trends using PCA, ii) by analysing transcriptome-wide trends of inter-tissue CoV without 474 

considering gene-wise significance cutoffs, iii) by focusing on genes with significant age-related 475 

changes in inter-tissue CoV, iv) by studying age-related changes in pairwise tissue correlations, and 476 

v) by analysing different cell-types using scRNA-seq data, and vi) by repeating the same analysis 477 

using independent mouse and human ageing datasets. The patterns we found were mostly consistent 478 

with inter-tissue convergence, but the majority of transcriptome-wide results were associated with low 479 

effect sizes, and some were not statistically significant. Importantly, all significant results suggested 480 

convergence during ageing. We therefore conclude that (1) developmental inter-tissue divergence 481 

does not continue into ageing; (2) convergence during ageing may be common although possibly not 482 

https://paperpile.com/c/fO8Zuo/ehfob+99zb0
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ubiquitous.  483 

 484 

The weakness of the inter-tissue convergence signal per dataset and the limited overlap between 485 

convergent gene sets among datasets could have multiple reasons. These include the low signal-to-486 

noise ratios characterising ageing-related expression patterns, the lack of old age individuals in our 487 

mouse dataset (>3-year-old mice) and the GTEx dataset (>90-year-old humans), limited overlap of 488 

tissues between our mouse dataset (cortex, liver, lung and muscle) and the Jonker et al. dataset 489 

(cortex, liver, lung, spleen, kidney), as well as differences in ageing patterns between species or 490 

between sexes. Further research involving larger sample sizes and diverse species are needed to 491 

confirm the generalisability of the observations. 492 

 493 

Finally, we report a number of interesting observations on DiCo. We determine that tissue-specific 494 

genes tend to be down-regulated in the tissues that they belong to during ageing, while non-tissue-495 

specific genes are up-regulated, which was confirmed by all external datasets (Figure 4c). Second, 496 

using deconvolution, we infer that cell types most common in a tissue (e.g. hepatocytes in the liver) 497 

tend to increase in frequency during development, but then decrease in frequency during ageing, as 498 

also shown recently using immunohistochemistry in a number of mouse tissues (Tabula Muris 499 

Consortium 2020). Accordingly, the DiCo phenomenon may at least partly be explained by shifts in 500 

cellular composition. This is intriguing as both highly mitotic and low mitotic tissues share this trend, 501 

indicating that an explanation based on stem cell exhaustion may not be applicable here. Third, we 502 

find increased expression similarity between distinct cell types in different tissues during ageing, but 503 

decreased similarity between similar cell types. Cell-autonomous expression changes, therefore, 504 

likely also contribute to the divergence-convergence phenomenon. We note that higher expression 505 

variability among cells at old age (Hernando-Herraez et al. 2019; Enge et al. 2017) could also lead to 506 

inter-tissue convergence during ageing. A fourth interesting observation was the absence of 507 

significant enrichment for specific transcription factor or microRNA targets among DiCo genes. This 508 

result may not be surprising if inter-tissue convergence is mostly driven by stochastic damage 509 

accumulation, such as loss of epigenetic marks. It is also possible that instead of specific regulators, 510 

their interaction and cooperativity are associated with the DiCo. Future experimental studies could 511 

test both mechanistic aspects and functional link to tissue specificity.  512 
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 513 

We also note two major limitations of our study. One is related to the fact that our dataset represents 514 

bulk tissue samples, which may suffer from infiltration of foreign cell-types into tissues. Indeed, one of 515 

the external datasets, Schaum et al., included samples from perfused mice (Schaum et al. 2020) and 516 

we did not find support for the transcriptome-wide convergence during ageing, even though the 517 

association between tissue identity loss and convergence was also evident. The scRNA-seq dataset 518 

we analysed further suggested that DiCo is associated with tissue-specific genes and not immune- or 519 

blood-related categories, but we still cannot rule out possible infiltration artefacts that may affect our 520 

results. A second limitation is related to ageing being highly sex-dimorphic in mammals (Yuan et al. 521 

2012; Sampathkumar et al. 2020). Hence, in-depth analysis of sex-specificity of the DiCo pattern 522 

could be relevant. Our mouse dataset included only male mice, while that of Jonker et al. was female-523 

only. The fact that both revealed DiCo patterns suggest DiCo is not particular to one sex, but there 524 

could still exist sex-specific effects. In fact, when we analysed DiCo among human male and female 525 

individuals in the GTEx dataset separately, we observed slightly stronger inter-tissue convergence 526 

among ageing females than in males, although the GTEx male samples has also a drastically 527 

narrower age range (Figure 2-figure supplement 16). Accordingly, the prevalence of DiCo among 528 

humans and sexes waits to be determined. 529 

 530 

Despite the open questions that remain, our results consistently support a model where ageing 531 

mammals suffer from loss of specialisation at the tissue level, and possibly also at the cellular level, 532 

which are observed as expression reversals and the newly discovered divergence-convergence 533 

phenomenon we report here.  534 

 535 

Materials and Methods 536 

Sample Collection 537 

We collected bulk tissue samples from 16 male C57BL/6J mice. The samples were snap frozen in 538 

liquid nitrogen and stored at -80C. No perfusion was applied. The mice were of different ages 539 

covering the whole lifespan of Mus musculus, comprising both postnatal development and ageing 540 

periods. The samples included four different tissues; cerebral cortex, liver, lung and skeletal muscle. 541 

One 904 days-old mouse had no cortex tissue sample, and was thus excluded from the analysis. As a 542 
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result, we generated 63 RNA-seq libraries in total. 543 

 544 

Separation of development and ageing periods: 545 

In order to compare gene expression changes during postnatal development and ageing we studied 546 

the samples before sexual maturation (covering 2 to 61 days of age, n=7) as the postnatal 547 

development period, and samples covering 93 to 904 days (n=9 in all tissues except in cortex where 548 

we had n=8) as the ageing period.  549 

 550 

RNA-Seq Library Preparation  551 

RNA sequencing was performed as previously described (Liu et al. 2016) with slight modifications. 552 

Briefly, total RNA was extracted using the Trizol reagent (Invitrogen) from frozen tissue samples. For 553 

sequencing library construction, we randomised all samples to avoid batch effects, and used the 554 

TruSeq RNA Sample Preparation Kit (Illumina) according to the manufacturer’s instruction. Libraries 555 

were then sequenced on the Illumina HiSeq 4000 system in three lanes within one flow-cell, using the 556 

150-bp paired-end module. 557 

 558 

RNA-Seq Data Preprocessing 559 

The quality assessment of the raw RNA-seq data was performed using FastQC v.0.11.5 (Andrews 560 

2010). Adapters were removed using Trimmomatic v.0.36 (Bolger, Lohse, and Usadel 2014). The low-561 

quality reads were filtered using the parameters: “PE ILLUMINACLIP: TruSeq3-PE-562 

2.fa:2:30:1:0:8:true, SLIDINGWINDOW:4:15, MINLEN:25”. The remaining high-quality reads were 563 

aligned to the mouse reference genome GRCm38 using STAR-2.5.3 (Dobin et al. 2013) with 564 

parameters: “--sjdbOverhang 99 --outSAMattrIHstart 0 --outSAMstrandfield intronMotif --sjdbGTFfile 565 

GRCm38.gtf”. The percentage of uniquely mapped reads in libraries ranged from 80 to 93%. We used 566 

cufflinks v.2.2.1 (Trapnell et al. 2010) to generate read counts for uniquely aligned reads (samtools “-q 567 

255” filter) and calculated expression levels as fragment per kilobase million (FPKM). In total, we 568 

quantified expression levels for 51,608 genes in the GRCm38.gtf GTF file. We identified 50 duplicated 569 

genes with 1> FPKM value assigned, and the sum of their FPKM values were used. 570 

 571 

All the remaining analysis was performed in R v.4.1. We restricted the whole analysis to only protein-572 
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coding genes obtained by the ‘biotype’ feature of the biomaRt library v.2.48.2 (Durinck et al. 2009). 573 

We also excluded genes which were not detected (zero FPKM) in 25% or more of the samples (at 574 

least 15 of 63), resulting in 15,063 protein-coding genes in total. As FPKM normalisation does not 575 

effectively account for cross-library variability, we additionally performed two normalisation 576 

approaches: 577 

 578 

(a) Quantile normalisation: using all the samples together (n=63, regardless of their age or tissue), 579 

FPKM values were log2 transformed (after adding 1) and quantile normalised with 580 

‘normalize.quantiles’ function from ‘preprocessCore’ library v.1.54 (Bolstad 2020). This approach 581 

equalises the distributions of different libraries. The assumption is that any large-scale differences in 582 

expression level distributions reflect technical factors. 583 

 584 

(b) Variance stabilising transformation (VST): To assess the robustness of quantile normalisation on 585 

downstream analysis, we additionally implemented this approach, which ensures homoscedasticity, 586 

i.e. variances of expression levels are independent of the mean (Anders and Huber 2010). Uniquely 587 

aligned reads obtained from the STAR alignment were used to calculate read counts by HTSeq 588 

v.0.13.5 (Anders, Pyl, and Huber 2014) with parameters: “--format=bam --order=pos --stranded=no --589 

type=exon --mode=union --nonunique=none”. Read counts were then imported into R using the 590 

‘DESeqDataSetFromHTSeqCount’ function in DESeq2 v.1.32.0 package (Love, Huber, and Anders 591 

2014). The same filtration steps were applied as above, resulting in 14,973 protein-coding genes in 592 

total. Normalisation was performed with the ‘vst’ function and ‘blinded=T’ option in the DESeq2 593 

package. The VST-normalised expression matrix was used to reproduce Figure 1 and Figure 2 results 594 

which are given in Figure 1-figure supplement 10, 11 and Figure 2-figure supplement 14. 595 

 596 

Principal component analysis: 597 

We studied the main sources of variation in the whole dataset using principal component analysis 598 

(PCA) on the scaled expression matrix with ‘prcomp’ function in the R base. The first four 599 

components, PC1 to PC4, explained 31%, 20%, 17% and 8% of the total variance. We observed a 600 

clear separation of tissues in PC1 and PC2 and a strong age effect in PC4. To statistically confirm 601 

tissue differences, we performed ANOVA on individual PC scores with tissue as explanatory variable; 602 
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this was run on each of the first four PCs (PC1-PC4), separately. The magnitude of the age effect on 603 

PCA analysis was measured with Spearman’s correlation test between individual age and each 604 

individual’s PC score, separately in each tissue. PCA was also repeated for development and ageing 605 

periods, separately (Figure 1-figure supplement 3). We further calculated Euclidean distance in 606 

pairwise manner among tissues of each individual in PC1-4 space constructed in three different ways: 607 

(a) using all the samples together, (b) using only the developmental samples, (c) using only the 608 

ageing samples. Then, we tested the effect of age on mean Euclidean distance among tissues using 609 

the Spearman’s correlation test. To study only the age effect on PC scores without the tissue effect 610 

we performed the following; (i) we removed the tissue-specific effects from the data by scaling the 611 

expression levels of each gene to mean=0 and sd=1 in each tissue separately, and (ii) we combined 612 

the four scaled expression matrices, (iii) we conducted PCA on the combined dataset (Figure 1-613 

figure supplement 2). 614 

 615 

Age-related gene expression change 616 

To identify genes showing age-related expression change in each tissue, we used Spearman’s 617 

correlation coefficient between individual age and expression level, separately for development and 618 

ageing periods. To capture potential non-linear but monotonic changes in expression, we chose the 619 

non-parametric two-sided Spearman’s correlation test for both periods. We have used two-sided tests 620 

for all statistical tests throughout the article except the permutation tests. Significance of age-related 621 

genes was assessed with the false-discovery-rate (FDR corrected p-value<0.1 cutoff, calculated with 622 

the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg 1995)) using the ‘p.adjust’ function 623 

in the R base library. Throughout the article, BH procedure with 0.1 cutoff was used for multiple test 624 

corrections of all statistical tests. 625 

 626 

Functional associations: 627 

We tested the functional associations of age-related gene expression change in separate tissues for 628 

each period (development and ageing) separately, employing the gene set over-representation 629 

analysis (GORA) procedure with Gene Ontology (GO) (Ashburner et al. 2000) Biological Process (BP) 630 

categories using the ‘topGO’ package v.2.44 (Alexa and Rahnenfuhrer 2019). We applied the 631 

‘classical’ algorithm and performed Fisher’s exact test on categories that satisfy the criteria of a 632 
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minimum 10 and maximum 500 number of genes. We used the whole set of expressed genes 633 

(n=15,063) as the background. P-values were corrected for multiple testing using the BH procedure. 634 

Categories with FDR corrected p-value<0.1 were considered as significant. 635 

 636 

Correlation between age-related gene expression changes in different tissues 637 

We calculated Spearman’s correlation coefficients between age-related gene expression change ⍴gene 638 

values (i.e. correlation between gene expression levels and age) calculated per gene in each tissue 639 

pair (Figure 1c). In order to test the statistical significance of the correlations, we used a permutation 640 

scheme as the expression levels across tissues are not independent but belong to the same mice. In 641 

order to account for the dependence, the individual ages were permuted in each round, but the 642 

permuted values were kept constant across tissues (similar to permutation tests applied in (Dönertaş 643 

et al. 2017; Işıldak et al. 2020; Dönertaş et al. 2018)). Specifically, we performed 1000 permutation 644 

rounds. In each round, we randomised the individual ages using the ‘sample’ function in R, while 645 

keeping the permuted age labels constant for individuals across tissues. We calculated the age-646 

related gene expression changes with permuted ages in development and ageing datasets 647 

separately, thus simulating the null distribution with no age effect in each period. We then calculated 648 

the Spearman’s correlation coefficient between the age-related expression levels from the 649 

permutations across tissues and assigned the p-value by calculating the proportion of permuted 650 

calculations with a more extreme correlation. All permutation tests in the article were performed as 651 

one-sided tests. The estimated false-positive-proportion (eFPP; proportion of false positives among all 652 

true non-significant results (true negatives+false positives)) was calculated as the median value of 653 

expected values divided by the observed value (Figure 1-source data).  654 

 655 

Shared gene expression changes across tissues 656 

We summarised the number of shared age-related genes among tissues for up- and down-regulated 657 

genes separately, using FDR corrected p-value<0.1 (Figure 1-figure supplement 5). The 658 

development and ageing datasets were tested separately. For each gene, we counted the number of 659 

tissues with the same direction of expression change with age. We calculated this overlap statistic 660 

among tissues (a) using genes with FDR-corrected p-value<0.1, and (b) with all genes without using 661 

any significance cutoff (Figure 1e, Figure 1-figure supplement 4).  662 
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 663 

Permutation test: 664 

We again used a permutation scheme to assess the significance of shared age-related genes to 665 

account for the dependence among tissues. We tested the significance of shared up- and down-666 

regulated genes, selected with or without an FDR cutoff, in development and in ageing periods 667 

separately. We used the age-related expression change values (⍴’gene) calculated by permuting 668 

individual ages, 1000 times. To test the significance of the overlap of significantly up- or down- 669 

regulated genes (FDR corrected p-value<0.1) among tissues, we used the following procedure: (i) For 670 

each permutation round, we ranked the ⍴’gene values for each tissue in each period separately. (ii) We 671 

chose the highest Nu (to test the up-regulation), or lowest Nd (to test the down-regulation) number of 672 

genes, where Nu and Nd are the number of significantly up- or down- regulated genes, respectively, in 673 

a given tissue (FDR corrected p-value<0.1). (iii) For each permutation round, we calculated the 674 

number of overlaps across tissues using the chosen gene sets, i.e. the number of tissues with the 675 

same direction of expression change with age for those genes. Doing this for 1000 permutation 676 

results yielded a null distribution representing the expected overlaps if there were no age effect. (iv) 677 

We calculated the p-value as the proportion of 1000 permutations where the number of overlaps was 678 

higher than the observed value. The estimated false-positive-proportion (eFPP) was calculated as the 679 

median number of overlaps in permutations divided by the observed value.  680 

 681 

Likewise, to test the significance of the overlap of shared up- and down-regulated genes selected 682 

without FDR cutoff, we used the same permutation scheme explained above, but this time using all 683 

the age-related expression changes created using permutations (⍴’gene), without applying a 684 

significance cutoff for any tissue, and calculating the overlap across tissues in the same way.  685 

 686 

Functional Associations: 687 

We tested the functional associations of shared expression change trends among tissues in each 688 

period, separately, following the GORA procedure using the same criteria and algorithms explained in 689 

the previous section. To test shared up-regulated (n=45) or down-regulated genes (n=138) in 690 

development, we chose all significant age-related genes across tissues (n=10,305) in the 691 

development period as background. Since we could not identify any shared ageing-related genes 692 
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across tissues (Figure 1-figure supplement 5), we did not perform a functional test for the ageing 693 

period. 694 

 695 

Analysis of gene expression reversals 696 

We compared the direction of gene expression change during development and during ageing to 697 

identify reversal genes in each tissue, separately. Genes showing up-regulation (positive correlation 698 

with age) in development and down-regulation (negative correlation with age) in ageing were 699 

assigned as up-down (UD) reversal genes, while the genes with the opposite trend (down-regulation 700 

in development and up-regulation in ageing) were assigned as down-up (DU) reversal genes. Without 701 

using any significance level for expression-age correlation values, we calculated the proportion of 702 

genes showing reversal by keeping the expression change direction in development the same, i.e. 703 

UD%=UD/(UU+UD) and DU%=DU/(DD+DU). 704 

 705 

Permutation test: 706 

To test the significance of reversal proportions, we kept the developmental changes constant and 707 

randomly permuted the individual ages only in the ageing period (as described earlier). Among 708 

developmental up-regulated genes, we calculated the UD% in each permutation, simulating a null 709 

distribution for UD reversal. We applied the same principle for the DU genes. Thus, we created a null 710 

distribution with the expected reversal ratios and tested the significance of observed values for each 711 

tissue separately (Figure 1-figure supplement 8).  712 

 713 

Functional associations: 714 

We used the GORA procedure as described earlier to test functional associations of reversal genes in 715 

each tissue but kept the developmental changes constant in the background. More specifically, we 716 

tested the functional enrichment of UD reversal genes against UU genes, and DU genes against DD 717 

genes. We thereby specifically test the functions associated with the reversal pattern, but not 718 

development-associated functions. 719 

 720 

Overlap of reversal genes - permutation test: 721 

We tested the significance of overlap using the same permutation scheme described above. 722 
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Specifically, among developmental up- (or down-) regulated genes shared among tissues, we 723 

constructed null distributions by calculating the ratio of UD vs UD+UU (or DU vs DU+DD) genes 724 

shared among tissues, identified in 1000 random permutations of individual ages only in the ageing 725 

period. (Figure 1-figure supplement 9).  The number of shared up-regulated genes was nup=2,255 726 

(one gene excluded since it has constant expression in one tissue in ageing period), and the number 727 

of shared down-regulated genes was ndown=2,209. 728 

 729 

Tissue convergence and divergence calculations using coefficient of variation (CoV) 730 

For each individual mouse, for each gene (n=15,063), we calculated the inter-tissue coefficient of 731 

variation (CoV) estimate using normalised expression levels from the four tissues, dividing the 732 

standard deviation by the mean. We studied inter-tissue expression-variation change with age in 733 

development and ageing periods separately, using two approaches: (a) using the change in mean or 734 

median CoV across genes, and (b) studying significant CoV patterns at the single gene level. 735 

 736 

Mean/median CoV across all genes: 737 

We assessed transcriptome-wide variation among the tissues of each individual mouse by calculating 738 

the mean (or median) CoV of genes and then performing the Spearman’s correlation test between 739 

mean-CoV (or median-CoV) and individual age.  740 

 741 

CoV at the single gene level: 742 

In the second approach, we tested the correlation between the CoV value of a gene and individual 743 

age for each commonly expressed gene using the Spearman’s correlation test. P-values were 744 

corrected for multiple testing, using the ‘BH’ procedure. We used FDR corrected p-value<0.1 as 745 

cutoff. The genes showing positive correlation between CoV and age were called “divergent”, and the 746 

ones showing negative correlation were called “convergent” (Figure 2b). Genes that display a 747 

divergent pattern during development and convergent pattern in ageing (without using a significance 748 

level) were called divergent-convergent (DiCo) genes (n=4,802).  749 

 750 

Permutation Test: 751 

To test the significance of DiCo genes (n=4,802), we kept the developmental divergent genes 752 
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constant (n=9,058, without a significance cutoff) and randomly permuted the individual ages only in 753 

the ageing period (as described earlier). Among developmental divergent genes, we calculated the 754 

DiCo% for each permutation, simulating a null distribution for the DiCo pattern (Figure 2-figure 755 

supplement 12).  756 

 757 

Clustering of DiCo genes: 758 

We used the k-means algorithm to cluster DiCo genes according to their CoV or expression changes 759 

with age, separately (Figure 2-figure supplement 2-3). To find the optimum number of clusters for 760 

both procedures, we applied gap statistics using the ‘clusGap’ function in the ‘cluster’ package v.2.1.2 761 

with 500 simulations (Tibshirani, Walther, and Hastie 2001). We used the ‘kmeans’ function in base R 762 

with ‘iter.max=20’ and ‘nstart=50’ parameters to cluster CoV values or expression levels which were 763 

standardised to mean=1 and sd=0 across genes.  764 

 765 

Effect of gene expression trajectories on DiCo: 766 

To identify potential non-monotonic expression changes with age that could not be detected with the 767 

Spearman’s correlation coefficient, we clustered all expressed genes (n=15,063) in each tissue, 768 

separately, using the k-means algorithm following the same steps explained above (Figure 1-figure 769 

supplement 12-15). The list of genes belonging to each cluster is given in Figure 2-source data. 770 

Then, for each cluster, separately in each tissue, we performed a Fisher’s exact test to assess if a 771 

particular cluster pattern is enriched or depleted in DiCo genes relative to all other expressed genes 772 

(the background). 773 

 774 

Functional association analysis: 775 

To test the functional associations of the genes showing the DiCo pattern among tissues, we 776 

performed GSEA using GO BPs. We retrieved developmental divergent genes (with ⍴CoV-age>0, 777 

n=9,058) and multiplied these ⍴CoV-age values with the ones calculated in the ageing period. Therefore, 778 

the genes with a negative value represent a DiCo pattern, while the ones with a positive value 779 

represent a divergent-divergent (DiDi) pattern. We then ranked the genes according to the calculated 780 

product values and sought enrichment for the upper and lower tail of the distribution using the 781 

Kolmogorov-Smirnov (KS) test implemented in the ‘clusterProfiler’ package v.4.0.0 (Yu et al. 2012). 782 

https://paperpile.com/c/fO8Zuo/NsImJ
https://paperpile.com/c/fO8Zuo/LgF3v
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The ‘gseGO’ function was used with parameters: “nPerm=1000, minGSSize=10, maxGSSize=500 783 

and pValueCutoff=1”. Therefore, the enriched categories for the genes in the lower tail of the 784 

distribution would represent DiCo enrichment. Categories with FDR corrected p-value<0.1 were 785 

considered as significant. 786 

 787 

We summarised DiCo enriched categories into representative ones following (Dönertaş et al. 2021) 788 

and used hierarchical clustering on gene similarities among categories. The tree was cut into 25 789 

clusters. For each cluster, we chose as representative the category that has the highest mean 790 

Jaccard similarity to the other categories in the same cluster. Then, we calculated the mean age-791 

expression correlation across all the genes in each representative category, in each tissue and in 792 

each period. As the unrelated categories, those with the low within cluster similarity, were grouped 793 

into one cluster, we denoted them ‘Other GO’, and performed the same clustering steps to further 794 

summarise them (Figure 4-figure supplement 1). 795 

 796 

We further sought functional enrichment among DiCo genes that were clustered with the k-means 797 

algorithm for both CoV and expression clusters, separately (Figure 2-figure supplement 2-3). Genes 798 

in each cluster were tested among all DiCo genes using the same GORA procedure as described 799 

before. 800 

 801 

Jackknife to test the Di/Co ratio between dev and ageing: 802 

We tested the significance of divergent/convergent gene ratios using a jackknife resampling 803 

procedure in development and in ageing periods, separately. Leaving out an individual in each 804 

iteration, we re-calculated the number of significant divergent and convergent genes and their ratios. 805 

As we could not obtain any gene with significant CoV changes when the youngest adults were left-out 806 

due to the decreased power, standard error and confidence interval calculation was not possible. 807 

Instead, we report the range of pseudovalues. We note that the range of ratios in leave-out samples 808 

do not contain the value 1 either in the development (0.41-0.49) or in the ageing (1.20-2.83) period 809 

(Figure 2e).  810 

 811 

https://paperpile.com/c/blcodC/S8R4
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Pairwise tissue divergence-convergence test 812 

In order to further verify the inter-tissue divergent-convergent pattern that we observed between 813 

development and ageing periods, we used a different approach based on expression correlations 814 

among tissues. We calculated pairwise Spearman’s correlation coefficients among tissues of the 815 

same individual mouse, using all commonly expressed genes among the tissues (n=15,063). For 816 

each tissue pair, we tested the correlation between age and inter-tissue expression-correlations using 817 

the Spearman’s correlation test in development and in ageing periods, separately. In addition, we 818 

calculated the mean (or median) of all six pairwise tissue correlations for each individual mouse, and 819 

tested the correlation between age and average inter-tissue expression-correlations using the 820 

Spearman’s correlation test (Figure 2-figure supplement 6).  821 

 822 

Determination of tissue-specific genes 823 

To identify which tissue(s) contribute to the reversal pattern, we assigned each gene to a tissue to 824 

identify tissue-specific expression patterns. First, we calculated an effect size (ES) between the 825 

expression of a gene in a tissue versus other three tissues using the development samples only, and 826 

repeated this procedure for all tissues. Hence, we obtained ES for each commonly expressed gene in 827 

each tissue. ES was calculated using the ‘Cohen's d’ formula defined as the difference between the 828 

two means divided by the pooled standard deviation. We then assigned each gene to a tissue in 829 

which the gene has the highest ES. Finally, we retrieved only the fourth quartile (>Q3) of genes 830 

assigned to a tissue to define tissue-specific expression. Using this approach, we identified 3,766 831 

tissue-specific genes in total (cortex: 1,175, lung: 839, liver: 986, muscle: 766 genes).  832 

 833 

Enrichment test with the direction of age-related change: 834 

We tested the association between tissue-specificity and age-related expression change during 835 

ageing using Fisher’s exact test. Specifically, we constructed a contingency table with two categorical 836 

variables; the first variable defines the direction (either positive or negative) of maximum expression 837 

change during ageing identified in a tissue-specific gene, which is determined by the slope of the 838 

regression between log2 age and expression. The second variable defines whether this maximum 839 

expression change identified in a tissue-specific gene occurs in its native tissue or not (either yes or 840 

no). Hence, a positive odds ratio (OR) suggests that (a) either the expression of genes decrease the 841 
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most in their native tissue, and/or (b) the expression of genes increase the most in a non-native tissue 842 

during ageing. 843 

 844 

Enrichment of tissue-specific genes in DiCo genes: 845 

We tested the association between tissue-specificity [being either tissue-specific (n=3,766) or not 846 

(n=11,297)] and the DiCo pattern [either showing DiCo (n=4,802) or not (n=10,261)] using the Fisher’s 847 

exact test, calculating the enrichment of tissue-specific genes within DiCo genes.  848 

 849 

Additional publicly available bulk tissue transcriptome datasets  850 

Jonker: 851 

We downloaded the raw data from the GEO database with GSE34378 accession number (Jonker et 852 

al. 2013) and followed the same analysis pipeline described above using all the samples from 5 853 

tissues (“Brain - Cortex”, “Lung”, “Liver”, “Kidney”, “Spleen”) of 18 female mice comprising 90 samples 854 

in total. This dataset represents the ageing period of the mouse, ranging from 90 to 900 days. Using 855 

the oligo package v.1.56.0 (Carvalho and Irizarry 2010), we retrieved the expression matrices and 856 

performed “rma” normalisation followed by removing the probesets that were annotated to more than 857 

one gene. We confined the analysis to only the protein-coding genes expressed in at least 25% of all 858 

samples. The resulting 17,661 genes were log2 transformed (after adding 1) and quantile normalised 859 

using the preprocessCore library (Bolstad 2020)  across all samples. Downstream analysis was the 860 

same as described above. 861 

 862 

Schaum: 863 

We downloaded the raw count matrix from the GEO database with GSE132040 accession number 864 

(Schaum et al. 2020) and performed the same filtrating steps as described above. We discarded the 865 

samples that have less than 4 million reads which was the cutoff used in the article. We restricted the 866 

analysis to only protein-coding genes expressed in at least 25% of the samples that have expression 867 

in 4 tissues (“Brain”, “Lung”, “Liver”, “Muscle”). One individual was removed from the analysis due to 868 

being an outlier in PCA analysis after visual inspection (mouse ID: ‘3m7’, PCA plots before and after 869 

outlier removal are present in our github repository). Final dataset contained 16,806 protein-coding 870 

genes from 37 mice that range from 3 to 27 months of age covering the ageing period. There were 11 871 

https://paperpile.com/c/fO8Zuo/gL13q
https://paperpile.com/c/fO8Zuo/nx0vS
https://paperpile.com/c/fO8Zuo/gL13q
https://paperpile.com/c/fO8Zuo/119KR
https://paperpile.com/c/blcodC/W0Do
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female mice ranging from 3 to 21 months of age and 26 male mice ranging from 3 to 27 months of 872 

age. We performed the same normalisation method and downstream analyses described above. We 873 

extended the analysis to 8 tissues (“Brain”, “Heart”, “Kidney”, “Liver”, “Lung”, “Muscle”, “Spleen”, 874 

“Subcutaneous Fat”) which were chosen based on the highest number of individuals that have the 875 

same tissue samples and that cover the whole ageing period (3 to 27 months). For the fat tissue, 876 

“Subcutaneous Fat” was chosen as representative tissue which has the highest number of samples 877 

among all minor fat tissues. After performing the same preprocessing steps explained above, the final 878 

dataset contained 17,619 genes from 26 mice. Downstream analysis was the same as above. 879 

 880 

GTEx: 881 

We downloaded the processed GTEx v8 dataset (GTEx Consortium et al. 2017) from the data portal 882 

and repeated the analysis in human tissues. We first confirmed our results in the same 4 tissues 883 

(“Brain - Cortex”, “Lung”, “Liver”, “Muscle - Skeletal”) and then expanded the analysis to 10 tissues 884 

("Adipose - Subcutaneous", "Artery - Tibial", "Brain - Cerebellum", "Lung", "Muscle - Skeletal", "Nerve 885 

- Tibial", "Pituitary", "Skin - Sun Exposed (Lower leg)", "Thyroid", "Whole Blood"). In order to choose 886 

which tissues to analyse, we first choose the minor tissues with the highest number of samples for 887 

each major tissue, which prevents the representation of the same tissue multiple times. We then 888 

performed hierarchical clustering of tissues based on the presence of samples from the same 889 

individuals (Figure 2-figure supplement 13) and cut the tree into 3 clusters based on visual 890 

inspection. We selected the cluster with the highest number of overlapping individuals to analyse. The 891 

same procedure was followed for both 4- and 10-tissue analyses. In particular, we restricted the 892 

analysis to the individuals with samples in all tissues analysed and with a death circumstance of 1 893 

(violent and fast deaths due to an accident) and 2 (fast death of natural causes) on the Hardy Scale (n 894 

=47 for 4 tissue, n=35 for 10 tissue). We removed duplicated genes from the analysis. Similar to our 895 

analysis with the mice data, we used only the protein-coding genes that are expressed in at least 25% 896 

of all samples, totalling 16,197 for 4 tissues and 16,305 for 10 tissues. The TPM values obtained from 897 

the GTEx data portal were log2 transformed (after adding 1), and quantile normalised using the 898 

preprocessCore library (Bolstad 2020) in R. Downstream analysis was the same as other datasets. 899 

To study the sex-specific convergence patterns, we repeated the same analysis separating female 900 

(n=11) and male (n=36) individuals. 901 

https://paperpile.com/c/fO8Zuo/119KR
https://paperpile.com/c/fO8Zuo/lyOTq
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 902 

Comparison of datasets 903 

We compared the age-related expression change patterns across tissues of all datasets analysed 904 

using Spearman’s correlation coefficient. We used the ‘pheatmap’ function from pheatmap package 905 

v1.0.12 (Raivo 2019) using hierarchical clustering (Figure 4-figure supplement 2a).  906 

 907 

We performed Fisher’s exact test to test the enrichment of convergent genes among datasets during 908 

ageing. We used only the convergent genes in ageing in our dataset (n=7,748) for comparison. For 909 

GTEx and Schaum et al. datasets, we performed enrichment for the same four tissues as our dataset 910 

and also for the larger sets, indicated as GTEx10 and Schaum8, respectively (Figure 4-figure 911 

supplement 2b). 912 

 913 

Regulatory analysis 914 

We used MiRTarBase (downloaded in 03/08/2021) (Hsu et al. 2010, 2014) and TRANSFAC 915 

(downloaded in 03/08/2021) (Matys et al. 2003, 2006) resources from the Ma’ayan lab database 916 

(Rouillard et al. 2016) for miRNA and transcription factor binding site (TFBS) enrichment analyses, 917 

respectively. As the database contains target information only for human HGNC IDs, we first 918 

converted those IDs to human Ensembl IDs and then to mouse Ensembl IDs only for the one-to-one 919 

ortholog genes, using ‘getBM’ and ‘getLDS’ functions from the biomaRt package. In total, we 920 

analysed 235 miRNAs associated with 5,458 target genes and 158 TFs associated with 7,427 target 921 

genes. We conducted the overrepresentation analysis in the same way as for the DiCo functional 922 

enrichment analysis: specifically, we tested the targets of each regulator for enrichment in -Co genes 923 

(convergent genes in ageing) among Di- genes (divergent genes in development) used as 924 

background to keep developmental patterns fixed. We restricted the analysis for miRNA and TFs that 925 

have at least 5 target genes. After multiple testing correction with the BH procedure, we found no 926 

enrichment among either of the regulator types. Enrichment results are given in Figure 4-source 927 

data. 928 

 929 

Heteroscedasticity tests on the DiCo pattern 930 

To test the hypothesis that the convergence pattern observed in the ageing period could be explained 931 

https://paperpile.com/c/fO8Zuo/5N4k+DBO3
https://paperpile.com/c/blcodC/OX3Q
https://paperpile.com/c/fO8Zuo/UMTd+0Q5Y
https://paperpile.com/c/blcodC/LRUJ
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by the increased noise with age, thus regression towards the mean, we performed two distinct 932 

heteroscedasticity tests to compare DiCo genes against the lifelong-divergent genes (DiDi). In the 933 

first, we followed the method used to measure heteroscedasticity in Isildak et al. (2020) and Kedlian 934 

et al. (2019). We first fit a linear model between log2 transformed age and expression level, for each 935 

gene in each tissue (Kedlian et al. 2019; Işıldak et al. 2020; Somel et al. 2006). This represents the 936 

variability of error along the explanatory variable, age. Then, we calculated Spearman’s correlation 937 

coefficient between the absolute residual values and age, which can be used as an estimate of 938 

heterogeneity change with age. We compared the heterogeneity change values of DiCo and DiDi 939 

genes using a two-sided KS test in each tissue. In the second approach, we used the ‘ncvTest’ 940 

function from the ‘car’ package v.3.0.11 (Fox and Weisberg 2018) which is a chi-squared test for 941 

heteroscedasticity estimated using a linear model. Again, we compared the heteroscedasticity 942 

measures of DiCo and DiDi genes using a two-sided KS test in each tissue. 943 

 944 

Single-cell RNA-seq 945 

Preprocessing: 946 

We used the Tabula Muris Senis dataset (Tabula Muris Consortium 2020) for scRNA-seq analysis as 947 

it is the only dataset to our knowledge that includes time-series samples covering old age, and the 948 

tissues present in our dataset. Seurat-processed FACS data of the tissues lung, liver, skeletal muscle 949 

and non-myeloid brain were downloaded from the figshare database (Pisco 2020). The Seurat 950 

package v.4.0.0 (Stuart et al. 2019) was used to retrieve the expression matrix of the cells that are 951 

annotated to cell types in the original article. Each tissue contains samples from three time points: 90 952 

(3m), 540 (18m) and 720 (24m) days-old mice, totalling 14 samples each in lung, liver and brain, and 953 

9 samples in liver. We excluded cell types with less than 15 cells among all samples, and excluded 954 

genes if the expression level is 0 for all cells at a given age. This resulted in a median number of 99-955 

382 cells assigned to cell types, 6-24 cell types and 16,951-22,122 genes across tissues. Using 3-956 

month-old mice, we calculated cell type-specific expressions in each tissue. Specifically, we first 957 

calculated the mean expression levels among cells of an individual mouse for each cell type, and then 958 

calculated the mean among individuals to obtain an average expression value for each cell type. 959 

Uniprot gene symbols were converted to Ensembl gene IDs using the “biomaRt” R package (Durinck 960 

et al. 2009). 961 

https://paperpile.com/c/fO8Zuo/GpcuK
https://paperpile.com/c/fO8Zuo/4mzx+f02xd+tLrYl
https://paperpile.com/c/fO8Zuo/biyFf
https://paperpile.com/c/fO8Zuo/MrrmL
https://paperpile.com/c/fO8Zuo/8MYi
https://paperpile.com/c/fO8Zuo/GpcuK
https://paperpile.com/c/fO8Zuo/MNNId
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 962 

Deconvolution: 963 

We used cell type-specific expression profiles of 3-month-old mice to estimate relative contributions of 964 

cell types to the transcriptome profiles of tissues in our mouse dataset. For a given tissue in our 965 

mouse dataset, we used single cell expression profiles of that tissue from the Tabula Muris Senis 966 

dataset. We used a linear regression-based deconvolution method for each tissue using three 967 

genesets: all genes (n=[12,492, 12,849]), DiCo genes (n=[4,007, 4,106]) and non-DiCo genes 968 

(n=[8,485, 8,743]). Regression coefficients were used as relative contributions of cell types according 969 

to the following linear model:  970 

 971 

Yi = a + bj1*Xi1 + bj2*Xi2 + … + bjn*Xin,   972 

where i represents the tissue, 973 

Yi is the expression level of a sample in a tissue, 974 

bj1...jn represent the relative contributions of the n cell types in a tissue, 975 

Xi1...in represent the expression levels of the n cell types in a tissue. 976 

 977 

We then tested the effect of age on cell type contributions (bj1,…bjn) using the Spearman’s correlation 978 

test in development and in ageing. 979 

 980 

Cell type similarities and their change during ageing: 981 

To investigate the contribution of cell autonomous changes to inter-tissue convergence in ageing, we 982 

calculated pairwise cell type expression correlations among tissues and studied how these 983 

correlations change with age. Based on pairwise correlations in the 3-months age group, we identified 984 

the maximally and minimally correlated cell type pairs among tissues. Specifically, for each cell type in 985 

a given tissue, we chose the minimally correlated cell type in each of the other three tissues. For 986 

example, for each of the 10 cell types in the liver, we chose the minimally correlated cell type among 987 

the 15 cortex cell types, the minimally correlated cell type among the 24 lung cell types, and the 988 

minimally correlated cell type among the 6 muscle cell types. We repeated this procedure for all cell 989 

types in all four tissues, resulting in 54 cell type pairs. Then, we calculated Spearman’s correlation 990 

coefficients between age and minimally correlated cell type pairs identified in the 3-months age group. 991 
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Likewise, we repeated the same analysis for the maximally correlated cell type pairs among tissues.  992 

 993 

Permutation tests: 994 

To test whether DiCo genes are significantly more associated with cell type proportion changes than 995 

non-DiCo genes, we performed a permutation test based on a re-sampling procedure. For each 996 

tissue, we took random samples among all genes (n=[12,492, 12,849]) with size N, where N is the 997 

number of DiCo genes in that tissue, and repeated the deconvolution analysis as explained above. By 998 

calculating cell type proportion changes with age for each random sample repeated 1000 times, we 999 

created the null distribution for each cell type. Then, we calculated the p-values as the number of 1000 

random samples having the same or higher cell type proportion change values divided by the 1001 

observed value (cell type proportion changes with DiCo genes). 1002 

 1003 

We applied a similar permutation scheme as explained above to test cell type similarity change 1004 

differences between DiCo and non-DiCo genes. For each random sample of non-DiCo genes with 1005 

size N, we calculated the pairwise correlations among cell types of tissues and identified maximally 1006 

and minimally correlated cell types in the 3-months age group. Then, we calculated age-related 1007 

changes of those correlations using Spearman’s correlation coefficient to construct the null 1008 

distribution.  1009 

 1010 

Analysis of within-tissue convergence of cell types:  1011 

Analogous to inter-tissue convergence analysis, we also studied intra-tissue convergence of cell types 1012 

in scRNA-seq data by calculating CoV among cell types within a tissue for each individual of ages 3m, 1013 

18m and 24m, separately. We filtered the data to obtain cell types present in at least 2 individual mice 1014 

in every time point for each tissue which yielded 4, 7, 20 and 6 cell types in brain, liver, lung and 1015 

muscle, respectively. We then tested the mean CoV (or CoV per gene) change with age using 1016 

Spearman’s correlation test. 1017 

 1018 
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Table 1: Result summary of the all datasets analysed. First column shows the names of datasets analysed. 1252 

Numbers in parentheses show the sample sizes. ‘Among all genes’ column refers to the analyses performed 1253 

using all genes relevant to those analyses (subcolumns) without a significance cutoff. ‘Within significant CoV 1254 

changes’: genes show significant CoV change with age with FDR corrected p-value<0.1. In the ‘DiCo vs Tissue 1255 

specificity (Di- as background)’ column, divergent genes in development (Di-) were chosen as background. ‘Co 1256 

vs expression change in native tissue association (Fig 4b)’ column refers to the analysis performed in Figure 4b 1257 

for each dataset and the results were presented in Figure 4c. The association tests were performed among 1258 

convergent genes in ageing except in our dataset which was performed with DiCo genes. Significant test results 1259 
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were indicated with italic fonts. Bold fonts show the results that support convergence or tissue-specific expression 1260 

loss in ageing whether as a significant result or as a trend. Unsupportive test results and inapplicable tests were 1261 

written in normal font. rho: Spearman’s correlation coefficient. OR: Odds ratio. * FDR corrected p-value<0.1. 1262 

 1263 

 Among all genes Within 
significant 

CoV 
changes 

PCA 
Change in 
Euclidean 
distance 

Mean CoV 
change 

Median 
CoV 

change 

Pairwise tissue 
correlations 

 

DiCo vs 
tissue 

specificity  
(Di- as 

background) 

Co vs 
expression 
change in 

native tissue 
association 

(Fig 4b) 

Co vs. Di 
proportions 

Izgi2021 rho=-0.87, 
p=0.0026 

rho=-0.5, 
p=0.2 

rho=-0.48, 
p=0.23 

4/6 positive, 
none 

significant* 

 OR=1.56, 
p=1.3x10

-18 
OR=74.81 

p=5.9x10
-203 

(among 1287 
DiCo genes)

 

68% 
convergenc

e 
(among 62 
significant 

genes*) 

Jonker2013 
5 tissues, 2 

different than 
ours (n=18) 

rho=-0.57, 
p=0.014 

rho=-0.48, 
p=0.044 

rho=-0.03, 
p=0.91 

7/10 positive, 
none 

significant* 

Di- 
background 

missing 

OR=7.52, 
p=6.5x10

-109 

(among 2967 
convergent 

genes)
 

66% 
convergenc

e 
(among 

1735 
significant 

genes*) 

Schaum2020 
Same 4 

tissues (n=37) 

rho=0.13, 
p=0.46 

rho=0.25, 
p=0.14 

rho=0.13, 
p=0.43 

4/6 positive, 
2 significant* 

OR=1.33, 
p=1.07x10

-8 
OR=58.03, 

p=1.5x10
-197 

(among 2124 
convergent 

genes) 

53% 
convergenc

e 
(among 319 
significant 

genes*) 

Schaum2020 
8 tissues 
(n=26) 

rho=0.1, 
p=0.62 

rho=0.16, 
p=0.43 

rho=0.04, 
p=0.86 

16/28 
positive, 

 5 significant* 

Di- 
background 

missing 

OR=84.2, 
p=9.7x10

-96 

(among 2380 
convergent 

genes) 

54% 
convergenc

e 
(among 244 
significant 

genes*) 

GTEx 
Same 4 
tissues 

rho=-0.23, 
p=0.12 

rho=-0.12, 
p=0.42 

rho=-0.18, 
p=0.23 

5/6 positive, 
none 

significant* 

Di- 
background 

missing 

OR=7.21, 
p=7x10

-87 

(among 2407 
convergent 

genes) 

(no 
significant 

CoV 
changes) 

GTEx 
10 tissues 

rho=-0.26, 
p=0.13 

rho=-0.14 
p=0.44 

rho=-0.3, 
p=0.08 

29/45 
positive, 

none 
significant* 

Di- 
background 

missing 

OR=13.01, 
p=5.7x10

-114 

(among 2195 
convergent 

genes)
 

(all 3 
significant 
genes were 
convergent) 
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Table 2. Dataset characteristics summarising species, tissues, number of individuals, age range, sex, and 1284 

platform used for measuring gene expression values.  1285 

Dataset Species Tissues N 
Age 

range 
Sex Method 

Izgi et al. 
4 tissues 

Mice 
Brain, lung, liver, 

muscle 
8 

3 to 30 
months 

Male RNAseq 

Jonker et al. 
5 tissues 

Mice 
Brain, lung, liver, 
kidney, spleen 

18 
3 to 30 
months 

Female Microarray 

Schaum et al. 
4 tissues 

Mice 
Brain, lung, liver, 

muscle 
37 

3 to 27 
months 

Male (n=26) 
Female (n=11) 

RNAseq 

Schaum et al. 
8 tissues 

Mice 

Brain, lung, liver, 
muscle, 

subcutaneous fat, 
kidney, heart, spleen 

26 
3 to 27 
months 

Male (n=20) 
Female (n=6) 

RNAseq 

GTEx  
4 tissues 

Humans 
Brain, lung, liver, 

muscle 
47 

20 to 75 
years 

Male (n=36) 
Female (n=11) 

RNAseq 

GTEx  
10 tissues 

Humans 

Adipose, tibial artery, 
cerebellum, lung, 

skeletal muscle, tibial 
nerve, pituitary, sun-

exposed skin, 
thyroid, and whole 

blood 

35 
20 to 75 

years 
Male (n=27) 

Female (n=8) 
RNAseq 
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 1292 

 1293 

 1294 

 1295 

 1296 

 1297 

 1298 

 1299 

 1300 

 1301 

Figure 1. Data summary and age-related expression patterns 1302 

a) Principal components analysis (PCA) of expression levels of 15,063 protein-coding genes across four tissues 1303 

of 16 mice. Values in parentheses show the variation explained by each component. b) Age trajectories of PC3 1304 

(left) and PC4 (right). Spearman’s correlation coefficients between PC4 and age in each tissue in development 1305 

range between 0.88 and 0.99 (See Figure 1-source data for all tests). The dashed vertical line indicates 90 days 1306 

of age, separating development and ageing periods. Age distribution of samples are given in Figure 1-figure 1307 

supplement 1. c) Similarity between the age-related gene expression changes (Spearman’s correlation 1308 

coefficient between expression and age without a significance cutoff) across tissues in development and ageing. 1309 

Similarities were calculated using Spearman’s correlation coefficient between expression-age correlations across 1310 

tissues. CTX: cortex, LV: liver, LNG: lung, MS: muscle. d) The number of significant age-related genes in each 1311 

tissue (FDR corrected p-value<0.1). e) Shared age-related genes among tissues identified without using a 1312 

significance cutoff. The x-axis shows the number of tissues among which age-related genes are shared. 1313 

Significant overlaps are indicated with an asterisk (*) (Figure 1-figure supplement 4). f) The proportion of age-1314 

related expression change trends (no significance cutoff was used) in each tissue across the lifetime. UpDown: 1315 

up-regulation in development and down-regulation in the ageing; DownUp: down-regulation in development and 1316 

up-regulation in the ageing; UpUp: up-regulation in development and up-regulation in the ageing; DownDown: 1317 
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down-regulation in development and down-regulation in ageing. We confirmed the robustness of the results using 1318 

VST normalisation in Figure 1-figure supplement 10. 1319 

 1320 

Figure 2. Age-related change in gene expression variation among tissues estimated with CoV 1321 

a) Transcriptome-wide mean CoV trajectory with age. Each point represents the mean CoV value of all protein-1322 

coding genes (15,063) for each mouse (n=15) except the one that lacks expression data in the cortex. b) Age 1323 

effect on CoV value of the Cd93 gene which has the highest rank for the DiCo pattern, in four tissues (Methods). 1324 

CoV increases during development and decreases during ageing, indicating expression levels show DiCo 1325 

patterns among tissues. c) Expression trajectories of the gene Cd93 in four tissues. d) The number of significant 1326 

CoV changes with age (FDR corrected p-value<0.1) during development (left, nconv.=772, ndiv.=1,809) and ageing 1327 

(right, nconv.=42, ndiv.=20). Converge: genes showing a negative correlation (⍴) between CoV and age; Diverge: 1328 

genes showing a positive correlation between CoV and age. e) Log2 ratio of convergent/divergent genes in 1329 

development and in ageing. The graph represents only genes showing significant CoV changes (FDR corrected 1330 

p-value<0.1, given in panel d). Error bars represent the range of log2 ratios calculated from leave-one-out 1331 

samples using the jackknife procedure (Methods, values are given in Figure 2-source data). 1332 

 1333 

Figure 3. Reversal patterns among tissue-specific genes 1334 

Age-related expression changes of the tissue-specific genes. In each panel a-d, the upper left subpanels show 1335 

effect size (ES) calculated with the Cohen’s D formula, using expression levels of each gene among tissues 1336 

(Methods). The IQR (line range) and median (point) effect size for each tissue is shown. The number of tissue-1337 

specific genes is indicated inside each subpanel. The lower left subpanels show violin plots of the distribution of 1338 

age-related expression change values (Methods) among tissue-specific genes, in development and in ageing. 1339 

Each quadrant represents the plots for each tissue-specific gene group. The red and blue lines connect gene 1340 

expression changes for the same genes in development and ageing. DU: percentage of down-up reversal genes 1341 

among down-regulated, tissue-specific genes in development. UD: percentage of up-down reversal genes among 1342 

up-regulated, tissue-specific genes in development. Tissue-specific genes are enriched among UD reversal 1343 

genes except in the liver (Fisher’s exact test; ORcortex=1.65, ORlung=6.52, ORliver=0.87, ORmuscle=1.26, p<0.05 for 1344 

each test except in liver). 1345 

 1346 

Figure 4. The loss of tissue-specific expression during ageing and functional enrichment of 1347 

DiCo genes 1348 

a) Mosaic plot showing the association between maximal expression change in native vs. non-native tissues (x-1349 

axis) vs. down- (cyan) or up- (pink) regulation during ageing across all tissue-specific genes (n=3,766). The 1350 
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highly significant odds ratio indicates that genes native to a tissue tend to be down-regulated during ageing in 1351 

that native tissue, if they show maximal expression change during ageing in that tissue. Conversely, if they show 1352 

maximal expression change during ageing in non-native tissue, those genes are up-regulated during ageing. 1353 

Consequently, tissue-specific expression patterns established during development will tend to be lost during 1354 

ageing. b) The same as (a) but using only the tissue-specific genes that show the DiCo pattern (n=1,287). c) 1355 

Summary of the association tests for ‘direction of maximal expression change in native vs. non-native tissues’ 1356 

across all datasets analysed. The y-axis shows log2 transformed Odds Ratio (OR) for each dataset (x-axis) - 1357 

Schaum4: using the same four tissues as our dataset. Schaum8: using eight tissues. GTEx4: using the same four 1358 

tissues as our dataset. GTEx10: using ten tissues. ***: FDR-corrected p-value<10
-87

. P-values are given in Table 1359 

1. The 4 groups are annotated as GR1-4 and gene expression changes for each group in our dataset is 1360 

exemplified in d-g. h) Trends of expression change with age of genes (x-axis) in categories enriched in DiCo 1361 

(GSEA). Enriched categories (n=184) are summarised into representatives (y-axis) using hierarchical clustering 1362 

and Jaccard similarities (Methods). Categories are ordered by the number of genes they contain from highest 1363 

(bottom, n = 290) to lowest (top, n = 26). The most distant cluster with low within-cluster similarity in the 1364 

hierarchical clustering (Other GO) was clustered separately and given in Figure 4-figure supplement 1. 1365 

 1366 

Figure 5. Contribution of tissue composition and cell-autonomous changes to the DiCo pattern 1367 

a) Deconvolution analysis of our mouse dataset with the 3-month-old scRNA-seq data (Tabula Muris Senis) using 1368 

DiCo (n=[4,007, 4,106]) and non-DiCo (n=[8,485, 8,743]) genes. Only the cell types with the highest relative 1369 

contributions to each tissue bulk transcriptome are shown (cell type names are given within each plot). 1370 

Contributions of all cell types to bulk tissue transcriptomes are shown in Figure 5-figure supplement 1. b) 1371 

Distribution of correlations for minimally (left) and maximally (right) correlated cell type pairs among tissues (n=54 1372 

pairs). For each cell type of a given tissue, one minimally (or maximally) correlated cell type is chosen from other 1373 

tissues among the 3-month age group of the Tabula Muris Senis dataset (density plots with solid line edges). 1374 

Dashed lines show the correlation distributions in 24-months age of minimally or maximally correlated cell type 1375 

pairs identified in the 3-months age group. Bottom panel shows age-related expression similarity (⍴) changes of 1376 

minimally (left) and maximally (right) correlated cell type pairs. The correlation between age and tissue similarity 1377 

(expression correlations) were calculated for each pair of cell types identified in the 3-months age group. All 1378 

pairwise cell type correlations and their age-related changes are given in Figure 5-source data. 1379 

 1380 

Figure 1-figure supplement 1. Age distribution of samples 1381 

The x-axis shows the age in days in a log2 scale and the y axis lists different tissues. The period from 2 to 61-1382 

days-old mice are considered as postnatal development (referred to as development for brevity in the main text), 1383 
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and above 90-days-old as the ageing period. Random jitter was added on the y-axis to avoid overlap between 1384 

points. 1385 

 1386 

Figure 1-figure supplement 2. PCA with all samples (tissue effect removed) 1387 

Principal component analysis (PCA) using all samples (n=16) after each tissue is standardised separately (i.e. 1388 

gene expression values for individuals are scaled to mean=0, sd=1). PC1 (x-axis) and PC2 (y-axis) are plotted 1389 

and the variation explained by each PC is denoted within parentheses on each axis. The size of the points 1390 

indicates the age and the colour shows the tissue. The plots on the right show the correlations between the PCs 1391 

(y-axis) and age (x-axis, on the log2 scale) in development and ageing. PC1-age Spearman’s correlation test 1392 

during development (n=7 mice); abs(⍴dev)=[0.88, 0.99], nominal pdev<0.01 for each tissue, same test for PC2 vs 1393 

age; abs(⍴dev)= [0.30, 0.99], nominal pdev<0.01 except muscle (Figure 1-source data). 1394 

 1395 

Figure 1-figure supplement 3. PCA with development and ageing periods separately 1396 

Principal component analysis (PCA) using only the samples from the development period (2- to 61 days of age, 1397 

n=7) (a-c) and the ageing period (93- to 904 days of age, n=9) (d-f). a,d) PC1 (x-axis) vs PC2 (y-axis) and b,e) 1398 

PC3 (x-axis) vs PC4 (y-axis) are plotted and the variation explained by each PC is denoted within parentheses on 1399 

each axis. The size of the points indicates the age and the colour shows the tissue. c,f) Correlation between the 1400 

PCs (y-axis) and age (x-axis, in the log2 scale) in development (c) and ageing (f). c) Age-effects can be observed 1401 

in PC2 and PC4 in development: PC2-age Spearman’s correlation test, abs(⍴)= [0.72, 0.94], nominal p<0.05 in 1402 

3/4 tissues; PC4-age Spearman’s correlation test, abs(⍴)= [0.88, 0.99], nominal p<0.01 in all tissues. Inter-tissue 1403 

transcriptome divergence can be observed as a trend in PC3-PC4 space (change in the mean Euclidean 1404 

distance among tissues with age in PC1-4 space, ⍴=0.95, p=0.0008). f) A small age-effect can be observed in 1405 

PC4 in ageing: PC4-age Spearman’s correlation test: abs(⍴)= [0.11, 0.77], nominal p<0.05 in 2/4 tissues. Inter-1406 

tissue transcriptome convergence can be observed as a subtle trend in PC1-4 space (change in mean Euclidean 1407 

distance among tissues with age in PC1-4 spaces, ⍴=-0.64, p=0.059). All PC-age correlation test results are 1408 

given in Figure 1-source data. 1409 

 1410 

Figure 1-figure supplement 4. Permutation test results for shared expression trends among  1411 

tissues 1412 

Permutation test results of shared up/down genes across tissues for development and ageing periods. “Up” and 1413 

“down” indicate positive and negative expression-age correlations (⍴), respectively. No significance cutoff was 1414 

applied for choosing up/down genes in tissues (i.e. only considering ⍴>0 or ⍴<0). The null distributions are 1415 

created by permuting individual ages and calculating expression-age correlations in each tissue, then summing 1416 
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the number of genes changing in the same direction in 2, 3, and 4 tissues. The red dashed lines show the 1417 

observed values, also noted as “Obs:”. The eFPP (estimated false positive proportion) was calculated as the ratio 1418 

between the median expected value from the permutations and the observed value. P-values were calculated as 1419 

the proportion of permutations that are higher than or equal to the observed value. 1420 

 1421 

Figure 1-figure supplement 5. Shared age-related genes among tissues in development and 1422 

ageing 1423 

a) Overlap between significant (FDR corrected p-value<0.1) age-related gene sets among tissues. The x-axis 1424 

shows the number of tissues compared; 2: overlap in two tissues, 3: overlap in 3 tissues, 4: overlap in 4 tissues. 1425 

Cyan: down-regulation with age, pink: up-regulation with age. Significant overlaps (permutation test, p<0.05, (see 1426 

Figure 1–figure supplement 6 for test results)) are indicated with asterisks. b) The differences between the 1427 

magnitude of age-related expression changes in development and ageing: (abs(⍴dev)-abs(⍴ageing)), for each gene 1428 

(n=15,063 genes) in four tissues (Wilcoxon signed-rank test, p<10
-16

 for each tissue). 1429 

 1430 

Figure 1-figure supplement 6. Permutation test results for significant trends shared among 1431 

tissues 1432 

Permutation test result for shared “up” (or “down”) genes among tissues in development (a) and ageing (b). “Up” 1433 

and “down” indicate positive and negative expression-age correlations (⍴), respectively. Significant up/down 1434 

genes were chosen with FDR corrected p-value<0.1 and their overlap across tissues were calculated. To create 1435 

the null distributions, we chose as many up (or down) genes in permutations as the observed up (or down) genes 1436 

in each tissue and then calculated the number of overlapping genes among tissues. The dashed red line shows 1437 

the observed number of shared up (or down) genes between tissues and eFPP was calculated as the ratio 1438 

between the median expected value from the permutations and the observed value. “Obs:” number of genes 1439 

displaying the same significant age-related change pattern among tissues. The p-value was calculated as the 1440 

proportion of permutations that are higher than or equal to the observed value.  1441 

 1442 

Figure 1-figure supplement 7. Similarities between age-related gene expression changes 1443 

among tissues 1444 

The similarity between the age-related gene expression changes (Spearman’s correlation coefficient between 1445 

expression and age) across tissues in development and ageing. Similarities were calculated using Spearman’s 1446 

correlations coefficient between expression-age correlations (with cutoff: |⍴|>0.6) across tissues. No significance 1447 

cutoff was used for expression change similarities. The intensity of the colours shows the magnitude of the 1448 

correlation coefficient, where darker blue indicates a stronger negative correlation and darker red indicates a 1449 



50 

stronger positive correlation. Correlation values are written on the lower triangle. The colour of the tissue label 1450 

indicates development (orange) and ageing (blue) datasets.  1451 

 1452 

Figure 1-figure supplement 8. Permutation test results for reversal patterns in each tissue 1453 

Permutation test result for up-down and down-up reversal genes in each tissue. Developmental up- (or down-) 1454 

genes, i.e. genes with expression-age ⍴>0 (or ⍴<0), were kept constant and the age labels of the individuals in 1455 

the ageing period were permuted (Methods). No significance cutoff was used in choosing genes. The dashed red 1456 

line shows the observed (“Obs”) up-down (or down-up) proportions in tissues and eFPP was calculated as the 1457 

median expected value of the permutations divided by the observed value. P-values were calculated as the 1458 

proportion of permutations that are higher than or equal to the observed value. Left panel: up-down reversal 1459 

proportions were calculated as UD/(UD + UU). Right panel: down-up reversal proportions were calculated as 1460 

DU/(DU+DD).  1461 

 1462 

Figure 1-figure supplement 9. Permutation test results for shared reversals among tissues 1463 

Permutation test result for shared up-down (or down-up) reversal genes across tissues. Developmental up- (or 1464 

down-) genes were kept constant (among 2255 shared up-genes and 2209 shared down-genes in development), 1465 

and the age labels of the individuals in the ageing period were permuted (Methods). The dashed red line shows 1466 

the observed (“Obs”) up-down (or down-up) proportions shared among tissues and eFPP was calculated as the 1467 

median of the permutations divided by the observed value. The p-values were calculated as the proportion of 1468 

permutations that are higher than or equal to the observed value. Left panel: up-down reversal proportions were 1469 

calculated as UD/(UD + UU). Right panel: down-up reversal proportions were calculated as DU/(DU+DD).  1470 

 1471 

Figure 1-figure supplement 10. Replication of Figure 1 results using VST normalisation 1472 

To confirm the robustness of the results to the choice of normalisation method, the analysis was repeated using 1473 

an alternative normalisation approach, VST, implemented in the DESeq2 package (see Methods). a) Principal 1474 

components analysis (PCA) of expression levels of 14,973 protein-coding genes across four tissues of 16 mice. 1475 

Values in parentheses show the variation explained by each component. b) Age trajectories of PC3 (left) and 1476 

PC4 (right). Spearman’s correlation coefficients between PC4 and age in each tissue in development range 1477 

between 0.58 and 0.99 (See Figure 1-source data for all tests). The dashed vertical line indicates 90 days of 1478 

age, separating development and ageing periods. c) Similarity between the age-related gene expression 1479 

changes (Spearman’s correlation coefficient between expression and age without a significance cutoff) across 1480 

tissues in development and ageing. Similarities were calculated using Spearman’s correlation coefficient between 1481 

expression-age correlations across tissues. CTX: cortex, LV: liver, LNG: lung, MS: muscle. d) The number of 1482 
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significant age-related genes in each tissue (FDR corrected p-value<0.1). e) Shared age-related genes among 1483 

tissues identified without using a significance cutoff. The x-axis shows the number of tissues among which age-1484 

related genes are shared. f) The proportion of age-related expression change trends in each tissue across the 1485 

lifetime. No significance cutoff was used. UpDown: up-regulation in development and down-regulation in the 1486 

ageing; DownUp: down-regulation in development and up-regulation in the ageing; UpUp: up-regulation in 1487 

development and up-regulation in the ageing; DownDown: down-regulation in development and down-regulation 1488 

in ageing.  1489 

 1490 

Figure 1-figure supplement 11. Correlation between QN and VST normalisation methods using 1491 

age-related expression changes 1492 

Spearman’s correlation coefficient between expression trajectories of QN (quantile normalised, x-axis) and VST 1493 

(variance stabilising transformation method from DESeq2 package, y-axis) normalised data. Expression 1494 

trajectories were calculated using Spearman’s correlation coefficient between age and expression level for each 1495 

gene in both periods (ndev = [14705, 14710], nageing = [14689, 14710]). Blue lines represent the regression lines. 1496 

 1497 

Figure 1-figure supplement 12. Clustering of genes by expression levels in cortex tissue 1498 

K-means clustering (k=15) of genes (15,063) using expression levels in cortex tissue. Numbers in the 1499 

parentheses show the number of genes in each cluster. Expression levels of genes were scaled across samples 1500 

(mean=1, sd=0) before clustering. The optimal number of clusters was determined with gap statistics (see 1501 

Methods). Clusters enriched among DiCo genes compared to all other clusters were indicated with red colour 1502 

and the ones depleted among DiCo genes were indicated with blue colour. The list of genes belonging to each 1503 

cluster and their enrichment among DiCo genes are given in Figure 1-source data. 1504 

 1505 

Figure 1-figure supplement 13. Clustering of genes by expression levels in lung tissue 1506 

K-means clustering (k=17) of genes (15,063) using expression levels in lung tissue. Numbers in the parentheses 1507 

show the number of genes in each cluster. Expression levels of genes were scaled across samples (mean=1, 1508 

sd=0) before clustering. The optimal number of clusters was determined with gap statistics (See Methods). 1509 

Clusters enriched among DiCo genes were indicated with red colour and the ones depleted among DiCo genes 1510 

were indicated with blue colour. The list of genes belonging to each cluster and their enrichment among DiCo 1511 

genes are given in Figure 1-source data. 1512 

 1513 

Figure 1-figure supplement 14. Clustering of genes by expression levels in liver tissue 1514 

K-means clustering (k=14) of genes (15,063) using expression levels in liver tissue. Numbers in the parentheses 1515 
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show the number of genes in each cluster. Expression levels of genes were scaled across samples (mean=1, 1516 

sd=0) before clustering. The optimal number of clusters was determined with gap statistics (See Methods). 1517 

Clusters enriched among DiCo genes were indicated with red colour and the ones depleted among DiCo genes 1518 

were indicated with blue colour. The list of genes belonging to each cluster and their enrichment among DiCo 1519 

genes are given in Figure 1-source data. 1520 

 1521 

Figure 1-figure supplement 15. Clustering of genes by expression levels in muscle tissue 1522 

K-means clustering (k=17) of genes (15,063) using expression levels in muscle tissue. Numbers in the 1523 

parentheses show the number of genes in each cluster. Expression levels of genes were scaled across samples 1524 

(mean=1, sd=0) before clustering. The optimal number of clusters was determined with gap statistics (See 1525 

Methods). Clusters enriched among DiCo genes were indicated with red colour and the ones depleted among 1526 

DiCo genes were indicated with blue colour. The list of genes belonging to each cluster and their enrichment 1527 

among DiCo genes are given in Figure 1-source data. 1528 

 1529 

Figure 2-figure supplement 1. Age-related change in CoV summarised across genes using 1530 

median CoV values 1531 

Each point represents the median CoV value (instead of the mean given in Figure 2a) of all protein-coding genes 1532 

(15,063) for each mouse except the one that lacks expression data in the cortex (n=15). x-axis is in log2 scale. 1533 

The dashed grey line shows the start of the ageing period. The Spearman’s correlation coefficient and p-value for 1534 

each period are indicated separately on the plot.  1535 

 1536 

Figure 2-figure supplement 2.  Clustering of DiCo genes by expression variations (CoV) among 1537 

tissues 1538 

Kmeans clustering (k=7) of DiCo genes (4,802) using CoV values. Numbers in the parentheses show the number 1539 

of genes in each cluster. CoV values were scaled across genes (mean=1, sd=0) before clustering. The optimal 1540 

number of clusters was determined with gap statistics (Methods). The list of genes belonging to each cluster and 1541 

their age-related CoV change correlations are given in Figure 2-source data. 1542 

 1543 

Figure 2-figure supplement 3. Clustering of DiCo genes by expression levels in tissues 1544 

Kmeans clustering (k=25) of DiCo genes (n=4,802) using gene expression levels. Numbers in the parentheses 1545 

show the number of genes in each cluster. Expression levels of genes were scaled across tissues ((mean=1, 1546 

sd=0)) before clustering. The optimal number of clusters was determined with gap statistics (Methods). The list of 1547 

genes belonging to each cluster and their age-related CoV change correlations are given in Figure 2-source 1548 
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data. 1549 

 1550 

Figure 2-figure supplement 4. Number of genes with inter-tissue divergence and convergence 1551 

tendencies in development and ageing 1552 

The number of CoV changes with age (without a significance cutoff) during development and ageing. Converge: 1553 

genes showing negative correlation (⍴<0) between CoV and age; Diverge: genes showing positive correlation 1554 

(⍴>0) between CoV and age (Development: nconverge=5,939, ndiverge=9,058; Ageing: nconverge=7,748, ndiverge=7,187). 1555 

 1556 

Figure 2-figure supplement 5. Pairwise tissue expression correlations 1557 

Age-related changes in pairwise Spearman’s correlation coefficients for the expression levels (y-axis) between 1558 

tissues of the same individual mouse in our dataset. The dashed grey line indicates the start of the ageing period. 1559 

The Spearman’s correlation coefficients and p values for each period are indicated separately on the plot.  1560 

 1561 

Figure 2-figure supplement 6. Summary of pairwise expression correlations among tissues 1562 

Age-related change in the mean (left) or the median (right) pairwise expression correlations among tissues. Each 1563 

point represents the mean (left) or the median (right) of pairwise expression correlations among tissues of the 1564 

same mouse (mean/median values are calculated from Figure 2–figure supplement 5). a) Absolute expression 1565 

correlations were used to calculate the mean or the median. b) Expression correlations were scaled within each 1566 

tissue pair (mean=1, sd=0) before calculating the mean and median. The Spearman’s correlation coefficients and 1567 

p values for each period are indicated separately on the plot.  1568 

 1569 

Figure 2-figure supplement 7. CoV and pairwise correlation analysis of Jonker dataset 1570 

a-b) Principal components analysis (PCA) of expression values of 17,661 protein-coding genes across five 1571 

tissues (Brain (Cortex), Liver, Lung, Kidney, Spleen) of 18 individuals in the Jonker dataset (contains samples 1572 

only from the ageing period). Values in parentheses show the variance explained by each PC. c) The change in 1573 

mean pairwise Euclidean distance between the PC values for the tissues of the same individuals (y-axis) with 1574 

age (x-axis). Transcriptome-wide d) mean and e) median CoV changes with age across 5 tissues. The x-axis 1575 

shows age in days. Each point represents the mean or median CoV value of all protein-coding genes for each 1576 

individual. f) Spearman’s correlation coefficient between age (x-axis) and gene expression correlations of each 1577 

individual in pairwise tissues (y-axis). Spearman’s correlation coefficient and p-values are indicated in each plot. 1578 

 1579 

Figure 2-figure supplement 8. PCA of GTEx dataset covering cortex, liver, lung, and muscle 1580 

tissues 1581 
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a-b) Principal components analysis (PCA) of expression values of 16,197 genes across four tissues (Cortex, 1582 

Liver, Lung, Muscle) of 47 individuals in GTEx. Values in parentheses show the variance explained by each PC. 1583 

c) The change in mean pairwise Euclidean distance between the PC values for the tissues of the same 1584 

individuals (y-axis) with age (x-axis). d-g) Association between the first four PCs (y-axis) and age (x-axis). The 1585 

tissue and age of the samples are indicated by the colour and size of the points, respectively. Spearman’s 1586 

correlation test results are indicated in each plot. 1587 

 1588 

Figure 2-figure supplement 9. CoV and pairwise correlation analysis of GTEx dataset covering 1589 

cortex, liver, lung, and muscle tissues 1590 

a-b) Transcriptome-wide mean (a) and median (b) CoV change with age across four tissues (Cortex, Liver, Lung, 1591 

Muscle) in GTEx. Each point represents the mean or median CoV value of all protein-coding genes (16,197) for 1592 

each individual (n=47) in GTEx. Spearman’s correlation coefficients and p-values are also presented in the plot. 1593 

c) The change in pairwise Spearman’s correlation coefficient between gene expression values of the same 1594 

individual across ages (y-axis) with age (x-axis). Spearman’s correlation coefficient and p-values between the 1595 

pairwise tissue correlations and age are also presented in each plot.  1596 

 1597 

Figure 2–figure supplement 10. PCA of GTEx dataset with ten tissues 1598 

a-b) Principal components analysis (PCA) of expression values of 16,290 genes across ten tissues of 35 1599 

individuals in GTEx. Values in parentheses show the variance explained by each PC. c) The change in mean 1600 

pairwise Euclidean distance between the PC values for the tissues of the same individuals (y-axis) with age (x-1601 

axis). d-g) Association between the first four PCs (y-axis) and age (x-axis). The tissue and age of the samples 1602 

are indicated by the colour and size of the points, respectively.  1603 

 1604 

Figure 2-figure supplement 11. CoV and pairwise correlation analysis of GTEx dataset with ten 1605 

tissues 1606 

a-b) Transcriptome-wide mean (a) and median (b) CoV change with age across ten tissues in GTEx. Each point 1607 

represents the mean or median CoV value of all protein-coding genes (16,290) for each individual (n=35) in 1608 

GTEx. Spearman’s correlation coefficients and p-values are also presented in the plot. c) Age-related changes in 1609 

pairwise Spearman’s correlation coefficient between gene expression values of the same individual. The colour 1610 

of points shows the correlations between age and pairwise correlations, where darker red colour indicates an 1611 

increased correlation with age and darker blue indicates a decreased correlation. The size of points shows the 1612 

mean similarity (correlation) between tissues using all ages. None of the correlations is significant after multiple 1613 

testing correction (using BH).  1614 



55 

 1615 

Figure 2-figure supplement 12. Permutation test result for the proportion of DiCo genes 1616 

DiCo genes (n=4,802) were tested with a permutation-based test explained in Methods. We kept the divergent 1617 

genes (n=9,058) in development constant and permuted age labels of individuals in the ageing period. Then, we 1618 

calculated the DiCo proportion among those genes in permutations. “Obs:” observed DiCo proportion (Obs = 1619 

4,802/9,058, i.e. DiCo/(DiCo + Di~); Di~: divergence across lifetime). eFPP was calculated as the median 1620 

expected proportion divided by the observed value. P-value was calculated as the proportion of permutations that 1621 

are higher than or equal to the observed value. 1622 

 1623 

Figure 2-figure supplement 13. Clustering of tissues by the presence of samples from the 1624 

same individuals 1625 

Heatmap showing whether individuals (columns) have samples (light blue colour) in tissues (y-axis).  1626 

 1627 

Figure 2-figure supplement 14. Reproducing Figure 2 results with VST normalisation 1628 

a) Transcriptome-wide mean CoV trajectory with age. Each point represents the mean CoV value of all protein-1629 

coding genes (14,973) for each mouse (n=15) except the one that lacks expression data in the cortex. b) Age 1630 

effect on CoV value of the Cd93 gene which has the highest rank for the DiCo pattern, in four tissues (Methods). 1631 

CoV increases during development and decreases during ageing, indicating expression levels show DiCo 1632 

patterns among tissues. c) Expression trajectories of the gene Cd93 in four tissues. d) The number of significant 1633 

CoV changes with age (FDR corrected p-value <0.1) during development (left, nconv.=398, ndiv.=3,078) and ageing 1634 

(right, nconv.=13, ndiv.=6). Converge: genes showing a negative correlation (⍴) between CoV and age; Diverge: 1635 

genes showing a positive correlation between CoV and age. e) Log2 ratio of convergent/divergent genes in 1636 

development and in ageing. The graph represents only genes showing significant CoV changes (at FDR 1637 

corrected p-value <0.1, given in panel d). Error bars represent the range of log2 ratios calculated from leave-one-1638 

out samples in jackknife procedure. 1639 

 1640 

Figure 2-figure supplement 15. Effect of heteroscedasticity to DiCo pattern 1641 

Two different heteroscedasticity tests were performed to compare DiCo (n=4,802) vs DiDi (n=4,182, divergent 1642 

throughout the lifetime) genes to test whether the convergence pattern is a result of the regression towards the 1643 

mean. a) Density plots of Spearman’s correlation coefficients (x-axis) between heterogeneity and age for DiCo 1644 

and DiDi genes, in each tissue. Heterogeneity was calculated as the absolute residuals of the linear regression 1645 

between age (log2 scale) and expression (see Methods). Only in muscle tissue, the two-sided Kolmogorov-1646 

Smirnov (KS) test result was marginally significant in the direction of higher heterogeneity change for DiDi genes 1647 
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(p = 0.0496). b) Density plots of Chi-Square test statistics (x-axis) from Breusch-Pagan test (from “car” package 1648 

in R) between expression level and age (log2 scale) for DiCo and DiDi genes, in each tissue. Only in muscle 1649 

tissue, the two-sided KS test result was significant in the direction of higher heterogeneity change for DiDi genes 1650 

(p = 0.0423). P-values of KS test results between DiCo and DiDi genes are given within each plot. 1651 

 1652 

Figure 2-figure supplement 16. Sex effect on CoV analysis using GTEx 1653 

a-b) Transcriptome-wide mean (a) and median (b) CoV change with age across four tissues (Cortex, Liver, Lung, 1654 

Muscle) in GTEx for female (n=11) and male (n=36) individuals, separately. Each point represents the mean or 1655 

median CoV value of all protein-coding genes (16,197) for each individual. Spearman’s correlation coefficients 1656 

and p-values are also presented in the plots. c-d) The change in pairwise Spearman’s correlation coefficient 1657 

between gene expression values of the same individual (y-axis) for (c) females (n=11) and (d) males (n=36), 1658 

across ages (x-axis). Spearman’s correlation coefficient and p-values between the pairwise tissue correlations 1659 

and age are also presented in each plot.  1660 

 1661 

Figure 2-figure supplement 17. PCA of Schaum dataset covering cortex, liver, lung, and 1662 

muscle tissues 1663 

a-b) Principal components analysis (PCA) of expression values of 16,806 genes across four tissues (Cortex, 1664 

Liver, Lung, Muscle) of 37 individuals in the Schaum dataset. Values in parentheses show the variance explained 1665 

by each PC. c) The change in mean pairwise Euclidean distance between the PC values for the tissues of the 1666 

same individuals (y-axis) with age (x-axis). d-g) Association between the first four PCs (y-axis) and age (x-axis). 1667 

The tissue and age of the samples are indicated by the colour and size of the points, respectively. Spearman’s 1668 

correlation test results are indicated in each plot. 1669 

 1670 

Figure 2-figure supplement 18. CoV and pairwise correlation analysis of Schaum dataset 1671 

covering cortex, liver, lung, and muscle tissues 1672 

a-b) Transcriptome-wide mean (a) and median (b) CoV change with age across four tissues (Cortex, Liver, Lung, 1673 

Muscle) in Schaum dataset. Each point represents the mean or median CoV value of all protein-coding genes 1674 

(16,806) for each individual (n=37). Spearman’s correlation coefficients and p-values are also presented in the 1675 

plot. c) The change in pairwise Spearman’s correlation coefficient between gene expression values of the same 1676 

individual across ages (y-axis) with age (x-axis). Spearman’s correlation coefficient and p-values between the 1677 

pairwise tissue correlations and age are also presented in each plot.  1678 

 1679 

Figure 2-figure supplement 19. PCA of Schaum dataset with eight tissues 1680 
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a-b) Principal components analysis (PCA) of expression values of 17,619 genes across eight tissues of 26 1681 

individuals in the Schaum dataset. Values in parentheses show the variance explained by each PC. c) The 1682 

change in mean pairwise Euclidean distance between the PC values for the tissues of the same individuals (y-1683 

axis) with age (x-axis). d-g) Association between the first four PCs (y-axis) and age (x-axis). The tissue and age 1684 

of the samples are indicated by the colour and size of the points, respectively.  1685 

 1686 

Figure 2-figure supplement 20. CoV and pairwise correlation analysis of Schaum dataset with 1687 

eight tissues 1688 

a-b) Transcriptome-wide mean (a) and median (b) CoV change with age across eight tissues (Brain (Cortex), 1689 

Heart, Kidney, Liver, Lung, Muscle, Spleen, Subcutaneous Fat) in Schaum dataset. Each point represents the 1690 

mean or median CoV value of all protein-coding genes (17,619) for each individual (n=26). Spearman’s 1691 

correlation coefficients and p-values are also presented in the plot. c) Age-related changes in pairwise 1692 

Spearman’s correlation coefficient between gene expression values of the same individual. The colour of points 1693 

shows the correlations between age and pairwise correlations, where darker red colour indicates an increased 1694 

correlation with age and darker blue indicates a decreased correlation. The size of points shows the mean 1695 

similarity (correlation) between tissues using all ages. Significant correlations are indicated with circles around 1696 

the points after multiple testing correction using ‘BH’.  (5/7 of significant correlations were positive). 1697 

 1698 

Figure 4-figure supplement 1. Age-related expression change trends in DiCo enriched 1699 

categories denoted as ‘Other GO’ in the first clustering 1700 

Age-related expression change trends of genes (x-axis) in categories enriched in DiCo (GSEA) that were 1701 

grouped into one cluster ‘Other GO’ in Figure 4g. These categories (n=69) were again summarised into 1702 

representatives (y-axis) using hierarchical clustering and Jaccard similarities (see Methods). Categories are 1703 

ordered by the number of genes they contain from highest (bottom, n = 97) to lowest (top, n = 21). One cluster 1704 

containing unrelated categories (n=17) was again denoted as ‘Other GO’. 1705 

 1706 

Figure 4-figure supplement 2. Comparison of datasets 1707 

a) Heatmap using Spearman’s correlation coefficients among expression trajectories (Spearman’s correlation 1708 

coefficients between expression and age) across datasets during ageing. As the pairwise tissue correlations 1709 

range between -0.2 to 0.52, the colour palette was restricted to -0.52 to 0.52 range. The same tissues of our 1710 

dataset and Jonker dataset were clustered together (cortex, lung, liver) in the lower right corner. b) Enrichment of 1711 

convergent genes among datasets during ageing. GTEx10 and GTEx4: CoV calculation was performed with ten 1712 

tissues and with the same four tissues as our dataset in GTEx. Schaum8 and Schaum4: CoV calculation was 1713 



58 

performed with eight tissues and with the same four tissues as our dataset in Schaum dataset.’***’: FDR 1714 

corrected p-value<0.001, ‘**’: FDR corrected p-value<0.01, ‘*’: FDR corrected p-value<0.1. All log2(OR) values 1715 

were positive except for our data vs GTEx10 (log2(OR)= -0.04) and Jonker vs Schaum8 (log2(OR) = -0.06), both 1716 

of which were non-significant. 1717 

 1718 

Figure 5-figure supplement 1. Age-related changes in cell type proportions calculated using 1719 

DiCo and non-DiCo genes 1720 

Deconvolution of bulk tissue expression profiles of the mice in our dataset with regression analysis using the 1721 

single-cell expression profile of the 3-month-old mice in the Tabula Muris Senis dataset. Contribution of each cell 1722 

type was measured using three gene sets; all genes (n=[12,492, 12,849]), DiCo (n=[4,007, 4,106]) and non-DiCo 1723 

genes (n=[8,485, 8,743]). Age-related changes of the relative contribution of each cell type in each tissue are 1724 

given in Figure 5-source data. 1725 

 1726 

Figure 5-figure supplement 2. Permutation-based comparison between DiCo and non-DiCo 1727 

related cell type proportion changes with age in the cortex 1728 

The difference between DiCo (4,106) and non-DiCo (8,743) related cell type proportion changes with age was 1729 

tested in the cortex tissue. The x-axis is the Spearman’s correlation coefficient between age and relative 1730 

contribution of a given cell type. The red vertical lines show the cell type proportion changes calculated with DiCo 1731 

genes (observed value) and the blue vertical lines indicate the same but with non-DiCo genes. Overlapping DiCo 1732 

and non-DiCo values were indicated with blue. Null distributions for non-DiCo genes (density plots) were created 1733 

with re-sampling among all genes (n=12,849) (Methods). Significant results were represented with yellow density 1734 

plots and the nominal p-values for permutation tests are indicated on the left side of the density plots. 1735 

Permutation test results are also provided in Figure 5-source data. 1736 

 1737 

Figure 5-figure supplement 3. Permutation-based comparison between DiCo and non-DiCo 1738 

related cell type proportion changes with age in the liver 1739 

The difference between DiCo (4,007) and non-DiCo (8,485) related cell type proportion changes with age was 1740 

tested in the liver tissue. The x-axis is the Spearman’s correlation coefficient between age and relative 1741 

contribution of a given cell type. The red vertical lines show the cell type proportion changes calculated with DiCo 1742 

genes and the blue vertical lines indicate the same but with non-DiCo genes. Overlapping DiCo and non-DiCo 1743 

values were indicated with blue. Null distributions for non-DiCo genes (density plots) were created with re-1744 

sampling among all genes (n=12,492) (see Methods). Significant results were represented with yellow density 1745 

plots and the nominal p-values for permutation tests are indicated on the left side of the density plots. 1746 
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Permutation test results are provided in Figure 5-source data. 1747 

 1748 

Figure 5-figure supplement 4. Permutation-based comparison between DiCo and non-DiCo 1749 

related cell type proportion changes with age in the lung 1750 

The difference between DiCo (4,084) and non-DiCo (8,670) related cell type proportion changes with age was 1751 

tested in the lung tissue. The x-axis is the Spearman’s correlation coefficient between age and relative 1752 

contribution of a given cell type. The red vertical lines show the cell type proportion changes calculated with DiCo 1753 

genes and the blue vertical lines indicate the same but with non-DiCo genes. Overlapping DiCo and non-DiCo 1754 

values were indicated with blue. Null distributions for non-DiCo genes (density plots) were created with re-1755 

sampling among all genes (n=12,754) (see Methods). Significant results were represented with yellow density 1756 

plots and the nominal p-values for permutation tests are indicated on the left side of the density plots. 1757 

Permutation test results are provided in Figure 5-source data. 1758 

 1759 

Figure 5-figure supplement 5. Permutation-based comparison between DiCo and non-DiCo 1760 

related cell type proportion changes with age in the muscle. 1761 

The difference between DiCo (4,055) and non-DiCo (8,568) related cell type proportion changes with age was 1762 

tested in the muscle tissue. The x-axis is the Spearman’s correlation coefficient between age and relative 1763 

contribution of a given cell type. The red vertical lines show the cell type proportion changes calculated with DiCo 1764 

genes and the blue vertical lines indicate the same but with non-DiCo genes. Overlapping DiCo and non-DiCo 1765 

values were indicated with blue. Null distributions for non-DiCo genes (density plots) were created with re-1766 

sampling among all genes (n=12,623) (see Methods). Significant results were represented with yellow density 1767 

plots and the nominal p-values for permutation tests are indicated on the left side of the density plots. 1768 

Permutation test results are provided in Figure 5-source data. 1769 

 1770 

Figure 5-figure supplement 6. Intra-tissue CoV changes between cell types using Tabula Muris 1771 

Senis dataset 1772 

Intra-tissue CoV: CoV is calculated among cell types within each tissue for each individual mouse and in 3 age 1773 

groups. Y-axis shows the mean CoV value of genes for each individual. The horizontal line on each age group 1774 

shows the median of points. Cell types found in at least 2 individuals at every time point were considered. 1775 

 1776 

Source Data Files 1777 

 1778 
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Figure 1 source data. Data summary, age-related expression patterns and reversal patterns.  1779 

 1780 

Figure 2-source data. All the data related to DiCo pattern: age-related CoV change of genes, 1781 

pairwise tissue expression correlations, analysis of independent datasets; GSE34378 (Jonker 1782 

et al.), GSE132040 (Schaum et al.) and GTEx. 1783 

 1784 

Figure 3-source data. Effect sizes for determination of tissue-specific genes, enrichment of 1785 

DiCo and reversal genes within tissue-specific genes. 1786 

 1787 

Figure 4-source data. GSEA result of DiCo genes, DiCo enrichment with tissue specific 1788 

expression loss, age-related expression change correlations and convergence overlaps 1789 

among datasets. 1790 

 1791 

Figure 5-source data. Cell type proportion estimation and cell-autonomous changes using 1792 

Tabula Muris Senis dataset. 1793 

 1794 

Supplementary Files 1795 

Supplementary File 1. GORA of age-related genes in tissues 1796 

Tissue-specific age-related gene expression changes and functional enrichment test results, performed with gene 1797 

over-representation analysis (GORA) using ‘topGO’ package. 1798 

 1799 

Supplementary File 2. GORA of shared age-related genes among tissues 1800 

Functional enrichment for shared genes across tissues. The same GORA that was performed for Supplementary 1801 

File 1, was used to test the enrichment of shared up/down-regulated genes in development among the 1802 

background genes which are chosen as the all significant age-related genes across tissues in development. We 1803 

did not apply the test for the ageing period as there were no shared ageing-related expression changes. 1804 

 1805 

Supplementary File 3. GORA of reversal patterns 1806 

Functional enrichment for gene expression reversals. GORA analysis was performed with the same criteria as 1807 

explained above. Up-Down reversal genes were tested against Up-Up genes and Down-Up reversal genes were 1808 

tested against Down-Down genes in each tissue. 1809 
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 1810 

Supplementary File 4. GORA of DiCo gene clusters determined with CoV values 1811 

Functional enrichment of DiCo genes clustered with kmeans algorithm according to their CoV values. GORA 1812 

analysis was performed using gene sets in each cluster (Figure 2–figure supplement 2) which were tested among 1813 

all DiCo genes. 1814 

 1815 

Supplementary File 5. GORA of DiCo gene clusters determined with expression levels 1816 

Functional enrichment of DiCo genes clustered with kmeans algorithm according to their expression levels. Gora 1817 

analysis was performed using gene sets in each cluster (Figure 2–figure supplement 3) which are tested among 1818 

all DiCo genes. 1819 

 1820 

 1821 
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