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ABSTRACT

COMPUTATION OF VORTICAL FLOW FIELDS OVER A
CLOSE-COUPLED DELTA CANARD-WING CONFIGURATION AND

ADJOINT BASED CONFIGURATION OPTIMIZATION

Tikenoğulları, Alp

M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. İsmail Hakkı Tuncer

February 2022, 79 pages

This study aims at investigating the vortical flow field over a close-coupled delta

canard-wing configuration to understand the vortex interactions and the mechanism

of lift enhancement provided by the canard, especially at high angles of attack, and

employing an adjoint based configuration optimization to achieve further enhance-

ments in aerodynamic forces. An open-source CFD solver, SU2 is employed for both

flow field computations and adjoint based configuration optimizations. First, flow so-

lutions with SU2 are verified with solution adaptive grid refinements and turbulence

models. The interaction of the canard vortex with the wing vortex, its influence on the

vortex breakdown and the lift generated are investigated at different angles of attack.

Finally an adjoint based optimization algorithm is developed to locate the optimum

position of the canard relative to wing surface. The canard translation is achieved

by the rigid motion a free-form deformation box, which encloses the canard. Flow

solutions show that the vortex interactions are limited at low-angle-of-attack cases

but at moderate and high angle of attacks, the canard vortex enhances the total lift by

eliminating the wing vortex breakdown or by pushing the breakdown location further

downstream. As the result, 12% and 16% increments in lift are achieved at α = 20◦
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and α = 30◦, respectively. The configuration optimization performed at α = 8.7◦

further improves the lift by 1.32%, despite the fact that at such low angles vortex in-

teractions are limited and geometric boundaries further limits the design space. The

configuration optimization at α = 20◦, shows that canard’s horizontal translation does

not have an impact as much as vertical translation on lift improvement. However,

closer canard-wing layout provides restoring of burst canard vortex and improves the

canard lift.

Keywords: close-coupled canard-wing, delta-wing, canard, aerodynamic optimiza-

tion, adjoint, vortical flow, SU2
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ÖZ

YAKIN İLİŞKİLİ DELTA KANARD-KANAT KONFİGÜRASYONUNDA
GİRDAPLI AKIŞ HESAPLAMALARI VE ADJOİNT YÖNTEMİ İLE

KONFİGÜRASYON OPTİMİZASYONU

Tikenoğulları, Alp

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İsmail Hakkı Tuncer

Şubat 2022 , 79 sayfa

Bu çalışmada yakın ilişkili delta kanard-kanat konfigürasyonu, girdap etkileşimlerinin

ve özellikle perdövitese yakın yüksek hücum açılarında kaldırma kuvveti artışını

sağlayan mekanizmanın anlaşılabilmesi amacıyla incelenmektedir. Akışın incelen-

mesinin ardından kaldırma kuvvetinde daha yüksek artışlar sağlanabilmesi amacıyla

mevcut geometriye adjoint yöntemi kullanan bir gradyan tabanlı optimizasyon yöntemi

aracılığıyla konfigürasyon optimizasyonu çalışması uygulanmaktadır. Akış çözümle-

rinde ve adjoint hesaplamalarında açık kaynaklı HAD çözücüsü olan SU2 yazılımı

kullanılmaktadır. Çalışma öncelikle çözüme bağlı adaptif ağ iyileştirmeleri ve türbülans

modellerinin deney sonuçları ile karşılaştırmalarıyla valide edilmektedir. Sonrasında

düşük, orta ve yüksek hücum açılarını temsil eden üç farklı hücum açısında akış

incelenmekte ve son olarak konfigürasyon optimizasyonu ile kanardın yeniden ko-

numlandırılması sonucu kaldırma kuvvetinde daha yüksek artışlar sağlanmaktadır.

Optimum kanard pozisyonunun arandığı çalışmada kanard hareketi kanardı saran bir

serbest biçimli deformasyon kutusunun bir bütün olarak hareketiyle sağlanmaktadır.
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Akış çözümlerinin incelenmesi sonucunda düşük hücum açılarında girdap etkileşimlerinin

sınırlı bir düzeyde olduğu fakat girdap kırınımının etkili olduğu orta ve yüksek hücum

açılarında kanard varlığının kırınımı tamamen ortada kaldırması veya en azından ge-

ciktirmesi sayesinde kaldırma kuvvetinde önemli artış sağlandığı görülmektedir. Bu

artış miktarının α = 20◦’de %12, α = 30◦’de ise %16 olması yüksek açılarda kanard

etkisinin daha da önem kazandığını göstermektedir. Konfigürasyon optimizasyonu

ile kaldırma kuvvetinde daha fazla artış sağlanmaktadır. Her ne kadar düşük hücum

açılarında etkileşim kısıtlı olsa ve geometrik sınırlar optimizasyon çalışmasının ta-

sarım uzayını kısıtlıyor olsa da optimize edilen kanard konumuyla birlikte α = 8.7◦’de

%1.32 artış sağlanmaktadır. α = 20◦ hücum açısında yapılan konfigürasyon optimi-

zasyonu ise bu açıda kanardın yatay eksendeki hareketinin kanat girdabında önemli

iyileşmeler sağlayamadığını göstermektedir. Diğer taraftan, kanard ve kanadı daha da

yakın ilişkili hale getirmenin kanat akışı üstündeki olumlu basınç gradyanı sayesinde

kanard girdap kırınımının onarılması etkisini pekiştirdiği gözlemlenmektedir.

Anahtar Kelimeler: yakın ilişkili kanard-kanat, delta kanat, kanard, aerodinamik op-

timizasyon, adjoint, girdaplı akış, SU2
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Semih Umut Çetin and Sinem Kınay. They are more than brothers and sister to me

who have never left me alone for over 10 years. Thanks for all the priceless moments

guys!

I owe more than thanks to my family, who have been endlessly supportive and en-

couraging throughout all my life. Father and brother have always been the ones who

I can discuss and learn precious knowledge about the engineering problems. Mother

always looked after me with all her kindness, thanks for anything you taught to me

and making the life much easier mom! I’m very proud of being a member of such

family.

I owe my deepest gratitude to my lovely girlfriend Deniz Sivrioğlu. She has always
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CHAPTER 1

INTRODUCTION

Combat aircraft are always demanded to be agile and have high maneuverability ca-

pability. From WWII to nowadays, agility and maneuverability are the key flight

performance parameters for combat aircraft since they can provide competence to

overcome counter missile or fighter attacks.

The first response to this demand is given by introducing high-swept delta-wing air-

craft. Beginning from the moderate angles of attack, the flow over backward-swept

wings with sharp leading edges is separated due to adverse pressure gradient on the

leeward side. This separation forms a primary vortex sheet, rolling up over the suc-

tion side of wing surface, and a secondary, and in some cases a tertiary, separation

vortex sheets in boundary layer region. In figure 1.1, Tu [68] clearly illustrates those

counter-rotating vortex sheets and their separation and attachment lines on the wing.

Vortex sheets have large axial velocities in vortex core at low and moderate angles of

attack due to very low pressure. This low pressure also generates a suction force, as

known as vortex lift, on the suction side of wing [25]. This separated sheet forms a

stable vortex that can last up to higher angles of attack where the low-swept wings

totally stall and lift due to the attached flow is lost. The vortex lift becomes the main

lift generation mechanism for slender wings at such high incidences and it enhances

the maximum lift capability.

At sufficiently high angle of attack, the vortices suddenly expand due to high swirl

level and adverse pressure gradients, the jet-like axial velocity is lost and a low-

velocity, wake-like flow downstream is seen [25]. This phenomenon is called as

vortex breakdown. Gursul [25] states that there are various sources of disturbances,

or instabilities, leading to breakdown of a stable separation vortex sheet, such as shear

1



Figure 1.1: Leading edge separation vortex sheets over a delta wing, [68]

layer instabilities, vortex wandering or helical mode instability. Helical mode instabil-

ity is the main mechanism leading to vortex bursting and a spiral form of breakdown

exists as a consequence of this instability. In figure 1.2, helical instability and at the

downstream location the burst vortex core is illustrated. As stated above, the main

mechanism that influences vortex lift is low pressure and high axial velocity in the

vortex core. Vortex breakdown suddenly decreases the magnitude of low pressure in

vortex core and thus, it is the dominant flow mechanism responsible for loss of lift.

As the angle of attack increase, breakdown location moves upstream to the wing apex

and at a certain angle, breakdown occurs suddenly at the wing apex, in other words

wing stalls, totally (figure 1.3).

Figure 1.2: Helical mode instability and spiral type of vortex breakdown, [25]
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Figure 1.3: Breakdown development as angle of attack increase, [23]

By eliminating, or, at least, delaying the breakdown, high lift performance of delta

wings can be enhanced. There are several active and passive control techniques to

delay the vortex breakdown and application of close-coupled delta canard-wing con-

figuration is one of those passive control techniques. A close-coupled canard-wing

configuration is characterized by two lifting surfaces, namely canard and wing, which

are placed sufficiently close to each other so that their leading edge separation vor-

tices favorably influence each other’s vortex structure. Mainly, this configuration is

used to enhance the jet-like flow behavior of wing vortex core at such high angles of

attack where this vortex core is broken down. Bergamnn et al. [4] illustrate the vortex

trajectories in figure 1.4 and make the flow morphology more clear. The flow struc-

ture over such configuration is characterized by the downwash and upwash effects of

canard, which significantly influence the flow over wing, and interactions between

canard and wing vortices. By considering the rotation axis of primary leading edge

vortices given in figure 1.1, canard implies a downwash effect on the wing’s inboard

portion which lies within the canard span length. This effect induces the flow, results

a decrease in effective angle of attack of wing’s inboard portion and delays the vortex

formation, if the canard is placed sufficiently close to the wing. On the other hand

at the downstream locations of where canard vortex crosses over the wing vortex, ca-

nard’s upwash effect influences the wing vortex. Moreover, as Yutuk et al. [76] state,

although two vortex cores do not entangle, presence of canard vortex provides wing

vortex breakdown delay also by preventing wing vortex from its expansion and diffu-
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sion. These interactions lead to an improvement in aerodynamic performance of such

configuration. Adding a lifting surface in front of the wing also drastically effects the

moment characteristics. Canard configuration reduces the longitudinal static stability

and it is used to achieve a more agile, high maneuver aircraft.

Figure 1.4: Schematic of vortex trajectories over close-coupled delta canard-wing

configuration, [4]

Canard position and deflection angle can dramatically change the aerodynamic char-

acteristics. Studies show that the maximum lift increment is achieved when the canard

is positioned at the upward of wing chord-line and as close to wing as possible, while

positioning the canard at the downward of wing chord-line may cause unfavorable

vortex formations on the pressure side of wing. In addition, overall lift is almost

independent from canard deflection angle. Positive canard deflection results an in-

crease in canard lift, however, it also increases the downwash of canard wake. Due

to increasing downwash of canard’s wake, wing’s effective angle of attack decreases

and consequently lift generated by wing surface decreases. This reduction on wing

lift balances the increase in canard lift and as the result, total lift becomes almost

independent from canard deflection. On the other hand, effects of canard deflection

on pitching moment are significant, increasing canard lift remarkably influences the

pitch-up moment. Canard’s horizontal positioning also affects the pitch-up moment

characteristics since the moment arm between canard lift and neutral point is deter-

mined by canard’s horizontal position.

The high swept wing, or delta wing, concept dates back to early 1930s. The first suc-

cessful application of delta wing is accomplished by Lippisch [44]. After the WWII,
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Lippisch’s delta wing aircraft is moved to United States and extensive investigations

are conducted on it. In 1946, Wilson et al. [75] changes Lippisch’s rounded lead-

ing edges with sharp leading edges and demonstrate the potential of delta wings on

increasing performance in CLmax . Therefore, Wilson et al. provide a new concept,

which is well-known today, of which separation induced and highly stable leading-

edge vortex flow with its associated vortex lift. The effects of leading-edge vortices

are first clarified by Polhamus [56, 57]. Leading edge suction analogy is studied ex-

tensively after Polhamus. Lamar [41] publishes an extension of a current analogy to

predict the effect of side edge vortices.

1.1 Experimental Studies on Close-Coupled Delta Canard-Wing Configura-

tions

In order to improve the stall characteristics of a delta-wing aircraft, the studies show

that lift capability of slender, i.e. low aspect ratio, delta wings may be enhanced by

the vortex interaction effects. The studies conducted in 1960’s and early 1970’s put

the first results in literature and revealed some remarkable results which were con-

trary to general knowledge during those days. These results show that even moderate

aspect-ratio and less-swept wings can also generate high lifts at extreme angles of

attack by creating favorable vortex interactions. One such modification is placing a

canard just ahead of the wing. Since there is a small distance between the canard and

wing, such configuration is named as close-coupled canard-wing configuration. The

aerodynamics and the mechanism that result lift enhancement of close-coupled delta

canard-wing configurations have been studied both experimentally and numerically

for many years. First study for such configuration is conducted by Behrbohm [2] and

the results are applied to the Saab Viggen successfully. Behrbohm carries out a para-

metric study on a model having a fuselage and a close-coupled delta canard and wing

surfaces. He results that canard suppresses the formation of wing vortex at the wing

apex, on the other hand, at downstream it enhances the already-formed wing vortices.

As the result, lift is increased up to 65% on final design, compared to wing-alone

configuration, while the wing loading is almost identical. Behrbohm also reports that

application of the canard enhances trim requirements. The wing trailing edge should

5



be deflected downward to balance the pitch-up behavior resulting from the canard lift

and this deflection increases wing lift.

Lacey [38, 39, 40] conducts an exhaustive study on close-coupled delta canard-wing

configuration, including the investigations on canard-wing vortex interactions; tail in-

terferences, effects of canard ’s shape and position on lift, drag and moment forces.

Some remarkable observations are, increasing canard sweep strengthens the canard

vortex and hence increases CLmax . Increasing canard size results an increase in CL.

Moving the canard upward increases the vortex interaction and favorably affects the

stall behavior, while moving the canard further away from the wing reduces this in-

teraction, and therefore upper canard being closer to wing is the optimum location

for all four different canard shapes concerned in Lacey’s study. He also reports that

moving the canard further away and increasing canard deflection increases pitching

moment.

Meanwhile, experimental studies on close-coupled canard-wing configuration contin-

ues also at the Langley Research Center, pioneered by McKinney, Dollyhigh, Gloss

and their colleagues [20, 19, 21, 52]. Gloss and Mckinney [20] conducts an exper-

iment at Mach numbers 0.7 and 0.9, mainly concerning the effect of canard-wing

interference on lift force. They test different vertical and longitudinal canard posi-

tions coupled with different wing sweeps. They report that downwash effect causes

a decrease in wing lift for the angles of attack smaller than 16◦, but overall lift

is higher than canard-off configuration, due to additional lift coming from canard.

Above α = 16◦, wing vortex breakdown is delayed and therefore wing lift is also

increased. They report that canard deflection does not change overall lift since the lift

increase on canard is balanced with the lift decrease on wing due to canard’s increased

downwash effect. Another study conducted by Gloss [19] uses the same experimen-

tal model with the previous study, but this time a new strake-canard geometry and a

different cambered and twisted wing are added into the study and longitudinal stabil-

ity characteristics are also evaluated. Due to this study, the canard positioned above

the wing plane produces the highest CLmax , except the strake-canard configuration;

adding strake on the canard provides larger lift improvements to the lower canard,

rather then high canard configuration. High canard position also provides the most

linear CM curve, since the nonlinearities in the pitching moment is a result of burst
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vortex. He also states that wing camber and twist has no effect on the lift. In [21],

Gloss provides detailed wing chord-wise pressure distribution plots that clearly show

the abrupt pressure changes due to wing vortex breakdown. He states that canard

downwash reduces the lift at wing stations immediately behind the canard and the

same mechanism increases the lift at outboard sections of wing. Paulson et al. [52]

analyzes the enhanced lift capability of close-coupled canard-wing configuration also

for enhancing the take-off and landing performance of Vertical or Short Take-off and

Landing (V/STOL) combat aircraft. It is concluded that canard-wing configuration

performs well in transition flight, which is needed for STOL capable aircraft.

Calarese [9] provides a detailed flow field evaluation in his study. Both local axial

and lateral velocity plots are provided, which are the key data to analyze the vortex

behavior on wing in his study. Reynolds stresses and turbulence intensity are also

obtained, unlike the previous studies, as he states. He also applies air injection at the

wing leading edge to enhance the wing vortex and increase the lift. In another study

[10], Calarese assesses coplanar-canard-wing and high-canard arrangements in terms

of lift and lift-to-drag (L/D) ratio. He reports that coplanar configuration can provide

only 2% increase in L/D at α = 10◦ and 4% at α = 16◦ compared to canard-off

configuration, while the high-canard configuration provides 12% higher L/D at both

angles of attack compared to coplanar configuration.

Er-El and Seginer [15] investigate canard shape and position. They report that wing-

narrow-canard (75◦ swept canard in their case) interference is controlled by strong

leading-edge vortex interactions, while the wing-wide-canard (56◦ swept canard) in-

terference is controlled by the flow field deflection generated by canard. So, higher

swept canard is preferred for strong vortex interactions. In their study canard-off (or

wing-alone) case has almost constant CM vs. α curve, on the other hand application

of canard changes CM vs. α curve to positive slope and increasing longitudinal sepa-

ration of canard and wing increases CM by increasing the moment arm. In [16], Er-El

and Seginer use the same configurations and investigate vortex trajectories and break-

down in more detailed. Span-wise and vertical components of leading edge vortex

trajectories at different angles of attack are plotted for both canard-on and canard-off

configurations and their vortex breakdown locations are shown in the paper. Within

the accuracy of Schlieren picture, they can not observe any significant differences
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between the vortex breakdown locations of studied three canard-wing configurations.

However, vortex trajectories differ significantly. In his next study [14] Er-El pro-

vides detailed span-wise CP distribution plots at several sections over the wing and

evaluates the effect of wing-canard interference on pressure field.

In Technical University of Braunschweig a series of experiments are conducted on

vortical flows on delta wings and canard-wing configurations. Hummel put together

his observations on slender delta wings, double delta wings and canard-wing config-

urations in [32]. For canard-wing configuration, he observe such lower suction peaks

in front part of the wing, supporting the previous observations that canard downwash

reduces wing’s effective angle of attack. It is also observed that canard vortex breaks

down at α > 12◦ but due to wing induced pressure gradients, canard vortices are

restored to a non-burst state in the wing leading edge region. The complete flow field

study of this configuration is published in [50]. The primary, secondary and tertiary

vortices are plotted at certain section over the wing by total pressure and dynamic

pressure isobars, and those isobar plots provide a detailed explanation of mechanisms

of vortex interactions. Hummel and Oelker repeats a similar study on canard-wing

configuration of International Vortex Flow Experiment [33]. Observations in this

study are similar to [50]. Both experiments are at relatively small angles of attack

where vortex breakdown does not occur and at such angles of attack canard and wing

vortex systems remain separate up to wing trailing edge. In both studies authors ob-

serve that canard’s downwash suppress flow separation in the front and inner parts of

wing, while canard’s upwash supports separation in outer portions of wing. In 1991,

Bergmann, Hummel and Oelker publish another study [4], using a similar canard-

wing geometry but with a different cylindrical fuselage. Authors investigate higher

angles of attack, up to α = 40◦, and unsymmetrical flow characteristics on canard-

wing configuration at different sideslip angles. Flow structure is given by pressure

distribution plots over canard and wing. In 2001, Bergmann and Hummel publish a

study in which the effect of canard position is investigated [3]. The same geometry

with [4] is used in this study but this time with different vertical positions and dif-

ferent setting angles of canard. Similar to previous studies, Bergmann et al. observe

that overall lift is almost independent of the canard setting angle but CLmax consid-

erably reduces with increasing setting angle, while nose-up pitch moment increases
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with increasing setting angle. Those observations are common for all three positions,

considered in this study, of the canard.

Ponton et al. [58] provide detailed evaluations of decalage angle, which is the angle

between canard and wing chord lines, and canard position at a wide range of angle

of attack. They obtain that negative decalage angles provide stabilizing pitch down

moment, while increasing it increases the pitch up moment. They also report that

there is a strong relation between decalage and incidence angles in terms of getting

favorable canard influence onCL and summarize the relation between decalage angle,

incidence and percentage CL change in a contour plot. For all angles of attack and

canard positions given in the study, the maximum increase in CL is provided by the

decalage angles around 0◦ but in negative region.

Howard and Kersh also publish their observations on the effect of canard deflection

on lift enhancement in their paper [29]. They report that at α = 22◦ maximum lift

enhancement due to canard deflection is about 5% at the canard deflection of +7◦.

On the other hand, at α = 34◦, maximum lift enhancement is reached with the canard

deflection of −7◦. Howard and O’Leary [30, 31] extended the previous study by

examining the flow field behavior of close-coupled canard-wing configuration. The

model examined in this paper has 7◦ canard deflection angle and set at α = 22◦. Flow

field is examined by plotting cross-plane streamlines, velocity vectors and pressure

loss contours at several sections on canard and wing.

1.2 Numerical Studies on Close-Coupled Delta Canard-Wing Configurations

With the increasing attention to delta canard-wing configurations, studies which aim

predicting flow behavior on such configurations by numerically emerged as well as

the experimental studies. First numerical studies are based on analytical solutions like

drag prediction calculations and Polhamus’ leading edge suction analogy method.

Goldstein and Combs [22] use an analytical approach to calculate trim drag for a

canard and aft tail configuration. They obtain that canard configuration has a potential

of reducing trim drag, increasing the L/D throughout the flight range. Moreover,

floated canards can raise the maximum trimmed L/D and reduce the drag at high lift
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coefficients even more. Butler [8] calculates the induced drag of canard-wing and

wing-tail configurations based on Prandtl’s biplane theory. His calculations show that

additional induced circulation effect act to reduce the drag. This effect is small for

wing-tail configuration but significant for the canard-wing layout.

In the study published by Campbell et al. [11], theoretic calculations are based on Pol-

hamus’ leading edge suction analogy [57] for simple delta wings and and extended

version of this analogy [42] for multiple lifting surfaces like canard-wing configura-

tions. These numerical methods well predict CL curves and drag polars for canard-off

and canard-on configurations up to stall angles, however deviate at near- and post-stall

regimes. Hale et al. [26] develop a semi-empirical potential flow based formulation

in which the vortex sheets are added. In order to simulate vortex bursting, vortices

are modeled by the combination of horseshoe vortices and burst vortex sheets, where

the wing and burst vortex vectors are determined by experiments. The formulation

represents both potential lift dominated low angles of attack and vortex lift dominated

high angles of attack. But this methodology requires extensive experiments to locate

the horseshoe vortices and burst vortex sheet, which remains as a disadvantage.

Due to being low-cost, potential flow based methods such as Vortex Lattice Method

(VLM) or Transonic Small Disturbance (TSD) method are commonly used to pre-

dict flow behavior on such delta wing configurations, especially in 70’s and 80’s,

and regarded as having a potential to be used as a ”design by analysis” process em-

ployed during the preliminary design [62]. Henderson evaluates potential flow and

potential plus vortex methods by comparing them to experiment at different canard

positions [27]. He reports that potential plus vortex solutions works well for mid-

and high-canard configurations, CL and CD curves fit to experiment, while potential

flow solutions fit better at low-canard positions. Investigation of aerodynamic charac-

teristics reveals some observations similar to previous studies. Canard improves the

trimmed lift capability, reduces the trimmed and wave drags; while at low angles of

attack lift increment by canard is balanced by lift loss on wing due to the decreased

effective angle of attack, at α > 8◦ total lift enhancement is significant; and while

low-and mid-canard increase the longitudinal stability, high-canard results a pitch-up

moment.
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Kandil et al. [36] apply a Non-Linear Vortex Lattice Method (NLVLM) to the canard-

wing configuration by accounting viscous effect by artificial viscosity terms. Qual-

itative and quantitative comparisons of vortex lines, normal-force coefficient vs. α

and center of pressure location vs. α curves show that the numerical predictions are

in a good agreement with Behrbohm’s experimental work. Stoll and Koenig [64] use

higher-order panel method and VLM. They observe that panel method predictions are

valid only at small angles of attack, its lift prediction deviates 10% at α = 13.5◦. On

the other hand VLM has a good lift and moment accuracy up to α = 20◦, actually

where the breakdown effects become significant. They also obtain notable obser-

vations on vortex interactions. Canard delays the wing stall even if the canard is

completely stalled and it results a 34% increase in total CLmax , although canard adds

15% more lifting area, and pitch control inputs are effective up to stall angle. Rom

and Gordon [61] employ NLVM to evaluate the effect canard position and deflection

angle. Their observations are, canard’s vertical position has a very limited effect,

while canard’s horizontal position affects both lift and pitch-up moment. Canard de-

flection angle has no effect on overall lift but it strongly affects pitching moment,

pressure distribution and L/D at low angles of attack. In another paper of Rom et

al. [62], extend their work on different wing-canard models. Gordon [24] also states

that integrated force coefficient start diverging from measurements at α ≈ 10◦ due to

errors on CP calculations. All the authors’ comparisons of numerical predictions to

experimental measurements show the weaknesses of the method. Since the method

is based on inviscid flow assumption, friction drag can not be predicted in calcula-

tions, and also calculated pressure distribution differs from measurement which leads

to mis-predictions of moment coefficient. Mis-predictions at high angles of attack,

mentioned by authors, are also due to viscous nature of vortex breakdown mecha-

nism.

TSD method, on the other hand, can not be employed at high angles of attack due to

its small disturbance assumption but emerges as an important method for transonic

regimes, where subsonic potential flow formulations can not be used [1]. Agrell et

al. [1] use TSD and linear panel methods to examine elevon deflections and evaluate

aerodynamic derivatives at mach number range between 0.2 and 2.0. Although both

methods over-predict aerodynamic derivatives, CLα and CMα , at transonic regime, for

11



elevon deflection case, they represent good tendency of change with mach number.

Panel method is insufficient for mach numbers between 0.9-1.2. So authors present

the TSD method as an important complementary tool to panel method as the later is

insufficient in mach number range 0.9 < M < 1.2.

The previous discussed models, based on potential flow theory, require the vortex

sheets to be hand fitted, it require an extensive effort to represent the vortices cor-

rectly. On the other Euler equations allow the vortex sheets to be captured auto-

matically [17]. Therefore with advancing computer technology, Euler simulations

become more suitable for numeric predictions of such configurations. Eriksson and

Rizzi conduct a steady state Euler simulation at 0.7 Mach and α = 10◦ [17]. The

paper evaluates total pressure loss and mach contours and also velocity vectors, CP

distribution plots and integrated CL and CD values. Contour plots give a qualitative

assessment, while CL and CD values are used to a quantitative comparison to mea-

sured data. The Euler solutions predict CL value of single delta wing as CL = 0.554,

while in experiment CL = 0.53 is measured. Lift coefficients are in good agreement

with an error of 4.5%. Longo and Das [45, 13] conduct an extensive study to compare

velocities, pressures and loss of total pressures, breakdown location with canard-on

and canard-off configurations. They report that strength of wing leading edge vor-

tex is reduced due to addition of canard, and it leads to reduction in the loss of total

pressure, compared to canard-off case. They also investigate the breakdown location

by plotting the dimensionless axial velocity value, Uaxial/U∞, throughout the wing.

Two saddle points, representing flow reversal and vortex bursting points are shown in

those dimensionless axial velocity plots. Also the shift of breakdown location with

respect to angle of attack is given and it is a good comparison between inviscid cal-

culations and experimental measurements to show the viscous effects on breakdown

phenomenon. Malfa et al. publish a paper [46] which evaluates the inviscid and vis-

cous effects on delta wings. They report that since the primary vortices are mainly

inviscid but secondary and tertiary vortices occur due to viscous effects, Euler simu-

lations can only capture the primary vortices and do not resolve the others. Without

viscous effects, Euler methods predict a suction peak much higher than the real case.

Therefore, numerical artificial viscosity terms are employed in Euler equations and in

this paper control coefficients of these terms are discussed in detail.
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In order to resolve viscous effect, which is shown that it has a crucial effect on the

mechanism of formation and bursting of vortices, Euler equations are not sufficient,

Navier-Stokes equations are needed to be solved including viscous terms. On the

other hand, it is more expensive than all the other methods discussed above. Navier-

Stokes simulations become being affordable in 90’s, with the advances in computer

technology, and from then on, they emerge as the most commonly used numerical

methods employed in such problems. Tu publishes a series of papers in which he

evaluates the vortex interactions and effects of canard position and deflection angles,

by employing thin-layer Navier-Stokes equations [66, 65, 67]. The equations are

solved at transonic regime, M = 0.85 − 0.9, and at relatively low angles of attack,

up to α = 14◦. His findings are similar to previous studies but there are some notable

observations. First of all, viscous secondary vortex is clearly resolved by the method.

The numerical method predicts that vortex burst occurs at α = 12.38◦, Gloss and

Washburn reported that it occurred approximately at α = 13◦, which results a good

agreement. Drag polar curves of canard-on and canard-off cases cross-over at a cer-

tain angle of attack, and it shows the potential of canard configuration for high L/D.

He reports that, at those angles of attack, canard deflection can cause unfavorable vor-

tex formations on wing lower surface. He also observes that canard position causes

significant differences in lift curve at α > 4◦ and high canard configuration provides

lift increase and drag reduction. Tuncer et al. [69] conduct a numerical study based

on the experiments done by Bergmann et al [4]. They compare the pressure distri-

butions and vortex breakdown locations of canard-on and canard-off configurations

at α = 20◦, 24.2◦, 30◦ at zero sideslip. It is observed that resolving the strong in-

teraction between canard and wing vortices is a challenging problem. They reached

reasonable agreements for canard-on case only at α = 20◦ and the solutions differs

from measurements at higher angles of attack, especially in the region where break-

down occurs.

Ghoreyshi et al. [18] employ two different CFD solvers using SA, SARC and DDES

with SARC turbulence models for simulations of X-31 aircraft model. The numeri-

cal solutions provide a detailed investigation of flow field. It is reported that vortex

breakdown causes very nonlinear pitching moment behavior because of the nonlin-

ear behavior of flow behind the vortex breakdown and since the moment reference
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point is close to aircraft neutral point, CM is very sensitive to differences in numer-

ical algorithms and solvers. Assessment of turbulence models show that SA model

fails to predict the vortex breakdown and its effects due to the diffusive nature of the

model when the vortex breakdown occurs. Chen et al. apply DDES method based

on S-A turbulence mode to canard-wing configuration in sideslip [12]. They observe

unusual rolling moments due to sideslip and it leads abrupt loss of rolling stability at

post-stall regime. Canard-wing configuration reveals different roll stability character-

istics at different angles of attack, at α = 10◦ model is in lateral stable condition, at

α = 20◦ rolling moment fluctuates around zero, and at α = 30◦ significant positive

rolling moment is generated with increasing sideslip. Using the same aircraft model

and numerical methods, Qin et al. [59] investigate the canard-wing interference in

static ground effect. They report that with the ride height decrease, lift, drag, nose-

down pitching moment and L/D increase nonlinearly. Those observations contribute

to understand the aerodynamic performance of such configurations in take-off and

landing phases.

Hitzel and Osterhuber [28] investigate the effect of adding leading-edge root exten-

sions between canard and wing on the enhancement of maneuverability of Eurofighter

Typhoon aircraft. They employ unsteady RANS (URANS) equations coupled with

k − ω turbulence model. They reach strong, stable vortices which enhance the ma-

neuverability and overcome the rolling-moment instabilities of previous design.

Wibowo et al. [72, 73, 60, 71] conduct extensive numerical studies on different air-

craft models and support their observations with water tunnel tests. In the paper [72],

flow over a Russian SU-30 aircraft model is solved by RANS equations coupled with

k−ω turbulence model. The effect of canard deflection angle to improve wing stall is

examined. They obtain that negative canard deflection in range of 20◦−40◦ improves

the stall characteristics significantly, stall angle is increased form approximately 45◦

to 50◦. Furthermore, the deflection results a smoother post-stall lift characteristics, a

significant portion of lift can be preserved up to α = 80◦ [60] In another paper, Wi-

bowo et al. [73] investigate the effect of canard position by employing DDES method.

Results are similar to previous studies, canard positioned closer to wing and above the

wing chord line gives the highest lift increment. They report that lift increase up to

5% − 12.1% is provided. In their most recent studies, Wibowo et al. [71] compare
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the aerodynamic performances of Russian SU-30, Chinese J-10 and European EF-T

aircraft models.

Yutuk et al [76] publish a study recently, based on Bergmann’s [4] experiment. RANS

equations are employed in the study and coupled with Menter’s k−ω SST turbulence

model. The flow field and vortex interactions are evaluated in detail, by providing

surface pressure distributions, total pressure loss contours, vortex core trajectories,

and q-criterion iso-surfaces. They concluded their study with some remarkable ob-

servations. Thanks to advanced numerical methods and employed grid-refinement

technique, this study achieves a better agreement with experimental measurements in

comparison to previous numerical studies published in late nineties. Vortex break-

down does not occur up to α = 20◦ and it is moved downstream on wing by 60%

of wing chord at α = 30◦. As the result, 12% and 16% lift increment is provided at

α = 20◦ and α = 30◦, respectively.

1.3 Gradient-based Optimization with Adjoint Method

Aerodynamic design optimization is one of the key parts of an aircraft design pro-

cess in order to maximize its aerodynamic performance under certain conditions. Al-

though there are many techniques in literature, gradient-based methods are the most

commonly used optimization techniques in aerodynamic design optimization. The

goal is to minimize an objective (or cost) function in the solution set which is lim-

ited by the constraints. In order to reach the minimum point, gradient-based methods

require gradient or sensitivity calculations, which means that derivative of objective

function with respect to design variables has to be calculated. There are different

methods for evaluating the gradients. A common way is to apply small perturba-

tions on each design variable and calculate the change in objective function, which is

called finite differencing method. Since the flow field should be re-evaluated for the

change of objective function for each design variable change, the problem becomes

more and more costly with increasing number of design variables. And, aerodynamic

design optimization problems are typical cases having such high numbers of design

variables. The adjoint method provides an efficient way of gradient calculation of

objective function with respect to many design variables [53], and therefore it has
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gained popularity in aerodynamic design optimization applications in recent years.

The adjoint equations are implemented into solvers by two different techniques, con-

tinuous and discrete methods. In continuous adjoint method, first, adjoint equations

are implemented into governing equations and then they are discretized. On the other

hand, in discrete method, governing equations are discretized and then discrete ad-

joint equations are implemented.

The adjoint method is based on the control theory [43] and Pironneau [54, 55] is

the first one who apply this methodology in fluid problems, to incompressible Euler

equations. Jameson [34] introduced the sensitivity analysis procedure for inviscid

compressible flows.

Although first implementations of discrete approach dates back to 1982 [7], com-

plexity of this approach had a limitation. Jameson [35] states that complexity of the

discrete adjoint formulation is proportional to n7. However, the advances in automatic

differentiation (AD) in last years, made the discrete approach more affordable.

The Free-Form Deformation (FFD) box technique is a widely-used method that is

used in aerodynamic shape optimization problem to deform the shapes. The idea is

enclosing the geometry to be deformed by a simple lattice structure, defining each

node on the structure as control points and controlling the deformation of aerody-

namic shape by moving those control points along determined degrees of freedom. In

this method gradients are calculated by projection of sensitivity values on to the each

control point. As the result, gradients for each control points (or design variables) are

obtained.

1.4 Objectives of the Study

This study aims at understanding the vortical flow behavior over a close-coupled

canard-wing configuration, effect of canard on delaying the wing vortex breakdown,

its consequent effects on aerodynamic performance and performing a layout opti-

mization on a close-coupled canard-wing configuration by using an adjoint-based op-

timization method. The open-source CFD software SU2 is employed for the flow and

the adjoint solutions on solution adaptive grids. Fully turbulent viscous flow fields
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are evaluated by SU2 solver employing the RANS equations at three different angles,

representing low-, moderate- and high-angle-of-attack cases. The baseline configu-

rations of this study are taken from the experimental studies conducted in Technical

University of Braunschweig [4, 50]. The vortical flow solutions at high angles of at-

tack are first verified, flow fields and vortex interactions at different angles of attack is

investigated. Finally, a configuration optimization is performed. The gradient based

optimization process is driven by the open-source optimization software DAKOTA.

CL is chosen as the objective function to maximize, while the vertical and the hori-

zontal location of canard are taken as the design variables.
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CHAPTER 2

METHODOLOGY

In this study, the main objectives are to understand the vortical flow behavior over

a close-coupled delta canard-wing configuration at different angles of attack and de-

velop an optimization procedure to improve the lift coefficient, CL, of a such config-

uration at a given condition. Optimization process focuses on canard’s vertical and

horizontal position. Geometric boundaries are the limits of design space. The flow

field is solved by RANS equations and gradient vectors are obtained by employing

the adjoint solution on those solutions. Both flow solutions and adjoint calculations

are handled by SU2.

This chapter begins with an overview of the flow solver SU2. It is followed by the de-

tails of flow field modeling, including governing (Reynolds-Averaged Navier-Stokes,

RANS) equations, turbulence modeling, boundary conditions and solver setup in 2.1.

Then, the computational grid generation method is introduced in section 2.2 and op-

timization framework is explained in 2.3. The gradient-based optimization method,

including the adjoint based sensitivity and gradient evaluations, hessian approxima-

tion and optimization algorithm are described in subsection 2.4.

2.1 RANS Solver: SU2

In this study an open source flow solver, SU2, is employed for fluid flow simula-

tions. The solver was initially developed in the Aerospace Design Laboratory of

Stanford University, and now still being developed by a world-wide developer com-

munity. SU2 is a node-based finite volume solver using unstructured grids. The

governing equations are discretized based on finite volume method in a node-based
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order. The solver is capable of describing the flow by inviscid Euler equations, or

viscous Navier-Stokes equations. Viscous Navier-Stokes equations can be employed

either as time-dependent or steady-state and viscous terms are evaluated by several

turbulence modeling options, including S-A, k − ω SST, hybrid RANS/LES.

2.1.1 Governing Equations

Navier-Stokes equations are actually a set of PDEs that represent the physical mod-

eling of conservation of mass, momentum and energy. The integral form of the gov-

erning equations is as following

∂

∂t

∫
Ω

UdΩ +

∮
S

(
~Fc(U)− ~Fv(U)

)
.~nds = 0 (2.1)

where U stands for the flow variables vector in conservative form, ~Fc(U) and ~Fv(U)

are the convective and viscous flux terms, relatively. Surface integral represents the

integral over the control surface and volume integral over the Ω represents the inte-

gration over control volume. In the employed flow solver, SU2, governing equations

are discretized by using a finite volume method. In spatial discretization, a dual grid

method is used in which control volumes are constructed using a median-dual, vertex

based scheme.

Considering a 3-dimensional problem, vectors of flow variables, convective and vis-

cous fluxes are defined as,

U =



ρ

ρvx

ρvy

ρvz

ρE


(2.2)

where ρ is the density, vx, vy and vz are velocity components and E is the total energy
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per unit mass. Convective fluxes have also three components,

~Fc(U) = ~Fcx(U) + ~Fcy(U) + ~Fcz(U) (2.3)

~Fcx =



ρvx

ρv2
x + p

ρvxvy

ρvxvz

ρvxH


, ~Fcy =



ρvy

ρvxvy

ρv2
y + p

ρvyvz

ρvyH


, ~Fcz =



ρvz

ρvxvz

ρvyvz

ρv2
z + p

ρvzH


(2.4)

where p is static pressure and H is the fluid enthalpy which is H = E + p
ρ
.

The viscous fluxes, on the other hand, can be written as follows,

~Fvx =



·
τxx

τxy

τxz

Θx


, ~Fvy =



·
τxy

τyy

τyz

Θy


, ~Fvz =



·
τxz

τyz

τzz

Θz


(2.5)

Pressure forces and viscous forces create normal and shear stresses on the surface.

Those stress terms are denoted by τij where τxx, τyy and τzz represent normal stresses,

while τxy, τxz, τyz represent shear stresses, and they form a symmetric stress tensor,

i.e. τij = τji, which can be written as,

¯̄τ =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (2.6)

The viscous stresses can be written as

τij = µtot

(
∂vi
∂j

+
∂vj
∂i
− 2

3
δij∇ · ~υ

)
(2.7)
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where (∇ · ~v) is divergence of the velocity, δi,j is the Kronecker delta function, and

µtot = µdynamic + µturbulent. Here, µdynamic is assumed to satisfy Sutherland’s Law

and µturbulent is calculated by using turbulence models.

In equation 2.5, Θ represents the work and heat added on the system, where net work

done on the element is

DW

Dt
= ∇ · (~v · τij) (2.8)

and the heat added to the fluid is given by

DQ

Dt
= µ∗totCp∇T (2.9)

therefore the three components of Θ are,

Θx = (vxτxx + vyτxy + vzτxz) + µ∗totCp
∂T

∂x

Θy = (vxτyx + vyτyy + vzτyz) + µ∗totCp
∂T

∂y

Θz = (vxτzx + vyτzy + vzτzz) + µ∗totCp
∂T

∂z

(2.10)

where Cp is the specific heat at constant pressure and µ∗tot =
µdynamic
Prdynamic

+ µturbulent
Prturbulent

.

2.1.2 Turbulence Modeling

In Reynolds equations, Reynolds stresses remain as unknowns. They should be de-

termined separately and at this point turbulence models comes into the picture. In

turbulence models Reynolds stresses can be modeled by turbulent-viscosity hypothe-

sis, or more directly, by Reynolds-stress equations. In this study two different turbu-

lence models, namely S-A and Menter’s SST, which are among the turbulent-viscosity

models, are used.

The mean momentum equation, according to the turbulent-viscosity hypothesis, be-
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comes,

D̄

D̄t
V̄ =

∂

∂xi

[
νeff

(
∂V̄i
∂xj

+
∂V̄i
∂xi

)]
− 1

ρ

∂

∂xj

(
p̄+

2

3
ρk
)

(2.11)

where νeff is the effective viscosity and it is summation of molecular and turbulent

viscosities, νeff = ν + νt, D̄
D̄t

is mean substantial derivative, V̄i and V̄j are i and j

components of mean velocity vector and 2
3
ρk is modified mean pressure. If νt can

be specified, the closure problem is solved, i.e. equation 2.11 can be solved and

turbulence models aim at solving this closure problem.

2.1.2.1 Spalart-Allmaras Turbulence Model

This model is a one-equation turbulence model, which was suggested by Spalart and

Allmaras [63]. The transport equation implemented as S-A model in SU2 is equation

9 which is in ”Near wall region, finite Reynolds number” section of the original study

of Spalart and Allmaras [63].

Eddy viscosity νt is computed as,

νt = ν̃fv1, fv1 =
χ3

χ3 + C3
v1

, χ ≡ ν̃

ν
, µt = ρνt (2.12)

ν is molecular viscosity and ν̃ obeys the transport equation,

Dν̃

Dt
= cb1S̃ν̃ +

1

σ
[∇((ν + ν̃)∇ν̃) + cb2(∇ν̃)2]−

[
cw1fw

][ ν̃
d

]2

(2.13)

where

S̃ ≡ S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1

(2.14)

where S is the magnitude of vorticity and d is the distance to the closest wall. The
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function fw is,

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, g = r + cw2

(
r6 − r

)
, r ≡ ν̃

S̃κ2d2
(2.15)

The constants of above equations are,

cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41

cw1 =
cb1
κ

+
1 + cb2
σ

cw2 = 0.3, cw3 = 2, cv1 = 7.1
(2.16)

At the wall, boundary condition ν̃ = 0 is applied, while at far-field Spalart and All-

maras suggests a finite value for ν̃ which is below ν/10.

Equation 2.13 is implemented to the code as the convective, viscous and source terms

as follows,

~Fc = ~vν̃, ~Fv =
ν + ν̃

σ
∇ν̃, Q = cb1S̃ν̃ −

[
cw1fw

][ ν̃
d

]2

+ cb2(∇ν̃)2 (2.17)

2.1.2.2 Shear-Stress Transport Turbulence Model

This is a two-equation turbulence-viscosity model, solving kinetic energy, k, and spe-

cific dissipation ω, which was suggested by Menter [47]. Menter suggested a model

that is a blend of a k − ω formulation, which is based on Wilcox model [74] and

standard k− ε model, and by blending them aimed improvement in performance over

both k − ω and k − ε models.

Let φ1 represent any constant in the original k − ω model, φ2 represent the constants

in k − ε model and F1 be the blending function. Multiply the original k − ω model

by the blending function, while multiplying k − ε model by (1 − F1) and add them

together,

φ = F1φ1 + (1− F1)φ2 (2.18)
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so the two equations of new model becomes,

Dρk

Dt
= τij

∂vi
∂xj
− β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(2.19)

and

Dρω

Dt
=
γ

νt
τij
∂vi
∂xj
−βρω2+

∂

∂xj

[
(µ+σωµt)

∂ω

∂xj

]
+2ρ(1−F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(2.20)

where the blending function F1 is,

F1 = tanh(arg4
1)

arg1 = min

[
max

( √
k

0.09ωy
;
500ν

y2ω

)
;

4ρσω2k

CDkωy2

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj

) (2.21)

where y is the distance to the next surface. The constants in equations 2.19, 2.20 and

2.21 are,

σk = F1σk1 + (1− F1)σk2, σk1 = 0.5, σk2 = 1.0

σω = F1σω1 + (1− F1)σω2, σω1 = 0.5, σω2 = 0.856

β = F1β1 + (1− F1)β2, β1 = 0.0750, β2 = 0.0828

γ = F1γ1 + (1− F1)γ2, γ1 =
β1

β∗
− σω1

κ2

√
β∗
, γ2 =

β2

β∗
− σω2

κ2

√
β∗

β∗ = 0.09, κ = 0.41

(2.22)

The term arg1 works as a switch case between k−ω and k−εmodels. The arguments

in arg1 have finite values inside the boundary layer. However, they approaches to

zero far enough away from the wall (near the boundary-layer edge) since all three

terms have the wall distance value, y, as denominator. As arg1 goes to zero, blending

function F1 goes to zero, too, and beyond that distance k − ε model is used.
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There is another blending function, F2 for turbulent viscosity term. Turbulent viscos-

ity is calculated by,

νt =
a1k

max(a1ω; ΩF2

) (2.23)

where a1 = 0.31, Ω is the absolute value of vorticity and F2 is,

F2 = tanh(arg2
2)

arg2 = max

(
2

√
k

0.09ωy
;
500ν

y2ω

)
(2.24)

where F2 is a function that has the value of one in boundary layer and zero for shear

layer flows.

2.1.3 Non-dimensionalization of Governing Equations

Non-dimensional form of governing equations and boundary conditions are employed

for flow solutions. The flow solver employed in this study has several alternatives to

non-dimensionalization procedure; free-stream pressure value may be equated to one,

free-stream velocity may be equated to one or free-stream velocity may be equated

to Mach number. In this study non-dimensionalization is performed by equating the

free-stream velocity value to Mach number. Based on White [70] and Palacios et al.

[51], the non-dimensional parameters are,

x∗ =
x

L
, y∗ =

y

L
, z∗ =

z

L
, t∗ =

tv

L
, ~v∗ =

~v

a
≡M

p∗ =
p

γpref
, ρ∗ =

ρ

ρref
, T ∗ =

T

Tref
, µ∗ =

µ

µref
k∗ =

k

kref

(2.25)

where the reference length is chord length, reference velocity magnitude, vref , is

speed of sound, denoted by a, and the other reference values are given in table 2.1,
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Table 2.1: Reference values used to non-dimensionalization of the problem [51]

Pressure pref = p∞

Density ρref = ρ∞

Temperature Tref = T∞

Dynamic viscosity µref = ρrefvrefLref

Specific energy eref = vref
2

Gas constant Rref = eref/Tref

Specific heat at constant pressure Cpref = Rref

Heat conductivity kref = Cprefµref

Stress τref = vref
2

Turbulent specific dissipation ωref = vref/Lref

2.1.4 Boundary Conditions

In this study, body forces are neglected, and the flow is assumed adiabatic. No-slip

wall boundary condition is applied with zero heat flux. The flow field is assumed

to be symmetric about the mid-span at y = 0, and symmetry boundary condition is

applied at plane y = 0. The far-field boundary condition is applied at the far-field

boundaries.

2.1.5 Solver Setup

In the current study, flow is described by steady-state Reynolds-averaged Navier-

Stokes (RANS) equations, coupled with S-A and k-ω SST turbulence models. Con-

vective fluxes are evaluated by a second order accurate scheme, JST (Jameson-Schmidt-

Turkel), and Weighted Least Squares methods are employed to gradient calculations

of flow variables. Although the flow field is represented by steady-state equations,

the system is still needed to be discretized in time domain. Implicit Euler scheme

is employed for temporal discretization in the study. In addition, local-time stepping

technique is used by SU2 in order to accelerate the convergence [51]. To solve the

implicit problem Flexible Generalized Minimal Residual (FGMRES) method is used

with Incomplete Lower Upper (ILU) factorization.
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2.2 Computational Grid Generation

It is known that, for boundary layer flows, velocity gradient is much higher along the

surface normal than the velocity gradient along flow direction. Therefore, discretiz-

ing the boundary layer region by the cells having small sizes along surface normal

but stretched along the flow direction is an appropriate technique. On the other hand,

outside of the boundary layer, there is no need to those kind of stretched cells. In

this study, too, a similar meshing strategy is used, a hybrid grid configuration is em-

ployed to the computational domain. The 3D computational domain is discretized by

stretched prismatic cells in boundary layer, while tetrahedral cells are employed at the

outside of boundary layer region. Pyramidical cells are also used if they are required

during transition from prismatic to tetrahedral cells. In turbulent flow solutions, first

cell thickness of prismatic boundary layer mesh is determined by such a way that y+

value is kept around one. No wall function is applied in this study, thus, y+ ≈ 1

reveals as a requirement of the employed turbulence models. Prismatic cells’ growth

ratio along the surface normal is kept as 1.2 and prismatic cell region reaches up to

boundary layer is completely covered.

2.2.1 Solution Adaptive Grid Refinement

The mesh convergence strategy in this study is using solution adaptive mesh refine-

ment technique. This methodology is available in SU2 and based on an anisotropic

grid refinement process suggested by Biswas and Strawn [6, 5]. This method uses

two criteria; an error indicator and allowed number of new grid nodes which can be

created in each adaptation level. The error indicator shows the tetrahedral cells having

density gradients above the software defined threshold value. These cells are flagged

for cell division, or the refinement process. The software defined threshold starts from

the normalized value of 1 and is lowered until the number-of-new-nodes criteria is ex-

ceeded. This node-number criteria is a user-defined value which determines the ratio

of allowed number of new nodes that can be created to the old ones. During the sub-

division process, buffer cells are created around the flagged cell faces and subdivision

is carried out without generating any hanging nodes. This refinement technique is

only be applied to tetrahedral cells, while 2D boundary cells and prismatic boundary
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layer cells are not altered.

2.3 Optimization Framework

One of the aims of this study is improving aerodynamic performance of a close-

coupled delta wing-canard configuration by performing a configuration parameters

optimization. Although employed flow field solver SU2 has a built-in and entirely au-

tomated gradient-based optimization tool, it was not applicable to configuration op-

timization because of the fact that such large deformations needed by configuration

optimization process could not handled by SU2 shape optimization suite. Therefore

this study also aimed at constructing an optimization cycle that utilizes fluid flow

calculations, sensitivity and gradient evaluations, optimization algorithms and mesh

deformation processes, in a fully automated manner, in order to optimize the config-

uration and the flowchart can be seen in figure 2.1.

Figure 2.1: Optimization cycle flowchart

The optimization process is applied to a close-coupled delta wing-canard configu-

ration. The process begins with a grid-adapted mesh of the baseline design, which

is a generic delta wing-canard configuration in this study. The entire optimization
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process is controlled by the DAKOTA software. First, initial deformation conditions

are applied to the geometry, via the control points on FFD box, and computational

grid is deformed by the mesh deformation tool SU2 DEF. Then, flow field and ad-

joint based sensitivities are evaluated by SU2 CFD module. Then, sensitivity values

are projected onto the control points of FFD box by SU2 DOT module and gradients

are evaluated. Optimization algorithm is included in DAKOTA. DAKOTA software

communicates with SU2, to get the gradients, approximates the Hessian, itself and

searches the optimum values of design variables in the design step. At the last step

of the cycle, convergence criteria is checked and if the criteria is not satisfied the new

deformations are applied to design variables for the new design step. The cycle is

repeated until the convergence criteria, or the local minimum point, is satisfied.

2.4 Gradient-Based Optimization

Gradient-based methods require to find the direction which drives the objective func-

tion to its minimum (or maximum). This direction is the gradient, or sensitivity

derivatives of objective function with respect to design variables. Once the sensitivity

analysis is done, optimization algorithm evaluates the amounts of changes in design

variables to achieve the minimum point. In the present study, DAKOTA software is

employed into to the study which includes the quasi-Newton method as optimization

algorithm. The quasi-Newton method class which is implemented in the DAKOTA

is based on the Meza’s study [48]. Optimization cycle is terminated if local mini-

mum point is reached. In order to verify that local minimum is reached, the Hessian,

H = ∇2f , should be positive-definite. Hence, calculation of Hessian is also an

essential step in the cycle. In this study Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method is employed to approximate the Hessian numerically. Here, the quasi-Newton

algorithm uses the gradients provided by SU2, and a gradient-based line search, which

is based on the algorithm given by More and Thuente [49] is employed.
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A general formulation of a constrained optimization problem is

minimize : f(~x), with respect to ~x ∈ Rn

subject to : gL ≤ g(~x) ≤ gU

h(~x) = ht

aL ≤ Ai~x ≤ aU

Ae~x = at

~xL ≤ ~x ≤ ~xU

(2.26)

where f is the objective function subjected to minimization, ~x is the vector of design

variables with dimension of n, number of design variables, g and h are nonlinear

inequality and equality constraints, respectively, whileAi andAe are linear inequality

and equality constraints and ~xL and ~xU are the geometric bounds of the problem.

For constrained problems a large variety of optimization algorithms are available,

namely non-linear programming (NLP) methods, sequential quadratic programming

(SQP) methods, Newton methods and etc. Quasi-Newton method is employed in this

study which is in form of,

f(xk + ∆x) ≈ f(xk) + ∆f(xk)
T∆x +

1

2
∆xTB∆x (2.27)

where ∆f is the gradient of f, and B is the approximation of Hessian.

2.4.1 Adjoint Based Sensitivity Calculations

The adjoint method suggests introducing an adjoint equation to the cost function in

order to decouple the effect of design variables and flow variables to the objective

function. It is achieved by solving an adjoint equation which has coefficients defined

by the solution of flow equations and determining the gradients indirectly by this

adjoint equation. This provides reducing the computational cost of gradient calcula-

tions approximately to the level of two flow solution cost, as independent of number

of design variables. Klein [37] gives a comparison of computational costs of conven-
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tional finite difference method and adjoint method for gradient calculations, in terms

of number of design variables in figure 2.2.

Figure 2.2: Number of PDE solutions required for gradient calculations vs. number

of design variables, [37]

Adjoint methods are divided into two different discretization techniques, continuous

and discrete. Mainly, both techniques offer discrete adjoint equations for state PDEs.

In this study discrete adjoint approach is employed. Below, the general formulation

and discrete approach of adjoint method is given in detail.

2.4.1.1 General Formulation of Adjoint Method

First, introduce an objective function, J, which is function of flow variables, U , and

the design variables, x,

J = J(U, x) (2.28)

Minimization of objective, or cost, function, can be provided by changing design

variables, x. Therefore variation of J with respect to x should be calculated. However,

since any variation in physical boundary of aerodynamic shape, which is related to

design variables, also cause variations in state variables, variation in J due variation
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in x becomes,

δJ =
∂JT

∂U
δU +

∂JT

∂x
δx (2.29)

Above equation shows that any changes in design variables also brings the necessity

of reevaluation of flow field along, to evaluate the gradients. Control theory, or adjoint

formulation, suggests introducing the flow field governing equations as constraint to

optimization problem, so that gradient calculations does not require reevaluation of

the flow field. So, δU should be eliminated from equation 2.29. LetR is the governing

equation, function of flow variables, U , and the design variables, x,

R = R(U, x) = 0 (2.30)

and

δR =
∂R

∂U
δU +

∂R

∂x
δx = 0 (2.31)

Now, introduce a Lagrange multiplier, ψ which satisfies the following adjoint equa-

tion,

(
∂R

∂U

)T

ψ =
∂J

∂U
→ ∂J

∂U
−

(
∂R

∂U

)T

ψ = 0 (2.32)

Multiply equation 2.31 by ψ and substitute into 2.29. Since δR is set to zero, substi-

tution does not violate the objective function. Now the objective function becomes,

δJ = δJ − ψδR =

(
∂JT

∂U
− ψT ∂R

∂U

)
δU +

(
∂JT

∂x
− ψT ∂R

∂x

)
δx (2.33)

Thus, by considering equation 2.32, objective function reduces to,

δJ =

(
∂JT

∂x
− ψT ∂R

∂x

)
δx (2.34)
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So, objective function becomes independent of flow variables, and solving only two

equations, one adjoint equation (2.32) and one objective function (2.34) is enough for

gradient calculations, regardless of the number of design variables.

As stated previously, this method has two approaches, continuous and discrete for-

mulation. Below, mathematical expressions for discrete adjoint approach, which is

used in this study, is given.

2.4.1.2 Discrete Adjoint Approach

In this methodology, the sensitivity of objective function with respect to design vari-

ables becomes,

dJ

dx
=
∂J

∂U

dU

dx
+
∂J

∂x
(2.35)

and similarly sensitivity of governing equation is

dR

dx
=
∂R

∂U

dU

dx
+
∂R

∂x
= 0 (2.36)

or,

dU

dx
= −

(
∂R

∂U

)−1
∂R

∂x
(2.37)

substitute equation 2.37 into objective function,

dJ

dx
= − ∂J

∂U

(
∂R

∂U

)−1
∂R

∂x
+
∂J

∂x
(2.38)

Define a Lagrange multiplier, ψ, which satisfies the following adjoint equation,

(
∂R

∂U

)T

ψ = −

(
∂J

∂U

)T

(2.39)
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Figure 2.3: An example FFD box enclosing a wing, its control points and their indices

Then, sensitivity equation of objective function becomes

dJ

dx
= ψT

∂R

∂x
+
∂J

∂x
(2.40)

2.4.2 Surface Parametrization

In optimization problems, shape deformations are controlled by design variables. In

this study, the baseline design is parametrized by an FFD box which encloses the

canard geometry and control points, controlling the shape deformation, are assigned

as design variables. An FFD box is a hexahedral box which is meshed in a lattice

structure (figure 2.3). Each mesh node can be defined as control point and can freely

move in all three directions.

In this study, the control points of FFD box are the eight vertex points of this box.

Two degrees of freedom are assigned to the control points, translations along x and z

directions. Projections of sensitivity values on those points give the gradient of each

control point. The FFD box is moved as a rigid block by the amount of averaged-

gradient of those vertex points, since only the canard position is investigated.
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2.4.3 Objective Function and Design Variables

The aim of the study is increasing the lift generated by a close-coupled delta wing-

canard configuration at specific design conditions requires that CL value to be as high

as possible. Therefore, CL is assigned as objective function and optimization process

is employed to maximize this coefficient.

There are numerous possible design variables subjected to design optimization prob-

lem, such as span length, sweep angle, surface shape, wing or canard position etc.

The configuration optimization is carried out in this study by changing the relative

canard position, in other words moving the canard relative to wing, in body x and z

directions. This translation of canard is provided by moving all eight vertex points

of FFD box in two directions. Therefore 16 design variables are determined in this

study. The literature review show that canard lift increment is almost independent

from canard deflection angle, however it can be significantly improved by horizontal

and vertical positioning of the canard. On the other hand, CM strongly depends on

canard deflection angle and also its horizontal distance from the neutral point. Since

the objective function is maximization of CL and there is no constraint, such as CD or

CM , other than geometric bounds, it is concluded that horizontal and vertical transla-

tions of canard are sufficient design variables for this study.
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CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, first, the flow solver SU2 is verified on solution adaptive grids for

such vortical flows by referencing two experimental studies conducted in Technical

University of Braunschweig [4, 50]. The flow field is investigated extensively as

well as verification cases are evaluated. The adjoint-based configuration optimization

cases are performed on the geometry given in figure 3.1b at 8.7◦ and 20◦ angles of

attack on viscous flows. The results are presented and discussed in detail.

3.1 Reference Study

In Technical University of Braunschweig, Hummel et al. conducted a series of ex-

periments on close-coupled delta canard-wing configurations. Their studies and ob-

servations are widely used in literature as benchmarking and reference cases. Since

there are both several experimental and numerical data is available in literature, those

two generic models [50, 4] are taken as reference, or baseline geometries. Both ge-

ometries have canard and wing planforms of 2.31 aspect ratio and 60◦ leading-edge

sweep angles. Wing and canard airfoils are symmetric circular arc airfoils with 1-

mm-thick leading- and trailing-edges. This thickness is regarded as sharp-edge by

authors, Bergmann et al. The experiments are conducted at Mach number of 0.177

and Re = 1.4× 106. Available flow field data are at α = 8.7◦ for the case of [50] and

at α = 20◦ and α = 30◦ for [4]. Oil flow visualization of surface streamlines, span-

wise surface pressure distributions and total pressure coefficient contours at several

section on wing are the available flow field data and integrated lift, drag and moment

coefficient curves are also provided.
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(a) Canard-wing configuration of reference study [4]

(b) Canard-wing configuration of reference study [50]

Figure 3.1: Reference geometries employed in the study and their dimensions

In this study, three angles of attack cases, α = 8.7◦, 20◦ and 30◦, are considered for

verification purposes and two angle of attack cases, α = 8.7◦ and 20◦, for optimiza-

tion purposes.

The grid independent solutions are obtained by varying the boundary layer grid reso-

lution by hand and employing the solution adaptive grid refinement technique for the

rest of tetrahedral volume cells.
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3.2 Parallel Performance of SU2

Computations are performed in the parallel computing environment of METUWIND

HPC lab. The HPC cluster consists of 8 computer nodes each of which has 4 AMD

Opteron 6276 2.30 GHz CPUs with 16 cores. Those nodes are connected to a 10

GHz Ethernet and forms a total of 512-core computer. The parallel computation

performance of the SU2 solver for the current problem is given by a speed-up plot in

figure 3.2. The calculation speed increases close to ideal speed-up line up to 16 cores,

belonging to a single CPU and slightly deviates from ideal line up to 64 cores which

are belong to a single node. Employing a further number of cores to the problem

decreases the parallel efficiency rapidly since massage passing between the nodes

now results a significant time consumption. Therefore, 64 cores within a single node

are employed to the flow and adjoint calculations.

By using 64 cores, the flow and adjoint solutions take about 13 and 9:15 hours wall

time, or 832 and 592 CPU hours, for a grid of 13-million cells, respectively. As the

result, in optimization problem, completing one design cycle takes about 1500 CPU

hours.

Figure 3.2: Speed-up of SU2 solutions
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3.3 Verification of SU2

Fully turbulent viscous, RANS, flow solutions are compared to measurements in or-

der to verify the flow solver and numerical methods. Prior to flow field and optimiza-

tion studies, adapted grids and turbulence models are assessed based on the pressure

distribution comparisons between numerical predictions and experimental measure-

ments. Vortical flow fields over the geometry are investigated in detail, optimization

studies are employed and evaluation of flow field on optimized geometries are studied

after the verification of solver is assessed. The verification of numerical methods is

evaluated at 30◦ angle of attack since the effects of grid adapted grids and success

of turbulence models on prediction of breakdown can be clearly seen on pressure

distributions at this angle and experimental data are available.

3.3.1 Computational Grid

The grid generation process starts with generating 2D surface cells. A relatively fine

mesh resolution is employed all over the geometry, while leading and trailing edges

are meshed in a much higher cell density in order to accurately resolve leading edge

curvature and leading-edge flow separations (see figure 3.3).

Figure 3.3: 2D surface grid resolutions on the geometry

For viscous flow solutions, triangular surface cells are extruded along the surface nor-

mals to create prismatic boundary layer cells. As stated in chapter 2.2, boundary layer

grid is created in such a way that first layer thickness above the surface has dimension-

less value of y+ ≈ 1 due to the turbulence modeling requirement and grow with the
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ratio of 1.2 until boundary layer is fully resolved by prismatic cells. A sufficient y+

distribution over the geometry is reached, as seen in figure 3.4, y+ values are mostly

around 1-1.5. The grid refinement technique which is employed to tetrahedral cells

does not handle prismatic cells and therefore prismatic cell resolution is well studied.

The rest of computational volume is meshed by tetrahedral cells. Volume cells are

given in figures 3.5 and 3.6.

Figure 3.4: y+ distribution on the upper surface, α = 30◦

Figure 3.5: Prismatic boundary layer cells

Figure 3.6: Hybrid volume grid over the geometry, at wing section x/c = 0.65
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SST

SA

Figure 3.7: Surface pressure distributions and vortex core streamlines of turbulence

models, α = 30◦

3.3.2 Assessment of Turbulence Models

The turbulent flow fields are represented by S-A and Menter’s k − ω SST models at

α = 30◦. The employed computational hybrid grid which is also shown in figure 3.6

consists of 7.8 million prismatic boundary layer cells above the model surface with

first layer thickness of y+ ≈ 1 and 10.5 million volume cells in total. Turbulence

models are assessed before grid adaptation is employed, so this grid will be named as

”baseline” grid in next grid refinement section.

In figure 3.7 the span-wise trajectory of wing vortex is shown by streamlines passing

through the vortex core and span-wise pressure distributions along the wing are plot-

ted. The strong leading-edge separation forms a stable vortex sheet in which the fluid

flows with high axial velocity. This axial velocity makes streamlines at the vortex

core flow along a straight axial path. On the other hand, breakdown of this stable

vortex can be identified by sudden burst of vortex core that causes dramatic changes
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on jet-like axial flow at core. Therefore vortex breakdown can be visualize by track-

ing the streamlines passing through the vortex core. As shown in figure 3.7, both

turbulence models predict similar vortex trajectories ahead of the breakdown. On the

other hand, breakdown is predicted at quite different locations by those two turbu-

lence models, the SST models predicts the vortex breakdown at about 80% of wing

root chord, while it is predicted at x/c > 90% in the case of S-A model.

In figures 3.8 and 3.9 differences on vortex strength predictions of two turbulence

models are clearly seen. The computed pressure distributions are compared to the

experimental data [4]. Previous studies on the mechanism of vortex breakdown show

that a strong deceleration of axial velocity and corresponding decrease of suction

pressure occurs just before the vortex bursting. In figure 3.9, decrease in magnitude

of negativeCp is seen between 40%−64% of the wing root chord, due to experimental

measurements. SST model accurately predicts this decrease, while S-A model is still

predicting that vortex preserves most of its strength at x/c = 0.64.

It is known in literature that, S-A turbulence model is not successful in such free shear

layer flows. Also considering the numerical results discussed above, it is concluded

that the SST turbulence model provides better estimations of turbulent flow fields and

strengths of suction regions and breakdown location are in a better agreement with

measurements. Therefore, the SST model is employed in viscous simulations in the

remaining of the study.

3.3.3 Solution Adaptive Grid Refinement

In order to capture the vortex dynamics, including breakdown, accurately and reach

grid-independent solutions, solution-based grid refinement methodology, available in

SU2 is employed. The tetrahedral cells of baseline grid is refined based on solution

density gradients in three levels. At each adaptation level, the total number of grid

nodes are allowed to increase by 20%, as given in table 3.1

For each angle attack case, adaptive grid refinement applied, separately. Here, α =

30◦ is given as example case. The vorticity contours are shown in figure 3.10, with

volume grids. As observed, beginning from the first adaptation level, refined grid cells
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Figure 3.8: Surface pressure distributions of two turbulence models and experiment

[4] over the wing, α = 30◦

Figure 3.9: Surface pressure distribution of two turbulence models and experiment

[4], α = 30◦

are clustered around the canard and wing vortices. As the vortex region cells refined,

vortex structures are captured sharper, in other words, diffusions in vorticity field due

to cell resolution is reduced. Therefore, larger vorticity magnitudes are observed in

vortex region. At the third level, it is seen that vortex region is not refined intensively

anymore, but also volume cells at wake region and cells away from vortex regions are

started to be refined.

In figures 3.11 and 3.12, variations in span-wise Cp distributions, due to grid re-
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Table 3.1: Number of cells in solution adaptive grid refinement levels, α = 30◦ case

Tetrahedral Cells Total Cells

Baseline Grid 2.605 · 106 10.563 · 106

Adaptation Level 1 5.058 · 106 12.999 · 106

Adaptation Level 2 8.341 · 106 16.275 · 106

Adaptation Level 3 12.918 · 106 21.025 · 106

finement is given. In figure 3.11, it is observed that a significant improvement in

suction pressures is achieved by first refinement process, while the second and third

refinement steps do not as much as first step. One can see the improvements in nu-

merical predictions achieved by grid adaptation technique in figure 3.12. The pre-

dicted pressure distribution is in a very well agreement with the experimental mea-

surements throughout the wing. Suction peaks, indicating canard and wing vortices,

minimum pressure values and vortex bursting are accurately predicted by the nu-

merical setup employing RANS equations coupled with SST turbulence model, and

one-level adapted grid. Then, flow solution provided by one level of grid adaptation

is considered as grid independent.

3.4 Evaluation of Flow Field over a Canard-Wing Configuration

3.4.1 Canard-Wing configuration at α = 8.7◦

The canard-wing configuration is first studied for a low-angle-of-attack case. The

configuration is subjected to a flow angle of α = 8.7◦, where the surface oil flow

and cross-sectional total pressure coefficient contours are also available [50]. The

numerical results are obtained by employing the SST turbulence model and one level

solution-adapted grid, as extensively discussed in previous sections. The results are

obtained from a solution which satisfies a five-order reduction in root-mean-square

of density residual in log10 form. Residual and aerodynamic coefficient convergence

histories are seen in figure 3.13.

The surface streamline view in figure 3.14 presents a qualitative comparison to flow
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Baseline Grid Refinement Level 1

Refinement Level 2 Refinement Level 3

Figure 3.10: Vorticity contours and mesh resolutions at wing section x/c = 0.40,

α = 30◦

captured in the experiment with oil flow visualization. Numerical solution reveals a

good agreement with experimental observations in terms of reattachment lines which

are also draw the borders of canard and wing primary vortices. In addition, numerical

calculations are also good at capturing the secondary vortex on wing, which exists in

between the primary vortex and wing leading edge.

Both surface streamlines and oil flow visualization in figure 3.14 clearly shows that

leading-edge separation region starts at fairly further downstream of wing apex, which

results from the well-known downwash effect of canard on the inboard section of

wing. On the other hand, at downstream, close to the wing trailing edge, wing vortex

reaches size and location of suction peak of canard-off case (figure 4c of ref. [50]),

although the wing works in a less effective angle of attack because the canard down-

wash. This recovery in suction force at the rear sections of wing is due to the upwash

effect of the canard affecting the outboard sections of wing. However, the wing vor-

tex trajectory in this case moves much closer to the wing leading edge with respect

to other high-angle-of-attack cases examined in this study, one of which can be seen
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Figure 3.11: Surface pressure distributions of grid adaptation levels and experiment

[4], α = 30◦

Figure 3.12: Surface pressure distributions of base and one-level-adapted grids and

experiment [4], α = 30◦

Figure 3.13: Convergence history of flow solution, α = 8.7◦
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in figure 3.22. The fact that vortex trajectory does not move towards the inboard of

wing, reveals that the influence of canard vortex at this angle is not that much strong.

Figure 3.15 presents both qualitative and quantitative evaluation of 3D flow structure

over the configuration at this angle of attack. First of all, the comparison of numerical

solutions and experimental measurements are given together for verification purposes.

As seen, calculations reveal a good agreement with measurements at every cross-

plane sections.

At the uppermost figure of figure 3.15 which is at wing apex (x/c = 0.0), there are

two counter-rotating vortices which are partly separated by a throat. One of these

vortices is canard’s leading-edge separation vortex and the other one is trailing edge

vortex. These vortices have distinct centers at approximately 95% and 80% of canard

span length, relatively. At the middle figure, total pressure loss on a plane cut at

30% of wing chord is shown. Here, canard vortex system is seen as a merged vortex

having only one vortex core. On the wing surface, the formation of wing leading-

edge separation vortex can be seen. At this location, it is seen that pressure contours

indicating the pressure loss due to wing boundary layer start merging with canard

vortex system. This is because of that the canard vortex system moves downward

towards the wing surface and ”touch” the wing upper surface for x/c < 0.60 [50].

At the last figure of 3.15, calculations slightly differ from measurements. The current

study predicts separated pressure loss iso-curves that identify canard vortex and wing

boundary layer, while measurements show that canard vortex is still in touch with

wing boundary layer. On the other hand, wing’s primary and secondary vortices are

predicted in a good accuracy, of which core is located approximately at 87% of wing

span.

3.4.2 Canard-Wing configuration at α = 20◦

It is known that the effect of canard is much more significant at higher angles of at-

tack. Previous studies show vortex breakdown exists at α = 10◦ on an isolated delta

wing, while for a canard-wing configuration, it is improved to α ≈ 20◦. Therefore,

investigating the vortex dynamics at such angles makes the effect of canard more def-

inite. To unveil this effect, canard-off and canard-on configurations are considered
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Figure 3.14: Oil flow visualization from experiment[50] and calculated surface

streamlines, α = 8.7◦

Figure 3.15: Total pressure coefficient contours, measurements [50] and calculations

at x/c = 0.0, 0.30, 0.60, α = 8.7◦
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Figure 3.16: Convergence history of flow solution, canard-on case α = 20◦

Canard-off

Canard-on

Figure 3.17: Wing surface pressure distributions and vortex core streamlines, α = 20◦

Figure 3.18: Q-criterion contours on canard-off and canard-on configurations, α =

20◦
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at α = 20◦, first. Flow structure, surface pressure distributions and integrated force

coefficients are used both to compare the calculations to measurements and to make

further evaluations on vortex dynamics. In order to get a reasonable convergence,

density residual reduction by five-order is achieved. CL and CD values are also con-

verge throughout the iterations, seen in figure 3.16, and then flow field solutions are

examined.

Figure 3.19: Axial velocity in wing vortex core, α = 20◦

Figure 3.17 compares canard-off and canard-on configurations by means of wing vor-

tex core streamlines and wing span-wise surface pressure distributions. On both con-

figurations, wing vortex cores move along a straight path, as represented by stream-

lines, and CP distribution plots show a similar path for peak locations. Those peaks

seen in CP plots are suction peaks and are resulted from the low pressure due to wing

vortex. On canard-off configuration, there exists a sudden expansion and a swirl in

core streamlines, at x/c ≈ 0.80 location. It indicates that there exists vortex bursting

which is caused by breakdown. However, on the canard-on configuration, streamlines

do not exhibit such swirling flow motion. In other words, canard prevents the wing

vortex from a breakdown over the wing.

Breakdown location can be identified by plotting chord-wise axial velocity distribu-

tion of wing vortex. Figure 3.19 shows the axial velocities at wing vortex cores of both
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Canard-off Canard-on

Figure 3.20: Surface pressure distributions, calculations and measurements [4], α =

20◦
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canard-on and canard-off configurations. Axial velocities are non-dimensionalized

by free-stream velocity magnitude and plotted along the chord-wise locations over

the wing. Since a vortex breakdown is identified by a sudden lost of the jet-like

axial velocity, the most upstream point that reach the zero axial velocity shows the

breakdown location, and further, negative axial velocities represent the reversal flow

regions. Figure 3.19 provides a more accurate observation on breakdown location

which is discussed in the previous paragraph. On canard-off configuration, vortex

breakdown exists before x/c = 0.80, at approximately x/c = 0.70. On the other

hand, application of canard to the configuration provides much higher, or preserved,

axial velocity in wing vortex core and breakdown is eliminated on wing.

Figure 3.18 shows vortex dynamics on both canard-off and canard-on configurations

by q-criterion of vorticity iso-surfaces over canard and wing. A relatively narrow

vortex cone is seen on canard-on configuration. One can interpret it as the downwash

effect of canard on wing effective angle of attack. In addition Yutuk et al. [76]

observed that the presence of the canard vortex over the wing keeps the wing vortex

from expanding towards the wing root and losing its strength. Another remarkable

observation which q-criterion iso-surfaces reveal is that canard vortices breaks down

at this angle of attack and it shows a bubble-type flow structure at the canard trailing

edge and in region between canard and wing. However, in the vicinity of the wing

apex and the further downstream, due to the acceleration of the flow caused by wing,

broken down canard vortex is recovered again and appears as an ordinarily structured

vortex flow. This phenomenon has been already demonstrated in literature.

In figure 3.20 span-wise CP distribution at four selected wing sections are plotted in

order to evaluate the suction regions in detail. One can see that at the vicinity of wing

apex, canard-on configuration generates a weaker suction, due to the well-known ef-

fect of canard downwash. On the other hand, although it works in a less effective

angle of attack, canard-on configuration reaches and even overtakes the suction peak

value of canard-off configuration at x/c = 0.80. Further downstream, favorable ef-

fect of canard upwash preserves the wing vortex throughout the wing, while a sudden

decrease on suction peak value, in other words the breakdown, exists on canard-off

configuration. These CP plots also show that numerical solutions predict a secondary

vortex region, as expected, at about y/b = 0.90 on both canard-off and canard-on con-
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figuration. An additional weaker suction peak is seen at the wing inboard throughout

the wing. According to Bergmann et al. [4] this suction peak is due to the formation

of fuselage vortex. One can observe that fuselage vortex moves closer to primary

wing vortex by comparing the relevant suction peak on pressure plots at 3.20 and

3.11.

3.4.3 Canard-Wing configuration at α = 30◦

The flow over canard-on and canard-off configurations at α = 30◦ is evaluated by

means of the same flow properties evaluated in α = 20◦. Similar to previous cases,

those flow properties are examined after a five-order reduction in root-mean-square

density residual is satisfied (figure 3.21). Since α = 30◦ case is already considered in

verification studies detailed span-wise CP distribution plots on the selected four sec-

tions are not repeated here. Instead, vortex trajectories and interactions are evaluated

mainly.

The CP distributions in figure 3.22 shows a dead-water-like flow structure with re-

duced suction region and flattened span-wise pressure distribution on most of the

wing, in canard-off case. The streamlines passing through the vortex core, consis-

tently, exhibit a chaotic vortex-core flow which moves downstream and then back to

upstream and at the same time swirl around a wide region. These flow dynamics are

seen behind the vortex breakdown and therefore it is observed that breakdown occurs

at a location, close to wing apex, at about x/c ≈ 0.25, in canard-off case. Whereas

in the canard-on configuration canard vortex induced the wing flow and breakdown

location is delayed to x/c ≈ 0.80 location.

Similar to figure 3.22, figure 3.24 also shows a dramatic improvement provided by

canard. In this figure, axial velocity distribution of canard-off case reveals reversal

flow at a location very close to wing apex and burst flow behavior shown by core

streamlines in figure 3.22 is seen as an oscillatory velocity plot in this figure. On

the other hand, in canard-on configuration, wing vortex axial velocity reaches zero at

further downstream, at x/c ≈ 0.75− 0.78, compared to canard-off configuration.

Similar to α = 20◦ case, 3.23 shows that canard vortex recovered by the acceleration

54



Figure 3.21: Convergence history of flow solution, canard-on case α = 30◦

Canard-off

Canard-on

Figure 3.22: Wing surface pressure distributions and vortex core streamlines, α = 30◦

Figure 3.23: Q-criterion contours on canard-off and canard-on configurations, α =

30◦
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Figure 3.24: Axial velocity in wing vortex core, α = 30◦

of flow due to the existing of wing, although the canard vortex is already burst. It

is observed that canard vortex preserves the wing primary vortex as long as canard

vortex dissipates. It is seen in the right figure of figure 3.23 wing vortex suddenly

expands when canard q-criterion iso-surface diminishes. Another notable observation

is the trajectories of vortices. Canard vortex moves downward and outboard over the

wing, while the wing vortex is pushed upward and moves toward inboard over the

wing.

3.4.4 Effect of Canard on Aerodynamic Forces

The effect of canard on the integrated aerodynamic forces are given in table 3.2. For

both configurations and both angle of attack cases, predicted lift and drag values are

in a very good agreement with the measurements. The predictions show that canard-

wing configuration having a coplanar layout provides a lift increment by about 12%

at α = 20◦ and 16% at α = 30◦, while adding a new lifting surface increases the

drag by about 10% and 14%, respectively. One should bear in mind that canard-on

configuration is more effective, and efficient, at high angles of due to the fact that

canard contributes in lift increment not only by providing an additional lifting surface
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Table 3.2: Effect of canard on the lift and drag coefficients (CLw for wing and CLc

for canard contribution)

Canard-off Canard-on

α CLw CL CLExp.[4] CD CLw CLc CL CLExp.[4] CD

20◦ 0.637 0.824 0.84 0.248 0.647 0.070 0.935 0.92 0.279

30◦ 0.792 1.108 1.11 0.544 0.864 0.111 1.325 1.33 0.642

but also by preventing the wing vortex breakdown of which has much dramatic effect

at higher angles of attack.

3.5 Optimization Studies

As stated in previous sections, the optimization problem is based on an experimental

study of Oelker et al. [50]. Therefore the geometry (see figure 3.1b), identical to

experiment is subjected to flow conditions of 0.177 Mach and Re = 1.4× 106, at two

angles of attack, α = 8.7◦ and α = 20◦. Objective function is CL while the canard is

translated along horizontal and vertical axes.

Translation of canard is provided by an FFD box enclosing the canard surface (see

figure 3.25a). Eight vertex points of box are the control points and therefore 16 design

variables are defined for this technique, they are allowed to move in x and z axes. In

order to move the canard as a rigid body, all those control points move together. This

final translation vector is an average of gradients of separate deformations of control

points. The FFD box is also surrounded by outer FFD boxes as seen in figure 3.25b

Outer boxes are needed to be defined in a such strategy so that the mesh deformation

due to the translation of main box is distributed to those outer boxes and damped

throughout them.

3.5.1 Configuration Optimization at α = 8.7◦

Optimization problem is employed to Oelker’s close-coupled canard-wing configu-

ration (figure 3.1b), which is called as baseline geometry from now on, at the same
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(a) Main FFD box enclosing the canard surface

(b) Outer FFD boxes enclosing the main FFD box

(c) Translation of canard via translation of control points and deformations on FFD boxes

Figure 3.25: FFD boxes enclosing the translated canard surface

conditions with the experiment [50]. Optimization process translates the canard to

upward and closer to the wing, as expected from the literature survey. Variations

in objective function, CL, and design variables, translation amounts in x and z di-

rections, are given in figures 3.26 and 3.27, respectively, and a comparison between

baseline and optimized canard positions is given in figure 3.28. Due to the geometric

boundaries and limited flexibility of mesh deformation technique, canard translation

on both directions are limited to ±25 mm.
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Figure 3.26: Variation of objective function, α = 8.7◦
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Figure 3.27: Translation amounts of design variables, α = 8.7◦

As observed, through the first three design steps design variables and objective func-

tion rapidly change, and at step 5, objective function reaches its converged value. The

optimization process leads an increment in CL by only 1.32%. But, previous studies

in literature state that at such low angles canard and wing vortices exhibit a limited

interaction. Therefore, at this angle of attack, small increments in objective function
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Figure 3.28: Canard positions on baseline and optimized geometry, α = 8.7◦

Figure 3.29: Surface pressure distributions of baseline and optimized geometries,

α = 8.7◦

Figure 3.30: Surface pressure distributions of baseline and optimized geometries,

α = 8.7◦
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Figure 3.31: Wing surface pressure distributions and vortex core streamlines on base-

line and optimized geometries, α = 8.7◦

is still acceptable. Meanwhile, canard position is reached to the boundary in z direc-

tion and approached considerably to the boundary in x direction. One can observe

a correlation between the vertical position of canard and the objective function. It

seems that vertical position of canard has a dominant effect on CL, rather than its

horizontal position. Therefore, besides the low angle of attack, geometric boundary

is seemed to be a limitation for a higher lift increment in this case. On the other hand,

this translation of canard surface increases the positive moment in y direction from

CMy ≈ 0.012 to CMy ≈ 0.013 which results an 8.8% increase in pitch-up moment.

One should keep in mind that moment is not constrained in this study, but it can be

employed into the problem as a linearity or non-linearity constraint if its changes are

somehow wanted to be limited.

The turbulent flow fields are compared for baseline and optimized geometries in terms

of surface pressure distributions, vortex core streamlines, and q-criterion contours. In

figures 3.29 and 3.30, a stronger suction region, in other words higher suction peaks

in Cp distributions, is observed in the forward section of wing up to x/c = 0.40.

At the downstream of x/c = 0.40, on the other hand, pressure distributions of two

configurations are almost identical. When the vortex core streamlines are observed in
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Figure 3.32: Q-criterion contours on baseline and optimized geometries, α = 8.7◦,

upper view

Figure 3.33: Q-criterion contours on baseline and optimized geometries, α = 8.7◦,

side view

figure 3.31, it is seen that canard vortex crosses over the wing surface at x/c = 0.40.

Previous studies show that canard vortex has a downwash effect on the wing portion

which is inboard of the canard vortex and as it is seen in figure 3.31, the wing portion

at the upstream of x/c = 0.40 is exposed to this downwash effect. It seems that

vertical position of the canard leads to a reduction in this downwash effect at the
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Figure 3.34: Axial velocity in wing vortex core, α = 8.7◦

upstream portion of the wing at optimized geometry and thus an increase in suction

peaks at the sections x/c < 0.40. On the other hand, at α = 8.7◦, vortex trajectories

in the horizontal plane are identical for both configurations; both wing vortices leaves

the wing at the location of y/b = 0.80, both canard vortices cross over the wing vortex

at x/c ≈ 0.35. move in a straight path and leave the wing geometry at y/b ≈ 0.25.

Therefore, for both configurations, the effect of canard vortex on the flow over wing

becomes identical at the downstream of location x/c = 0.40.

The observations discussed in above paragraph can be expanded by a qualitative com-

parison of q-criterion contours in figures 3.32 and 3.33. In figure 3.32 q-criterion con-

tours and vortex trajectories are identical for both configurations. On the other hand,

it is seen in figure 3.33 that canard vortex is translated away from the wing vortex re-

gion. It seems that, as a result of this divergence of two vortex regions, the downwash

effect of canard vortex at the upstream portion of wing is reduced and thus, suction is

increased.

The further inspection on wing vortex axial velocity plot (figure 3.34 repeats the ob-

servations stated above paragraphs. Throughout the wing portion of x/c < 0.40,

optimized geometry reveals slightly higher axial velocity magnitude, which is related

to the stronger suction force at this region. At the downstream axial velocity plots
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have the same trend for both configurations. At this angle of attack vortex breakdown

does not occur and wing vortex preserves its strength throughout the wing.
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Figure 3.35: Variation of objective function, α = 20◦
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Figure 3.36: Translation amounts of design variables, α = 20◦
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3.5.2 Configuration Optimization at α = 20◦

A further optimization case is employed to the same geometry, but this time at α =

20◦. Figures 3.35 and 3.36 show variation of objective function and design variables,

in this case. The optimization process achieves a significant canard translation in +x

direction, i.e. canard is translated closer to the wing surface. On the other hand, al-

most no change is applied in vertical direction. This horizontal translation leads an

improvement in CL about 0.22%. In previous case, it is seen that there is a strong cor-

relation between vertical translation amount and the increment in objective function.

Similarly, figures 3.35 and 3.36 show that the effect of canard’s horizontal transla-

tion does not have a significant effect on CL, at least for a configuration of which

canard and wing is in coplanar layout. On the other hand, this final position, which is

translated mainly in horizontal direction, results 13% reduction in pitch-up moment.

The effect of canard’s horizontal translation on pitch-up moment can be seen in fig-

ure 3.37. Therefore, it is resulted that horizontal position mainly effects the pitch-up

moment, while lift almost does not change.
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Figure 3.37: Variation of pitch-up moment, α = 20◦

When span-wise CP distribution plots over the wing are examined in detail, it is seen

that, over the upstream portion of wing, up to x/c ≈ 0.40, suction peak is slightly
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Figure 3.38: Canard positions on baseline and optimized geometry, α = 20◦

Figure 3.39: Surface pressure distributions of baseline and optimized geometries,

α = 20◦

Figure 3.40: Wing surface pressure distributions of baseline and optimized geome-

tries, α = 20◦
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weaker for optimized geometry. Translating the canard in horizontal direction closer

to wing increases the downwash effect of the canard which leads to weaker wing

leading edge vortex on this upstream portion of the wing. On the other hand, at

further downstream, upwash of canard vortex provides recovering the suction force,

as seen at x/c = 0.88 in figure 3.40.

Figure 3.41: Wing surface pressure distributions and vortex core streamlines on base-

line and optimized geometries, α = 20◦

Figure 3.42: Canard surface pressure distributions of baseline and optimized geome-

tries, α = 20◦

It is also a well-known phenomenon that the favorable pressure gradient induced by
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Figure 3.43: Q-criterion contours on baseline and optimized geometries, α = 20◦,

upper view

Figure 3.44: Q-criterion contours on baseline and optimized geometries, α = 20◦,

side view

wing provides restoring the canard vortex into a non-burst state (see [32]). Therefore

it seems that moving canard closer to the wing is not only effects flow over wing,

but also favorably effects the state of canard vortex. It is seen in figure 3.41 that

canard vortex breakdown in baseline geometry results a much chaotic burst flow re-

gion. However, in optimized geometry, although canard vortex is also burst, swirling
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canard vortex core streamlines keep moving in a relatively straight path along the

vortex trajectory. As the result, a slight increase in suction region is seen at sections

x/c = 0.64 and x/c = 0.88 on the canard, in figure 3.42.

Figure 3.45: Axial velocity in wing vortex core, α = 20◦

Table 3.3: Lift increment due to configuration optimization, α = 20◦

CLc CLw Total CL

Baseline 0.1220 0.7539 0.9234

Optimum 0.1239 0.7544 0.9252

A qualitative comparison of vortex trajectories of the two geometries by q-criterion

iso-surface plots and a quantitative comparison by axial velocity plot are given in

figures 3.43,3.44 and 3.45, respectively. For this case, the slight changes in vortices

due to horizontal translation of canard can not be seen clearly. The axial velocity plot

clarifies this slight variation in the strength of wing vortex due to optimization. At

upstream region, axial velocity of the baseline geometry’s vortex is slightly higher up

to x/c ≈ 0.3. Near the trailing edge, and further downstream optimized geometry

reveals slightly higher axial velocity.

To summarize the above results the lift and drag coefficient components from wing

and canard, and the total values are gathered together in the table 3.3. As seen, the
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most of the increment in CL is provided by the canard, which is about 1.55%, while

lift increment over wing is only 0.07%. So, it seems that, for this case, effect of the

wing flow on the canard vortex has a higher impact on lift increment rather than the

effect of canard vortex on the wing flow.
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CHAPTER 4

CONCLUSION

In this thesis, vortical flow field over a close-coupled canard-wing configuration is

investigated, including vortex interaction and vortex breakdown mechanisms, and an

optimization framework is introduced, based on gradient-based optimization tech-

nique coupled with adjoint method, to improve aerodynamic performance of the con-

figuration. An open-source finite volume CFD solver, SU2 and an open-source opti-

mization toolkit, DAKOTA, are employed to construct the framework and used in the

optimization problems to improve the lift coefficient, CL, of a close-coupled canard-

wing configuration. Design variables are determined as horizontal and vertical loca-

tions of canard and translation is provided by a free-form deformation box enclosing

the canard geometry. The grid is also deformed by a set of free-form deformation

boxes around the canard geometry in order to eliminate need of re-meshing at each

design step. Sensitivity derivatives with respect to design variables are obtained by

discrete adjoint solver of SU2.

Flow solutions are first subjected to verification studies. These verification studies

indicate that Menter’s SST turbulence model and one-step-adapted grids, which are

adapted by a solution-based adaptive grid refinement technique, provide predictions

in good agreements with experimental measurements, in terms of vortex breakdown

locations and vortex induced aerodynamic loads. Then characteristics of such vortical

flows and vortex interactions are investigated at low-, moderate- and high-angle-of-

attack cases, α = 8.7◦, 20◦, 30◦ respectively. It is resulted that at low angles of attack

vortex interactions are limited, however as the angle of attack increase the effect of

canard vortex becomes significant. Wing vortex breakdown is completely eliminated

at α = 20◦ and it is delayed from x/c ≈ 0.25 to x/c ≈ 0.85 at α = 30◦ due to the
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presence of canard vortex. As a result, an increment of 12% and 16% in total CL is

provided by canard implementation, respectively at α = 20◦ and α = 30◦.

Then, configuration optimization process is employed to the canard-wing configura-

tion in order to reach a further increment in CL, at α = 8.7◦ and α = 20◦. Although

the vortex interaction is limited at low angles of attack, CL is improved by about

1.32% at α = 8.7◦. The optimum canard location is determined in terms of relative

position to its baseline location. The flow solution show that lift increment is pro-

vided by reducing the downwash effect of canard vortex which leads to an increase

in suction peaks at the wing sections of x/c < 0.40.

The configuration optimization for α = 20◦ case shows that horizontal translation of

the canard does not have a significant impact on wing vortex as much as vertical trans-

lations. On the other hand, moving the canard closer to the wing has a positive effect

on canard vortex, it provides recovering the burst canard vortex due to the favorable

pressure gradient on the wing. As the result, only an increment in lift about 0.22%

can be provided by this optimization process, whereas the most of this increase is

provided by the flow over canard surface. On the other hand, 13% reduction in pitch-

up moment, provided by this canard translation, shows that horizontal translation of

canard has drastic effects on moment characteristics.

This study demonstrates that aerodynamic performance of a delta wing can be signif-

icantly enhanced by adding a canard surface in front of the wing in a close-coupled

layout, especially at high angles of attack where the vortex breakdown is dominant

over an isolated delta wing. Moreover, the aerodynamic performance can be enhanced

even further by optimizing the canard-wing layout at a given condition. An adjoint-

based optimization technique can be employed to such optimization problems which

need to translate the whole geometry. However, this technique may further be im-

proved by implementing a re-mesh step in the cycle since the deformation technique

used in this study has a limited capability of handling such large amounts of geom-

etry deformations. Also one can advance the problem by introducing the pitch-up

moment well-known into the problem as an aerodynamic constraint, since it is well

known that canard position considerably changes the longitudinal characteristics of

the configuration.
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