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ABSTRACT

SEISMIC FIRST ARRIVAL TRAVELTIME INVERSION HARNESSING
PHYSICS INFORMED NEURAL NETWORKS

Yıldırım, İsa Eren
M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Assist. Prof. Dr. Umair bin Waheed

February 2022, 36 pages

In Seismic prospecting, huge amounts of data are collected and processed to infer the
structural and lithological composition of the subsurface. The key step in this proce-
dure is velocity model building. First arrival traveltime inversion is one of the velocity
model building tools commonly used for predicting near-surface velocity structures
in seismic exploration. Conventionally, the inversion is carried out using ray-based
methods or gradient-based algorithms. Though the gradient-based algorithms find the
gradient that is needed to update the model parameters without requiring ray tracing,
it can be computationally demanding. On the other hand, despite its robustness and
efficiency ray-based methods suffer from complex regions as the ray theory relies on
the high-frequency approximation. Instead of using these approaches for a travel-
time inversion problem, we propose a machine learning based approach, specifically
harnessing the physics informed neural networks exploiting the mathematical model
represented by the eikonal equation to estimate the near-surface subsurface veloci-
ties. Through synthetic tests and the application of real data, we show the reliability
of the physics informed machine learning based traveltime inversion which can be a
potential alternative tool to the traditional tomography frameworks.

Keywords: inverse problems, machine learning, physics informed neural networks
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ÖZ

FİZİK BİLGİLİ SİNİR AĞLARI KULLANARAK SİSMİK İLK VARIŞ SEYAHAT
SÜRESİ TERS ÇÖZÜMÜ

Yıldırım, İsa Eren
Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Umair bin Waheed

Şubat 2022, 36 sayfa

Sismik araştırmada, yeraltının yapısal ve litolojik bileşimini ortaya çıkarmak için bü-
yük miktarda veri toplanır ve işlenir. Bu prosedürdeki kilit adım, hız modeli oluştur-
madır. İlk varış seyahat zamanının tersine çevrilmesi, sismik keşifte yüzeye yakın hız
yapılarını tahmin etmek için yaygın olarak kullanılan hız modeli oluşturma araçların-
dan biridir. Geleneksel olarak, tersine çevirme, ışın tabanlı yöntemler veya gradyan
tabanlı algoritmalar kullanılarak gerçekleştirilir. Gradyan tabanlı algoritmalar, model
parametrelerini ışın izleme gerektirmeden güncellemek için gereken gradyanı bulsa
da, hesaplama açısından zorlayıcı olabilir. Öte yandan, sağlamlığına ve verimliliğine
rağmen ışın tabanlı yöntemler, ışın teorisi yüksek frekanslı yaklaşıma dayandığın-
dan karmaşık bölgelerden muzdariptir. Bu yaklaşımları bir seyahat zamanı tersine
çevirme problemi için kullanmak yerine, yüzeye yakın yeraltı hızlarını tahmin etmek
için eikonal denklem tarafından temsil edilen matematiksel modelden yararlanan fi-
zik bilgili sinir ağlarından özellikle yararlanan makine öğrenimi tabanlı bir yakla-
şım öneriyoruz. Sentetik testler ve gerçek verilerin uygulanması yoluyla, geleneksel
tomografi çerçevelerine potansiyel bir alternatif araç olabilecek fizik bilgili makine
öğrenimi tabanlı seyahat zamanı tersine çevirmenin güvenilirliğini gösteriyoruz.

Anahtar Kelimeler: ters problemler, makine öğrenmesi, fizik bilgili sinir ag̈ları
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Seismology is a scientific discipline dealing with seismic waves propagating through

(inside and around) the Earth. One of the main objectives of investigating seismic

signals is retrieving useful information about the Earth from regional to global scales.

For exploration purposes, for example, seismic waves are processed and interpreted

for prospecting subsurface resources, such as fossil fuels, geothermal, and minerals.

While for the global scale it enables us to understand the inner structures of the Earth

and provides a crucial understanding of the formation of the planet, tectonic mecha-

nisms as well as earthquakes and volcanos.

In geophysics, the main purpose is mostly to infer some physical properties of the

subsurface from observations. The link between these observations and unknown pa-

rameters is embedded in a mathematical expression under certain assumptions and

approximations. The eikonal equation, which originally appeared on wave and ray

optics is a mathematical representation providing a connection between traveltimes

and the wavefront propagation velocities. It is a non-linear, first-order partial differ-

ential equation (PDE) and belongs to the family of Hamilton-Jacobi equations [19].

Apart from geophysics, the equation has wide applications in various science and

engineering disciplines. For example, in medical applications, it is used for tumor

growth modeling [18] and activation sequences identification from activation maps

measured at the outermost protective layer of the heart [11]. In robotics, the equation

find its place for navigation and path planning [9]. The solution of the equation is
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also employed in a wide range of computer vision tasks such as an optimal algorithm

for shaping from shading [14], surface segmentation of thin structures [8] and shape

analysis [15]. In addition to shape recovery, Malladi and Sethian [23] used the PDE

for noise removal and image enhancement.

The computation of the traveltimes from the velocity function is needed in many mod-

eling tasks and can be effectively performed by solving the eikonal equation using the

Fast Marching Method (FMM) or the Fast Sweeping Method (FSM). The former uses

a finite-difference operator to track the minimum traveltime with Dijkstra-like sort-

ing and updating [30]; the latter, on the other hand, is a Gauss-Seidel-based iterative

method using upwind difference for discretization [37].

Oppositely, predicting the velocity field from the traveltimes is an inverse problem

and can be solved by a gradient-based optimization with forward and backward pro-

pogation of the traveltime fields of the eikonal equation. It means the inversion task

amounts to solving forward and inverse problems consecutively and iteratively. In

the forward problem stage, the eikonal equation is solved for traveltimes on rectan-

gular grids with the algorithms mentioned earlier. While, in the inversion stage, one

may try to minimize the objective function, which is the misfit between the observed

first arrival times on the receivers and the modeled ones by linearizing the tomog-

raphy operator. The linearized system is then updated iteratively by employing any

gradient-based approaches. This method, however, demands the explicit computation

of the Jacobian matrix, which results in high computational costs. To mitigate this

issue, the traveltime tomography problem can be solved directly as a non-linear op-

timization setting utilizing the adjoint state method [20, 26]. Though this non-linear

optimization approach avoids the explicit computation of the Jacobian matrix, its gra-

dient may ignore some information available along the shot dimension, which can be

resulted in undesired velocity estimations [21].

Physics informed neural networks (PINNs) [28], which combine the underlying physics

of a tackled problem with deep learning (DL) have recently emerged as a powerful

tool for solving both forward and inverse problems. This neural network (NN) aided

approximators capable of considering physics are effective and efficient for ill-posed

inverse problems [13]. Therefore, in this thesis, we approach the traveltime tomogra-
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phy problem in a novel way leveraging PINNs.

1.2 Contributions and Outline of the Thesis

The main contributions of this work can be summarized as follows:

• For PINNs, there is no need to have a huge amount of data that is required in

other deep neural networks (DNNs) based inversion approaches conducted in

a supervised manner. Therefore, using PINNs is computationally cheap as one

has not to generate lots of feature-label pairs (velocity models and the travel-

times).

• Successful implementations of traditional gradient-based inversion frameworks

strongly depend on initial models. Starting velocities far away from the solution

may cause an algorithm to trap to local minima or even diverge. PINN inversion

does not depend on an initial model.

• Contrary to the conventional approaches (finite difference, finite elements),

PINN methodology is mesh-free, which can be useful when handling complex

computational boundaries, such as models having irregular topography.

• In a non-linear optimization setting, traveltime tomography may suffer from

unwanted velocity estimates because of the contradicting information in its gra-

dient for different shots. As PINN learning is based on training DNNs, this can

be avoided.

This thesis is organized as follows. In Chapter 2, a brief summary of traveltime

tomography problem and background for PINNs, are given. Implementation of the

proposed method to synthetic examples and corresponding results are provided in

Chapter 3. Then, in Chapter 4, we apply the proposed method to real field data.

Finally, Chapter 5, summarizes the study and touches on possible extensions of the

thesis.
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CHAPTER 2

PRELIMINARIES

2.1 Eikonal Equation Based Traveltime Tomography

2.1.1 Eikonal Equation

In an acoustic constant density media, seismic waves with a wave speed of v propa-

gate according to the following equation:

∇2ψ =
1

v2
∂2ψ

∂t2
, (2.1)

where ∇2 is the Laplace operator applied to the scalar acoustic pressure ψ. For high

frequencies, WKB (Wentzel–Kramers–Brillouin) expansion reduces to the following

asymptotic approximation, which satisfies the (2.1).

ψ = A(x)e−iωT (x), (2.2)

where ω is the angular frequency; T (x) is a phase function (traveltime), and A(x) is

the amplitude coefficient of the oscillatory function. Applying the divergence of the

gradient to the geometric optics approximation of the wave equation (applying the

Laplace operator on (2.2)) yields:

∇2ψ = ∇2Ae−iωT − iω∇A · ∇Te−iωT

− iω∇A · ∇Te−iωT

− iωA∇2Te−iωT

− ω2A∇T · ∇Te−iωT .

(2.3)
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On the other hand, the second derivative of the solution of the wave equation ψ with

respect to time t is given
∂2ψ

∂t2
= −ω2Ae−iωT . (2.4)

Plugging the (2.3) and (2.4) into the wave equation produces

∇2A− ω2A|∇T |2 − iω(2∇A · ∇T + A∇2T ) =
−Aω2

v2
. (2.5)

This equation has real and imaginary components. Propagation information comes

from the real part

∇2A− ω2A|∇T |2 = −Aω
2

v2
. (2.6)

Dividing both sides byAω2 and applying high frequency approximation by taking the

limit as w →∞ yields the eikonal equation:

|∇T (x)|2 = 1

v2
. (2.7)

Additionally, amplitude of the propagating waves comes from the imaginary part

2ω∇A · ∇T + ωA∇2T = 0. (2.8)

Frequency terms vanish and this gives the transport equation:

2∇A · ∇T + A∇2T = 0. (2.9)

In this thesis, we ignore the amplitude part and consider only the propagation of

wavefronts described in (2.7). Physically, the eikonal equation states that the gradient

of a wavefront (traveltime) at position x is given by the square of the reciprocal of the

velocity at that position. Also, the direction of the wave propagation is described by

the direction of the gradient of traveltime.

2.1.2 Tomographic Reconstruction

Equation (2.7) presents a relation between traveltime and velocity field. Finding a

solution in the model space (velocity) from data (traveltime) is called traveltime to-

mography. More formally, it is a data fitting procedure that can be written as:

min
v

1

2
∥tpre − tobs∥22. (2.10)
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Here the notation ∥ · ∥ denotes the L2 norm taken in Euclidean Space; tpre represents

the computed traveltimes from a forward modeling; tobs represents the observed trav-

eltimes in the domain of interest. The objective in (2.10) can be rewritten in terms of

the dot product of the residual vector r = tpre − tobs such that:

min
v

1
2
∥r∥2 = 1

2
(r · r). (2.11)

If we take the derivative of (2.11) with respect to the model parameters v, we have

1
2

∂

∂v
(r · r) = GT · r, (2.12)

where G is the Jacobian matrix and defines the sensitivity of the data residuals with

respect to velocity perturbations. This expression gives us the gradient that is needed

to update the model parameters.

The solution of the eikonal equation (2.7) depends on the source location xs, and has

a boundary condition of T (xs) = 0. Hence, if we consider multiple shot case, and

take the total number of shot asNs, the total Jacobian matrix will be the concatenation

of individual ones

G =
[
G1 G2 . . . GNs

]T
. (2.13)

Therefore, the total gradient term will be

g =
Ns∑
i=1

GT
i · ri. (2.14)

where i stands for the ith shot.

More accurate update in the solution space can be accomplished by considering the

second derivatives GTG, the Hessian matrix. In this case, the model perturbation is

obtained by premultiplying the inverse Hessian with the gradient:

δv =
[
GTG

]−1

g. (2.15)

Because large problems tend to suffer from computing Hessian matrix, we will rely

on conjugate search directions for all the conventional tomography implementations.

More specifically, the conjugate-direction (CD) [6] method is chosen as a traditional

tool for tomography in the context of this thesis. Algorithm 1 summarizes the tomo-

graphic reconstruction.
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Algorithm 1: Traveltime Tomography Algorithm
Input:tobs (Observed traveltimes)

v0 ← 0 (Model Initialization)

k ← 0 (Step Initialization)

while data residual not converged do
tpre
k ← vk (FMM)

rk ← tobs − tpre
k

Jk ←
∂t

pre
k

∂vk

r ← rk

m← vk

while predetermined iteration number is not reached do
∆m← J∗

kr

∆r ← Jk∆m

(m, r)← cgstep(m, r,∆m,∆r)

end

gk ← m

vk+1 ← vk + αgk

k ← k + 1

end

The inversion process starts with an initial velocity model v0. Forward modeling is

performed by the Fast Marching Method [30], which solves the eikonal equation

on spaced grids by finding the fastest arrivals at grid points. From the derivatives

of the predicted times with respect to the background velocity model, forward and

adjoint operators are constructed. The operators go into the inner loop that performs

the conjugate-direction method updates via cgstep() subroutine written in Fortran 90

[6]. The subroutine takes the background model, background data residual, gradient

in the model space, and the conjugate gradient, and outputs model update and data

residual. Then the model update is used to update the background model. Therefore,

the outer part of the framework performs linearization updates, while the inner part

does the conjugate gradient iterations.
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2.2 Physics Informed Neural Networks (PINNs)

2.2.1 Deep Feedforward Neural Network

Deep feedforward neural network, also known as a multilayer perceptron (MLP), is

a simple structure of function approximator commonly used in machine learning. It

maps a given input x to an output through successive affine-linear mappings and non-

linear transformations, which can be described in a composite function for K-layer

neural network such that:

Nθ(x) = LK ◦ σ ◦ LK−1 · · · ◦ σ ◦ L1, (2.16)

where ◦ denotes function composition; L is an affine mapping and is given more

explicitly Lkxk = Wkxk + bk in which Wk ∈ Rnk+1×nk are the weights of the

network, bk ∈ Rnk+1 represents the bias vector, xk ∈ Rnk is an input vector for k

representing the k-th hidden layer including nk neurons; σ is a nonlinear activation

function, and θ =
{
Wk,bk

}
1≤k≤K

. An illustration of a deep feedforward neural

network is given in Figure 2.1.

2.2.2 PINNs as a PDE Solver and Parameter Estimator

Let Ω ⊂ Rn be the domain of interest with a boundary defined as ∂Ω for some n ≥ 1.

An abstract representation of a PDE and relevant boundary conditions can be written

as:

D(ξ(x)) = 0, inΩ

B(ξ,x) = 0, in ∂Ω
(2.17)

where D is a spatial-temporal differential operator operating on the PDE solution

ξ; B(ξ,x) can be any type of boundary conditions (Dirichlet, Neumann, Robin or

mixed). Moreover, we assume that x includes a temporal parameter t for time-

dependent PDEs.

PINNs solve a PDE by satisfying the physics and boundary conditions subject to a

neural network Nθ(x) that approximates to the solution of a PDE ξ(x). Any deriva-

tives of the network outputs ξ̃(x) with respect to the inputs defining a PDE as well
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Figure 2.1: An illustration of a physics informed neural network procedure.

as needed derivatives for boundary conditions are computed via automatic differenti-

ation (AD) [3], which applies the chain rule to compute the derivatives of a composi-

tional function. If we define the training data for a PDE as Ωp ⊂ Ω and for boundary

conditions as ∂Ωb ⊂ ∂Ω, the total loss function can be written such that:

L(θ) = wp
1

|Ωp|
∑
x∈Ωp

||D(ξ̃(x))||+ wb
1

|∂Ωb|
∑

x∈∂Ωb

||B(ξ̃,x)||. (2.18)

Here, the L2 norm ∥ · ∥ is applied to the PDE residual in the first term, and to the

boundary conditions in the second term of the loss function; wp and wb are appropri-

ately chosen weights.

The objective is to find an optimal θ which minimizes the loss function L(θ) by a

chosen gradient based optimizer. The illustration of a PINN procedure is given in

Figure 2.1.

Considering an inverse problem, let’s rewrite the definition of an abstract PDE (2.17)

parameterized by γ such that:

D(ξ(x);γ) = 0 x ∈ Ω. (2.19)

Moreover, assume we know the solution ξ(x) on some points Ωd ⊂ Ω. In this case,

the unknown parameter γ can also be predicted by PINNs just by adding an extra loss

10



term to the loss defined earlier, in a way that

L(θ,γ) = wp
1

|Ωp|
∑
x∈Ωp

||D(ξ̃(x);γ)||

+ wb
1

|∂Ωb|
∑

x∈∂Ωb

||B(ξ̃,x)||

+ wd
1

|Ωd|
∑
x∈Ωd

||ξ̃(x)− ξ(x)||,

(2.20)

where wd is the corresponding weight for data fitting term. Hence, the goal of the

unconstrained optimization problem becomes

argmin
θ,γ

L(θ,γ). (2.21)
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CHAPTER 3

PINN ENABLED TRAVELTIME TOMOGRAPHY

Seismic first arrival traveltime picking and then inverting them have been used as

a common approach for visualizing near-surface seismic velocities. For example,

Zhu at al. [38] illustrated that the traveltime tomography can estimate near surface

velocities more accurately than refraction statics methods. Zhang and Toksoz [36]

developed a nonlinear refraction traveltime tomography method using ray tracing for

the forward calculations. Taillandier at al. [33] introduced the adjoint-state technique

for computation of the gradient of the misfit function that avoids ray tracing and es-

timation of the costly Jacobian matrix in the inverse problem. Accurately estimating

long-wavelength velocity structures in near-surface is essentially important for en-

gineering and environmental geophysical applications. Moreover, reliably retrieved

macro-feature velocities can serve as an initial for full-waveform inversion (FWI)

technique [34, 31, 5, 27, 29, 35] to obtain more accurate near-surface velocity mod-

els.

Therefore, in this chapter, we describe the PINN-based traveltime inversion as a new

tool for retrieving near-surface velocity models and show its effectiveness through

synthetic examples by comparing it with the traditional gradient-based inversion.

3.1 Theory

The residual of the eikonal equation in a 2D domain (Ω) can be written as

r(x) :=
√
∇T (x) · ∇T (x)− S(x) = 0, x ∈ Ω, (3.1)

13



where S(x) is the slowness which is the reciprocal of the velocity field V (x).

we use two separate artificial neural networks composed of non-linear functions to

approximate traveltimes T (x) and velocities V (x) in the eikonal equation, such that

T̃ (x) = NT (xs,x;wT , bT ),

Ṽ (x) = NV(x;wV , bV ),
(3.2)

where NT and NV are the feed-forward neural networks for traveltime and velocity

respectively. Here the trainable parameters are weights and biases shown as wT and

bT for traveltime NN and wV and bV for velocity NN. To honor multiple shots on the

surface, horizontal coordinates of the source location, denoted as xs, are used as an

additional input to the traveltime network, contrary to the velocity network.

For stability as well as ensuring the solutions remain positive, sigmoid activation

function σ is applied for both output of the networks before multiplying them with

the maximum expected velocity and traveltime values

T̃ (x) = Tmax σ(NT (xs,x;wT , bT )),

Ṽ (x) = Vmax σ(NV(x;wV , bV )),
(3.3)

where Vmax can be decided considering geology of the medium; whereas, Tmax can

easily be obtained from the observed times. The same strategy for constraining the

PINN solution as strictly positive was previously used for prediction of activation

maps in cardiac electrophysiology [7]. Recovering the possible sharp transitions in

the velocity solution, isotropic total variation regularizer (TV) is also added to the

problem. Thus, the composite loss function to train both networks concurrently reads:

L(wT , bT , wV , bV ) = α
1

NSNT

NS∑
n=1

NT∑
i=1

(T̃ (xn,i)− Tn,i)2

+
1

NSNC

NS∑
n=1

NC∑
i=1

(

√
∇T̃ (xn,i) · ∇T̃ (xn,i)− S̃(xn,i))

2

+ λ
1

NC

NC∑
i=1

∥∥∥∇Ṽ (xi)
∥∥∥ . (3.4)
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Figure 3.1: Illustration of the PINN framework solving for traveltime tomography
problem. Two neural networks are used to approximate the traveltime and the veloc-
ity. The automatic differentiation is used to calculate the derivatives used in the loss
function. Training is performed with a loss function containing the term that mini-
mizes the residuals of the observed times and the network estimated ones, residual of
the eikonal equation, and the regularization term.

The first term, which corresponds to the third term of the loss function in 2.20 mea-

sures the misfit between the observed traveltimes and the network predicted ones on

the receiver positions for each source location. α is the weight used as a penalty for

this term. NS denotes the total number of shots and NT represents the number of

receivers for a shot. The second term, which corresponds to the first term of the loss

function in 2.20 is the eikonal residual computed at the selected collocation points,

shown as NC , in the computational domain. The third term, on the other hand, intro-

duces TV as a stabilizer to the inverse problem. The impact of it controlled by the

regularization parameter λ. Figure 3.1 illustrates the PINN based inversion schematic

which is used in this thesis.

Hence, the unconstrained optimization problem seeks to find the optimal network

parameters wT , bT , wV , bV such that

argmin
(wT ,bT ,wV ,bV )

L(wT , bT , wV , bV ). (3.5)
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(a)

(b)

Figure 3.2: (a) An example of a velocity model for testing the proposed PINN enabled
inversion and (b) Image representation of the data aquired from the model. There are
43 shots each having 211 observed traveltimes that are placed in rows to form the
image.

3.2 Numerical Implementation

First, we test the proposed PINN tomography framework on synthetic examples and

then compare the results with the traditional gradient-based traveltime tomography.

All PINN enabled tomography implementations are conducted in TensorFlow [1]. For

the training, ADAM optimizer [16] with a default learning rate of 0.001 (in our ex-

periments higher learning rates prevent convergence; On the other hand, using lower

values than the default one requires more iterations to the solution.) is chosen before

switching to the L-BFGS [22] method for the sake of accelerating the convergence.

In order to save computational time, all training is performed with a minibatch im-

plementation in which the collocation points are randomly selected from the compu-

tational domain using a Latin hypercube sampling [32].

The first model example representing a near-surface is a three-layered model with

minor folds (Figure 3.2a). The model size is assumed 36 × 211 and sampled with a

uniform spacing of 10 m both vertically and horizontally (∆z = ∆x = 10m). To

model the traveltimes, we employ the fast marching method, and use 43 shots with a

regular interval of 50 m on the surface. There are 211 receivers for each shot, and thus,

43×211 observed surface traveltime data for the PINN implementation (Figure 3.2b).
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From the computational domain 300 samples are chosen with the Latin hypercube

sampling method to train the model. After examining the outputs of different settings

of the hyperparameters, we use the following tunings: 7 hidden layers with 50 neurons

for the traveltime network; for the velocity, 5 hidden layers with 50 neurons each are

decided sufficient as training the velocity network is easier than training the traveltime

network. The weight for the TV term is chosen as λ = 10−7. Moreover, we use

α = 100 as the weight for the data mismatch term in the loss. Penalizing this specific

term during the training helps to improve the accuracy of the retrieved model. The

neural network weights are initialized with Xavier initializer [10].

The estimated velocity model after 20,000 ADAM iterations (Figure 3.3) is followed

by the L-BFGS is shown in Figure 3.4. The retrieved model successfully captures the

main features of the true model (Figure 3.2a).

To be more specific, we additionally perform traditional traveltime tomography us-

ing the conjugate-direction (CD) method [6]. The acquisition geometry is the same

as for the PINN tomography and the tomographic inversion is obtained by imple-

menting 10 linearization updates each having 30 conjugate-gradient iterations. The

convergence history for the traditional approach is presented in Figure 3.5. Starting

velocity model for the inversion is obtained by taking the vertical profile from the true

model (Figure 3.2a) and then applying strong smoothing. The inverted model and the

initial one is given in Figure 3.6. Even though the inversion is started with a priori

knowledge of the vertical profile from the region, the inversion cannot approach to

the true velocities in many places as the optimization traps in local minimum points.

The next example for testing the proposed approach is a more complicated near-

surface model containing fault systems (Figure 3.7a). The acquisition parameters

selected in the first example is again employed for acquiring the data (Figure 3.7b).

This time, PINN inversion is performed by using 40,000 Adam iterations (Figure 3.8)

with a minibatch size of 500 and followed by the L-BFGS algorithm. The final inver-

sion result is provided in Figure 3.9.

Again for comparison, traditional tomography is implemented. No further improve-

ment in the convergence is observed after the 10th linearization step (Figure 3.10).

Although the inverted model (Figure 3.11a) is generally similar to the predicted model

17



Figure 3.3: Loss curve of the PINN tomography after 20,000 ADAM iterations using
minibatch implementation with a batch size of 300.

Figure 3.4: PINN predicted velocity model after L-BFGS iterations.

Figure 3.5: Convergence history of the gradient-based tomography after 10 lineariza-
tion updates. 30 conjugate-gradient iterations are used for each linearization.

18



(a)

(b)

Figure 3.6: (a) Inverted model from the conventional tomography and (b) Starting
velocity model for tomography.

by the PINN (Figure 3.9), it overestimates the velocities in some of the areas in the

model probably bacause of the contradicting gradient information coming from each

shot.

To present a quantitative assessment of the results from both examples, we compare

vertical velocity profiles obtained from four different positions (Figure 3.12 and Fig-

ure 3.13) as well as the percent error maps (Figure 3.14). As expected from the

traveltime tomography, both methods provide a smooth representation of the actual

models. However, in deeper parts of the models traditional approach tends to deviate

from the true velocities, which is more observable especially for the first example. As

expected from the traveltime tomography, both methods provide a smooth represen-

tation of the actual models. Also, the percentage velocity errors from the PINN-based

approach are generally lower than the errors from the classical method.

3.3 Discussion of the Synthetic Results

PINN-based traveltime tomography clearly shown from the synthetic experiments,

can be used as a reliable tool alternative to conventional tomography. It has a signifi-

cant advantage over the traditional tool in that it does not need to have a good initial

guess which requires knowing a priori information on the investigated area. Neverthe-
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(a)

(b)

Figure 3.7: (a) An example of a velocity model for testing the proposed PINN enabled
inversion and (b) Image representation of the data aquired from the model. There are
43 shots each having 211 observed traveltimes that are placed in rows to form the
image.

Figure 3.8: Loss curve of the PINN tomography after 40,000 ADAM iterations using
minibatch implementation with a batch size of 500.

Figure 3.9: PINN predicted velocity model after L-BFGS iterations.
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Figure 3.10: Convergence history of the gradient-based tomography after 10 lin-
earization updates. 30 conjugate-gradient iterations are used for each linearization.

(a)

(b)

Figure 3.11: (a) Inverted model from the conventional tomography and (b) Starting
velocity model for tomography.

Figure 3.12: Vertical velocity profiles at 0.4 km, 0.9 km, 1.3 km and 1.9 km from left
to right respectively for the first example.

21



Figure 3.13: Vertical velocity profiles at 0.4 km, 0.9 km, 1.3 km and 1.9 km from left
to right respectively for the second example.

less, the selection of hyperparameters (network architectures, number of optimization

iterations, minibatch size, weights of the loss components) plays an important role in

the accuracy of the retrieved model. Among them, special attention needs to be paid

to balance the weights of the loss components.

We achieved robust convergence in the examples by taking the weight of the data

fitting term 100 of the PDE loss (eikonal) term. The influence of the weight of the

regularizer on the problem is another important factor so that careful consideration

needs to be given to decide the acceptable value for the weight of this specific term.

Therefore, optimizing the weights for each component of the loss along with the

network weights could be a solution to this issue; thus removing the need for time-

consuming trial-and-error tasks.
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(a)

(b)

Figure 3.14: (a) Percentage error maps between the true model and the inversion
results from the PINN approach (top) and the conventional approach (bottom) for the
first example, and (b) for the second example, error map of PINN approach (top) and
error map of conventional approach (bottom).
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CHAPTER 4

FIELD DATA EXAMPLE

In this chapter, the proposed PINN tomography to a field data is applied and we

compare the result with the previous findings from the region.

4.1 Study Area and Data Acquisition

The study area is located on the Gulf of Aqaba cost in Saudi Arabia (Figure 4.1a).

An earthquake along the Dead Sea strike-slip fault with a magnitude of 7.3, which

happened in 1995 [17], was affected the area by causing surface raptures that might

be parts of the primary faulting system [2]. Geophysical investigations across one of

these surface raptures (Figure 4.1b) to locate and characterize the faults in subsurface

were previously conducted [12]. As for the seismic prospecting, 2D refraction data1

were collected along the survey line. A total of 120 common shot gathers with a

regular source shift of 2.5 m was performed. For each shot, there were 120 traces

at the receivers which were also deployed in a 2.5 m regular intervals. Seismic data

were recorded with a 1 ms sampling interval for a total recording time of 0.5 s. An

example of a shot gather and corresponding first arrivals is shown in Figure 4.3.

4.2 PINN Implementation of Traveltime Inversion

We perform PINN tomography using 14,400 picked traveltimes (Figure 4.2). The

traveltime network has 5 hidden layers with 50 neurons each, as opposed to the ve-

1 The data is available online and can be accessed from https://repository.kaust.edu.sa/handle/10754/627400
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(a) (b)

Figure 4.1: (a) A Google Earth satellite image showing the study area (courtesy of
Sherif M. Hanafy, King Fahd University of Petroleum and Minerals). Red square at
the eastern side of Gulf of Aqaba marks the location of the study area. (b) Zoomed
in view of the study area. Blacked dashed line indicates the fault raptured at the 1995
earthquake. Red dashed line indicates the seismic profile.

locity network, that has 4 hidden layers of 20 neurons. We constrain the velocity

predictions with an upper bound of 2.2 km/s based on the findings from the experi-

ments conducted on the region previously [12]. As in the synthetic examples, we fix

the data fitting term 100 times more weight than the eikonal loss. Because the data

shows a high signal- to-noise ratio (Figure 4.3), this strategy ensures a robust con-

vergence, we use 50,000 Adam with a minibatch size of 100, with less than 35,000

L-BFGS iterations to train the PINN (Figure 4.4). The optimization is assumed to

stop after the loss drops below 5×10−4.

The inverted velocity model is given in Figure 4.5. To evaluate the performance

of the trained model, we also present comparisons of the observed times with the

predicted ones at the receivers. Surface traveltime comparisons at the 20th, 60th, and

the 100th shots are given in Figure 4.6a, Figure 4.6b and Figure 4.6c, respectively.

It is observable that the estimated traveltimes are reasonably fit the first-break picks

(observed traveltimes).

4.3 Interpretation of the Prediction

The study area were examined by geophysical methods in November 2013 [12]. The

resulting refraction tomogram is presented (Figure 4.7a) for comparison with the

PINN based tomography result, which is illustrated as contour map (Figure 4.7b).
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Figure 4.2: Image representation of the field data. There are 120 shots each having
120 observed traveltimes that are placed in rows to form the image.

Figure 4.3: An example of a common shot gather (left), and processed of the gather
showing the first arrival times (right).
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(a) (b)

Figure 4.4: (a) Loss curve of the PINN tomography using ADAM optimizer, and (b)
following L-BFGS iterations.

Figure 4.5: PINN predicted velocity model.

In the tomogram created from a conventional tool, a low velocity anomaly, which

is called colluvial wedge, was identified between offsets 120 and 145 m. We also

observed this low velocity wedge in the PINN based tomogram (shown inside the

black circle in Figure 4.7b) nearly at the same offset intervals. This type of low ve-

locity structure can be seen as an indication of the location of a possible existing

fault [4, 24, 25]. It is indeed a normal fault cutting the surface approximately at 150

m and noticable at the eastern end of the wedge which coincides with the previous

findings.

There is another fault, which is not clearly seen in the traditional tomogram, delini-

ated in the eastern side of the PINN estimation between offsets 220 and 240 m (Fig-

ure 4.7b). Overall, in lieu of leveraging traditional approaches, it can be easily said

that PINN based traveltime inversion of the field data can be used to locate and char-

acterize faults in alluvial sediments.
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(a)

(b)

(c)

Figure 4.6: A comparison between the observed traveltimes (solid red) and the PINN
estimated ones (dashed blue) at the 20th (a), 60th (b), and the 100th (c) shots.
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(a)

(b)

Figure 4.7: (a) Traveltime tomogram obtained from a conventional tool [12]. The
red line marks the interpreted fault location, while the red circle is interpreted as a
colluvial wedge. (b) Contour map representation of the tomogram predicted by PINN.
The blacked lines indicate the interpreted faults, while the black circle is interpreted
as a low-velocity wedge.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Traveltime tomography is an important inverse problem used in seismology to retrieve

long-wavelength velocity structures of the subsurface. Improving the velocity model

results is crucial for obtaining high-quality depth imaging. To this end, we demon-

strated a novel approach leveraging training neural networks to invert for velocity

from the observed seismic arrival times at the surface stations. Unlike other machine

learning models which depend on only data, our proposed approach adheres to the

physics inherent in the problem. Utilizing the physics, given in the eikonal equation,

as a regularizer of the neural network training helps overcome the ill-posedness of the

inverse problem.

This thesis begins with mathematical preliminaries of the traveltime tomography as

well as the definition of the physics informed neural networks. In Chapter 2, the

idea of how to build physics informed neural networks based traveltime tomography

was given and tested on synthetic examples. Moreover, the results obtained from the

proposed approach were compared with the traditional tool. Finally, in Chapter 3, the

method was applied to field data. Both synthetic tests and field data results showed

the reliability of the introduced approach.

Beyond the reliability of the results, It is also important to note the advantages of the

proposed approach over conventional algorithms. Probably chief among them is that

the PINN-based tomography results do not depend on the starting velocity models,

which should be more or less reflect the overall pattern of the true model to achieve

a satisfying convergence in traditional methods. Furthermore, neural network train-

ing is a mesh-free approach paving the way for flexible use of sources and receivers
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without needing them to be on regular grids in the computational domain.

Despite the fact that the computational efficiency of the proposed approach depends

on several factors, such as minibatch and network size, the method would be more fa-

vorable than the conventional tools when the computational domain is large thanks to

the small minibatch implementation during training the networks. In our implemen-

tations, we achieved reasonably accurate results using Google’s graphics processing

units (GPUs) just with a training time of about 30 minutes for the synthetic examples

and approximately 1 hour for the field data.

As future work, the suggested method for traveltime tomography in this thesis can

easily be extended for the 3D surveys. Moreover, the given algorithm can be an

inspiration for solving multi parameters simultaneously when the underlying physics

is more complex.
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