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ABSTRACT

SEGMENTATION OF MULTI CLASS RETINAL LESIONS FROM FUNDUS
IMAGES

Çontar, Elı̇f Kübra

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

February 2022, 68 pages

Diabetic retinopathy is a leading cause of preventable blindness among adults. Detec-

tion of diabetic retinopathy-related retinal lesions is essential for automatic detection

of DR. There are different kinds of lesions related to the disease, namely microa-

neurysm, hemorrhage, hard exudate, and soft exudate. Each lesion has different char-

acteristics: color, size, and shape.

In the literature, the detection of retinal lesions has been examined as a localization

or segmentation problem. Besides traditional image processing methods, machine

learning-based and neural network-based methods have been proposed widely in the

last years. Most of the works focused on detecting only one type of lesion. These

methods can not be transferred to detect another kind of lesion because of the dif-

ferent characteristics of the lesions. Additionally, segmentation of retinal lesion task

is an imbalanced classification problem. Task includes both foreground-background

imbalance and imbalance between positive classes.

In this study, we developed a new instance-based intersection over union(IB_IoU)

objective function to segment multi-class retinal lesions from fundus images. The
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loss has targeted the following two problems. Firstly, it aims to solve the imbalance

problem by averaging intersection over union(IoU) scores across the classes. Sec-

ondly, IoU score is calculated separately for every instance with a closed contoured

shape. The aim is to improve the detection performance of lesions with small pixel

areas. The connected component analysis is applied to find instances on a union of

prediction and ground truth labels.

The results show that the proposed algorithm is comparable to state-of-the-art meth-

ods focused on detecting single lesions. Additionally, the proposed loss function has

improved detection performance of microaneurysm and exudate lesions over other

loss functions used in multi-class retinal lesion segmentation.

Keywords: diabetic retinopathy, segmentation, retinal lesion, deep learning, fundus

image
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ÖZ

FUNDUS GÖRÜNTÜLERİNDEN ÇOK SINIFLI RETİNA
LEZYONLARININ SEGMENTASYONU

Çontar, Elı̇f Kübra

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Şubat 2022 , 68 sayfa

Diyabetik retinopati, yetişkinlerde görülen önlenebilir körlüğün en önemli nedenle-

rinden biridir. Diyabetik retinopati(DR) ile ilişkili retina lezyonlarının tespiti, DR’nin

otomatik teşhisi için önemli bir basamaktır. Hastalıkla ilgili birden fazla farklı lezyon

tipi bulunmaktadır. Bunlar sırasıyla: mikroanevrizma, hemoraji, sert eksüda ve yumu-

şak eksüdadır. Lezyon tipleri renk, boyut ve şekil açısından farklı görsel özelliklere

sahiptir.

Literatürde retina lezyonlarının tespiti lokalizasyon veya segmentasyon problemi ola-

rak incelenmiştir. Geleneksel görüntü işleme yöntemlerinin yanı sıra, makine öğren-

mesi tabanlı ve sinir ağları tabanlı yöntemler son yıllarda yaygın olarak geliştirilmiş-

tir. Çalışmaların bir çoğu tek lezyon tipini tespit etmeye odaklanmıştır. Tek tip üze-

rinde geliştirilmiş yöntemler, lezyonların farklı özellikleri nedeniyle başka bir lezyon

türünü saptamakta kullanılamıyor. Ek olarak, retina lezyonu segmentasyonu veri da-

ğılımı sebebiyle dengesiz bir sınıflandırma problemidir. Görev, hem ön plan-arka plan

dengesizliğini hem de pozitif sınıflar arasındaki dengesizliği içermektedir.
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Bu çalışmada, fundus görüntülerinden çok sınıflı retina lezyonlarının bölütlemesi için

örnek temelli kesişim bölü bileşim(IB_IoU) hata fonksiyonunu geliştirdik. Hata fonk-

siyonu, aşağıdaki iki sorunu hedef almıştır. İlk olarak, IoU puanı her bir sınıf için ayrı

ayrı hesaplanarak ortalaması alınır. Bu şekilde dengesizlik sorununu çözmek amaç-

lanmıştır. İkinci olarak, kapalı çevreli şekle sahip her örnek için IoU puanı hesaplanır.

Amaç, küçük piksel alanlarına sahip örneklerin de tespit edilebilmesi ve kaçırılma-

ması için hata fonksiyonuna katkı yapmalarını sağlamaktır. Kapalı çevreli şekle sahip

örnekleri bulmak için bağlantılı bileşen analizi uygulanmıştır.

Sonuçlar, geliştirilen algoritmanın performansının, tek lezyon tipini tespit etmeye

odaklanan son teknoloji yöntemlerle karşılaştırılabilir bir seviyede olduğunu göster-

mektedir. Ek olarak, önerilen hata fonksiyonu, çok sınıflı retina lezyonu segmentas-

yonunda kullanılan diğer hata fonksiyonlarına göre mikroanevrizma ve eksüda lez-

yonlarının tespit performansını iyileştirmiştir.

Anahtar Kelimeler: diyabetik retinopati, segmentasyon, derin öğrenme, fundus, retina

lezyonu
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CHAPTER 1

INTRODUCTION

According to the World Health Organization, 85 percent of blindness is preventable

worldwide, and diabetic retinopathy(DR) is a leading cause of preventable blindness

in working-age adults[9]. DR may result in damage in irreversible visual acuity with-

out appropriate treatment. Therefore, regular ophthalmic examination sessions are

essential for early diagnosis. DR causes abnormal retina patterns such as exudate,

microaneurysm, hemorrhage, and vascularity in retinal blood vessels. These abnor-

malities are shown in Figure 1.1. Each anomaly has its own distinct visual charac-

teristics, such as color, size, and shape. The existence of different abnormalities and

their number of instances state the level of disease[10]. According to the international

clinical diabetic retinopathy severity scale[11] DR is examined under five stages:

• 0: Healthy

• 1: Mild NPDR

• 2: Moderate NPDR

• 3: Severe NPDR

• 4: Proliferative DR.

The way of treatment and treatment cost changes according to the disease stage. The

early stages of DR are less severe and clinically managed. It is important to iden-

tify early indicators for DR. DR is diagnosed by examining the fundus image by

an ophthalmologist who is an expert. Fundus image is taken by using fundus cam-

eras. The resolution, lighting, and quality of the image vary according to the camera.

Retina image consists of disease-related sections called pathological lesions such as
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Figure 1.1: Retinal image with abnormalities(black) and natural structures(white).

exudate, microaneurysms, hemorrhage, and vascularity and natural structures such

as blood vessels, optic disc, optic cup, and macula. There are 422 million diabet-

ics globally, and the World Health Organization recommends annual eye examina-

tions for diabetic patients. Considering that the average number of ophthalmologists

per million population is changing from 9 to 79 for low-income countries to high-

income countries[12], Computer-Aided Diagnosis(CAD) applications are important

for an accessible eye examination. Early research uses different machine learning

based methods like support vector machines and k-nearest neighbors to extract or

segment retinal pathologies[13]. Additionally, traditional image processing meth-

ods like mathematical morphological operations, region growing methods, and en-

semble methods[14] have been used[14, 15, 16]. Niemeijer applied a mathematical

morphology based candidate extraction and pixel classification system. After that,

the final candidate regions are decided by hybrid candidate classification. However,

all traditional methods require manual feature extraction, and domain knowledge is

mandatory. Also, deep learning methods have been developed with the increasing

popularity of neural networks. Different methods have been developed for extract-

ing visual attributes of the retina. FCN, U-Net, SegNet, and MaskRCNN architec-

ture are popular in medical image segmentation and used with some modifications

in various retinal applications[17, 18]. CNN based methods are used for red lesion
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Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Figure 1.2: Retinal images at different stages of diabetic retinopathy.

segmentation[19, 20, 21] and autoencoder methods have been used too[22].

1.1 Contributions and Novelties

This thesis focuses on the deep learning methods for the segmentation of retinal le-

sions from color fundus images. Our contributions are as follows:

• A new objective function is proposed based on intersection over union(IoU)

metric. This objective function aims to solve the class imbalance between pos-

itive classes and increase the detection performance of small-scale lesions. The

objective function calculates IoU score for each instance individually. Exper-

iments show that the proposed objective function increases the segmentation

performance of small and scattered lesions compared to other loss functions.

• The two-stage model is proposed to decrease the background-foreground im-
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balance effect on training. Patches can be divided into two. The ones include le-

sions structure, and the other all pixels belong to the background. Even positive

patches, which include lesion areas, have imbalanced background-foreground

distribution. Only the positive patches are used to train the multi-class segmen-

tation model to decrease the imbalance effect. Also, another model is trained

to classify patches, whether it includes any lesion structure or not. Combin-

ing these two models perform better compared to the single-stage segmentation

model.

• Lesions close to blood vessels in the distance and lesions similar in color to the

blood vessel, such as MA and HE, are more likely to be confused with blood

vessels. Blood vessels are removed from images to investigate this relation, and

the segmentation model is trained with blood vessel removed images. However,

the IDRiD dataset does not include labels for blood vessels. Therefore, pseudo

labels of blood vessels are obtained. The results are compared to understand

the effect of blood vessel removal on MA and HE detection performance.

1.2 The Outline of the Thesis

The thesis is organized as follows. Problem definition and the contributions are given

in Chapter 1: Introduction. In Chapter 2, literature review is given. Methods are di-

vided into two parts according to the number of detected lesions. In Chapter 3, back-

ground information about the IDRiD database and the objective functions are given

respectively. Detailed evaluation of the dataset, characteristics of lesion data, and its

use in this research are given under dataset investigation. Patch creation and distribu-

tion of patched dataset are mentioned. Background information about the objective

functions is given with their explanation and formulations. The proposed method

is explained in Chapter 4. It starts with explaining the motivation of the method.

The flow of the proposed method and individual parts are explained in this chap-

ter. Combination of the patch classification model and segmentation model is given.

The proposed objective function IB_IoU is explained in detail. It is explained how

pseudo labels for blood vessels are obtained at the end of the section. Experimental

results are given in Chapter 5. Also, hardware specifications and evaluation metrics
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are explained in this section too. Both positive and negative findings are discussed in

Chapter 5. At the final, Chapter 6 closed with conclusion.
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CHAPTER 2

LITERATURE REVIEW

The studies on diabetic retinopathy-related lesion detection are divided into two sec-

tions according to the number of detected lesion types in the literature. Most of

the works develop a model which detects a single lesion type[14, 15, 16, 23, 24,

24, 25, 26, 27, 22, 28, 2]. These works include traditional image processing meth-

ods, machine learning-based, and deep learning-based methods. In image process-

ing methods, algorithms are developed based on the visual characteristics of the le-

sions, such as shape and color [14, 15, 16]. Machine learning algorithms consist of

feature extractor and detection parts. For the feature extraction, both hand-crafted

features[23, 24] and CNN-based extractors are used[24, 25]. For classifier, Naive

Bayesian classifier and support vector machines(SVM) are used[26, 27]. In deep

learning-based methods, encoder-decoder networks[22, 28, 2] and generative mod-

els are the most common. For the background-foreground imbalance problem, the

following loss functions are used in the literature: dice loss, IoU loss, and weighted

binary cross-entropy. There is no solution required for the class imbalance between

positive classes because of the nature of the problem. Segmentation of one lesion is

a binary classification problem. There are two main problems of the methods that

detect a single type of lesion. Firstly, their inference time is larger than the methods

which segment multiple lesions simultaneously. Secondly, these methods can not be

transferred to detect another kind of lesion because of the different characteristics

of the lesions. Some lesions give better results with global information, while local

information is more informative for others. So models are developed accordingly.

Moreover, the subsequent study separately trains the similar model with minor mod-

ifications for more than one lesion. The difficulty in this study is that some lesions

work better with global information, while others work better with local information.
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Yan[28] proposed a network that considers local and global information to overcome

this challenge. The model receives both the resized whole image and the patch as in-

put. However, the inference time problem persists. The difficulty of the segmentation

of each lesions type is explained in the section 2.3.

In the second part, studies that work on detecting multi-class lesions are investigated.

Badar proposed a lightweight version of SegNet[29] to detect three lesion types in

2018[30]. SegNet is a convolutional encoder-decoder architecture for image segmen-

tation. The number of images in the dataset is increased using patching. Their result

cannot be compared since they used the Messidor dataset with private annotation. Ta-

ble 2.1 compares the results of existing methods. The table includes both methods:

detecting a single type of lesion and detecting multi-class lesions. Given evaluation

metric is area under precision curve. In Chapter 5 the proposed algorithm is compared

with the last two methods because the last two methods focus on detecting multi-class

lesions.

Table 2.1: Comparison of Existing Lesion Detection Methods

Method Number of Lesions MA HE EX

VRT(1st of IDRiD competition[31]) Single 0.4951 0.6804 0.7127

Yan[28] Single 0.525 0.703 0.0.889

Wan[2] Multi 0.2408 0.5649 0.6083

Guo[1], MCB Multi 0.4627 0.6374 0.7945

Guo, MCB Multi 0.4710 0.5808 0.7410

2.1 L-Seg: An End-to-End Unified Framework for Multi-Lesion Segmentation

of Fundus Images[1]

Guo proposed the L-Seg architecture for the segmentation of multi-class retinal le-

sions. Their approach is to create a shallow network using the middle layer’s output

of VGG16[3] architecture. The outputs of five convolutional blocks of VGG16 are

used as a feature extractor. After that, these features are concatenated and used to

obtain the final prediction. Let us say the shape of the input image is W × H × C,
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and then convolutional blocks output is A × B × C. Then these outputs are upsam-

pled with 1 × 1 convolution filter to the size W ×H × C. Both upsampled features

and the final output are used when calculating loss. The whole image is resized to

1440 × 960. Their network is lightweight, and the results are comparable with the

literature. Additionally, multi-channel bin loss function is used. It assigns weights

to the positive and background classes inversely proportional to the pixel-wise class

ratio.

Figure 2.1: Overview of L-Seg architecture.
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2.2 EAD-Net: A Novel Lesion Segmentation Method in Diabetic Retinopathy

Using Neural Networks[2]

In 2021, Wan proposed the EAD-Net, encoder-decoder model with the attention mod-

ule. The whole image is resized to 512-pixel size. They have come up with an eval-

uation metric that considers each closed contoured instance instead of pixels. An

instance is counted as a true positive if the overlap ratio of ground truth and predic-

tion of an instance is larger than a threshold. Dice loss is used to solve the imbalance

problem. Even dice loss solves the background-foreground imbalance problem; it is

inefficient to solve the imbalance between positive classes.

Figure 2.2: Overview of EAD-Net architecture.

2.3 Definition of Lesion Types

2.3.1 Microanerysm

Microaneurysm is one of the earliest signs of DR. Difficulty of the segmentation of the

MA relies on three reasons: contrast, color, and size of the lesion. Microaneurysmand

hemorrhage pathologies have similar color contrast with each other and also with

blood vessels. Therefore, it is critical to distinguish them and blood vessels. However,

they do not have regular shapes and are harder to detect by morphological operations.

Lastly, the biological diameter of a MA lesion varies between 15-60 um [23] and
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forms 0.15 percent of the total pixel area in the digital fundus image [32]. As a result,

the imbalance problem should be considered too under the detection of MA.

2.3.2 Exudate

Exudate, the blood fluid that comes out of the tissue, can be described as yellow or

white-colored and sharply shaped lesions. It is investigated under two types: hard and

soft exudates. Hard exudates are bright yellow-colored and have sharp edges, while

soft exudates are white or light yellow-colored lesions with poorly defined edges. Its

contrast with the background is high compared with other types of lesions.

2.3.3 Hemorrhage

A hemorrhage is bleeding that occurs in blood vessels. It can be observed in the form

of a dot, blot, or extensive subhyaloid hemorrhage[33]. Its color range has similarities

with the microaneurysm and blood vessel. Therefore, its tiny dot form tends to be

confused with MA. Another difficulty is that HE lesions size varies in a wide range,

which can be seen in Figure 3.1. Developing a model that detects very small and large

lesions that cover a significant part of the image is the difficulty of the task.
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CHAPTER 3

BACKGROUND INFORMATION

3.1 Datasets for Diabetic Retinopathy Related Lesion Segmentation

There are several databases for pixel-wise retinal lesion segmentation in diabetic

retinopathy. E_optha database includes two sub-datasets, namely E_optha_EX and

E_optha_MA. E_optha_EX consists of 47 images with exudates and 35 images with

no lesion. E_optha_MA consists of 148 images with microaneurysms or small hem-

orrhages and 233 images with no lesion. DiaretDB1 database consists of 89 images

labeled for hemorrhages, soft exudates, hard exudates, and small red dots. DDR

database has 757 images with pixel-wise lesion segmentation labels for microaneurysms,

hemorrhages, hard exudates, and soft exudates. Although it has a large number of

images, only a small part of it has positive labels for lesions. Additionally, its pixel

resolution is 2592 × 1728. Lastly, there is an IDRiD database. It is explained in

detail in subsection 3.1.1 Moreover, there are datasets such as Messidor, Messidor2,

and CLEOPATRA, and several segmentation algorithms have been developed using

them. However, Messidor and Messidor2 do not publish labels of the segmentation

lesions. It includes only fundus images. Also, CLEOPATRA is not a public dataset.

In this thesis, IDRiD dataset is used because of two reasons. One is that it includes

labels for four types of lesions. Secondly, it has high resolution compared to other

datasets.

3.1.1 Overview of Indian Diabetic Retinopathy Image Dataset (IDRiD) Dataset

Indian Diabetic Retinopathy Image Dataset (IDRiD) dataset was presented in 2018

at the Diabetic Retinopathy: Segmentation and Grading Challenge workshop held in
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IEEE International Symposium on Biomedical Imaging[6]. Images are captured us-

ing Kowa VX-10 fundus camera. Images have 4288 × 2848 pixel resolution and a

50-degree field of view. The dataset consists of three sections: lesion segmentation,

disease classification, and optic disc and fovea detection. The dataset includes 81

images labeled by experts considering four lesions type under the lesion segmenta-

tion. 81 images are divided into train set and test set respectively 54 and 27 images.

Each image has a pixel-level annotation for microaneurysm, hemorrhage, hard exu-

date, and soft exudate. In this research, three lesions, microaneurysm, hemorrhage,

and hard exudate, are examined for segmentation problem.

Table 3.1: Number of images per lesion

for IDRiD dataset.

Lesion Type Training Set Test Set

MA 54 27

HE 53 27

EX 54 27

SE 26 14

Table 3.2: Pixelwise lesion area percent-

age for IDRiD dataset [1].

Lesion Type Percentage (%)

MA 0.10

HE 1.01

EX 0.90

SE 0.19

Figure 3.1: Distribution of pixel area per instance for different lesion types. From left

to right microaneurysm, hemorrhage and exudate lesions types are given.
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3.1.2 Evaluation of IDRiD Original Dataset

It is evident that the task has a background-foreground imbalance. The total percent-

age of lesion classes is less than three percent. As can be seen from Figure 3.2, MA

is an underrepresented class. Its pixel area is about one-tenth of hemorrhage and hard

exudate. This points to another imbalance problem between positive classes.

Figure 3.1 gives a piece of information about the visual characteristic of lesions. In

the following part of the thesis, every shape with a closed area will be named as

an instance. MA has the minimum average pixel area per instance. MA and EX

lesions are generally small and scattered lesions. While the average pixel area of the

EX instance is small, its total lesion area in the image, 0.9 percent, is significant.

So, exudate lesions are composed of many small and scattered instances. There is

one more important piece of information about the HE lesion from this table. Its

average pixel area per instance is larger than the MA and EX. So, it can be called a

relatively large-sized lesion. On the other hand, the distribution of pixel area per HE

instance varies in a large range from 78-pixel to 8000-pixel size. This variation poses

challenges to the detection of HE.

3.1.3 Patch Creation

Original image size 4288× 2848 of the dataset is too large to train a neural network.

In the literature, resizing the original image size to a smaller size or patching[34,

30, 28, 35] is the solution for this problem. Some methods resize the the original

images to smaller size such as 512× 512 or 256× 256 and fed into neural network[2,

1]. The advantage of the resized image is that it has global information. However,

information about the very small size lesions is lost when resizing an image. For

example, the pixel area of the MA lesions varies between 13 and 2051. After resizing

the operation, smaller lesions are lost. On the other side, several detection algorithms

working on high-resolution medical data processed the medical image patch by patch.

Deep learning applications from different areas, including computational pathology,

computer tomography, and retinal imaging, contains an example of this [36, 37]. The

disadvantage of the patches is the lack of global information. However, it preserves
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the details and enlarges the image number in the dataset. As a result, patching is

chosen. The patch size has been determined considering the following. While size is

getting smaller, valuable structures are divided into small parts on every patch. This

situation ends up with a difficult learning process. Limitation about the larger size

comes from the fact that training time and parameters of the model was increasing

gradually with the patch size. Also, GPU ram size is another limitation in front of the

larger size. There is a tradeoff between patch size and batch size because GPU ram

size is constant.

Patches are created with size N × N by sliding window with stride size N/2 over

the original image. N is chosen as 512. A few examples of patches are visualized in

Figure 3.2.

(a) Patch creation by window[6]

(b) Sample of patches

Figure 3.2: Patch creation from whole fundus image

3.1.4 Evaluation of Patched Dataset

After the patch creation 11016 image is obtained for training and 5508 image is ob-

tained for testing. Pixel-wise distribution of the positive lesion classes and back-

ground class is examined under train set. Following Table 3.3a shows the distribution

in a bar graph. To understand the graph, distribution of the positive lesion classes was

plotted seperately. Table 3.3b shows the distribution of the positive classes: MA, HE,

and EX. Besides, patch distribution is examined in Figure 3.3c in addition to pixel

wise distribution. It is shown that, number of patches where all pixels belong to the
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background and the number of remaining patches which has at least one pixel belongs

to any class except for background are almost equal.

(a) Patch creation by window (b) Patch creation by window

(c) Patch distribution of train set shows whether a patch includes any positive

class or not. Background label means that all the pixel that belongs to the patch

is background pixel. The other label represents patches with at least one pixel

belonging to any positive class except the background.

Figure 3.3: Evaluation of patch class distribution. (a) shows the pixel-wise distribu-

tion of background vs. positive classes. (b) examines the pixel-wise distribution of

positive classes among themselves. (c) shows the distribution of patches by examin-

ing the class of each patch, not by the number of pixels
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3.2 Objective Functions

As neural networks are a class of optimization problems, they have cost functions. In

the training phase, the optimizer algorithm seeks the point where cost is minimum.

Loss functions for neural networks are used to calculate the cost, typically a single

scalar value. There are several functions to calculate the loss of neural networks

for given labels and predictions. Although it is possible to implement custom loss

functions, only the widely used and well-known loss functions are focused on in this

section. Since the loss itself depends on the labels, the loss function should be selected

according to the type of labels. The labels can be continuous real values or discrete

class categories. For example, in the case of continuous valued labels, the task is a

regression problem.

If the task is a regression problem, mean squared error, mean squared logarithmic

error, or mean absolute error losses can be selected as loss functions. When the nature

of the problem is binary classification, i.e., either it is one class or the other class, the

following loss functions are suitable to use: binary cross-entropy Loss or hinge loss.

Often there are problems where outputs should have been mapped to more than two

classes. In such cases, multi-class classification losses should be used. These are

multi-class cross-entropy loss, weighted cross-entropy loss, and dice loss functions.

3.2.1 Mean Squared Error

Mean squared error is calculated by averaging the squared differences between the

predicted and actual values. For a data point xi, yi is the true value and ŷi is its

predicted value. The MSE is defined as:

1

n

n∑
i=1

(yi − ŷi)
2 (3.1)

Where yi is the true value, ŷi is the predicted value and n is the total number of data

points in the dataset. It simply measures average magnitude of error.
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3.2.2 Mean Squared Logarithmic Error Loss

When the desired output values are in broad ranges or scales, mean square error could

be dominated by one or more large errors. Mean Squared Logarithmic Error Loss

mitigates this problem by using logarithm function. Firstly it takes logarithm of error,

then calculate MSE using this logarithmic error.

1

n

n∑
i=1

(log(yi)− log(ŷi))
2 (3.2)

Where yi is the true value, ŷi is the predicted value and n is the total number of data

points in the dataset.

3.2.3 Mean Absolute Error Loss

This loss function is more robust to outliers since it does not amplifies huge errors to

their squared values. It is calculated by averaging the absolute difference between the

actual and predicted values. ∑n
i=1 |ŷi − yi|

n
(3.3)

Where yi is the true value, ŷi is the predicted value and n is the total number of data

points in the dataset.

3.2.4 Binary Cross-Entropy Loss

Binary cross entropy can be used where labels are either 1 or 0. The function make

use of cross entropy value and make it negative in order to comply with minimization

task. The mathematical formula is the following.

− 1

n

n∑
i=1

(yi log(p) + (1− yi) log(1− p)) (3.4)

Where yi is the true label and the value of model’s prediction output for the input xi

is defined as ŷi. n is the output size. For a binary classification case yi is either 1 or

0, which means in the above formula either yi or the (1− yi) becomes zero.
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3.2.5 Hinge Loss

Hinge loss can be used where labels are either -1 or 1. The main idea behind the

function is to penalise sign difference between the actual and predicted class values.

1

n

n∑
i=1

max(0, 1− yi · ŷi) (3.5)

Where yi is the true value, ŷi is the predicted value.

3.2.6 Multi-Class Cross-Entropy Loss

It is the generalised version of the binary cross entropy loss for variable class num-

bers. The equation for the function is:

−
n∑

i=1

yi log(ŷi) (3.6)

Where yi is the true value,ŷi is the predicted value and n is the total number of classes.

This formula intended to use with one hot encoding scheme for classes.

3.2.7 Weighted Cross-Entropy Loss

Although the function is derived from the cross entropy loss function, this function

have distinction on class imbalance problems. It handles contribution of infrequent

classes according to their respective weight. Therefore if the weights are selected

properly, the function lessen the impact of class imbalances. The equation for the

function is:

−
n∑

i=1

wiyi log(ŷi) (3.7)

Where yi is the true value, ŷi is the predicted value and n is the total number of

classes. The wi which is not explicitly set in the cross entropy loss, is the weight of

the respective class.
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3.2.8 Dice Loss

Dice loss is also used in cases where class imbalance is an issue such as medical

image segmentation. Dice loss is obtained by using dice coefficient and altering it’s

formula to serve as a loss function. The formula of the function is:

1− 2(Y ∩ Ŷ )

Y + Ŷ
(3.8)

Where Y is a ground truth set, and Ŷ is a prediction set.
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CHAPTER 4

PROPOSED METHOD

4.1 Motivation

In this chapter we are going to give the details of the proposed algorithm to classify

multiple retinal lesions simultaneosly. In this algorithm we are solving following

three problems namely:

• Background-foreground imbalance.

• Class imbalance between positive classes. Pixel count of the microaneurysm

class over dataset is almost 10th one of the hemorrhage and exudate class.

• Improve the detection of small lesions while preserving the detection rate of

other lesions.

Figure 4.1: Flow of proposed method.
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Two stage algorithm is proposed the decrease the effect of background-foreground

imbalance. As described in Chapter 2, number of patches that were purely back-

ground and the others were almost equal in half. Moreover, even patches with lesion

structures have imbalanced background-foreground distribution. Therefore, not all

patches were used in the training of segmentation model. Patches, including positive

classes, are used to feed the segmentation neural network. However, this segmen-

tation model is blind to edges around the eye shape and optic disc. This kind of

sharp edges may result in false positive prediction. Therefore, two stage algorithm is

used similar to [38, 35]. Two stage algorithm is consist of two model for patch clas-

sification and lesion segmentation. Patch classification model classifies the patches

whether patch includes any lesions structure or not. Segmentation model segments

the multi-class lesions simultaneously.

A new objective function called instance-based class averaged IoU is introduced.

In this loss function, the IoU score is calculated for every instance and averaged.

Background imbalance is solved using the IoU score because it counts only positive

classes. Each classes IoU score is calculated separately and averaging. Since we cal-

culate the IoU score on an instance basis, lesions with small areas are also considered

and included in the calculation.

In addition, it is aimed to increase the segmentation performance with the addition

of pseudo labels of blood vessels. Lesions close to blood vessels in the distance and

lesions similar in color to the blood vessel, such as MA and HE, are more likely to

be confused with blood vessels. However, no dataset includes both lesion labels and

blood vessel labels. Therefore, the pseudo label of blood vessel is used to remove

blood vessels from images in the IDRiD dataset. Then, a neural network is trained

for segmentation of multi-class lesions using blood vessel removed images.

4.2 Simultaneous Segmentation of Retinal Lesions using Pseudo Labeling

The flow of the algorithm is given in Figure 4.1. Original images are preprocessed.

As a preprocessing, modified version of the algorithm used by Van[21] is used. Then,

patches are created by sliding window over the whole preprocessed images. Patches,
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including positive classes, are used to feed the segmentation neural network. Seg-

mentation network is trained using instance-based class-averaged IoU loss function.

Another neural network is trained for binary classification problem. It distinguishes

patches if it includes any positive class or all pixels belonging to the background.

Test images are passed into the classification network. If it is classified as not a

background patch, it is then passed into the segmentation network. Test patches are

merged using the center merge algorithm, and a final test image is obtained. Center

merge used the center of the patches to form final prediction image. In the second

step of the proposed method, the same algorithm was tried with blood vessel removed

images.

4.2.1 Preprocessing

In the literature, preprocessing methods used for analysis of retinal images included

one or more steps of the followings:

• Channel selection [26, 39]

• Contrast enhancement [26, 39, 24, 40]

• Background elimination [35, 24, 40]

Channel selection is generally preferred in problems where a single lesion or class is

segmented because each lesion has maximum contrast with a different channel. In

this research, the following preprocessing technique 4.1 is used with some modifica-

tions. The selected technique is used in several kinds of research with different forms

[40, 21]. Same technique is used with parameters α = 4, β = −4 and γ = 128. Let

I be the original pixel values of an image, and let G be the Gaussian filtering func-

tion. Filtered image is obtained by the transformation G applied to I. Filter size was

selected as one 32th of the image size and each channel is filtered separately. Sample

visualization of preprocessing method is shown in Figure 4.2.

When looking closely at the images, redundant darkening is seen around bright struc-

tures such as exudate and optic disc. Since patches do not have global information,
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these darkening is easily confused with hemorrhage lesion. Reason of this redundant

darkening is that, there are some big flat bright yellow areas which are also related

to pathology. Therefore they are not related to background, and should be discarded

from background calculations. Otherwise, the areas between these bright parts be-

come extremely darker at the output of the preprocessing algorithm due to high con-

trast. In order to prevent that a simple threshold applied to the original image, and

extremum pixels are found. These pixels are not used as input to the Gaussian filter.

The original image, preprocessed output image using 4.1, and modified preprocessed

output image are shown in Figure 4.2.

Ĩ = α ∗ I + β ∗G(I) + γ (4.1)

(a) Original image with patho-

logic tissues.

(b) Output of preprocessing al-

gorithm given equation 4.1.

(c) Output of modified prepro-

cessing algorithm.

Figure 4.2: Visualization of fundus image after preprocessing.

4.2.2 Patch Classification

In this part aim is to develop a model which classifies patches of the fundus images

into two class:

• 0: Patch includes at least one pixel belong to any class but not background

• 1: All the pixels in the patch belong to the background class

. Top scored convolutional neural network models such as VGG16, EfficientNet-

B1, and EfficientNet-B3 are trained for binary classification problem using transfer
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learning method. Threshold was decided using the best point of ROC curve. Best

model had reached 0.955 area under ROC curve score.

4.2.3 Segmentation Model

Aim of the segmentation model is to segment multi-class lesions using one neural

network. Three type of lesions, microaneurysm, exudate and hemorrhage, are seg-

mented. U-Net[17], DeepLab v3[41] and FCN[42] are the most common and suc-

cessful neural networks used for retinal image segmentation problem[43, 31, 44].

Therefore, Fast FCN[5], fully convolutional network, is selected as model architec-

ture. Model had three output nodes for each lesion type.

Labels are encoded in the following way. Output size is B×W ×H ×C where B is

the batch size, W is the height, H is the height and C is the class number. Consider

that batch size is one and we investigate output corresponds to single patch image.

Then output dimension will be W ×H × C. Every pixel (i, j) has a label with size

Li,j = 1 × C. Each column in the label Li,j represents one class. Let us assume

that, a pixel belongs to exudate lesion. Label of that pixel will be [0, 0, 1]. If a pixel

is annotated as belonging to several classes, then cell of label array will be 1 for

those classes and 0 for others. This is not a common case for the problem but dataset

includes this type of annotation. For example, one pixel is annotated as belonging to

both exudate and hemorrhage. So, its label will be [0, 1, 1].

Segmentation model is trained using instance-based class-averaged IoU(IB_IoU) loss

function which will be described in the next section.

4.2.3.1 Instance Based Intersection Over Union(IB_IoU) Loss Function

Segmentation of retinal lesions is an imbalanced classification problem. Several so-

lutions have been proposed to unravel the imbalanced classification problem. These

solutions can be investigated under three subsections: data sampling approach, ob-

jective function-based methods, and generative methods. In this research, objective

function based solutions were investigated. This problem includes two types of im-
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balance: foreground-background imbalance and imbalance between positive classes.

The most widely used loss function for multi class classification is the categorical

cross-entropy function. Dice loss, focal loss, and weighted categorical cross-entropy

loss functions have been suggested to resolve the imbalance problem. Also, some

evaluation metrics specially conceived for imbalance classification can be converted

to a loos function. IoU is an evaluation metric used as a loss function. Let us assume

that A and B are two sample sets, and their IoU can be calculated by division of their

intersection A∩B to their union A∪B which can be shown in Formula 4.2. Formula

4.3 and 4.4 show two loss functions generated by using this IoU metric. Formula 4.4

is found to be more useful in this research because it maps the output to a larger scale.

IoU =
A ∩B

A ∪B
(4.2)

IoULoss1 = 1− A ∩B

A ∪B
(4.3)

IoULoss2 = −ln(
A ∩B

A ∪B
) (4.4)

IoU =

∑k
n=1 in∑l
m=1 um

=
(i1 + i2 + i3 + ...+ ik)

(u1 + u2 + u3 + ...+ ul)
(4.5)

IB_IoU =
1

l
∗

l∑
m=1

∑k
n=1(in | in ⊆ um)

um

(4.6)

It takes a lot of experimentation to find the optimum weights with a brute force search

in the class-weighted categorical cross-entropy function3.7. The aim is to come up

with a loss which solves the both foreground-background imbalance and imbalance

between positive classes without need for weight arrangement. As a result IB_IoU

loss is introduced.

Let us define intersection set I = (i1, i2, i3, .., ik) where i defines any closed con-

toured instance in the intersection set. And union set is defined as U = (u1, u2, u3, .., ul)

where u defines any closed contoured instance in the union set. IoU is found to be
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formula 4.5. It is known that the average size of the lesions varies for each class, and

the lesions belonging to the same class can be of different sizes. Given this informa-

tion, we can say that any chosen ij can be negligibly smaller than any other chosen ik

where j ̸= k from the set I . In this case, any chosen i contributes insignificantly to

the loss function defined in equation 4.5. A new IB_IoU loss function is introduced

to overcome this problem.

Let us define class-averaged IoU score first. As defined in Algorithm 1, IoU score is

calculated for every class. Final score is found by averaging IoU score of each class.

This way, imbalance between classes overcomed. Value of final score is between 0

and 1. Loss is found by taking negative logarithm of the score.

In the second step, challenge is to improve the detection of small size lesions. There-

fore, IB_IoU is defined. In this loss function IoU score of each class is found sep-

arately likewise class-averaged IoU score. As defined in formula 4.5, number of

intersected pixels written in the numerator, and number of union pixels written in

the denominator in classical IoU score calculation. In this loss function IoU score is

calculated for each instance. Instance is refers to each closed contoured shape. In-

stances are found from union matrix. Connected component analysis is applied on a

union matrix to find instances. After calculating IoU score of each instance for given

class, class score is found by taking average of these scores. This way, score is kept

between 0 and 1. Final score is found by taking average of all class scores. The flow

of algorithm is explained in algorithm 2.
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Algorithm 1: Class based IoU objective function. IoU is calculated for

every class and average is taken. Loss is calculated by taking negative loga-

rithm of average IoU score.

1 Prediction matrice Ỹ , ground truth matrice Y are a matrices with dimension

of (BatchSize,Width,Height, ClassNumber) and C = {c1, c2, . . . , ci}
denotes class set where i is the class number and I is the total number of

classes.

2 Initialization:

3 Let TotalIoU = 0

4 Let smooth = 1e− 7 be a negligible small number to avoid zero division

5 for each, c ≤ C except ci belongs to background class do

6 // Calculate

7 intersection = Ỹc ∗ Yc where Ỹc is the c channel of the matrice Ỹ . And

{∗} denotes elementwise matrix multiplication

8 union = Ỹc + Yc − intersection

9 IoU = (intersection+smooth)
(union+smooth)

10 TotalIoU = TotalIoU + IoU

11 end

12 return −log TotalIoU
(ClassNumber−1)

30



Algorithm 2: IB_IoU objective function. IoU of every closed contour

shaped instance in the union set is calculated. Class scores are found by

taken average of IoU scores of instances. Then, final score is average of the

class scores. Loss is calculated as negative logarithm of final IoU score.

1 Inputs: Prediction matrice Ỹ , ground truth matrice Y with dimension of

(BatchSize,Width,Height, ClassNumber).

2 C = {c1, c2, . . . , ci} is a class set where i is the class number.

3 Initialization:

4 Let TotalIoU = 0

5 Let smooth = 1e− 7 be a negligible small number to avoid zero division

6 for each, c ∈ C except ci belongs to background class do

7 Initialization:

8 Let IoUclass = 0 as total class iou score

9 Let Num = 0 as total number of instance for one batch

10 for each, b in BatchSize do

11 Definition:

12 Let MI and MU as 2D intersection and union matrice

13 MI = Ỹc ∗ Yc

14 MU = Ỹc + Yc −MI

15 Apply: Connected component analysis to MU to get instances.

16 for each, instance in instances do

17 Definition:

18 Let Mmask as 2D mask matrice which has pixel value 1 for the

corresponding instance’s pixel positions and 0 for remaining

pixel positions.

19 IoUclass = IoUclass +
MI∗Mmask

MU∗Mmask

20 end

21 Num = Num+ instances

22 end

23 TotalIoU = TotalIoU + IoUclass

Num

24 end

25 return −log TotalIoU+smooth
ClassNumber−1
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Let us define ground truth label is a channel last matrix YB×W×H×C where B is a batch

size. Prediction label is defined as ỸB×W×H×C . Intersection matrix IB×W×H×C is ob-

tained by pixel-wise matrix multiplication of Y and Ỹ . Union matrix UB×W×H×C is

obtained by summing Y , Ỹ and negative of I matrices. For the easy understanding

of the algorithm, let us define batch size as one and apply the algorithm on a selected

channel. So, Uc and Ic are union and intersection matrices representing channel c

with dimension of (W ×H). Instances are found by applying connected component

analysis on a union matrix Uc. After that, following IoU score is calculated for each

instance. A mask matrix MW×H which has the same size with Uc and Ic is created.

This is a fixed shaped matrix. However, its active cells are changed for each instance.

For each instance, cells of mask matrix M corresponding to that instance set to 1.

Other cells set to 0. Union and intersection matrices, {Uc, Ic}, are pixel-wise multi-

plied by the mask matrix M . Then classical IoU score is calculated for that instance.

Score is calculated for each instance in the union matrix Uc. Finally, average of the

scores are returned as score of the class c. Same process applied for each channel and

average is returned as resultant score. Resultant score is limited between 0 and 1. If

the ground truth matrix Y and prediction matrix Ỹ are matched perfectly, resultant

score will be 1. Loss value is calculated by taking negative logarithm of the resultant

score.
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Figure 4.3: Flow of IB_IoU objective function. Prediction and ground truth matrices

are shown as ypred and ytrue. Then, a channel is selected and obtained 2D matrix

is shown. Finally, Intersection and union matrices are obtained using element wise

matrix multiplication and matrix summation.

4.2.4 Removing Blood Vessel from Images

Pseudo label of the blood vessels for the images in IDRiD dataset is obtained by the

way described in section 4.2.4.1. Pseudo labels were used as masks and pixels that

appeared as vessels were removed from the image. By removing, these pixels values

are changed with new value. Assigning zeros to these pixels, that is, black, created

a great contrast with the rest of the image. Therefore, these places are assigned gray

color value (128, 128, 128), which is the same color as the background of the pre-

processed image. Figure 4.4 shows the blood vessel removed images.
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(a) Pre-processed image. (b) Blood vessel removed image.

Figure 4.4: Visualization of fundus image after removing blood vessels using pseudo

label.

4.2.4.1 Obtaining Pseudo Label for Blood Vessel

Blood vessel segmentation algorithms can be investigated under three subsections

called machine learning based methods, deformable models and tracking algorithms

[45]. This work will focus on deep learning methods. There are several blood ves-

sel segmentation datasets published publicly. Digital Retinal Images for Vessel Ex-

traction database(DRIVE), STructured Analysis of the Retina database(STARE) and

Digital Retinal Images for Vessel Extraction(CHASE_DB1) are the most common

ones used as benchmarks. DRIVE has 20 images for training and 20 images for

test[46]. STARE[47] has a total of 20 images and no division for train and test.

CHASE_DB1[48] has 28 images annotated by two different experts.

Table 4.1: Dataset for blood vessel segmentation

Dataset Number of images Resolution

DRIVE 40 584x565

STARE 20 700x605

CHASE_DB1 28 999x960

U-Net [17] outperforms on DRIVE and STARE datasets with 0.9855 and 0.9898

AUC in 2015 when it was first introduced. As can be seen from the Table 4.2,
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Table 4.2: Comparison of deep learning based blood vessel segmentation methods

Dataset Methods Sensitivity Specificity Dice AUC Mean-IOU Accuracy

DRIVE R2U-Net[49], Alom, 2018 0.7792 0.9813 0.8171 0.9784 - 0.9556

IterNet[50], Li, 2019 0.7791 0.9831 0.8218 0.9813 - 0.9574

SA-UNet[51], Guo, 2020 0.8212 0.9840 0.8263 0.9864 - 0.9698

Study Group Learning[52], Zhou, 2021 0.8380 0.9834 0.8316 0.9886 - 0.9705

RV-GAN[53], Kamran, 2021 0.7927 0.9969 - 0.9887 0.9762 0.9790

STARE R2U-Net, Alom, 2018 - - - - - -

IterNet, Li, 2019 0.7715 0.9886 - 0.9881 - 0.9701

SA-UNet, Guo, 2020 - - - - - -

Study Group Learning, Zhou, 2021 - - - - - -

RV-GAN, Kamran, 2021 0.8356 0.9864 - 0.9887 0.9754 0.9754

CHASE_DB1 R2U-Net, Alom, 2018 0.7756 0.9712 0.7928 0.9815 - 0.9634

IterNet, Li, 2019 0.7969 0.9881 0.8072 0.9899 - 0.9760

SA-UNet, Guo, 2020 0.8573 0.9835 0.8153 0.9905 - 0.9755

Study Group Learning, Zhou, 2021 0.8690 0.9843 0.8271 0.9920 - 0.9771

RV-GAN, Kamran, 2021 0.8199 0.9806 - 0.9914 0.9705 0.9697

various applications based on U-Net have been published and shown top rate area

under ROC scores in later years. Additionally, in 2021 generative adversarial net-

work based method RV-GAN is proposed and shown state-of-the art performance on

DRIVE dataset. Their approach is to use two generative networks to predict coarse

and fine vessels.

There are some important challenges to be aware of in obtaining pseudo-labels. The

resolution of the images in each dataset is different. Secondly, all the mentioned net-

works are trained and tested on specific datasets. Stability is an important point as

the prediction will be made for an unseen set that has never been trained on. The

chosen method was decided by considering these difficulties and the performances

of the networks. RV-GAN showed state-of-art performance however adversarial net-

works still have stability issues. Additionally, the method shows little improvement

over the previous best result using a complicated algorithm. Since stability is impor-

tant for clinical usage and our problem, this method was found unsuitable. On the

other hand, another top-performing method Study Group Learning focuses on noisy

data and its results are very close to RV-GAN on the DRIVE dataset and better on the

CHASE_DB1 dataset. As a result, the Study Group Learning method is chosen to

obtain a pseudo-label on the IDRiD dataset. To examine performance of the method,

cross testing is done. By cross-testing, a model trained on the CHASE_DB1 dataset
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was evaluated for the success of the other datasets on both the training and test par-

titions. With all of these, the histogram distributions of both datasets were examined

and observed that there was a difference in RGB channel distributions. Histogram

distribution of datasets can be found in Figure 4.5 and Figure 4.6. Since fundus im-

ages has a lot of zero pixels coming from the circular mask around the retina image,

another histogram distribution was generated by removing zero pixels. Pixel value of

the black mask is observed to be 0-10. So, values from 0 to 10 are removed from the

histogram calculation. Final histogram graphs can be found in Figure 4.7 and Figure

4.8.

(a) Red channel (b) Green channel (c) Blue channel

Figure 4.5: Histogram of channel distribution of DRIVE dataset.

(a) Red channel (b) Green channel (c) Blue channel

Figure 4.6: Histogram of channel distribution of CHASE_DB1 dataset.

36



(a) Red channel (b) Green channel (c) Blue channel

Figure 4.7: Histogram of channel distribution of DRIVE dataset after removing black

pixels.

(a) Red channel (b) Green channel (c) Blue channel

Figure 4.8: Histogram of channel distribution of CHASE_DB1 dataset after removing

black pixels.

As a result, histogram matching is applied in order to investigate its effect on accuracy.

The images in the dataset to be tested were preprocessed by histogram matching using

the histogram of the training dataset. The improvement in test results after histogram

matching was approximately three percent. Consequently histogram matching algo-

rithm is applied on IDRiD dataset before obtaining the pseudo-label.

Final and important point about obtaining pseudo label for blood vessel is the fact

that image resolution of the different datasets. As can be seen from the Table 4.1,

resolution of the datasets published for blood vessel segmentation are smaller than

the resolution of the IDRiD dataset. Images in the IDRiD dataset are downsampled

to the 712× 1072 by multiplier k=0.25. Then, these images are fed into blood vessel

segmentation network pre-trained on CHASE_DB1. Output binary images had 712×
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1072 resolution. Output is upsampled to 2848× 4288 by copying every pixel 4 times.

Flow of the algortihm and example images of the upsampling is given in Figure 4.9.

Figure 4.9: Retinal image with abnormalities(black) and natural structures(white).
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Hardware Specifications

All experiments, including training and testing the model, were performed on PC

with NVIDIA GeForce RTX 2080 TI with 11 GB Memory Graphic Card and Intel

Core i9-9900KS CPU. The training time of the segmentation model per one epoch

was about 40 minutes. The inference time of the segmentation model for each patch

was about 0.21 sec and the inference time of the two-staged model, including patch

classification and segmentation model, per patch was about 0.3 sec. The average

inference time of the whole image was about 12 sec.

5.2 Evaluation Metrics

The following metrics are used to evaluate the results.

Area Under Precision-Recall Curve(AUPR):

The area under the precision-recall curve is used as an official evaluation metric in

the Segmentation and Grading Challenge workshop held at ISBI, 2018. 33 equally

divided point between [0,1] or [0,255] is decided as threshold[31]. Precision and

recall pairs are calculated for each threshold. Finally, a curve is drawn using precision,

recall pairs. The best threshold is found by calculating the F-1 score of each pair. Pairs

that give the best F-1 score are chosen as a threshold.

Sensitivity,Specificity, F-1 Score:
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Sensitivity is a ratio that shows how many of the diseased pixels the model correctly

predicts. Specificity is a ratio that shows how many of the healthy pixels the model

correctly predicts. Precision is the percentage of pixels that the model predicts as

diseased are correct. Finally, the F-1 score is the harmonic mean of precision and

recall.

Sensitivity, specificity, and F-1 score were calculated using the best threshold from

the precision-recall curve. Their formula are given in from equation 5.1 to 5.4. TP, FP,

TN, and FN represents true positive, false positive, true negative, and false negative

respectively.

Precision =
TP

TP + FP
(5.1)

Sensitivity = Recall =
TP

TP + FN
(5.2)

Specificity =
TN

TN + FP
(5.3)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(5.4)

Area Under ROC Curve:

Prediction value is thresholded to obtain an accuracy score in the binary classifica-

tion problem. There are plenty of ways to obtain this threshold value. However,

the accuracy score or some other performance metrics are changed according to the

threshold value. Therefore, the ROC curve is proposed to solve this problem. ROC

curve is plotted using multiple threshold values. X-axes represent the false positive

rate found by 1-specificity. Y-axes represent the sensitivity. To obtain ROC curve, the

threshold is swapped from 0 to 1. Moreover, false positive rate and sensitivity score

is calculated for each threshold. Finally, the area under the ROC curve is calculated.

This evaluation metric is used to compare the performance of patch classification

models in this research.
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5.3 Performance of Patch Classification

The total number of 11.016 patches were obtained from the original training set of

the IDRiD dataset. These images are divided 20 percent for validation and 80 percent

for training. The test set of the IDRiD dataset results in the number of 5.508 image

patches. Class distribution of the dataset is given in Figure 3.3c. The model was

trained using the transfer learning method, which means it used pre-trained imagenet

weights.

The following parameters were searched for each model architecture, batch size, and

learning rate. The batch size was searched for {16, 8, 4}. The limitation of the max-

imum batch size is the GPU memory. The learning rate was swapped from 10−3 to

10−5. Each combination of these parameters was tried for each model. Models were

compared using test accuracy and area under the ROC curve. Results of the trials can

be found in Table 5.1, Table 5.2, and Table 5.3 for VGG16[3], EfficientNet-B1[4],

and EfficientNet-B3[4] models.

Table 5.1: Results of VGG16[3] architecture with different configurations.

Model Batch Size Learning Rate Accuracy Area Under ROC

VGG16 16 10−3 0.8331 0.8703

VGG16 16 10−4 0.8423 0.8994

VGG16 16 10−5 0.8101 0.8710

VGG16 8 10−3 0.7935 0.8667

VGG16 8 10−4 0.7748 0.8635

VGG16 8 10−5 0.7759 0.8546

VGG16 4 10−3 0.7846 0.8690

VGG16 4 10−4 0.7789 0.8608

VGG16 4 10−5 0.7902 0.8601
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Table 5.2: Results of EfficientNet-B1[4] architecture with different configurations.

Model Batch Size Learning Rate Accuracy Area Under ROC

EfficientNet-B1 16 10−3 0.861 0.950

EfficientNet-B1 16 10−4 0.853 0.949

EfficientNet-B1 16 10−5 0.853 0.947

EfficientNet-B1 8 10−3 0.851 0.950

EfficientNet-B1 8 10−4 0.861 0.951

EfficientNet-B1 8 10−5 0.849 0.946

EfficientNet-B1 4 10−3 0.860 0.946

EfficientNet-B1 4 10−4 0.854 0.943

EfficientNet-B1 4 10−5 0.852 0.948

Table 5.3: Results of EfficientNet-B3[4] architecture with different configurations.

Model Batch Size Learning Rate Accuracy Area Under ROC

EfficientNet-B3 16 10−3 0.877 0.952

EfficientNet-B3 16 10−4 0.876 0.955

EfficientNet-B3 16 10−5 0.864 0.952

EfficientNet-B3 8 10−3 0.873 0.952

EfficientNet-B3 8 10−4 0.872 0.953

EfficientNet-B3 8 10−5 0.873 0.954

EfficientNet-B3 4 10−3 0.869 0.950

EfficientNet-B3 4 10−4 0.875 0.954

EfficientNet-B3 4 10−5 0.867 0.954

VGG16 is a neural network architecture which scores 92.7% top-5 test accuracy in the

ImageNet challenge and is widely used as a feature extractor. Additionally, the model

implemented on open source deep learning libraries such as Tensorflow, Pytorch,

Keras, Caffe etc. Therefore, it is selected as base model. EfficientNet is proposed in

2019 and it is one of top performed models in ImageNet challenge with reasonable
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number of parameters[4]. The best performance has been reached by EfficientNet-B3

model architecture. As given in Figure 5.3 the best model has a performance of 95.5

percent AUC score and 87.7 percent accuracy.

5.4 Segmentation Model

In this section data augmentation, implementation details of training, hyper parame-

ters are explained. Center merge algorithm applied end of the prediction to composed

of the whole image is mentioned. Finally, performance of model is explained.

5.4.1 Data Augmentation

Following augmentation techniques are used to avoid overfitting: horizontal flip, ver-

tical flip, clockwise rotation and anticlockwise rotation. Augmentation is applied to

images in the train set during training. No augmentation is applied to test set. Aug-

mentation is applied to the images and the labels together. Example of the augmented

images and related labels are shown in Figure 5.1

Figure 5.1: Augmented image patches and related labels from train set. Left and

right quarter are the two different patch samples. First row show the original images

patches and colorized binary label. The second row the shows the augmented version

of above image and colorized binary labels.
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5.4.2 Training and Implementation Details

FastFCN architecture is used as segmentation model. Adam optimizer is used[54].

Learning rate is selected as 10−4 and it is reduced to one-tenth until it reaches 10−9.

It is reduced where the validation loss is flat for three epochs. Batch size, image size,

epoch number are 2, 512x512 and 40 respectively. Overview of the FastFCN can be

seen in figure 5.2

Figure 5.2: Framework Overview of FastFCN[5]

5.4.3 Center Merge Algorithm

Patches were created by sliding window over the whole image as described chapter 2.

Test patches were needed to merged to create whole prediction image. According to

stride size, consecutive patches have overlapping regions. Test patches either created

with stride size equal to window size. Then, there would be no overlapping region.

Another option is to merge overlapping areas similar to [55, 56]. In this way, only

the center region of the patch is used to compose of whole prediction image. Center

merge algorithm and the active region used by the algorithm is shown in Figure 5.3.

Detection capability of the model is weaker at the edge of the image because lesions

can partially exist at the edges. Pixels at the center have spatially four adjacent pix-

els. Model can use those nearby pixel values while predicting the class of the center

pixel. However, pixels near to the edge of the image have less adjacent pixel points

compared to center pixels. So, the patch has a lack of information about pixels near

the edge compared to the center pixels. Additionally, every lesion instance is closed
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shaped. These closed shaped lesion instances are generally separated at the edge of

the patch. As a result, patch includes only a part of these lesion structures and it does

not have information of whole structure. To overcome this weakness of the model,

only the center part of the patches was used.

Figure 5.3: Center merge algorithm applied on patches to composed of whole image.

Left image is the whole image and gray area is the patches. Red area centered over

the gray area is the active apart used to composed of whole image.

5.4.4 Performance of Segmentation Model

Performance of the segmentation model is evaluated using area under precision recall

curve. All metrics given in following tables are the area under precision recall curve.

Result of the our segmentation models with different loss functions are shown in Table

5.4. Also, results are compared with the existing multi-class segmentation methods

from the literature in the Table 5.4.

MC loss is the loss used by Guo in the L-Seg paper[1]. Our method is trained with

our IB-IoU loss and the MC loss to compare the effenct of loss function to the per-

formance. FastFCN is the model used in this study. FastFCN model trained with

IB-IoU loss function showed better performance in MA and EX segmentation com-

pared to same model trained with MC loss function. Its segmentation performance in

HE lesions is lower. Additionally, proposed method’s segmentation performance on
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MA and EX classes have 2.36 and 0.46 percentage improvement over Guo’s method.

However, its performance in HE segmentation was lower compared to existing meth-

ods.

Both findings show that the proposed loss function improves performance in the MA

and EX classes. However, there is no improvement in the HE lesion class. One goal

of the proposed function was to improve the detection performance of small lesions.

Looking at the results, there was an improvement in the MA and EX classes, that is,

in the lesion classes consisting of small scattered fragments. However, its success is

low in lesions that cover large areas such as HE. As a result, it can be said that the

proposed loss function improves to the detection of small lesions.

Table 5.4: Result of segmentation models with different loss functions and methods

from literature

Method MA HE EX

Proposed, FastFCN, IB-I0U 0.4946 0.5133 0.7991

Proposed, FastFCN, MC[1] 0.4732 0.5510 0.7642

Guo, MC[1] 0.4710 0.5808 0.7410

Guo, MCB 0.4627 0.6374 0.7945

Feng[2] 0.2408 0.5649 0.6083

5.5 Performance of Two Stage Model Trained Using Instance Based IoU Loss

Without Pseudo Label

Segmentation model and patch classification model are combined to increase the per-

formance. Segmentation model is trained with patches that has lesions parts to avoid

background imbalance. Because even those patches has large number of background

pixels. However, segmentation model has weakness to correctly classify pixels lo-

cated at the edges around the eye shape and prominent structures such as optic disc.

Therefore, patches are classified by the patch classification model and only the posi-

tive predictions are sent to segmentation model. Combination of the patch classifica-
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tion and the segmentation model is called two staged model.

Performance of the two staged model is compared with segmentation model in Ta-

ble 5.5. As can be seen from the Table, combination of two model made an small

improvement. Improvement is 0.7 , 1.06 ,and 0.15 percentage for microaneurysm,

hemorrhage and exudate classes. The improvement in hemorrhage is the most com-

pared to the others, while the improvement in exudate is quite small. From this, it

can be said that the two-stage model has reduced the number of false positives in the

hemorrhage class. Overall, the two-stage model provided a small improvement by

reducing false positive predictions, as we expected.

Table 5.5: Comparison of segmentation model and two stage model results

Method MA HE EX

Segmentation model 0.4946 0.5133 0.7991

Two-stage model 0.5016 0.5239 0.8006

(a) Precision recall curve of segmentation model. (b) Precision recall curve of two staged model.

Figure 5.4: Precision recall curve of segmentation model and two staged model.
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Figure 5.5: Visualization of ground truths and prediction results. From left to right,

original fundus image[6], ground truth label and prediction result are shown. Ground

truth and predictions are colorized using a color for each channel. Red, blue and

green colors represent hemorrhage, microaneurysm and exudate lesions respectively.

Proposed two stage model is tested on healthy images to investigate performance.
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Healthy images are selected from grading sub-challenge of IDRiD dataset. Grading

sub-challenge has a disease level of images for diabetic retinopathy. Images with zero

level, healthy, are selected from the test set. Total number of 35 images are used to test

the performance of the method. Following Table 5.6 shows the pixel-wise prediction

result of two staged model tested on healthy data. In addition to information given

in the table, false predictions are investigated in terms of instance number. Model

correctly predicts no lesion for 4 number of images. It falsely predicts 1, 2, and 3

lesion instance for 12, 10 and 1 number of images. False positive instances belongs

to the hemorrhage and exudate classes.

Table 5.6: Pixel-wise result of two stage model on healthy data.

Lesion Type TN FP

MA 415,252,616 0

HE 415,212,101 3515

EX 415,214,985 631

5.6 Performance of Two Stage Model Trained Using Instance Based IoU Loss

With Pseudo Labeling

In the second step of the proposed method, blood vessels were removed from pre-

procesed images using pseudo labels. After the removal, patches are used to train

the segmentation model. Results are compared in the table 5.7. Removing blood

vessels do not contribute the performance of the model. It has insignificantly affected

performance. Removing pseudo label of blood vessels decreased the performance by

0.03, 0.12, 0.11 percent.

Low quality of the pseudo labels could be a reason for this result. It is mentioned

that, pseudo labels have redundant positive results. It marked some lesion pixels

as blood vessel. We examined which lesion was most confused with false positive

blood vessel labels. In the Figure 5.6, blood vessel prediction and the pixels confused

with the lesions are shown. Total number of pixels predicted as blood vessel on the

test is 23898096. Number of pixels predicted as blood vessel but belongs to lesions

49



according to ground truth is 2206279. Distribution of these confused pixels are 28262,

1168623, and 1009394 for microaneurysm, hemorrhage and exudate classes. Ratio

of the confusion for each class is calculated by divison of number of confused pixels

belongs to that class by number of total pixels predicted as blood vessel. Confusion

ratio for MA, HE and EX are 0.001, 0.049 and 0.042 respectively. Important ratio of

the confused pixels belongs to HE and EX lesions.

Table 5.7: Comparison result of two stage model with and without blood vessel re-

moval

Method Pseudo Label MA HE EX

Two staged without pseudo label 0.5016 0.5239 0.8006

Two staged with pseudo label 0.5013 0.5227 0.7995

Figure 5.6: Retinal image with pseudo label of blood vessel. Green part show the

areas predicted as blood vessel. Purple regions are predicted as blood vessel but

belongs to the other lesion types according to ground truth labels.
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5.6.1 Performance of Obtaining Pseudo Label for Blood Vessel

Two top performed methods tried to obtain pseudo label of blood vessels. RV-GAN

proposed by Kamran and Study Group Learning proposed by Zhou are the methods.

Original trained models published by the authors are used for both methods. RGB im-

ages from IDRiD dataset are given to the model to predict blood vessel output. Visual

result of the both methods are shown in Figure 5.7. As can be shown from the figure,

results obtained using Zhou’s method is better than compared to Kamran’s method.

Result at the figure 5.7b has redundant extra labels around edge of the eyeshape and

the around exudate lesions. Additionally, it missed the fine veins. Only the coarse

vessels were founded. On the other hand, result at the figure 5.7c has captured ves-

sels better. However, there is redundant extra labels around the hemorrhage lesions.

This situation leads to removing lesions from pre-processed images. This situation

would affect the performance of the segmentation model directly.

As mentioned in the Chapter 4.2.4.1, methods were cross tested on different datasets.

Additionally, histogram matching is applied on test sets. Dice score of the model

tested on different datasets is reported in Table 5.8. As expected, performance of the

model dropped from 82.7 percent to around 73.9 percent when cross tested. And,

histogram matching improves the performance as can be seen from the table. It made

improvement on train and test set around 2.7 and 3.3 percent respectively. Therefore,

histogram matching is applied to the images in the IDRiD dataset.

(a) Original image from test set

of IDRiD[6] database.

(b) Gray level output of blood

vessel segmentation model pro-

posed by Kamran [53].

(c) Gray level output of blood

vessel segmentation model pro-

posed by Zhou [52].

Figure 5.7: Visualization of prediction results of blood vessel algorithms.
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Table 5.8: Study Group Learning Blood Vessel Segmentation Algorithm Result Over

Different Dataset

Dataset: Model trained on Dataset: Model Tested on Result(Dice Score)

CHASE_DB1 CHASE_DB1 0.827071

CHASE_DB1 DRIVE-Test 0.739538

CHASE_DB1 DRIVE-Train 0.723808

CHASE_DB1 DRIVE-TestHistogramEqualized 0.772055

CHASE_DB1 DRIVE-TrainHistogramEqualized 0.750172
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CHAPTER 6

CONCLUSION

In this study, we proposed a method to segment multi-class lesions simultaneously

from fundus images. The method included the following steps: creating patches

from the fundus image, classifying the patches according to whether they contain

information about the lesion and segmentation of multi-class lesions from the patches.

Under the patch segmentation, IB-IoU loss function and using the pseudo label of

blood vessels is proposed.

This study aims to solve the class imbalance problem and increase the detection per-

formance of small lesions. The proposed loss function has improved over other loss

functions in microaneurysm and exudate lesions, which are characteristically small

and scattered. At the same time, it has improved according to multi-class segmenta-

tion algorithms in the literature. However, it has not been successful in lesions that

spread over large areas, such as hemorrhage. In addition, when the proposed method

is compared to methods that distinguish a single lesion type, its performance did not

surpass them but reached a comparable point. It did this without using a specialized

network for each lesion and, accordingly, with a lower inference time for the test

image.

In the second part of the method, pseudo-labels of blood vessels obtained for the

IDRiD dataset were deleted from the images. The aim here is to increase the success

of lesions similar in color to vessels and close to it in the distance. However, the result

was not positive. The reason is that this result is tightly dependent on the quality of

the pseudo label.

As future work, combination of two losses which are MC and IB_IoU will be tried.
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It is observed that IB_IoU improves the performance of small lesions but does not

perform well in the larger lesions such as HE. Combining the two loss functions can

enable both small and larger lesions to be considered. Additionally, proposed loss

function was compared with MC losses using FastFCN and has made improvement

on performance. In order to show that this improvement provided by the proposed

loss function is a general result, the proposed loss function can be compared on other

models from the literature.
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APPENDIX A

CONVOLUTIONAL NEURAL NETWORKS

A.1 VGG16

VGG16[3] is a neural network architecture which scores 92.7% top-5 test accuracy in

the ImageNet challenge. The architecture became very popular after its succession in

2014. The model weights trained on that challenge are published and the model im-

plemented on open source deep learning libraries such as Tensorflow, Pytorch, Keras,

Caffe etc. Hence it is one of the most available models. Although there are deeper and

more successful CNN models in the following years, VGG16 is still widely used for

image classification tasks, especially as a baseline feature extractor. The architecture

consists of basic CNN layers such as convolution, max pooling and fully connected

layers. The detailed layer composition can be seen in the following figure A.1. The

Figure A.1: Architecture of VGG16[3]

model with ImageNet weights is used as a feature extractor if top layers are omitted.

Top layers can be modified for the requirements of any interested image classification

task. It consists of 16 layers and 138 million parameters.
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A.2 EfficientNet

EfficientNet[4] offers a way to scale models while keeping the number of parameters

low and accuracy gain high. As the model depth increases, models can extract more

complex features from their inputs. However deeper models can suffer from vanish-

ing gradients or they have too many parameters to train. Although ResNets[57] solve

the vanishing gradient problem, deeper models saturate after some degree. On the

other hand increasing the input resolution is another way of scaling which also sat-

urates after some degree. Since higher resolution images require deeper networks to

have the same receptive field for a filter responsible for a specific feature, the increase

in resolution should be balanced with an increase in depth. Similarly an increase

in width of the network should be balanced with an increase in resolution and an

increase in depth for the optimum gain in return of complexity and the increase in

number of parameters to train. The authors of EfficientNet developed the compound

scaling method which offers a way to scale the models in a balanced way. As they

experimentally showed that their scaling method indeed efficient in terms of accu-

racy vs. FLOPS (floating-point operations per second), they also provided a baseline

model to scale up. Other CNN architectures can also be scaled by the compound

scaling method. However their baseline model, namely EfficientNetB0 is optimised

as to be a good starting point for scaling. It can be seen from the following figure

that EfficientNetB0 has similar accuracy with other networks with just less than half

the FLOPS they have. By using EfficientNetB0 as a baseline they scaled their net-

works several times and created a family of networks called EfficientNets. There

are EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4,

EfficientNetB5, EfficientNetB6 and EfficientNetB7 networks in the family.

The architecture of EfficientNetB0 can be seen in the figure which consists of mobile

inverted bottleneck convolution MBConv combined with squeeze and excitation.

To further explain this main block, original mobile inverted bottleneck convolution

can be described. In a residual block as in the ResNet the inputs shrink down to

smaller channel size then outputs are expanded back to the same channel size again at

the end of the block. Residual connection is established between bigger channel sized

inputs and outputs. On the contrary, in an inverted residual block inputs are expanded
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Figure A.2: ImageNet top-1 accuracy vs model parameters graph[4]

to higher channel sizes and outputs are shrink to original small size. Therefore resid-

ual connection is established between small channel sized inputs and outputs which

effectively act as bottlenecks. The figure A.4 compares the two types of residual

connections.

Another aspect of this block is that mentioned bottlenecks at the outputs are linear

bottlenecks which means they do not have any nonlinear activation function. They

experimentally show that the nonlinear activation on the output layer decreases per-

formance as it may cause information loss.

Authors of EfficientNet combined the mobile inverted bottleneck convolution with

squeeze and extraction optimization which first developed with SENets[8]. The build-

ing blocks of SENets are SE blocks. SE block basically rescales each channel of

output with a respective weight. The rescaling weights are also calculated from the

output itself using the squeezing function F_sq. F_sq can be global average pooling

which embeds global information in a scalar value for every channel. These computed

values are fed into a fully connected bottleneck block to produce excitation weights.

This process is shown as F_ex in the figure below. Therefore SE blocks allow layers

to use the information not only their receptive field but also the global information.
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Figure A.3: The architecture of EfficientNetB0.

Figure A.4: Two types of residual connections[7]

The figure A.5 shows the mentioned functions on a SE block.

Figure A.5: Squeeze and excitation block[8]

Following figure A.6 shows how any type of residual block can be combined with a

SE block.
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Figure A.6: Residual block can be combined with a squeeze and excitation block[8]

A.3 FastFCN

Among the semantic segmentation models Fully Convolution Network (FCN)[42] is

the most basic model as it just consists of regular convolutional blocks. However the

output resolution is much lower than the input image due to pooling operations. Such

problems are mitigated by using encoder decoder networks. Encoder is the basically

same thing as the FCN while decoder does the reverse function. Decoder uses all

spatial information from encoding layers to generate a full resolution output image.

Recently, Dilated FCN was developed to avoid complex decoder models. Dilated

FCN takes advantage of dilated convolutions to keep the resolution unchanged while

increasing the receptive field. The last layers of FCN are replaced with dilated con-

volutions in order to generate high resolution images. Although resolution is dropped

due to previous convolutional blocks, it still has better resolution than FCN. The men-

tioned models can be seen on figure A.7. However, the FastFCN[5] model removes

dilated convolutional blocks as they are computationally costly. Instead it proposes
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Figure A.7: From left to right: original FCN, encoder-decoder style and dilated con-

volutions to obtain high-resolution final feature maps[5].

a structure like encoder decoder network, which makes use of the last three previous

layer outputs as input to a special decoder named Joint Pyramid Upsampling JPU.

JPU combines several upsampling steps and generate high resolution feature map. At

the end the high resolution feature map converted into a label outputs using a head

encoding module. The described structure is shown on figure A.8.

Figure A.8: Framework Overview of FastFCN[5]
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