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Department of Tech., Mgt. and Econ., DTU

Prof. Dr. Esin Firuzan
Department of Statistics, Dokuz Eylül University

Assoc. Prof. Dr. Tülin İnkaya
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ABSTRACT

TEMPORAL CLUSTERING OF MULTIVARIATE TIME SERIES

Aslan, Sipan

Ph.D., Department of Statistics

Supervisor : Assoc. Prof. Dr. Ceylan Yozgatlıgil

Co-Supervisor : Prof. Dr. Cem İyigun

February 2022, 202 pages

Clustering of real-valued time series is a prevalent problem that frequently emerges

in various fields and applications. While clustering of univariate time series is very

much examined, clustering of multivariate time series has not been extensively ad-

dressed. This dissertation considers clustering of real-valued multivariate time series

data. When the data analyzed in the clustering task are time series, the time dependen-

cies of the time series and the clusters to be formed should be considered together. In

this thesis study, we propose a time series model-based clustering approach that can

be used for clustering of univariate and multivariate times series datasets. The pro-

posed approach, rather than searching similar/dissimilar patterns within a given col-

lection of time series, is mainly focused on clustering with respect to approximations

to the generating mechanisms of time series by exploring and utilizing its temporal

dependency, linear and non-linear behaviors. In addition, the proposed clustering ap-

proach is designed to capture time-dependent cluster changes. The efficiency of the

proposed approach is demonstrated by using both synthetic and real data. Synthetic

datasets are derived under different scenarios and real datasets obtained from several

time series classification studies where the memberships of studied time series are

v



already known. The clustering performances of the proposed approach are compared

with other proposed clustering methods.

Keywords: Time series, Multivariate, Clustering, Model Based Clustering, Temporal

Clustering
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ÖZ

ÇOK DEĞİŞKENLİ ZAMAN SERİLERİNİN ZAMANSAL KÜMELEMESİ

Aslan, Sipan

Doktora, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Ceylan Yozgatlıgil

Ortak Tez Yöneticisi : Prof. Dr. Cem İyigun

Şubat 2022 , 202 sayfa

Zaman serisi verilerinin kümelenmesi, çeşitli alanlarda ve uygulamalarda sıklıkla or-

taya çıkan yaygın bir sorundur. Tek değişkenli zaman serilerinin kümelenmesi çok

fazla incelenirken, çok değişkenli zaman serilerinin kümelenmesi kapsamlı bir şe-

kilde ele alınmamıştır. Bu tez gerçel değerli çok değişkenli zaman serileri verilerinin

kümelenmesini ele almaktadır. Kümeleme analizinde analiz edilen veriler zaman seri-

leri olduğunda, zaman serilerinin ve oluşturulacak kümelerin zamana olan bağımlılık-

ları birlikte dikkate alınmalıdır. Bu çalışmada, tek değişkenli ve çok değişkenli zaman

serilerinin zamana bağlı kümelenmesi için kullanılabilecek, zaman serisi modeline

dayalı bir kümeleme yaklaşımı önermekteyiz. Önerilen yaklaşım, belirli bir zaman

serisi veri setinde benzer/benzemez örüntüler aramak yerine, temel olarak zaman-

sal bağımlılık, doğrusal ve doğrusal olmayan davranışları keşfederek ve kullanarak

zaman serilerinin üretme mekanizmalarına yaklaşımlar üzerinde kümelenmeye odak-

lanmaktadır. Ek olarak, önerilen kümelenme yaklaşımı, zamana bağlı küme değişik-

liklerini yakalamak için tasarlanmıştır. Önerilen yaklaşımın etkinliği hem yapay hem

de gerçek veriler kullanılarak gösterilmiştir. Yapay veriler farklı senaryolar altında

türetilmiştir ve gerçek veriler, çalışılan zaman serilerinin üyeliklerinin zaten bilindiği
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çeşitli sınıflandırma çalışmalarından elde edilmiştir. Önerilen yaklaşımın kümelenme

performansları, diğer önerilen kümeleme yöntemleri ile karşılaştırılmıştır.

Anahtar Kelimeler: Zaman Serileri, Çok Değişkenli, Kümeleme, Model tabanlı Kü-

meleme, Zamansal Kümeleme
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..."everything separable is distinguishable and everything distinguishable is

different. this is the principle of difference/creation."

gilles deleuze
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I am indebted to my wife, Özge Çağlar. It’s never enough to thank, but I want to
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CHAPTER 1

INTRODUCTION

1.1 Philosophical Aspects of Clustering, Difference and Dissimilarity

Classification and clustering have been one of the fundamental research problems,

from antiquity to modern sciences, in many different areas such as natural, social

and information sciences. In classification, class properties or classification rules

are investigated/specified at first, and then the conformity of given data to these de-

fined classes is evaluated. However, in clustering, methods are developed or utilized

by which the possibilities of creating homogeneous groups/clusters are investigated

based on the observed data. The reason why we are trying to solve clustering/clas-

sification problems is that there is a constant need for knowledge and interpretable

(i.e., manageable and meaningful) information to be retrieved through the organi-

zation/order of objects and data heaps observed in nature. For example, Aristotle

classified animals and plants [1]; Plato classified such as arts, constitutions, laws, and

jobs [2]; Mendeleev classified elements with respect to their chemical properties [3];

Durkheim used classification in sociology [4], and states that "If human societies

cannot be classified, they must remain inaccessible to scientific description" [5, p.9];

Astrophysicists classified stars according to their spectral properties [6–8] (see [9–12]

for more applications). Moreover, the categorization effort, including clustering and

classification, has a vital role in human cognitive development and adaptation to the

surrounding environment [13]. Categorization is a constant activity that we have al-

most practiced since our birth. It is pretty natural that this primary act has become

one of the critical topics of science and artificial intelligence researches specifically

(Figure 1.2). To understand the complexity we face in nature and be able to make

decisions, we have to examine it with the help of its components as is often the case.
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The core of the clustering consists of trying to answer the following question: What

is the difference? Clustering, in general, is the process of distributing objects to an

unknown number of homogeneous groups that are usually fewer than the number of

objects, depending on some criteria that take into account the differences between the

objects. The difference between distinguishable is of interest because it is necessary

to ask questions about the factors that quantitatively/qualitatively individuate different

entities.

We think it would be useful to start with the ideas of some philosophers about the con-

cepts of difference and identity/sameness since it is located at the very center of sym-

bolic logic beginning from G.W. Leibniz’s Principle of the identity of indiscernibles.

The principle states that two entities are identical if and only if they possess exactly

the same properties [14, p.308]. Let F be the property (i.e., property function in a

broad sense) then the Leibniz’s principle can be formulated as follows:

(∀F )(Fx ⇐⇒ Fy)→ x = y. (1.1)

It merely indicates that the two distinct objects are not exactly alike [15]. The equiv-

alent of this principle is the dissimilarity of the diverse by McTaggart [16] implies

that if x and y are different, then there is at least one property that x and y do not

share or vice versa. The principle of continuity, which means that nature is continu-

ous and never makes leaps, is another essential principle of Leibniz. Together with

the principle of continuity and the identity of indiscernibles, Leibniz arguments imply

that space is filled with unique substances that exist simultaneously but not identical

to each other [17, p.58]. Francis Bacon (as cited in [18, p.118]) states that human

beings incapable of imagining and figuring out the order in observable nature due to

a multitude of unique and different entities though he believes in the existence of the

universal order. From this point of view, there is no identical material in nature. When

we establish a scientific procedure to find the same things in nature, the only thing we

will have at the end is to make their differences clear. Ultimately, this argumentation

means that we can find at least one feature that will cause to differentiate the two

objects from each other. It is just a matter of scale/resolution. There is some debate

about whether this principle will be invalidated when examined in the quantum field

(see [19], [20], [21]).
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Immanuel Kant gets an interesting idea by attaching the spatial information of the en-

tities to the principles of Leibniz. He argues that it is necessary to distinguish things

and their appearances, and rather dwell on conditions of appearance (i.e., emergence/-

formation). According to Kant [22, p.325], even-though two objects have the same

properties; they are numerically different if their spatial appearances are different at

the same time. The emphasis on the notion of spatiotemporality from the 18th century

is remarkable. In the philosophy of Gilles Deleuze, the notion of difference reaches

a creative/productive level through determinations. The difference, contrary to nega-

tion, has a productive, dynamic and positive quality, and it is contingent. Besides,

there is some equivalence between concepts of difference and determination. As

stated by Deleuze: "Difference is the state in which one can speak of determination

as such. The difference between two things is only empirical, and the corresponding

determinations are only extrinsic" [23, p.28]. The determination, as it were, implies

a difference.

These views on the concept of difference and theoretical premises on the notion that

entirely similar objects cannot be found in observable nature are also compatible with

the results from empirical clustering analyses (see [24], [25], [26], [27], [28], [29]).

In clustering or classification analyses it is not possible to obtain purely homogeneous

groups (i.e., true clusters) in which all the members of the group have the same prop-

erties. Therefore it is more plausible to use the concept of similarity/dissimilarity

instead of identity/difference. In clustering or classification, group or class members

can only have a certain degree of similarity/dissimilarity. It would be more accurate

to modify the question expressed at the beginning of the section as follows: What is

the similarity/dissimilarity? In clustering analyses, the answer to this question as of

today has to be intentional and extrinsic(i.e., context/aim based). The difference is an

empirical fact, but a dissimilarity can be determined extrinsically in many different

ways somewhere around the close neighborhood of the difference. In a clustering

analysis, it is necessary to ignore some of the infinite numbers of differences, which

are most likely to exist among the datasets, via context-based internal consistency.

Thus, we can assume that the same dataset can be clustered in many different ways,

and to compare datasets with each other and enable clustering, some criteria should

be established in which the scope and constraints have been pre-specified.
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With the increase in data volume, computer and computing technologies, new cluster-

ing/classification methods are being explored in hundreds of published studies which

contains words of clustering or classification in their title each year (see Figures 1.1

and 1.2). Despite all these developments and thousands of publications, however,

there is no generalized clustering or classification method in which consensus is es-

tablished. As we stated before, finding identical things or purely homogeneous groups

of things in observable nature is almost impossible, and this makes the cluster defi-

nitions somehow/seemingly arbitrary in clustering analyses. Different aims in many

clustering applications cause different cluster formations. Therefore, "homogeneous"

clusters should be formed concerning the context of the application. It seems that the

search for a generalized clustering method in response to each clustering problem has

been naturally abandoned. This ambiguity leads to debates about whether the meth-

ods developed and used are ’objective’ or ’subjective’, and the findings of clustering

studies may become questionable regarding scientific principles.

Because of the reasons stated out before in this section, a generalized clustering pro-

cedure has not been constructed yet. However, there are worth mentioning attempts

for establishing a scientific framework to assess/guide clustering methodologies and

statistical practices in general that still allow us to work within a scientific context.

Figure 1.1 Number of publications (article, book and book chapter) per year which

contains words of clustering or classification in title from 2000 to 2018.
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Figure 1.2 Number of publications (article, book and book chapter) per Web of Sci-

ence categories which contains words of clustering or classification in title from

2000 to 2018.

It is believed that the scientific activity aims at the some idealized objective truth and

avoid subjective decisions as much as possible. Objectivity is seen as an achievable

virtue via a scientific method, while subjectivity is thought to be the domain of pro-

ducing errors and mistakes. The general view in science is that the knowledge is

more associated with what is objective than subjective. However, when it is desired

to adhere strictly to the principle of objectivity, this may lead to some shortcomings

in applied analyses due to the strong contradiction between objective and subjec-

tive. While trying to be objective, restrictive and often unverifiable assumptions are

made, so that the scope of research may become narrow and remains at the theoret-

ical level. On the other hand, avoiding some of the decisions that are perceived as

subjective in the analyses is, in fact, preventing us from taking advantage of avail-

able and relevant information about the research questions, and reaching yet undis-

covered, unknown innovations and different perspectives [30]. In general, methods

that are as user-independent as possible have been evaluated and accepted as more

scientific. The truth is that there is no fully automated and researcher-independent

scientific activity or method which entirely not depends on decisions that may be re-

garded as subjective. Gelman and Hennig [30] states that such approaches toward
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objectivity and subjectivity can be a barrier to good practice in science and statistical

analyses. They ground and discuss that though the observer-independent reality is not

accessible objectively, there is some reality to be perceived by universal human expe-

rience at present time which can be taken as the target of science. This reality is the

observer-dependent reality but can not be controlled by the observer instantaneously.

According to Chang [31, p.203], this kind of perspective about the reality serves us to

be successful in science without even knowing the ’truth’. In [30], they address these

arguments comprehensively and suggest the use of some set of attributes instead of

objectivity and subjectivity which are used unhelpfully in statistics and science.

Gelman and Hennig [30] propose to replace the term objectivity with a broader set of

notions such as transparency, consensus, impartiality, correspondence to observable

reality; and to replace the term subjectivity with the set of notions such as awareness

of multiple perspectives, context dependence, and investigation of stability is sug-

gested as related to both. Unlike the antagonism between objectivity and subjectivity,

the attributes proposed in the reformulation of Gelman and Hennig [30] do not oppose

each other but complement each other in a positive manner. The key aspect of this

argumentation is transparency. With the support of these virtues, certain choices/pro-

cedures in statistical analyses can be productive and helpful to expand perspectives

and space of information if they are transparently and explicitly grounded based on

the context/aim of the research. The debate over whether these choices are objective

or subjective remains unnecessary, and at the same time, they become the components

of the scientific activity. Specifically, in clustering analyses, Hennig [24] emphasis

the invalidity of searching true/natural/real clusters or underlying clusters, and in-

stead discusses some characteristics that need to be met by clustering approaches

which imperatively depend on the data and the context (i.e., problem specific). As

revealed in many studies, different clustering results can be obtained from the same

dataset. Although the results seem like contradict each other, such a situation can

mean that use of different information, different perspectives and aims may cause

this. In such a confusing environment, we need a guide to ensure that we operate on

a scientific framework. In order to develop and assess an aim-dependent clustering

approach, we summarize several principles which are accordantly deduced from the

comprehensive discussions and considerations of Hennig’s [24, p.60] and Gelman
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and Hennig’s [30, p.978] (see Table 1.1). The clustering approach proposed in this

study takes into account the conformity with the principles stated in Table 1.1.

Table 1.1 Principles to be considered as a guide while developing and assessing clus-

tering approaches.

P1. Specifying the context and content of the clustering

• Transparently expression of the clustering context (i.e. aim/goal/intention).

• Definition of the problem specific "true" cluster.

• What quantitative practices and results can be achieved?

• Indication of potential limitations.

• Disclosing links among coverage, procedures, assumptions and limitations.

P2. Impartiality

• Consideration of relevant knowledge and researches.

• Transparent comparison of clustering methods.

• Stating the explicit contents of compared methods.

• Eliminating potential sources of biases/arbitrariness as much as possible.

P3. Correspondence to observable reality

• Compatibility of methods and concepts to observables.

• Explicit reproducibility and testing conditions.

P4. Indications of context dependency

• Explanation of relatedness to context and aims.

• Distinguishing subjective point of views and intentions.

P5. Indications of context-driven and data-driven decisions

• Consequences of multiple perspectives (choices, decisions etc.).

• Definition of dissimilarity.

• Clearly detailed procedure and computation.

P6. Investigation of stability

• Existing of reliable, consistent and coherent conclusions.

• Transparent discussion on reproducibility of conclusions.

a Adapted from "Beyond Subjective and Objective in Statistics", Gelman, A. and Hennig, C., 2017,

J.R. Statist. Soc. A, 180, part 4, p.978.
b Deduced from "What are the True Clusters?", Hennig, C., 2015, Pattern Recognition Letters, 64,

p.60.
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1.2 Time Dependency of Data and Clusters

As we stated before in former section, Kant [22, p.535] emphasis on conditions of

appearances (as we might call the what is observed) that are strictly bounded with

space and time. Since Kant’s thoughts about time are seen as an important milestone

in philosophy, we want to pursue some of his ideas from our perspectives briefly.

The being of time (i.e., given a priori acc. Kant) underlies all appearances, and they

become actual only in time. This axiom comprises causality which is a category

of relation, i.e., an aspect of observable reality, and causality is unknowledgeable

without time [32, p.126], [22, p.199]. According to Kant [22, p.92], time is one

of two sources of cognition where the other one is the space that we do not want

to dwell on it for now. Hence, Kant in [22, p.89] asserts that the time possesses

empirical reality and it is objectively valid with regard to appearances. This means

that the observations we made in nature are some sort of realizations of underlying

mechanisms, not the very being of those mechanisms. All we can able to deduce

is the conditions of these representations/experiences/appearances which are time-

dependent. This leads us to unpretentiously say that the time dependency possesses

the observable reality. By this argumentation, we want to imply that the observable

(i.e., empirical) reality cannot be thoroughly accessible, intelligible and expressible

without considering time dependency.

In the context of our readings we have made so far, we believe that if any data anal-

ysis method contain time-dependent parameters will also be coherent with Kant’s

time-related propositions. Remarkably, Mittelstaedt in [33, p.848], states that the

strategy that physics uses to examine objects follows the conceptual program formu-

lated by Kant, even though the majority of physicists are not aware of it. Specifically

Mittelstaedt in [34, p.30], stated that a physical theory should consider the time de-

pendence of empirical events. Hence, approximately identified time-dependent struc-

tures/mechanisms of any occurrences will help to intentional comparisons (i.e., inter-

or intra-related) and decrease the amount of uncertainty. Bearing in mind that the pa-

rameter can not be a result but be a one of the primary cause of anything, Kant seems

to imply that time is not a number but a parameter [35, p.60]. However, in statistical

models, unlike the time-dependent differential equations, time cannot be included as
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a parameter on its own, so it is tried to be absorbed by considering time-dependent

variables and thereby related parameters in models.

As an intrinsic dimension (i.e., given a priori acc. Kant) to all observations, time and

time dependency should somehow be questioned in any data analysis. Sometimes,

time dependency is ignored or avoided by using aggregated data, and treated as itself

when plausible tools are available. Specifically, in clustering or classification, the

issue of time-dependency begins to emerge in the 50’s (see [36–42] for example) or

maybe even earlier. However, compared to the relatively advanced literature of the

time series analysis along that time, time series clustering studies have begun to adapt

to the existent literature about time-dependency analysis since the 90’s. While the

reasons for this is difficult to identify, it can be said that the increase in the storage

and processing facilities of data makes it possible to use and interpret the information

derived from the time dependency of datasets [43].

The clustering of time series differs from other clustering tasks, depending on how

the time-dependency of the data and clusters plays a role in a clustering approach. In

addition to the time dependency of the data, it should be taken into account that the

clusters that will be created may be time-dependent and may change over time even

though it is ignored generally. There are so many different aims can be described for

time series clustering (see [43]). Goals of time series clustering can be generalized as

follows: grouping the set of time series according to discovery of a hidden motif/pat-

tern/anomaly, clustering time points of a single/univariate time series and clustering

the set of univariate or multivariate time series data into groups of similar time series

with respect to some sort of similarity perspective. More discussion of the literature

about time series clustering will be given in Section 2.

In this study, the research is structured around the general purpose of clustering a set

of univariate and multivariate time series data where each time series (i.e., univari-

ate or multivariate) is treated as an object to be clustered. Moreover, the research

also addressed the time-dependency of clusters. If available as an outcome or a by-

product of the clustering approach, monitoring the formation of clusters across time

besides the time series clusters formed for a certain point of time could contribute

many information-theoretical benefits about the question of interest.
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1.3 Objective of this Thesis

The conventional scientific attitude from antiquity onwards for modern era is orga-

nized to thinking about the world through concepts such as unity, identity, analogy,

resemblance, and relationship which are also constituents of categorization [44]. This

fact is closely related to the ability of categorization which is the primary cognitive

act of humans who are trying to understand the nature and mapping the world sur-

rounding them [45,46]. In this sense, categorization being existed before the scientific

methodology, and inherently it is the most fundamental stage of scientific understand-

ing [47]. There are principal and vital reasons for performing categorization (i.e.,

clustering or classification) such as having perception, knowledge, judgment, infor-

mation retrieval, and even language acquiring. Furthermore, we are grouping things

in terms of their similarities and giving them a name or a concept to conceptualize

and interiorize those things around us. In this regard, it is not surprising that most of

the studies on the classification and clustering made in recent years are in the areas of

artificial intelligence (see Figure 1.2).

On the other hand, we tend to categorize things through conventional ways of per-

ceiving that de-emphasize or obliterates forms of differences that might otherwise

improve our knowledge [48, p.55]. When categorization is not responsive to some

fundamental dissimilarities but instead rely on some shape based features or vague

analogies, which should not be considered as authentically distinctive features, we

might form groups with things that are not similar in fact. This is the problem of loss

of information caused by shortcut assessment. Therefore, we cannot enrich prospects

for different applications and advance the inference by ignoring what is essential to

distinguishing. Although the usefulness of such habitual categorization has been

proven in practice, a method that is focused mostly on the intrinsic(i.e., structural)

features, and sensitive to the evolution, dynamism, and change of categories can be

devised which would lead to different perspectives and enhance understanding.

This dissertation considers clustering of a set of real-valued univariate or multivariate

time series data where each time series is treated as an object to be clustered. In a

broad sense, this study aims at distinguishing time series according to characteristics

of their sources.
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Before specifying the context and content of the proposed clustering approach, some

featured remarks accompanying the former sections and supported to the context can

be summarized as follows:

• Categorization is the core of cognitive act and the constant need to mapping the

world. Consequently, there are many applications in science.

• Clustering is an unsupervised categorization task, i.e., class properties are not

pre-defined or structured in clustering.

• The observable nature is composed of unique events or entities. Finding iden-

tical things except for mathematical objects is improbable.

• The difference is a measurable phenomenon at every scale, i.e., it is possible to

find at least one feature to distinguish between things (e.g., time series objects).

• Aiming at finding ’true’ cluster is meaningless unless the content of the ’true’

is defined within context.

• Time dependency possesses the observable reality, and observations are real-

izations of underlying mechanisms at a certain moment or interval in time.

• The observable (i.e., empirical) reality cannot be intelligible without consider-

ing time dependency, i.e., conditions of realizations.

• Time series and thus its clusters are time-dependent, and therefore, time depen-

dency structure of time series should play a key role in time series clustering.

Time series clustering is an unsupervised grouping of unlabelled multiple univari-

ate or multivariate time series into homogeneous clusters. The resulting clusters are

desired to meet the minimum dissimilarity within-groups and the maximum dissim-

ilarity between-groups. Time series can be considered as multidimensional/high-

dimensional objects, and direct usage of high-dimensional raw sequences, which

are especially long in length and possessing time-dependent properties, is not fea-

sible in clustering of time series objects. Hence, there will be a problem of high-

dimensionality prevents comparisons based on raw time series, and almost all time

series clustering studies utilize a clustering strategy such as model or feature based

or a mixture of them, which also overcomes a dimension-reduction problem [43, 49].

Many of features can be defined, selected and used for clustering of time series. How-

ever, if the features to be used for clustering do not carry information directed to na-

ture, behavior, and generating process of the series, then clusters obtained with the

help of these features would not be accurate [50].
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One of our main aims is to trace comparable authentic/idiosyncratic properties and

footprints from underlying data generating mechanisms (DGMs) of time series. The

clustering approach we propose in this study is based on the distance based cluster-

ing of feature vectors and matrices composed via the multifaceted time series model

estimations. Hereby, the approach we propose for time series clustering should be

considered as a mixture of model and feature based clustering strategies. Within the

context of the clustering approach proposed in this study, ’true’ clusters consists of

series that are similar in terms of resemblance of their underlying DGMs.

The important research questions we are addressing here are: how can we get infor-

mation about underlying DGMs and make appropriate groupings according to this

information? One of the common and feasible ways to make inferences about un-

derlying DGMs is to consider time series models. Models of data or time series

are guided, adjusted and idealized representational versions, i.e., theoretical form, of

empirical reality [51]. Time series modeling is the process of an understanding the

behavior of flux of a set of data over time through a theoretical form termed a model.

Although there are certain procedures available to find the most accurate model for

the data, it is not possible to say that the ultimately selected model is the fundamental

structure that produces the data. Considering that the observed data is a limited real-

ization of the underlying data generating process, any selected model can only be an

approximation to the underlying DGM. This view shortened by the well-known quote

of G.E.P. Box: "All models are wrong, but some are useful" [52, p.2]. Now we made

two basic assumptions here. First one is that there is an underlying mechanism that

produces each time series. Secondly, this generating mechanism can never be fully

understood nor can be exactly represented by a model but can only be approximated.

The approach we propose does not rely on finding the most accurate model for each

time series to be clustered. Finding the most appropriate model for each time series

could not be useful to compare time series in terms of their sources. For each one

of the time series to be clustered, it is most likely to find more than one adequate

model, and although these models to be estimated may contain essential information

about the underlying DGMs of the series, they will remain as an approximation and

could not be clustered, since each estimated model will fully individuate and include

structural differences. Instead, it is more feasible to determine a specific multifaceted
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time series model and search similarities of the series in terms of their amount of

characteristics and aspects they do share or not share with this specific time series

model. This idea of clustering we propose is similar to the use of a specific ruler

to measure things and compare them with respect to what are measured. But in our

problem, the ruler should be a multi-purpose ruler that can able to measure numerous

features. The peripheral devices of the model selected for model-based comparisons

in this study, which is named double threshold garch model and detailed in Chap-

ter 3, are comprehensive and inclusive that it contains various time series properties

we actually encounter in time series analysis literature. In this regard, the model is

rich in terms of its environment and can manifest many essential features about time

series underlying generating mechanisms that can be used for clustering. Although

the detailed information is given in Chapter 3, it is worth to note here that the nature

of revealed features make possible to use of a graph-theoretic clustering (i.e., graph

partitioning) method, which is called spectral clustering, since the feature vectors to

be collected can be considered as graphs.

In the light of ideas stated in Chapter 1 and especially in this Section 1.3, we would

like to sum up the objectives of this study as follows:

• The primary objective of this study is to propose a time series clustering ap-

proach for a set of univariate or multivariate time series data to be clustered as

objects.

• The approach we propose aims to distinguish the time series according to simi-

larities/dissimilarities of the characteristics of the underlying generating mech-

anisms that are the source of the observed data.

• The clusters created are aimed to bring together time series that resemble each

other in terms of their sources, i.e., ’true’ clusters consists of series that are

similar only when their underlying DGMs are similar

• Underlying data generating mechanisms can be approximated by the multi-

faceted time series model.

• The context of the clustering approach we propose in this study is establishing

a distance-based clustering strategy, which can operate on feature vectors and

matrices extracted from estimations of the time series model.

13



1.4 Thesis Outline

The present study consisted of six chapter, and organized as follows. Philosophy un-

derstands, comprehends and communicates the outcomes created by science. Hence,

Chapter 1 starts with philosophical aspects of some basic concepts encountered in

clustering and also briefly declares the objective of the research. Chapter 2 provides

the background on the time series clustering briefly and summarizes a review of nu-

merous studies in the literature. Chapter 3 presents the proposed time series clustering

approach for a set of univariate and multivariate time series data and gives detailed

information about the motivation, the double threshold garch model (DTGARCH)

and the spectral clustering. Chapter 4 and 5 presents and evaluates the performance

of the proposed approach by various artificially generated datasets and real-life data.

Finally, Chapter 6 summarizes the main conclusions and findings, presents the re-

maining and new questions, and gives some thoughts about potential future works.

14



CHAPTER 2

TIME SERIES CLUSTERING: A REVIEW

We introduced a brief discussion of the thinking background mediating the develop-

ment of clustering approaches in Chapter 1. In addition, we appended the considera-

tion based on theoretical and practical arguments on the differentiation of clustering

approaches according to specific clustering aims.

The clustering (including categorization and classification), which has a prominent

capacity and potential to analyze and understand the nature surrounding us, has led to

many scientific types of research and techniques on the subject. Accordingly, with the

enormous improvement in computers’ data processing and computational capacities,

clustering researches has increased considerably. As a result, a vast literature has

emerged consisting of diverse and rich approaches to clustering aim.

Since it is impossible to refer to all clustering literature, we prefer to include a limited

literature reference in this study. The studies we refer to in this section mainly focus

on the clustering of univariate and multivariate time series. Accordingly, this section

is designed to assist the reader find where the proposed approach locates within the

extensive literature on the subject.

Although the methods developed for clustering vary significantly in terms of their

purposes, to see "the big picture" in a way, it would be reasonable to evaluate all

methods under three different categories [49]. As shown in Figure 2.1, clustering

methods could be regarded basically under three different approaches. Some methods

use the raw data directly, while others perform clustering analysis using statistical or

basic features derived from the raw data. Extracting the features on a model basis

firstly and then clustering those features can also be considered as a third approach.
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In brief, since the clustering approach proposed in this study aims to cluster time se-

ries using features extracted based on a refined time series model, the proposed clus-

tering approach could be considered under the general category of clustering methods

given in Figure 2.1 - (c).

Data
Samples

Clustering
Algorithm

Clusters

Interpretation
Knowledge

(a) Raw data based

Data
Samples

Feature
Extraction

Clustering
Algorithm

Clusters

Interpretation
Knowledge

(b) Feature based

Data
Samples

Modeling

Feature Extraction
From Outputs

Clustering
Algorithm

Clusters

Interpretation
Knowledge

(c) Model and Feature based

Figure 2.1 General clustering procedures: (a) raw data based, (b) feature based, (c)

model and feature based

Time series datasets are simply encountered in almost every field (e.g., economics,

finance, astrophysics, engineering, biomedical sciences, signal processing etc.), and

distinguishing groups consisting of similar time series can often be a research prob-

lem. As mentioned earlier, grouping unlabeled datasets is called clustering. In the

clustering of time series, it is possible to consider time series as objects to be clus-

tered; on the other hand, grouping the observations of a series can also be a research

topic (i.e., within-sample clustering). However, this study proposes an approach for

clustering time series, in which time series are treated as objects to be clustered (i.e.,

being objects as realizations originating from unknown data-generating mechanisms).
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Thanks to the recent literature surveys of Liao [49], Aghabozorgi et al. [43], Ali et

al. [53], it has been possible to reach the extensive literature and capture a general

view about the time series clustering. The first two of these surveys received over

2000 citations in total from articles published in peer-reviewed journals.

Eventually, due to the increase in the number of approaches, methods, publications

and the extent of their scope, the problem of time series clustering and classification

has been recently examined in a volume by Maharaj et al. [54].

The clustering performance of the proposed time series clustering approach in this

study is examined on artificially generated data and real data sets as univariate time

series clustering in Chapter 4 and multivariate time series clustering in Chapter 5. In

the test phase of the proposed approach, we conducted the performance evaluation

comparatively with state-of-the-art methods in the literature. These methods essen-

tially offer dissimilarity measures to be used for time series clustering. In this context,

we had the opportunity to compare 22 distance measures proposed for univariate time

series clustering accompanied by three different clustering procedures (i.e., FUZZY,

PAM, and SPECTRAL clustering procedures) in Chapter 4. Again, in Chapter 5, to

compare the performance of the multivariate counterpart of the proposed clustering

approach, we considered five different distance measures for clustering multivariate

time series. Within reach of this study, while citing the studies that we will compare,

we acted from the perspective that the applications of these methods should be easily

accessible and reproducible on an open-source platform such as R. For this reason,

we consider that the computational codes of the methods we compared should be on

an accessible platform by independent researchers. Fortunately, we could employ

the R libraries TSclust by Montero and Vilar [55], pdc by Brandmaier [56],

and dtwclust by Sarda [57], which also offer an implementable literature. These

R libraries and associated publications provide an essential starting point for compar-

ative studies. Nevertheless, in this respect, we are aware that there are many clustering

methods that we could not include in the comparison study because their computa-

tional implementations are not publicly available. However, we want to mention sev-

eral studies in this section that we could not find the chance to implement and include

them in the scope of future studies.

17



2.1 Univariate Time Series Clustering

The majority of the literature on time-series clustering consists of approaches devel-

oped for univariate time-series datasets. The history of the first competent studies

in time series clustering goes back to the early 1990s [58, 59]. It could be said that,

following the increase in time-series data collecting and processing capacities, time

series clustering applications and the methods developed for these applications ex-

pand toward considering multivariate time-series datasets.

As mentioned before, time series clustering is usually performed by measuring and

comparing the similarity or dissimilarity between specific features extracted from

time series. Some approaches, albeit few, rely only on comparing raw data without

feature extraction. Feature extraction can be based on a particular function or a model.

The information of similarities or dissimilarities (i.e., which is generally provided

in the form of a matrix called dissimilarity matrix) between a set of time series is

obtained through distance metrics proposed for time series clustering.

Within the scope of this study, we list some of the proposed distance measures we

employed for the comparison study in Tables 2.1, 2.2, and 2.3. Tables 2.1 and 2.2

denote model-free methods, while Table 2.3 lists model-based clustering methods.

Distance is a concept that allows us to obtain a numerical measurement of how points

or objects are far from each other. In general usage, distance is an estimate of the

length between objects based on a physical space. In mathematics, similar to physical

distance, distance is a positive real-valued function used to express how the points in

a particular space are "close" or "far" from each other. For example, the distance from

point X to point Y can be denoted as D(X, Y ).

Let’s assume that XT = {x1, . . . , xT} and YT = {y1, . . . , yT} are time series of

length T from unknown data generating processes. The distance between this pair of

time series can be denoted asD(f(XT ), f(YT )), where f(.) can be a specific function

or time series model for feature extraction, and it satisfies following conditions:

• D(f(XT ), f(YT )) ≥ 0 & D(f(XT ), f(YT )) = 0 iff XT = YT

• D(f(XT ), f(YT )) = D(f(YT ), f(XT ))
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For example, among the distance measurements in Table 2.1, only Dynamic Time

Warping (DTW) and Euclidean (EUCL) distance measures can use raw data without

any preprocessing. Other distance measures require that the series to be clustered

should be considered by subjecting them to somewhat data processing (i.e., feature

extraction). In the case where the function, f(.), is an identity function (i.e., f(z) =

z), it can be said that the distance is calculated based on the raw data. An example of

this situation can be given as the euclidean distance with the following form:

DEUCL(XT , YT ) =

(
T∑
t=1

(xt − yt)2

)(1/2)

.

Table 2.1 Model free dissimilarity measures for univariate time series clustering.

Dissimilarity
Measure Description Reference

Model free approaches
DACF Autocorrelation based distance. [60]
DPACF Autocorrelation based distance. [60]
DEUCL Euclidean distance. [55]

DCORT

Dissimilarity index that covers both dissimilarity on
raw values and dissimilarity on temporal correlation
behaviors.

[61]

DCOR Correlation-based dissimilarity. [62]

DDWT
Dissimilarity for time series based on wavelet feature
extraction. [63]

DPER Periodogram based dissimilarity. [64]
DINT.PER Integrated periodogram based dissimilarity. [65]

DSPEC.LLR1

General spectral dissimilarity measure using
local-linear estimation of the log-spectra via least
squares estimation.

[66, 67]

DSPEC.LLR2

General spectral dissimilarity measure using
local-linear estimation of the log-spectra via
maximum likelihood estimation.

[66, 67]

DGLK
Dissimilarity based on the generalized likelihood
ratio test. [68, 69]

DISD
Dissimilarity based on the integrated squared
difference between the log-spectra. [69]

DSAX Symbolic aggregate approximation related functions. [70, 71]
DV R Distance based on variance ratio statistics. [72]
DDTW Dynamic time warping distance. [59, 73]
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Such use of Euclidean distance would not include any temporal information for time

series clustering, especially when long time series are considered because this dis-

tance measurement cannot cover the time dependencies of observations. However,

the Euclidean distances between the autocorrelation (ACF) and partial autocorrela-

tion functions (PACF) of the series can provide distinctive information for time series

clustering, as shown by Peña and Galeano [60]. Similarly, as Choukakria et al. [61]

and Golay et al. [62] have shown, some studies and applications suggest grouping

time series using the features extracted from correlation structures of time series to

be clustered. It should be noted that DTW [59,73] and EUCL-like distance measure-

ments can provide useful distances between such features obtained in sequential form.

In addition to distance metrics such as DDTW , DACF , DPACF , DCORT , and DCOR

which especially focus on the shape similarities and the correlation structure, there

are some other useful distance measures such as DPER, DINT.PER, DSPEC.LLR1,

DSPEC.LLR2, DGLK , DISD proposed by Caiado et al. [64], Casado [65], Kakizawa

et al. [66], Vilar and Pértega [67], Fan & Zhang [68], and Díaz & Vilar [69] respec-

tively. These distance measures operate on the frequency domain of time series and

mainly utilize the estimates of spectral densities of times series to differentiate them.

Among the model-free distance measures listed in Table 2.1, DDWT proposed by

Zhang et al. [63] measures distance based on wavelet-based features, DSAX proposed

by Lin et al. [70] & Keogh et al. [71] proposes distance measurement based on sym-

bolic time series representations, and the distance measure DV R proposed by Bastos

& Caiado [72] uses a Variance-Ratio based distance metric for financial time series

clustering.

The complexity-based dissimilarity measures based on the probability and infor-

mation theory such as a distance of permutation distribution clustering (DPDC) by

Brandmaier [56], a complexity-invariant dissimilarity measure (DCID) by Batista et

al. [74], a compression-based dissimilarity measure (DCDM ) by Keogh et al. [75], and

a normalized compression distance (DNCD) by Cilibrasi et al. [76] given in Table 2.2

are not model dependent distance measures but also differ from the model-free dis-

tance measures that are employing the quantitative descriptive features of time series.

These measures mainly attempt to measure the information-theoretic dissimilarities

between time series by approximating their level of shared mutual information.
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Table 2.2 Complexity based dissimilarity measures for univariate time series cluster-

ing.

Dissimilarity
Measure Description Reference

Complexity based approaches

DCID
Complexity-invariant distance measure for time
series. [74]

DPDC Permutation distribution distance. [56]

DCDM Compression-based dissimilarity measure. [75]
DNCD Normalized compression distance. [76]

Model-based dissimilarity measures for time series clustering mainly rely on the

knowledge of underlying generating mechanisms. Various model-based distance met-

rics and model-based clustering methods have been proposed in the literature (see,

e.g., Maharaj et al. [54] for more details). Model-based distance measures such as

DPIC by Piccolo [58], DMAH by Maharaj [77], and DLPC by Kalpakis et al. [78],

which we also employed for comparison objectives in Chapter 4 and have an essential

standing in the time series clustering literature, are given in Table 2.3.These methods

use the Box-Jenkins’ (ARIMA) [79] parametric model family, a well-known model

family in the time series analysis literature. They provide good results for clustering

time series regarding their autoregressive and autocorrelation-like structures, which

are determined mainly by the underlying conditional mean process. However, it can

be said that they may be insufficient in time series clustering when the underlying

conditional variance processes reveals the presence of possible heteroscedasticity in

time series realizations [50].

Table 2.3 Model based dissimilarity measures for univariate time series clustering.

Dissimilarity
Measure Description Reference

Model based approaches

DAR.LPC
Dissimilarity based on linear predicitive coding
(LPC) cepstral coefficients. [78]

DAR.MAH Model-based dissimilarity proposed by Maharaj. [77, 80]

DAR.PIC
Model-based dissimilarity measure proposed by
Piccolo. [58]
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2.2 Multivariate Time Series Clustering

The number of applied studies on the clustering of multivariate time series is consid-

erably few compared to the studies on the clustering of univariate time series. One

reason is that the datasets studied have diversified and extended in volume over the

last two decades. Another reason is that the computer technologies that make it pos-

sible to perform computations on such datasets have yet to be developed. Of course,

although there are few, there have been early studies dealing with multivariate time

series clustering (see, e.g., Gersch & Yonemoto [81], Sanderson & Wong [82]), but

in a research area that requires such computational processing, the course of research

has been primarily determined by the purpose of clustering, and data processing fa-

cilities.

The dissimilarity measures used in this study’s comparative experimental section of

temporal multivariate time series clustering are given in Table 2.4. Some of the dis-

similarity measures mentioned here can be applied to both univariate time series clus-

tering and multivariate time series clustering. For example, DJD and DLD are multi-

variate counterpart of the model-free distance measuresDSPEC.LLR1 andDSPEC.LLR2

proposed by Kakizawa et al. [66]. Another model free dissimilarity measure DPDC

proposed by Piccolo [58] and DDTW made available by Giorgino et al. [73] are also

applicable to multivariate time series datasets to be clustered. The dissimilarity mea-

sure based on Global Alignment Kernels (GAK) proposed by Cuturi [83] is also an-

other model-free distance measure listed in Table 2.4.

Table 2.4 Dissimilarity measures for multivariate time series clustering.

Dissimilarity
Measure Description Reference

Model free approaches

DJD

Multivariate Spectrum based Distance. Also known
as symmetrized Kullback-Leibler (KL) Divergence.
Also known as J(effreys)-Divergence.

[66]

DLD
Multivariate Spectrum based Distance. Known as
Log-Spectral Divergence. [84]

DGAK Distance based on Global Alignment Kernels [83]

DDTW Dynamic Time Warping Distance. [59, 73]

DPDC Permutation Distribution Distance. [56]
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The dissimilarity measuresDJD andDLD operate on frequency domain whileDGAK ,

DDTW andDPDC compute dissimilarities based on time domain. Of course, there are

some application areas where each dissimilarity measure mentioned here performs

quite successfully and gives very satisfactory results in terms of clustering. For ex-

ample, the use of DDTW and DGAK measures to group time series by mainly their

shape properties provides good outcomes, especially in short time series [85]. How-

ever, the artificially generated time series we examined in the experimental study

sections are relatively long time series produced by conditional mean and conditional

variance structures. They simultaneously represent several characteristics such as

non-stationarity, periodicity, seasonality, aperiodicity, heteroscedasticity, etc. On the

other hand, the results of the experimental study in Chapter 5 indicate that the dissim-

ilarity measures DJD, DLD, and DPDC provide reasonable results when the correct

grouping of time series is dependent on only comprehending autocorrelation (i.e.,

revealing conditional mean structures) structures of time series.

When the time series (i.e., univariate or multivariate) clustering literature is exam-

ined, it will be seen that model-based approaches proposed for clustering of time-

series datasets are much less than data-driven approaches. Studies in recent years

have mainly focused on approaches based on data-driven feature extraction instead

of proposing algorithms that take into account the statistical structures of underlying

mechanisms that produce the time series data. One of the most important reasons

for this is the need for data-based algorithms that accumulate momentum follow-

ing the settled naive understanding of the machine learning concept. However, we

want to point out some of the recently published and noteworthy studies that we

could not include in comparative experimental sections of the study since their al-

gorithms’ computational codes are not readily available. To give examples of these

noteworthy works, for example, Roick et al. [86] proposed a finite mixture model-

based (i.e., Integer valued Autoregressive (INAR) type models) time series clustering.

Fröhwirth-Schnatter & Kauffman [87] also proposed a time series clustering method

using finite-mixture models for panel data. Nieto-Barajas & Contreras-Cristán [88]

proposed a model-based time series clustering using Poisson-Dirichlet process. Delft

& Dette [89] proposed a novel dissimilarity measure considering time dependent

spectral densities of non-stationary time series. Dias et al. [90] used Hidden Markov
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Models (HMMs) for clustering of financial time series. Alonso & Peña [91] proposed

a feature-based distance measure based on linear dependencies (i.e., by considering

cross correlations) of time series. D’Urso et al. [92] proposed a feature-based clus-

tering method using cepstral weights revealing the logarithm of the spectral densities.

Deb [93] proposed a Vector Autoregressive (VAR) model based clustering method for

multivariate time series. Ghassempour et al. [94] proposed model-based clustering

approach using HMMs. López & Vilar [95] proposed a feature-based dissimilarity

measure operating on cross-spectral densities for multivariate time series clustering.

Li & Wei [96] proposed a feature-based multivariate time series clustering approach

that utilizes DTW and shape-based distance measures. Vázquez et al. [97] proposed

a multivariate time series clustering approach that ensembles several time series rep-

resentations and distance measures. Li & Liu [98] proposed a multivariate time series

clustering method based on complex networks that recasts the time series on grids

according to specific mapping methods.

2.3 Proposed Contributions

Almost all of the methods proposed for time series clustering make the conventional

clustering methods, which are primarily proposed regarding static datasets, functional

by retrieving (i.e., staticizing) the time-dependent properties of the data. It can be said

that the approach proposed in this study follows a similar course. Although this con-

clusion is principally correct, the proposed approach considers extracting the feature

vectors/matrices of the time series as time-dependent as possible. Thus, the dissim-

ilarity matrix required for the conventional clustering methods (i.e., k-means, fuzzy

c-means, or pam) to function has been obtained iteratively and additively over the en-

tire period of the data. Accumulating the dissimilarity information through iterative

computation ensures that the dissimilarity matrix has a time-dependent structure as

far as possible.

We expect the approach proposed for time series clustering in this study will con-

tribute to the broad literature on the following points.
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The proposed approach;

• essentially, follows a clustering perspective that prioritizes the necessity of

grouping the mechanisms that generate the series while dealing with the prob-

lem of clustering a dataset consisting of time series.

(In fact, each time series is the realization of an underlying data generation

mechanism that we can not know for sure, and grouping these realizations cor-

rectly can only be possible by identifying distinctive features about the mecha-

nisms generating the series. Any time series clustering based only on the prop-

erties of realizations will be insufficient to examine time-dependent changes.

Therefore, it is intended that the groups to be determined by the proposed ap-

proach will also be a grouping of the mechanisms that generate the series.)

• aims to enable clustering using a general framework of competent models,

based on the argument that the time series’ generating mechanisms can never

be determined most accurately.

(This model, used in the proposed approach, can be used as a competent ap-

proximation tool in time series of almost any type and with a particular sample

length. The model used in the proposed approach, to put it briefly, acts as a

filter and captures distinctive projections of the mechanism generating the se-

ries.)

• to capture both linearities an nonlinearities within the series, utilized the double

threshold GARCH (DTGARCH) model as the model framework. To the best

of our knowledge, this model is used for the first time in the literature for time

series clustering.

(of course, different time series models were also used in the literature.)

• can be used for both univariate and multivariate time series clustering.

(It should also be noted that the proposed approach can work with higher per-

formance in time series with a certain minimum sample length, i.e., assuming

over 350 observations.)

• uses feature vectors or matrices capable of representing series and are obtained

using a specific specification of the DTGARCH model. The proposed approach
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can be evaluated in the category of methods using model-based feature ele-

ments regarding the time series clustering literature.

• uses the spectral clustering algorithm proposed by Ng. et. al. [99].

(Therefore, the proposed approach can be seen as a unique adaptation of the

spectral clustering method to time series clustering. Thus, the calculation of the

affinity matrix required for spectral clustering is made applicable for time se-

ries. In this regard, it makes a contribution to the studies on spectral clustering

of time series.)

• takes into account that the clusters to be created for a time series dataset may

exhibit time-dependent changes. As such, it adopts a dynamic clustering ap-

proach. Time-dependent changes in the mechanisms producing time series

would also affect the cluster formations to be obtained. In order to show that

the DTGARCH model can work in such situations, various simulation studies

have been conducted in Chapter 4 and 5.
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CHAPTER 3

PROPOSED APPROACH

This chapter is intended to introduce the novel clustering approach we propose for a

set of univariate or multivariate time series data. In short, the proposed approach com-

bines the double threshold garch (DTGARCH) and the AR models (i.e., linear time

series model) based feature extraction and the spectral clustering method. The moti-

vation of the proposed approach and related remarks, which are previously concep-

tualized in Chapter 1, highlighted in Section 3.1. The approach we propose for time

series clustering mainly relies on clustering of features extracted from estimations of

the DTGARCH model. Section 3.2 presents the details and theoretical background

of the DTGARCH model. The extracted features hold time-dependent, idiosyncratic

properties about underlying (i.e., latent) DGMs. Thus, after goal-oriented feature ex-

traction phase, the task of clustering of a set of time series becomes a task of clustering

of a set of feature vectors that represents time series to be clustered. The distances

between those features can be considered as connected graphs in which some path

connects vertices/points. The spectral clustering operates well for the solution of a

graph-partitioning problem. Section 3.3 gives basics about the graph-theoretic spec-

tral clustering. The details of the proposed time series clustering approach for a set of

univariate and multivariate time series data, which incorporates two state-of-the-art

methods, are given in Section 3.4.

3.1 Motivation

In time series clustering studies, resulting clusters are desired to form as ’homoge-

neous clusters’ as possible within the context of a similarity perspective. By and
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large, regarding the aims of clustering, time series clustering studies can be gener-

alized into three categories as follows: (1) clustering the set of time series relating

to discovery of a latent pattern; (2) clustering time points of a univariate time series;

and (3) clustering a set of univariate or multivariate time series data where each time

series considered as objects to be clustered. More specifically, it can be said that each

study includes at least one perspective or aim differs from the others. As previously

discussed in Chapter 1, individuated aims and perspectives of studies may expose

different information that leads to different cluster formation for even the same set

of data. Although it is not possible to find a generalized method for each specific

time series clustering problem, the transparently expressed context and content of an

any developed clustering method can allow us to produce meaningful and comparable

results at a scientific level.

In this study, we propose a novel time series clustering approach for a set of univariate

and multivariate time series data where each time series data treated as objects to be

clustered. Clustering task of a set of time series data has its applications in a wide

variety of fields such as environmental, computer, engineering, astronomy, economic,

and neuro sciences (see Figure 1.2). If time series data is considered as an object

to be clustered, derived information about underlying DGM of time series should

essentially be taken into account rather than consideration of transient features such

as shape, motif, and pattern. Succinctly, the context of the proposed approach is

finding out comparable idiosyncratic properties of underlying DGMs of time series

to be clustered. Thus, within the context of the proposed approach, the ’true’ cluster is

a cluster that groups time series regarding the similarities of their underlying DGMs.

Two of the basic research questions to be considered here are as follows: (1) how

can we get information about underlying DGMs; and (2) how to make appropriate

groupings based on these information?

(1) How can we make inferences about the underlying DGM of a time series that

is intended to be clustered as an object?

Time series are limited realizations of their underlying DGMs, and time series models

are plausible tools to make inferences about their underlying generating processes. If

it were possible to find the very structure of the time series generating mechanism
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exactly, this could have enabled us to make an absolute or a perfect classification.

Nevertheless, the fact that a time series is only a limited realization of its underly-

ing dynamics prevents us from obtaining certain and complete knowledge about the

mechanisms that produce time series. Naturally, finding out the most accurate model

for a time series includes meaningful information about its underlying generating dy-

namics, but in the end, this is no more than an approximation. Considering that the

aim is to discover an appropriate way of approximation for the purpose of clustering,

finding out the most accurate models for time series to be clustered would not be use-

ful. To make underlying DGMs’ approximations comparable for a clustering purpose,

common/shared ground/basis must be provided for measuring similarities/dissimilar-

ities. To this end, we utilize a multifaceted time series model named as DTGARCH

besides the autoregressive (AR) time series model.

(2) How to make appropriate clustering according to extracted information re-

lated to underlying DGMs?

Utilizing the specific AR and DTGARCH model approximations to extract features

about time series objects to be clustered is a crucial phase of the proposed approach

called feature extraction. Thus, goal-oriented feature extraction in the proposed ap-

proach is accomplished by considering parametric time series model based outputs of

estimations. The DTGARCH model is rich in its environment/background and can

reproduce/represent numerous properties defined thus far in time series analysis liter-

ature such as stationarity, non-stationarity, chaotic behavior, linearity, non-linearity,

seasonality, abrupt changes, and regime switching. Parameter estimates of the spe-

cific AR and DTGARCH models and autocorrelation structures of the residuals and

squared-residuals are used to form feature vectors to represent time series. These

feature vectors contain/hold several time-dependent properties of time series up to a

certain level that is sufficiently useful for comparisons. Differences (i.e., dissimilar-

ities) between the properties extracted from approximations to underlying DGMs by

DTGARCH and AR models estimates creates connected graphs. Clustering of fea-

tures by using dissimilarity matrix computed on those features can be considered as a

graph partitioning. For this purpose, we employ the spectral clustering method in the

proposed approach, which works satisfactorily for the graph partitioning problems.
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Another important motivation of the proposed cluster approach is to make it capable

of capturing the possible changes in the number of clusters and clusters across time.

As we encounter in time series data analyses, the mechanisms that produce time series

may change over time, or time-dependent characteristics of data may vary in time.

Therefore, when newly observed data are added to the available set of data, time

series model based feature extraction step of the proposed approach also makes the

clustering approach data-adaptive to examine temporal dependencies.

We would like to complete this sub-section with an analogy, which illustrates the mo-

tivation of the proposed approach. Feature extraction phase of the proposed approach

resembles the feature extraction principle of the spectroscopy (see Figure 3.1). Spec-

troscopy, in general, is the investigation of the physical properties of elements, com-

pounds, stars or galaxies by analyzing their electromagnetic radiation (i.e., spectrum).

Electromagnetic radiation includes spectrum of visible light and invisible lights such

as microwave, infrared, ultraviolet, x-ray and gamma waves. Visible light from each

object has its unique source of energy composition. Any object shines out the energy

in the form of light which contain all colors. In this sense, the light sources to be

examined in their raw form are indistinguishable or non-informative.

Figure 3.1 Analogy between the principle of spectroscopy and the feature extraction.

30



In order to distinguish or identify the sources of lights, the method of spectroscopy

can be used which is rely on to artificially splitting the light into its building blocks

or constituents (i.e., colors). The splitting can be accomplished by using a particular

device known as a diffraction grating (e.g., prism). There are individual repeating

patterns in each element’s, compound’s or star’s spectrum known as dark absorp-

tion lines (i.e., spectral features). Chemists, physicists or astrophysicists can identify

which combinations of those patterns belong to which chemical element. The light

of its matter (e.g., star) contains such fingerprints on its own spectrum and exhibits

which chemical elements make up that matter.

3.2 Background on the Double Threshold GARCH Model

In this sub-section, the DTGARCH model is explained and then a procedure is gen-

erated for fitting the DTGARCH model to each time series object to be clustered. In

particular, we designate a procedure that uses the specific number of regimes, data-

adaptive threshold values, and the specific orders of the DTGARCH models for each

of the regimes. Moreover, DTGARCH model is a unification of a threshold autore-

gressive (TAR) model and a GARCH component. Accordingly, the TAR model is

mentioned briefly and then DTGARCH model is illustrated.

3.2.1 Threshold Autoregressive Model

The concept of regime alteration controlled by specific threshold parameters was

firstly introduced by Quandt [100] in the context of linear regression models. There-

after, the function of the regime switching, which is regulated by the threshold pa-

rameters, was extended to time series models [101] and [102]. Since its initiation, the

TAR model has been widely applied to different type of time series data. As addressed

in [103], TAR models are useful because of their ability to generate and capture non-

linear dynamics, limit cycles, severe jumps, and asymmetries. The purpose of TAR

is to define regimes through thresholds and get local approximation over the regimes.

The thresholding is effective because it decomposes a complex stochastic system into

simpler subsystems, and thus allowing expeditious implementation and more straight-
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forward interpretation. TAR models can represent data that manifest abrupt changes

of large amplitude at arbitrary time points which are usually exhibited by numerous

types of time series data (see [104, 105] for a review of the TAR models via a wide

variety of applications).

A general TAR model with k regimes is represented as

yt =
k∑
j=1

[
(φ

(j)
0 +

pj∑
i=1

φ
(j)
i yt−i + σ(j)e

(j)
t ) I(rj−1,rj)(zt−d)

]
(3.1)

where yt is the observed time series at time t; j = 1, . . . , k denotes the regime and k

is the number of regimes; pj is for jth regime autoregressive (AR) lag order; φ(j)
0

is intercept and {φ(j)
i |i = 1, 2, . . . , pj} are AR terms coefficients for jth regime;

and IA(z) is the indicator function that takes the value of 1 when z ∈ A and 0

otherwise; r = (r1, . . . , rk−1), satisfying r1 < . . . < rk−1, are the threshold val-

ues; r0 = −∞ and rk = ∞; zt−d is the threshold variable with delay parameter

d; for each j, {ε(j)
t = σ(j)e

(j)
t } is a sequence of martingale differences satisfying

E(ε
(j)
t |Ft−1) = 0, suptE(|ε(j)

t |δ|Ft−1) < ∞ almost surely for some δ > 2, where

Ft−1 is the σ-field generated by {ε(j)
t−i|i = 1, 2 . . . ; j = 1, . . . , k}; et is i.i.d. with

Eet = 0 and Var et = 1 and σ(j) > 0.

For example, if at time t, zt−d = a ∈ (r`−1, r`) then the active regime at that time is

characterized by the AR model as follows:

yt = φ
(`)
0 +

p∑̀
i=1

φ
(`)
i yt−i + σ(`)e

(`)
t .

Thus, describing different regimes within time series by threshold variable and values

allow us to obtain a temporal behavior of a dynamics. The unknown parameters for

the above model are collected in the vector

Ω =
[
(φ1

0, φ
1
i:p1

), . . . , (φk0, φ
k
i:pk

), r = (r1, . . . , rk−1), k, d
]
,

and can be estimated by least-squares (LS) estimation (which is equivalent to the

maximum likelihood estimation under the assumption that et is i.i.d.N(0, 1)). The

LS estimator of the parameter vector Ω can be obtained by the minimization problem

Ω̂ = arg minΩ

T∑
t=1

[
yt − (φ

(j)
0 +

pj∑
i=1

φ
(j)
i yt−i)I(rj−1,rj)(zt−d)

]2

.
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The asymptotic properties of the LS estimator for the TAR parameter are developed

in [106]; statistical inference of the TAR models is discussed in [107]. Some applica-

tions on Bayesian inference for TAR models are developed in [108, 109]; and [110].

Furthermore, there is a strong interest for testing linearity versus threshold non-

linearity, see [111] and [112].

3.2.2 Self-Exciting Threshold Autoregressive Model

The model in Equation (3.1) is called self-exciting threshold autoregressive (SETAR)

model if the threshold variable is the same as the actual time series, i.e., zt−d = yt−d.

In this case, the regime of the time series yt would be determined by its own past

value, yt−d.

A general SETAR(k) model where k denotes the number of regimes can be repre-

sented as

yt =
k∑
j=1

[
(φ

(j)
0 +

pj∑
i=1

φ
(j)
i yt−i + σ(j)e

(j)
t ) I(rj−1,rj)(yt−d)

]
. (3.2)

Similar to TAR model, the unknown parameters for the model in (3.2) are

Ω =
[
(φ1

0, φ
1
i:p1

), . . . , (φk0, φ
k
i:pk

), r = (r1, . . . , rk−1) ∈ [min {y} ,max {y}], k, d
]
,

and can be estimated by a least-squares (LS) estimation under the assumption that

ε
(j)
t is i.i.d. N(0, σ2). The minimization of the sum of squared residuals yields the

LS estimators:

Ω̂ = arg minΩ

T∑
t=1

[
yt −

k∑
j=1

[
(φ

(j)
0 +

pj∑
i=1

φ
(j)
i yt−i)I(rj−1 < yt−d ≤ rj)

]]2

, (3.3)

where, T denotes the sample size in a time series. The minimization problem of (3.3)

can be handled by a grid search over all combinations of possible values of param-

eters {j, pj, r, d|j = 1, . . . , k}. Consequently, the grid search requires a number of

nearly T k−1/2×d×p(1)× . . .×p(k) arranged auto-regressions. Alternatively, the un-

known thresholds and parameters can be estimated from a model selection perspective

through minimization of a specific criterion (e.g., AIC, BIC or HQIC). Nevertheless,

for estimating all threshold parameters one at a time and to reduce the computational
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cost considerably, Gonzalo and Pitarakis [113] suggested a conditional model selec-

tion procedure under an unknown number of thresholds. The procedure starts with

deciding between a linear and a one threshold (i.e., two regime) TAR specification.

If the existence of a threshold cannot be rejected then the sample can be organized

into two subsamples by the threshold. To search for the presence of another threshold

is renewed over sub-samples that are conditionally formed on the threshold estima-

tion in the previous step. The iteration ends when the model selection procedure

cannot confirm the presence of another threshold over sub-samples. Then, the de-

manded number of arranged auto-regressions to be estimated moderately decreased

to (T × d× p(1) × . . .× p(k) + (k − 1)× T ).

More formally, let ST denotes the sum of squared residuals from a par order AR(par)

fit and ST (r1, . . . , rk−1) denotes the sum of squared residuals defined in (3.3), the

model selection procedure would be based on the optimization of the following ob-

jective functions

ICT (par) = logST + λ/T,

ICT (p(1), . . . , p(k)) = logST (r1, . . . , rk−1) + (λ/T )× (k − 1),

where λ denotes a model selection criterion, such as AIC or BIC. The model selection

procedure would lead to the choice of a linear AR model if

arg min
par

(ICT (par)) < arg min
p(1),p(2),d,r1

(ICT (p(1), p(2)))

with 1 ≤ par ≤ p(1) ≤ p(2) ≤ pmax and d ≤ min(p(1), p(2)). If the above inequality

cannot be satisfied, then the optimum threshold number can be found by minimizing

the objective function ICT (p(1), . . . , p(k)) where the optimal threshold number

k̂ = arg min
0≤k≤K

logST (r1, . . . , rk−1) + (λ/T )× (k − 1).

It is important to note that the threshold parameter estimates, Ω̂, are obtained as a by-

product of the number of optimal regime determination procedure. For more detailed

information and the statistical properties of the SETAR model, we refer the interested

reader to [106], [107] and [114].

34



3.2.3 Double Threshold GARCH Model

For a given time series yt, t = 1 . . . T , the global structure of a time series model con-

sists of two main components known as conditional mean and conditional variance

and can be represented as follows:

yt = g(Ψt−1)︸ ︷︷ ︸
µt

+
√
η(Ψt−1)︸ ︷︷ ︸
σt

. et

︸ ︷︷ ︸
εt

, et
i.i.d∼ D(0, 1),

where Ψt−1 is the set of information available at time t − 1; εt is a series of innova-

tions (i.e., errors) that is independent of past of the time series, yt; and et is an i.i.d.

sequence with distribution D.

In time series analysis, conditional mean, µt = g(Ψt−1) = E(yt|Ψt−1), and condi-

tional variance, σ2
t = η(Ψt−1) = V (yt−µt|Ψt−1) = V (εt|Ψt−1), are both can be time

dependent and be modeled by numerous parametric [115] or non-parametric [116]

time series models. For example, the TAR and SETAR models mentioned in subsec-

tions 3.2.1 and 3.2.2 are assuming constant variance in innovations, εt, and provide

modeling perspective for conditional mean only via autoregressive terms with regime

switching mechanism.

In the scope of this study, to extract distinguishable features from a time series in

relating to their unknown underlying DGMs, we propose the use of a rich environ-

ment in the form of a time series model which incorporates the time dependencies of

conditional mean and variance. For this purpose, we utilize one of a complex time se-

ries models known as the double threshold generalized ARCH (DTGARCH) model.

In this model, conditional mean, µt, and conditional variance, σt2, are both regime

specific:

yt =
k∑
j=1

[µt
(j) + σt

(j)et
(j)]I(rj−1,rj)(zt−d), et

(j) i.i.d∼ D(j)(0, 1),

where yt is the observed time series; j = 1, . . . , k where k is the total number of

regimes; and IA(z) is the indicator function that takes the value of 1 when z ∈ A
and 0 otherwise; r = (r1, . . . , rk−1) with r1 < . . . < rk−1 are the threshold values,

r0 = −∞ and rk =∞; zt−d is the threshold variable with delay parameter d.
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Following the seminal work of Tong [101] on the different regime dynamics, Li and

Li [117] implemented the ARCH models for the conditional variance part giving

rise to the double threshold ARCH (DTARCH) model. Brooks [118] extended it

to DTGARCH model to analyze volatility in the exchange rate. Due to its ability to

capture complex dynamics, we consider the DTGARCH model for feature extraction

of a given time series to be clustered as object. The general representation of the

DTGARCH(k, ar1, q1, p1, . . . , ark, qk, pk) model is

yt =
k∑
j=1

[(φ
(j)
0 +

arj∑
i=1

φ
(j)
i yt−i + ε

(j)
t )I(rj−1,rj)(zt−d)]

ε
(j)
t =

√
η

(j)
t e

(j)
t = σ

(j)
t e

(j)
t , e

(j)
t

i.i.d∼ Dν(j)(0, 1)

η
(j)
t = [(α

(j)
0 +

qj∑
l=1

α
(j)
l ε

2 (j)
t−l +

pj∑
m=1

β(j)
m η

(j)
t−m)]

(3.4)

where yt is the observed time series; j = 1, . . . , k where k is the total number of

regimes; and IA(z) is the indicator function that takes the value of 1 when z ∈ A and

0 otherwise; r = (r1, . . . , rk−1) with r1 < . . . < rk−1 are the threshold values, r0 =

−∞ and rk = ∞; zt−d is the threshold variable with delay parameter d; Dν(j)(0, 1)

is the density function of the standardized error for the j-th regime with additional

distribution parameters ν which describes the skewness and shape of the density. To

ensure the non-negativity of the conditional variance, it is sufficient to impose the

following conditions on the parameters:

α
(j)
0 > 0; α

(j)
l , β(j)

m ≥ 0;
[ qj∑
l=1

α
(j)
l +

pj∑
m=1

β(j)
m

]
< 1. (3.5)

Estimation of the DTGARCH model parameters.

Simultaneous estimation of both the DTGARCH model parameters and the threshold

values is not feasible. The likelihood of the model cannot be tractable with respect to

the thresholds because of the discontinuity of the underlying functional relationship

between the variables at the thresholds. However, given the form of the conditional

mean and variance, one can use the quasi-maximum likelihood estimation (QMLE)

approach to estimate the parameters of the DTGARCH model under predetermined
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threshold values. The log-likelihood of the model maximized with respect to differ-

ent regimes that determined by fixed threshold values. Thus, log-likelihood of the

DTGARCH model in general is

LT (Θ) =
k∑
j=1

[
log

∏
t∈Rj

Dν(j)(yt, E(yt|Ψt−1)(j), η
(j)
t )
]
I(rj−1,rj)(zt−d), (3.6)

where Θ = [θ(1)′ , . . . , θ(k)′ ]; Rj = (rj−1, rj]; θ(j) = [φ
(j)
0 , φ

(j)
i , α

(j)
0 , α

(j)
l , β

(j)
m ] and

since the equation (3.5) splits the likelihoods into different regimes according to

threshold values, QML estimator of regime specific θ(j) can be shown as

θ̂(j) = argmax
θ(j)

[
log

∏
t∈Rj

Dν(j)(y
(j)
t , E(yt|Ψt−1)(j), η

(j)
t )
]
,

where j = 1, . . . , k and k is the number of regimes; Ψt−1 is set of available informa-

tion set at time t− 1 and t = 1, . . . , T .

Results on the asymptotic distribution of the parameters.

Under the assumption that yt is stationary and ergodic and the threshold parameters

are known, Li and Li [117] proved that the MLE of the DTARCH model is consistent

and asymptotically normal.

When the regimes are prespecified (i.e., threshold parameters are known), the DT-

GARCH model can be considered as a combination of distinct GARCH models and

the estimation procedure can be facilitated via using the asymptotic results for the

QMLE in GARCH models by [119]. Here, strict stationarity of εt and et are assumed

for consistency of the QMLE. It does not require the et to be i.i.d. but the assumption

E
[
|et|4ξ

]
<∞, for some ξ > 0, is required for asymptotic normality.

The issue of asymmetry in GARCH models.

One of the major disadvantage of the standard ARCH/GARCH (sGARCH) model

is that it does not allow the asymmetric response of volatility to the past values of

innovations. Thus, under the sGARCH model, the conditional variance depends only

on the magnitude of past of innovations. That is, the conditional variance treats past

positive and negative values equally (see [120]). This oversimplifying constraint is

constitute the limitation of the standart GARCH structure and should be adapted for
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allowing asymmetric response of volatility to the positive and negative past values of

innovations.

To overcome this drawback, we consider the exponential GARCH (EGARCH), the

threshold-GARCH (TGARCH) and the asymmetric power GARCH (APARCH) mod-

els.

The EGARCH process, which uses the natural logarithm of the conditional variance,

within the DTGARCH context can be shown as

log η
(j)
t = α

(j)
0 +

qj∑
l=1

(α
(j)
l e

(j)
t−l + γ

(j)
l (|e(j)

t−l|+ E|e(j)
t−l|)) +

pj∑
m=1

β(j)
m log η

(j)
t−m, (3.7)

where the coefficient αl captures the sign effect and γl is the size effect (see [121]).

The APARCH model of Ding et al. [122] can be shown as

η
δ(j)/2

t = α
(j)
0 +

qj∑
l=1

α
(j)
l (|ε(j)

t−l|+ γ
(j)
l ε

(j)
t−l)

δ(j) +

pj∑
m=1

β(j)
m η

δ(j)/2

t−m , (3.8)

where δ ∈R+ being a Box-Cox transformation of
√
ηt and−1 < γ < 1 is the leverage

effect. The APARCH model contains several ARCH/GARCH models as special cases

and the introduction of the power δ increases the flexibility of GARCH-type models,

and allows the a priori selection of an arbitrary power to be avoided [115].

TGARCH model of Zakoian [123] is a special case of the APARCH model and it

arise from the process in Equation 3.8 when δ = 1.

Therefore, in addition to the sGARCH model within DTGARCH context, we consider

EGARCH, TGARCH and APARCH models throughout the study.

Almost all of the applications in the field of the DTGARCH models are dedicated

to analyze the differences in dynamics in economic and financial time series data.

For example, Brooks [118] analyzed the exchange rate via DTGARCH model and

stated the improvement of the out of sample forecast and highlighted the importance

of considering both types of regime shift (i.e. thresholds in variance as well as in

mean) when analyzing the financial time series. Audrino et al. [124] proposed a gen-

eral double tree structured AR-GARCH model for the analysis of global equity index

returns and found strong evidence for more than one multivariate threshold in con-

ditional means and variances of global equity index returns. Suardi [125] evaluated
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the intervention of Bank of Japan and the Federal Reserve that are more effective in

changing the direction of the exchange rate movements via DTGARCH model.

To the best of our knowledge, our work illustrates the first application of DTGARCH

model to time series clustering. In time series clustering approach that we propose, in

line with the potential of the DTGARCH specification to distinguish multiple univari-

ate and multivariate time series, the DTGARCH specification is used for observing

nonlinear associations and the AR specification is used for observing linear associa-

tions.

3.3 Spectral Clustering

Spectral clustering, in the most general sense, is a distance-based clustering algorithm

with no assumptions on the shape of clusters. Specifically, the clustering algorithm

operates on a spectrum (i.e., eigenpairs) of a similarity/affinity matrix derived from

the distance matrix. Spectral clustering works well in conditions where connectedness

(i.e., interconnectivity) of points is more important than distances between points

(i.e., objects to be clustered), such as for intertwined spirals, nested structures or

non-convex shapes [99]. Theoretical background of the spectral clustering relies on

the graph theory in mathematics, and since the affinity/similarity matrix used in the

spectral clustering algorithm is a matrix representation of a given graph, the spectral

clustering can be considered as a counterpart of graph partitioning [126].

A graph G is consists of set of vertices, V and set of edges (i.e, nodes), E. Let

demonstrate the elements of a graph by an example of an arbitrary simple undirected

and edge weighted graph illustrated in Figure 3.2. Edges between each pair of vertices

can be denoted by wij = wji;wij ≥ 0; i, j = 1, . . . , 6, which shows the amplitude

of adjacencies/affinities between each pair of vertices.

G =
{
V,E

}
,

V =
{
v1, v2, v3, v4, v5, v6

}
,

E =
{
{v1, v2}, {v1, v3}, {v2, v3}, {v2, v6}, {v4, v5}, {v4, v6}, {v5, v6}

}
or showing edges via weights where wij ≥ 0;wij = wji; i, j = 1, . . . , 6,

E =
{
w12, w13, w23, w24, w26, w45, w46, w56

}
.
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v1

v2 v3

v4v5

v6

(a)

AG =

v1 v2 v3 v4 v5 v6



v1 0 w12 w13 0 0 0

v2 w21 0 w23 w24 0 w26

v3 w31 w32 0 0 0 0

v4 0 w42 0 0 w45 w46

v5 0 0 0 w54 0 w56

v6 0 w62 0 w64 w65 0

(b)

Figure 3.2 (a) Sample undirected and edge weighted graph G; (b) Corresponding

adjacency matrix of G where wij ≥ 0;wij = wji; i, j = 1, . . . , 6.

If the edges are not weighted then each edge takes values of 1. There are many

fields in which graph theory can be applied and the solution of many problems can be

explored by presenting the problem through the graph-theoretic problem [127, 128].

In graph theory, matrix representation of a graph can be given by Laplacian matrix

and the spectrum of graph Laplacian, LG, is useful to explore various properties

of a given graph especially when the goal is described as graph partitioning of a

graph G =
{
V,E

}
into several partitions where the number of cut edges (i.e., zero

edges) should be minimized and the vertices in the same partition are more close

and similar to each other compared to other vertices in other partitions. Spectrum of

graph Laplacian, LG, contains information about connectivity of the graph.

From a given graph G =
{
V,E

}
in Figure 3.2 one can construct its unnormalized

graph Laplacian, LG, as:

LG = DG − AG,

where AG is adjacency (i.e., affinity) matrix of graph G, DG is the degree matrix of

graph G and defined as the diagonal matrix where the degrees d11, . . . , d66 on the

diagonal. The degree dii of vertex vi is defined as:

dii =
∑6

j=1wij.
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Therefore, for the sample graph G =
{
V,E

}
given in Figure 3.2, the matrix LG can

be shown as:

LG =



d11 −w12 −w13 0 0 0

−w21 d22 −w23 −w24 0 −w26

−w31 −w32 d33 0 0 0

0 −w42 0 d44 −w45 −w46

0 0 0 −w54 d55 −w56

0 −w62 0 −w64 −w65 d66


,

where

d11 = w12 + w13

d22 = w21 + w23 + w24 + w26

d33 = w31 + w32

d44 = w42 + w23 + w45 + w46

d55 = w54 + w56

d66 = w62 + w64 + w65.

Several ways of constructing the matrix LG such as unnormalized, normalized and

random walk normalized graph Laplacian are available in the literature (see, e.g.,

[126, 129, 130]). Spectrum of graph Laplacian can be utilized to investigate proper-

ties of a graph. Let the graph shown in Figure 3.2 is now to be subjected to partition-

ing. A very simple example of a graph partitioning is illustrated in Figure 3.3. If the

edges between vertices 2 and 4, and between 2 and 6 are negligibly close to zero or

relatively small than other weighted edges in magnitude then zero edges minimized

bipartition of the graph can be achieved by investigating the spectrum of LG. The

block diagonal form of the LG will clearly manifest the algebraic connectivity of ver-

tices in the eigenvector through signs of vector elements corresponding to the second

smallest eigenvalue (i.e., Fiedler eigenvalue thanks to Fiedler [131]). For more details

about graph partitioning and graph theory please see [132–134].
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v1

v2 v3

v4v5

v6

(a)

LG =

d11 −w12 −w13 0 0 0

−w21 d22 −w23 −w24 0 −w26

−w31 −w32 d33 0 0 0

0 −w42 0 d44 −w45 −w46

0 0 0 −w54 d55 −w56

0 −w62 0 −w64 −w65 d66




(b) graph Laplacian of G

Figure 3.3 (a) Sample undirected graph G subjected to partitioning; (b) Correspond-

ing graph Laplacian of G.

In this context, any time series clustering task can be considered as a graph partition-

ing problem if the vertices to be partitioned are regarded as time series objects. The

case here now becomes how to find the informative edges (i.e., association, similarity)

between time series to help with clustering. Typically, edges can be understood as a

manifestation of similarities between each pair of time series. Thus, plausible con-

struction of adjacency (i.e., affinity, similarity) matrix will present a graph that can be

partitioned by considering the properties of spectrum of graph Laplacian. However,

as previously mentioned in Section 3.1, time series are not feasible to use them in

their raw forms for clustering. Most of the important time-dependent properties of

the time series are not directly noticeable or detectable from their raw forms. Instead,

plausible and informative feature sets extracted from time series can be employed as

objects to be clustered.

Spectral clustering (SC) mainly relies on graph theory. As stated earlier in this sec-

tion, SC accomplishes well in nested structures where connectedness of points is

more important than distances between points [99,126]. Set of time series to be clus-

tered through model-based features can be regarded as a graph and each vertice can

be represented by the feature set instead of raw time series.

Therefore, this study invokes the spectral clustering algorithm proposed by Ng et al.

[99] and adapts for time series clustering task. Implementation of SC in our proposed
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approach, as shown in Section 4 and 5, operates well over the model-based extracted

feature sets from time series. Slightly modified spectral clustering algorithm and

implementation of the proposed clustering approach is detailed in following Section

3.4.

The SC algorithm proposed by Ng et al. [99] can be summarized in 6 steps as follows:

Given a set of v-dimensional points F = {f1, f2, f3, . . . , fn} in Rv can be clustered

into cl subsets:

1. Constructing the n × n Affinity (i.e., Adjacency) matrix A which is de-

fined by

Aij =
exp(− ‖ fi − fj ‖2)

(2%2)

if i 6= j, and Aii = 0.

2. Define matrix D to be diagonal matrix whose (i, i) element is the sum

of A’ s ith row, and compute the normalized graph Laplacian matrix by

L = D−1/2AD−1/2.

3. Construct the eigenvector matrix Xn×cl from cl largest eigenvectors of L

that are stacked in columns of X .

4. Compute the matrix U from re-normalized rows of the matrix X .

5. Cluster each row of U as a point in Rcl into cl clusters by any clustering

algorithm (e.g., We consider the fuzzy C-means clustering throughout the

study).

6. Assign the original point fi to cluster number j iff row i of the re-

normalized eigenvector matrix U is assigned to cluster number j.

Here, value of distance scaling parameter, %, can be chosen over candidate values

where the tightest clusters observed. For more information about spectral clustering

please see [99] and [126].
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3.4 Proposed Approach for Time Series Clustering

In this study, we propose a novel time series clustering approach for multiple univari-

ate and multivariate time series where time series data, taking into account all the time

span they have, is considered as objects to be clustered. Clustering perspective of the

proposed approach is clustering set of time series in terms of their underlying DGMs.

Although underlying (i.e., true) DGMs cannot be known for sure but only approxi-

mated, the revealed clusters are expected to discover time series that are similar in

terms of DGMs. In this regard, it can be said that the aim is to assign a property set to

the centers of the clusters to be formed, which is the composition of approximations

of underlying DGMs. It is also important to note that the mechanism that produces

the time series data may vary depending on time. Accordingly, it is equivalently im-

portant to distribute time series into clusters that are as homogeneous as possible in

terms of the similarity of time-varying generating mechanisms.

As highlighted in previous Sections 3.1 and 3.3, within the scope of the clustering

perspective, time series are not expedient to utilize them directly for clustering. The

question of how we can obtain distinguishing and characteristic information about the

mechanism that produces time series has been put forward as an important question

in Section 3.1. This research question together with the infeasibility of using raw time

series in clustering leads us to represent each time series with a specific feature vector

that can be employed as objects to be clustered instead of time series. To obtain a

idiosyncratic feature vector with a large enough capacity to represent a time series,

we primarily utilize the linear autoregressive and the multi-faceted nonlinear time

series model based estimation outputs.

Feature vectors are aimed to summarize associations of time series with the rich en-

vironment represented by aforementioned (i.e., AR and DTGARCH) models. This

is because, although we cannot know the exact mechanisms in which time series are

produced, there will be a certain similarity in the resulting estimation outputs when

time series with similar generating mechanisms are examined in terms of a specific

model. In terms of the clustering approach we propose, it has appeared an important

principle that the specific time series model to be chosen for time series clustering

should contain and generate many time series properties as in the DTGARCH model.
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Thus, even though we will not know the exact mechanisms in which the time series

are generated, we can group the time series in terms of underlying DGMs by com-

paring the time series’ connections with a specific time series model that is complex

enough and rich in environment.

To enhance idiosyncraticity of feature vectors, we append some frequency-domain

based properties of time series from the frequency spectrum of raw time series, squared

residuals and conditional variance estimates. In this respect, feature vectors com-

bine both time series model-based and model-free properties. Features to be used in

clustering, and configuration of feature vectors and matrices using extracted feature

blocks are given in the following subsection 3.4.1.

Feature vectors formed for clustering can be considered as vertices of a graph, while

the distances between them can be regarded as edges of a graph. Correspondingly,

the clustering task can be seen as a graph partitioning problem. We utilize spectral

clustering algorithm by Ng et al. [99] with implementing slightly modified version of

Affinity (i.e., Adjacency) matrix calculation adapted to time series clustering. Details

of the proposed clustering approach for univariate and multivariate set of time series

given in subsections 3.4.2 and 3.4.3.

3.4.1 Feature Blocks to be Used in Clustering

We mainly consider linear AR and DTGARCH models based estimation outputs as

feature blocks for the formation of feature vectors/matrices. These outputs are con-

sist of estimates of coefficients; autocorrelation and partial autocorrelation functions

of residuals and squared residuals; estimates of conditional variances. In addition to

these model-based outputs over time domain, we consider some model-free proper-

ties from frequency-domain of time series. Thus, we append the complex modulus

of Fourier coefficients (i.e., frequency spectrum) from the Fourier transform of raw

time series, squared residuals and conditional variance estimates. Here we note the

time series models, serial correlation functions and the notion of frequency spectrum

in brief from which the components used for the establishment of the feature vec-

tors/matrices are obtained. Extracted features from these tools considered as blocks

of features which constitutes feature vectors/matrices.
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Autoregressive Model: AR model of order par, AR(par), can be expressed as

yt = φ
(ar)
0 + φ

(ar)
1 yt−1 + φ

(ar)
2 yt−2 + . . . φ

(ar)
p yt−par + at,

where at is a white noise sequence with variance σ2
a.

To provide comparable outputs for time series to be clustered, the AR order, par, is

set to 12. Therefore, a part of linear associations that can be measured by coeffi-

cient estimates, φ̂(ar)
1:12, and residuals, ât, and remaining conditional heteroscedasticity

preserved by squared residuals, â2
t , are accepted as linear time series model-based

components for construction of feature vectors.

Double Threshold GARCH Model: General representation of DTGARCH model

with order parameters, k, ar1, q1, p1, . . . , ark, qk, pk, is shown in equation 3.4. How-

ever, since we develop a clustering algorithm to be bound to a specific model within

the scope of this study, we have already fixed the order parameters (i.e., considered

as hyperparameters) and used the model given below because of its computational

convenience and applicability. At the same time, the choice of this model allows

us to compare time series with each other. The number of the regimes, k, is set to

3, the order of autoregressive components for each regime is set to 4, and standard

GARCH(1,1) is considered for each regime’s conditional variance.

DTGARCH (k = 3, ar1 = 4, q1 = 1, p1 = 1, ar2 = 4, q2 = 1, p2 = 1, ar3 = 4, q3 =

1, p3 = 1) model can be shown as

yt =


φ

(1)
1 yt−1 + φ

(1)
2 yt−2 + φ

(1)
3 yt−3 + φ

(1)
4 yt−4 + ε

(1)
t , yt−1 ≤ r1

φ
(2)
1 yt−1 + φ

(2)
2 yt−2 + φ

(2)
3 yt−3 + φ

(2)
4 yt−4 + ε

(2)
t , r1 < yt−1 ≤ r2

φ
(3)
1 yt−1 + φ

(3)
2 yt−2 + φ

(3)
3 yt−3 + φ

(3)
4 yt−4 + ε

(3)
t , yt−1 ≥ r2

ε
(j)
t =

√
η

(j)
t e

(j)
t = σ

(j)
t e

(j)
t , e

(j)
t

i.i.d∼ Dν(j)(0, 1), j = 1, 2, 3

ηt =


α

(1)
0 + α

(1)
1 ε2

t−1
(1)

+ β
(1)
1 ηt−1

(1)

α
(2)
0 + α

(2)
1 ε2

t−1
(2)

+ β
(2)
1 ηt−1

(2)

α
(3)
0 + α

(3)
1 ε2

t−1
(3)

+ β
(3)
1 ηt−1

(3).
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Various combinations of the DTGARCH model specification given here covers and

exhibits many time series features such as stationarity, non-stationarity, chaotic be-

havior, linearity, non-linearity, seasonality, abrupt changes, and regime switching.

The success of the specified model in the experimental study supports our cluster-

ing perspective. This means that the selected model’s environment is rich enough

to cover numerous type of behavior in time series. In this sense, the selection of a

specific DTGARCH model is not an unique choice. It should be noted that models

with a certain degree of diversity in the background will have similar performance.

However, finding the optimal degree of background diversity for the selection of the

model is beyond the scope of this study and left as future work.

Consequently, a part of non-linear associations that can be measured by coefficient

estimates, φ̂(1:3)
1:4 , α̂(1:3)

0 , α̂(1:3)
1 , β̂(1:3)

1 , conditional variance estimates, η̂(1:3)
t , residuals,

ε̂
(1:3)
t , and remaining conditional heteroscedasticity preserved by squared residuals,

ε̂2
t

(1:3)
, are acknowledged as non-linear time series model-based components for con-

struction of feature vectors.

Sample Autocorrelation and Sample Partial Autocorrelation Functions: Auto-

correlation function (ACF) and Partial Autocorrelation function (PACF) carry infor-

mation about linear temporal dependence of stationary time series. Therefore, a part

of linear associations that can be measured by sample ACF and sample PACF of raw

time series and residuals are considered as a component of feature vectors.

For a given observed time series zt, t = 1 : T , the sample auto-covariance function

γ̂(h), is defined as follows:

ĉov(zt, zt+h) = γ̂z(h) =
1

T

∑T−h
t=1 (zt − z̄)(zt+h − z̄).

Sample ACF estimates the linear correlation among the lagged values of a time series.

For a given observed time series zt, t = 1 : T , the sample ACF can be defined as

follows:
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ĉor(zt, zt+h) = ρ̂z(h) =
γ̂z(h)

γ̂z(0)
=

∑T−h
t=1 (zt − z̄)(zt+h − z̄)∑T

t=1(zt − z̄)2
, h = 0, 1, 2, . . ..

In addition to the estimation of sample ACF between zt and zt+h, there is another tool

for measuring the linear association between zt and zt+h which is based on removing

their mutual linear dependency on the lie in between variables zt+1, zt+2, . . . , zt+h−1

[135].

The conditional correlation estimation

ĉor(zt, zt+h|zt+1, . . . , zt+h−1) = π̂z(h, h)

is called as the sample PACF in time series analysis.

For a given observed time series zt, t = 1 : T , Durbin’s [136] recursive formula

starting with π̂z(1, 1) = ρ̂z(1) for computing the sample PACF, π̂z(h, h), can be

defined as follows:

π̂z(h+ 1, j) = π̂z(h, j)− π̂z(h+ 1, h+ 1)π̂z(h, h+ 1− j) j = 1, 2, . . . , h

ĉor(zt, zt+h+1|zt+1, . . . , zt+h) = π̂z(h+ 1, h+ 1) =
ρ̂z(h+ 1)−

∑h
j=1 π̂z(h, j)ρ̂z(h+ 1− j)

1−
∑h

j=1 π̂z(h, j)ρ̂z(j)
.

ACFs and PACFs of raw time series (series stationarized where it is necessary) yt, i.e.,

ρ̂y(h) and π̂y(h, h); ACFs and PACFs of residuals and squared residuals from linear

model estimations, i.e., ρ̂a(h), ρ̂a2(h), π̂a(h, h) and π̂a2(h, h); ACFs and PACFs of

residuals and squared residuals from non-linear model estimations, i.e., ρ̂ε(h), ρ̂ε2(h),

π̂ε(h, h) and π̂ε2(h, h) are features which constitutes blocks of feature vectors/matri-

ces. To provide comparable resolution among serial correlations number of delay

lags, h, for up to 18 is considered within the settings of experimental study.
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Frequency Spectrum: Fourier representation of a given time series zt, t = 1 : T ,

and for κ = 0, . . . , T/2 can be given as

zt =
∑T/2

κ=0[Aκ cos(2πκt
T

) +Bκ sin(2πκt
T

)]

=


∑(T−1)/2

κ=−(T−1)/2Cκe
( 2πiκt

T
), if T is odd,∑T/2

κ=−(T/2)+1Cκe
( 2πiκt

T
), if T is even.

TheAκ,Bκ and Cκ are called the Fourier coefficients or the complex valued spectrum

of z at the corresponding Fourier frequency ωκ = 2πκ
T

.

Considering the following Euler relation

eiω = cos ω + i× sin ω

and the identities

sin ω = eiω−e−iω
2i

,

cos ω = eiω+e−iω

2i
,

the Fourier coefficients Aκ, Bκ and Bκ are related as
C0 = A0; CT/2 = AT/2, if T is even

C+κ = Aκ−iBκ
2

,

C−κ = Aκ+iBκ
2

.

Above mentioned statements implies that any given observed time series can be rep-

resented by a linear combinations of sine-cosine waves or the complex exponen-

tials [135]. Therefore, for a given time series zt, t = 1 : T and assuming that

the T is even, the Fourier coefficients can be computed via the Fourier transformation

as follows:

Cκ(z) =
∑T

t=1 zte
−i2πκt/T , κ = −T/2 + 1, . . . , 0, . . . , T/2.

Consequently, the frequency spectrum of the time series, zt, can be produced by the

computation of the complex modulus, |Cκ(z)|, versus the Fourier frequencies ωκ =
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2πκ
T

for κ = 0, . . . , T/2. For the large number of T , the computation of the Fourier

transforms requires great numbers of calculations and become impractical. However,

using the faster computation algorithm known as the fast Fourier transform (FFT) one

can quickly and efficiently accomplish the Fourier transforms. Please see [135, 137,

138] for more details about the FFT.

The frequency-domain properties are included in feature vectors via the computa-

tion of complex modulus of the Fourier coefficients (i.e., frequency spectrum) of raw

time series, yt, squared residuals and conditional variance estimates . Thus, |C(yt)|,
|C(ε̂2

t )| and |C(η̂
(1:3)
t )| are corresponding components of feature vectors/matrices.

3.4.2 Multiple Univariate Time Series Clustering

The proposed approach for multiple univariate time series clustering is designated to

accomplish the purpose of clustering a set of univariate time series y = {y1
t , . . . , y

n
t }

each with size of T into cl subsets at time point T regarding all the time span they

have.

The main clustering perspective of the proposed clustering approach is to cluster time

series with respect to similarities of their underlying DGMs. In this context, it is

aimed to appoint latent DGMs to cluster centers. To this end, each time series repre-

sented by a feature vector in which components are obtained from the specific time

series models estimations and non-model-based properties. By doing this we treated

time series as objects to be clustered. Here, time series models can be considered as

multi faceted prisms. After filtering of time series with practical and comprehensive

tools, the resultants provide reduced and refined information to enable us to evaluate

the similarities of time series in terms of their underlying DGMs.

Since the components of the feature vectors are provided from different feature spaces,

it is more convenient to express and treat these vectors in block layered form. The

tools for feature extraction are briefly mentioned in the previous subsection 3.4.1.

Consequently, components of the feature vector for a given time series yt shown in

Table 3.1.
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Table 3.1 Components of the feature vector for a given time series yt.

(a) model-based components

Feature Source

φ̂
(ar)
1:par AR

φ̂
(1:k)
1:arj

DTGARCH

α̂
(1:k)
0 , α̂(1:k)

1 , β̂(1:k)
1 DTGARCH

ρ̂a(h), π̂a(h, h) AR

ρ̂a2(h), π̂a2(h, h) AR

ρ̂ε(h), π̂ε(h, h) DTGARCH

ρ̂ε2(h), π̂ε2(h, h) DTGARCH

|Cκ(ε̂2)| DTGARCH

|Cκ(η̂(1:k))| DTGARCH

(b) model-free components

Feature Source

ρ̂y(h), π̂y(h, h) Raw time series

|Cκ(y)| Raw time series

par denotes the order of the AR model.

k denotes the number of regimes in DTGARCH model.

arj denotes the regime specific AR order where j = 1, . . . , k.

h denotes the lag where the serial correlations are calculated up to.

κ denotes the spectrum length where κ = 0, . . . , T/2 and T is the length of a given time series y.

The number of feature block considered as 11 in the feature vector which contains

the linear AR and the non-linear DTGARCH models based features, and frequency

domain properties of raw series and DTGARCH estimation results.

Forming a feature vector, fs, from a univariate time series, yst , can be illustrated as

follows:
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yst =



ys1

ys2
...
...
...

ysT


T×1

====⇒ f∈1:T
s =



φ̂
(ar)
1:par

φ̂
(1:k)
1:arj

α̂
(1:k)
0,1 , β̂

(1:k)
1

ρ̂y(h)h×1

π̂y(h, h)h×1

ρ̂a(h)h×1

π̂a(h, h)h×1

ρ̂a2(h)h×1

π̂a2(h, h)h×1

ρ̂ε(h)h×1

π̂ε(h, h)h×1

ρ̂ε2(h)h×1

ρ̂π2(h, h)h×1

|Cκ(ε̂2)|T/2×1

|Cκ(η̂)|T/2×1

|Cκ(y)|(T/2)×1


M

→ 1st feature block

→ 2nd feature block

→ 3rd feature block

→ 4th feature block

→ 5th feature block

→ 6th feature block

→ 7th feature block

→ 8th feature block

→ 9th feature block

→ 10th feature block

→ 11th feature block

where M = (par + k ∗ arj + k ∗ 3 + 10h+ 3T/2)× 1 is the dimension of the vec-

tor, fs.

Therefore, a set of univariate time series y = {y1
t , . . . , y

s
t , . . . , y

n
t } each with length

of T can be represented via feature matrix, |F (y)|M×n, which constitutes of feature

vectors as |F (y)|M×n = {f1, . . . , fs, . . . , fn}. Thereafter, clustering task can be

performed over feature vectors instead of raw time series.

Accordingly, by considering feature vectors, distance-based clustering approaches be-

come a more practical solution for clustering. However, since the intra-connectedness
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and the inter-connectedness of each feature block is a fact, the task of clustering of

these feature vectors leads us to efficiently utilize the spectral clustering algorithm.

As we noted previously, SC outperforms conventional clustering algorithms when-

ever the connectivity of points to be clustered is non-ignorable [99].

To adapt the SC algorithm given in Section 3.3 for time series clustering via block lay-

ered feature vectors, the affinity matrix,A, over given set of feature vectors {f1, . . . , fn}
in RM where M = (par + k ∗ arj + k ∗ 3 + 10h+ 3T/2) is modified and defined by

Aij =

exp

(
−

T ∗∑
wn=1

( 8∑
bl=1

‖ f∈[wn,T ]
i,bl − f∈[wn,T ]

j,bl ‖2 +
11∑
bl=9

DKS(f
∈[wn,T ]
i,bl , f

∈[wn,T ]
j,bl )

))
(2%2)

,

(3.9)

in the proposed approach. To provide legitimate similarities toward clustering, the

distance calculations in the affinity matrix are made compatible with the block layered

structure of the feature vector.

Additionally, to evaluate the time dependency of the time series (i.e., clusters) in clus-

tering, the cumulative sum of distances is provided to the affinity matrix calculation,

which is the cumulative sum of feature distances over all temporal resolutions, i.e.,

the procedure of calculating the matrix A utilize the iterative feature extraction and

the accumulated sum of feature distances obtained through all available time windows

such as, D(fi, fj) = D(fi, fj)∈[1,T ] + D(fi, fj)∈[2,T ] + . . . + D(fi, fj)∈[wn,T ] where

wn = 1, . . . , T ∗, and T ∗ ≈ T − 350 is the smallest window of a time series obser-

vations needed for DTGARCH estimation. Therefore, the persistent change in the

underlying generating mechanism of time series will be evaluated in the cumulative

distance calculation. Likewise, if there is no change, the effect of the cumulative sum

of the distance to the clustering via the affinity matrix will be the same as the effect

of distance that is based on the overall time span.

Various distance measures can be used for the first eight blocks such as Lp − norms,
Hausdorff ,Minkowski,Manhattan,Dynamic T imeWarping(DTW ) and many

others. Defining an optimal distance metric for the proposed approach is left as a fu-
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ture work since it is partly irrelevant to the scope of the study. However, we utilize

L2 − norm, which is known as Euclidean distance, because it performs better than

those compared (e.g., Hausdorff distance metric, DTW) in Aslan et al. [50]. Eu-

clidean distance, DEUCL can be given as follows:

DEUCL(fi, fj) =‖ fi − fj ‖2=

√√√√ M∑
τ=1

(
fi(τ)− fj(τ)

)2

.

The last three blocks of the feature vector consists of the frequency spectrum of raw

series, squared residuals and conditional variances. For this reason, we propose to use

of Kolmogorov-Smirnov distance, DKS , in the proposed approach. DKS is a metric

that is based on the non-parametric Kolmogorov-Smirnov test, which is the maximal

distance between the cumulative distribution functions [138] (i.e., the spectra of the

cumulative amplitudes of the Fourier transforms within the scope of this study). DKS

can be shown as follows:

DKS(fi, fj) = max
1≤l≤M

∣∣∣∣ l∑
τ=1

fi(τ)−
l∑

τ=1

fj(τ)

∣∣∣∣, DKS ∈ [0, 1].

The proposed univariate time series clustering approach, which we name The Linear

and the Non-linear Time Series Model Based Spectral Clustering (TSMB-SPCL-UV),

intends to provide a feasible and useful grouping of time series variables concerning

their underlying DGMs by using idiosyncratic feature vectors.

Determining the appropriate number of clusters: The problem of finding the ap-

propriate number of clusters is itself a research area and is closely related to definition

of the problem-specific "true" cluster and clustering. Our aim is to group the series in

terms of the data generating structures they belong to so that the resulting sets are as

homogeneous as possible. Since the proposed approach mainly operates on distances

and connections of feature vectors, we use the slightly modified version of the GAP

statistics developed by Tibshirani [139] which evaluates the within-cluster distances

(i.e., within-cluster dispersion) around the cluster means.
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The sum of within-cluster pairwise distances between all points, ncl, for a given clus-

ter CLcl, where cl refer to the cluster number, can be given as

Dcl =
∑

i,i′∈CLcl

dii′ ,

where d is euclidean(L2-norm) distance. Therefore, within-cluster dispersion (i.e.

cluster compactness), Wcl, can be set as

Wcl =
clmax∑
cl=1

Dcl

2ncl
.

Then the GAP statistic, GAP (cl), proposed by [139], is defined as

GAPn(cl) = E∗n {logWcl} − logWcl,

where n is the sample size and E∗n denotes the expectation determined by bootstrap-

ping, i.e, simulating from a reference distribution. Eventually, the estimate of cluster

number, ĉl, is the value that maximizing GAPn(cl).

In order to get a smoother curve from the GAP statistics and to avoid local maxima,

we propose a generic function which multiplies the GAP statistics by a monotoni-

cally increasing function given as follows:

fg(GAP, cl) = GAP (cl)×
(
cl − 1

cl

)2

.

Thus, the estimate of the optimal number of clusters, ĉl, can be selected at the global

maximum of the generic function, fg(GAP, cl), where cl ≥ 1. Henceforth, we call

this generic function as the modified GAP statistics.

Steps of the proposed time series clustering approach are described in Figure 3.4.
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Step 1. Extract features based on non-linear associations:
Define the specific DTGARCH(k, ar1, q1, p1, . . . , ark, qk, pk) model to extract
non-linear based features, where k denotes the number of regimes.

Step 1.1. Extract the statistically significant coefficient estimates,φ̂(1:k)1:arj
, from each

estimation, where j = 1, . . . , k.

Step 1.2. Extract the residuals, ε̂, and the conditional variance estimates, η̂.

i. Calculate ρ̂ε(h) and π̂ε(h, h) of the residuals up to lag h.
ii. Calculate ρ̂ε2(h) and π̂ε2(h, h) of the squared residuals up to lag h.

iii. Calculate the frequency spectrum of ε̂2, |Cκ(ε̂2)|.
iv. Calculate the frequency spectrum of η̂, |Cκ(η̂)|.

Step 2. Extract features based on linear associations:
Define the specific AR(par) model to extract linear based features, where par
denotes the number of AR order.

Step 2.1. Extract the statistically significant coefficient estimates,φ̂1:par
, from each

estimation.

Step 2.2. Extract the residuals, â.

i. Calculate ρ̂a(h) and π̂a(h, h) of the residuals up to lag h.
ii. Calculate ρ̂a2(h) and π̂a2(h, h) of the squared residuals up to lag h.

Step 3. Extract features based on raw time series:
Calculate ρ̂y(h) and π̂y(h, h) of the raw series up to lag h, and the frequency
spectrum of raw series, |Cκ(y)|.

Step 4. Form the feature vectors toward spectral clustering:
Form the M -dimensional feature vectors by stacking feature blocks.

Step 5. Temporal (i.e., time-dependent) Clustering:
Run the spectral clustering algorithm on the constructed feature matrix using
proposed affinity matrix calculation given in Equation 3.9. Time dependency
of the time series in clustering is provided by the distance in the Affinity matrix
calculation, which is the cumulative sum of feature distances over all temporal
resolutions via repeating the feature extraction phase all the way from Step 1
to Step 4. Number of clusters determined at, or near, the global maximum of
the modified GAP statistics.

Step 6. Obtain overall cluster for given data period.

Figure 3.4 Steps of the proposed time series clustering approach

3.4.3 Multiple Multivariate Time Series Clustering

The proposed approach for clustering of set of multiple multivariate time series clus-

tering is almost similar to the univariate time series clustering approach that we pro-

posed in previous subsection 3.4.2. However, in multivariate case the feature vectors
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are replaced by feature matrices, and thereby, proposed clustering approach can be

performed over set of feature matrices instead of set of multivariate time series. Sim-

ilar to the univariate case of the proposed clustering approach, each multivariate set

of time series treated as objects to be clustered.

The aim in this setting is clustering a set of multivariate time series Y = (Y 1
t , . . . ,Y

n
t )

each with dimension of T ×m into cl subsets at time point T regarding all the time

span they have.

The feature matrix, fs, for a multivariate time series, Y s
t , which contains m time

series variables can be shown as follows:

Y s
t =

[
yst1 yst2 . . . ystm

]
T×m

,

y y . . .

y
f∈1:T
s =

[
f s1 f s2 . . . f sm

]
M×m

,

f∈1:T
s =

(1)φ̂
(ar)
1:par · · · (m)φ̂

(ar)
1:par

(1)φ̂
(1:k)
1:arj

· · · (m)φ̂
(1:k)
1:arj

... · · · ...

... · · · ...
(1)ρ̂ε2(h)h×1 · · · (m)ρ̂ε2(h)h×1

(1)ρ̂π2(h, h)h×1 · · · (m)ρ̂π2(h, h)h×1

(1)|Cκ(ε̂2)|(T/2)×1 · · · (m)|Cκ(ε̂2)|(T/2)×1

(1)|Cκ(η̂)|(T/2)×1 · · · (m)|Cκ(η̂)|(T/2)×1

(1)|Cκ(y)|(T/2)×1 · · · (m)|Cκ(y)|(T/2)×1





f s1
↓

· · · f sm
↓

← block matrix of 1st feature

← block matrix of 2nd feature

← block matrix of 8th feature

← block matrix of 9th feature

← block matrix of 10th feature

← block matrix of 11th feature
M ×m,
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where M = (par + k ∗ arj + k ∗ 3 + 10h+ 3T/2). Thus, feature extraction from a

set of multivariate time series data follows a similar procedure as in subsection 3.4.2

and accomplished by examining each univariate time series variable separately.

Consequently, the dimensionality of the multivariate time series is taken into account

for the calculation of the affinity matrix, A, over corresponding set of feature matri-

ces {f1, . . . ,fs, . . . ,fn} in RM×m. Since it is necessary to use the matrix norm to

calculate the differences between the blocks of feature matrices in the calculation of

the affinity matrix, we have used the Frobenius norm for this purpose.

The Frobenius norm is a matrix norm and also known as the Euclidean norm of a

matrix. It can be used to calculate the distance between any two matrices of the same

size. For example, suppose we have two matrices of the same size, Xk×m and Yk×m.

The distance between Xk×m and Yk×m can be calculated by the Frobenius norm as:

‖ X− Y ‖F=‖ Y− X ‖F=
√
tr[(X− Y)(X− Y)′ ].

Therefore, the affinity matrix, A, in multivariate case is modified and defined by

Aij =

exp

(
−

T ∗∑
wn=1

( 8∑
bl=1

‖ f∈[wn,T ]
i,bl − f

∈[wn,T ]
j,bl ‖F +

m∑
m∗=1

11∑
bl=9

DKS(f
∈[wn,T ]
i,m∗,bl , f

∈[wn,T ]
j,m∗,bl )

))
(2%2)

,

(3.10)

in the proposed multivariate time series clustering approach, which we abbreviate

as TSMB-SPCL-MV. The clustering procedure summarized in Figure 3.4 is also the

same for multivariate case except for the calculation of the affinity matrix, A.
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CHAPTER 4

EXPERIMENTAL RESULTS: UNIVARIATE TIME SERIES CLUSTERING

This chapter is devoted to the assessment of the clustering performance of the pro-

posed approach, which is given in Section 3.4, for a set of univariate time series data

where each univariate time series is desired to be clustered as an object.

What we mean by clustering and ’true cluster’?

As mentioned in Sections 1.3, 3.1 and 3.4, the clustering perspective of this study and

the aim of the proposed clustering approach is to distinguish and group a set of time

series in terms of their similarities of the sources from which they are produced/e-

merged. In this sense, ’true’ clusters of time series refer to clusters that contain sim-

ilar objects (i.e., time series) in terms of their underlying generating mechanisms.

Accordingly, the clustering algorithm proposed in the study is structured by regard-

ing the definition of the ’true’ cluster given here.

On the relations between the artificially created data generating procedures and

authentic time series data.

Taking into account that the underlying (i.e., latent) DGMs of observed time series

can not be fully identified but can only be approximated, the clustering approach we

propose mainly relies on time-dependent features of the time series that are derived

from raw data and approximations to their underlying data generating processes.

The underlying data generation mechanism of an observed time series variable may

be time-dependent because of alternating states over time. For example, neuronal ac-

tivities of a human brain that can be observed via the electroencephalography (EEG)

would exhibit significant differences among sleep and awake times. Being asleep or

awake are two completely different physical states and the effect of these situations on

neuronal activity cannot be ignored. In such a case, cluster formations (i.e., member-

59



ships) of neuronal responses during a day may heavily depend on time. But for most

of the case these types of phase differences or alternating states are not so apparent.

Due to such circumstances, like in time series variables analyzing, it is necessary to

problematize that time series clustering can be time-dependent. The main motivation

of the study is developing the clustering approach as sensitive to possible temporal

cluster formations. Hence, the proposed clustering approach utilizes multifaceted

time series models that can approximate the time-dependent structure of generating

mechanisms. In this regard, the datasets and corresponding clusters we generated to

test our approach have been produced with similar concerns.

On the extent of the experiments.

We artificially generated sets (i.e., clusters) of time series data regarding 5 sets of

experiments employed well-known and heterogeneously complex time series DGMs.

For each experiment set and its DGMs (i.e., models), we considered two main cases

that can be named as non-temporal and temporal formations. First, we evaluated

the performances over fixed clusters during a period of time. Then we extended the

evaluation for each case by composing changes of DGMs over a longer period of time

and so clusters. We want to state here that each generated cluster is characterized by

a bunch of time series produced by a specific DGM or by a composition of diversified

DGMs depending on time. In this sense, one can consider that the centers of generated

clusters are composed of underlying DGMs. That is to say, if a DGM specifies a

cluster has diversified into several new DGMs during a time, the cluster structure will

also change accordingly. Thus, in this chapter, the clustering performances of the

proposed time series clustering approach and the state-of-the-art time series clustering

methods are evaluated and compared over synthetically generated clusters.

Generated sets of time series are desired to have and exhibit various properties of

time series seen in real life such as stationarity, non-stationarity, seasonality, non-

linearity, explicit and smooth regime switching structures, and with heteroscedasticity

in conditional variance.

To evaluate the responsiveness of the proposed approach over similar data-generating

processes, considered DGMs that produce synthetic data are determined considering

their similarity in terms of dynamics and structure, such as lag formation, coefficient
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strings, and volatility compositions. Besides, each considered DGM contains the

same type of the component (i.e., conditional mean/variance) present in at least one of

the other DGMs. It should be noted that this perspective of synthetic data generation

makes the clustering task of time series more challenging and realistic. Nonetheless,

as there may be an infinite number of scenario assumptions that can be considered

to test the proposed approach, it should also be noted that we limit our work to the

research done in this section.

In this chapter, a total of 66 different clustering plans comprised of the use of 22 dif-

ferent dissimilarity measures on 3 different clustering methods (i.e., Fuzzy c-means,

Partitioning Around Medoids (PAM), Spectral) are compared with the proposed time

series clustering approach. The state-of-the-art dissimilarity measures proposed by

recent literature are presented in Table 4.1. The dissimilarity measures used in the

comparison study have been comprehensively discussed in [55], and the correspond-

ing tools have been made available in the R package named as TSclust.

Model-Free dissimilarity measures focus on the pattern or shape related similarities

and properties of time series. Complexity Based dissimilarities consider the use of

the information-theoretical properties of time series for measuring the dissimilarities

between time series. Model-Based dissimilarity measures operate on the use of the

properties of probability or time series models to get similarities between time series.

On the other hand, as explained in Chapter 3, the proposed clustering approach can

be considered as a distance-based time series clustering algorithm that operates on a

mixture of a model and non-model based features derived from the time series dataset

to be clustered.

4.1 Performance Evaluation over Synthetic Data

Four different experiments on synthetic datasets are conducted within the scope of this

chapter. Each included evaluations considering different types of synthetic datasets/-

clusters produced based on the specific time series models and combinations of these

models. Thus, a total of 9 distinct scenarios are examined. However, for readability

and ease of follow-up, the results of only two of these experiments are given in a

subsection, while the remaining experiments are given in Appendix A.
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Table 4.1 Dissimilarity measures used for comparison in univariate clustering.

Dissimilarity Measure Description Reference
Model free approaches

DACF Autocorrelation based distance. [60]
DPACF Autocorrelation based distance. [60]
DEUCL Euclidean distance. [55]

DCORT

Dissimilarity index that covers both
dissimilarity on raw values and
dissimilarity on temporal correlation
behaviors.

[61]

DCOR Correlation-based dissimilarity. [62]

DDWT
Dissimilarity for time series based on
wavelet feature extraction. [63]

DPER Periodogram based dissimilarity. [64]

DINT.PER
Integrated periodogram based
dissimilarity. [65]

DSPEC.LLR1

General spectral dissimilarity measure
using local-linear estimation of the
log-spectra via least squares estimation.

[66, 67]

DSPEC.LLR2

General spectral dissimilarity measure
using local-linear estimation of the
log-spectra via maximum likelihood
estimation.

[66, 67]

DGLK
Dissimilarity based on the generalized
likelihood ratio test. [68, 69]

DISD

Dissimilarity based on the integrated
squared difference between the
log-spectra.

[69]

DSAX
Symbolic aggregate approximation
related functions. [70, 71]

DV R
Distance based on variance ratio
statistics. [72]

DDTW Dynamic time warping distance. [59, 73]

Model based approaches

DAR−LPC
Dissimilarity based on linear predicitive
coding (LPC) cepstral coefficients. [78]

DAR−MAH
Model-based dissimilarity proposed by
Maharaj. [77, 80]

DAR−PIC
Model-based dissimilarity measure
proposed by piccolo. [58]

Complexity based approaches

DCID
Complexity-invariant distance measure
for time series. [74]

DPDC Permutation distribution distance. [56]

DCDM
Compression-based dissimilarity
measure. [75]

DNCD Normalized compression distance. [76]
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As stated before, artificially generated data sets are created by hypothetical DGMs. It

should be noted again that the bunch of time series generated from each DGM also

forms an artificial cluster subject to clustering experiments for performance evalua-

tion of the proposed clustering approach. Each DGM is composed of specific time

series models that we denominate the definite components as the stems. In some

scenarios, a stem with an error component may directly form a DGM, and in some

scenarios, combinations of stems form a DGM. Therefore, under each subsection, the

stems and then the DGMs consists of these stems are introduced, and how the clusters

corresponding to these DGMs are formed is described.

For an experiment in this section, the general procedure of generating samples, clus-

ters, and then evaluations of clustering performances over the generated (i.e., syn-

thetic) dataset can be summarized as follows:

* nos⇐ the number of sources: Defines the number of hypothetical DGMs,
nos, be used in the experiment.

* noc⇐ the number of clusters: The number of hypothetical DGMs, nos, also
defines the number of true clusters, noc (i.e., nos = noc).

* ss⇐ sample size: Define the time span, length or number of observations, ss,
for each generated series.

* cs⇐ cluster size: Define the cluster size, cs, which determines the number of
series/members in each cluster.

* rn⇐ repetition number: Defines the number of repetitions of the experiment.

After deciding values for nos, noc, ss, cs and rn, the synthetic dataset generation,
clustering, and comparison phases of an experiment can be summarized in 4 steps:

1. Each DGM used to generate cs number of time series with the length of ss
to form a corresponding cluster.

2. Clustering by proposed approach and other considered clustering methods
for comparison are performed over nos × cs × ss dimensional dataset and
clustering accuracies are saved.

3. Steps from 1 to 2 repeated rn times to get average accuracy indexes of
clustering methods and the proposed approach.

4. The average accuracy indexes of all methods are compared.

In this context, the number of clusters in an artificial dataset is equal to the number

of DGMs used to create it. The number of elements in each cluster is equal to the
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number of time series generated from each corresponding DGM. Hence, while gen-

erating the dataset, we also know the true cluster formation in it. Accordingly, by

clustering the generated dataset with the proposed clustering approach, we can assess

its performance and compare the clustering results with the true cluster formation.

In addition to performance evaluation over non-temporal clusters, we essentially de-

sired to evaluate the performance of the proposed clustering approach over changing

cluster formations through time. To do so, in some experiments, we ensured that hy-

pothetical DGMs consists of different generating mechanisms in different time win-

dows.

In this type of scenario, different from generating a dataset for non-temporal clus-

ter formations, first, we need to generate a dataset consisting of a different number

of clusters and cluster sizes for varying time intervals provided that they are within

the overall time period subject to clustering. Then, this artificial dataset needs to be

clustered in a consecutive and additive manner to evaluate the performance of the pro-

posed approach. In other words, the number of clusters and cluster sizes may change

after a time point, and clustering sometime after that point should result in a different

cluster formation due to the differentiation in data generation mechanisms. Accord-

ingly, we require to examine the clustering performance of the proposed approach

against such likely circumstances. As we state in Section 3.4.2, the proposed clus-

tering approach is designed to utilize the cumulative sum of distances to discover the

changes of clusters over time if there is any. In this type of experiment, to examine the

clustering approach’s aforementioned capacity, the time intervals in an overall time

period that is available are enlarged step by step during clustering. Thus, evaluation

can be made by comparing cluster formations obtained at different time intervals with

actual cluster formations. This is also because we intend to test how soon the pro-

posed approach can respond to probable variations in clusters that may occur when

incoming (i.e., streaming) data in real-life extend a dataset to be clustered.

Let’s try to simplify these explanations with a fictitious example, and depict the cor-

responding time-code of a generated dataset as a diagram in Figure 4.1. Suppose that

by using several hypothetical DGMs we have created a synthetic dataset of sample

sizes T , and also assume that some of time series generating mechanisms have been
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subjected to the changes after the time point, t, which will also effect the cluster for-

mations after that time point. This means that the structures that generate some series

in the dataset do not remain unchanged over time. Therefore, after the time point t,

such series should not be considered the members of the clusters they belonged to

before. In brief, the cluster formation on the overall time period from 1 to T is differ-

ent than the cluster formation on samples from 1 to t. To understand whether we can

identify these reformations of clusters via the proposed clustering approach, we can

evaluate the performance by comparing the results of the clusterings, made at the time

intervals like shown in the diagram in Figure 4.1, with the cluster formations already

present in the dataset. Such artificial datasets, designed to contain different cluster

formations through time, can enable us to evaluate the performance of the proposed

clustering approach on checking whether temporal/dynamic cluster formations in the

dataset.

overall time period subject to clustering

0 Tt ... t+k ... t+2k ...

clustering#1 using samples from 1 to t

clustering#2 using samples from 1 to t+k

clustering#3 using samples from 1 to t+2k

...

clustering using samples from 1 to T

*k is the increment value of samples subjected to clustering.

Figure 4.1 Diagram for testing the temporality of clusters.

However, in real-life problems, the aim is to determine the clusters by using all avail-

able observations for clustering at time T . And, more importantly, the ultimate goal is

able to detect probable changes in clusters when clustering the updated dataset after

new incoming data.
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On the Implementation of the Proposed Approach and Hyperparameters

Before presenting the experiments and their results, we would like to state the spec-

ifications (i.e., hyperparameters) we employed to implement the proposed approach.

Let us remind that the performance evaluations presented in this section are limited

to predetermined assignations of hyperparameters.

In Section 3.4.2, while explaining the proposed approach, we stated that each time

series subject to clustering should be represented by a competent feature vector. The

elements of the feature vector consisting of 11 parts and fixed values of hyperparam-

eters corresponding to them are given in Table 4.2. The implementation steps of the

proposed approach are also given in Figure 3.4.

Table 4.2 The feature vector and fixed hyperparameters in this study.

Feature Hyperparameter Value Source

model-based elements

φ̂
(ar)
1:par par = 12 AR

φ̂
(1:k)
1:arj

k = 3, ar1 = 4, ar2 = 4, ar3 = 4 DTGARCH

α̂
(1:k)
0 , α̂(1:k)

1 , β̂(1:k)
1 k = 3 DTGARCH

ρ̂a(h), π̂a(h, h) h = 18 AR

ρ̂a2(h), π̂a2(h, h) h = 18 AR

ρ̂ε(h), π̂ε(h, h) h = 18 DTGARCH

ρ̂ε2(h), π̂ε2(h, h) h = 18 DTGARCH

|Cκ(ε̂2)| κ = 0, . . . , T/2 DTGARCH

|Cκ(η̂(1:k))| κ = 0, . . . , T/2 DTGARCH

model-free elements

ρ̂y(h), π̂y(h, h) h = 18 raw time series

|Cκ(y)| κ = 0, . . . , T/2 raw time series
par denotes the order of the AR model.
k denotes the number of regimes in DTGARCH model.
arj denotes the regime specific AR order of DTGARCH model where j : 1, 2, 3.
â denotes residuals obtained from the estimation of the AR model.
ε̂ denotes residuals obtained from the estimation of the DTGARCH model.
h denotes the lag where the serial correlations are calculated up to.
η̂ denotes conditional variance from the estimation of the DTGARCH model.
κ denotes the spectrum length and T is the length of a time series.
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Fixation of hyper-parameter values may seem discretional, however these values are

just proper for the purposes of the study. It should be noted that the aim is not to find

the most suitable model for the time series. Here, for our clustering aims, we mainly

focus on the operability of the results obtained from the associations of the time series

with the determined forms of the mentioned models. Therefore while aiming the

construct competent feature vectors, the practical approach for determining the hyper-

parameter values is whether the models we employ are easily accessible and whether

the combinations of the estimation outputs could eliminate the overfitting problems.

4.1.1 First Set of Experiments

In this set of experiments, we used 5 specific stems given in Table 4.3 which are

originating from well-known time series models such as Autoregressive Moving Av-

erage (ARMA), Autoregressive Integrated Moving Average (ARIMA), Seasonal Au-

toregressive Moving Average (SARMA), Logistic Smooth Transition Autoregressive

(LSTAR), and Self Exciting Threshold Autoregressive (SETAR) models.

Table 4.3 Utilized specifications of mean processes in the first set of experiments.

STEM_1: Yt = 0.80Yt−12 + εt + 0.70εt−12

STEM_2: Yt = 0.90Yt−1 − 0.50Yt−2 + 0.15Yt−3 + εt − 0.20εt−1 + 0.25εt−2

STEM_3: Yt = 2.55Yt−1 − 2.30Yt−2 + 0.75Yt−3 + εt + 0.80εt−1 + 0.50εt−2

STEM_4: Yt = 0.80Yt−1 − 0.80Yt−1(1 + e−10Yt−1)−1 + εt

STEM_5: Yt =
−0.15 + 0.85Yt−1 − 0.15Yt−2 + 0.30Yt−3 − 0.40Yt−4 + ε

(1)
t , Yt−1 < −1.2

2.20 + 0.20Yt−1 − 1.70Yt−2 + 0.25Yt−3 + ε
(2)
t , −1.2 < Yt−1 ≤ 1.2

1.00 + 0.50Yt−1 − 1.15Yt−2 − 0.60Yt−4 + ε
(3)
t , Yt−1 ≥ 1.2

Additionally, error components listed in Table 4.4 are picked from Generalized Au-
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toregressive Conditional Heteroskedasticity (GARCH) and Asymmetric Power Au-

toregressive Conditional Heteroskedasticity (APARCH) types of conditional variance

models.

Table 4.4 Utilized specifications of error structures in the first set of experiments.

APARCH(a): h1.5/2t = 0.50 + 0.55(|εt−1| − 0.10εt−1)1.5/2 + 0.40h
1.5/2
t−1

APARCH(b): h1.5/2t = 0.50 + 0.20(|εt−2|+ 0.30εt−2)1.5/2 + 0.75h
1.5/2
t−1

GARCH(a1,a2,a3) =
ht = 0.10 + 0.15ε2t−1 + 0.10ε2t−2 + 0.25ht−1 + 0.10ht−2 + 0.20ht−3

ht = 0.15 + 0.25ε2t−1 + 0.10ε2t−2 + 0.10ht−1 + 0.05ht−2 + 0.15ht−3

ht = 0.15 + 0.10ε2t−1 + 0.25ε2t−2 + 0.25ht−1 + 0.10ht−2 + 0.15ht−3

GARCH(b1,b2,b3) =
ht = 0.30 + 0.05ε2t−1 + 0.10ε2t−2 + 0.05ht−1 + 0.25ht−2 + 0.10ht−3

ht = 0.35 + 0.15ε2t−1 + 0.15ε2t−2 + 0.20ht−1 + 0.25ht−2 + 0.05ht−3

ht = 0.05 + 0.35ε2t−1 + 0.05ε2t−2 + 0.05ht−1 + 0.15ht−2 + 0.25ht−3

where εt =
√
htet, and et

i.i.d∼ Dsged(0, 1).

Here in this list of specific time series processes, the STEM_1 can be viewed as an

example of the model known as SARMA which can generate seasonal characteristics

found in observed seasonal time series. The process STEM_2 can produce station-

ary time series and it is an example of a linear time series model named ARMA.

The ARMA type models are widely used in the literature of time series analysis and

have extensive application areas. The process STEM_3 is an example of the ARMA

models with an Integration order means non-stationarity exists in the mean process

and it is also a famous modeling concept widely used for time series analysis. The

STEM_3 can generate non-stationarity that is one of the most seen characteristics in

real time series data. The process STEM_4 is an example from the LSTAR model

which is a non-linear time series model used for explaining non-linearities in time se-

ries. The process STEM_4 can generate non-stationary non-linear time series. The

process STEM_5 is an example of the SETAR model described by two threshold

values. It is also a non-linear model and an extension of the linear time series models.

By employing the STEM_5, we can produce time series data with several salient

properties such as non-stationary, non-linear, and abrupt behavioral properties.
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The LSTAR and the SETAR type models can represent or generate many features

such as complexity, abruptness, non-linearity, and non-stationarity encountered in

observed time series.

For a long time, observed time series data were analyzed with linearity and station-

arity assumptions. Efforts to estimate and explain the features such as non-linearity,

non-stationarity, and complexity in the observed data are now considered to be a more

realistic approach. The study of the real world with the premise of nonlinearity has

become quite frequent in the literature [140].

Instead of following the normal distribution or pure white noise assumption for the er-

ror structures in hypothetical DGMs, we decided to utilize the heteroscedasticity phe-

nomenon that is frequently encountered in observed time series data. The APARCH

and GARCH are well-known models for modeling time varying variance of the er-

rors. The APARCH model nests most other volatility models, as well as the GARCH

model. The processes GARCH(a1,a2,a3) and GARCH(b1,b2,b3) are alternatively

used for the 3 regime error terms of the STEM_5 (e.g., ε(1)
t , ε

(2)
t , ε

(3)
t ). We use the

beforementioned error structures in hypothetical DGMs to compare the sensitivity of

the proposed approach versus other clustering methods regarding heteroscedasticity.

Given the context above, for instance, connecting STEM_1 with the APARCH(a)

process for the error term can be considered as an example of a hypothetical data

generating mechanism. By generating a bunch of time series from this source, we

can create an artificial cluster of time series. It is possible to produce a data set,

as comprehensive as it’s required, from hypothetical DGMs which are made by the

combinations of the stems with error processes given above. Hence, we can state that

there are a number of clusters present in the dataset equal to the number of hypothet-

ical DGMs used to create it.

The results given in the following parts demonstrate to what extent the clusters that

are assumed to be present in the created data set can be correctly determined.
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4.1.1.1 Case 1 : Non-temporal 10 Cluster

Essentially, in this scenario or case, the proposed approach and the other clustering

algorithms given in Table 4.1 are compared over 10 artificial clusters of time series

created by generating data from 10 hypothetical DGM. Hypothetical DGMs given in

Table 4.5 made from specific processes given in the Tables 4.3 and 4.4.

Table 4.5 Hypothetical DGMs used in Case 1.

DGM01 := STEM_1 | {εt} ∼ APARCH(a)

DGM02 := STEM_1 | {εt} ∼ APARCH(b)

DGM03 := STEM_2 | {εt} ∼ APARCH(a)

DGM04 := STEM_2 | {εt} ∼ APARCH(b)

DGM05 := STEM_3 | {εt} ∼ APARCH(a)

DGM06 := STEM_3 | {εt} ∼ APARCH(b)

DGM07 := STEM_4 | {εt} ∼ APARCH(a)

DGM08 := STEM_4 | {εt} ∼ APARCH(b)

DGM09 := STEM_5 | {ε(1)t , ε
(2)
t , ε

(3)
t } ∼ GARCH(a1,a2,a3)

DGM10 := STEM_5 | {ε(1)t , ε
(2)
t , ε

(3)
t } ∼ GARCH(b1,b2,b3)

The hypothetical DGMs used in Case 1 are designated to cover different types of

aspects of time series, such as stationarity in mean, non-stationarity, seasonality, non-

linearity, and regime-switching structure. To evaluate the success of the proposed

clustering approach on similar hypothetical DGMs, generating mechanisms are cho-

sen regarding their similarity with respect to dynamics/structure, such as orders, lag

delays, coefficients, and error components. Furthermore, each DGM is possessing

the identical STEM component (i.e. conditional mean/variance), which is also being

in at least one of the other hypothetical DGMs.

Visual exemplars of the DGMs’ motives are shown in Figure 4.2. Please observe that

DGMs sharing the same STEMs produce similar traces.

Therefore, to compare clustering methods through challenging experiments, artificial

clusters are formed by the data generation mechanisms containing similar structures.
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Hypothetical DGMs numbered from 1 to 6 in Table 4.5 can be named as linear au-

toregressive processes in the conditional mean, and DGMs numbered from 7 to 10

are non-linear processes. Especially: the 1st and 2nd are seasonal processes and have

the same seasonal properties in the conditional mean but only varies w.r.t error pro-

cesses which are also very similar components; the 3rd and 4th ones are stationary

linear autoregressive representations that holds the same conditional mean but with

slightly different error components; the 5th and 6th ones are non-stationary linear au-

toregressive processes partake the same conditional mean; the 7th and 8th processes

are non-linear non-stationary autoregressive processes called as logistic smooth tran-

sition regressions that using the same conditional mean but with different errors. The

last two models in Table 4.5 are three regime threshold non-linear processes with

different conditional variance processes in each regime.

The generating samples, clusters, and then evaluations of clustering performances for

Case 1 can be summarized as follows:

* nos = 10 (i.e., the number of hypothetical DGMs used in the experiment.)

* noc = 10 (i.e., the number of true clusters.)

* cs = 10 (i.e., the number of series/members in each cluster.)

* ss = 600 (i.e., the number of observations for each generated series.)

* rn = 100 (i.e., the number of repetition of the experiment.)

1. Each DGM in Table 4.5 is used to generate 10 (i.e., cs) number of time
series with the length of 600 (i.e., ss) to form a corresponding cluster.

2. Clustering done by the proposed approach given in Section 3.4.2 and
through implementation steps given in Figure 3.4, and 22 dissimilarity mea-
sures given in Table 4.1 for 3 different clustering methods (i.e., Fuzzy,
PAM, Spectral) are performed over 10 × 10 × 600 dimensional dataset
and clustering accuracies are saved.

3. Steps from 1 to 2 repeated 100 (i.e., rn) times to get average accuracies of
66 (i.e., 3 ∗ 22) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table 4.6.

Clustering results for Case 1 given in Table 4.6. Results for compared clustering

methods are obtained using samples with a length of 600 observations. However,
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3 different sample sizes (i.e., ss = 350, ss = 475, ss = 600) are considered to see

the effects of the lengths of the series on the performance of the proposed approach.

Please remind that at least 350 observations are needed to estimate the parameters of

the DTGARCH model.

Table 4.6 Univariate Experiment 1 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DACF 0.545 0.575 0.579
DPACF 0.438 0.602 0.596
DEUCL 0.262 0.357 0.452
DCORT 0.268 0.387 0.360
DCOR 0.264 0.389 0.327
DDWT 0.410 0.447 0.404
DPER 0.309 0.549 0.572
DINT.PER 0.591 0.605 0.531
DSPEC.LLR1 0.607 0.621 0.601
DSPEC.LLR2 0.615 0.615 0.606
DGLK 0.605 0.613 0.441
DISD 0.595 0.609 0.503
DSAX 0.377 0.309 0.327
DV R 0.548 0.556 0.360
DDTW 0.282 0.510 0.291

Model based
DAR−LPC 0.573 0.596 0.585
DAR−MAH 0.620 0.618 0.607
DAR−PIC 0.632 0.611 0.598

Complexity based
DCID 0.371 0.496 0.405
DPDC 0.554 0.614 0.506
DCDM 0.298 0.394 0.266
DNCD 0.315 0.395 0.269

Proposed Clustering Approach

TSMB-SPCL-UV
ss = 350 ss = 475 ss = 600

L2 (Euclidean) Distance 0.796 0.823 0.848

Under Case 1, the outcomes revealed that 8 of the compared clustering approaches
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produce clustering accuracies less than 0.50. The overall best result among compared

methods is 0.63 in average, achieved by the AR models based dissimilarity measures.

Furthermore, as can be seen from the Table 4.6, the accuracy indexes of the pro-

posed approach for three different sample sizes are considerably high compared to

other methods. It is seen that the increase in sample length has a positive effect

on the performance of the proposed approach. According to the results obtained,

we can say that, an average of 84% of the series generated in this scenario will be

correctly grouped with similar ones by the proposed clustering approach. The most

important reason for this is the ability of the proposed clustering approach to detect

heteroscedasticity in the series.

When the number of true clusters is set to 10, the classification accuracies of the time

series using the proposed clustering approach are given in Figure 4.3. Classifica-

tion accuracies over 100 replicates have varied between 0.73 and 0.94, and the exact

grouping accuracies are mostly dispersed around 0.84.

Figure 4.3 Accuracy rates vs. TSMB-SPCL-UV over 100 replicates.

The accuracy indexes in Table 4.6 are the outcomes obtained employing the true

number of clusters 10 while clustering the dataset. We stated in previous chapter

that in cases where the true number of clusters in the dataset is unknown, the GAP

statistic proposed by Tibshirani et al. [139] described in Section 3.4.2 could be used
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to determine the possible number of clusters. In the graph given in Figure 4.4, we see

the values of the GAP statistic over the possible number of clusters for a repetition

of Case 1. Thus, in cases where the number of clusters is unknown, the number of

clusters for which the GAP statistic approaches its maximum value can be used as a

take-off. In the sample graph depicted in Figure 4.4, we observe that the GAP statistic

luckily peaks at the actual number of clusters in the data set.

Figure 4.4 GAP statistic per cluster number for a replicate using TSMB-SPCL-UV.

The GAP statistic is a promising tool in inferring the optimum/plausible number of

clusters when the number of clusters is unknown. Sampling distribution of the GAP

statistics could give a view regarding its potential. In Figure 4.5, the sampling dis-

tribution of the GAP statistics per possible cluster value obtained from 100 trials is

represented with the help of box plots.

Notice that box-plots obtained at cluster numbers 6, 9, 10, and 11 in Figure 4.5 are

possible cluster numbers can be offered by the GAP statistics. This indicates that the

GAP statistics may offer local maximums that we should aware of while we utilizing

these statistics. For example, the sudden jumps and subsequent declines of the GAP

statistics obtained at cluster number 6 give us a clue that the possible number of

clusters in the data set may be considered as 6. Similarly, in some repetitions, the

GAP statistic may reach its maximum within the close vicinity of the actual number

of clusters.
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Figure 4.5 GAP statistics’ Box-Plot per cluster number for 100 replicates using

TSMB-SPCL-UV.

In the experiments included in case 1, the actual number of clusters of 10 is deter-

mined correctly in 30 out of 100 repetitions. Apart from this, the optimum number of

clusters is suggested as 9 or 11 in 32 repetitions. The distribution of possible cluster

numbers in which the GAP statistic reaches its maximum throughout 100 replicates

is given in Table 4.7.

Table 4.7 Estimated number of clusters by the global maximum of the GAP statistics
out of 100 repetitions using TSMB-SPCL-UV.

cluster number, ĉl 6 7 8 9 10 11 12 13 14 15 16
counts of peaks 3 1 7 20 30 12 7 8 4 4 4

Although the GAP statistics obtained over possible cluster numbers do not give an

exact solution for determining the number of clusters, they still can provide some

clues for the initial stage of a clustering task. Additionally, finding the optimum

number of classes when the possible number of clusters in any data set is not known

is not one of the primary questions that this study explores to answer, so we leave

more detailed investigations on the subject to further studies.
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4.1.1.2 Case 2 : Temporal 10 Cluster

This subsection aims to evaluate the performance of the proposed approach and the

compared methods to detect the time-varying cluster formations. For this aim, in Case

2 of the first set of experiments, the datasets are generated to test the proposed cluster-

ing approach’s capacity to detect time-varying cluster compositions. These datasets

are obtained from 10 different DGMs, and thus there are 10 clusters in total. In other

word, the dataset generation scheme in this scenario consists of 10 cluster sources

when considering the entire sample sizes of time series of length 1000. However,

some of the sources of time series generation mechanisms are desired to have slight

changes after a certain time point. Therefore, our artificial datasets have 2 different

cluster formations throughout the whole sample sizes.

Hypothetical DGMs used to create the dataset subjected to clustering in this subsec-

tion are given in Table 4.8. These configurations are made from specific processes

given in the Tables 4.3 and 4.4.

Table 4.8 Hypothetical DGMs used in Case 2.

used to generate time series of length 1000

sources of samples sources of samples

from 1 to 600 from 601 to 1000

DGM01 := STEM_1 | {εt} ∼ APARCH(a) B STEM_1 | {εt} ∼ APARCH(a)

DGM02 := STEM_1 | {εt} ∼ APARCH(a) I STEM_1 | {εt} ∼ APARCH(b)

DGM03 := STEM_2 | {εt} ∼ APARCH(a) B STEM_2 | {εt} ∼ APARCH(a)

DGM04 := STEM_2 | {εt} ∼ APARCH(a) I STEM_2 | {εt} ∼ APARCH(b)

DGM05 := STEM_3 | {εt} ∼ APARCH(a) B STEM_3 | {εt} ∼ APARCH(a)

DGM06 := STEM_3 | {εt} ∼ APARCH(a) I STEM_3 | {εt} ∼ APARCH(b)

DGM07 := STEM_4 | {εt} ∼ APARCH(a) B STEM_4 | {εt} ∼ APARCH(a)

DGM08 := STEM_4 | {εt} ∼ APARCH(a) I STEM_4 | {εt} ∼ APARCH(b)

DGM09 := STEM_5 | {εt} ∼ GARCH(a1,a2,a3)B STEM_5 | {εt} ∼ GARCH(a1,a2,a3)

DGM10 := STEM_5 | {εt} ∼ GARCH(a1,a2,a3)I STEM_5 | {εt} ∼ GARCH(b1,b2,b3)

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed slightly after 600th observation.
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Some information about the properties of the processes in Table 4.8 is given in the

preceding subsection. The data generation mechanisms in this table are used to gen-

erate series with a length of 1000 observations. As seen from the table, the structural

variations between the DGMs are created only in error components (i.e., conditional

variances). Conditional mean processes have remained unchanged. Thus, for exam-

ple, the source that constitutes DGM01 does not change in this scenario. In contrast,

the source that creates DGM02 changes when it reaches the 600th observation, and

the last 400 observations are produced under the change in conditional variance only.

The reason for this setup in Case 2 is to evaluate the responding ability of our pro-

posed approach to changes in heteroscedasticity and small but determinant perturba-

tions in sources of time series. It should be noted that, when examining the first 600

data-length samples of a dataset generated by these mechanisms, the dataset has 5

clusters. However, from the 601st time point, this data generating scheme changes

the cluster formations of a dataset into a composition with 10 clusters. Therefore,

clustering algorithms are performed at the 600th time point and the 1000th time point

of the dataset to measure the success of the proposed approach and the compared

methods on the time-varying clusters.

It should be noted that when 10 time series generation is planned from each DGM

within the specified framework above, the number of clusters be 5 and the number of

cluster members be 20 in the slice containing the first 600 observations of the dataset.

Thus, the number of clusters and cluster members to be determined in the dataset to

be examined in two theoretical time periods are emphasized. It should also be noted

that any change in a data generation mechanism effects on clustering formations can

be noticed by the proposed clustering approach approximately after it leaves a trace of

at least 350 observations to the history of the time series. Among other reasons, this

is more related to the minimum number of observations required for the estimations

of the time series model used in the proposed approach.

The changes placed in the data generation mechanisms in this scenario do not create

dramatic variations in the trace of time series. The reason for the comparatively small

changes created in DGMs is to see the responsiveness of the proposed clustering

approach in likely similar situations. Clustering accuracies obtained for Case 2 are

given in Table 4.9.
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The generating samples, clusters, and then evaluations of clustering performances for

Case 2 can be summarized as follows:

* nos_oa = 10 (i.e., the number of hypothetical DGMs used in the experi-
ment.)

* noc_oa = 10 (i.e., the number of true clusters on the overall dataset.)
* cs_oa = 10 (i.e., the number of cluster members when the overall

length of samples are clustered.)
* ss_oa = 1000 (i.e., the number of observations for each generated series.)
* nos_sub = 5 (i.e., the number of DGMs on the sub-samples of length

600.)
* noc_sub= 5 (i.e., the number of clusters on the sub-samples of length

600.)
* cs_sub = 20 (i.e., the number of cluster members when the sub-samples

are considered for clustering.)
* ss_sub = 600 (i.e., the number of observations for the sub-samples from

the 1st time point.)
* rn = 100 (i.e., the number of repetition of the experiment.)

1. Each DGM in Table 4.8 is used to generate 10 (i.e., cs_oa)
number of time series with the length of 1000 (i.e., ss_oa).

ss_sub : 1 to 600−−−−−−−−−−−−−−→
2. The slice of the dataset consist-

ing of the first 600 time points is
filtered out.

3. Clustering done on this slice by
the proposed approach given in
Section 3.4.2 and through imple-
mentation steps given in Figure
3.4, and 22 dissimilarity mea-
sures given in Table 4.1 for 3 dif-
ferent clustering methods (i.e.,
Fuzzy, PAM, Spectral) are per-
formed over 5 × 20 × 600 di-
mensional dataset and clustering
accuracies are saved.

4. Steps from 1 to 3 repeated 100
(i.e., rn) times to get average ac-
curacies of 66 (i.e., 3 ∗ 22) clus-
tering schemes and the proposed
approach.

5. The average accuracy indexes of
all methods considered in the
study are displayed for compar-
ison in Table 4.9.

ss_oa : 1 to 1000−−−−−−−−−−−−−−→
2. The dataset consisting of time

series length of 1000 is taken for
clustering.

3. Clustering done on the dataset by
the proposed approach given in
Section 3.4.2 and through imple-
mentation steps given in Figure
3.4, and 22 dissimilarity mea-
sures given in Table 4.1 for 3 dif-
ferent clustering methods (i.e.,
Fuzzy, PAM, Spectral) are per-
formed over 10 × 10 × 1000 di-
mensional dataset and clustering
accuracies are saved.

4. Steps from 1 to 2 repeated 100
(i.e., rn) times to get average ac-
curacies of 66 (i.e., 3 ∗ 22) clus-
tering schemes and the proposed
approach.

5. The average accuracy indexes of
all methods considered in the
study are displayed for compar-
ison in Table 4.9.

Results for compared clustering methods are obtained using samples with a length

of 600 and 1000 observations. However, 3 different sample sizes (i.e., ss = 600,
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Table 4.9 Case 2 average accuracy indexes (i.e., approx. correct clustering percent-
ages) of compared time series clustering methods and the Proposed Clustering Ap-
proach.

Clustering method

FUZZY PAM SPECTRAL

sample sizes (ss) sample sizes (ss) sample sizes (ss)
Dissimilarity 1 to 600 1 to 1000 1 to 600 1 to 1000 1 to 600 1 to 1000

Measure (5 cluster) (10 cluster) (5 cluster) (10 cluster) (5 cluster) (10 cluster)

Model Free
DACF 0.920 0.614 0.857 0.595 0.874 0.585
DPACF 0.663 0.552 0.917 0.608 0.891 0.589
DEUCL 0.425 0.302 0.496 0.357 0.341 0.336
DCORT 0.427 0.281 0.515 0.381 0.338 0.427
DCOR 0.435 0.280 0.465 0.380 0.579 0.320
DDWT 0.574 0.434 0.629 0.434 0.519 0.416
DPER 0.515 0.322 0.705 0.552 0.888 0.578
DINT.PER 0.925 0.581 0.905 0.597 0.684 0.412
DSPEC.LLR1 0.959 0.590 0.955 0.610 0.956 0.581
DSPEC.LLR2 0.961 0.600 0.919 0.612 0.964 0.583
DGLK 0.957 0.598 0.889 0.611 0.566 0.372
DISD 0.960 0.603 0.913 0.612 0.956 0.591
DSAX 0.511 0.386 0.421 0.317 0.527 0.401
DV R 0.904 0.592 0.834 0.590 0.461 0.339
DDTW 0.467 0.289 0.678 0.517 0.558 0.291

Model Based
DAR−LPC 0.810 0.554 0.778 0.586 0.785 0.565
DAR−PIC 0.956 0.631 0.948 0.603 0.906 0.584
DAR−MAH 0.983 0.611 0.939 0.616 0.898 0.597

Complexity based
DCID 0.691 0.353 0.637 0.480 0.422 0.324
DPDC 0.863 0.640 0.926 0.618 0.992 0.505
DCDM 0.428 0.324 0.538 0.420 0.684 0.291
DNCD 0.455 0.308 0.402 0.422 0.417 0.292

Proposed Clustering Approach

TSMB-SPCL-UV
ss → 1 to 600 ss → 1 to 800 ss → 1 to 1000

(5 cluster) (10 cluster) (10 cluster)

L2 (Euclidean) Dist. 0.991 0.659 0.810
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ss = 800, ss = 1000) are considered to see the effects of the lengths of the series on

the performance of the proposed approach. As can be seen from Table 4.9, some of

the compared clustering methods performed well, especially when there is no cluster

change in the dataset, that is, when the first 600 observations of the data set are con-

sidered for clustering. In the first considered part of the dataset, there are 5 clusters

with 20 members each. Data generation mechanisms differ from each other only in

terms of conditional mean processes. Thus, we can say that the clustering perfor-

mances of almost half of the compared clustering methods are good and promising,

particularly when the composition of the generating mechanisms of time series sub-

ject to clustering depends only on the conditional mean processes. Complexity-based

dissimilarity measure PDC with Spectral Clustering, model-based dissimilarity mea-

sure AR-MAH with FUZZY or K-means clustering, dissimilarity measures based

on time series spectrums such as SPEC.LLR, GLK, ISD with FUZZY, or K-means

clustering can be considered the best methods among compared methods. However,

when the set of time series desired to be clustered differ from each other in terms

of heteroscedasticity, the clustering accuracy rates of the aforementioned approaches

decrease considerably.

The clustering performance of the proposed approach on the first part of the dataset

was ranked as the 2nd best. When the entire dataset was clustered, the accuracy

indexes of the compared methods did not exceed 0.64, while the proposed clustering

approach clustered the time series with 80% accuracy.
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4.2 Performance Evaluation over Real-Life Data

This section assesses the clustering performances of the proposed clustering approach

and the other state-of-the-art clustering methods on 2 datasets obtained from real-life

time series classification experiments. These datasets are designed for time series

classification studies, and accordingly, the class labels and sizes are known before-

hand. Therefore, the datasets are used here to assess the ability of the proposed ap-

proach to identify underlying classes/clusters correctly.

In the literature, there are many time series classification and clustering studies re-

garding very different goals. Nonetheless, there are also publicly available many

benchmarking aimed datasets constructed for time series classification studies [141].

Proposed methods in clustering studies can be different in terms of being suitable for

the datasets desired to be clustered. Therefore, it is difficult to assume that any pro-

posed clustering approach can be suitable for all time series datasets to be clustered.

Although the proposed clustering approach in this study is not suitable for time series

with a small number of observations (i.e., ≤ 300), it appears to be more useful in

time series datasets where noise and heteroscedasticity are evident. In this respect,

we consider that the proposed approach can provide useful outcomes in clustering

datasets containing complex and volatile time series (i.e., > 300 obs.) from fields

such as signal processing, finance, econometrics, and climate.

The number of classes and the data generating mechanisms that make up these classes

in the real-life datasets we examined in this section are especially self-evident. Both

datasets we used here consist of long signals obtained from processes with different

dynamics. The first of these datasets consists of signals of 6 different hand movements

observed by electromyogram, while the other dataset consists of EEG signals from

5 different neuronal activities observed by electroencephalogram. The reason we

are used real-life data from the signal processing field is that it is almost infeasible

to find real-life time series datasets with explicit class formations with labels in the

areas such as economics, finance, and climate where information of underlying class

formations is not exactly accessible due to uncertainty inherent to the dynamics of

observations from these fields.
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4.2.1 Clustering of sEMG Signals for Basic Hand Movements

This dataset consists of signals (i.e., time series) called surface Electromyography

(sEMG) of 6 basic hand movements and was first designed and used for propos-

ing an approach to classify hand movements in Sapsanis et al. [142]. The dataset is

publicly available at the UCI Machine Learning Repository: http://archive.

ics.uci.edu/ml/datasets.php [141]. The dataset named as sEMG for Ba-

sic Hand Movements on this repository.

Of the whole dataset, in this study, we used the observed signals in time domain

of length 1000 from 1 healthy female subject who conducted the 6 different hand

movements 30 times. Figure 4.6 shows 6 different hand movements. The signals

were obtained at a sampling rate of 500 Hz (i.e., 500 obs. for a second) from 2-

sensors placed on the subject’s hand.

Figure 4.6 The six basic hand movements considered in the study. https://

archive.ics.uci.edu/ml/machine-learning-databases/00313/

The subject performed and repeated each hand movement for 6 seconds of duration.

We have used the 2-second length of signals (i.e., 2 × 500 Hz) in the middle of

these 6-second length signals. Thus, we are picked the 6×30×1000×2 dimensional

dataset to be clustered. Notice that each basic hand gesture can be considered as

a distinct data generation mechanism when observed and measured. Hence, it can

be stated that there are 6 different classes/categories in the dataset to be obtained

from such an experiment. Accordingly, this section aims to evaluate the ability of

grouping similar/dissimilar time series in this dataset, of which we know the true

class formation, with the proposed approach and the other clustering methods.
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Information about the dataset used in this subsection given in Table 4.10. This dataset

consists of 6 classes and 30 samples measured through two channels for each cluster.

Table 4.10 sEMG Hand Movement dataset information used in the study.
6 Basic Hand Movements Number of Repetition Sample Length

(i.e., Number of Sources channel1 channel2
or Number of Classes) (sensor1) (sensor2)

class1: Cylindrical Grasp 30 1000 1000
class2: Tip 30 1000 1000
class3: Hook or Snap 30 1000 1000
class4: Palmar Grasp 30 1000 1000
class5: Spherical Grasp 30 1000 1000
class6: Lateral Grasp 30 1000 1000

• The dataset’s dimension is 6×30×1000×2

Sample of signals’ traces are given in Figure 4.7. The plots in the left column show

examples of signals (i.e., time series) obtained from the 1st sensor, while the plots in

the right column show examples of signals obtained from the 2nd sensor.

Figure 4.7 sEMG samples for basic hand movements.
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Clustering of the dataset done by the proposed approach given in Section 3.4.2. Im-

plementation steps are given in Figure 3.4 and hyper-parameter values are given in

Figure 4.2. 22 dissimilarity measures given in Table 4.1 for 3 different clustering

methods (i.e., Fuzzy, PAM, Spectral) are performed on this dataset and overall clus-

tering accuracies are displayed in Table 4.11.

Table 4.11 sEMG clustering accuracy indexes (i.e., approx. correct clustering per-
centages) of compared time series clustering methods and the Proposed Clustering
Approach.

Clustering method
Dissimilarity
Measure FUZZY PAM SPECTRAL
Model free
DACF 0.516 0.693 0.779
DPACF 0.497 0.665 0.855
DEUCL 0.500 0.284 0.524
DCORT 0.500 0.286 0.466
DCOR 0.282 0.283 0.323
DDWT 0.500 0.288 0.464
DPER 0.594 0.596 0.867
DINT.PER 0.566 0.754 0.798
DSPEC.LLR1 0.889 0.792 0.910
DSPEC.LLR2 0.878 0.878 0.905
DGLK 0.876 0.860 0.802
DISD 0.878 0.878 0.909
DSAX 0.285 0.284 0.631
DV R 0.823 0.806 0.703
DDTW 0.498 0.483 0.631

Model based
DAR−LPC 0.285 0.608 0.715
DAR−MAH 0.590 0.847 0.845
DAR−PIC 0.528 0.564 0.621

Complexity based
DCID 0.565 0.646 0.330
DPDC 0.428 0.726 0.709
DCDM 0.525 0.773 0.831
DNCD 0.500 0.766 0.836

Proposed Clustering Approach

TSMB-SPCL-UV

L2 (Euclidean) Distance 0.910
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As can be seen from Table 4.11, some of the dissimilarity measures provide very high

accuracy results with 2 or all 3 of the clustering methods to cluster the sEMG dataset.

Those that produce the most accurate results are the dissimilarity measures denoted

by the abbreviations SPEC.LLR proposed by Kakizawa et al. [66], ISD proposed by

Diaz and Vilar [69], GLK proposed by Fan and Zhang [68], AR-MAH proposed by

Maharaj [77], and VR proposed by Bastos and Caiado [72]. Another prominent point

in the results displayed in Table 4.11 is that higher accuracies are obtained when

the distance matrices computed by usage of some dissimilarity measures (i.e., PACF,

PER, AR-LPC, CDM, NCD) are employed with the spectral clustering method given

in Section 3.3.

In the experiment of sEMG dataset clustering, the results showed that the proposed

clustering approach had been one of the best approaches that can assign signals (i.e.,

time series) to the correct groups with the highest accuracy. With the proposed clus-

tering approach, approximately 91% of the series in the sEMG dataset are correctly

clustered. As we mentioned in the previous subsections, if the series to be clustered

differ from each other only in terms of their conditional mean processes, the proposed

approach and some other dissimilarity measures (i.e., SPEC.LLR, GLK, AR-MAH,

etc.) can make accurate clustering with very high performance.

Determining the optimum (i.e., exact or true) number of clusters in a dataset is another

problematic issue related to clustering when there is no information. Although our

main purpose in this study is not to propose a method for determining the number of

clusters in the dataset, we wanted to show and evaluate the GAP statistics’ potential

about finding cluster numbers in a dataset. Hence, it is necessary to note the success

of this statistic in some cases, which might serve as a reference for further studies.

There are several alternative methods in literature can be considered to find the opti-

mum number of groups in the data (for example, see [143], [144], [145]). However,

the other most generally known tool is determining plausible cluster number through

looking at the average silhouette value. The silhouette value takes a value between

-1 and +1 and is used to measure the fitness of objects to their assigned cluster and

firstly proposed by Rousseeuw [146]. Please see Kaufman and Rousseeuw [147] for

more detailed information about the silhouette method.
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The GAP statistic we practiced for the real-life data in this subsection reached the

peak value at 6, which is the true number of clusters in the data. Figure 4.8 displays

the GAP statistics vs. the possible number of clusters. Likewise, as shown in Figure

4.9, the average silhouette value also reaches its highest value at 6.

Figure 4.8 GAP statistic per cluster number for the sEMG dataset using TSMB-

SPCL-UV.

Figure 4.9 Average Silhouette Value per cluster number for the sEMG dataset using

TSMB-SPCL-UV.
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4.2.2 Clustering of EEG Signals

The other dataset we discussed in Chapter 4 for real-life data application consists

of EEG time series. This dataset is one of the well-known and publicly available

data for classification purposes. We used this dataset for testing the clustering per-

formance of the proposed clustering approach. It is known as the University of

Bonn EEG dataset and was firstly obtained and employed by Andrzejak et al. [148].

The data can be downloaded from http://epileptologie-bonn.de/cms/

upload/workgroup/lehnertz/eegdata.html (last accessed 6/30/2021).

The dataset contains 5 classes/categories. Each class includes 100 EEG recordings

with a length of 4097 observations. The signals were recorded at a sampling rate of

173.61 Hz (i.e., approx. 173 obs. for a second) from electrodes placed on the subjects’

scalp’s surface and hippocampus (i.e., intra-cranial). Please note that the observations

in the first two classes are taken from the scalp surface, and signal samples in the

last 3 classes are intra-cranial. The total observation time for each recording is 23.6

seconds. Thus, the dimension of the dataset is 5 (classes)×100 (samples for each

class)×4097 (length of each sample observed during 23.6 seconds). The description

of the dataset is summarized in Table 4.12 .

Table 4.12 EEG dataset information used in the study.
5 Different Neuronal States Number of Sample
(i.e., Number of Classes) Samples Length

class1:
EEG signals from healthy subjects

100 4097Recordings during Eyes Open (EO)

class2:
EEG signals from healthy subjects

100 4097Recordings during Eyes Closed (EC)

class3:
EEG signals from epileptic patients

100 4097Seizure free recordings at non-epileptogenic zone

class4:
EEG signals from epileptic patients

100 4097Seizure free recordings at epileptogenic zone

class5:
EEG signals from epileptic patients

100 4097Seizure activity recordings at epileptogenic zone

• The dataset’s dimension is 5×100×4097
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We assumed each neuronal state in this experiment is a different data generation

mechanism than the others. Each produces different signals as they have different

dynamics and should be considered different categories since they evidently resulted

in different physical states. Therefore, it should be noted that we theoretically accept

the actual number of clusters in the entire dataset as 5.

Time series graphs of a sample EEG from each class are shown in Figure 4.10.

Figure 4.10 EEG samples.

There are many studies on the nonlinear nature of EEG signals (for example, see

[149–151]). In this context, it can be stated that the time series in this dataset has

more complexity than the dataset examined in the previous subsection, which makes

clustering without any prior knowledge is more challenging in this case.

The complexity and possible heteroscedasticity in this dataset is also reflected in the

clustering performances, and the clustering accuracies of many methods remained

below 60%.
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Clustering of the dataset done by the proposed approach given in Section 3.4.2. Im-

plementation steps are given in Figure 3.4 and hyper-parameter values are given in

Figure 4.2. 22 dissimilarity measures given in Table 4.1 for 3 different clustering

methods (i.e., Fuzzy, PAM, Spectral) are performed on this dataset and overall clus-

tering accuracies are displayed in Table 4.13.

Table 4.13 EEG clustering accuracy indexes (i.e., approx. correct clustering per-
centages) of compared time series clustering methods and the Proposed Clustering
Approach.

Clustering method
Dissimilarity
Measure FUZZY PAM SPECTRAL
Model free
DACF 0.477 0.554 0.491
DPACF 0.419 0.608 0.595
DEUCL 0.333 0.282 0.332
DCORT 0.333 0.268 0.332
DCOR 0.333 0.282 0.307
DDWT 0.333 0.316 0.332
DPER 0.332 0.438 0.515
DINT.PER 0.523 0.607 0.325
DSPEC.LLR1 0.522 0.511 0.656
DSPEC.LLR2 0.525 0.530 0.618
DGLK 0.485 0.505 0.320
DISD 0.527 0.551 0.539
DSAX 0.404 0.314 0.270
DV R 0.492 0.492 0.331
DDTW 0.495 0.541 0.809

Model based
DAR−LPC 0.441 0.443 0.546
DAR−MAH 0.673 0.693 0.706
DAR−PIC 0.484 0.583 0.589

Complexity based
DCID 0.496 0.484 0.332
DPDC 0.551 0.535 0.572
DCDM 0.454 0.355 0.515
DNCD 0.333 0.438 0.533

Proposed Clustering Approach

TSMB-SPCL-UV

L2 (Euclidean) Distance 0.790
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As shown in Table 4.13, dissimilarity measure performances of clustering methods

are decreased as the complexity or nonlinearity in the dataset is more evident. We

consider that this is compatible with the results obtained from the experiments with

synthetic datasets.

Results also show that almost all of the compared methods in this real-data clustering

task produced poor accuracies. However, the performance of the dynamic time warp-

ing (DTW) based dissimilarity measure employed with spectral clustering is consid-

erably remarkable. Clustering with the highest accuracy index (i.e., 0.81) among all

methods is obtained with this dissimilarity measure. Therefore, this performance in

favor of spectral clustering and DTW should be taken into account. Thus, it can be

said that the fact that DTW did not produce remarkable results in other datasets is

not a failure, but because the purpose and appropriate dataset match have not been

achieved. It should be noted that this is also a valid argument for other methods

and dissimilarity measures. This result is a finding in favor of one of the main argu-

ments we attempted to emphasize throughout the study. Ascertaining the appropriate

method for the dataset to be clustered and structuring the pre-analysis processes will

improve the clustering performance.

The proposed clustering approach in this study provided the second best clustering

result with an accuracy index of 0.79, which implies that 79% of 500 signals are

accurately clustered. However, classification accuracies can be considerably high

(i.e., almost 100%) in classification studies related to this dataset (for example, see

[152]). In the experiments we conducted in this study, no pre-learning is carried out

using the part of the dataset reserved for training, as is generally made in classification

studies. In this sense, clustering brings more risks than classification. This contrast

stems from the purposes of both approaches. To increase the clustering performance

of any proposed method for datasets with high complexity, it would be appropriate to

conduct further experiments and comparisons.

This complexity, which we assumed defines the dataset, is also affected the GAP

statistics and average silhouette values we calculated. As can be seen in Figures 4.11

and 4.12, both measures could not peak at the correct cluster number of 5.
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Figure 4.11 GAP statistic per cluster number for the EEG dataset using TSMB-

SPCL-UV.

Figure 4.12 Average Silhouette Value per cluster number for the EEG dataset using

TSMB-SPCL-UV.
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CHAPTER 5

EXPERIMENTAL RESULTS: MULTIVARIATE TIME SERIES
CLUSTERING

The primary motivation of the study is to propose a clustering approach for multi-

variate time series datasets. For this purpose, this chapter is devoted to evaluate the

proposed approach for clustering multivariate time series. While clustering a uni-

variate time series dataset, we proposed the approach in which each time series are

represented with an assigned feature vector. Thus, instead of using raw data, the pro-

posed approach distinguishes the time series by measuring the distances of the feature

vectors from each other. The proposed approach has a very similar procedure in clus-

tering both univariate and multivariate time series datasets. Like in the clustering of

a univariate time series dataset, each multivariate time series is considered as an ob-

ject to be clustered. However, unlike the univariate case, the objects we cluster here

has more than one variable. So, in this case, each multivariate time series has to be

represented by a feature matrix where the column dimension of a matrix corresponds

to the variable dimension of the object to be clustered. Consequently, the proposed

approach employs the distances of the feature matrices from each other in a multi-

variate case. In other words, the proposed approach differs only in the affinity matrix

calculation if the data to be clustered are univariate or multivariate. The rest of the

proposed clustering procedure is identical. The details of the proposed approach for

both univariate and multivariate time series clustering are addressed in Section 3.4.

Besides, the statements, explanations and findings given in Chapter 4 on the imple-

mentation of the proposed approach are also largely valid for this section. Therefore,

it would be useful to consider the explanations and findings expressed in Chapter 4

while examining Chapter 5.

In this chapter, a total of 15 different clustering plans comprised of the use of 5 dif-

ferent dissimilarity measures on 3 different clustering methods (i.e., Fuzzy c-means,
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Partitioning Around Medoids (PAM), Spectral) are compared with the proposed time

series clustering approach. The state-of-the-art distance measures proposed by liter-

ature are presented in Table 5.1. The dissimilarity measures used in the comparison

study have been discussed in [137], [66], [56], [84], [153], [83] and some of them have

been made available in the R packages named as TSclust [55], dtwclust [57]

and pdc [56].

Table 5.1 Dissimilarity measures used for comparison in multivariate clustering.

Dissimilarity Measure Description Reference
Model free approaches

DJD

Multivariate Spectrum based Distance.
Also known as symmetrized
Kullback-Leibler (KL) Divergence. Also
known as J(effreys)-Divergence.

[66]

DLD
Multivariate Spectrum based Distance.
Known as Log-Spectral Divergence. [84]

DGAK
Distance based on Global Alignment
Kernels [83]

DDTW Dynamic Time Warping Distance. [59, 73]
DPDC Permutation Distribution Distance. [56]

The distance measures listed for comparison purposes in Chapter 5 have been devel-

oped especially for clustering multivariate time series. Most of the distance measures

we used for comparison in the previous Chapter 4 listed in Table 4.1 are not suitable

for multivariate cases. They require investigation whether to be used for multivari-

ate clustering. However, we can assume that the distance measures, which appeared

not to show high performance when clustering artificially generated univariate time

series datasets in the previous Chapter, would not also help to provide remarkable

accuracies for the multivariate clustering. Because the artificial datasets we purposed

to cluster in both chapters are generated in a heteroscedastic composition, and it is

evident that these distance measures are not developed for clustering of heteroscedas-

tic or nonlinear time series. For example, the J-Divergence and LD we used in this

chapter are the multivariate equivalent of distance measures developed for clustering

time series by comparing their spectrum estimates (i.e., clustering time series on the

frequency domain).
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Similarly, we see that DTW and PDC are used in both univariate and multivariate

clustering. Of these, DTW makes a shape-based distance measurement between se-

ries, while PDC makes a complexity-based distance measurement. The GAK distance

measure, similar to DTW, which we have included in this chapter, tries to distinguish

the series from each other based on their shape (i.e., traces, trajectories, patterns)

properties. We should state here that these distance measures could provide very

successful results for clustering of speech signals [154]. Such distance measures are

distance measures developed and useful for clustering of time series where random-

ness is negligible but shape-based features are prominent.

On the Implementation of the Proposed Approach in Multivariate Case

In Section 3.4.3, while representing the proposed approach, we stated that each mul-

tivariate time series subject to clustering should be represented by a feature matrix.

The columns of the feature matrices consist of feature vectors corresponding to each

time series variable in a multivariate time series object. In other words, the only dif-

ference here in multivariate case is to obtain a feature matrix in which the vectors

corresponding to each time series in the multivariate time series are placed in the

columns of this matrix. And, the elements of the feature vectors consist of 11 parts as

shown in Table 3.1. Predetermined values of hyperparameters are given in Table 4.2.

The implementation steps of the proposed approach are displayed in Figure 3.4. In

this regard, the procedure we follow for clustering of a set of multivariate time series

is quite similar to the clustering of a group of univariate time series.

The procedure we propose for feature matrix extraction in multivariate cases may be

questioned in a way that why we consider each series one by one instead of estimat-

ing the properties of the series with the use of a multivariate model and obtaining

the feature matrix directly. As we have mentioned before, our principal aim here is

not to perform the modeling process most accurately. Instead, it is more important

to examine that the DTGARCH and AR model estimations we use for feature ex-

tractions serve our purpose. However, the feature matrix in our proposed clustering

procedure can also be obtained using multivariate model estimations (i.e., multivari-

ate type GARCH models, etc.). We should note that we leave such approaches to

develop through further researches.
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5.1 Performance evaluation over Synthetic Data

As in the univariate case, we conducted some experiments on the artificially generated

multivariate time-series datasets.

In each experiment in this section, the standard procedure of generating multivariate

time series, clusters, and then assessment of clustering accuracies on the synthetic

dataset can be given as follows:

* nos⇐ the number of sources: Defines the number of hypothetical DGMs,
nos, be used in the experiment.

* noc⇐ the number of clusters: The number of hypothetical DGMs, nos, also
defines the number of true clusters, noc (i.e., nos = noc).

* ss⇐ sample size: Define the time span, length or number of observations, ss,
for each generated series.

* cs⇐ cluster size: Define the cluster size, cs, which determines the number of
series/members in each cluster.

* rn⇐ repetition number: Defines the number of repetitions of the experiment.

After deciding values for nos, noc, ss, cs and rn, the synthetic dataset generation,
clustering, and comparison phases of an experiment can be summarized in 4 steps:

1. Each DGM used to generate cs number of time series with the length of ss
to form a corresponding cluster.

2. Clustering by proposed approach and other considered clustering methods
for comparison are performed over nos × cs × ss dimensional dataset and
clustering accuracies are saved.

3. Steps from 1 to 2 repeated rn times to get average accuracy indexes of
clustering methods and the proposed approach.

4. The average accuracy indexes of all methods are compared.

Synthetic multivariate datasets are created by hypothetical DGMs. The collection

of multivariate time series generated from each DGM also forms a cluster subject

to clustering experiments for performance evaluation of the proposed clustering ap-

proach. Each DGM is composed of specific multivariate time series models that we

name the body components as the STEMs. In some scenarios, a STEM with an error

part may directly form a DGM, and in some situations, combinations of STEMs form
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a DGM. Consequently, under each subsection, the STEMs and then the DGMs con-

sisting of these STEMs are presented, and the performances of the proposed approach

for determining the clusters corresponding to these DGMs are provided.

The multivariate time series datasets that we are considering here in some cases are

generated to have different cluster formations for different subsequent periods within

the overall length of samples. Thus, we assessed the performance of the proposed

approach in determining time-dependent cluster changes and suggested the minimum

sample length required to capture these changes.

In this section, a total of 9 distinct scenarios are considered. 2 of them are based

on non-temporal clusters (i.e., clusters are not changing over time). 7 of them are

based on temporal clusters (i.e., clusters are changing over time). However, for read-

ability and ease of follow-up, the results of only 6 of these experiments are given in

subsections, while the remaining experiments are given in Appendix B.

5.1.1 First Set of Experiments on Multivariate Time-series Clustering

In the first experiment, to evaluate the accuracy performance of the proposed clus-

tering approach for a set of multiple multivariate time series, we employed a 3-

dimensional Stochastic Differential Equations (SDE) for multivariate time series data

generation, which is not one of the parametric time series models such as Vector

Autoregressive (VAR) models or Vector Error Correction Models (VECM).

A general form of a 1-Dimensional SDE can be given as follow:

dXt = f (Xt, t) dt+ g (Xt, t) dWt,

where the functions f(.) and g(.) are called as the coefficients of drift and diffusion,

respectively. And, W referred as standard Wiener process (i.e., Brownian motion).

The drift term defines the instantaneous expectation of the process Xt at time t while

the diffusion term establishes the instantaneous volatility (i.e., standard deviation) of

the process Xt at time t. For further details about SDEs please see [155–157].
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The DGMs used to generate the artificial datasets clustered in this section are com-

posed of STEMs given in Table 5.2. The drift terms of the SDEs used in this section

as the data generation mechanism are selected from dynamical systems, also known

as systems of differential equations. For example, the drift term of the STEM_1 is

an example of a biological model known as a biomass transfer model [158]. The

drift term of the STEM_2 is an example of virus dynamics modeling in living organ-

isms known as a Nowak-May HIV model [159], and the drift term of the STEM_3

is an example for electrical circuit model through differential equations [160]. The

diffusion terms determining the variance component of STEM_2 and STEM_3 are

constant coefficients, while the variance component of STEM_1 is not given in a spe-

cific structure. This is because, in the following subsection, we intended to generate

a dataset with the same drift process but according to different diffusion (variance)

components. Hence, it is possible to evaluate the sensitivity of the proposed cluster-

ing approach to minor/significant perturbations in the data generation mechanisms.

Please note that, the Wiener processes’ diffusion coefficient, C..., in STEM_1 can be

described by any constant, function, process or distribution.

Table 5.2 Utilized specifications of SDEs in the first set of experiments.

STEM_1 :


dXt = (−Xt + 3Yt) dt+ C... dW1,t

dYt = (−3Yt + 5Zt) dt+ C... dW2,t

dZt = (−5Zt) dt+ C... dW3,t

STEM_2 :


dXt = (15− 0.01Xt − 1Xt Zt) dt+ 4.5 dW1,t

dYt = (1Xt Zt − 1Yt) dt+ 4.5 dW2,t

dZt = (6Yt − 12Zt) dt+ 4.5 dW3,t

STEM_3 :


dXt =

(
−
(
50
70

)
Yt −

(
45
70

)
Zt
)
dt+ 1 dW1,t

dYt =
(
−
(
50
70 + 50

75

)
Yt +

(
35
70 −

45
75

)
Zt
)
dt+ 1 dW2,t

dZt =
((

35
55 −

50
70

)
Yt −

(
35
55 + 45

70 + 45
55

)
Zt
)
dt+ 1 dW3,t

W1,t, W2,t, W3,t are standard Wiener processes (Brownian Motions).
Please note that the factor of the Wiener processes, C..., in STEM_1 is a coefficient that can be described by

any constant, function, process or distribution.
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5.1.1.1 Case 1 : Non-temporal 3 Cluster

The artificial multivariate time series datasets to be clustered in this subsection is gen-

erated using 3 different DGMs shown in Table 5.3. These DGMs in this subsection

mainly consist of STEM_1 in Table 5.2. However, they differ in terms of specific

diffusion terms of each STEM’s variance component. For example, the variance of

DGM01 is obtained by multiplying the constant variance of the Wiener process by

1.75, and this variance is constant along time. Therefore, in this particular data gener-

ation mechanism, the Wiener process performs like a normally distributed white noise

process. On the other hand, the diffusion coefficient, C2, of DGM02 is distributed as

GARCH(1,1) with specific parameter values given in Table 5.3 and unlike the other

data generation mechanisms in this section, the DGM02 causes a time-varying vari-

ance component in the data it generates. Similarly, the diffusion term is distributed as

the ARCH(1) process in DGM03 with specific parameter values given in Table 5.3. It

should be noted that the processes determining the diffusion coefficients of DGM02

and DGM03 are very close to each other, which makes it very difficult to distinguish

the multivariate time series data generated from these mechanisms.

Table 5.3 Hypothetical DGMs used in Case 1.

DGM01 := STEM_1 | C1

DGM02 := STEM_1 | C2

DGM03 := STEM_1 | C3

C1 = 1.75

C2 ∼ GARCH(1, 1)|ht = 0.15 + 0.25ε2t−1 + 0.45ht−1 where εt =
√
htet, and et

i.i.d∼ Dnorm(0, 1)

C3 ∼ GARCH(1, 0)|ht = 0.15 + 0.65ε2t−1 where εt =
√
htet, and et

i.i.d∼ Dnorm(0, 1)

Although the bodies of hypothetical DGMs share mainly the same structure, these

DGMs differ in the terms that define the variance component. Besides, since we used

3 DGMs to generate multivariate time series data in this experiment’s Case 1, the

actual number of clusters in the data to be created should also be considered as 3. In

this regard, it would not be wrong to assume that the hypothetical DGMs we use are at

the center of each cluster. The traces/paths (i.e., time series plots) of the multivariate

time-series generated from each DGM (i.e., class) is illustrated in Figure 5.1.
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Figure 5.1 Simulation samples from 3 DGMs listed in Table 5.3

Each DGM given in Table 5.3 is used to generate a 3-variable multivariate time series,

and the linear correlations of these variables with each other are pretty low. Since it

is desired to evaluate the clustering capability of the proposed approach under low

correlated series, the simulations are designed to generate uncorrelated multivariate

time series in this case. The sample lengths of the multivariate time series created

in this section are determined as 600. 30 samples are generated from each DGM.

Therefore, for example, the derived data set from 1 repetition of the data generation

step consists of 3 clusters containing 30 objects (i.e., multivariate time series).

The sample graphs of each DGM given in Figure 5.1 are exhibited that there are no

formal or shape-based features that exist to distinguish multivariate time series from

each other.

Path simulations or data generation from SDEs given in this section are performed by

the use of R package Sim.DiffProc [155].
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The generating samples, clusters, and then evaluations of clustering performances for

Case 1 can be summarized as follows:

* nos = 3 (i.e., the number of hypothetical DGMs used in the experiment.)

* noc = 3 (i.e., the number of true clusters.)

* cs = 30 (i.e., the number of series/members in each cluster.)

* ss = 600 (i.e., the number of observations for each generated multivariate se-
ries.)

* rn = 100 (i.e., the number of repetition of the experiment.)

1. Each DGM in Table 5.3 is used to generate 30 (i.e., cs) number of 3-
dimensional multivariate time series with the length of 600 (i.e., ss) to form
a corresponding cluster.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 3 × 30 × 600 dimensional dataset and clus-
tering accuracies are saved.

3. Steps from 1 to 2 repeated 100 (i.e., rn) times to get average accuracies of
15 (i.e., 3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table 5.4.

Table 5.4 Multivariate Experiment 1 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.719 0.716 0.717
DLD 0.711 0.483 0.687
DGAK 0.469 0.426 0.424
DDTW 0.592 0.534 0.551
DPDC 0.769 0.547 0.711

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 350 ss = 475 ss = 600

L2 (Euclidean) Distance 0.738 0.747 0.756
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In the artificial datasets we examined in this section, each cluster has 30 members,

and the actual number of clusters is 3. The success rates of the proposed approach

over three different sample sizes and the other distance measures’ accuracy results are

given in Table 5.4. The accuracy rates are obtained as a result of 100 repetitions of

dataset generation and clustering. The fact that the series in the 2nd and 3rd clusters

are obtained from data generation mechanisms that are very close to each other in

structure complicates the clustering task. The proposed approach yielded clustering

performance similar to clustering based on PDC, JD, and LD distance measurements

in this experiment. The highest clustering accuracy is obtained by the PDC distance

measure based fuzzy clustering. The proposed approach provided the 2nd best result,

with very close to the highest accuracy.

However, in this case, the fuzzy clustering algorithm based on each distance measure

produced unstable outcomes. According to the fuzzy algorithm, an object to be clus-

tered should be assigned to a cluster by specific probabilities. That is, each object

has a probability of belonging to the cluster to which it is assigned. But, in the scope

of this experiment, the objects to be distributed into 3 clusters are always assigned

to a cluster with a probability of 1/3 as if the events (i.e., clustering of objects) are

equally likely. Thanks to the R package TSclust [55] and the fanny function

for fuzzy clustering, this problem could be tried to overcome by changing/decreasing

the hyperparameter value called the degree of fuzziness used in the fuzzy cluster-

ing algorithm. Nevertheless, the changes made in desired fuzziness degree of cluster

memberships (i.e., please see [161] for an assessment on one of the hyper-parameters

in fuzzy c-means clustering) are not enough to make the fuzzy clustering algorithm

stable and reliable. For example, when the fuzziness degree value desired for fuzzy

C-means clustering is decreased from 2 to 1 by 0.1 step increments, the clustering

results obtained for PDC distance vary between 0.67 and 0.77. For instance, if the

degree of fuzziness is decided as 1.7, the clustering accuracy rate over 100 repeti-

tions is obtained as 0.778, if the degree of fuzziness is decided as 1.6, the clustering

accuracy rate over 100 repetitions is obtained as 0.679, if the degree of fuzziness is

decided as 1.5, the clustering accuracy rate over 100 repetitions is obtained as 0.716.

Similar results are valid for other distance measures. Hence, in order to make the

comparisons appropriately, the hyper-parameter value has been fixed to 1.8.
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Fortunately, spectral clustering, which constitutes one of the main axis of the pro-

posed clustering approach, provides more stable results regardless of the degree of

fuzziness to be determined for fuzzy clustering. It should also be noted that although

we use fuzzy clustering in the final step of spectral clustering (please refer Section

3.3), it is not dramatically affected by the degree of fuzziness chosen for clustering.

Accordingly, the spectral clustering results for the distance measures given in the last

column of Table 5.4 can be considered as more robustly obtained accuracy rates. The

results of this experiment also support our findings that the series lengths should be

as long as possible for the proposed clustering approach, and sample sizes should not

be less than 400 observations to produce clustering results most efficiently.

5.1.1.2 Case 2 : Temporal 3 Cluster

This section addresses one of the experiments and its results on evaluating the time-

varying clustering performance of the proposed approach and the compared cluster-

ing methods. In this section, we employed the hypothetical data generation mech-

anisms given in Table 5.5 to generate the multivariate time series datasets that are

to be clustered. These DGMs consist of the bodies presented in Table 5.2 and their

combinations.

Table 5.5 Hypothetical DGMs used in Case 2.

used to generate time series of length 1200

sources of samples sources of samples

from 1 to 600 from 601 to 1200

DGM01 := STEM_1 | C1 B STEM_1 | C1

DGM02 := STEM_1 | C2 I STEM_2

DGM03 := STEM_1 | C3 I STEM_3

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed after 600th observation.
C1 = 1.75

C2 ∼ GARCH(1, 1)|ht = 0.15 + 0.25ε2t−1 + 0.45ht−1 where εt =
√
htet, and et

i.i.d∼ Dnorm(0, 1)

C3 ∼ GARCH(1, 0)|ht = 0.15 + 0.65ε2t−1 where εt =
√
htet, and et

i.i.d∼ Dnorm(0, 1)
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As can be seen in Table 5.5, while the components of DGM01 do not change over

time, DGM02 and DGM03 have time-varying components. However, all three DGMs

have a data generation component with the same structure over a certain period (i.e.,

for the first 600-length observations). It should also be noted that the diffusion terms

of the SDE components that we name STEM_2 and STEM_3 are determined by

constant coefficients. In other words, the variances of these STEMs are determined

by the normally distributed white noise processes (i.e., standard Wiener processes).

The time series plots of sample multivariate time series generated from each DGM

are exhibited in Figure 5.2. Since such visualizations comprehend visual information

about the dataset we are examining for clustering, we regard it significant to present

such plots.

Figure 5.2 Simulation samples from 3 DGMs listed in Table 5.5

The lengths of the time series to be generated are determined as 1200, and the actual

number of clusters in the dataset is equal to 3, which is the same as the number of
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DGMs used to generate the time series. In this case, like in the previous case, the

cluster sizes are set to 30. In other words, the number of members of each cluster in

the dataset is determined as 30.

When Figure 5.2 is carefully examined, it can be noticed from the graphs of multi-

variate time series that the mechanisms generating these series may change over time,

except for the first 600 observations of class2 and class3.

In the previous subsection, we mentioned that the multivariate time series we consid-

ered in the fist experiment set are generated in a way that they do not linearly correlate

with each other. However, there is an exception to this specification for the two vari-

ables in STEM_2 for practical reasons. The structural correlation exists between Yt

and Zt variables due to the SDE model in STEM_2 does not allow to generation

of uncorrelated time series from this STEM. Accordingly, the essential correlation

relationship between Yt and Zt in SDE is also manifested in the generated data.

The generating samples, clusters, and then evaluations of clustering performances for

Case 2 can be summarized as follows:

* nos = 3 (i.e., the number of hypothetical DGMs used in the experiment.)

* noc = 3 (i.e., the number of true clusters.)

* cs = 30 (i.e., the number of series/members in each cluster.)

* ss = 1200 (i.e., the number of observations for each generated multivariate
series.)

* rn = 100 (i.e., the number of repetition of the experiment.)

1. Each DGM in Table 5.5 is used to generate 30 (i.e., cs) number of 3-
dimensional multivariate time series with the length of 1200 (i.e., ss) to
form a corresponding cluster.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 3 × 30 × 1200 dimensional dataset and clus-
tering accuracies are saved.

3. Steps from 1 to 2 repeated 100 (i.e., rn) times to get average accuracies of
15 (i.e., 3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table 5.6.
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Table 5.6 Multivariate Experiment 1 Case 2: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.995 0.996 0.998
DLD 0.687 0.569 0.989
DGAK 0.478 0.457 0.498
DDTW 0.559 0.598 0.729
DPDC 0.688 0.434 0.882

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 800 ss = 1000 ss = 1200

L2 (Euclidean) Distance 0.999 1 (%100) 1(%100)

The average of the results, which are given in Table 5.6, is obtained after the clustering

of 100 artificial datasets created by the 3 DGMs in Table 5.5. As can be seen, in this

experiment, clustering based on JD, LD and PDC distance measures in several clus-

tering algorithms have a very high accuracy level. And the clustering performance

of the proposed approach has achieved the highest accuracy percentage. Accurate

and almost perfect clustering results are closely related to which extent the differ-

ences are evident between the mechanisms that generate the datasets. Another reason

for achieving high clustering performances is that the actual number of clusters (i.e.,

number of true classes is 3) is much fewer than objects to be clustered in the synthetic

datasets. Although in each DGM, the SDEs for generating the first 600 points of the

series are similar, the differences of the combinations creating the overall data from

the others become quite obvious in terms of the realizations of these data-generating

mechanisms. These results show that in a clustering problem where clusters can be

inferred beforehand, the proposed approach could also accurately cluster data with

high performance, just like the other methods we have compared. Distance measures

such as JD, LD, and PDC are efficient at clustering such datasets if the structures

that produce the mean of time series are more substantial and easily distinguishable.

On the other hand, since such distance measures cannot designed to detect possi-

ble heteroscedasticity inclusions in time series datasets, it can be said that clustering
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performance may decrease in clustering such datasets with the help of these type of

distance measures.

Within the scope of this experiment, the proposed approach revealed similar and

higher accuracy clustering results to the other high-accuracy clustering rates provid-

ing methods. In addition, significant findings have been obtained that the spectral

clustering method can be an alternative to fuzzy and pam clustering algorithms for

other distance measures.

5.1.1.3 Case 3 : Temporal 9 Cluster

The last dataset in this section that we generated from SDEs has time-varying cluster

structures. Each DGM consists of a combination of 3 STEMs given in Table 5.2. Uti-

lized hypothetical DGMs for multivariate time series generation are shown in Table

5.7. In addition, the dataset creation scenario here also contains the data generation

structure that we used in the previous two experiments.

Table 5.7 Hypothetical DGMs used in Case 3.

used to generate time series of length 1800

sources of samples sources of samples sources of samples

from 1 to 600 from 601 to 1200 from 1201 to 1800

DGM01 := STEM_1 | C1 B STEM_1 | C1 B STEM_1 | C1

DGM02 := STEM_1 | C1 B STEM_1 | C1 I STEM_2

DGM03 := STEM_1 | C1 B STEM_1 | C1 I STEM_3

DGM04 := STEM_1 | C1 I STEM_2 I STEM_1 | C1

DGM05 := STEM_1 | C1 I STEM_2 B STEM_2

DGM06 := STEM_1 | C1 I STEM_2 I STEM_3

DGM07 := STEM_1 | C1 I STEM_3 I STEM_1 | C1

DGM08 := STEM_1 | C1 I STEM_3 I STEM_2

DGM09 := STEM_1 | C1 I STEM_3 B STEM_3

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed at that point.
C1 = 1.75
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The number of hypothetical DGMs is 9, which means that the actual number of clus-

ters in the artificially generated datasets is also 9, considering the entire dataset length.

The multivariate time series are generated to contain 1800 points in total. Notice that

the actual number of clusters is three for the first 1200 realizations of the scenario.

However, the number of clusters in the scheme increases to 9 after the 1200th time

point due to the changes in DGMs. The time series plots of sample multivariate

time series generated from each DGM are exhibited in Figure 5.3. Through this ex-

periment, we aimed to evaluate the ability of the proposed clustering approach to

recognize new cluster formations when the data generating sources that form clusters

are changed over time. Through this scenario in this section, it is aimed to assess the

capability of the clustering approach whether it can recognize probable changes of

cluster formations when a dataset is updated with new coming data (e.g., streaming

data). For this purpose, the proposed approach aims to cluster dynamically structured

datasets with a dynamic clustering approach.

Figure 5.3 Simulation samples from 9 DGMs listed in Table 5.7
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The generating samples, clusters, and then evaluations of clustering performances for

Case 3 can be summarized as follows:

* nos = 9 (i.e., the number of hypothetical DGMs used in the experiment.)

* noc = 9 (i.e., the number of true clusters.)

* cs = 10 (i.e., the number of series/members in each cluster.)

* ss = 1800 (i.e., the number of observations for each generated multivariate
series.)

* rn = 100 (i.e., the number of repetition of the experiment.)

1. Each DGM in Table 5.7 is used to generate 10 (i.e., cs) number of 3-
dimensional multivariate time series with the length of 1800 (i.e., ss) to
form a corresponding cluster.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 9 × 10 × 1800 dimensional dataset and clus-
tering accuracies are saved.

3. Steps from 1 to 2 repeated 100 (i.e., rn) times to get average accuracies of
15 (i.e., 3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table 5.8.

Please note that, for all dataset lengths, the first two source components of DGMs

from 1 to 3, 4 to 6, and from 7 to 9 are the same. The third source components,

which are responsible for generating the last 600 realizations, partaking at the end

of these DGM structures, provide each DGM to be labeled as different from one

another. Consequently, there would be a total of 9 clusters in the dataset consisting of

1800-length multivariate time series generated from these DGMs.

The first 1200 realizations of the dataset generated from the DGMs in Table 5.7 are

discussed in the previous experiment in subsection 5.1.1.2. The clustering results for

this part of the dataset given in Table 5.6. The number of clusters for the mentioned

part of the dataset is three, and the number of members of each cluster is 30. After

the 1200th point, the number of clusters increased to 9 due to the changes in DGMs,

and the number of members in each cluster decreased to 10 accordingly.

109



The first 600 observations of the dataset are all generated from the same SDE struc-

ture, STEM_1|C1, given in Table 5.2. The number of clusters for this part of the data

is equal to 1. Therefore, while the number of clusters in the dataset was one initially,

it increased to 3 after the 600th time point and remained the same till the 1200th point.

And, then after the 1200th time point of the samples the number of clusters increased

to 9.

The performance outcomes of the clusterings made by considering the whole dataset

length, that is, assuming that we are at the 1800th time point as location, are given

in Table 5.8. In addition, the proposed clustering approach is repeated over three dif-

ferent sample sizes (i.e., lengths) to make suggestions about the optimum data length

required to identify the number of clusters that change over time, and the results are

given in Table 5.8.

Table 5.8 Multivariate Experiment 1 Case 3: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.548 0.757 0.775
DLD 0.345 0.276 0.593
DGAK 0.328 0.325 0.257
DDTW 0.278 0.407 0.301
DPDC 0.331 0.261 0.273

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 1400 ss = 1600 ss = 1800

L2 (Euclidean) Distance 0.886 0.970 0.970

The accuracy index of the proposed clustering approach to correctly recognize clus-

ters in the dataset is quite high. However, the sample size required to distinguish

clusters with the highest accuracy is about 1600 observations. In other words, the

optimum data length to be examined in order to determine the changing cluster struc-

ture after the 1200th point correctly is around 350 - 400 observations. These findings

support the results obtained from previous experiments.
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In the scope of this experiment, on the other hand, among the measures we compared,

only the JD distance measure has clustered the datasets at a level of good accuracy

that can be mentioned. Since JD and similar distance measures operate only based

on the frequency domain, the time-dependent properties of time series do not seem to

affect distance computations. The clustering performance of such distance measures

would be riskier if the time series data to be clustered contains heteroscedasticity and

nonlinearity.

The results of the GAP statistics are also presented for this experiment. The Figure

5.4 and Table 5.9 shows the distribution of GAP statistics over 100 repetitions for

possible cluster numbers from 2 to 20. In 70 out of 100 repetitions, the GAP statistic

peaked at cluster number 9. The correctness of the GAP statistics is directly linked to

the success of the clustering method. The more successful the clustering method is,

the higher the use-value and accuracy of the GAP statistic.

Figure 5.4 GAP statistics’ Box-Plots per cluster number using TSMB-SPCL-MV.

Table 5.9 The Gap statistics peaks out of 100 repetitions using TSMB-SPCL-MV.

cluster number, ĉl 9 10 11 >12
counts of peaks 70 15 10 5
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5.1.2 Second Set of Experiments on Multivariate Time-series Clustering

In this section, to assess the performance of the clustering approach proposed for mul-

tivariate time series, we generated datasets based on Vector Error Correction Model

(VECM) structures developed especially for modeling co-integrated multivariate time

series. Three distinct and three-variate VECM(1) specifications (i.e., VECM of lag

order 1) are used in this experiment for composing DGMs to generate datasets to

be clustered. These specifications are labeled as STEM_1, STEM_2 and STEM_3,

and are presented in Table 5.10. Since the STEMs we employed are only take on

the role of the sources that generates the datasets to be clustered, detailed informa-

tion about the VECM are not provided. Besides, during the datasets generation we

adopted heteroscedastic error term specifications which violates the standard VECM

assumptions. For detailed information about VECM and similar multivariate time

series models, please see Lüetkepohl and Kraetzig [162] and Pfaff [163].

Table 5.10 Utilized specifications of VECMs in the first set of experiments.

STEM_1 :
∆y1,t

∆y2,t

∆y3,t

 =


−0.10 0.10 −0.15

0.07 −0.07 0.10

0.02 −0.02 0.03



y1,t−1

y2,t−1

y3,t−1

+


−0.05 −0.55 1.05

−0.20 −0.25 0.30

−0.15 −0.75 0.10




∆y1,t−1

∆y2,t−1

∆y3,t−1

+


ε1,t

ε2,t

ε3,t



STEM_2 :
∆y1,t

∆y2,t

∆y3,t

 =


−0.02 0.01 −0.02

0.04 −0.03 0.04

−0.06 0.04 −0.07



y1,t−1

y2,t−1

y3,t−1

+


−0.85 0.08 −0.85

−0.15 0.55 −0.80

0.35 0.05 −0.65




∆y1,t−1

∆y2,t−1

∆y3,t−1

+


ε1,t

ε2,t

ε3,t



STEM_3 :
∆y1,t

∆y2,t

∆y3,t

 =


0.05 −0.06 0.02

0.07 −0.09 0.03

0.00 −0.01 0.00



y1,t−1

y2,t−1

y3,t−1

+


0.10 0.45 −0.20

−0.15 1.00 0.00

−0.20 0.15 0.90




∆y1,t−1

∆y2,t−1

∆y3,t−1

+


ε1,t

ε2,t

ε3,t


∆yt = yt − yt−1

ε1,t, ε2,t, ε3,t are error terms.
Please note that the error terms can be described by any process or distribution.
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For realizations of the error terms, −→εt , of the three-variate VECM(1) specifications

the Extended Constant Conditional Correlation (ECCC) GARCH models are em-

ployed during dataset generation phase. By doing so, we ensured that the generated

multivariate time series contains heteroscedasticity. ECCC-GARCH models are use-

ful tools for modeling multivariate GARCH processes. Please see Silvennoinen and

Teräsvirta [164], He and Teräsvirta [165] or Francq and Zakoïan [166] for informa-

tion about multivariate GARCH, ECCC-GARCH and its various applications. In this

experiment, three distinct GARCH(1,1) specifications are adopted for error terms.

These processes are labeled as C1, C2 and C3, and are given in Table 5.11.

Table 5.11 Utilized specifications of multivariate error structures in the seconds set
of experiments.

C1 : ECCC−GARCH(1,1) =
h1,t = 0.003 + 0.15ε21,t−1 + 0.45h1,t−1

h2,t = 0.005 + 0.30ε22,t−1 + 0.35h2,t−1

h3,t = 0.001 + 0.45ε23,t−1 + 0.25h3,t−1

C2 : ECCC−GARCH(1,1) =
h1,t = 0.001 + 0.20ε21,t−1 + 0.05ε22,t−1 + 0.20ε23,t−1 + 0.10h1,t−1 + 0.15h2,t−1 + 0.15h3,t−1

h2,t = 0.001 + 0.25ε21,t−1 + 0.30ε22,t−1 + 0.15ε23,t−1 + 0.01h1,t−1 + 0.25h2,t−1 + 0.05h3,t−1

h3,t = 0.002 + 0.05ε21,t−1 + 0.01ε22,t−1 + 0.15ε23,t−1 + 0.35h1,t−1 + 0.05h2,t−1 + 0.10h3,t−1

C3 : ECCC−GARCH(1,1) =
h1,t = 0.000 + 0.05ε21,t−1 + 0.15ε22,t−1 + 0.10ε23,t−1 + 0.04h1,t−1 + 0.05h2,t−1 + 0.04h3,t−1

h2,t = 0.000 + 0.05ε21,t−1 + 0.10ε22,t−1 + 0.05ε23,t−1 + 0.00h1,t−1 + 0.08h2,t−1 + 0.01h3,t−1

h3,t = 0.000 + 0.01ε21,t−1 + 0.00ε22,t−1 + 0.05ε23,t−1 + 0.15h1,t−1 + 0.01h2,t−1 + 0.02h3,t−1

where εi,t =
√
hi,tei,t, and ei,t

i.i.d∼ Dsnorm(0, 1), i = 1, 2, 3.

The constant conditional correlation matrix, ρ, assumed as

ρ =

h1,t h2,t h3,t


1.00 0.10 0.45 h1,t

0.10 1.00 0.85 h2,t

0.45 0.85 1.00 h3,t

for all three multivariate GARCH specification.
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Thanks to the root structures given in Table 5.10 and Table 5.11, it is possible to

generate 3-variate co-integrated time series with heteroscedasticity. Please note that,

the generated series throughout the experiment are individually non-stationary time

series. Also, the linear and nonlinear correlation structure within and between mul-

tivariate objects is unrestricted for conditional mean processes. This means that the

correlation structures of a multivariate time series created by any DGM in this exper-

iment can include every possible correlation combination. In this way, it is aimed to

illustrate that there is no significant effect of the correlatedness or uncorrelatedness

of the objects to be clustered on the clustering performance. In the appendix of this

study, the clustering performances on the datasets derived from both correlated and

uncorrelated structures are also provided. It can be said that, within the scope of ex-

periments done in this study, there is no evidence that the correlation structure of time

series to be clustered seriously affects the clustering performance of the proposed ap-

proach.

Please note that, the ECCC-GARCH model necessitates constant conditional correla-

tion by its constitution. However, we considered the same fixed constant conditional

correlation structure for all three distinct conditional variance processes throughout

the experiment. The assumed correlation matrix, ρ, is indicated in Table 5.11. There-

fore, the conditional variances generated from all three GARCH(1,1) models would

have the same correlation structure. Nonetheless, the constant correlation structure

of the conditional variance neither transfers over to the conditional mean process nor

does it have any positive or negative effect on the clustering performance of the pro-

posed approach. According to the findings in this section, we can discuss that the

performance of the proposed clustering approach is independent of the correlation

structures in the conditional mean or variance processes. Another important feature

of the ECCC-GARCH models is their capability to simulate or modeling the volatil-

ity spillover phenomena in the field of economics. For example, it can be said that

processes C2 and C3 can create spillover effects within multivariate objects. In fu-

ture research, it may be considered to consolidate a model similar to ECCC-GARCH

instead of the DTHGARCH model used in the proposed clustering approach.

Simulations of VECMs and multivariate GARCH processes given in this experiment

are performed by the use of R packages tsDyn [167] and ccgarch [168].
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5.1.2.1 Case 1 : Non-temporal 3 Cluster

In Case 1 of the second experiment sets, the datasets to be clustered are generated

with the help of DGMs given in Table 5.12.

Table 5.12 Hypothetical DGMs used in Case 1.

DGM01 := STEM_1 | εt ∼ C1

DGM02 := STEM_1 | εt ∼ C2

DGM03 := STEM_1 | εt ∼ C3

C1, C2, and C3 are three distinct ECCC-GARCH(1,1) specifications given in Table 5.11.

The time series plots of the sample multivariate time-series generated from each DGM

(i.e., class) is illustrated in Figure 5.5.

Figure 5.5 Simulation samples from 3 DGMs listed in Table 5.12

While all three DGMs include the same STEM_1 structure, they differ only in condi-

tional variance processes.
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Set of the multivariate time series generated from each DGM given in Table 5.12

forms a cluster. Thus, it can be said that there are 3 clusters in the datasets created.

In this regard, according to similar logic followed in previous cases, the hypothetical

DGMs we utilized are latently underlying the center of each cluster.

Set of the multivariate time series length of 600 are created in this scenario. In pre-

vious experiments, the sizes of the clusters, that is, the number of elements in each

cluster, are set equal to each other (i.e., balanced). In the experiments in this section,

however, it is desired to evaluate the performance of the proposed clustering approach

in determining such unevenly distributed cluster sizes throughout the dataset to be

clustered. For this reason, a total of 120 multivariate time series (i.e., objects) are

produced for each dataset to be clustered, with 60 objects belongs to the first of the

3 clusters and the remaining 2 clusters have 30 objects each. Therefore, the created

dataset from 1 repetition consists of 3 clusters corresponding to the number of DGMs

used where class1 contains 60 objects, class2 and class3 contains 30 objects each.

The generating samples, clusters, and then evaluations of clustering performances for

second set of multivariate experiments’ Case 1 can be summarized as follows:

* nos = 3 (i.e., the number of hypothetical DGMs used in the experiment.)

* noc = 3 (i.e., the number of true clusters.)

* cs = 60, 30, 30 (i.e., the number of series/members in each cluster.)

* ss = 600 (i.e., the number of observations for each generated multivariate se-
ries.)

* rn = 100 (i.e., the number of repetition of the experiment.)

1. DGM01 in Table 5.12 is used to generate 60, DGM02 is used to generate 30
and DGM03 is used to generate 30 number of 3-dimensional multivariate
time series with the length of 600 (i.e., ss) to form a dataset.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 120× 600 dimensional dataset and clustering
accuracies are saved.

3. Steps from 1 to 2 repeated 100 (i.e., rn) times to get average accuracies of
15 (i.e., 3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table 5.13.
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Table 5.13 Multivariate Experiment 2 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.444 0.429 0.431
DLD 0.477 0.434 0.673
DGAK 0.427 0.394 0.388
DDTW 0.425 0.392 0.388
DPDC 0.583 0.400 0.485

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 350 ss = 475 ss = 600

L2 (Euclidean) Distance 0.649 0.739 0.803

According to Table 5.13 containing the clustering methods’ accuracies, it can be said

that almost all clustering methods cannot truly cluster the examined datasets. How-

ever, the proposed approach has the highest success rate and correctly groups 90

objects out of 120, on average.

The main reason for low accuracy clustering is that the datasets to be clustered here

are generated by almost identical DGMs. If the series desired to be clustered differ

from each other especially in terms of conditional variance characteristics, the cluster-

ing performances of the methods decreases considerably. It should be noted that most

of the methods compared here are not designed for such a purpose. Although we have

designed the proposed clustering approach to also distinguish between GARCH-like

volatilities, there is a limit to the accuracy rate of the proposed approach. In addition,

in cases where detection and extraction of heteroscedasticity as a property is decisive

for exact grouping, the data length required by the proposed approach for clustering

in the most efficient way exceeds 450.
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5.1.2.2 Case 2 : Temporal 6 Cluster

In Case 2 of the second experiment sets, the time-varying clustering performance of

the proposed approach and the compared clustering methods are assessed via another

temporal clusters scenario. In this case, we used the hypothetical data generation

mechanisms given in Table 5.14 to generate the multivariate time series datasets that

are to be clustered. These DGMs consist of the combinations of the STEMs and

multivariate GARCH processes presented in Table 5.10 and Table5.11, respectively.

Table 5.14 Hypothetical DGMs used in Case 2.

used to generate time series of length 1200

sources of samples sources of samples

from 1 to 600 from 601 to 1200

DGM01 := STEM_1 | εt ∼ C1 B STEM_1 | εt ∼ C1

DGM02 := STEM_1 | εt ∼ C1 I STEM_2 | εt ∼ C2

DGM03 := STEM_1 | εt ∼ C2 I STEM_3 | εt ∼ C3

DGM04 := STEM_1 | εt ∼ C3 B STEM_1 | εt ∼ C3

DGM05 := STEM_1 | εt ∼ C3 I STEM_2 | εt ∼ C1

DGM06 := STEM_1 | εt ∼ C3 I STEM_3 | εt ∼ C2

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed at that point.
C1, C2, and C3 are three distinct ECCC-GARCH(1,1) specifications given in Table 5.11.

In this experiment, datasets created through simulated multivariate time series from 6

different DGMs are clustered, and clustering performance results are presented. Each

dataset to be clustered contains 120 objects (i.e., multivariate time series).

Although the correct number of clusters in the datasets is 6, each cluster is constructed

not to include an equal number of objects. In other words, cluster sizes or the number

of members in each cluster are unbalanced. Therefore, while 30 multivariate time

series are generated from DGM01, DGM02, DGM03, 10 multivariate series are gen-

erated from DGM04, DGM05, and DGM06.
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The time series plots of sample multivariate time series generated from each DGM

are exhibited in Figure 5.6.

Figure 5.6 Simulation samples from 6 DGMs listed in Table 5.14

As can be seen from the time series plots, it can be visually noticed that the traces left

by STEM_1, STEM_2 and STEM_3 over time are different from each other. How-

ever, although some part of time series graphs are seemingly identical, they are ulti-

mately different from each other because of the conditional variance structures they

include. For example, the last 600-length portions of series belonged to class3 and

class6 are generated from the same mean processes but different variance structures.

Accordingly, it is important to detect the heteroscedasticity phenomenon, which is

not visually noticeable, and to use it as a distinctive feature in cluster analysis. In this

experiment, let’s note that while the number of clusters is 3 for the first 600-length

segments of the datasets, the number of clusters in the datasets changed to 6 starting

from the 600th time point.
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The clustering results for the first 600-length parts of the datasets are given in the

previous experiment. Hence, this case includes the same dataset generation for the

first 600-length structure as the previous experiment and is a continuation of the 1st

case’s scenario.

As stated before, the generated multivariate time series within the scope of the exper-

iment are individually non-stationary time series. Moreover, the linear and nonlinear

correlation structure within and between three-variate time series is unrestricted, espe-

cially for mean processes. This means that the correlation structures of a three-variate

time series produced by any DGM throughout the experiment can accommodate all

possible correlation combinations. By doing this, it is aimed to show that whether the

objects to be clustered are correlated or uncorrelated, stationary or non-stationary do

not have a significant effect on clustering performance.

The generating samples, clusters, and then evaluations of clustering performances for

second set of multivariate experiments’ Case 2 can be summarized as follows:

* nos = 6 (i.e., the number of hypothetical DGMs used in the experiment.)

* noc = 6 (i.e., the number of true clusters.)

* cs = 30, 30, 30, 10, 10, 10 (i.e., the number of members in each cluster.)

* ss = 1200 (i.e., the number of observations for each generated multivariate
series.)

* rn = 100 (i.e., the number of repetition of the experiment.)

1. DGM01 in Table 5.14 is used to generate 30, DGM02 is used to generate
30, DGM03 is used to generate 30, DGM04 is used to generate 10, DGM05
is used to generate 10 and DGM06 is used to generate 10 number of 3-
variate time series with the length of 1200 (i.e., ss) to form a dataset.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 120 × 1200 dimensional dataset and cluster-
ing accuracies are saved.

3. Steps from 1 to 2 repeated 100 (i.e., rn) times to get average accuracies of
15 (i.e., 3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table 5.15.
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Table 5.15 Multivariate Experiment 2 Case 2: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.453 0.468 0.500
DLD 0.382 0.494 0.498
DGAK 0.277 0.266 0.274
DDTW 0.278 0.266 0.274
DPDC 0.459 0.561 0.570

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 800 ss = 1000 ss = 1200

L2 (Euclidean) Distance 0.730 0.779 0.855

The clustering performances obtained for Case 2 are very close to the results obtained

in the previous case. Although the success rate does not decrease despite the cluster

structure that changes over time, the proposed approach cannot cluster 15% of the

three-variate time series correctly, on average. These results support our findings that

the performance of the proposed clustering approach is limited in clustering datasets

in which heteroscedasticity features are dominant than mean structures. Again, as

in the previous case, where the definite extraction of conditional variance features is

essential for correct clustering, the data length required by the proposed approach for

the most efficient clustering is around 500.

The clustering performances of the distance measures compared are also quite lim-

ited. These distance measures and the proposed clustering approach can group time

series with high accuracy when they entirely depend on conditional mean processes.

However, the methods mentioned in this study demand further improvement to accu-

rately cluster all sorts of heteroscedasticity and various complex qualities of real-life

time series.
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5.1.2.3 Case 3 : Temporal 12 Cluster

The last scenario about the temporal cluster under the second set of experiment on

multivariate synthetic data is consist of 12 DGM/cluster. Each DGM consists of

sequences of STEMs and multivariate GARCH processes shown in Table 5.10 and

Table 5.11, respectively. The hypothetical DGMs employed in this scenario are given

in Table 5.16. Furthermore, the dataset formation scenario here completely includes

the data generation arrangement we practiced in the previous two experiments.

Table 5.16 Hypothetical DGMs used in Case 3.

used to generate time series of length 1800

sources of samples sources of samples sources of samples

from 1 to 600 from 601 to 1200 from 1201 to 1800

DGM01 := STEM_1 | C1 B STEM_1 | C1 B STEM_1 | C1

DGM02 := STEM_1 | C1 B STEM_1 | C1 I STEM_2 | C2

DGM03 := STEM_1 | C1 B STEM_1 | C1 I STEM_3 | C3

DGM04 := STEM_1 | C1 I STEM_2 | C2 I STEM_1 | C1

DGM05 := STEM_1 | C1 I STEM_2 | C2 B STEM_2 | C2

DGM06 := STEM_1 | C1 I STEM_2 | C2 I STEM_3 | C3

DGM07 := STEM_1 | C2 I STEM_3 | C3 I STEM_1 | C1

DGM08 := STEM_1 | C2 I STEM_3 | C3 I STEM_2 | C2

DGM09 := STEM_1 | C2 I STEM_3 | C3 B STEM_3 | C3

DGM10 := STEM_1 | C3 B STEM_1 | C3 B STEM_1 | C3

DGM11 := STEM_1 | C3 I STEM_2 | C1 B STEM_2 | C1

DGM12 := STEM_1 | C3 I STEM_3 | C2 B STEM_3 | C2

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed at that point.
C1, C2, and C3 are three distinct ECCC-GARCH(1,1) specifications given in Table 5.11.

The number of hypothetical DGMs is 12 in this case, which means that the actual

number of clusters in the datasets is also 12, considering the whole dataset length.

The three-variate time series are generated to include 1800 points in total.
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Please note that the actual number of clusters is six for the first 1200-length simulation

of the scenario. Nevertheless, the number of clusters in the plan increases to 12

following the 1200th time point due to the changes in DGMs. The sample three-

variate time series plots from each DGM/class are shown in Figure 5.7.

Figure 5.7 Simulation samples from 12 DGMs listed in Table 5.16

Hence, this scenario is a continuation of the 1st and 2nd cases.
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Through this experiment, we intended to assess the capability of the proposed clus-

tering approach to recognize changing cluster formations when the data generating

sources that form clusters are modified over time. That is to say, it aims to assess the

ability of the clustering approach to recognize changes of cluster formations when

a dataset is updated with new coming data (e.g., streaming data). For this goal, the

proposed procedure aims to cluster dynamically structured datasets with a dynamic

clustering approach.

The generating samples, clusters, and then evaluations of clustering performances for

Case 3 can be summarized as follows:

* nos = 12 (i.e., the number of hypothetical DGMs used in the experiment.)

* noc = 12 (i.e., the number of true clusters.)

* cs = 10 (i.e., the number of series/members in each cluster.)

* ss = 1800 (i.e., the number of observations for each generated multivariate
series.)

* rn = 100 (i.e., the number of repetition of the experiment.)

1. Each DGM in Table 5.16 is used to generate 10 (i.e., cs) number of 3-
dimensional multivariate time series with the length of 1800 (i.e., ss) to
form a corresponding cluster.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 12× 10× 1800 dimensional dataset and clus-
tering accuracies are saved.

3. Steps from 1 to 2 repeated 100 (i.e., rn) times to get average accuracies of
15 (i.e., 3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table 5.17.

The source components, which are responsible for generating the last 600 realiza-

tions, participating in the DGM structures at the end, made each DGM to be identified

as different from one another. As a result, there is a total of 12 clusters in the dataset

consisting of 1800-length three-variate time series generated from these DGMs.
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The first 1200-length simulations of the DGMs listed in Table 5.16 are addressed in

the previous case in subsection 5.1.2.2. The clustering results for this part of the

dataset are given in Table 5.15. The number of clusters for the mentioned part of the

dataset is six, and the number of members of each class is unbalanced and described

as 30, 30, 30, 10, 10, and 10, from 1 to 6 respectively. Following the 1200th point,

the number of clusters expanded to 12 due to the changes in DGMs, and the number

of members in each cluster set at 10.

Accordingly, while the number of clusters in the dataset was 3 initially, it increased

to 6 after the 600th time point and remained the same up to the 1200th point. And,

then following the 1200th time point of the samples the number of clusters extended

to 12. The clustering results for the first 600-length parts of the datasets are given in

subsection 5.1.2.1. The results of the clusterings obtained over the entire length of the

dataset, that is, pretending that we are at the 1800th time location, are given in Table

5.17.

Table 5.17 Multivariate Experiment 2 Case 3: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.365 0.465 0.480
DLD 0.271 0.380 0.388
DGAK 0.198 0.260 0.229
DDTW 0.194 0.259 0.223
DPDC 0.283 0.410 0.634

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 1400 ss = 1600 ss = 1800

L2 (Euclidean) Distance 0.880 0.971 0.963

Furthermore, the proposed clustering approach is repeated over three different sample

sizes (i.e., lengths) to make suggestions about the optimum data length needed to

recognize the number of clusters that change over time, and the results are given in

Table 5.17.
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The accuracy index of the proposed clustering approach to correctly recognize clus-

ters in the dataset is quite high. One reason for this is that the time series increase in

length and the STEM combinations that create the dataset changing over time make

the series more distinguishable in terms of conditional mean processes rather than

heteroscedasticity features. However, the sample size required to distinguish clusters

with the highest accuracy is about 1600 observations. In other words, the optimum

data length to be examined in order to determine the changing cluster structure after

the 1200th point correctly is around 400 observations.

The results of the GAP statistics are also given for this experiment. The Figure 5.8

and Table 5.18 shows the distribution of GAP statistics over 100 repetitions for pos-

sible cluster numbers from 2 to 20. In this case, in 54 out of 100 repetitions, the

GAP statistic peaked at cluster number 12. As we stated before, the precision of the

GAP statistics is directly linked to the capability of the clustering method. The more

successful the clustering method is, the higher the use-value and accuracy of the GAP

statistic.

Figure 5.8 GAP statistics’ Box-Plots per cluster number using TSMB-SPCL-MV.

Table 5.18 The Gap statistics peaks out of 100 repetitions using TSMB-SPCL-MV.

cluster number, ĉl 11 12 13 14 >15

counts of peaks 17 54 16 9 4
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5.2 Performance evaluation over Real Data

In this section, the clustering performances of the proposed clustering approach and

15 other clustering methods based on five distance measures are compared on two

datasets consisting of real-time multivariate time series. These datasets from real-life

experiments are created for multivariate time series classification investigations, and

accordingly, the class labels and sizes are known beforehand. Hence, the datasets are

studied here to evaluate the capability of the proposed clustering approach for multi-

variate time series datasets whether it could correctly recognize underlying classes/-

clusters.

There are many time series classification and clustering studies for different purposes

in the literature. In addition, many datasets generated for time series classification

studies are publicly available [141] for reproducibility of the results and comparison

purposes. Therefore, the proposed methods for clustering tasks may vary in terms of

their appropriateness for the datasets desired to be clustered and from the point of the

objectives of the studies. Accordingly, assuming that any proposed clustering method

could be proper for all sorts of time series datasets to be clustered is misleading.

Although the clustering approach proposed in this study is not suitable for short-

length time-series (i.e.,≤ 300) datasets, it appears useful in datasets where noise, non-

linearity, non-stationarity, and heteroscedasticity are leading features of time series.

In this context, we believe that the proposed approach can contribute and produce

valuable outcomes in clustering datasets containing complex and heteroscedastic time

series (i.e., >300 obs.) from fields such as signal processing, finance, econometrics,

and computer sciences.

The number of dynamics that generate the multivariate time series datasets we study

and the number of corresponding classes to these mechanisms are simply self-evident

in this section. The datasets of multivariate time series we considered here consist of

long signals collected from various situations with different dynamics. The first of

these datasets consists of measurements of 8 different bodily movements observed by

9 sensors spread out to the whole body. The second one is consists of multivariate

(i.e., 64 channel) EEG signals assembled from 7 subjects’ neuronal activities.
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The main reason we are practiced real-life data from the sensor-based measurements

is that it is almost infeasible to find real-life time-series datasets consisting of explicit

class formations and corresponding labels in the fields such as economics, finance,

and climate where knowledge of underlying class formations is not accurately acces-

sible due to uncertainty intrinsic to the dynamics of observations from these fields.

5.2.1 Clustering of Human Motion Tracking Data

The first real-life dataset examined in this section consists of observations of an exper-

iment designed to classify several human motions (i.e., routine or sports activities).

The experiment consists of recorded measurements of various bodily motions per-

formed by 8 participants for 5 minutes. These observations are recorded by magnetic

sensors placed on the subjects’ bodies at five different locations (i.e., torso, right and

left arms, right and left and legs). For detailed information about the experiment and

the dataset, please see Altun et al. [169] and Barshan [170]. The dataset is shared

with the scientific community by the researchers who designed the experiment and is

publicly available from the UCI Machine Learning Repository [171].

The dataset we examined in this section for clustering consists of approximately 1-

minute segments taken from 5-minute observations, each made for eight different

activities. These 1-minute observations are extracted from the dataset to correspond

to the middle segment of the total experimental time. In other words, the signals used

from each sensor in the dataset consist of 1400 observations. Sensors are received the

data at a 25 Hz sampling frequency (i.e., 25 measurements per second). Each activity

(i.e., eight different activities) is recorded with nine magnetic sensors placed on the

subjects’ bodies at five positions. Therefore, the size of each measurement is consists

of 45(9×5)-variate multivariate time series of lengths 1400 each. Accordingly, the

size of the dataset to be clustered is 8 (subjects or repetition) × 8 (activities) × 1400

(length) × 45 (sensors).

In this scenario, we assumed that each bodily activity is a data generation mechanism

that makes up the dataset, and therefore forms a class. The dataset, in this context, is

consists of 8 classes in terms of different activities.
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The structure of the dataset is presented in Table 5.19 .

Table 5.19 Multivariate Human Motion dataset.

8 Bodily Activity
Number of Sources Number of Subjects Number of Sample

or Number of Classes or Number of Repetition sensors Length

class1: Sitting 8 45 1400

class2: Standing 8 45 1400

class3: Lying 16 45 1400

class4: As/Des-cending 16 45 1400

class5: Walking 8 45 1400

class6: Running 8 45 1400

class7: Rowing 8 45 1400

class8: Jumping 8 45 1400

• The dataset’s dimension is 80×1400×45

Each participant repeated each bodily activity as a data generation mechanism eight

times, except for Lying and As/Descending activities. Activities that form class1

and class2 are performed in two different forms, such as lying on the back or the

right side and ascending or descending stairs. These activities are repeated 16 times.

Accordingly, the dataset includes 80 multivariate time series with 45 variables each.

The subjects are asked to perform bodily movements in their way, and they are

not dictated to how they should perform certain activities. Accordingly, there are

some paricipant-specific differences during the performance of the movements. Here,

whether the true number of classes corresponds to 8 different activities or eight differ-

ent subjects can be questioned. However, since the magnetic sensors make directional

measurements (i.e., on a 3-D axis), the determining factors for these observations are

not the subjects’ bodily structures or styles but the direction the movements them-

selves require to occur. Hence, participant-specific variations can be considered as

processes that generate a certain amount of noise.

Please note here that the very steady motions of sitting and lying are very similar in

terms of data-generating mechanisms. This situation causes that these two activities

cannot be wholly recognized during the clustering phase.
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Exemplars of multivariate time series belonging to each class/activity are illustrated

in Figure 5.9. Although each multivariate time series consists of 45 variables, for

the sake of clarity, only the time traces of 6 variables are given as an example in the

graphs.

Figure 5.9 Samples from multivariate human activity dataset.

Clustering of the dataset is performed by the proposed approach given in Section

3.4.2. Implementation steps are given in Figure 3.4 and hyper-parameters values

are given in Figure 4.2. 5 dissimilarity measures given in Table 5.1 for 3 different

clustering methods (i.e., Fuzzy, PAM, Spectral) are performed on this dataset and

overall clustering accuracies are displayed in Table 5.20.
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Table 5.20 Multivariate Human Motion dataset: average accuracy indexes (i.e., ap-
prox. correct clustering percentages) of compared time series clustering methods and
the Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.367 0.737 0.657
DLD 0.478 0.398 0.639
DGAK 0.318 0.232 0.282
DDTW 0.438 0.609 0.615
DPDC 0.388 0.478 0.755

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 1400

L2 (Euclidean) Distance 0.885

Contrary to learning the classes with the supervised training in classification studies,

clustering methods try to identify the underlying clusters in the dataset without any

supervision. In this aspect, the results of the unsupervised completion of the pro-

posed clustering approach in assigning the objects(i.e., multivariate time series) in

the dataset to the actual clusters are presented in Table 5.20. According to these re-

sults, the proposed approach can group the objects into the correct number of clusters

with an accuracy of 88%. Besides, the spectral clustering application of PDC distance

provided the second best result. The performance of the JD distance measure via the

PAM clustering method is also obtained as the third-best result. PDC, JD, and LD

distance measures are seen to provide good outcomes throughout the study, but these

performances are noticed to vary from case to case.

As mentioned earlier, the proposed approach has difficulties assigning objects belong-

ing to class1 and class3 without supervision. Another important point is that the time

series objects to be clustered consist of many layers or variables, such as 45. While

this may facilitate clustering, however, in some cases, it may make clustering quite

tricky. Moreover, no detailed pre-processing and data manipulation is performed on

the data before clustering. In fact, with such preliminary preparations, dataset clus-

tering can be completed more carefully. Here, however, we wanted to measure and

present the performance of the proposed approach in its most unrefined form.
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The GAP statistic we practiced for the real-life data in this subsection reached the

peak value at 8, which is the true number of clusters in the data. Figure 5.10 displays

the GAP statistics vs. the possible number of clusters. Likewise, as shown in Figure

5.11, the average silhouette value also reaches its highest value at 8.

Figure 5.10 GAP statistic per cluster number for the Human Motion dataset using

TSMB-SPCL-MV.

Figure 5.11 Average Silhouette Value per cluster number for the Human Motion

dataset using TSMB-SPCL-MV.
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5.2.2 Clustering of Multivariate EEG Motor Execution and Imagery Dataset

The second real-life dataset considered in this section is taken from the experiment

conducted to contribute and developing brain-computer interface (BCI) systems. The

entire dataset consists of recorded neuronal activities of 109 participants while per-

forming a predetermined sequence of motor execution (ME) or motor imagery (MI)

tasks. These neuronal activities are recorded as EEG signals and measured with the

help of the BCI2000 system (i.e., 64-channel EEG). A sample scalp surface place-

ment of 64-electrode per the international 10-10 EEG is shown in Figure 5.12. The

experiment and the creation of the dataset are completed by Gerwin Schalk and his co-

workers. For more detailed information about the experiment and the dataset, please

see Schalk et al. [172] and visit https://doi.org/10.13026/C28G6P. The

whole dataset is publicly available by physionet.org, which is an online archive

that contains a huge data library of various recordings of physiologic time series for

use in various research [173].
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Figure 5.12 A sample of 64-channel EEG placement.
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In this section, the dataset we employ to evaluate the clustering performance of the

proposed approach consists of a part extracted from the entire dataset mentioned

above. The extracted dataset includes EEG recordings of 7 randomly selected par-

ticipants from 109 healthy participants. The experiment consists of 14 consecutive

runs that each participant is required to do. These runs are of a consecutive order of

MI and ME types activities. The order of an experiment runs for a participant can be

given as follows:

1. Baseline, eyes open

2. Baseline, eyes closed

3. Task 1 (ME) (open and close left or right fist)

4. Task 2 (MI) (imagine opening and closing left or right fist)

5. Task 3 (ME) (open and close both fists or both feet)

6. Task 4 (MI) (imagine opening and closing both fists or both feet)

7. Task 1

8. Task 2

9. Task 3

10. Task 4

11. Task 1

12. Task 2

13. Task 3

14. Task 4

For the clustering scenario we have practiced here, a dataset consisting of 6-second

segments, which is selected from the middle section and corresponds to 1024 obser-

vations in length, is taken from the neurophysiological activities measured during the

tasks performed by the participants for 2 minutes. Therefore, the dataset we worked

on includes 14 multivariate time series (i.e., objects to be clustered) for each 7 partic-

ipants. These objects are multivariate time series with 64 variables (i.e., channels ),

each consisting of 1024 observations. These 64 variables are the number of electrodes

used for EEG measurement, and an exemplary placement of electrodes is presented in

Figure 5.12. The framework of the dataset we considered for clustering in this section

is given in Table 5.21.
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Table 5.21 Multivariate EEG Motor Execution and Imagery dataset.

7 Participant
Number of Sources Number of Obj. Number of Sample

or Number of Classes in each class electrodes Length

class1/DGM1: Subject1’s neurophys. 14 64 1024

class2/DGM2: Subject2’s neurophys. 14 64 1024

class3/DGM3: Subject3’s neurophys. 14 64 1024

class4/DGM4: Subject4’s neurophys. 14 64 1024

class5/DGM5: Subject5’s neurophys. 14 64 1024

class6/DGM6: Subject6’s neurophys. 14 64 1024

class7/DGM7: Subject7’s neurophys. 14 64 1024

• The dataset’s dimension is 98(7*14)×1024×64

In this framework, we assume that the actual number of clusters in the dataset we ex-

tracted from the entire dataset is equal to 7, which is also the number of participants.

That is, the neurophysiology of each individual in the experiment is considered as

a distinct data generation mechanism. As in the previous real dataset application, it

can be questioned whether it is more accurate to cluster the dataset in terms of the

number of motor tasks performed, that is, to cluster according to 6 different tasks

(i.e., eyes open, eyes closed, task1, task2, task3, task4). In fact, within the scope of

this framework, the actual number of clusters in the dataset is equal to the number of

mechanisms (i.e., the individual neurophysiology of each participant) that generate

the dataset even if each subject has done the same type of experiments. This assump-

tion is in line with studies that have found inter-subject variations in the neurophysi-

ologies of MI and ME type activities based on EEG signals. Saha and Baumert [174]

can be seen for a detailed literature review on the intra- and inter-subject variability

in brain topography.

The multivariate time series plots of the neuronal activities of each participant recorded

while they performing ME task 3, only samples from 6 selected frontal electrodes’

observations are visualized for the sake of clarity, are shown in Figure 5.13. As can

be seen from the figure, the neuronal activities of the participants recorded during the

same task differ visibly from each other.
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Figure 5.13 Samples from multivariate EEG motor execution and imagery dataset.

However, in such a data set, it is quite reasonable and important task to state the

goal of clustering as grouping or classifying the dataset in terms of the different tasks

performed. In such a case, it would be a more correct approach to apply supervised

learning for classification by examining the tasks in more detail with the experimental

protocol that constitutes the dataset. Because if the dataset is required to be grouped

in terms of the tasks, it is essential to use the meta-information about the stages of

experimental protocol and the time intervals in which each task is performed. The

clustering operation we apply here is to evaluate the capacity of the proposed ap-

proach to recognize cluster structures that are already known to exist.
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Clustering of the dataset is performed by the proposed approach given in Section

3.4.2. Implementation steps are given in Figure 3.4 and hyper-parameters values

are given in Figure 4.2. 5 dissimilarity measures given in Table 5.1 for 3 different

clustering methods (i.e., Fuzzy, PAM, Spectral) are performed on this dataset and

overall clustering accuracies are displayed in Table 5.22.

Table 5.22 Multivariate EEG Motor Execution and Imagery dataset: average accu-
racy indexes (i.e., approx. correct clustering percentages) of compared time series
clustering methods and the Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.449 0.265 0.435
DLD 0.552 0.606 0.999
DGAK 0.250 0.315 0.276
DDTW 0.428 0.553 0.644
DPDC 0.428 0.624 0.969

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 1024

L2 (Euclidean) Distance 0.989

According to the results given in Table 5.22, the spectral clustering with the use of

LD distance perfectly clustered the dataset. Besides, the performance of the PDC

distance measure via the spectral clustering method is also obtained as the third-best

result. The proposed approach is also clustered the dataset with very high accuracy.

The proposed approach can group the 64-variate time series into the correct number

of clusters with an accuracy of 98%.

The results obtained in this subsection are in accordance with the findings obtained

throughout the study. The proposed approach provided more stable and sometimes

high-accuracy clustering results in both synthetic and real datasets. On the other hand,

JD and LD distance measures operating on the frequency domain and PDC operating

based on complexity information produced very high accuracy clustering results in

some cases. However, the wide spectrum of performance levels obtained for the

mentioned distance measures are not consistent enough to highlight these measures

for every sort of dataset analyzed in the study.
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The performance of these dissimilarity measures is limited and unsteady, especially

in datasets with heteroscedasticity or similar complexity. Nevertheless, the results

indicate that these distance measures can be quite competent if adjusted for different

scenarios. On the other hand, when these distance measures are used together with

spectral clustering, the high accuracies they produced are important findings in favor

of the spectral clustering. This finding can also be evaluated that the spectral clus-

tering using model-based feature extraction approach proposed in the study can be a

useful alternative for univariate and multivariate time series clustering.

The GAP statistic we tested for the real-life data in this subsection reached the peak

value at the cluster number 8. However, the actual number of clusters in the dataset

is 7. Figure 5.14 displays the GAP statistics vs. the possible number of clusters.

Figure 5.14 GAP statistic per cluster number for the Human Motion dataset using

TSMB-SPCL-MV.

Besides, as shown in Figure 5.15, the average silhouette value reaches its highest

value at 6. Both methods seems incorrectly estimated the correct number of clusters

with a margin of error.

Although the main purpose of this study is not to propose a method to determine the

actual number of clusters in the dataset, the GAP statistic, which we consider can be

used for this purpose, has been mentioned in the previous sections.
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Figure 5.15 Average Silhouette Value per cluster number for the Human Motion

dataset using TSMB-SPCL-MV.

There are cases where the GAP statistic is able to determine the correct number

of clusters, but it also gave incorrect estimates in many trials, including synthetic

datasets. As we mentioned previously, the accuracy of the GAP statistics is imme-

diately connected to the ability of the clustering method. The more successful the

clustering method is, the higher the use-value and accuracy of the GAP statistic.

However, both the GAP statistic and the Silhouette values can be used as an auxiliary

indicator when the number of clusters is unknown. More importantly, as it is previ-

ously discussed that the meaning of true cluster in any dataset desired to be clustered

can be established concerning the goal of the study and the number of true cluster is

closely related to this. Therefore, it would be a more accurate approach to address

about reasonable cluster numbers rather than the correct number of clusters in any

dataset.

139



On the Required Computational Time for the Proposed Approach

One of the most important things for a data scientist is the time cost of a computa-

tional application. It is always aimed to design computationally inexpensive routines

in statistical computing. Therefore, researchers are expected to foreknow the time

they will spend on computational work as much as possible. On the other hand, al-

gorithms used in computational-intensive jobs are desired to be suitable for existing

data processing capacities.

The proposed approach use R routines. The computational algorithm of the proposed

approach is self-adaptive to the configuration of the computer hardware. And it is un-

der development for faster computation. Thanks to many R developers, the proposed

approach uses a parallel computation algorithm in R. For example, clustering on a

computer with 24 cores will be faster than on a device with 8 cores. However, despite

this, it can be considered that the computational speed of our proposed approach is

still slow.

In Table 5.23 below, the required times are given for computing the distance matrices

used to cluster the real data sets in Section 5.2. In the first real data experiment

given in 5.2.1, 80 multivariate time series of 1400 lengths, each with 45 variables,

are clustered. In the second real data experiment given in 5.2.2, 98 multivariate time

series with 1024 lengths and 64 variables each are clustered.

Table 5.23 The times required to compute the distance matrices for real data experi-
ments.

Real Data Experiment 5.2.1 Real Data Experiment 5.2.2
Human Motion Tracking Data Multivariate EEG MI-ME Data

Dissimilarity Data size is 80×1400×45 Data size is 98×1024×64
measure
Model free
DJD ∼ 35 min ∼ 90 min

DLD ∼ 140 min ∼ 360 min

DGAK ∼ 0.3 min ∼ 0.6 min

DDTW ∼ 0.1 min ∼ 0.4 min

DPDC ∼ 1 min ∼ 2 min

Proposed
∼ 40 min ∼ 25 min

Approach
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The required time for numerical calculations reported in Table 5.23 are obtained at

TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA re-

sources). These results are obtained by the computing facility having 24 cores. As

can be seen from the Table 5.23, the proposed approach requires more computation

time regarding the individual time series length rather than the total data size. In par-

ticular, the R codes used for DTGARCH model estimation is still slow, even though it

is designed for parallel computing. On the other hand, it is seen that the computations

of distance matrices by GAK, DTW and PDC dissimilarity measures can be done

very quickly. This is more about the codes used for calculations than the simplicity of

distance measures. Similarly, the slowness seen in JD and LD mostly depends on the

algorithm used in the calculation. Calculation of these distance measurements could

also be done fast once the necessary adjustments are assembled.

One of the most remarkable results here is that high-performance results are obtained

quickly, especially when the distance matrices obtained by PDC dissimilarity mea-

sures are employed in spectral clustering. The distance matrix is quickly calculated

on the data sets, which can be said to be big in dimensions, and clustering could be

done with an accuracy of over 75% in the first real data experiment and over 95%

in the second real data experiment. One reason for this is the C language routines

(known to be faster than R) that the PDC uses embedded in R code scripts. Different

functions can be found or produced in programming to accomplish each operation

faster. For example, one can utilize many techniques in calculations to get the Sin-

gular Value Decomposition or multivariate spectrum estimations. Being able to use

these facilities highly depends on the developer’s skills.

In addition to code development, significant time reductions can be achieved provided

that parallel computing facilities are used. When the number of processors that can be

used simultaneously is increased (e.g., in cloud computing), the time required for dis-

tance matrix calculation of the proposed approach will decrease considerably. View-

ing that even today’s laptops’ configurations can use 64 cores, significant reductions

in the computation time of statistical procedures will be performed efficiently.
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CHAPTER 6

SUMMARY AND DISCUSSION

In this study, a novel approach is proposed for clustering datasets consisting of uni-

variate or multivariate time series. The clustering performances of the proposed ap-

proach and state-of-the-art clustering methods are evaluated and compared with the

datasets formed from both artificial and real-life experiments.

The clustering approach proposed in this study is for clustering problems in which

time series subject to clustering are treated as objects to be clustered. On the other

hand, these objects are desired to be clustered based on the similarities/dissimilari-

ties of the mechanisms that generate these objects. For this reason, with the notion

of "homogeneous/correct cluster" stated in the study, it is meant that the underly-

ing mechanisms that create time series should be homogeneously grouped. In this

context, in the introduction part of the study, some basic concepts specific to the

field such as clustering, classification, similarity, true cluster, the homogeneous group

are addressed with their philosophical backgrounds and historicities. The benefits

of defining the true cluster concept according to the purpose and expectations of the

study, and the discussions and scientific procedures developed in this context are re-

viewed. Therefore, the hypotheses used to develop the proposed clustering approach

are addressed and attempted to be grounded in the introduction and the following two

chapters.

In this study, it is believed that the idea followed for proposing a time series clus-

tering approach is developed in accordance with the most fundamental statistical in-

ference principle. This approach relies on clustering by distinguishing or identifying

the features of the underlying data-generating mechanisms (i.e., distributions, pro-

cesses, etc.). The statistical approach does not treat the observed data as isolated,

spontaneous, and once-obtained observations due to uncertainty and randomness.
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Statistical inferences are made by developing approaches to the mechanisms that gen-

erate the data with the help of probability distributions. Of course, the main tools for

this are statistical models. When the data is time dependent, the tools that can be

used are time series models. Accordingly, it is aimed to contribute to the clustering

of time series by proposing the approach which can be considered in the category of

model-based approaches.

Methods developed for time series clustering are briefly reviewed in Chapter 2. Some

of these methods attempt to cluster time series through computational approaches,

while others use model-based approaches. As stated where we mentioned motivation

in the first and third chapters of the study, instead of clustering the raw observations

(i.e., by evaluating the features supposed to be specific to the data), it is aimed to

group the DGMs that created time series. At this point, it is necessary to note the

statistical determination that the underlying DGMs that generate the data cannot be

entirely determined, but only approximations can be made. Nonetheless, if the aim

of clustering is stated toward this perspective, it would be pointless to find the most

proper time series model for each time series and compare them with each other.

Because, in the dataset to be clustered, as many suitable models can be found as the

number of objects to be grouped, the clustering will become meaningless.

If the set of multiple time series objects is desired to be clustered in terms of the

mechanisms that generate these series, and since the underlying DGMs cannot be

fully identified, comparable outputs should be collected from the approximations to

these hypothetical DGMs that produce the datasets. Therefore, a suitable tool/ruler

(e.g., time series model) is required to obtain comparable approximations. It is neces-

sary to determine the specifications of the model beforehand that are to be used for the

approximation and then extract comparable information from each series through this

structure specified. In this context, we attempted to illustrate the clustering perspec-

tive of the study with an analogical example from another field (i.e., spectroscopy)

given in Chapter 3.1.

This perspective can be briefly summarized as follows: Since we can’t determine

the underlying mechanisms that generate the series with their physical structure, let’s

alternatively filter the realizations (i.e., observations) received from these underlying
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DGMs through a model so that the products coming out of this filter are as specific as

possible to the source that generates the series.

The DTGARCH model, which constitutes an essential pillar of the proposed approach

and acts as a ruler or filter in the approach, is introduced in the 3rd chapter. The DT-

GARCH model is chosen as a suitable tool for the purpose of the proposed approach,

as it has the capacity to generate and model many features encountered in real-life

time series. The feature extractions using outputs obtained with the help of the DT-

GARCH model and made with other auxiliary devices for clustering time series are

addressed in the 3rd chapter of the study.

Each series subject to clustering is represented by feature vector if series is univari-

ate or feature matrices if multivariate. Therefore, these feature vectors/matrices are

treated as objects to be clustered instead of time series. The extracted feature vectors/-

matrices are expected to represent the series to be clustered in many different respects

(i.e., linearity, nonlinearity, nonstationarity, autocorrelation structure, heteroscedas-

ticity, etc.) as competently as possible. These feature vectors/matrices are consist of

specific DTGARCH and AR model estimation outputs, correlation structures in raw

data, and frequency-based spectrum estimations. Feature vectors/matrices, extracted

through filtering using a specific model selected from the DTGARCH universe, ex-

pected to represent series can be considered as projections of the underlying mech-

anisms that generate the series. Subsequently, by evaluating the distances between

these projections, the clustering phase can be performed. Thus, if these projections

are definitely projections of the mechanisms creating the series, as a result of the ac-

curate grouping of these projections, series close to each other in terms of underlying

DGMs would be inferred.

The distance matrix, which is obtained by comparing the feature vectors/matrices, is

also a representation of a graph that evocates graph theory and partitioning. If there is

a connection between the series in terms of DGMs based on feature vectors/matrices,

clustering can be performed throughout the algebraic examination of this distance ma-

trix. Therefore, the proposed method for clustering the distance matrix is the spectral

clustering method proposed by Ng et al. [99].
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Spectral clustering provides very successful results in clustering nested connected

features. Thus, we have integrated spectral clustering into time series clustering with

a novel approach.

We can compile as a list what we have stated so far and our suggestions for solutions

to the problems within the scope of this study, as follows,

Problems/Tasks:

1. Clustering any set of univariate or multivariate time series.

2. To consider the time-dependent variability of the clusters while clustering the

time series. That is, to be able to identify if there are cluster formations that

change over time.

Solutions pathway:

i Determining in which category of clustering we developed the approach and

framing the notion of "true cluster" (i.e., model based feature extraction).

ii Clustering the time series in terms of the similarities of the sources from which

they are created (i.e., source seperation).

iii Finding and extracting the features/footprints resulting from the underlying

mechanisms by which the series are generated (i.e., several comparable feature

components).

iv For this, using a model’s or models’ estimation outputs which have a competent

peripheral (i.e., DTGARCH model).

v Accurately clustering comparable interconnected features (i.e., spectral cluster-

ing).

The experiments conducted to evaluate the performance of the proposed approach

and similar methods are presented in the 4th and 5th chapters. While the studies

on the clustering problem of univariate time series are given in the 4th chapter, the

experiments on the clustering problem of the multivariate series are given in the 5th

chapter. When we evaluate the artificial and real-life experiments’ datasets and their

corresponding clustering results in this study, we can state that the proposed approach

provided more steady and more reliable results than other methods.
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In particular, there is a definite advantage in clustering datasets containing heteroscedasticity-

like phenomena. There is also substantial evidence that spectral clustering is an ad-

vantageous alternative for other distance measures. Furthermore, in these sections,

the performance of the proposed approach in capturing time-varying clusters is eval-

uated by designing the datasets to include time-varying cluster formations.

Ultimately, the proposed clustering approach is based on a template consisting of 2

components, which we can describe as model-based feature extraction and clustering

of these features with spectral clustering. A particular procedure to this template

has been tested by developing it with the DTGARCH model. In this context, the

proposed approach is a procedural/operational clustering approach that allows new

models or combinations of models to be used in the feature extraction phase. The

results obtained from the experiments support the findings for the use of model-based

feature extraction approaches in clustering problems.

Although it is not directly tested whether the proposed approach is stuck in the curse

of dimensionality, it can be stated that the two main procedures embedded in the pro-

posed approach can be considered as dimension reduction facilities. Thus, the high

dimensionality that prevents true clustering is relieved. First of all, specific time se-

ries model-based feature vector extraction is a form of dimension reduction. By doing

this, the clustering task is accomplished in lower-dimensional feature spaces instead

of using all the time-series observations assumed to be high-dimensional. That is,

autocorrelation structures and residuals spectrums are not employed together while

calculating dissimilarity measurements. For instance, the distances between auto-

correlation structures are added to the distance matrix separately, just like other fea-

ture vectors do. Another dimension reduction is performed by the spectral clustering

method, in which the distance matrix obtained from the feature vectors is decom-

posed into spectral features, and instead of using the multidimensional square matrix,

a reduced-dimensional matrix consisting of eigenvectors is used for clustering. How-

ever, different experiments are still required to evaluate the effects of dimensionality

on the proposed clustering approach. On the other hand, experiments should be ar-

ranged to determine how much loss of information will be incurred by dimension

reduction.
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We can list the future research spaces that can be done to improve the approach pro-

posed here, as follows:

• To improve the response reflex to time-varying cluster formations and to im-

prove the dynamic clustering capacity of the approach.

• To approximate underlying DGMs by using more than one time-series model

at the same time. Then, to identify features with high distinctiveness, and to

use these components by weighting them according to their separation perfor-

mance.

• To test the proposed approach with augmented trials on real-life observations

from different fields.

• Integrating computationally facilitating algorithms into the approach for very

large volumes and high dimensional data.

• To evaluate cluster formation forecasting performances through time series

forecasting.

• Robustification of the proposed approach should be investigated by designing

different experiments to observe how the proposed approach will respond to

different kinds of outliers. It can be noted that the proposed approach can erad-

icate the effects of outliers (i.e., abrupt shifts, structural breaks, spikes, etc.)

occurring within samples due to the regime-switching structure model used in

the estimation. However, cases where the time series themselves (i.e., as an

object to be clustered) occur as outliers should be tested.

• Although the proposed approach does not offer any procedure for determin-

ing the model specifications, such as the number of regimes, lag orders, etc.,

for feature extraction, some hyperparameter values are assigned for practical

purposes throughout the study. The effect of different hyperparameters on clus-

tering performance should be evaluated. Besides, a general approach can be ex-

plored for hyperparameter preferences, although it cannot be fully automated.

• The application of the proposed approach to classification problems can be in-

vestigated.
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• Different routines can be explored to increase the computational speed of the

proposed approach.

• The proposed approach will not perform well on short time series due to the

long data needed for estimations of the DTGARCH model used. For such prob-

lems, data augmentation alternatives can be explored and tested.

• In a publication [50] about the proposed approach, besides the Euclidean dis-

tance, we reported different distance measures’ performances such as Haus-

dorff and DTW. Due to the reasonable performance of Euclidean distance in the

proposed approach, we utilized the Euclidean distance throughout this study.

However, the effects of different distance measures on the clustering perfor-

mance of the proposed approach can be elaborated.

Throughout the study, we stated that the proposed approach and other methods can

produce different solutions to different problems and that each approach can perform

differently for context-based targets.

We hope that the clustering approach we propose establishes clustering paths/proce-

dures based on time series model based clustering that can be developed and further

improved. In this direction, we also hope that the proposed approach will contribute

to time series clustering problems from different fields and enrich the research and

discussions in clustering.
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APPENDIX A

UNIVARIATE TIME SERIES CLUSTERING: EXPERIMENTS ON
SYNTHETIC DATA

A.1 Experiment 1

A.1.1 Experiment 1: Case 3

Table A.1 Utilized specifications of mean processes in the first set of univariate ex-
periments.

STEM_1: Yt = 0.80Yt−12 + εt + 0.70εt−12

STEM_2: Yt = 0.90Yt−1 − 0.50Yt−2 + 0.15Yt−3 + εt − 0.20εt−1 + 0.25εt−2

STEM_3: Yt = 2.55Yt−1 − 2.30Yt−2 + 0.75Yt−3 + εt + 0.80εt−1 + 0.50εt−2

STEM_4: Yt = 0.80Yt−1 − 0.80Yt−1(1 + e−10Yt−1)−1 + εt

STEM_5: Yt =
−0.15 + 0.85Yt−1 − 0.15Yt−2 + 0.30Yt−3 − 0.40Yt−4 + ε

(1)
t , Yt−1 < −1.2

2.20 + 0.20Yt−1 − 1.70Yt−2 + 0.25Yt−3 + ε
(2)
t , −1.2 < Yt−1 ≤ 1.2

1.00 + 0.50Yt−1 − 1.15Yt−2 − 0.60Yt−4 + ε
(3)
t , Yt−1 ≥ 1.2

Table A.2 Utilized specifications of error structures in the first set of univariate ex-
periments.

APARCH(a): h1.5/2t = 0.50 + 0.55(|εt−1| − 0.10εt−1)1.5/2 + 0.40h
1.5/2
t−1

APARCH(b): h1.5/2t = 0.50 + 0.20(|εt−2|+ 0.30εt−2)1.5/2 + 0.75h
1.5/2
t−1

GARCH(a1,a2,a3) =
ht = 0.10 + 0.15ε2t−1 + 0.10ε2t−2 + 0.25ht−1 + 0.10ht−2 + 0.20ht−3

ht = 0.15 + 0.25ε2t−1 + 0.10ε2t−2 + 0.10ht−1 + 0.05ht−2 + 0.15ht−3

ht = 0.15 + 0.10ε2t−1 + 0.25ε2t−2 + 0.25ht−1 + 0.10ht−2 + 0.15ht−3

GARCH(b1,b2,b3) =
ht = 0.30 + 0.05ε2t−1 + 0.10ε2t−2 + 0.05ht−1 + 0.25ht−2 + 0.10ht−3

ht = 0.35 + 0.15ε2t−1 + 0.15ε2t−2 + 0.20ht−1 + 0.25ht−2 + 0.05ht−3

ht = 0.05 + 0.35ε2t−1 + 0.05ε2t−2 + 0.05ht−1 + 0.15ht−2 + 0.25ht−3

where εt =
√
htet, and et

i.i.d∼ Dsged(0, 1).
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Table A.3 Hypothetical DGMs used in Univariate Experiment 1: Case 3.

used to generate time series of length 1000

sources of samples sources of samples
from 1 to 600 from 601 to 1000

DGM01 := STEM_1 | {εt} ∼ APARCH(a) I STEM_4 | {εt} ∼ APARCH(b)

DGM02 := STEM_1 | {εt} ∼ APARCH(a) I STEM_2 | {εt} ∼ APARCH(b)

DGM03 := STEM_2 | {εt} ∼ APARCH(a) I STEM_3 | {εt} ∼ APARCH(b)

DGM04 := STEM_2 | {εt} ∼ APARCH(a) I STEM_5 | {εt} ∼ GARCH(b1,b2,b3)

DGM05 := STEM_3 | {εt} ∼ APARCH(a) I STEM_1 | {εt} ∼ APARCH(b)

DGM06 := STEM_3 | {εt} ∼ APARCH(a) I STEM_4 | {εt} ∼ APARCH(b)

DGM07 := STEM_4 | {εt} ∼ APARCH(a) I STEM_3 | {εt} ∼ APARCH(b)

DGM08 := STEM_4 | {εt} ∼ APARCH(a) I STEM_5 | {εt} ∼ GARCH(b1,b2,b3)

DGM09 := STEM_5 | {εt} ∼ GARCH(a1,a2,a3)I STEM_1 | {εt} ∼ APARCH(b)

DGM10 := STEM_5 | {εt} ∼ GARCH(a1,a2,a3)I STEM_2 | {εt} ∼ APARCH(b)

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed slightly after 600th observation.

1. Each DGM in Table A.3 is used to generate 10 number of time
series with the length of 1000.

ss_sub : 1 to 600−−−−−−−−−−−−−−→
2. The slice of the dataset consisting

of the first 600 time points is filtered
out.

3. Clustering done on this slice by the
proposed approach given in Sec-
tion 3.4.2 and through implementa-
tion steps given in Figure 3.4, and
12 dissimilarity measures given in
Table 4.1 for 3 different clustering
methods (i.e., Fuzzy, PAM, Spec-
tral) are performed over 5 × 20 ×
600 dimensional dataset and clus-
tering accuracies are saved.

4. Steps from 1 to 3 repeated 100 (i.e.,
rn) times to get average accuracies
of 36 (i.e., 3∗12) clustering schemes
and the proposed approach.

5. The average accuracy indexes of all
methods considered in the study are
displayed in Table A.4.

ss_oa : 1 to 1000−−−−−−−−−−−−−−→
2. The dataset consisting of time series

length of 1000 is taken for cluster-
ing.

3. Clustering done on the dataset by
the proposed approach given in Sec-
tion 3.4.2 and through implementa-
tion steps given in Figure 3.4, and
12 dissimilarity measures given in
Table 4.1 for 3 different clustering
methods (i.e., Fuzzy, PAM, Spec-
tral) are performed over 10 × 10 ×
1000 dimensional dataset and clus-
tering accuracies are saved.

4. Steps from 1 to 3 repeated 100 (i.e.,
rn) times to get average accuracies
of 36 (i.e., 3∗12) clustering schemes
and the proposed approach.

5. The average accuracy indexes of all
methods considered in the study are
displayed in Table A.4.
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Table A.4 Univariate Experiment 1: Case 3 average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Clustering method

FUZZY PAM SPECTRAL

sample sizes (ss) sample sizes (ss) sample sizes (ss)
Dissimilarity 1 to 600 1 to 1000 1 to 600 1 to 1000 1 to 600 1 to 1000

Measure (5 cluster) (10 cluster) (5 cluster) (10 cluster) (5 cluster) (10 cluster)

Model Free
DACF 0.920 0.443 0.857 0.761 0.874 0.796
DPACF 0.663 0.331 0.917 0.724 0.891 0.825
DPER 0.515 0.295 0.705 0.458 0.888 0.620
DINT.PER 0.925 0.603 0.905 0.632 0.684 0.329
DSPEC.LLR1 0.959 0.865 0.955 0.801 0.956 0.570
DSPEC.LLR2 0.961 0.853 0.919 0.800 0.964 0.650
DGLK 0.957 0.822 0.889 0.763 0.566 0.302
DV R 0.904 0.712 0.834 0.742 0.461 0.335

Model Based
DAR−LPC 0.810 0.344 0.778 0.574 0.785 0.598
DAR−PIC 0.956 0.391 0.948 0.707 0.906 0.751
DAR−MAH 0.983 0.812 0.939 0.765 0.898 0.837

Complexity B.
DPDC 0.863 0.481 0.926 0.745 0.992 0.399

Proposed Clustering Approach

TSMB-SPCL-UV
ss → 1 to 600 ss → 1 to 1000

(5 cluster) (10 cluster)

L2 Dist. 0.991 0.910
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A.2 Experiment 2

A.2.1 Experiment 2: Case 1

Table A.5 Utilized specifications of mean processes in the second set of univariate
experiments.

STEM_1: Yt = 0.9Yt−1 + εt

STEM_2: Yt = 0.3Yt−1 + εt

STEM_3: Yt = −0.3Yt−1 + εt

STEM_4: Yt = −0.9Yt−1 + εt

Table A.6 Utilized specifications of error structures in the second set of univariate
experiments.

GARCH(a): ht = 0.70 + 0.45ε2t−1 + 0.20ht−1 + 0.20ht−2

GARCH(b): ht = 0.40 + 0.15ε2t−1 + 0.20ht−1 + 0.40ht−2

GARCH(c): ht = 0.10 + 0.10ε2t−1 + 0.15ε2t−2 + 0.10ht−1 + 0.50ht−2

where εt =
√
htet, and et

i.i.d∼ Dsged(0, 1).

Table A.7 Hypothetical DGMs used in Univariate Experiment 2: Case 1.

DGM01 := STEM_1 | {εt} ∼ GARCH(a)

DGM02 := STEM_2 | {εt} ∼ GARCH(a)

DGM03 := STEM_3 | {εt} ∼ GARCH(a)

DGM04 := STEM_4 | {εt} ∼ GARCH(a)

DGM05 := STEM_1 | {εt} ∼ GARCH(b)

DGM06 := STEM_2 | {εt} ∼ GARCH(b)

DGM07 := STEM_3 | {εt} ∼ GARCH(b)

DGM08 := STEM_4 | {εt} ∼ GARCH(b)

DGM09 := STEM_1 | {εt} ∼ GARCH(c)

DGM10 := STEM_2 | {εt} ∼ GARCH(c)

DGM11 := STEM_3 | {εt} ∼ GARCH(c)

DGM12 := STEM_4 | {εt} ∼ GARCH(c)
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1. Each DGM in Table A.7 is used to generate 10 number of time series with
the length of 600 to form a corresponding cluster.

2. Clustering done by the proposed approach given in Section 3.4.2 and
through implementation steps given in Figure 3.4, and 12 dissimilarity mea-
sures given in Table 4.1 for 3 different clustering methods (i.e., Fuzzy,
PAM, Spectral) are performed over 10 × 10 × 600 dimensional dataset
and clustering accuracies are saved.

3. Steps from 1 to 2 repeated 100 (i.e., rn) times to get average accuracies of
36 (i.e., 3 ∗ 12) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table A.8.

Table A.8 Univariate Experiment 2 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DACF 0.475 0.469 0.443
DPACF 0.492 0.470 0.300
DPER 0.276 0.430 0.394
DINT.PER 0.473 0.471 0.452
DSPEC.LLR1 0.482 0.483 0.473
DSPEC.LLR2 0.479 0.485 0.461
DGLK 0.472 0.475 0.453
DV R 0.499 0.486 0.474

Model based
DAR−LPC 0.469 0.485 0.464
DAR−MAH 0.472 0.489 0.465
DAR−PIC 0.488 0.481 0.466

Complexity based
DPDC 0.496 0.478 0.300

Proposed Clustering Approach

TSMB-SPCL-UV
ss = 600

L2 (Euclidean) Distance 0.760
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A.2.2 Experiment 2: Case 2

Table A.9 Utilized specifications of mean processes in the second set of univariate
experiments.

STEM_1: Yt = 0.9Yt−1 + εt

STEM_2: Yt = 0.3Yt−1 + εt

STEM_3: Yt = −0.3Yt−1 + εt

STEM_4: Yt = −0.9Yt−1 + εt

Table A.10 Utilized specifications of error structures in the second set of univariate
experiments.

GARCH(a): ht = 0.70 + 0.45ε2t−1 + 0.20ht−1 + 0.20ht−2

GARCH(b): ht = 0.40 + 0.15ε2t−1 + 0.20ht−1 + 0.40ht−2

GARCH(c): ht = 0.10 + 0.10ε2t−1 + 0.15ε2t−2 + 0.10ht−1 + 0.50ht−2

where εt =
√
htet, and et

i.i.d∼ Dsged(0, 1).

Table A.11 Hypothetical DGMs used in Univariate Experiment 2: Case 2.

used to generate time series of length 1000

sources of samples sources of samples
from 1 to 600 from 601 to 1000

DGM01 := STEM_1 | {εt} ∼ GARCH(a) B STEM_1 | {εt} ∼ GARCH(a)

DGM02 := STEM_1 | {εt} ∼ GARCH(a) I STEM_2 | {εt} ∼ GARCH(a)

DGM03 := STEM_3 | {εt} ∼ GARCH(a) B STEM_3 | {εt} ∼ GARCH(a)

DGM04 := STEM_3 | {εt} ∼ GARCH(a) I STEM_4 | {εt} ∼ GARCH(a)

DGM05 := STEM_1 | {εt} ∼ GARCH(b) B STEM_1 | {εt} ∼ GARCH(b)

DGM06 := STEM_1 | {εt} ∼ GARCH(b) I STEM_2 | {εt} ∼ GARCH(b)

DGM07 := STEM_3 | {εt} ∼ GARCH(b) B STEM_3 | {εt} ∼ GARCH(b)

DGM08 := STEM_3 | {εt} ∼ GARCH(b) I STEM_4 | {εt} ∼ GARCH(b)

DGM09 := STEM_1 | {εt} ∼ GARCH(c) B STEM_1 | {εt} ∼ GARCH(c)

DGM10 := STEM_1 | {εt} ∼ GARCH(c) I STEM_2 | {εt} ∼ GARCH(c)

DGM11 := STEM_3 | {εt} ∼ GARCH(c) B STEM_3 | {εt} ∼ GARCH(c)

DGM12 := STEM_3 | {εt} ∼ GARCH(c) I STEM_4 | {εt} ∼ GARCH(c)

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed slightly after 600th observation.
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1. Each DGM in Table A.11 is used to generate 10 number of
time series with the length of 1000.

ss_sub : 1 to 600−−−−−−−−−−−−−−→
2. The slice of the dataset consisting

of the first 600 time points is filtered
out.

3. Clustering done on this slice by the
proposed approach given in Sec-
tion 3.4.2 and through implementa-
tion steps given in Figure 3.4, and
12 dissimilarity measures given in
Table 4.1 for 3 different clustering
methods (i.e., Fuzzy, PAM, Spec-
tral) are performed over 5 × 20 ×
600 dimensional dataset and clus-
tering accuracies are saved.

4. Steps from 1 to 3 repeated 100 (i.e.,
rn) times to get average accuracies
of 36 (i.e., 3∗12) clustering schemes
and the proposed approach.

5. The average accuracy indexes of all
methods considered in the study are
displayed in Table A.12.

ss_oa : 1 to 1000−−−−−−−−−−−−−−→
2. The dataset consisting of time series

length of 1000 is taken for cluster-
ing.

3. Clustering done on the dataset by
the proposed approach given in Sec-
tion 3.4.2 and through implementa-
tion steps given in Figure 3.4, and
12 dissimilarity measures given in
Table 4.1 for 3 different clustering
methods (i.e., Fuzzy, PAM, Spec-
tral) are performed over 10 × 10 ×
1000 dimensional dataset and clus-
tering accuracies are saved.

4. Steps from 1 to 3 repeated 100 (i.e.,
rn) times to get average accuracies
of 36 (i.e., 3∗12) clustering schemes
and the proposed approach.

5. The average accuracy indexes of all
methods considered in the study are
displayed in Table A.12.
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Table A.12 Univariate Experiment 2: Case 2 average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Clustering method

FUZZY PAM SPECTRAL

sample sizes (ss) sample sizes (ss) sample sizes (ss)
Dissimilarity 1 to 600 1 to 1000 1 to 600 1 to 1000 1 to 600 1 to 1000

Measure (6 cluster) (12 cluster) (6 cluster) (12 cluster) (6 cluster) (12 cluster)

Model Free
DACF 0.475 0.470 0.441 0.458 0.438 0.405
DPACF 0.487 0.499 0.430 0.463 0.425 0.276
DPER 0.499 0.285 0.444 0.390 0.438 0.381
DINT.PER 0.439 0.472 0.439 0.469 0.436 0.375
DSPEC.LLR1 0.439 0.481 0.445 0.475 0.428 0.397
DSPEC.LLR2 0.447 0.481 0.448 0.476 0.428 0.378
DGLK 0.432 0.470 0.440 0.473 0.440 0.431
DV R 0.462 0.500 0.461 0.502 0.463 0.422

Model Based
DAR−LPC 0.464 0.471 0.482 0.447 0.442 0.456
DAR−PIC 0.438 0.480 0.472 0.481 0.440 0.431
DAR−MAH 0.470 0.492 0.458 0.481 0.464 0.396

Complexity B.
DPDC 0.491 0.392 0.440 0.454 0.452 0.279

Proposed Clustering Approach

TSMB-SPCL-UV
ss → 1 to 600 ss → 1 to 1000

(6 cluster) (12 cluster)

L2 Dist. 0.730 0.778
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A.3 Experiment 3

A.3.1 Experiment 3: Case 1

Table A.13 Utilized specifications of mean processes in the third set of univariate
experiments.

STEM_1: Yt = 0.8Yt−1 + εt

STEM_2: Yt = 0.4Yt−1 + εt

STEM_3: Yt = 0.8Yt−1 − 0.8Yt−1(1 + e−10Yt−1)−1 + εt

STEM_4: Yt = 0.8Yt−1 − 0.4Yt−1(1 + e−10Yt−1)−1 + εt

Table A.14 Utilized specifications of error structures in the third set of univariate
experiments.

APARCH(a):
h
3/2
t = 0.50 + 0.05(|εt−1| − 0.10εt−1)3/2 + 0.55(|εt−2|+ 0.10εt−2)3/2 + 0.35h

3/2
t−1

APARCH(b):
h
3/2
t = 0.50 + 0.55(|εt−1| − 0.10εt−1)3/2 + 0.05(|εt−2|+ 0.10εt−2)3/2 + 0.35h

3/2
t−1

where εt =
√
htet, and et

i.i.d∼ Dsged(0, 1).

Table A.15 Hypothetical DGMs used in Univariate Experiment 3: Case 1.

DGM01 := STEM_1 | {εt} ∼ APARCH(a)

DGM02 := STEM_1 | {εt} ∼ APARCH(b)

DGM03 := STEM_3 | {εt} ∼ APARCH(b)

DGM04 := STEM_3 | {εt} ∼ APARCH(a)
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1. Each DGM in Table A.15 is used to generate 20 number of time series with
the length of 600 to form a corresponding cluster.

2. Clustering done by the proposed approach given in Section 3.4.2 and
through implementation steps given in Figure 3.4, and 12 dissimilarity
measures given in Table 4.1 for 3 different clustering methods (i.e., Fuzzy,
PAM, Spectral) are performed over 4 × 20 × 600 dimensional dataset and
clustering accuracies are saved.

3. Steps from 1 to 2 repeated 100 times to get average accuracies of 36 (i.e.,
3 ∗ 12) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table A.16.

Table A.16 Univariate Experiment 3 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DACF 0.486 0.441 0.450
DPACF 0.535 0.436 0.479
DPER 0.469 0.400 0.430
DINT.PER 0.507 0.506 0.499
DSPEC.LLR1 0.502 0.516 0.489
DSPEC.LLR2 0.509 0.516 0.489
DGLK 0.502 0.507 0.460
DV R 0.544 0.559 0.390

Model based
DAR−LPC 0.475 0.496 0.504
DAR−MAH 0.511 0.500 0.454
DAR−PIC 0.542 0.545 0.497

Complexity based
DPDC 0.624 0.527 0.718

Proposed Clustering Approach

TSMB-SPCL-UV
ss = 600

L2 (Euclidean) Distance 0.800
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A.3.2 Experiment 3: Case 2

Table A.17 Utilized specifications of mean processes in the third set of univariate
experiments.

STEM_1: Yt = 0.8Yt−1 + εt

STEM_2: Yt = 0.4Yt−1 + εt

STEM_3: Yt = 0.8Yt−1 − 0.8Yt−1(1 + e−10Yt−1)−1 + εt

STEM_4: Yt = 0.8Yt−1 − 0.4Yt−1(1 + e−10Yt−1)−1 + εt

Table A.18 Utilized specifications of error structures in the third set of univariate
experiments.

APARCH(a):
h
3/2
t = 0.50 + 0.05(|εt−1| − 0.10εt−1)3/2 + 0.55(|εt−2|+ 0.10εt−2)3/2 + 0.35h

3/2
t−1

APARCH(b):
h
3/2
t = 0.50 + 0.55(|εt−1| − 0.10εt−1)3/2 + 0.05(|εt−2|+ 0.10εt−2)3/2 + 0.35h

3/2
t−1

where εt =
√
htet, and et

i.i.d∼ Dsged(0, 1).

Table A.19 Hypothetical DGMs used in Univariate Experiment 3: Case 2.

used to generate time series of length 1000

sources of samples sources of samples
from 1 to 600 from 601 to 1000

DGM01 := STEM_1 | {εt} ∼ APARCH(a) B STEM_1 | {εt} ∼ APARCH(a)

DGM02 := STEM_1 | {εt} ∼ APARCH(a) I STEM_2 | {εt} ∼ APARCH(b)

DGM03 := STEM_1 | {εt} ∼ APARCH(b) B STEM_1 | {εt} ∼ APARCH(b)

DGM04 := STEM_1 | {εt} ∼ APARCH(b) I STEM_2 | {εt} ∼ APARCH(a)

DGM05 := STEM_3 | {εt} ∼ APARCH(a) B STEM_3 | {εt} ∼ APARCH(a)

DGM06 := STEM_3 | {εt} ∼ APARCH(a) I STEM_4 | {εt} ∼ APARCH(b)

DGM07 := STEM_3 | {εt} ∼ APARCH(b) B STEM_3 | {εt} ∼ APARCH(b)

DGM08 := STEM_3 | {εt} ∼ APARCH(b) I STEM_4 | {εt} ∼ APARCH(a)

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed slightly after 600th observation.
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1. Each DGM in Table A.19 is used to generate 10 number of
time series with the length of 1000.

ss_sub : 1 to 600−−−−−−−−−−−−−−→
2. The slice of the dataset consisting

of the first 600 time points is filtered
out.

3. Clustering done on this slice by the
proposed approach given in Sec-
tion 3.4.2 and through implementa-
tion steps given in Figure 3.4, and
12 dissimilarity measures given in
Table 4.1 for 3 different clustering
methods (i.e., Fuzzy, PAM, Spec-
tral) are performed over 4 × 20 ×
600 dimensional dataset and clus-
tering accuracies are saved.

4. Steps from 1 to 3 repeated 100 (i.e.,
rn) times to get average accuracies
of 36 (i.e., 3∗12) clustering schemes
and the proposed approach.

5. The average accuracy indexes of all
methods considered in the study are
displayed in Table A.20.

ss_oa : 1 to 1000−−−−−−−−−−−−−−→
2. The dataset consisting of time series

length of 1000 is taken for cluster-
ing.

3. Clustering done on the dataset by
the proposed approach given in Sec-
tion 3.4.2 and through implementa-
tion steps given in Figure 3.4, and
12 dissimilarity measures given in
Table 4.1 for 3 different clustering
methods (i.e., Fuzzy, PAM, Spec-
tral) are performed over 8 × 10 ×
1000 dimensional dataset and clus-
tering accuracies are saved.

4. Steps from 1 to 3 repeated 100 (i.e.,
rn) times to get average accuracies
of 36 (i.e., 3∗12) clustering schemes
and the proposed approach.

5. The average accuracy indexes of all
methods considered in the study are
displayed in Table A.20.
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Table A.20 Univariate Experiment 3: Case 2 average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Clustering method

FUZZY PAM SPECTRAL

sample sizes (ss) sample sizes (ss) sample sizes (ss)
Dissimilarity 1 to 600 1 to 1000 1 to 600 1 to 1000 1 to 600 1 to 1000

Measure (4 cluster) (8 cluster) (4 cluster) (8 cluster) (4 cluster) (8 cluster)

Model Free
DACF 0.486 0.310 0.441 0.341 0.450 0.292
DPACF 0.535 0.340 0.436 0.337 0.479 0.310
DPER 0.469 0.305 0.400 0.276 0.430 0.284
DINT.PER 0.507 0.377 0.506 0.380 0.499 0.329
DSPEC.LLR1 0.502 0.374 0.516 0.409 0.489 0.309
DSPEC.LLR2 0.509 0.369 0.516 0.406 0.489 0.312
DGLK 0.502 0.369 0.507 0.383 0.460 0.326
DV R 0.544 0.390 0.559 0.414 0.390 0.285

Model Based
DAR−LPC 0.475 0.324 0.496 0.337 0.504 0.353
DAR−PIC 0.511 0.319 0.500 0.359 0.454 0.323
DAR−MAH 0.542 0.384 0.545 0.379 0.497 0.329

Complexity B.
DPDC 0.624 0.374 0.527 0.404 0.718 0.322

Proposed Clustering Approach

TSMB-SPCL-UV
ss → 1 to 600 ss → 1 to 1000

(4 cluster) (8 cluster)

L2 Dist. 0.800 0.584
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A.4 Experiment 4

A.4.1 Experiment 4: Case 1

Table A.21 Utilized specifications of mean processes in the fourth set of univariate
experiments.

STEM_01: Yt = 0.9Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_02: Yt = 0.7Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_03: Yt = 0.5Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_04: Yt = 0.3Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_05: Yt = 0.1Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_06: Yt = −0.1Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_07: Yt = −0.3Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_08: Yt = −0.5Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_09: Yt = −0.7Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_10: Yt = −0.9Yt−1 + εt, where εt ∼Dsnorm(0, 1).

Table A.22 Hypothetical DGMs used in Univariate Experiment 4: Case 1.

DGM01 := STEM_01 | {εt} ∼ Dsnorm(0,1)

DGM02 := STEM_03 | {εt} ∼ Dsnorm(0,1)

DGM03 := STEM_05 | {εt} ∼ Dsnorm(0,1)

DGM04 := STEM_07 | {εt} ∼ Dsnorm(0,1)

DGM05 := STEM_09 | {εt} ∼ Dsnorm(0,1)
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1. Each DGM in Table A.22 is used to generate 20 number of time series with
the length of 600 to form a corresponding cluster.

2. Clustering done by the proposed approach given in Section 3.4.2 and
through implementation steps given in Figure 3.4, and 12 dissimilarity
measures given in Table 4.1 for 3 different clustering methods (i.e., Fuzzy,
PAM, Spectral) are performed over 5 × 20 × 600 dimensional dataset and
clustering accuracies are saved.

3. Steps from 1 to 2 repeated 100 times to get average accuracies of 36 (i.e.,
3 ∗ 12) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table A.23.

Table A.23 Univariate Experiment 4 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DACF 0.734 0.947 0.983
DPACF 0.960 0.999 1.000
DPER 0.686 0.446 0.959
DINT.PER 0.999 0.999 0.893
DSPEC.LLR1 0.999 0.999 0.899
DSPEC.LLR2 0.999 1.000 0.895
DGLK 0.999 0.998 0.988
DV R 0.999 0.999 0.873

Model based
DAR−LPC 0.982 0.982 0.982
DAR−MAH 0.999 0.999 1.000
DAR−PIC 1.000 1.000 1.000

Complexity based
DPDC 0.969 0.956 0.870

Proposed Clustering Approach

TSMB-SPCL-UV
ss = 600

L2 (Euclidean) Distance 1.000
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A.4.2 Experiment 4: Case 2

Table A.24 Utilized specifications of mean processes in the fourth set of univariate
experiments.

STEM_01: Yt = 0.9Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_02: Yt = 0.7Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_03: Yt = 0.5Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_04: Yt = 0.3Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_05: Yt = 0.1Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_06: Yt = −0.1Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_07: Yt = −0.3Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_08: Yt = −0.5Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_09: Yt = −0.7Yt−1 + εt, where εt ∼Dsnorm(0, 1).

STEM_10: Yt = −0.9Yt−1 + εt, where εt ∼Dsnorm(0, 1).

Table A.25 Hypothetical DGMs used in Univariate Experiment 4: Case 2.

used to generate time series of length 1000

sources of samples sources of samples
from 1 to 600 from 601 to 1000

DGM01 := STEM_01 | {εt} ∼ Dsnorm(0,1) B STEM_01 | {εt} ∼ Dsnorm(0,1)

DGM02 := STEM_01 | {εt} ∼ Dsnorm(0,1) I STEM_02 | {εt} ∼ Dsnorm(0,1)

DGM03 := STEM_03 | {εt} ∼ Dsnorm(0,1) B STEM_03 | {εt} ∼ Dsnorm(0,1)

DGM04 := STEM_03 | {εt} ∼ Dsnorm(0,1) I STEM_04 | {εt} ∼ Dsnorm(0,1)

DGM05 := STEM_05 | {εt} ∼ Dsnorm(0,1) B STEM_05 | {εt} ∼ Dsnorm(0,1)

DGM06 := STEM_05 | {εt} ∼ Dsnorm(0,1) I STEM_06 | {εt} ∼ Dsnorm(0,1)

DGM07 := STEM_07 | {εt} ∼ Dsnorm(0,1) B STEM_07 | {εt} ∼ Dsnorm(0,1)

DGM08 := STEM_07 | {εt} ∼ Dsnorm(0,1) I STEM_08 | {εt} ∼ Dsnorm(0,1)

DGM09 := STEM_09 | {εt} ∼ Dsnorm(0,1) B STEM_09 | {εt} ∼ Dsnorm(0,1)

DGM10 := STEM_09 | {εt} ∼ Dsnorm(0,1) I STEM_10 | {εt} ∼ Dsnorm(0,1)

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed slightly after 600th observation.
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1. Each DGM in Table A.25 is used to generate 10 number of
time series with the length of 1000.

ss_sub : 1 to 600−−−−−−−−−−−−−−→
2. The slice of the dataset consisting

of the first 600 time points is filtered
out.

3. Clustering done on this slice by the
proposed approach given in Sec-
tion 3.4.2 and through implementa-
tion steps given in Figure 3.4, and
12 dissimilarity measures given in
Table 4.1 for 3 different clustering
methods (i.e., Fuzzy, PAM, Spec-
tral) are performed over 4 × 20 ×
600 dimensional dataset and clus-
tering accuracies are saved.

4. Steps from 1 to 3 repeated 100 (i.e.,
rn) times to get average accuracies
of 36 (i.e., 3∗12) clustering schemes
and the proposed approach.

5. The average accuracy indexes of all
methods considered in the study are
displayed in Table A.26.

ss_oa : 1 to 1000−−−−−−−−−−−−−−→
2. The dataset consisting of time series

length of 1000 is taken for cluster-
ing.

3. Clustering done on the dataset by
the proposed approach given in Sec-
tion 3.4.2 and through implementa-
tion steps given in Figure 3.4, and
12 dissimilarity measures given in
Table 4.1 for 3 different clustering
methods (i.e., Fuzzy, PAM, Spec-
tral) are performed over 8 × 10 ×
1000 dimensional dataset and clus-
tering accuracies are saved.

4. Steps from 1 to 3 repeated 100 (i.e.,
rn) times to get average accuracies
of 36 (i.e., 3∗12) clustering schemes
and the proposed approach.

5. The average accuracy indexes of all
methods considered in the study are
displayed in Table A.26.
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Table A.26 Univariate Experiment 4: Case 2 average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Clustering method

FUZZY PAM SPECTRAL

sample sizes (ss) sample sizes (ss) sample sizes (ss)
Dissimilarity 1 to 600 1 to 1000 1 to 600 1 to 1000 1 to 600 1 to 1000

Measure (5 cluster) (10 cluster) (5 cluster) (10 cluster) (5 cluster) (10 cluster)

Model Free
DACF 0.734 0.691 0.947 0.692 0.983 0.855
DPACF 0.960 0.814 0.999 0.736 1.000 0.709
DPER 0.686 0.469 0.445 0.362 0.959 0.821
DINT.PER 0.999 0.955 0.999 0.948 0.893 0.473
DSPEC.LLR1 0.999 0.929 0.999 0.857 0.899 0.723
DSPEC.LLR2 0.999 0.924 1.000 0.858 0.895 0.724
DGLK 1.000 0.886 0.998 0.801 0.988 0.761
DV R 0.999 0.931 0.999 0.843 0.873 0.746

Model Based
DAR−LPC 0.982 0.940 0.982 0.858 0.982 0.947
DAR−PIC 0.999 0.968 0.999 0.940 1.000 0.969
DAR−MAH 1.000 0.947 1.000 0.934 1.000 0.944

Complexity B.
DPDC 0.969 0.678 0.956 0.689 0.870 0.512

Proposed Clustering Approach

TSMB-SPCL-UV
ss → 1 to 600 ss → 1 to 1000

(5 cluster) (10 cluster)

L2 Dist. 1.000 0.952
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APPENDIX B

MULTIVARIATE TIME SERIES CLUSTERING: EXPERIMENTS ON
SYNTHETIC DATA

B.1 Experiment 3

B.1.1 Experiment 3: Case 1

Table B.1 Utilized specifications of VARs in the third set of experiments.

STEM_1 :


y1,t

y2,t

y3,t

 =


0.20 0.50 0.70

−0.60−0.50 0.50

0.30−0.80−0.30



y1,t−1

y2,t−1

y3,t−1

+


ε1,t

ε2,t

ε3,t



STEM_2 :


y1,t

y2,t

y3,t

 =


−0.75−0.15−0.30

0.10−0.65−0.65

−0.30 0.90 0.50



y1,t−1

y2,t−1

y3,t−1

+


ε1,t

ε2,t

ε3,t



STEM_3 :


y1,t

y2,t

y3,t

 =


−0.15−0.07−0.21

−0.06−0.30−0.13

−0.09−0.70−0.15



y1,t−1

y2,t−1

y3,t−1

+


ε1,t

ε2,t

ε3,t


ε1,t, ε2,t, ε3,t are error terms.
Please note that the error terms can be described by any process or distribution.
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Table B.2 Utilized specifications of multivariate error structures in the third set of
experiments.

C1 : ECCC−GARCH(1,1) =
h1,t = 0.0015 + 0.20ε21,t−1 + 0.05ε22,t−1 + 0.20ε23,t−1 + 0.10h1,t−1 + 0.15h2,t−1 + 0.15h3,t−1

h2,t = 0.0015 + 0.25ε21,t−1 + 0.30ε22,t−1 + 0.15ε23,t−1 + 0.01h1,t−1 + 0.25h2,t−1 + 0.05h3,t−1

h3,t = 0.0025 + 0.05ε21,t−1 + 0.01ε22,t−1 + 0.15ε23,t−1 + 0.35h1,t−1 + 0.05h2,t−1 + 0.10h3,t−1

C2 : ECCC−GARCH(1,1) =
h1,t = 0.0035 + 0.15ε21,t−1 + 0.00ε22,t−1 + 0.00ε23,t−1 + 0.45h1,t−1 + 0.00h2,t−1 + 0.00h3,t−1

h2,t = 0.0055 + 0.00ε21,t−1 + 0.30ε22,t−1 + 0.00ε23,t−1 + 0.00h1,t−1 + 0.35h2,t−1 + 0.00h3,t−1

h3,t = 0.0015 + 0.00ε21,t−1 + 0.00ε22,t−1 + 0.45ε23,t−1 + 0.00h1,t−1 + 0.00h2,t−1 + 0.25h3,t−1

C3 : ECCC−GARCH(1,1) =
h1,t = 0.1000 + 0.09ε21,t−1 + 0.05ε22,t−1 + 0.05ε23,t−1 + 0.06h1,t−1 + 0.05h2,t−1 + 0.06h3,t−1

h2,t = 0.2500 + 0.08ε21,t−1 + 0.12ε22,t−1 + 0.06ε23,t−1 + 0.06h1,t−1 + 0.07h2,t−1 + 0.04h3,t−1

h3,t = 0.7000 + 0.05ε21,t−1 + 0.01ε22,t−1 + 0.02ε23,t−1 + 0.08h1,t−1 + 0.03h2,t−1 + 0.09h3,t−1

where εi,t =
√
hi,tei,t, and ei,t

i.i.d∼ Dsnorm(0, 1), i = 1, 2, 3.

The constant conditional correlation matrix, ρ, assumed as

ρ =

h1,t h2,t h3,t


1.00 0.15 0.25 h1,t

0.15 1.00 0.20 h2,t

0.25 0.20 1.00 h3,t

for all three multivariate GARCH specification.
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Table B.3 Hypothetical DGMs used in Multivariate Experiment 3: Case 1 (9 cluster).

used to generate time series of length 1800

sources of samples sources of samples sources of samples

from 1 to 600 from 601 to 1200 from 1201 to 1800

DGM01 := STEM_1 | C1 B STEM_1 | C1 B STEM_1 | C1

DGM02 := STEM_1 | C1 B STEM_1 | C1 I STEM_2 | C2

DGM03 := STEM_1 | C1 B STEM_1 | C1 I STEM_3 | C3

DGM04 := STEM_1 | C1 I STEM_2 | C2 I STEM_1 | C1

DGM05 := STEM_1 | C1 I STEM_2 | C2 B STEM_2 | C2

DGM06 := STEM_1 | C1 I STEM_2 | C2 I STEM_3 | C3

DGM07 := STEM_1 | C1 I STEM_3 | C3 I STEM_1 | C1

DGM08 := STEM_1 | C1 I STEM_3 | C3 I STEM_2 | C2

DGM09 := STEM_1 | C1 I STEM_3 | C3 B STEM_3 | C3

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed at that point.
C1, C2, and C3 are three distinct ECCC-GARCH(1,1) specifications given in Table B.2.

1. Each DGM in Table B.3 is used to generate 10number of 3-dimensional
multivariate time series with the length of 1800 to form a corresponding
cluster.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 9 × 10 × 1800 dimensional dataset and clus-
tering accuracies are saved.

3. Steps from 1 to 2 repeated 100 times to get average accuracies of 15 (i.e.,
3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table B.4.
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Table B.4 Multivariate Experiment 3 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.577 0.866 0.949
DLD 0.349 0.545 0.719
DGAK 0.384 0.233 0.285
DDTW 0.756 0.921 0.441
DPDC 0.386 0.455 0.598

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 1800

L2 (Euclidean) Distance 0.954
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B.2 Experiment 4

B.2.1 Experiment 4: Case 1

General representation of 3 dimensional two regime threshold VAR (TVAR) process

can be represented as follows:

yt =

φ
(1)
0 + φ

(1)
1 yt−1 + ε

(1)
t , st−d ≤ r

φ
(2)
0 + φ

(2)
1 yt−1 + ε

(2)
t , r < st−d

where yt =


y1,t

y2,t

y3,t

, and εt =


ε1,t

ε2,t

ε3,t

.

Table B.5 Utilized specifications of TVARs in the fourth set of experiments.

STEM_1 :

φ
(1)
0 =


0.35

−0.45

−0.25

 , φ(1)1 =


0.25−0.30−0.50

0.95 0.10−0.10

−0.70 0.70−0.35

 , φ(2)0 =


−0.15

−0.15

0.20

 , φ(2)1 =


0.25−0.65 0.20

−0.65−0.30 0.70

−0.60 0.15−0.30



STEM_2 :

φ
(1)
0 =


0.45

0.40

−0.20

 , φ(1)1 =


−0.75−0.05 0.25

−0.35 0.75−0.15

0.75−0.05 0.70

 , φ(2)0 =


0.65

0.35

−0.75

 , φ(2)1 =


−0.01 0.35−0.85

−0.04−0.60 0.15

−0.40 0.05−0.75



STEM_3 :

φ
(1)
0 =


0.45

−0.10

−0.42

 , φ(1)1 =


0.20 0.40 0.55

−0.35 0.50−0.28

0.40 0.80−0.12

 , φ(2)0 =


0.32

−0.60

0.40

 , φ(2)1 =


0.20 0.30−0.42

0.15 0.32 0.57

−0.07−0.62−0.16


ε1,t, ε2,t, ε3,t are error terms.
Please note that the error terms can be described by any process or distribution.
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Table B.6 Utilized specifications of multivariate error structures in the fourth set of
experiments.

C1 : ECCC−GARCH(1,1) =
h1,t = 0.0015 + 0.20ε21,t−1 + 0.05ε22,t−1 + 0.20ε23,t−1 + 0.10h1,t−1 + 0.15h2,t−1 + 0.15h3,t−1

h2,t = 0.0015 + 0.25ε21,t−1 + 0.30ε22,t−1 + 0.15ε23,t−1 + 0.01h1,t−1 + 0.25h2,t−1 + 0.05h3,t−1

h3,t = 0.0025 + 0.05ε21,t−1 + 0.01ε22,t−1 + 0.15ε23,t−1 + 0.35h1,t−1 + 0.05h2,t−1 + 0.10h3,t−1

C2 : ECCC−GARCH(1,1) =
h1,t = 0.0035 + 0.15ε21,t−1 + 0.00ε22,t−1 + 0.00ε23,t−1 + 0.45h1,t−1 + 0.00h2,t−1 + 0.00h3,t−1

h2,t = 0.0055 + 0.00ε21,t−1 + 0.30ε22,t−1 + 0.00ε23,t−1 + 0.00h1,t−1 + 0.35h2,t−1 + 0.00h3,t−1

h3,t = 0.0015 + 0.00ε21,t−1 + 0.00ε22,t−1 + 0.45ε23,t−1 + 0.00h1,t−1 + 0.00h2,t−1 + 0.25h3,t−1

C3 : ECCC−GARCH(1,1) =
h1,t = 0.0000 + 0.03ε21,t−1 + 0.01ε22,t−1 + 0.09ε23,t−1 + 0.04h1,t−1 + 0.05h2,t−1 + 0.03h3,t−1

h2,t = 0.0000 + 0.03ε21,t−1 + 0.09ε22,t−1 + 0.06ε23,t−1 + 0.00h1,t−1 + 0.08h2,t−1 + 0.01h3,t−1

h3,t = 0.0000 + 0.00ε21,t−1 + 0.00ε22,t−1 + 0.06ε23,t−1 + 0.01h1,t−1 + 0.01h2,t−1 + 0.02h3,t−1

where εi,t =
√
hi,tei,t, and ei,t

i.i.d∼ Dsnorm(0, 1), i = 1, 2, 3.

The constant conditional correlation matrix, ρ, assumed as

ρ =

h1,t h2,t h3,t


1.00 0.20 0.25 h1,t

0.20 1.00 0.15 h2,t

0.25 0.15 1.00 h3,t

for all three multivariate GARCH specification.
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Table B.7 Hypothetical DGMs used in Multivariate Experiment 4: Case 1 (9 cluster).

used to generate time series of length 1800

sources of samples sources of samples sources of samples

from 1 to 600 from 601 to 1200 from 1201 to 1800

DGM01 := STEM_1 | C1 B STEM_1 | C1 B STEM_1 | C1

DGM02 := STEM_1 | C1 B STEM_1 | C1 I STEM_2 | C2

DGM03 := STEM_1 | C1 B STEM_1 | C1 I STEM_3 | C3

DGM04 := STEM_1 | C1 I STEM_2 | C2 I STEM_1 | C1

DGM05 := STEM_1 | C1 I STEM_2 | C2 B STEM_2 | C2

DGM06 := STEM_1 | C1 I STEM_2 | C2 I STEM_3 | C3

DGM07 := STEM_1 | C1 I STEM_3 | C3 I STEM_1 | C1

DGM08 := STEM_1 | C1 I STEM_3 | C3 I STEM_2 | C2

DGM09 := STEM_1 | C1 I STEM_3 | C3 B STEM_3 | C3

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed at that point.
C1, C2, and C3 are three distinct ECCC-GARCH(1,1) specifications given in Table B.6.

1. Each DGM in Table B.7 is used to generate 10number of 3-dimensional
multivariate time series with the length of 1800 to form a corresponding
cluster.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 9 × 10 × 1800 dimensional dataset and clus-
tering accuracies are saved.

3. Steps from 1 to 2 repeated 100 times to get average accuracies of 15 (i.e.,
3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table B.8.

191



Table B.8 Multivariate Experiment 4 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.589 0.723 0.794
DLD 0.361 0.578 0.725
DGAK 0.326 0.208 0.410
DDTW 0.426 0.209 0.862
DPDC 0.383 0.438 0.709

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 1800

L2 (Euclidean) Distance 0.916
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B.3 Experiment 5

B.3.1 Experiment 5: Case 1

General representation of 3 dimensional two regime threshold VECM (TVECM) pro-

cess can be represented as follows:

∆yt =

Π(1)yt−1 + φ
(1)
1 ∆yt−1 + ε

(1)
t , st−d ≤ r

Π(2)yt−1 + φ
(2)
1 ∆yt−1 + ε

(2)
t , r < st−d

where ∆yt =


∆y1,t

∆y2,t

∆y3,t

 =


y1,t − y1,t−1

y2,t − y2,t−1

y3,t − y3,t−1

, and εt =


ε1,t

ε2,t

ε3,t

.
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Table B.9 Utilized specifications of TVECMs in the fifth set of experiments.

STEM_1 :

Π(1) =


−0.02 0.17 0.04

0.04−0.36−0.08

−0.01 0.00 0.00

 ,Π(2) =


−0.95 0.15 0.10

0.00−0.04 0.05

0.10−0.40 0.05

 ,

φ
(1)
1 =


−0.95 0.15 0.10

0.00−0.04 0.05

0.10−0.40 0.06

 , φ(2)1 =


1.30−0.65 0.15

−0.45 0.15−0.25

0.06−0.03 0.03



STEM_2 :

Π(1) =


−0.27 0.00 0.32

0.57 0.00−0.68

−0.00 0.00 0.00

 ,Π(2) =


−0.07 0.22 0.37

0.15−0.47−0.78

−0.00 0.00 0.00

 ,

φ
(1)
1 =


0.15 0.25 0.75

−0.95−0.75 0.00

0.01−0.15−0.05

 , φ(2)1 =


0.05 0.01 0.45

0.45 0.02 0.05

−0.01−0.95−0.40



STEM_3 :

Π(1) =


−0.04 0.14 0.17

0.08−0.29−0.35

−0.00 0.00 0.00

 ,Π(2) =


0.02−0.14−0.24

−0.05 0.29 0.51

0.00−0.00−0.00

 ,

φ
(1)
1 =


−0.24−0.21−0.13

−0.23−0.25−0.05

−0.42−0.41 0.08

 , φ(2)1 =


0.09 0.02−0.06

0.10−0.38−0.17

0.21−0.61−0.16


ε1,t, ε2,t, ε3,t are error terms.
Please note that the error terms can be described by any process or distribution.
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Table B.10 Utilized specifications of multivariate error structures in the fifth set of
experiments.

C1 : ECCC−GARCH(1,1) =
h1,t = 0.0015 + 0.20ε21,t−1 + 0.05ε22,t−1 + 0.20ε23,t−1 + 0.10h1,t−1 + 0.15h2,t−1 + 0.15h3,t−1

h2,t = 0.0015 + 0.25ε21,t−1 + 0.30ε22,t−1 + 0.15ε23,t−1 + 0.01h1,t−1 + 0.25h2,t−1 + 0.05h3,t−1

h3,t = 0.0025 + 0.05ε21,t−1 + 0.01ε22,t−1 + 0.15ε23,t−1 + 0.35h1,t−1 + 0.05h2,t−1 + 0.10h3,t−1

C2 : ECCC−GARCH(1,1) =
h1,t = 0.0035 + 0.15ε21,t−1 + 0.00ε22,t−1 + 0.00ε23,t−1 + 0.45h1,t−1 + 0.00h2,t−1 + 0.00h3,t−1

h2,t = 0.0055 + 0.00ε21,t−1 + 0.30ε22,t−1 + 0.00ε23,t−1 + 0.00h1,t−1 + 0.35h2,t−1 + 0.00h3,t−1

h3,t = 0.0015 + 0.00ε21,t−1 + 0.00ε22,t−1 + 0.45ε23,t−1 + 0.00h1,t−1 + 0.00h2,t−1 + 0.25h3,t−1

C3 : ECCC−GARCH(1,1) =
h1,t = 0.0000 + 0.03ε21,t−1 + 0.01ε22,t−1 + 0.09ε23,t−1 + 0.04h1,t−1 + 0.05h2,t−1 + 0.03h3,t−1

h2,t = 0.0000 + 0.03ε21,t−1 + 0.09ε22,t−1 + 0.06ε23,t−1 + 0.00h1,t−1 + 0.08h2,t−1 + 0.01h3,t−1

h3,t = 0.0000 + 0.00ε21,t−1 + 0.00ε22,t−1 + 0.06ε23,t−1 + 0.01h1,t−1 + 0.01h2,t−1 + 0.02h3,t−1

where εi,t =
√
hi,tei,t, and ei,t

i.i.d∼ Dsnorm(0, 1), i = 1, 2, 3.

The constant conditional correlation matrix, ρ, assumed as

ρ =

h1,t h2,t h3,t


1.00 0.20 0.25 h1,t

0.20 1.00 0.15 h2,t

0.25 0.15 1.00 h3,t

for all three multivariate GARCH specification.
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Table B.11 Hypothetical DGMs used in Multivariate Experiment 5: Case 1 (9 clus-
ter).

used to generate time series of length 1800

sources of samples sources of samples sources of samples

from 1 to 600 from 601 to 1200 from 1201 to 1800

DGM01 := STEM_1 | C1 B STEM_1 | C1 B STEM_1 | C1

DGM02 := STEM_1 | C1 B STEM_1 | C1 I STEM_2 | C2

DGM03 := STEM_1 | C1 B STEM_1 | C1 I STEM_3 | C3

DGM04 := STEM_1 | C1 I STEM_2 | C2 I STEM_1 | C1

DGM05 := STEM_1 | C1 I STEM_2 | C2 B STEM_2 | C2

DGM06 := STEM_1 | C1 I STEM_2 | C2 I STEM_3 | C3

DGM07 := STEM_1 | C1 I STEM_3 | C3 I STEM_1 | C1

DGM08 := STEM_1 | C1 I STEM_3 | C3 I STEM_2 | C2

DGM09 := STEM_1 | C1 I STEM_3 | C3 B STEM_3 | C3

′ B′ indicates where the data generation mechanisms remain unchanged.
′ I′ indicates where the data generating mechanisms are changed at that point.
C1, C2, and C3 are three distinct ECCC-GARCH(1,1) specifications given in Table B.10.

1. Each DGM in Table B.11 is used to generate 10number of 3-dimensional
multivariate time series with the length of 1800 to form a corresponding
cluster.

2. Clustering done by the proposed approach given in Section 3.4 and through
implementation steps given in Figure 3.4, and 5 dissimilarity measures
given in Table 5.1 for 3 different clustering methods (i.e., Fuzzy, PAM,
Spectral) are performed over 9 × 10 × 1800 dimensional dataset and clus-
tering accuracies are saved.

3. Steps from 1 to 2 repeated 100 times to get average accuracies of 15 (i.e.,
3 ∗ 5) clustering schemes and the proposed approach.

4. The average accuracy indexes of all methods considered in the study are
displayed for comparison in Table B.12.
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Table B.12 Multivariate Experiment 4 Case 1: average accuracy indexes (i.e., approx.
correct clustering percentages) of compared time series clustering methods and the
Proposed Clustering Approach.

Dissimilarity measure Clustering method

FUZZY PAM SPECTRAL
Model free
DJD 0.442 0.619 0.648
DLD 0.336 0.441 0.522
DGAK 0.248 0.288 0.254
DDTW 0.239 0.291 0.243
DPDC 0.361 0.533 0.692

Proposed Clustering Approach

TSMB-SPCL-MV
ss = 1800

L2 (Euclidean) Distance 0.902
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