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A Secure Communication Game with a Relay
Helping the Eavesdropper

Melda Yuksel,Member, IEEE, Xi Liu, Student Member, IEEEand Elza Erkip,Fellow, IEEE

Abstract—In this work a four terminal complex Gaussian
network composed of a source, a destination, an eavesdropper
and a jammer relay is studied under two different set of
assumptions: (i) The jammer relay does not hear the source
transmission, and (ii) The jammer relay is causally given the
source message. In both cases the jammer relay assists the
eavesdropper and aims to decrease the achievable secrecy rates.
The source, on the other hand, aims to increase it. To help the
eavesdropper, the jammer relay can use pure relaying and/orsend
interference. Each of the problems is formulated as a two-player,
non-cooperative, zero-sum continuous game. Assuming Gaussian
strategies at the source and the jammer relay in the first problem,
the Nash equilibrium is found and shown to be achieved with
mixed strategies in general. The optimal cumulative distribution
functions (cdf) for the source and the jammer relay that achieve
the value of the game, which is the Nash equilibrium secrecy
rate, are found. For the second problem, the Nash equilibrium
solution is found and the results are compared to the case when
the jammer relay is not informed about the source message.

Keywords: eavesdropping, jamming, physical layer se-
curity, relay channel, wire-tap channel.

I. I NTRODUCTION

In wireless communications, messages are broadcasted, and
any transmission can be overheard by nearby nodes. If eaves-
droppers are present in the environment, then all confidential
information become vulnerable and can be identified. There-
fore, security against eavesdropping is an essential system
requirement for all wireless communication applications.

In addition to eavesdropping, wireless networks are also
prone to jamming. In contrast to eavesdropping, jamming is
an active attack, in which deliberate signals are transmitted
to prevent proper reception at the intended receiver. Node
capture attacks can also take place to compromise message
confidentiality [1], [2].
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Security against eavesdropping using information theoretic
principles was first considered in [3]. In [4], the wire-
tap channel was studied for the degraded case, when the
eavesdropper’s received signal is a degraded version of the
legitimate receiver’s observation. This model was extended to
less noisy and more capable wire-tap channels in [5]. The
Gaussian wire-tap channel was studied in [6].

Unconditional security for the relay channel with an external
eavesdropper is investigated in [7], [8] and [9]. In [7], the
authors suggest the noise forwarding scheme, where the relay
transmits dummy codewords that can be decoded at the
destination. While sending dummy codewords does not hurt
the legitimate communication, it increases the confusion at the
eavesdropper, and hence helps achieve a higher secrecy rate.
Noise forwarding scheme is similar to cooperative jamming
[10], in which one of the users in the system injects noise
to increase achievable secrecy rates in multi-access and two-
way channels. The paper [11] ties [7] and [10] together, and
shows that the relay can choose between sending structured
codewords and pure noise to increase achievable secrecy rates
even further. When the relay sends dummy codewords or
forwards noise, the gains in achievable secrecy rates are due to
the interferencethe relay creates. Thus, in the rest of the paper,
we will collect both schemes under the nameinterference
assistanceas in [11].

In this paper we consider a four terminal complex Gaus-
sian network with a source-destination pair, a relay and an
external eavesdropper. Unlike the above mentioned works,
in which relay’s transmissions aim to help the legitimate
source-destination communication, we assume that the relay
is captured by an adversary and aims to help the eavesdropper
instead of the source-destination communication. Thus, we
refer to the relay node as thejammer relay. The jammer relay
is capable of helping the eavesdropper as well as jamming the
destination to reach its objective of smaller secrecy rates.

Reliable communication in the presence of arbitrary jam-
ming strategies and no eavesdropper is in general a complex
problem [12]. In some special cases, the optimal jammer
strategy as well as the optimal encoding at the source node can
be solved. For example [13] solves for optimal transmitter and
jammer strategies under a game-theory framework when the
jammer is informed about the transmitter’s signal. Reference
[14] investigates the multiple access channel with a correlated
jammer. In [15] authors study a game between a jammer
and a relay, where the relay assists the source-destination
communication.

In our preliminary work we analyzed the source and the
jammer relay transmitting in orthogonal separate time slots
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[16]. Since the jammer relay is malicious, the legitimate
receiver can choose not to listen to it. Hence in such a scenario
interference assisted eavesdropping is not a possibility,the
jammer relay does pure relaying. The eavesdropper listens
to both the source and the jammer relay to decrease its
equivocation.

More generally, the transmissions of the source and the jam-
mer relay are not orthogonal and the jammer relay may acquire
some knowledge of the source signal. Then both interference
assisted eavesdropping and pure relaying are possible. When
the jammer relay can only operate in a half-duplex fashion,
there is a tradeoff between pure relaying and interference
assisted eavesdropping. Pure relaying can either try to convey
source information to the eavesdropper or attempt to cancelthe
source signal at the destination by jamming but the relay hasto
listen the source first and can only participate in transmission
a fraction of the time. In interference assisted eavesdropping,
the jammer relay does not utilize the overheard signal and can
simultaneously transmit with the source, but its signal does not
carry useful information about the source message and only
contains interference to confuse the destination.

While solving the half-duplex jammer relay problem seems
difficult, as a first step to address the general case, in this
paper we investigate two extreme situations: (i) Problem 1-
The jammer relay does not hear the source transmission and
can therefore transmit simultaneously with the source, and(ii)
Problem 2- The jammer relay knows the source signal causally.
In the first problem, pure relaying is not an option, and only
interference assisted eavesdropping protocols are meaningful.
On the other hand, both pure relaying and interference assisted
eavesdropping can be useful in the second problem.

As the jammer relay and the source have conflicting interests
about the value of the secrecy rate, we formulate each of the
problems as a two-player non-cooperative zero-sum continu-
ous game and find achievable secrecy rates for the source-
destination communication. Assuming Gaussian strategiesat
the source and the jammer relay in the first problem, we
calculate the Nash equilibrium and show that it is achieved
with mixed strategies in general. We also state the optimal
cumulative distribution functions (cdf) for the source andthe
jammer relay that achieve the value of the game, which is the
Nash equilibrium secrecy rate. For the second problem, we
find the Nash equilibrium solution and compare the results
to the case when the jammer relay is not informed about the
source message.

In the next section the general system model is described.
In Section III we solve the first problem, in which the jammer
relay does not hear the source transmission. In Section IV we
attack the second problem assuming the jammer relay is given
the source signal causally. In Section V, numerical resultsare
presented and in Section VI we conclude.

II. GENERAL SYSTEM MODEL

We investigate the four terminal complex Gaussian network
composed of a source, a destination, an eavesdropper and a
jammer relay denoted by S, D, E and JR respectively. The
network under investigation is shown in Fig. 1.

The received signals at the destination and the eavesdropper
are

YD,i = hSDXS,i + hRDXR,i + ZD,i (1)

YE,i = hSEXS,i + hREXR,i + ZE,i, (2)

where XS,i and XR,i are the signals the source and the
jammer relay transmit at timei, i = 1, ..., n. In the first
problem under study, the jammer relay does not hear the
source signal. In the second problem, it is assumed that the
jammer relay is given the source signal causally, and hence
XR,i depends onX i

S,1, whereX i
S,1 = (XS,1, ..., XS,i). The

complex channel gains between nodek and nodel are denoted
as hkl, k = S,R, l = D,E. All channel gains are fixed
and assumed to be known at all nodes. The complex additive
Gaussian noises at the destination and at the eavesdropper are
respectively denoted asZD,i and ZE,i and are independent
and identically distributed (i.i.d.) with zero mean and variance
ND = NE = N0. The source and the jammer relay have
average power constraintsPS and PR. For convenience we
will write γkl = |hkl|2Pk/N0, k = S,R, l = D,E, to indicate
the received power at nodel due to nodek.

The source aims to send the messageW securely to the des-
tination inn channel uses. The secrecy rate,Rs is defined as
the maximum information rate such that the secrecy constraint
is satisfied; i.e.limn→∞ H(W )/n = limn→∞ H(W |Y n

E,1)/n,
and the probability of decoding error at the destination ap-
proaches zero asn approaches infinity [4].

In this problem the source and the jammer relay have
opposing interests. The former wants to increase the secrecy
rate, and the latter wants the decrease it. Thus, this problem
constitutes a zero-sum game, where the utility is the secrecy
rate,Rs. The source and the jammer relay make their decisions
simultaneously, and hence the game is strategic.

If the jammer relay does not exist we have the Gaussian
eavesdropper channel, for which sending Gaussian codewords
at full power is optimal [6]. If the eavesdropper does not exist
(hSE = hRE = 0), then the jammer relay’s only objective is
to jam the destination to decrease the information rate. This
problem is solved in [13], for which it is shown that correlated
jamming is optimal. The optimal transmission strategy for the
source is to send Gaussian codewords, and the optimal strategy
for the jammer is of the form

XR,i = ρXS,i + Zi, (3)

whereρ ∈ C, Zi is independent ofXS,i and chosen i.i.d. ac-
cording to distributionCN (0, NZ). If the jammer has enough
power, then it can completely block the source-destination
communication. If its power is not large enough, it shares its
power in canceling the source message and sending noise.

For the two settings considered in this paper, the strategy
spaces for both the source and the jammer relay can be
quite large, and finding the Nash equilibrium solution is very
complicated in general. However, the results of [13] and [11]
suggest that both correlated jamming and sending structured
codewords at the jammer relay have a high potential to de-
crease achievable secrecy rates. Therefore, we assume thatthe
jammer relay strategies have the same form as in (3). Different
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than [13] to incorporate interference assisted jamming/relaying
we assume that in (3) the signalZn

1 can be a structured
codeword or Gaussian noise. If the jammer relay were a
jammer only, thenZn

1 would simply be unstructured noise.
However, in this paper it is not merely a jammer, but aims
help the eavesdropper to ensure no secret communication takes
place. Unstructured noise is useful as it harms the legitimate
communication, yet it also harms the eavesdropper. Structured
codewords have the potential to help the eavesdropper more
as they can be potentially decoded at the eavesdropper.

In Problem 1, as the relay does not hear the source trans-
mission, we haveρ = 0. In Problem 2, the level of source and
jammer relay signal correlation can be adjusted as a function
of ρ. Depending on the value ofρ, the jammer relay can
try to enable decoding at the eavesdropper as in [16], or
it can attempt to cancelXS at the destination. Under these
assumptions, we are interested in finding a scheme attaining
the Nash equilibrium of the game, which consists of a pair of
optimal strategies for the source and the jammer relay.

III. PROBLEM 1: THE RELAY DOES NOT HEAR THE SOURCE

In this section we state the game theoretic formulation for
the first problem. Solving this game, we suggest an achievabil-
ity scheme that results in the Nash equilibrium value of the
game. In Sections III-A to III-D, we assume all nodes in the
system know both the source and the jammer relay’s strategies,
including the codebooks. In Section III-E, we will extend this
study to the more realistic case where the destination does not
know the jammer relay codebook. Throughout Section III, we
assume the source and the jammer relay operate at full power.

A. Game Theoretic Formulation

In the first problem, the relay does not hear the source
node. Therefore, its strategy cannot depend on the source
signal andρ = 0 in (3). Then, as described in Section
II, the jammer relay either generates dummy codewords or
simply forwards noise. When both the source and the jammer
relay send structured codewords, the problem becomes similar
to a multiple-access channel with an external eavesdropper.
In a multiple-access channel, both transmitters need to be
decoded at the destination. However, in this game, the jammer
relay only sends dummy codewords, and does not need to be
decoded either at the destination or at the eavesdropper.

Observe that when the jammer relay sends complex Gaus-
sian codewords/noise with full power, the best distribution
for choosing the source codebook is the complex Gaussian
distribution [17] with zero mean and variancePS . On the other
hand, when the source sends complex Gaussian codewords
with zero mean and variancePS , then the jammer relay
distribution that decreases the secrecy rate the most is the
complex Gaussian distribution with zero mean and variance
PR [18]. Motivated by these observations, we assume that the
source and the jammer relay choose their codebooks according
to i.i.d. complex Gaussian with zero mean and variancesPS

andPR respectively. Then, the source strategy is to choose the
rate of the information it wants to convey to the destination,
and the jammer relay strategy is to choose the rate of its

dummy information. In the remainder of this section the source
strategyξ will denote the rate of information, while the jammer
relay strategyη will denote the rate of dummy information.
We argue below that structured codewords for sending dummy
information at the jammer relay also include the possibility of
sending pure noise. Given source and jammer relay strategies,
the secrecy rate, or the payoff, is a function of bothξ andη.
If a certain positive secrecy rate,Rs(ξ, η)

1 is achieved, then
the source node’s payoff is equal toRs(ξ, η) and the relay’s
payoff is equal to−Rs(ξ, η).

Under these assumptions, the destination can decode both
the source and the jammer relay codewords if the rate pair
(ξ, η) is in R[D]

MAC

R[D]
MAC =







(ξ, η)

∣

∣

∣

∣

∣

∣

ξ ≤ log(1 + γSD)
η ≤ log(1 + γRD)

ξ + η ≤ log(1 + γSD + γRD)







. (4)

However, the jammer relay only sends dummy codewords, and
does not need to be decoded either at the destination or at
the eavesdropper. If the destination cannot decode the jammer
relay codeword, it can simply treat it as noise. Thus, allξ rates
in R[D]

N

R[D]
N =

{

ξ
∣

∣

∣
ξ ≤ log

(

1 + γSD

1+γRD

) }

(5)

are achievable as well. Overall, we say that the destination
can decode the source information with arbitrarily small
probability of error, if(ξ, η) ∈ R[D] where

R[D] = R[D]
MAC

⋃

R[D]
N (6)

Note that after taking the union, the individual constrainton η
in (4) is not needed anymore. We also define two other regions
R[E]

MAC, R[E]
N , as in (4) and (5) replacing allD with E. Then

R[E] = R[E]
MAC

⋃

R[E]
N (7)

Then for a fixed source and jammer relay rate pair(ξ, η), the
payoff function,Rs(ξ, η), is equal to

Rs(ξ, η)

=















0, if

(

(ξ, η) ∈ R[E] or

(ξ, η) 6∈ R[D]

)

max
ν

(ξ − ν), if

(

(ξ, η) ∈ R[D] and

(ν, η) 6∈ R[E]

) (8)

The proof of how this secrecy rate would be achieved is similar
to [11] and is skipped here.

An example is shown in Fig. 2 for the boundaries of the
regionsR[D] andR[E] with the corner points defined as

(∆S ,∆R) =

(

log(1 + γSD), log

(

1 +
γRD

1 + γSD

))

(9)

(ΩS ,ΩR) =

(

log

(

1 +
γSD

1 + γRD

)

, log(1 + γRD)

)

(10)

(δS , δR) =

(

log(1 + γSE), log

(

1 +
γRE

1 + γSE

))

(11)

1For Problem 1 the payoff is a function ofξ andη, whereas in Section IV,
where Problem 2 is discussed, the payoff will be defined as a function ρ and
NZ defined in (3).
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(ωS , ωR) =

(

log

(

1 +
γSE

1 + γRE

)

, log(1 + γRE)

)

.(12)

For a fixed(ξ, η), the secrecy rate defined in (8) corresponds
to the horizontal distance between the point(ξ, η) and the
dashed line in Fig. 2, if(ξ, η) is in between the solid and
dashed lines. If(ξ, η) ∈ R[E], that is inside the dashed line,
then both the destination and the eavesdropper can reliably
decode the source information, and the secrecy rate is zero.
If (ξ, η) 6∈ R[D], outside the solid line, the destination cannot
decode the source message reliably. The secrecy rate is zero,
because there is no reliable communication between the source
and the destination. Because of this immediate drop in secrecy
rates beyond the boundary ofR[D], the payoff function is
discontinuous.

Note that choosing the dummy information rate asη = ωR

is equivalent to sending unstructured Gaussian noise at the
jammer relay. Thus, the secrecy rate achieved by jammer relay
sending unstructured Gaussian noise is also covered in our
model, although we arrived at theRs(ξ, η) function assuming
structured codewords for the jammer relay.

Depending onγkl, the positions of the corner points with
respect to each other change, and multiple cases arise. In the
next subsection we investigate the case, where the conditions

log(1 + γSE + γRE) ≤ log(1 + γSD + γRD) (13)

δS ≤ ∆S , ωS ≤ ΩS ≤ δS (14)

∆R ≤ δR, δR ≤ ΩR ≤ ωR (15)

are all satisfied. The case shown in Fig. 2 satisfies all these
conditions. We will call thisCase A. There are 10 other cases
B-M shown in Fig. 5 for∆S > δS andΩS > ωS , and Case N
for ∆S ≤ δS or ΩS ≤ ωS . These other cases require similar
techniques and are explained in Section III-D.

B. Solution to the Game: Case A

A zero-sum game has a pure strategy solution if

max
ξ

min
η

Rs(ξ, η) = min
η

max
ξ

Rs(ξ, η).

However, if there is no(ξ, η) that satisfies this equation, then
no pure strategy Nash equilibrium exists, and a mixed strategy
solution is needed [19].

Lemma 1. When γkl, k = S,R, l = D,E satisfy the
conditions (13)-(15), which define Case A, the two-player zero-
sum game does not have a pure strategy solution.

Proof: In this gamemaxξ minη Rs(ξ, η) = 0, whereas
minη maxξ Rs(ξ, η) = log(1+ γSD + γRD)− log(1 + γSE +
γRE). These two values are not the same, hence a pure strategy
solution does not exist.

Lemma 2. The game defined in Lemma 1, is equivalent to
a continuous game played over the square, where the source
and jammer relay strategies are respectively restricted tothe
compact intervalsξ ∈ [ΩS ,ΩS + L] and η ∈ [δR, δR + L],
whereL is the edge lengthL = ΩR − δR.

Proof: To prove this we eliminate comparable and inferior

strategies for the source and the jammer relay. First note that

Rs(ξ, η) ≤ Rs(ΩS , η), for ξ < ΩS , and 0 < η.

In other words, as both players are rational, the source
never chooses ratesξ < ΩS . Similarly, the source node
never chooses its rate larger than∆S , as the secrecy rate
Rs(ξ, η) = 0 no matter what the jammer relay action is. On
the other hand,

Rs(ξ, η) ≥ Rs(ξ,ΩR), for ΩS ≤ ξ ≤ ∆S , and η > ΩR.

For the jammer relay, choosing any rate larger thanΩR is
inferior to choosing rate equal toΩR and thus we can omit
the strategiesη > ΩR. Similarly,

Rs(ξ, η) ≥ Rs(ξ, δR), for ΩS ≤ ξ ≤ ∆S , and η < δR.

The jammer relay strategiesη < δR are inferior toη = δR
and thus the jammer relay never chooses its rate less thanδR.
Finally, in this reduced game, the source node does not choose
its rate larger thanlog(1 + γSD + γRD) − δR, as this choice
makes its payoff equal to zero. In other words,

Rs(ξ, η) ≤ Rs(log(1 + γSD + γRD)− δR, η),

for ξ > log(1 + γSD + γRD)− δR andδR < η < ΩR. These
strategy eliminations result in the desired reduced game.

The reduced game based on Lemma 2 is shown in Fig. 3.
We next describe how to solve for the value of this reduced

game.

Theorem 1. Let a be defined asa = (δS − ΩS)/L. Suppose
a ∈ [k/(k+1), (k+1)/(k+2)], for some integerk ≥ 0. Then
the equivalent game in Lemma 2 has the Nash equilibrium
secrecy rateR∗

s = Lα(1 − a), where α = gk(a), and is
achieved with cdfs for the source and the jammer relayFξ(ξ)
andFη(η), respectively. Here the functional forms ofα, Fξ(ξ)
and Fη(η) depend2 on k, and for a givenk, bothα and the
cdfs can be readily computed. For example, for0 ≤ a ≤ 1/2

or equivalentlyk = 0, we haveα = g0(a) =
e−1/(1−a)

1− a
1−a e−1 and

Fξ(ξ) =















αe
ξ−ΩS
L(1−a) ΩS ≤ ξ ≤ ΩS + L(1− a)

α
[

(1 + e−1)e
ξ−ΩS
L(1−a) − 1

1−a
( ξ−ΩS

L
)e

ξ−ΩS
L(1−a)

−1
]

ΩS + L(1− a) ≤ ξ ≤ ΩS + L

The optimal cdf for the jammer relayFη(η) is the same as
Fξ(ξ) if ξ andΩS are replaced withη and δR respectively.

Proof: See Appendix A.
Since there are infinitely many intervals fora in Theorem 1

(corresponding to each nonnegative integerk), it is important
to find a practical way to calculate the value of the game.

Theorem 2. Consider a discrete approximation of the equiv-
alent game in Lemma 2 obtained by dividing the square into
a uniform grid of (T + 1)2 samples. The discrete source
strategies areξi = ωS + Li/T , the relay strategies are
ηj = δR + Lj/T , and the payoff matrix isA = [aij ],
whereaij = Rs(ξi, ηj), i, j = 0, 1, ..., T . The value of this

2The dependency of the cdfs onk is not explicitly shown for notational
convenience.
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discrete game can be obtained using linear programming.
Furthermore, for a chosen T, difference between values of the
discrete and the continuous game is at most2

√
2L/T .

Proof: See Appendix B.
To compare the optimal strategies for the continuous and

discrete games using the solutions in Theorems 1 and 2, we
assume|hSD| = 1, |hRD| = 1/2, and |hSE | = |hRE | = 2/3.
We make no assumptions on the phases of the channel gains
as Fξ(ξ), Fη(η) and R∗

s only depend on the magnitude of
the channel gains. The source and the jammer relay power
constraints arePS = PR = 10. We then havea = 0.5255,
L = 0.946 andα = 0.20484. We find the Nash equilibrium
secrecy rate of the continuous game as 0.092 bits/channel use.
To use the discrete approximation we setT = 400. Choosing
this sample size, Theorem 2 states that the difference between
the value of discrete and continuous games is at most0.007.
Yet, the actual difference is much smaller and we find that the
value of the discrete game as 0.0923 bits/channel use. Note
that these values are much smaller than the no jammer relay
case, for which the secrecy rate is equal to 1.0146 bits/channel
use. The optimal cdfs for the source for the continuous and
discrete games are very close to each other and are shown in
Fig. 4. As argued in Lemma 2, we observe thatFξ(ξ) is zero
if ξ < 1.947 = ΩS , and is 1 ifξ > 2.893 = ΩS+L. Note that
in the reduced game, sending Gaussian noise with full power
is still one of jammer relay’s possible strategies.

C. Note on the Achievability of the Mixed Strategy Solution

If the solution of the game is a pure strategy, the achiev-
ability follows using the arguments in Section III-A. As the
solution in Theorem 1 is mixed, it is also important to explain
how the Nash equilibrium is attained information theoretically.

In a mixed strategy the players randomize their actions over
a set of strategies with a certain probability distribution. The
players act repeatedly and ignore any strategic link that may
exist between plays. They also know each other’s probability
distribution functions, and hence formulate their own actions.
In the game defined in this section, when a mixed strategy
solution is needed, the source node assumes a variable rate
scheme, similar to the one adopted for fading eavesdropper
channels [20].

In this variable rate scheme, the source generates a total
of 2nBE(ξ) codewords, whereB is the number of blocks
the game is played where each block is of lengthn, and
E(ξ) is the expected rate for the source node, expectation
calculated over the joint cdfFξ(ξ)Fη(η). The source uses
these codewords to form a secure code that conveysnBR∗

s

bits of information inB blocks [4], whereR∗
s is the value

of the game or the Nash secrecy rate. In each block, the
source independently chooses a rateξ according toFξ(ξ)
and transmitsnξ bits of the codeword chosen to represent
the secure information. Similarly, the jammer relay chooses
a rateη according toFη(η). Since the eavesdropper cannot
improve its mutual information more thanξ, as in the variable
rate case of [20], (8) is still valid andR∗

s is attained as both
n andB approach infinity.

D. Other Cases: B-N

So far in Sections III-A/III-B, we have obtained a complete
solution for Case A. In this subsection, we will show that
for all other cases B to N, shown in Fig. 5, either an
analytical solution or a discrete approximation can be found.
Due to limited space, the coordinates of corner points of the
equivalent regions are not shown in the subfigures of Fig. 5
but they can be easily determined given those coordinates of
corner points on the boundary regions as in (9)-(12).

For Cases B and C, following a reasoning similar to Lemma
2 the reduced region remains to be a square as in Case A
except that the jammer relay rateη in interval [ωR,ΩR) is
dominated by the jammer relay rateΩR. In this case, in order
to keep the support of the jammer relay strategy compact, we
do not eliminate these dominated jammer relay rates. Using
the same reasoning as in the proof of Theorem 2, we can
solve the problem by approximating the original game with a
discretized matrix game.

For Case D, the solution is the same as Case A whena = 0
and the optimal solution can be obtained analytically using
Theorem 1. In this case, the Nash equilibrium secrecy rate
R∗

s = Lα+ (ΩS − δS), whereL = ΩR − δR andα = e−1.
For Case E, a pure strategy Nash equilibrium exists, the

optimal strategies for the source and the jammer relay are
(ΩS ,ΩR) and the Nash equilibrium secrecy rate isΩS − δS .

For Cases F-K, if we retain some dominated relay rates to
keep the support of the relay strategy compact, the reduced
region becomes a rectangle as shown in Fig. 5. We can
easily extend Theorem 1 to the case of a rectangle and show
that these games also have a value. Furthermore, similar to
Theorem 2, a discrete approximation can be computed.

For Case L, after all eliminations similar to Lemma 2, only
four points remain. The two rates for the source to choose
are ξ = ΩS and ξ = ∆S while those for the jammer relay
are η = δR and η = ΩR. The 2 × 2 matrix game with the
source and the jammer relay being the row and column players
respectively has the following payoff matrix

(

0 ΩS − ωS

∆S − δS 0

)

. (16)

A mixed-strategy Nash equilibrium exists, in which the source
choosesξ = ΩS with probability ∆S−δS

ΩS−ωS+∆S−δS
and ξ =

∆S with probability ΩS−ωS

ΩS−ωS+∆S−δS
while the jammer relay

choosesη = δR with probability ΩS−ωS

ΩS−ωS+∆S−δS
and η =

ΩR with probability ∆S−δS
ΩS−ωS+∆S−δS

. The Nash equilibrium

secrecy rate is given byR∗
s = (ΩS−ωS)(∆S−δS)

ΩS−ωS+∆S−δS
.

Case M is very similar to Case L. As in Case L, the source
can choose betweenξ = ΩS and ξ = ∆S while the jammer
relay can choose betweenη = δR and η = ΩR. The 2 × 2
matrix game with the source and the jammer relay being the
row and column players respectively has the following payoff
matrix

(

ΩS − δS ΩS − ωS

∆S − δS 0

)

. (17)

A mixed-strategy Nash equilibrium also exists, in which the
source choosesξ = ΩS with probability ∆S−δS

∆S−ωS
and ξ =

∆S with probability δS−ωS

∆S−ωS
while the jammer relay chooses
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η = δR with probability ΩS−ωS

∆S−ωS
andη = ΩR with probability

∆S−ΩS

∆S−ωS
. The Nash equilibrium secrecy rate is given byR∗

s =
(ΩS−ωS)(∆S−δS)

∆S−ωS
.

Case N is the case when boundaries of the regionsR[D]

and R[E] intersect orR[D] is contained inR[E]. In the
former scenario, the intersection point is a pure strategy Nash
equilibrium leading to zero secrecy rate; in the latter case, no
positive secrecy rate can be achieved regardless of what the
source and jammer relay strategies are.

E. Unknown Jammer Relay Codebook

In previous subsections, it is assumed that all nodes in the
system know both the source and the jammer relay strategies,
including the codebooks. In practice, it is reasonable to assume
that the destination is not aware of the jammer relay’s exact
codebook even though it may have the knowledge that the
jammer relay uses Gaussian codebooks. Under this assump-
tion, the destination cannot jointly decode the source and the
jammer relay messages any more and thus the jammer relay’s
signal would always be treated as noise at the destination.
Hence in this case, the destination can correctly decode source
information only if ξ ∈ R[D]

N , whereR[D]
N is given in (5).

Redrawing the rate regions under the new assumption, we
obtain the two cases shown in Fig. 6 forΩS ≤ δS and for
ΩS > δS . It can be easily shown that ifΩS ≤ δS , the
intersection point,(ξ, η) = (ΩS ,

(ωR−δR)ΩS+ωSδR−ωRδS
ωS−δS

), is
a pure Nash equilibrium point and is unique, leading to zero
secrecy rate. IfΩS > δS instead, all points(ΩS , η) with
η ∈ [0, δR] are Nash equilibria, and the resulting Nash equilib-
rium secrecy rate isΩS−δS . Therefore, we conclude that when
the destination does not know the jammer relay codebook, the
Nash equilibrium secrecy rate isRs = (ΩS − δS)

+, where
[x]+ = max(0, x).

IV. PROBLEM 2: THE RELAY IS GIVEN THE SOURCE

SIGNAL

In this section we provide the Nash equilibrium solution
of the game for the second problem in which the jammer
relay is given the source signal causally. To further simplify
the setup we assume the destination is unaware of the jammer
relay codebook as in Section III-E. Depending on whetherZn

1

is Gaussian noise or structured codeword in (3), the payoff
function and the Nash equilibrium of the game are different.
In the following, we consider these two different scenarios
respectively.

A. Zn
1 is Gaussian noise

In this subsection, we assume thatZi in (3) are i.i.d.
complex Gaussian with zero mean and varianceNZ , for all
i = 1, ..., n. SubstitutingXR,i in (3) into (1) and (2), the
relation between the source signal and the received signals
at the destination and the eavesdropper can equivalently be
written as

ỸD,i = XS,i + Z̃D,i (18)

ỸE,i = XS,i + Z̃E,i (19)

where Z̃D,i =
hRDZi+ZD,i

hSD+hRDρ
and Z̃E,i =

hREZi+ZE,i

hSE+hREρ
. Since

ZD, ZE ∼ CN (0, N0), the variances ofZ̃D and Z̃E can
respectively be obtained as

ÑD =
|hRD|2NZ +N0

|hSD + hRDρ|2 , (20)

ÑE =
|hRE |2NZ +N0

|hSE + hREρ|2
. (21)

The system in (18) and (19) is equivalent to a Gaussian
wire-tap channel. Hence the best strategy for the source is to
choose its codebook according to i.i.d.CN (0, PS), resulting
in the secrecy capacityRs [6]

Rs(ρ,NZ) =

[

log2

(

1 +
PS

ÑD

)

− log2

(

1 +
PS

ÑE

)]+

.

(22)
On the other hand, if the source fixes its input distribution to
be complex Gaussian with zero mean and variancePS , the
jammer relay would intend to chooseρ andNZ to minimize
the secrecy rate when its strategy is limited to (3). Thus, the
pure-strategy achieving the Nash equilibrium for the source is
to choose the input distributionXS ∼ CN (0, PS) and for the
jammer relay is to transmitXR = ρXS +Z for some optimal
ρ andNZ , where the optimalρ andNZ are denoted asρ∗ and
N∗

Z , are solutions to the problem

minRs(ρ,NZ) subject to|ρ|2PS +NZ ≤ PR. (23)

Then the Nash equilibrium secrecy rate isR∗
s(ρ

∗, N∗
Z).

The optimization problem in (23) is not convex. This
suggests infeasibility of a closed form solution in general.
However, for the following special cases, the solutions have a
simple form and can be obtained as follows:

1) If |hSE | ≥ |hSD|, even without any help from the
jammer relay for the eavesdropper, the secrecy rate is
always zero. Thus, the jammer relay only needs to keep
silent.

2) If |hRD| ≥
√

PS/PR|hSD|, then the pair(ρ∗, N∗
Z) =

(−hSD/hRD, 0) is optimal. When the link between
the jammer relay and the destination is strong, the
jammer relay can send a negatively correlated signal to
completely cancel the source signal.

3) Suppose|hSE | < |hSD| and |hRD| <
√

PS/PR|hSD|.
If |hRDhSE | > |hSDhRE | and N0(|hSD|2−|hSE|2)

|hRDhSE |2−|hSDhRE |2 <

PR, then ρ∗ = 0, N∗
Z = N0(|hSD|2−|hSE|2)

|hRDhSE |2−|hSDhRE |2 are
optimal. This is the case when the jammer relay is
capable of forcing secrecy rate to zero by transmitting
only noise.

When |hSE| < |hSD| and |hRD| <
√

PS/PR|hSD|,
numerical methods are used to solve the optimization prob-
lem of (23). In (23), it can be shown that the constraint
|ρ|2PS +NZ ≤ PR is not necessarily met with equality; i.e.
it is possible that in the optimal solution the jammer relay
should not transmit with full power. This is in contrast to the
jamming problem without an eavesdropper, where it is best
for the jammer to use full power [13]. Lettingρ = |ρ|ejθ,
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NZ = wPS , the constraint can be rewritten as

|ρ| ≤
√

PR/PS , (24)

0 ≤ θ ≤ 2π, (25)

0 ≤ w ≤ PR/PS − |ρ|2 (26)

To numerically solve for (23) we exhaustively search over all
feasible|ρ|, θ andw in the range.

B. Zn
1 is structured codeword

In this subsection, we assumeZn
1 is a structured codeword

instead of noise. As in Section III-E, we assume the jammer
relay shares its codebook only with the eavesdropper, but
not with the adversarial destination. Note that, this set of
assumptions define the worst case scenario along with the
fact that the relay is informed about the source information
causally.

The jammer relay is capable of choosing the rate of the
codebook ofZn

1 so that the eavesdropper can successfully
decode it. After the eavesdropper decodes the dummy infor-
mation carried byZn

1 , it subtractsZn
1 and re-scales its received

signalYE to get

ȲE,i = XS,i + Z̄E,i (27)

whereZ̄E,i =
ZE

hSE+hREρ
has zero mean and variance

N̄E =
N0

|hSE + hREρ|2
. (28)

Since the destination does not know the jammer relay code-
book, it can only treatZn

1 as noise. If the jammer relay’s
transmitted signal has the form in (3) andZn

1 is chosen to be
Gaussian, then based on the results in [6], the optimal source
distribution is CN (0, PS). On the other hand, if the source
distribution is fixed toCN (0, PS), it is best for the jammer
relay to construct codebook ofZn

1 according to the distribution
CN (0, NZ) since only the destination is affected byZn

1 and
the worst noise is the Gaussian one [18]. Hence, the pure-
strategy achieving the Nash equilibrium for the source is to
useCN (0, PS) distribution to generate the source codebook
while that of the jammer relay is to constructZn

1 as Gaussian
codewords and transmit signal of the form in (3) for some
optimal ρ andNZ . Given that bothXS andZ are Gaussian
at the equilibrium, the jammer relay ought to set the rate of
the codebook ofZ to satisfy

RZ < log2

( |hRE |2NZ

N0 + |hSE + hREρ|2PS

)

,

in order to guarantee that the eavesdropper can decode it
successfully. WithXS ∼ CN (0, PS) and XR = ρXS + Z,
the secrecy rate can be expressed as

Rs(ρ,NZ) =

[

log2

(

1 +
PS

ÑD

)

− log2

(

1 +
PS

N̄E

)]+

.

(29)
Comparing the equivalent noise at the eavesdropperN̄E

defined in (28) andÑE defined in (21), we observe that
the Nash equilibrium secrecy rates obtained whenZn

1 is a
structured codeword will always be less than or equal to the

Nash equilibrium secrecy rates obtained whenZn
1 is Gaussian

noise. However, structuredZn
1 requires the jammer and the

eavesdropper to share the codebook information in advance
and havingZn

1 as Gaussian noise leads to a simpler system
design.

To find the optimalρ andNZ at the Nash equilibrium, we
need to minimizeRs(ρ,NZ) subject toρ2PS +NZ ≤ PR. As
in the previous subsection, a closed form solution cannot be
obtained in general. For some special cases, we can easily find
an optimal solution. We list a few of these cases as follows.

1) If |hSE | ≥ |hSD|, then it is enough for the jammer relay
to keep silent.

2) If |hRD| ≥
√

PS/PR|hSD|, thenρ∗ = −hSD/hRD and
N∗

Z = 0 are optimal.
3) If |hSE | < |hSD| and |hRD| <

√

PS/PR|hSD|,
and if |hSD|2−|hSE|2

|hSEhRD |2 ≤ PR/N0, then (ρ∗, N∗
Z) =

(0, |hSD|2−|hSE |2
|hSEhRD|2 N0) is optimal.

As in the previous subsection, we can use numerical meth-
ods to optimize the function in (29) by exhaustively searching
over all |ρ|’s, θ’s andw’s.

V. NUMERICAL RESULTS

In this section we present some numerical results to
show how the secrecy rate changes with the jammer relay-
eavesdropper channel quality, when the jammer relay is given
the source signal causally (Problem 2). We also compare the
secrecy rates attained whenZn

1 is Gaussian noise, Section
IV-A and Zn

1 is a structured codeword, Section IV-B. We
finally provide comparisons of the secrecy rates for Problem
1 and Problem 2.

For Problem 2, whenZn
1 is Gaussian noise, the Nash

equilibrium secrecy rate is plotted as a function ofhRE in
Fig. 7 for hSD = 1, hSE = 0.4+ 0.4j andhRD = 0.2− 0.2j
whenPS = PR = 10 andN0 = 1. For simplicity, we restrict
hRE to be real in this plot. We note that in general multiple
optimal choices for (ρ∗, N∗

Z) appear in general. The following
two cases are also included in the figure for comparison: 1)
the jammer relay only sends Gaussian noise; i.e.XR = Z;
2) the jammer relay only sends a correlated version of source
message; i.e.XR = ρXS . WhenhRE is near0.2, XR = Z
is close to optimal; whenhRE is greater than0.3 or smaller
than−0.15, the curve forXR = ρXS overlaps with the curve
for XR = ρXS + Z, which implies that forhRE ’s in these
ranges the component of Gaussian noiseZ in the signalXR

is not necessary and sending a correlated version of source
message is already optimal. Also, we observe that ashRE

grows sufficiently large, the secrecy rateR∗
s drops to zero

when the jammer relay’s signal is of the formXR = ρXS+Z.
For Problem 2, Fig. 8 shows the Nash equilibrium secrecy

rate as a function of realhRE when Zn
1 is a structured

codeword,hSD = 1, hSE = 0.4+0.4j andhRD = 0.2−0.2j.
As before, PS = PR = 10 and N0 = 1. In Fig. 8,
for comparison the Nash equilibrium secrecy rate when the
jammer relay signal is restricted toXR = Z with Zn

1 being
a structured codeword andXR = ρXS are also included.
The secrecy rate forXR = ρXS is the same as in Fig. 7,
sinceXR does not depend onZ. Also the secrecy rate for
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XR = Z remains constant ashRE changes, which is due to
the fact thatÑD andN̄E do not depend onhRE whenρ = 0.
However, in this casehRE has an impact on the maximum
possible rateRZ . Under the same setting as in Fig. 7 and
Fig. 8, Fig. 9 compares the Nash equilibrium secrecy rates
under four different scenarios: 1) Problem 1: uninformed relay
with the jammer relay codebook known at the destination,
Section III-A/III-D; 2) Problem 1: uninformed relay with the
jammer relay codebook unknown at the destination, Section
III-E; 3) Problem 2: informed relay withZn

1 being Gaussian
noise, Section IV-A; 4) Problem 2: informed relay withZn

1

being structured codewords, Section IV-B. Our observations
can be listed as follows:

• When the relay is uninformed of source message and the
jammer relay codebook is unknown at the destination,
as in Section III-E, neitherΩS nor δS depend onhRE ,
and the secrecy rate remains unchanged for allhRE ’s. As
the destination always treats the jammer relay’s signal as
noise while the eavesdropper may decode it, this scenario
is actually equivalent to that ofXR = Z in Fig. 8.

• When the relay is uninformed of the source message
and the destination has the knowledge of the jammer
relay codebook the Nash equilibrium secrecy rate can
be increased for|hRE | < 0.6 compared with the no
codebook case at the destination.

• Among all four scenarios, an informed relay withZn
1

being structured codeword achieves the smallest secrecy
rate.

• For a range ofhRE ’s studied, an informed relay with
Zn
1 as Gaussian noise can achieve a smaller secrecy rate

than an uninformed relay with jammer relay codebook
unknown at the destination. However, we observe that an
informed relay withZn

1 as Gaussian noise results in the
largest secrecy rate whenhRE is between0.15 and0.4.

In Fig. 9, for simplicity, we only considered real channel
gainhRE between the jammer relay and the eavesdropper. In
Fig. 10, we fix |hRE | = 0.25 and plot the Nash equilibrium
secrecy rates as a function of the phase ofhRE , ∠hRE for
the four different cases mentioned above. When the relay is
uninformed of the source message, irrespective of whether the
destination knows the jammer relay codebook or not, the Nash
equilibrium secrecy rate only depends on the magnitude of
hRE and therefore remains the same for all phases ofhRE .
However, the Nash equilibrium secrecy rates in both cases
of informed relay are sensitive to the changes in∠hRE . For
example, as shown in Fig. 10, when0 ≤ ∠hRE < π, the Nash
equilibrium secrecy rate in either case decreases as∠hRE

increases and finally drops to zero when∠hRE grows beyond
a threshold.

VI. CONCLUSION

In this paper a four terminal network with a source, a
destination, an eavesdropper and a jammer relay is inves-
tigated. The source and the jammer relay have conflicting
interests. The former aims higher secrecy rates, whereas the
latter aims lower secrecy rates. Due to this conflict, this
problem is formulated as a non-cooperative two-player zero-
sum continuous game. Two different cases are studied: 1) the

jammer relay does not hear the source, and 2) the jammer
relay is given the source signal causally. For the first case,
it is discussed that interference assistance is the only option.
Under this assumption the optimal solution for the source and
the jammer relay is found to be mixed strategies. The Nash
equilibrium secrecy rate of the game is calculated, in addition
to optimal cumulative distribution functions for the source and
the jammer relay. A discrete approximation to the continuous
game, whose value can be made arbitrarily close to the value
of the continuous game, is also suggested. For the second case,
limiting the jammer relay strategies to a combination of pure
relaying and interference assisted eavesdropping schemes, the
Nash equilibrium of the game is found and an achievability
scheme is suggested. Our results show that the presence of
the jammer relay decreases the secrecy rates significantly.If
the jammer relay is informed of the source signal, the secrecy
rates are even lower. Future work includes the more general
half-duplex jammer relay case, in which the relay is not given
the source signal for free, but has to listen to it to be able to
perform pure relaying.

APPENDIX A
PROOF OFTHEOREM 1

For the equivalent game in Fig. 3, the achieved secrecy rate
is given by

Rs(ξ, η) =















0, ξ + η > ΩS + δR + L
ξ + η − ΩS − δR − aL,

ΩS + δR + aL < ξ + η ≤ ΩS + δR + L
0, ξ + η ≤ ΩS + δR + aL

.

(30)
We first assumeL = 1 and (ΩS , δR) = (0, 0) and then use

the game-theoretic techniques in [19] to solve the continuous
game played over the unit square. For convenience, we denote
the jammer relay’s pure strategy byλ = 1 − η instead ofη.
Fig.11 illustrates the unit square where the normalized game
is played. Rewriting (30), we get

Rs(ξ, λ) =

{

M1(ξ, λ) λ ≥ ξ
M2(ξ, λ) λ < ξ

(31)

where

M1(ξ, λ) =

{

0 λ > ξ + 1− a
ξ − λ+ 1− a ξ ≤ λ ≤ ξ + 1− a

,

(32)
and

M2(ξ, λ) = 0 (33)

M1(ξ, λ) andM2(ξ, λ) are defined over the closed triangles
Σ1 = {(ξ, λ)|0 ≤ ξ ≤ λ ≤ 1} andΣ2 = {(ξ, λ)|0 ≤ λ ≤
ξ ≤ 1} respectively as shown in Fig. 11. Herea is a constant
between 0 and 1. In game theory, the functionRs(ξ, λ) is
called thekernelof the game.

For the game in Fig. 11, the source and the jammer relay
strategies can be represented by the cdfsFξ(ξ) and Fλ(λ)
defined on [0, 1] respectively. Given source strategyFξ(ξ)
and jammer relay strategyFλ(λ), the expected pay-off of the
source is given by

∫ 1

0

∫ 1

0 Rs(ξ, λ)dFξ(ξ)dFλ(λ).
A solution to the game with kernelRs(ξ, λ) [19] is a pair
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of cdfsFξ andFλ together with a real numberR∗
s such that

∫ 1

0

Rs(ξ, λ)dFξ(ξ) ≥ R∗
s for all 0 ≤ λ ≤ 1 (34)

and
∫ 1

0

Rs(ξ, λ)dFλ(λ) ≤ R∗
s for all 0 ≤ ξ ≤ 1 (35)

Here we callR∗
s the value of the game or Nash equilibrium

secrecy rate andFξ andFλ optimal strategies for the source
and the jammer relay respectively.

Motivated by the results ongames of timingin [19], we
first assume that the optimal strategies for the source and
the jammer relay are of the formsFξ = (αI0, fξ) and
Fλ = (fλ, βI1). Here (αI0, fξ) denotes a distribution made
up of a density functionfξ spread on the interval(0, 1] and
one jump of magnitudeα located at0. Similarly, (fλ, βI1)
is a distribution made up of a density function spread on the
interval [0, 1) and one jump of magnitude ofβ located at1.
Then, we solve the game analytically under these assumptions.
After a particular solution is found, we verify that it is indeed
a solution of the game. As the kernelRs(ξ, λ) depends on the
parametera, we will find optimal strategies for both players
for different parameters ofa.

For 0 ≤ a ≤ 1/2 (i.e., k = 0) mentioned in Theorem 1,
suppose0 ≤ λ ≤ 1− a, then
∫ 1

0

Rs(ξ, λ)dFξ(ξ) = αRs(0, λ) +

∫ λ

0+
M1(ξ, λ)fξ(ξ)dξ

= α(1− a− λ)

+

∫ λ

0+
(ξ − λ+ 1− a)fξ(ξ)dξ(36)

Differentiating w.r.t.λ and equating to zero, we get

G(ξ) = α(e
ξ

1−a − 1), 0 ≤ ξ ≤ 1− a (37)

whereG(ξ) =
∫ ξ

0+
fξ(u)du. Similarly, forλ such that1−a <

λ ≤ 1, we get

G(ξ) = −α+C exp(
ξ

1− a
)− α

1− a
ξe

ξ
1−a−1, 1−a < ξ ≤ 1

(38)
Due to continuity ofG(ξ) at ξ = 1− a, we haveC = α(1 +
e−1). Also, sinceG(1) = 1 − α, we obtainα = g0(a) =
e−1/(1−a)

1− a
1−a e−1 . Therefore, the optimal strategy for the source,Fξ,

has the form:

Fξ(ξ) =

{

α if ξ = 0
α+G(ξ) if 0 < ξ ≤ 1

. (39)

In the same manner, the optimal strategy for the jammer
relay,Fλ, can be obtained

Fλ(λ) =

{

1− α−G(1− λ) if 0 ≤ λ < 1
1 if λ = 1

. (40)

Alternatively, whenη is used to denote the jammer relay’s pure
strategy, the jammer relay’s optimal strategy can be expressed
asFη(η) = 1− Fλ(1 − η) = Fξ(η).

It can be readily verified that
∫ 1

0 Rs(ξ, λ)dFξ(ξ) = α(1−a),
for all 0 ≤ λ ≤ 1. Also,

∫ 1

0
Rs(ξ, λ)dFλ(λ) = α(1 − a), for

all 0 ≤ ξ ≤ 1. Hence, when0 ≤ a ≤ 1/2, Fξ andFλ (or Fη)
in (39) and (40) are the optimal strategies for the source and
the jammer relay and the secrecy rate isR∗

s = α(1− a).
Now supposea ∈ (k/(k + 1), (k + 1)/(k + 2)] for k > 0.

In this case, the optimal strategies can be obtained using the
same method as above except that the resultingFξ(ξ) is not
differentiable at pointsξ = 0, 1−a, 2(1−a), ..., (k+1)(1−a).
Hence the functional forms ofα, Fξ(ξ) andFη(η) depend on
k, and for a givenk bothα and the cdfs can be readily derived.

For the more general case when the edge is equal to
L = ΩR − δR and the left lower corner point of the square
is located at(ΩS , δR), we havea = δS−ΩS

L
. Similar to the

above discussion, optimal cdfs and Nash equilibrium secrecy
rate can be derived to result in Theorem 1.

APPENDIX B
PROOF OFTHEOREM 2

The proof of this theorem is based on Theorem 8 in Chapter
17 of [21] and the approximation techniques suggested there.

Let us first consider the game over the unit square when
L = 1 and (ΩS , δR) = (0, 0). According to Theorem 8
in Chapter 17 of [21], the game with the kernel function
Rs(ξ, λ) in (31) has a value and there exists a pair of “ǫ-
optimal” strategies for the source and the jammer relay.3

Hence, it is possible to solve the game using approximate
methods. To obtain the approximation, we divide the unit
interval by T − 1 inner grid points equally spaced in it so
that the square is divided into a uniform grid of(T + 1)2

samples. Therefore, the source chooses among discrete pure
strategiesξi = i/T (i = 0, 1, ..., T ) while the jammer relay
chooses amongλj = j/T (j = 0, 1, ..., T ). The payoff matrix4

is A = [aij ], whereaij = Rs(ξi, λj), i, j = 0, 1, ..., T . For
this discrete game, a mixed-strategy Nash equilibrium always
exists and its value can be obtained using linear programming.

From [21], in order for the equilibrium strategies of the
discrete game to beǫ-optimal for the original continuous game,
T needs to be chosen such thatT ≥ 2max[K1,K2]

ǫ
, whereK1

andK2 are two constants chosen to satisfy

|M1(ξ, λ) −M1(ξ, λ)| ≤ K1|(ξ, λ) − (ξ′, λ′)|
for all (ξ, λ) ∈ Σ1, (ξ

′, λ′) ∈ Σ1,
|M2(ξ, λ) −M2(ξ, λ)| ≤ K2|(ξ, λ) − (ξ′, λ′)|

for all (ξ, λ) ∈ Σ2, (ξ
′, λ′) ∈ Σ2,

M1 andM2 are as defined in (32) and (33). In our problem,
the above conditions hold forK1 =

√
2 andK2 = 0, therefore

we only need to chooseT to be greater than2
√
2

ǫ
. On the

other hand, ifT is fixed, difference between values of the
discrete game and the continuous game is at most2

√
2/T .

For example, if we setǫ = 0.00708, it suffices to chooseT to
be 400.

3A pair of cdfs F 0
ξ
(ξ) and F 0

λ
(λ) are said to beǫ-optimal and the

approximate value of the gamevǫ is said to be “ǫ good”, if (i) the expected
payoff v1 calculated forF 0

ξ
(ξ) and for anyFλ(λ) satisfiesv1 ≥ vǫ − ǫ,

(ii) the expected payoffv2 calculated for anyFξ(ξ) and forF 0
λ
(λ) satisfies

v2 ≤ vǫ − ǫ, and (iii) |vǫ − v| ≤ ǫ, wherev is the value of the game [21].
4Note that if we use the kernelRs(ξ, η) instead ofRs(ξ, λ), the payoff

matrix would become the one in Theorem 2.
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Similar to Appendix A, for the more general case when the
edge is equal toL = ΩR − δR and the left lower corner point
of the square is located at(ΩS , δR), a discrete game can be
used to approximate the continuous game as in Theorem 2.
The difference between the values of the two games would be
scaled byL; i.e., within 2

√
2L/T .
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Fig. 1. The system model shows the source (S), the destination (D), the
eavesdropper (E) and the jammer relay (JR). The jammer relayaims to assist
the eavesdropper. The S-JR link is shown dashed, as the jammer relay does
not know the source signal in the first model, whereas it is given the source
signal causally in the second.
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scenarios as a function of realhRE whenhSD = 1, hSE = 0.4+0.4j and
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