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Abstract—In this work a four terminal complex Gaussian

Security against eavesdropping using information théoret

network composed of a source, a destination, an eavesdroppe principles was first considered iri1[3]. Iril[4], the wire-

and a jammer relay is studied under two different set of

assumptions: (i) The jammer relay does not hear the source

transmission, and (ii) The jammer relay is causally given tle

tap channel was studied for the degraded case, when the
eavesdropper’s received signal is a degraded version of the

source message. In both cases the jammer re|ay assists théegmmate I’eceivel”s Observation. ThIS m0de| was extdrtde

eavesdropper and aims to decrease the achievable secrecyes

less noisy and more capable wire-tap channels_in [5]. The

The source, on the other hand, aims to increase it. To help the Gaussian wire-tap channel was studied(in [6].

eavesdropper, the jammer relay can use pure relaying and/osend
interference. Each of the problems is formulated as a two-glyer,
non-cooperative, zero-sum continuous game. Assuming Gaaian
strategies at the source and the jammer relay in the first probem,
the Nash equilibrium is found and shown to be achieved with
mixed strategies in general. The optimal cumulative distfution
functions (cdf) for the source and the jammer relay that acheve

the value of the game, which is the Nash equilibrium secrecy

rate, are found. For the second problem, the Nash equilibrim
solution is found and the results are compared to the case whe
the jammer relay is not informed about the source message.

Keywords: eavesdropping, jamming, physical layer se-

curity, relay channel, wire-tap channel.

I. INTRODUCTION

Unconditional security for the relay channel with an exétrn
eavesdropper is investigated in [7]] [8] ard [9]. [A [7], the
authors suggest the noise forwarding scheme, where the rela
transmits dummy codewords that can be decoded at the
destination. While sending dummy codewords does not hurt
the legitimate communication, it increases the confustdhe
eavesdropper, and hence helps achieve a higher secrecy rate
Noise forwarding scheme is similar to cooperative jamming
[10], in which one of the users in the system injects noise
to increase achievable secrecy rates in multi-access amd tw
way channels. The paper [11] ties [7] and][10] together, and
shows that the relay can choose between sending structured
codewords and pure noise to increase achievable secresy rat
even further. When the relay sends dummy codewords or
forwards noise, the gains in achievable secrecy rates aréodu

In wireless communications, messages are broadcasted, tngdnterferencethe relay creates. Thus, in the rest of the paper,
any transmission can be overheard by nearby nodes. If eauge- will collect both schemes under the nanmeerference
droppers are present in the environment, then all confidientassistanceas in [11].
information become vulnerable and can be identified. There-In this paper we consider a four terminal complex Gaus-
fore, security against eavesdropping is an essential raystgian network with a source-destination pair, a relay and an

requirement for all wireless communication applications.

external eavesdropper. Unlike the above mentioned works,

In addition to eavesdropping, wireless networks are aléo which relay’s transmissions aim to help the legitimate

prone to jamming. In contrast to eavesdropping, jamming $®urce-destination communication, we assume that thg rela
an active attack, in which deliberate signals are tranenhittis captured by an adversary and aims to help the eavesdropper
to prevent proper reception at the intended receiver. Nobhstead of the source-destination communication. Thus, we
capture attacks can also take place to compromise messagfer to the relay node as tli@gmmer relay The jammer relay

confidentiality [1], [2].
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is capable of helping the eavesdropper as well as jamming the
destination to reach its objective of smaller secrecy rates

Reliable communication in the presence of arbitrary jam-
ming strategies and no eavesdropper is in general a complex
problem [12]. In some special cases, the optimal jammer
strategy as well as the optimal encoding at the source nade ca
be solved. For examplé [1L3] solves for optimal transmittet a
jammer strategies under a game-theory framework when the
jammer is informed about the transmitter’'s signal. Refeeen
[14] investigates the multiple access channel with a cateel
jammer. In [15] authors study a game between a jammer
and a relay, where the relay assists the source-destination
communication.

In our preliminary work we analyzed the source and the
jammer relay transmitting in orthogonal separate timesslot
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[16]. Since the jammer relay is malicious, the legitimate The received signals at the destination and the eavesdroppe
receiver can choose not to listen to it. Hence in such a sitenaare
interference assisted eavesdropping is not a possibility,

jammer relay does pure relaying. The eavesdropper listens Ypi = hspXsi+hrpXri+Zp.i @)
to both the source and the jammer relay to decrease its Yei = hseXsi+hreXpi+ Zg,i, (2)

equivocation. where Xs,; and Xr,; are the signals the source and the

More generally, the transmissions of the source and the jamfnmer relay transmit at time, i = 1,...,n. In the first

mer relay are not orthogonal and the jammer relay may vauHR)blem under study, the jammer relay does not hear the

some knowledge of the source signal. Then both interferengs .o signal. In the second problem, it is assumed that the
assisted eavesdropping and pure relaying are possiblen W]}ﬁnmer relay is given the source signal causally, and hence
the jammer relay can only operate in a half-duplex fashiopéRi depends onY? |, where X& | = (Xg1,..., Xs.). The
there is a tradeoff between pure relaying and interferenggrﬁmex channel gains between nddand nodé are denoted
assisted eavesdropping. Pure relaying can either try teegon ;o hu, k = S,R, | = D, E. All channel gains are fixed
source information to the eavesdropper or attempt to cdheel and assumed to be known at all nodes. The complex additive

source signal at the destination by jamming but the relayiasg 5 ssian noises at the destination and at the eavesdragper a
listen t_he source flrst and_ can only part|C|_pate in transionss respectively denoted agp; and Zz ; and are independent

a fraction of the time. In interference assisted eavesdnopp ,nq dentically distributed (i.i.d.) with zero mean andiaace

tr_le jammer relay does_noF utilize the overhegrd _S|gnal and CR, = Ny = N,. The source and the jammer relay have
simultaneously transmit with the source, but its signalsdoeat average power constraintds and P. For convenience we

carry useful information about the source message and opy| \rite vt = |h|2Pe/No, k = S, R, 1 = D, E, to indicate
contains interference to confuse the destination. the received power at nodedue to nodes.

_Wh|le solvmg the half-duplex jammer relay problem S€€MS The source aims to send the messHgasecurely to the des-
difficult, as a first step to address the general case, in t

. faate twi ¢ tuations: (i) Probl Ration inn channel uses. The secrecy rakg, is defined as
_ﬁ’_ﬁpe_r we mvesl |ga:je 0 ?xhrem?ha ua |ons;[ () robleM e maximum information rate such that the secrecy comstrai
e jammer relay does not hear the source transmission ?antisfied; i.elim,, oo H(W)/n = lim, e HOW|YZ,)/n,

;anbtlheregoq_ehtra_msmlt S|m|ultakneouslt);]wnh the squrcle,(a)wd nd the probability of decoding error at the destination ap-
roblem 2- The jammer relay knows the source signa Causa@Yoaches zero as approaches infinityJ4].

In the first problem, pure relaying is not an option, and onl . .
P P ying b In this problem the source and the jammer relay have

interference assisted eavesdropping protocols are ahin o] )
bping p M opposing interests. The former wants to increase the secrec

On the other hand, both pure relaying and interferencetadsis . .
eavesdropping can be useful in the second problem. rate, and the latter wants the decrease it. Thus, this proble

. e constitutes a zero-sum game, where the utility is the sgcrec
As the jammer relay and the source have conflicting interest . . -
rate,R,. The source and the jammer relay make their decisions
about the value of the secrecy rate, we formulate each of the ) :
, . Simultaneously, and hence the game is strategic.
problems as a two-player non-cooperative zero-sum continu

ous game and find achievable secrecy rates for the sourcd! the jammer relay does not exist we have the Gaussian

destination communication. Assuming Gaussian strateafies2veSdropper channel, for which sending Gaussian codeword

the source and the jammer relay in the first problem, v full power is optimall[B]. If the eavesdropper does nosexi

calculate the Nash equilibrium and show that it is achievdise = hre = 0), then the jammer relay’s only objective is
with mixed strategies in general. We also state the opti jam the destination to decrease the information rates Thi

cumulative distribution functions (cdf) for the source ahe Problemis solved in[13], for which it is shown that correldt

jammer relay that achieve the value of the game, which is tifnming is optimal. The optimal transmission strategy fa t
Nash equilibrium secrecy rate. For the second problem, BBUICe is to send Gaussian codewords, and the optimalgytrate
find the Nash equilibrium solution and compare the resultg’ the jammer is of the form
to the case when the jammer relay is not informed about the Xpi=pXsi+ Zi, (3)
source message. o B

In the next section the general system model is describdferep € C, Z; is independent of’s ; and chosen i.i.d. ac-
In Sectior{Tll we solve the first problem, in which the jammegording to distributiorC (0, N). If the jammer has enough
relay does not hear the source transmission. In Seciibn 1V R@Wer, then it can completely block the source-destination
attack the second problem assuming the jammer relay is gignmunication. If its power is not large enough, it sharss it
the source signal causally. In Sectlah V, numerical resarigs POwer in canceling the source message and sending noise.

presented and in Sectidn]VI we conclude. For the two settings considered in this paper, the strategy
spaces for both the source and the jammer relay can be

quite large, and finding the Nash equilibrium solution isywer
complicated in general. However, the results[of [13] and [11
We investigate the four terminal complex Gaussian netwoskiggest that both correlated jamming and sending strutture
composed of a source, a destination, an eavesdropper antb@ewords at the jammer relay have a high potential to de-
jammer relay denoted by S, D, E and JR respectively. Thkeease achievable secrecy rates. Therefore, we assunthdhat
network under investigation is shown in Fig. 1. jammer relay strategies have the same form dglin (3). Differe

Il. GENERAL SYSTEM MODEL



than [13] to incorporate interference assisted jammitayieg dummy information. In the remainder of this section the seur
we assume that in(i(3) the signal can be a structured strategy will denote the rate of information, while the jammer
codeword or Gaussian noise. If the jammer relay wereralay strategy; will denote the rate of dummy information.
jammer only, thenZ? would simply be unstructured noise.We argue below that structured codewords for sending dummy
However, in this paper it is not merely a jammer, but aimsformation at the jammer relay also include the possipibit
help the eavesdropper to ensure no secret communicaties tadending pure noise. Given source and jammer relay strategie
place. Unstructured noise is useful as it harms the legidmahe secrecy rate, or the payoff, is a function of béthnd .
communication, yet it also harms the eavesdropper. Strettulf a certain positive secrecy rat® (¢, n)@ is achieved, then
codewords have the potential to help the eavesdropper mtire source node’s payoff is equal (¢, n) and the relay’s

as they can be potentially decoded at the eavesdropper. payoff is equal to—R4(&,n).

In Problem 1, as the relay does not hear the source transtnder these assumptions, the destination can decode both
mission, we have = 0. In Problem 2, the level of source andthe source and the jammer relay codewords if the rate pair
jammer relay signal correlation can be adjusted as a fumctig, 5) is in R@xc
of p. Depending on the value gf, the jammer relay can

try to enable decoding at the eavesdropper as_in [16], ofip S iOg(“'VSD) 4
it can attempt to cancekg at the destination. Under these’*MAC — (&n) n E | 0g(1 +vrp) - (4
assumptions, we are interested in finding a scheme attaining §+n < log(l+7sp+7rD)

the Nash equilibrium of the game, which consists of a pair éfowever, the jammer relay only sends dummy codewords, and
optimal strategies for the source and the jammer relay. = does not need to be decoded either at the destination or at

the eavesdropper. If the destination cannot decode the ggmm
IIl. PROBLEM 1: THE RELAY DOES NOT HEAR THE SOURCE relay codeword, it can simply treat it as noise. Thus¢ alites

In this section we state the game theoretic formulation f4? Rl\?]
the first problem. Solving this game, we suggest an achikvabi D] -
ity scheme that results in the Nash equilibrium value of the Ry = {5‘ £ s log (1 + 117RD) } ®)
game. In Sections TII-A t TII-D, we assume all nodes in thare achievable as well. Overall, we say that the destination
system know both the source and the jammer relay’s strategi€an decode the source information with arbitrarily small
including the codebooks. In Sectibn Ill-E, we will extendsth probability of error, if(&,n) € RIP! where
study to the more realistic case where the destination doies n (D] D] D]
know the jammer relay codebook. Throughout Sedfidn 11, we RPN = Ryae U Ry (6)

assume the source and the jammer relay operate at full POWgSte that after taking the union, the individual constraint;

in (@) is not needed anymore. We also define two other regions

A. Game Theoretic Formulation R%&c’ Rk?], as in [4) and[{5) replacing alD with E. Then

In the first problem, the relay does not hear the source RIE — plE] RIE] @
node. Therefore, its strategy cannot depend on the source MAC N
signal andp = 0 in (). Then, as described in SectionThen for a fixed source and jammer relay rate gain), the
[ the jammer relay either generates dummy codewords gayoff function, Rs(¢,7), is equal to
simply forwards noise. When both the source and the jammer
relay send structured codewords, the problem becomesasimil Rs(&m)

to a multiple-access channel with an external eavesdropper 0 i &,n) € RIE op

In a multiple-access channel, both transmitters need to be ’ (&,n) & RIP 8
decoded at the destination. However, in this game, the jamme . (&,n) e RIPl and (8)
relay only sends dummy codewords, and does not need to be max (§ —v), if ( (v,n) ¢ RIFI )

decoded either at the des'qnatlon or at the eavesdropper, The proof of how this secrecy rate would be achieved is simila
Observe that when the jammer relay sends complex Gayg-[ll] and is skipped here

sian codewords/noise with full power, the best distributio . R .

i . .__An example is shown in Fid.]2 for the boundaries of the
for choosing the source codebook is the complex Gau55|r%n ionsRIP and RIE with the comer points defined as
distribution [17] with zero mean and variange. On the other 9 P
hand, when the source sends complex Gaussian codewor K\ YRD

) : . A log(1 1 14— 9
with zero mean and varianc€s, then the jammer relay Ct s»R) 0g(1+7sp),log { 1+ 14+ ~vsp ©)
distribution that decreases the secrecy rate the most is the Y$D
complex Gaussian distribution with zero mean and variance (%, Qr) = (IOg (1 + PR +7RD> log(1 +'YRD)>1O)
Pr [18]. Motivated by these observations, we assume that the YRE
source and the jammer relay choose their codebooks acgordin (Js,dr) (log(l +vsE),log <1 + ))(11)

- o : 1+9se
to i.i.d. complex Gaussian with zero mean and varianEes
and Pr, respectively. Then, the source strategy is to choose the _ _ _ ,
. . . . . For Problem 1 the payoff is a function ¢fandn, whereas in Sectidn 1V,
rate of th_e information it wants tQ convey to the deStIn"j‘t'()(}/here Problem 2 is discussed, the payoff will be defined asetifin p and
and the jammer relay strategy is to choose the rate of itg defined in[(B).




(ws,wr) = (log (1 + %) ,log(1 + WRE))lz) strategies for the source and the jammer relay. First nate th
For a fixed(¢, 1), the secrecy rate defined [d (8) corresponds Rel&m) < Ro(Qls,m), for £ < Qs, and 0 <7.
to the horizontal distance between the pofitn) and the In other words, as both players are rational, the source
dashed line in Fig]2, ifi¢, ) is in between the solid and never chooses rate$ < (. Similarly, the source node
dashed lines. I{¢,n) € RIF, that is inside the dashed line,never chooses its rate larger thdxs, as the secrecy rate
then both the destination and the eavesdropper can reliaBly(¢,77) = 0 no matter what the jammer relay action is. On
decode the source information, and the secrecy rate is zdhg other hand,
If (¢,1) ¢ RIP, outside the solid line, the destination cannot
deE:odé the source message reliably. The secrecy rate is zergs(g’ n) 2 s(&, Qp), for Qs < £ < As, and 7> Qp.
because there is no reliable communication between thesoufor the jammer relay, choosing any rate larger tlian is
and the destination. Because of this immediate drop in egcrénferior to choosing rate equal tQz and thus we can omit
rates beyond the boundary @®[”!, the payoff function is the strategies > Q. Similarly,
discontinuous.
Note that choosing the dummy information rateras wp Ra(€,m) 2 Rs(§,0R), for Qs <€ < As, and 7 < 0p.
is equivalent to sending unstructured Gaussian noise at ffige jammer relay strategies < dr are inferior ton = g
jammer relay. Thus, the secrecy rate achieved by jammey relind thus the jammer relay never chooses its rate lesssthan
sending unstructured Gaussian noise is also covered in @imally, in this reduced game, the source node does not ehoos
model, although we arrived at thie, (£, n) function assuming its rate larger thatog(1 + vsp + vrp) — 6r, as this choice
structured codewords for the jammer relay. makes its payoff equal to zero. In other words,
Depending oy, the positions of the corner points with
respect to each other change, and multiple cases arisee In th Rs(&n) < Rs(log(l+7sp +7rD) = Or: 1),
next subsection we investigate the case, where the conslitigor ¢ > log(1+~vsp +vrp) — dr @anddr < n < Qg. These
strategy eliminations result in the desired reduced ganm.
log(1 4755 +7rp) < log(l+ 750 +7kp) (19) The reduced game based on Lenima 2 is shown in[Fig. 3.
0s < As, ws < (s < 05 (14) We next describe how to solve for the value of this reduced
Apr < 0r, or <Qr <wr (15) game.

are all satisfied. The case shown in Hig. 2 satisfies all theBeeorem 1. Let a be defined as = (55 — Qg)/L. Suppose
conditions. We will call thisCase A There are 10 other casesu € [k/(k+1), (k+1)/(k+2)], for some integek > 0. Then
B-M shown in Fig[5 forAgs > ds andQg > wg, and Case N the equivalent game in Lemma 2 has the Nash equilibrium
for Ag < s or s < wg. These other cases require similasecrecy rateR* = La(l — a), wherea = gi(a), and is
technigues and are explained in Secfion 1lI-D. achieved with cdfs for the source and the jammer refaf€)
and F, (n), respectively. Here the functional formsaf F¢ (&)
_ and F,(n) depend on k, and for a givenk, both o and the
B. Solution to the Game: Case A cdfs can be readily computed. For example, o€ a < 1/2

e—1/(1=a)

A zero-sum game has a pure strategy solution if or equivalentlyk = 0, we haven = go(a) = f——r and
. _ . £—Q
maxmin By (¢,n) = minmax By (¢, ). aeTi= Qs < €< Qs+ L(1—a)

§-0g _ £—Qg
However, if there is nd¢, 7) that satisfies this equation, thenf¢(&) = § « [(1 +e ertto — L (828t 1}

no pure strategy Nash equilibrium exists, and a mixed gjyate Ds+L(1—a)<E<Os+ L

solution is needed [19].
[19] The optimal cdf for the jammer rela, (n) is the same as

Lemma 1. When~y, k = S, R, I = D,E satisfy the F¢(¢) if ¢ and Qg are replaced withy and 6 respectively.
conditions[(IB){(I5), which define Case A, the two-playsr-ze

sum game does not have a pure strategy solution. Proof: See Appendix A. u

Since there are infinitely many intervals f@ein Theorenl 1
Proof: In this gamemax, min, Rs(§,7) = 0, whereas (corresponding to each nonnegative integrit is important
min, max¢ Rs(§,m) =log(1+vsp +vrp) —log(14+vsg + to find a practical way to calculate the value of the game.

~vrE)- These two values are not the same, hence a pure strate . . L .
solution does not exist. T%orem 2. Consider a discrete approximation of the equiv-

alent game in Lemm@ 2 obtained by dividing the square into
Lemma 2. The game defined in Lemrh& 1, is equivalent @ uniform grid of (T + 1)? samples. The discrete source
a continuous game played over the square, where the sousteategies are; = ws + Li/T, the relay strategies are
and jammer relay strategies are respectively restrictedn® 7; = dr + Lj/T, and the payoff matrix is4 = [a;],
compact intervalst € [Qg,Qg + L] andn € [6g,0r + L], wherea;; = Rs(&,n;), i, = 0,1,...,T. The value of this
where L is the edge lengtih = Qr — dg.

) o . ) 2The dependency of the cdfs dnis not explicitly shown for notational
Proof: To prove this we eliminate comparable and inferiogonvenience.



discrete game can be obtained using linear programminB. Other Cases: B-N

Furthermore, for a chosen T, difference between valuesef th gq f5r in SectionE TI-AVIER, we have obtained a complete
discrete and the continuous game is at mibg2L /7. solution for Case A. In this subsection, we will show that

Proof: See Appendix B. m for all other cases B to N, shown in Figl 5, either an

To compare the optimal strategies for the continuous afgalytical solution or a discrete approximation can be &un
discrete games using the solutions in Theor&ins 1[and 2, Rgg to I|m|ted.space, the coordlna_tes of corner points 01_‘ the
assumehsn| = 1, [hrp| = 1/2, and|hss| = |hrs| = 2/3. equivalent regions are not shc_>wn m_the subfigures qf [Hig. 5
We make no assumptions on the phases of the channel gQHgthey can be easily determmed_gwen those coordinates of
as Fe(€), F,(n) and R* only depend on the magnitude ofcorner points on the boundary regions as[in [9)-(12).

the channel gains. The source and the jammer relay powef©r Cases B and C, following a reasoning similar to Lemma
constraints arePs — Pr — 10. We then haver = 0.5255 [2 the reduced region remains to be a square as in Case A

L = 0.946 and o = 0.20484. We find the Nash equilibrium €XCept that the jammer relay ratein interval [wr, Q2r) is

secrecy rate of the continuous game as 0.092 bits/chaneel {@minated by the jammer relay réfl:. In this case, in order
To use the discrete approximation we get= 400. Choosing t© k€€p the support of the jammer relay strategy compact, we

this sample size, Theoreh 2 states that the difference ketwd® Not eliminate these dominated jammer relay rates. Using
the value of discrete and continuous games is at mog7. € Same reasoning as in the proof of Theofém 2, we can

Yet, the actual difference is much smaller and we find that t58!Ve the problem by approximating the original game with a

value of the discrete game as 0.0923 bits/channel use. Ngfgcretized matrix game.

that these values are much smaller than the no jammer rela©" €ase D, the solution is the same as Case A wher)
case, for which the secrecy rate is equal to 1.0146 bitsfasian2Nd the optimal solution can be obtained analytically using
use. The optimal cdfs for the source for the continuous aH’&:eorem[ll. In this case, the Nash equilibrium secrecy rate
discrete games are very close to each other and are showntin= La + (s — ds), whereL = Qg —dp a_md_a —c -

Fig.[. As argued in Lemnid 2, we observe tiat¢) is zero For Case E, a pure strategy Nash equilibrium exists, the
if € <1.947 = Qg, and is 1 if¢ > 2.893 — Qg+ L. Note that optimal strategies for the source and the jammer relay are

in the reduced game, sending Gaussian noise with full pow&}s: €r) @nd the Nash equilibrium secrecy ratetls — Js.
is still one of jammer relay’s possible strategies. For Cases F-K, if we retain some dominated relay rates to

keep the support of the relay strategy compact, the reduced
region becomes a rectangle as shown in Fl[g. 5. We can

C. Note on the Achievability of the Mixed Strategy Solutioreasily extend Theorem 1 to the case of a rectangle and show
that these games also have a value. Furthermore, similar to

I_f. the solution _of the game is a pure strz_ﬂegy, the aChie’fheorenDZ, a discrete approximation can be computed.
ability follows using the arguments in SectibnIll-A. As the For Case L, after all eliminations similar to Lemina 2, only

solution in Theorerhll is mixed, it is also important to explai]cour points remain. The two rates for the source to choose
how the Nash equilibrium is attained information theoratic are — Qg and¢ — Ag while those for the jammer relay

In a mixed strategy the players randomize their actions OV&le ) = 65 and7 = Qp. The 2 x 2 matrix game with the
a set of strategies with a certain probability distributidie ¢, rce and the jammer relay being the row and column players

players act repeatedly and ignore any strategic link that Msspectively has the following payoff matrix
exist between plays. They also know each other’s probwbilit

distribution functions, and hence formulate their own @i ( 0 Qg — ws) _ (16)
In the game defined in this section, when a mixed strategy Ag —ds 0

solution is needed, the source node assumes a variable pifixed-strategy Nash equilibrium exists, in which the smur

scheme, similar to the one adopted for fading eavesdroppfibosest = Qg with probability % and ¢ =
S—ws S—0s >
channels([20]. Ag with probability 7—25-%s—— while the jammer relay

In this variable rate scheme, the source generates a t
of 2"BE(®) codewords, whereB is the number of blocks T el equilibrium
the game is played where each block is of lengthand R _fﬁA(sS);ii.s)(As—as) g
E(¢) is the expected rate for the source node, expectatiBCrecy rate is given bfy = “o =220 =5~
calculated over the joint cdFy(¢)F, (n). The source uses Case M is very similar to Case L. As in Case L, the source
these codewords to form a secure code that conugg®: C€an choose between= Qs and{ = As while the jammer
bits of information in B blocks [2], whereR?* is the value '€lay can choose between= dp andn = Qr. The 2 x 2

of the game or the Nash secrecy rate. In each block, tfatrix game with the source an_d the jammer relay being the
source independently chooses a rateccording toFe(¢) OW and column players respectively has the following payof

and transmitsné bits of the codeword chosen to represerﬁf‘atrix
(QS - 55 QS - ws)

Wbosesy — 65 with probability Gss— andy =
Qp with probability 5—25-8

the secure information. Similarly, the jammer relay cheose Ag — g 0 (17)

a raten according toF;(n). Since the eavesdropper cannot

improve its mutual information more than as in the variable A mixed-strategy Nash equilibrium also exists, in which the
rate case of [20][{8) is still valid an&* is attained as both Source choose§ = Qs with probability £:=2< and ¢ =

n and B approach infinity. Ag with probability ﬁ while the jammer relay chooses




hrpZi+Zp,i hreZi+Zg

= o with probability R2=“< andy = Q. with probability where Zp ; = hSD+hRDp and Zp,; = Famthnep : INCE
Az 85 The Nash equmbrlum secrecy rate is givenBY = Zp, Zg ~ CN(0, Ny), the variances ofZp and Zp can
(Qs—ws)(As—ds) respectively be obtamed as

As—ws

Case N is the case when boundaries of the regigH$ - |hrp|?>Nz + No
and RF] intersect orRIP! is contained inRF). In the = Thsp + hrop? (20)
former scenario, the intersection point is a pure strategsh\ R Ihas2Nz + No
equilibrium leading to zero secrecy rate; in the latter case = m. (21)

positive secrecy rate can be achieved regardless of what the

source and jammer relay strategies are. The system in[{A8) and {19) is equivalent to a Gaussian
wire-tap channel. Hence the best strategy for the sourae is t
E. Unknown Jammer Relay Codebook choose its codebook according to i.i@\ (0, Ps), resulting

In previous subsections, it is assumed that all nodes in theth® secrecy capacit, [6]

system know both the source and the jammer relay strategies,
including the codebooks. In practice, it is reasonable some
that the destination is not aware of the jammer relay’s exact

Pg

Pg
Rs(p, N, lo 1+4=—]—-1o 14+ =
(0. Nz) = [ &2 ( ND) &2 ( NE)}

(22)

codebook even though it may have the knowledge that tti the other hand, if the source fixes its input distribution t
jammer relay uses Gaussian codebooks. Under this assuiyg@-complex Gaussian with zero mean and variaRge the
tion, the destination cannot jointly decode the source &ed ammer relay would intend to choogeand N to minimize
jammer relay messages any more and thus the jammer relayis secrecy rate when its strategy is limited[i (3). Thus, th
signal would always be treated as noise at the destinatigiwre-strategy achieving the Nash equilibrium for the setsc
Hence in this case, the destlnatlon can correctly decodesouo choose the input distributioX s ~ CA(0, Ps) and for the
information only if £ € R , WhereR[ is given in [3). jammer relay is to transmiX z = pXg + Z for some optimal
Redrawing the rate regions under the new assumption, wand N, where the optimap and N; are denoted as* and
obtain the two cases shown in F[d. 6 f@ry < ds and for N7, are solutions to the problem

Qg > dg. It can be easily shown that 2 < dg, the . . 5
intersection point(¢,n) — (Qs, (wr— 6R)Qs+wS5R wrds) g min Ry(p, Nz) subject to|p|°Ps + Nz < Pg.
a pure Nash equilibrium point and is umque leading to zenthen the Nash equilibrium secrecy rateR$(p*

secrecy rate. Iy > dg instead, all pointS(Qs,n) with o iz ation problem in[(23) is not convex. This
n € [0, dr] are Nash equilibria, and the resulting Nash equmb
suggests infeasibility of a closed form solution in general

rium secrecy rate i —os. Therefore, we conclude that WhenHowever for the following special cases, the solutionsehav
the destination does not know the jammer relay codebook, th

Nash equilibrium secrecy rate &, — (Qg — ds)*, where |mpIe form and can be obtained as follows:
[z]T = max(0, z).

(23)

N3).

1) If |hsg| > |hsp|, even without any help from the
jammer relay for the eavesdropper, the secrecy rate is
always zero. Thus, the jammer relay only needs to keep

silent.
If |hRD| > \/PS/PR“LSDL then the pair(p*,Ng)

IV. PROBLEM 2: THE RELAY IS GIVEN THE SOURCE
SIGNAL

In this section we provide the Nash equilibrium solution 2)

of the game for the second problem in which the jammer
relay is given the source signal causally. To further sifgpli

the setup we assume the destination is unaware of the jammer
relay codebook as in Sectipn III-E. Depending on whetfigr

is Gaussian noise or structured codeword[ih (3), the payoff3)
function and the Nash equilibrium of the game are different.
In the following, we consider these two different scenarios
respectively.

A. Z} is Gaussian noise

In this subsection, we assume th& in @) are i.i.d.
complex Gaussian with zero mean and variangg, for all
= 1,.

When |h5E|
,n. Substituting Xz, in @) into () and [2), the numerical methods are used to solve the optimization prob-

(—=hsp/hrp,0) is optimal. When the link between
the jammer relay and the destination is strong, the
jammer relay can send a negatively correlated signal to
completely cancel the source signal.

SUppOSQh5E| < |h5D| and|hRD| < \/PS/PR|hSD|

No(lhspl?—|hse|?)
If |hRDhSE| > |hSDhRE| and Oh‘szl\)z‘ ‘h‘S;iLE'g <
Pg, then p* = 0, N; = N“(|hSD| lhsel’) - are

[hrphse]?—|hsphrE|
optimal. This is the case when the jammer relay is

capable of forcing secrecy rate to zero by transmitting
only noise.

|hSD| and |hRD|

V/Ps/Prlhsp|,

relation between the source signal and the received S|gn|§|'§‘ of (23). In [28), it can be shown that the constraint
at the destination and the eavesdropper can equwalently|bleps + Nz < Pg is not necessarily met with equality; i.e.

written as it is possible that in the optimal solution the jammer relay
- - should not transmit with full power. This is in contrast teth
Ypi=Xsi+Zp,i (18) jamming problem without an eavesdropper, where it is best
Yei=Xsi+ Zp.i (19) for the jammer to use full powef [13]. Letting = |p|e’?,



Nz = wPg, the constraint can be rewritten as Nash equilibrium secrecy rates obtained wtghis Gaussian

—— noise. However, structuredy” requires the jammer and the
lpl < V/Pr/Ps, (24) eavesdropper to share the codebook information in advance
0<0<2m, (25) and havingZ7* as Gaussian noise leads to a simpler system
0 <w < Pr/Ps —|p|? (26) design.

i i To find the optimalp and Nz at the Nash equilibrium, we
To n_umerlcally solve_ for[(23) we exhaustively search ovér arlleed to minimizeR, (p, N) subject top? Ps + N < Pr. As
feasible|p, ¢ andw in the range. in the previous subsection, a closed form solution cannot be
obtained in general. For some special cases, we can easily fin
B. Z} is structured codeword an optimal solution. We list a few of these cases as follows.

In this subsection, we assun' is a structured codeword 1) If lhse| = |hspl, theniitis enough for the jammer relay
instead of noise. As in Sectidgn TIE, we assume the jammer {0 keep silent.
relay shares its codebook only with the eavesdropper, bu?) 'f [rD| > v PS_/PR|hSD|' thenp® = —hsp/hrp and
not with the adversarial destination. Note that, this set of Yz = 0 are optimal.
assumptions define the worst case scenario along with theé) If [kse| < [hsp| and [hrp| < +/Ps/Prlhspl,
fact that the relay is informed about the source information ~ and if sl -lhsel < pp/N, - then (p*,N3) =

) |hSEh1§,D|2
causally. (0, Lspl—lhsel” 7y s optimal.

? . . |hsehrp|?
The jammer relay is capable of choosing the rate of the og i the previous subsection, we can use numerical meth-

codebook ofZj" so that the eavesdropper can successfullyyq 1o optimize the function ifi{29) by exhaustively searghi
decode it. After the eavesdropper decodes the dummy infg(;e, 41 lo's, 0's andw’s.

mation carried by}, it subtractsZ}* and re-scales its received

signalYp to get V. NUMERICAL RESULTS
YEJ- = Xg,;+ ZE,i (27) In this section we present some numerical results to
s Zn _ show how the secrecy rate changes with the jammer relay-
whereZp,; = 5;3k55, Nas zero mean and variance eavesdropper channel quality, when the jammer relay isngive
_ Ny the source signal causally (Problem 2). We also compare the
Ng = |\hse + haepl? (28) secrecy rates attained wheff* is Gaussian noise, Section

V-Aland Z7 is a structured codeword, Section 1V-B. We

. L , |
Since Fhe destination does not k_now the jammer relay C?Qﬁfally provide comparisons of the secrecy rates for Problem
book, it can only treatZ] as noise. If the jammer reIays1 and Problem 2

transmitted signal has the form il (3) a#@ is chosen to be

For Problem 2, whenZ}" is Gaussian noise, the Nash

AR i E(iquilibrium secrecy rate is plotted as a function/gfg in
distribution isCN(0, Ps). On the other hand, if the source':ig'[ZI for hsp = 1, hgp = 0.4+0.45 andhap = 0.2 —0.2j

distribution is fixed toCA(0, Ps), it is pest for th_e j"’.‘m”.‘er when Py = Pr = 10 and Ny = 1. For simplicity, we restrict
relay to cons.truct codebookm{l.acc.ord[ng to the distribution hre to be real in this plot. We note that in general multiple
tCr{\/(O,Nzt) S|_nce_ontlgl thg despnauon |slgffe;ted wtﬁnd optimal choices for£*, N;) appear in general. The following
€ Worst noise 1S e Haussian one [18]. Hence, the PURGio cases are also included in the figure for comparison: 1)

strategy achieving the Nash equilibrium for the source is e jammer relay only sends Gaussian noise; Xg. — Z:
use_CJ\/(O, Ps) d|§tr|but|on to generate the source code_bo ) the jammer relay only sends a correlated version of source
while that of the jammer relay is to construcf as Gaussian message; i.eXr — pXs. Whenhpp is near0.2, Xp — Z
cod_ewords and tran_smit signal of the form [ (3) for SOME close t;) optimal; wheh g g is greater tharﬁ).?,,or smaller
optimal p and Vz. Given that bothXs and Z are Gaussian than—0.15, the curve forXp = pXg overlaps with the curve
at the equilibrium, the jammer relay ought to set the rate 9& Xp = 'st + 7, which implies that forhzs's in these
the codebook o to satisfy ranges the component of Gaussian nofsé the signalX

R 1 |hre|* Nz is not necessary and sending a correlated version of source

z < 1082 No + |hsg + hrep|?Ps )’ message is already optimal. Also, we observe thaht ag

in order to guarantee that the eavesdropper can decodd V> sufficiently large, the secrecy rafg drops to zero

: - when the jammer relay’s signal is of the fotkily = pXs+Z.
successfully. WithXs ~ CN(0, Ps) and Xp = pXs + Z, For Problem 2, Fig18 shows the Nash equilibrium secrecy
the secrecy rate can be expressed as

. rate as a function of reahrr when Z7 is a structured
Ps Pg codewordhsp = 1, hgg = 0.440.45 andhgrp = 0.2—0.25.
Rs(p, Nz) = [k’g? (1+N_D) — log, (H'N_)] : As before, Ps = Pr = 10 and N, = 1. In Fig. [8,
(29) for comparison the Nash equilibrium secrecy rate when the
Comparing the equivalent noise at the eavesdroppgr jammer relay signal is restricted t§p = Z with Z7* being
defined in [2B) andN defined in [Z1), we observe thata structured codeword and = pXg are also included.
the Nash equilibrium secrecy rates obtained whghis a The secrecy rate foXr = pXg is the same as in Fidl 7,
structured codeword will always be less than or equal to tlséice X does not depend oi. Also the secrecy rate for




Xr = Z remains constant asrr changes, which is due tojammer relay does not hear the source, and 2) the jammer
the fact thatNp and Nz do not depend oz whenp = 0. relay is given the source signal causally. For the first case,
However, in this casérr has an impact on the maximumit is discussed that interference assistance is the oniprapt
possible rateRz. Under the same setting as in Fig. 7 an@nder this assumption the optimal solution for the sourad an
Fig. [8, Fig.[® compares the Nash equilibrium secrecy ratdwe jammer relay is found to be mixed strategies. The Nash
under four different scenarios: 1) Problem 1: uninformddyre equilibrium secrecy rate of the game is calculated, in amiit
with the jammer relay codebook known at the destinatiotg optimal cumulative distribution functions for the soe@nd
SectionIII-A[MM-Dt 2) Problem 1: uninformed relay with ¢h the jammer relay. A discrete approximation to the contirsuou
jammer relay codebook unknown at the destination, Sectigame, whose value can be made arbitrarily close to the value
[M=E] 3) Problem 2: informed relay wittZ]* being Gaussian of the continuous game, is also suggested. For the secoed cas
noise, Sectiof IV-A; 4) Problem 2: informed relay wiff* limiting the jammer relay strategies to a combination ofepur
being structured codewords, Section TV-B. Our observatiorelaying and interference assisted eavesdropping schehnees
can be listed as follows: Nash equilibrium of the game is found and an achievability

« When the relay is uninformed of source message and thgheme is suggested. Our results show that the presence of
jammer relay codebook is unknown at the destinatiothe jammer relay decreases the secrecy rates significéntly.
as in Sectiol III-F, neithef)g nor 65 depend onhrr, the jammer relay is informed of the source signal, the sgcrec
and the secrecy rate remains unchanged fatg}’s. As rates are even lower. Future work includes the more general
the destination always treats the jammer relay’s signal bslf-duplex jammer relay case, in which the relay is not give
noise while the eavesdropper may decode it, this scendti@ source signal for free, but has to listen to it to be able to
is actually equivalent to that oz = Z in Fig.[8. perform pure relaying.

« When the relay is uninformed of the source message
and the destination has the knowledge of the jammer
relay codebook the Nash equilibrium secrecy rate can
be increased fothgrg| < 0.6 compared with the no

APPENDIXA
PROOF OFTHEOREM 1

codebook case at the destination. For the equivalent game in Figl 3, the achieved secrecy rate
« Among all four scenarios, an informed relay wigt{’ is given by

being structured codeword achieves the smallest secrecy 0, €4+n>Qs+0p+1L

rate.
o For a range ofhgg’s studied, an informed relay with Rs(&,n) = §+7S7?s fg EIZL ngJrn <Qs+0r+1L

Z71 as Gaussian noise can achieve a smaller secrecy rate 0, €47 fﬂs +op+al "

than an uninformed relay with jammer relay codebook - (30)

unknown at the destination. However, we observe that anwe first assume. = 1 and (2, 6z) = (0,0) and then use

informed relay withZ}" as Gaussian noise results in thghe game-theoretic techniques in[19] to solve the contisuo
largest secrecy rate whery is betweer0.15 and0.4.  game played over the unit square. For convenience, we denote
In Fig.[9, for simplicity, we only considered real channeihe jammer relay’s pure strategy By= 1 — 7 instead ofy.

gainhrp between the jammer relay and the eavesdropper.fiy[1] illustrates the unit square where the normalizedegam
Fig. 10, we fix|hrr| = 0.25 and plot the Nash equilibrium jg played. Rewriting[{30), we get
secrecy rates as a function of the phasehgf, Zhrp for

the four different cases mentioned above. When the relay is Ry(&E,N) = { M€, A) Az & (31)
uninformed of the source message, irrespective of wheliger t Ma(&, ) A<E

destination knows the jammer relay codebook or not, the Nashere

equilibrium secrecy rate only depends on the magnitude of 0 A>é+l—a

hre and therefore remains the same for all phases pf. My(§ ) = { E-A+tl-a E<A<E+l—a’
However, the Nash equilibrium secrecy rates in both cases - (32)
of informed relay are sensitive to the changes/ibhzs. For gnd

example, as shown in Fig. 110, whér< Zhrg < m, the Nash My(£,\) =0 (33)

equilibrium secrecy rate in either case decreaseg'/agg ) )
increases and finally drops to zero whéhyr grows beyond M1(§,A) and My(¢, A) are defined over the closed triangles
a threshold. Tr={EN0 <A< T andS; = {(§A)|0 <A <
& < 1} respectively as shown in FigJ11. Hetds a constant
VI. CONCLUSION between 0 and 1. In game theory, the functiBn(¢, \) is
In this paper a four terminal network with a source, galled thekernelof the game.

destination, an eavesdropper and a jammer relay is invesFor the game in Fid. 11, the source and the jammer relay
tigated. The source and the jammer relay have conflictistfategies can be represented by the def&f) and Fi()\)
interests. The former aims higher secrecy rates, whereas defined on[0, 1] respectively. Given source stratedy (¢)
latter aims lower secrecy rates. Due to this conflict, thend jammer relay strategh (A), the expected pay-off of the
problem is formulated as a non-cooperative two-player-zergource is given b)fol jbl R (&, N)dFe(§)dF\(N).
sum continuous game. Two different cases are studied: 1) thé\ solution to the game with kernek, (£, A) [19] is a pair



of cdfs F; and F) together with a real numbek’ such that all 0 < ¢ < 1. Hence, wherd < a <1/2, Fr andF (or F;)
1 in (39) and [[4D) are the optimal strategies for the source and
/ Rs(&,\)dFe(&) > R: forall0< A <1 (34) the jammer relay and the secrecy ratdis= a(1 — a).
0 Now suppose: € (k/(k+1),(k+1)/(k+2)] for k > 0.
and In this case, the optimal strategies can be obtained usig th
1 same method as above except that the resulfif(@) is not
/ Ry(§,NdF\(\) < Ry forall0<¢<1  (35) (differentiable at point§ = 0,1—a,2(1—a), ..., (k+1)(1—a).
0 ... Hence the functional forms af, F¢(¢) and F, (n) depend on
Here we callR; the value of the game or Nash equilibriumy, and for a giverk botha and the cdfs can be readily derived.
secrecy rate andy and F opt!mal strategies for the source 5, the more general case when the edge is equal to
and the jammer relay respectively. L = Qp — 0r and the left lower corner point of the square
Motivated by the results ogames of timingn [19], we s |ocated at(Qg,dz), we havea = 5s=0s  Similar to the
first assume that the optimal strategies for the source afbve discussion, optimal cdfs and Nash equilibrium sgcrec

the jammer relay are of the forms; = (alo,fe) and rate can be derived to result in TheorEm 1.
F\x = (fx,B1h). Here (aly, f¢) denotes a distribution made

up of a density functiory, spread on the intervgD, 1] and
one jump of magnitudev located at0. Similarly, (fx,811) APPENDIX B

is a distribution made up of a density function spread on the PROOF OFTHEOREM 2
interval [0,1) and one jump of magnitude ¢f located atl.

Then, we solve the game analytically under these assunspti The proof of this theorem is based on Theorem 8 in Chapter

o) : L :
After a particular solution is found, we verify that it is ieeld {7 of [21] gnd the :_;lpproxmatlon techniques s_uggested there
Let us first consider the game over the unit square when

a solution of the game. As the kernkl (¢, \) depends on the L — 1 and (Qs,05) = (0.0). According to Theorem 8

?oarrzl;]f::(;ﬁt’ ;\;\:fravr\ﬁltlatl?g gijmaI strategies for both pIayersin Chapter 17 of [[21], the game with the kernel function

. B . . Rs(&, ) in (31) has a value and there exists a pair of “
For Od)§<a/\§<11/2 (Ilet'r,nk = 0) mentioned in Theorer 1, optimal” strategies for the source and the jammer rd%y.
SUPPOSES = A S L —a, Ihen Hence, it is possible to solve the game using approximate

1 A methods. To obtain the approximation, we divide the unit
/0 Rs(§ NdFe(€) = aRs(0,2) "F/O+ Mi(€ M) fe(€)d€ interval by T — 1 inner grid points equally spaced in it so
= a(l—a—2N\ that the square is divided into a uniform grid @f + 1)2
A samples. Therefore, the source chooses among discrete pure
+ / (€= X+ 1—a)fe(£)dé(36) strategiess; = i/T (i = 0,1,...,T) while the jammer relay
o+ chooses amony; = j/T (j = 0,1, ...,T). The payoff matrif
Differentiating w.r.t. A\ and equating to zero, we get is A = [a;], wherea,;; = Rs(&,\j), i,j = 0,1,...,T. For

e this discrete game, a mixed-strategy Nash equilibrium ydwa
G =aler= —1), 0<{<l-a (37)  exists and its value can be obtained using linear progragmin
whereG(¢) = foi fe(u)du. Similarly, for X such thatl —a < From [21], in order for the equilibrium strategies of the
A< 1, we get ' discrete game to beoptimal for the original continuous game,
T needs to be chosen such that> M whereK;

@ ge%—{ l-a < ¢<1 andK, are two constants chosen to satisfy

G(E) = 0t Cexpl(ro—) -

. (38)  |Mi(€,A) = Mi(€, M| < Ki|(€,A) — (€,)))]
Due to continuity ofG(§) até =1 — a, we haveC = o(1 + for all (£,\) € ©1, (&, X) € ¥y,
ej}@ﬁlfo’ sinceG(1) = 1 — a, we obtaina = go(a) = | My(€, ) — Ma(&,\)] < Ka|(€,0) — (£, N)]
1{%7. Therefore, the optimal strategy for the sourgg, for all (&, )) € g, (€, N) € %,
has the form: . M, and M, are as defined in(32) and {33). In our problem,
Fe(€) = { e !f §=0 _ (39 the above conditions hold fdf; = +/2 and K, = 0, therefore
atGE) fFo<{<l we only need to choos& to be greater thar?Tﬁ. On the

Eher hand, ifT is fixed, difference between values of the
iscrete game and the continuous game is at @&/ 7.

For example, if we set = 0.00708, it suffices to choos&’ to
l—a-G1 =) ifo<i<l1 (40) be 400.

F\x(M) = .
2 { 1 if A=1

; ; : , SA pair of cdfs FQ(£) and F{(\) are said to bec-optimal and the
Alternatively, whem, is used to denote the jammer relay’s purgpproximate value of the game is said to be ¢ good”, if (i) the expected

strategy, the jammer relay’s optimal strategy can be eXpres payoff v; calculated forF0 () and for anyFx(\) satisfiesvy > ve — e,
asF,(n) =1—Fx(1—n) = Fe(n). (ii) the expected payofb, calculated for anyFe (€) and for F()) satisfies
. - 1 - va < wve — ¢, and (iii) jve — v| < ¢, wherew is the value of the gamé [21].
It can be readily Ve”fledl thaﬁo R (57 )‘)dFé (5) - O‘(l_a)’ “Note that if we use the kerndks(&,n) instead ofRs (€, \), the payoff
forall 0 < X\ < 1. Also, [, Ri(§, \)dF\(\) = a(l —a), for  matrix would become the one in Theorem 2.

In the same manner, the optimal strategy for the jamm
relay, F, can be obtained



Similar to Appendix A, for the more general case when the
edge is equal td = Qr — dr and the left lower corner point
of the square is located &f)s,dr), a discrete game can be

used to approximate the continuous game as in The@fem 2.

The difference between the values of the two games would be
scaled byL; i.e., within 2v/2L/T.
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Fig. 1.
eavesdropper (E) and the jammer relay (JR). The jammer egtag to assist
the eavesdropper. The S-JR link is shown dashed, as the jaretag does
not know the source signal in the first model, whereas it iemithe source
signal causally in the second.
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Problem 2: Nash equilibrium secrecy rate as a functbhrg
whenhsp =1, hgg = 0.4+0.4j andhgp = 0.2 —0.25. The signalZ?,
defined in[(8), is Gaussian noise.
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RIP! is contained inRIE].
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Problem 1: Cases A-M. Case N, which is not shown in tierd, is the case wheR[P! and R[F], respectively defined iff{6) anfl(7), intersect or



