
HIERARCHICAL AND MODULAR CONTROL OF RECONFIGURABLE
MANUFACTURING SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖVÜL ARSLAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2022

Approval of the thesis:

HIERARCHICAL AND MODULAR CONTROL OF RECONFIGURABLE
MANUFACTURING SYSTEMS

submitted by ÖVÜL ARSLAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Klaus Werner Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Aydan Erkmen
Electrical and Electronics Engineering, METU

Prof. Dr. Klaus Werner Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. Umut Orguner
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Mustafa Mert Ankaralı
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Ulaş Beldek
Mechatronics Engineering, Cankaya University

Date: 11.02.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Övül Arslan

Signature :

iv

ABSTRACT

HIERARCHICAL AND MODULAR CONTROL OF RECONFIGURABLE
MANUFACTURING SYSTEMS

Arslan, Övül
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Klaus Werner Schmidt

FEBRUARY 2022, 78 pages

Reconfigurable manufacturing systems (RMS) were introduced as a new manufactur-

ing concept for rapidly adjusting the production capacity and functionality of manu-

facturing systems. Hereby, the control of RMS requires realizing each desired config-

uration and changing between configurations on request, whereby a suitable design

approach should scale to large-scale systems.

In this thesis, we develop a controller design method for RMS that supports modular

design and is scalable to RMS of large size. As the first step, we introduce the new

notion of an attraction-preserving natural observer, which makes it possible to apply

abstraction-based supervisor design for state attraction. Such supervisor is needed

in order to move an RMS to a correct system state when performing a configuration

change and starting up a new configuration. We further extend our method to the case

of modular systems in order to ensure applicability to large-scale systems. Several

examples demonstrate the applicability of our method.

Keywords: Reconfigurable manufacturing systems, Discrete event systems, Supervi-

v

sory control, Abstraction, State attraction

vi

ÖZ

YENİDEN AYARLANABİLİR ÜRETİM SİSTEMLERİNİN HİYERARŞİK
VE MODÜLER KONTROLÜ

Arslan, Övül
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Klaus Werner Schmidt

Şubat 2022 , 78 sayfa

Yeniden yapılandırılabilir üretim sistemleri (RMS), üretim sistemlerinin üretim kapa-

sitesini ve işlevselliğini hızlı bir şekilde ayarlamak için yeni bir üretim konsepti olarak

tanıtılmıştır. Bu nedenle, RMS’nin kontrolü, istenen her konfigürasyonun gerçekleşti-

rilmesini ve istek üzerine konfigürasyonlar arasında değişiklik yapılmasını gerektirir,

böylece uygun bir tasarım yaklaşımının büyük ölçekli sistemlere ölçeklenmesi gerek-

mektedir.

Bu tezde, RMS için modüler tasarımı destekleyen ve büyük boyutlu RMS’ye öl-

çeklenebilir bir kontrolcü tasarım yöntemi geliştirilmiştir. İlk adım olarak, durum

çekimi (state attraction) için soyutlamaya dayalı kontrolcü tasarımının uygulanma-

sını mümkün kılan yeni çekim-koruyucu doğal gözlemci (attraction-preserving na-

tural observer) kavramı tanıtılmıştır. Bir konfigürasyon değişikliği gerçekleştirirken

ve yeni bir konfigürasyon başlatırken RMS’yi doğru sistem durumuna taşımak için

böyle bir kontrolcüye ihtiyaç duyulmaktadır. Yöntemimiz, büyük ölçekli sistemlere

uygulanabilirliği sağlamak için modüler sistemlere genişletilmiştir. Birkaç örnek ile

yöntemimizin uygulanabilirliği gösterilmiştir.

vii

Anahtar Kelimeler: Yeniden yapılandırılabilir üretim sistemleri, Ayrık olaylı sistem-

ler, Kontrolcü tasarımı, Yeniden boyutlama, Durum çekimi

viii

ACKNOWLEDGMENTS

First and foremost, I want to express my gratitude to my supervisor, Prof. Dr. Klaus

Werner Schmidt, for his countless hours spent on this thesis as well as his invaluable

assistance, guidance, and encouragement throughout my graduate studies under his

supervision.

I would also like to express my gratitude to the examining committee for their sug-

gestions and criticisms.

Finally, I would like to thank my love, Canan Budak, for being so supportive while I

was working on thesis.

Without the help of my department, family, friends, and colleagues, I would not have

been able to complete this thesis.

ix

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . xi

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 PRELIMINARIES . 5

2.1 Discrete Event Systems . 5

2.2 Formal Languages . 6

2.3 Finite State Automata . 7

2.4 Supervisory Control Theory . 10

2.5 Natural Observer and Abstraction 12

2.6 Verification of the Natural Observer Condition 16

2.6.1 Dynamic System and Quasi Congruence 17

2.6.2 Verification of the Natural Observer Condition 19

xi

2.6.3 Computation of Abstractions 20

2.7 Abstraction-based Supervisory Control 23

2.8 State Attraction . 30

2.9 Motivation and Problem Statement 33

3 ABSTRACTION-BASED STATE ATTRACTION 35

3.1 Strong Attraction-Preserving Abstraction 35

3.2 Computation of Attraction-Preserving Abstraction 44

3.3 Abstraction-based State-Feedback Supervisor 48

4 ABSTRACTION-BASED SUPERVISOR COMPUTATION FOR STATE
ATTRACTION . 53

4.1 Composed Invariant Set . 54

4.2 Strong Composed Attractor . 55

4.3 Supervisor Computation . 56

4.4 Illustrative Example . 60

4.4.1 Low-Level Supervisor Computation 61

4.4.2 Supervisor Computation for a Composed System 63

4.5 Limitations: Maximal Permissiveness 69

5 CONCLUSION . 73

REFERENCES . 75

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Simple automaton example. 8

Figure 2.2 Synchronous composition example. 10

Figure 2.3 Supervisory control example. 13

Figure 2.4 Example automata. 14

Figure 2.5 Abstraction automata. 14

Figure 2.6 Violation of the observer condition. 15

Figure 2.7 Partitions for different abstraction alphabets for G1: Σ̂1 = {a}
(left); Σ̂1 = {a,b,c} (center), Σ̂1 = {c,d} (right). 16

Figure 2.8 Dynamic system and quasi-congruence example: Σ̂1 = {a}
(left), Σ̂1 = {b} (middle), Σ̂1 = {d} (right). 18

Figure 2.9 Quotient automata for the example in Figure 2.8. 20

Figure 2.10 Nondeterministic quotient automaton. 21

Figure 2.11 Resolving τ0-transitions. 22

Figure 2.12 Resolving nondeterminism. 22

Figure 2.13 Example plant for abstraction-based control. 25

Figure 2.14 Plant automata for the example. 25

Figure 2.15 Specification automata for the example. 26

xiii

Figure 2.16 Hierarchical and decentralized control architecture. 27

Figure 2.17 Low-level supervisors for the example. 28

Figure 2.18 Abstracted closed loops Ŝ1 and Ŝ2 and overall abstracted closed

loop Ĝ. 29

Figure 2.19 High-level specification Ĉ. 29

Figure 2.20 High-level supervisor Ŝ. 30

Figure 2.21 Example automaton G. 30

Figure 2.22 Subautomaton (left) and strict subautomaton (right) of G. 31

Figure 2.23 Strong attractor example. 32

Figure 2.24 Strong attractor counterexample. 32

Figure 2.25 State-feedback supervisor S. 33

Figure 3.1 p is a natural observer for Lm(G) but not for Lm(G
′). 35

Figure 3.2 Subautomaton GE2 and state-feedback supervisor SE2 36

Figure 3.3 Attraction-preserving natural observer illustration: positive case. 38

Figure 3.4 Attraction-preserving natural observer illustration: negative case. 39

Figure 3.5 Example automaton G1 for strong attraction-preserving abstrac-

tion. 41

Figure 3.6 Equivalence classes defined by p1 and abstraction of G1. 41

Figure 3.7 Subautomata GE1 and GE2 . 42

Figure 3.8 Example automaton G2 for strong attraction-preserving abstrac-

tion. 43

Figure 3.9 Ĝ2 and HG2 . 43

xiv

Figure 3.10 Example automaton G3 for strong attraction-preserving abstrac-

tion. 44

Figure 3.11 Ĝ3 and HG3 . 44

Figure 3.12 Example automaton G4 for strong attraction-preserving abstrac-

tion. 45

Figure 3.13 Equivalence classes defined by p4. 45

Figure 3.14 Equivalence classes defined by new abstraction p4. 46

Figure 3.15 Abstracted automaton Ĝ4 for strong attraction-preserving ab-

straction. 46

Figure 3.16 Attraction-preserving natural observer illustration: Modified al-

phabet Σ̂. 47

Figure 3.17 Equivalence classes for different abstraction alphabets for G2:

Σ̂ = {a,b,e,f,g} (left); Σ̂ = {a,b,d,e,f,g} (right). 48

Figure 3.18 Illustration of Definition 5. 50

Figure 3.19 Illustration of Theorem 4, example 1. 51

Figure 3.20 Illustration of Theorem 4, example 2. 52

Figure 4.1 Composed attractor example. 55

Figure 4.2 Switching from nonblocking control to state attraction. 56

Figure 4.3 Example low-level supervisor G not suitable for state attraction. . 61

Figure 4.4 Subautomaton G′ that fulfills weak attractor. 62

Figure 4.5 Modified low-level supervisor Gm. 62

Figure 4.6 Abstraction of modified low-level supervisor Gm. 63

Figure 4.7 Example system with two low-level supervisors S1 and S2. . . . 64

xv

Figure 4.8 Modified low-level supervisors Sm1 and Sm2. 65

Figure 4.9 Abstraction of Sm1 and Sm2. 66

Figure 4.10 Specification C. 67

Figure 4.11 High-level supervisor Ŝ. 67

Figure 4.12 High-level attractor R̂. 67

Figure 4.13 Low-level attractors R1 and R2. 68

Figure 4.14 Supervisors for the example system. 68

Figure 4.15 Example plant G. 69

Figure 4.16 Abstraction Ĝ. 69

Figure 4.17 State-feedback supervisor Ŝ for the high-level and for Â = {1}. . 70

Figure 4.18 State-feedback supervisor S for the low-level and for A = {1}. . 70

Figure 4.19 The overall closed loop T . 71

xvi

LIST OF ABBREVIATIONS

DES Discrete Event Systems

SCT Supervisory Control Theory

RMS Reconfigurable Manufacturing Systems

xvii

xviii

CHAPTER 1

INTRODUCTION

Discrete event systems (DES) are systems that have a discrete state space and whose

behavior is described by the occurrence of discrete events [1,2]. DES models are gen-

erally used for human-made systems such as manufacturing systems, transportation

systems, logistic systems or communication systems [3, 4]. The literature provides

different representations of DES models such as finite state automata, Petri Nets and

max-plus algebra [1, 5–7]. This thesis uses finite state automata to model DES.

A common point of different DES models is that they describe the behavior of a DES,

which can be expressed by a formal language, that is, a set of strings. Each string is

a sequence of events and represents a sequence of actions that can occur in the DES.

In order to apply control to a DES, the monolithic supervisory control theory (SCT)

was introduced in [8]. It considers that there is a plant model, which describes the

possible behavior of a DES and a specification, which describes the desired behavior

of the DES. The main idea is then to compute a supervisor (that is again represented

by a finite state automaton) to ensure that the closed loop system with plant and

supervisor fulfills the specification. In this context, events of a DES are classified

as controllable and uncontrollable. Controllable events such as actuator events can

be disabled by a supervisor, whereas uncontrollable events such as sensor events can

occur any time without the possibility of disablement. That is, it is required to find

a supervisor that disables controllable events of the DES model in order to fulfill

the given specification. Specifically, if an uncontrollable event should not happen,

this supervisor must disable a controllable event that occurs before the undesired

uncontrollable event.

A well-known problem when computing supervisors for DES is the state space ex-

1

plosion problem. This problem is encountered when designing supervisors for large-

scale DES that have many different components. Specifically, it is the case that the

number of system states increases exponentially with the number of components,

which makes the supervisor design infeasible. Accordingly, as an extension of the

monolithic SCT, the literature provides methods for the modular and abstraction-

based supervisory control [9–11]. Here, the main idea is to compute abstractions

of system components in order to obtain smaller models that are suitable for compu-

tations.

When computing supervisors for manufacturing systems, it is generally desired to

realize a certain flow of products through the system, while avoiding blocking situa-

tions [12]. Such blocking situations or deadlocks can for example happen if different

products need to be processed by the same machine or transported by the same equip-

ment. As an extension of traditional manufacturing systems, reconfigurable manufac-

turing systems (RMS) can operate in different configurations [13–16]. For example,

it is possible that an RMS is able to produce different products depending on the

demand. Hereby, different product types commonly require different production se-

quences. In the context of DES, this means that it is required to change the supervisor

controlling the RMS during run-time when changing from one product type to an-

other. In summary, the controller design for RMS requires several properties listed as

follows.

• The specified normal operation of the RMS should be realized in each individ-

ual system configuration,

• A change of configuration should be implemented by completing the operation

of the current configuration and then starting up the new configuration,

• The supervisor computation for RMS should be formulated in the framework

of modular and abstraction-based supervisory control for application to large-

scale systems.

There are different methods with different modeling frameworks for the supervisory

control of RMS. Petri Net models are used in [17–22]. The implementation of su-

pervisors for RMS is studied in [18] and [22]. The work in [18] develops a library

of Petri Net components that can be used to re-write Petri Net controllers for RMS,

2

whereas [22] proposed a method for the PLC implementation of reconfiguration con-

trollers. In both papers, it is assumed that the RMS is already in a suitable state to

perform the reconfiguration. Methods that try to move the RMS to a suitable state for

reconfiguration are presented in [17,19–21]. A first Petri Net method for the redesign

of controllers for RMS is introduced in [17]. However, there are many simplifying as-

sumptions. Only models without uncontrollable events are considered and deadlock

avoidance is not addressed in this paper. [19] considers the design of multi-mode sys-

tems that take care of both the desired operation in each configuration of an RMS and

the transition between configurations. In [20], Petri Nets are used as process models

for agents in a scalable agent-based RMS framework. [22] focuses on the deadlock

prevention in RMS that apply re-writing when changing configurations. As a com-

mon shortcoming, none of these methods enable the computation of nonblocking

supervisors for RMS that realize a given specification. Furthermore, the application

of abstractions for reducing the design complexity is not taken into account by these

methods.

Automata models are used in [23–28]. As the first work on this subject, [23] gives

a verbal description of the tasks and possible solution procedures for changing con-

figurations of an RMS but without a formal treatment of the subject. [24] suggests

a library of RMS component models in the form of modular finite state machines.

During operation of the RMS, components from this library can be selected. Al-

though this paper allows the analysis of the correct RMS operation, there is no design

method. The supervisor design for RMS is considered in [25–28]. Here, the com-

mon assumption is that each configuration of an RMS has a start state from which the

configuration should start operating. That is, when performing a reconfiguration, it is

required to complete the current configuration and then move the RMS to the respec-

tive start state. [25] and [26] use the concepts of optimal supervisory control [29] and

state attraction [30] to compute suitable supervisors that reach the desired start state as

fast as possible (with the smallest possible number of transitions). Furthermore, [27]

makes it possible to impose additional language specifications when moving to the

start state of a new configuration. Although the states methods support the design

of supervisors for RMS, they are all formulated in the framework of monolithic su-

pervisory control and hence not applicable for large-scale RMS. A notable exception

3

is the previous work in [28] that introduces the formalism for the abstraction-based

supervisory control for RMS. Nevertheless, this paper only provides the necessary

definitions but does not develop the required design methods.

The main aim of this thesis is to address all the requirements stated above by pro-

viding design methods for the abstraction-based supervisory control of RMS as an

extension of the work in [28]. To this end, the thesis first identifies the required ideas

and conditions, which include concepts from modular and abstraction-based supervi-

sory control as well as state attraction. Specifically, the notion of a composed state

attractor is employed as an extension of the monolithic definition of state attraction.

In particular, a composed attractor allows multiple components of a modular system

to jointly move to a desired system state. Based on this notion, the main focus of

the thesis is the computation of supervisors in order to realize composed attractors.

To this end, the thesis develops a new framework for the abstraction-based state at-

traction, which is then extended to a modular realization. As a special feature, this

framework is compatible with the classical modular and abstraction-based supervisor

control such that supervisors for the normal system operation and for reconfiguration

can be used together. In summary, the main contributions of the thesis are

• the formulation of abstraction-based supervisory control for state attraction,

• the formulation of modular and abstraction-based supervisory control for state

attraction, which can be used for the control of RMS,

• the development of supervisor design algorithms for the modular and abstraction-

based supervisory control for state attraction.

The remainder of the thesis is organized as follows. Chapter 2 introduces background

information about discrete event systems and supervisory control. In Chapter 3, the

concept of state attraction is extended to abstraction-based state attraction. This con-

cept is then applied to the case of composed DES in Chapter 4 and supported by

examples. Conclusion and future works are given in Chapter 5.

4

CHAPTER 2

PRELIMINARIES

This section provides the background information for the thesis. Since the thesis work

builds on different research areas within the field of discrete event systems (DES),

various concepts are reviewed and the necessary notation is introduced. Section 2.1

give general background information about DES and formal languages and finite state

automata are introduced as the relevant modeling tools for DES in Section 2.2 and 2.3,

respectively. The classical supervisory control theory for DES is explained in Section

2.4. Since one main subject of the thesis is the usage of abstracted system models,

Section 2.5 to 2.7 provide the relevant information about suitable abstractions, their

properties and algorithms. Then, the concept of state attraction is described in Section

2.8 as the second main subject of the thesis. The combination of state attraction and

abstraction-based supervisory control is then considered in the problem statement in

Section 2.9.

2.1 Discrete Event Systems

This thesis considers systems that can be modeled in the framework of discrete event

systems (DES) [1, 8]. DES models are generally used to describe human-made sys-

tems with the following distinctive properties:

• the system has a (finite or infinite) set of discrete states,

• the system changes its state based on the occurrence of discrete events,

• a state change is denoted as a transition.

5

Hereby, it holds that the system spends time in the system state, whereas transitions

are assumed to occur instantaneously. Furthermore, it has to be emphasized that a

DES model has to be considered as a logical system model that does not capture

the exact timing of transitions and their associated events but rather represents their

sequential order.

A simple example of a DES is a light switch that can be modeled with two states:

ON and OFF. Transitions between these states occur if someone turns on or off the

light. This can be associated to the events turn_on and turn_off. Together, the

simple light switch can be represented by the states ON and OFF and the transitions

from state ON to state OFF with event turn_off and from state OFF to state ON

with event turn_on. In line with the above description, the system spends time in

the states ON and OFF, whereas the transitions (turning on and off the light) occur

instantaneously.

There are two common models for DES. On the one hand, formal languages are

used to characterize the sequential behavior of DES. On the other hand, finite state

automata are a modeling tool with a graphical representation that can also be used for

computations with DES. The next sections describe these DES models.

2.2 Formal Languages

Formal languages are defined using an alphabet Σ that is the set of all events of a

DES [31]. Then, the notion of a string can be introduced. A string s is a finite

sequence of events from the alphabet Σ and the length of the string s is written as |s|
and denotes the number of events in the string. The empty string ϵ is a special string

with no events and has the length |ϵ| = 0.

Considering the example with the light switch, the alphabet is Σ = {turn_on,
turn_off} and an example string could be s = turn_onturn_offturn_off.

In this example, |s| = 3.

When modeling the behavior of DES, the concept of formal languages is used. A

formal language L is a set of strings over some alphabet Σ. In this context, there are

6

two special languages that have to be introduced. On the one hand, L = ∅ represents

the empty language that does not contain any string. Here, it has to be emphasized that

L = ∅ ≠ L′ = {ϵ} to avoid confusion. That is, L′ = {ϵ} is not the empty language

since it contains the empty string. On the other hand, Σ⋆ is defined as the language

of all strings over the alphabet Σ including the empty string ϵ. In the literature, Σ⋆ is

also denoted as the Kleene Closure of Σ. In line with the definition of Σ⋆ it can also

be concluded that any language L over the alphabet Σ must be a subset of Σ⋆.

Returning to the example with the light switch, it is possible to start enumerating Σ⋆ =

{ϵ,turn_on,turn_off,turn_onturn_on,turn_onturn_off,
turn_offturn_on,turn_offturn_off, . . .}. Here, it is clear that Σ⋆ con-

tains an infinite number of strings and can be enumerated by iteratively writing down

all strings with a certain length.

It is further possible to define different operations on strings and languages. Con-

sidering two strings s1, s2 ∈ Σ⋆, the concatenation of both strings is the string s1 s2.

Writing a string as s = s1 s2, the substring s1 is called a prefix of s and the substring

s2 is called a suffix of s. In addition, the prefix closure of a language L is defined as

L = {s ∈ Σ⋆|∃u ∈ Σ⋆ such that su ∈ L} (2.1)

That is, L contains all prefixes of strings in L, which implies that L ⊆ L. A language

L is prefix closed if it is equal to its prefix closure L = L, that is, L = L.

2.3 Finite State Automata

Finite state automata are a convenient modeling tool for DES. A finite state automaton

is represented by a 5-tuple

G = (X,Σ, δ, x0, Xm) (2.2)

where

• X is a finite set of states.

• Σ is a finite set of events.

7

• δ : X × Σ → X is a partial transition function.

• x0 ∈ X is the initial state (state where the automata starts from).

• Xm ⊆ X is the set of marked states (states that the system should reach in order

to complete a task).

A finite state automaton further has a graphical representation where states are repre-

sented by circles and transitions are represented by arrows between states. Transitions

are labeled by their respective events, marked states are shown as a double circle and

the initial state is shown by an incoming arrow.

Consider the example automaton for the light switch in Figure 2.1. Here, the set of

states is X = {1, 2} and there are two transitions represented by δ(1,turn_on) = 2

and δ(2,turn_off) = 1. Note that the transition function is partial in the sense that

it is not the case that transitions for all events are defined for all states. For example,

a transition with the event turn_on is defined at state 1, which would be written

as δ(1,turn_on)! (the transition exists). However, there is no transition for event

turn_off at state 1, which would be formally written as ¬δ(1,turn_off)! (the

transition does not exist). The initial state of G is x0 = 1 and G has one marked state

Xm = {1}. Semantically, state 1 is chosen as the marked state to indicate that it is

desired that the light will always be turned off again.

Figure 2.1: Simple automaton example.

The behavior of an automaton is represented by the languages L(G) and Lm(G) as

follows:

L(G) = {s ∈ Σ⋆|δ(x0, s)!} (2.3)

Lm(G) = {s ∈ L(G)|δ(x0, s) ∈ Xm} (2.4)

The closed language L(G) includes all strings that follow event sequences using the

transitions starting from the initial state to any state of G. Lm(G) is the marked

8

language, which includes all strings that follow event sequences using the transitions

starting from the initial state to any marked state of G.

The definition of L(G) and Lm(G) implies that Lm(G) ⊆ L(G) and it is also the case

that Lm(G) ⊆ L(G). However, it is possible that there are strings s ∈ L(G) that do

not belong to Lm(G), that is, s ̸∈ Lm(G). For such a string s, it is the case that s

is not the prefix of a string in Lm(G), which implies that it is not possible to reach a

marked state in G after s. This is denoted as a blocking situation. Accordingly, an

automaton G is called nonblocking if the described situation does not happen. This

holds if

Lm(G) = L(G) (2.5)

Large DES commonly consist of many subsystems, where each subsystem is modeled

by a separate finite state automaton. The synchronized behavior of such subsystem

automata can be represented by the synchronous composition operation. This oper-

ation synchronizes the different automata on the occurrence of their shared events,

which are events that appear in the alphabets of different automata. Events that

only appear in the alphabet of a single automaton are considered as local and hence

need not be synchronized. Formally, the synchronous composition G1||G2 is de-

fined for two automata G1, G2, writing G1 = (X1,Σ1, δ1, x0,1, Xm,1) and G2 =

(X2,Σ2, δ2, x0,2, Xm,2). The synchronous composition is written as:

G12 = G1||G2 = (X12,Σ12, δ12, x0,12, Xm,12) (2.6)

with the following rules [1]:

• Set of states: X12 = X1 ×X2 (canonical product of X1 and X2),

• Alphabet: Σ12 = Σ1 ∪ Σ2,

• Initial state: x0,12 = (x0,1, x0,2) (pair of initial states of G1 and G2),

• Marked states: Xm,12 = Xm,1 ×Xm,2 (canonical product of Xm,1 and Xm,2),

• Transition function: For (x1, x2) ∈ X12 and σ ∈ Σ12:

δ12((x1, x2), σ) =


(δ1(x1, σ), δ2(x2, σ) if σ ∈ Σ1 ∩ Σ2 ∧ δ1(x1, σ)! ∧ δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \ Σ2 ∧ δ1(x1, σ)!

(x1, δ2(x2, σ)) if σ ∈ Σ2 \ Σ1 ∧ δ2(x2, σ)!

9

That is, for shared events in Σ1 ∩ Σ2, a transition is only defined at (x1, x2)

if the event is defined at x1 in G1 and at x2 in G2 (first line). Events that are

not shared (second and third line) occur independently of the respective other

automaton.

As an example, consider the automata G1 and G2 and their synchronous composition

G12 in Figure 2.2. It can be seen that the automata are synchronized on the shared

event b, whereas the remaining events can occur independently. In addition, it is

interesting to note that, although both G1 and G2 are nonblocking (there is a path

from any state to a marked state), this is not the case for G12. In G12, it is not possible

to reach a marked state from (3, 1).

Figure 2.2: Synchronous composition example.

2.4 Supervisory Control Theory

The supervisory control theory (SCT) has the aim of controlling the behavior of a

plant DES to fulfill a specification that is given in the form of a formal language. It

was introduced by Ramadge and Wonham [8] and is hence also called the Ramadge/-

Wonham framework. In order to apply control, the alphabet Σ of a DES is divided

10

into two disjoint subsets as follows: Σ = Σc∪̇Σu and

• Σc represents the set of controllable events,

• Σu represents the set of uncontrollable events.

Semantically, the set Σc consists of events that can be disabled, which could for ex-

ample represent actuator events. Differently, the set Σu consists of events that cannot

be disabled such as sensor events.

When applying supervisory control, it is assumed that there is a system under con-

trol, denoted as the plant, whose uncontrolled behavior is modeled by an automaton

G. We next introduce the notion of a supervisor, which can also be represented by an

automaton S = (Q,Σ, ν, q0, Qm). S is a supervisor for the plant G with the uncon-

trollable events Σu ⊆ Σ if S only disables events in Σc. That is, for all s ∈ L(G||S)
and σ ∈ Σu with sσ ∈ L(G) also sσ ∈ L(S).

A specification is given by a language K ⊆ Lm(G) and represents desired strings. K

is said to be controllable for L(G) and Σu if

KΣu ∩ L(G) ⊆ K. (2.7)

That is, each string s that is a concatenation of a desired string by an uncontrollable

event (s ∈ KΣu) and at the same time s is possible in the plant (s ∈ L(G)) should

also be allowed by the specification (s ∈ K). The reason is that, if s was not allowed

by the specification, it would not be possible to prevent s from happening since the

last event of s is uncontrollable. If a specification K is controllable for L(G) and Σu,

it is ensured that there exists a supervisor S such that Lm(G||S) = K [8]. If K is

not controllable for L(G) and Σu, it is possible to compute the supremal controllable

sublanguage of K, which is written as

K↑c = SupC(K,L(G),Σu) (2.8)

This supremal controllable sublanguage can be realized by a nonblocking supervisor

in the form Lm(G||S) = K↑c if

SupC(K,L(G),Σu) ̸= ∅. (2.9)

11

In this case, it is also guaranteed that K↑c represents the largest possible controllable

subset of K and is hence denoted as maximally permissive. The closed loop system

for a plant G and a supervisor S is obtained by using synchronous composition oper-

ation G||S. The closed language and the marked language of G||S are L(G)||L(S)
and Lm(G)||Lm(S).

Although specifications and controllability are formulated for languages, it is com-

mon to represent specifications by an automaton C = (Y,Σ, β, y0, Ym) with K =

Lm(C) in practice.

A supervisory control example is given in Figure 2.3. Here, it is assumed that the

controllable events are shown as ticks on transitions, that is, Σc = {a,c,e,f} and

the remaining events are uncontrollable. The specification automaton C specifies

that the event b should not occur after the plant reaches state 3 and f should not

occur in state 5. The specification Lm(C) is not controllable since b needs to be

disabled at state 3 of the plant, which is not possible since b ∈ Σu. Accordingly, the

supremal controllable sublanguage is computed, which is given as Lm(S) in Figure

2.3. Specifically, the event c has to be disable at state 2 of the plant in order to avoid

reaching state 3 (where b could occur). In addition, e needs to disabled because of

the same reason. Since Lm(S) is controllable for G and Σu, the automaton S can

directly be used as a supervisor for G.

2.5 Natural Observer and Abstraction

The classical supervisory control theory as described above is suitable for DES of

small size. In the case of large-scale DES, the problem of state space explosion is

encountered, which means that such system have too many states to perform com-

putations. This problem can partially be solved when applying abstraction-based

supervisory control [9–11, 32, 33]. The main idea is to compute a smaller model of

the DES that still preserves important information for the supervisor computation.

One valid approach to find such smaller model is the usage of the natural projection

operation. Given a string s ∈ Σ⋆ over an alphabet Σ, the natural projection keeps

all events in an alphabet Σ̂ ⊆ Σ and deletes the others (Σ \ Σ̂) from s. This can be

12

Figure 2.3: Supervisory control example.

formalized as follows. Let Σ̂ ⊆ Σ. Then, the natural projection is defined as a map

p : Σ⋆ → Σ̂ for s ∈ Σ⋆ and σ ∈ Σ with

p(ϵ) = ϵ (2.10)

p(σ) =

 σ if σ ∈ Σ̂

ϵ otherwise
(2.11)

p(sσ) = p(s)p(σ) (2.12)

Consider the example automaton G1 in Figure 2.4 with the alphabet Σ = {a,b,c,d}.

Assume we choose Σ̂ = {c,d}. Applying the natural projection p to the example

string s = abcdb ∈ Lm(G1), we obtain p(s) = cd. That is, the occurrences of the

events a and b, which belong to Σ \ Σ̂ are erased from s.

It is further possible to define the natural projection for languages by applying the

natural projection to each string of the language. That is, for L ⊆ Σ⋆, it holds that

p(L) = {p(s)|s ∈ L}. (2.13)

The resulting language p(L) can again be represented by an automaton. In addition,

the projection can be directly applied to the languages of a given automaton G. The

13

Figure 2.4: Example automata.

result is an automaton Ĝ such that

Lm(Ĝ) = p(Lm(G)) and L(Ĝ) = p(L(G)). (2.14)

We will call Ĝ the abstracted automaton of G. Examples for the automata G1 and

G2 in Figure 2.4 are shown in Figure 2.5. Here, the abstraction alphabet Σ̂1 = {c,d}
and Σ̂2 = {a,b,e,f,g} are used.

Figure 2.5: Abstraction automata.

The main goal when computing an abstraction is to obtain smaller automata for sim-

plified computations. However, applying the natural projection is not guaranteed to

produce smaller abstraction automata. In the worst case, the number of states of the

abstraction automaton Ĝ can be exponential in the number of states of the original

automaton G [2]. Fortunately, there are conditions that ensure that Ĝ does not have

more states than G [10, 32]. The most commonly used condition for this purpose is

the natural observer condition:

Definition 1 (Natural observer [32]). Let L ⊆ Σ∗ be a language, and let p0 : Σ∗ →
Σ∗

0 be the natural projection for Σ0 ⊆ Σ. p0 is an L-observer iff for all s ∈ L and

t ∈ Σ∗
0

p0(s)t ∈ p0(L) ⇒ ∃u ∈ Σ∗ s.t. su ∈ L ∧ p0(su) = p0(s)t.

14

In words, p0 is an L-observer if any string s ∈ L can be extended to a string in L

whenever its projection p0(s) can be extended to a string in p0(L). As an example,

consider G2 in Figure 2.4 and Ĝ2 in Figure 2.5 with Σ̂2 = {a,b,e,f,g}. Then,

the string s = a ∈ L(G2) has the corresponding string p(s) = a ∈ L(Ĝ2). It

can be seen that p(s)t = afg ∈ Lm(Ĝ2), that is it is possible to reach a marked

state after p(s) = a in Ĝ2. At the same time, there is a string u = cfg ∈ Σ⋆
2

such that s u = acfg ∈ Lm(G2) and p(u) = t. That is, the information provided

by the abstraction is correct and a marked state can also be reached in G2. It can

be verified that this condition is fulfilled for all strings in the example automata G1

and G2 with their respective natural projection. That is, these natural projections are

natural observers. As a counter-example, we look at G2 with a different abstraction

alphabet Σ̂2 = {c,d,g}. The corresponding abstraction automaton is also shown in

Figure 2.6. Here, it can be checked that the natural observer condition is violated.

Consider the string s = a ∈ L(G) with p(s) = ϵ. Then p(s) t = ϵp(dg) = dg ∈
Lm(Ĝ2) but there is no string u ∈ Σ⋆

2 such that au ∈ Lm(G2) and p(u) = t = dg. In

words, the abstraction Ĝ2 suggests that the sequence dg is possible after a but this is

actually not the case in the original automaton G2.

Figure 2.6: Violation of the observer condition.

The benefit of the natural observer condition is stated in Theorem 1.

Theorem 1. Let G be an automaton over the alphabet Σ and let Σ̂ ⊆ Σ be an ab-

straction alphabet. Assume the automaton for the abstraction is Ĝ such that Lm(Ĝ) =

p(Lm(G)). If the natural projection p : Σ∗ → Σ̂∗ is a natural observer, then G is non-

blocking if and only if Ĝ is nonblocking.

The important implication of this theorem is that the abstraction automaton Ĝ can be

used both for checking if the original automaton is nonblocking or for computing a

15

nonblocking supervisor as described in Section 2.4. That is, the supervisor computa-

tion can be performed with automata that have a smaller number of states.

2.6 Verification of the Natural Observer Condition

One main objective of this thesis is the computation of abstractions for a particular

supervisory control problem. This computation is based on a property of the natural

observer conditions that is illustrated in Figure 2.7. Specifically, it holds that the

natural observer defines a partition of the state space of the original plant automaton

G [34], which is illustrated for the example automata G1 and G2 introduced before

and different abstraction alphabets. First consider G1 in Figure 2.7. When using

Σ̂1 = {a}, it holds that all states of G1 are in the same partition. The reason is that it

is possible to reach any state from any other state in G1 with only events in Σ1 \ Σ̂1.

When using Σ̂1 = {a,b,c}, the states of G1 are partitioned into two classes. In the

class with state 1, a marked state is reachable with only events in Σ1 \ Σ̂1 and the

abstraction events a and c are possible. Differently, in the class with the states 2

and 3, no marked state is reachable with events in Σ1 \ Σ̂1 and only the abstraction

event b is possible after events in Σ1 \ Σ̂1. With the same explanation, the states are

partitioned into two classes if Σ̂1 = {c,d}.

Figure 2.7: Partitions for different abstraction alphabets for G1: Σ̂1 = {a} (left);

Σ̂1 = {a,b,c} (center), Σ̂1 = {c,d} (right).

16

The usage of the described fact requires some theoretical background on set theory

and quasi-congruences. This background is provided next with the necessary expla-

nations.

2.6.1 Dynamic System and Quasi Congruence

We present basic results from set theory as employed in [34–36]. We denote E(M) the

set of all equivalence relations on the set M . For µ ∈ E(M), [m]µ is the equivalence

class containing m ∈ M . The set of equivalence classes of µ is written as M/µ :=

{[m]µ|m ∈ M} and the canonical projection cpµ : M → M/µ maps an element

m ∈ M to its equivalence class [m]µ. Let f : M → N be a function. The equivalence

relation ker f is the kernel of f and is defined as follows: for m,m′ ∈ M ,

m ≡ m′ mod ker f ⇔ f(m) = f(m′). (2.15)

Given two equivalence relations η and µ on M , µ ≤ η, i.e. µ refines η, if m ≡ m′

mod µ ⇒ m ≡ m′ mod η for all m,m′ ∈ M . In addition, we define the meet

operation ∧ for E(M) as follows. For any two elements µ, η ∈ E(M), it holds for all

m,m′ ∈ M that

m ≡ m′ mod (µ ∧ η) ⇔ m ≡ m′ mod µ and m ≡ m′ mod η. (2.16)

Let M and N be sets and f : M → 2N be a set-valued function. It is also assumed

that φ ∈ E(N), and the canonical projection cpφ is naturally extended to sets. The

equivalence relation φ ◦ f on M is defined for m,m′ ∈ M by

m ≡ m′ mod φ ◦ f ⇔ cpφ(f(m)) = cpφ(f(m
′)). (2.17)

Now let fi : M → 2M be functions, where i ranges over an index set I. Then

S := (M, {fi|i ∈ I}) is called a dynamic system [34]. The equivalence relation

φ ∈ E(M) is called a quasi-congruence for S if

φ ≤
∧
i∈I

(φ ◦ fi). (2.18)

We next illustrate the provided notions based on the dynamic system used for the

verification of the natural observer condition. Let G = (X,Σ, δ, x0, Xm) be an au-

tomaton and let Σ̂ ⊆ Σ with the natural projection p : Σ⋆ → Σ̂⋆. Then, the dynamic

17

system Hobs = (X, {∆σ|σ ∈ Σ̂} ∪∆m) is defined with

∆σ : X → 2X :x → {δ(x, uσu′)|uu′ ∈ (Σ \ Σ̂)∗},

∆m : X → 2Xm :x → {δ(x, u) ∈ Xm|u ∈ (Σ \ Σ̂)∗}.

That is, for each abstraction event σ ∈ Σ̂, a function ∆σ is introduced. This function

maps any state x ∈ X to all states x′ ∈ X that can be reached from x with the

concatenation of a substring u with events in Σ \ Σ̂, the event σ and again a substring

u′ with events in Σ \ Σ̂. Specifically, it holds that p(uσu′) = σ. In addition, ∆m maps

any state x ∈ X to all marked states that are locally reachable, that is with a string

u with events in Σ \ Σ̂, which means that p(u) = ϵ. The dynamic systems for the

example automaton G1 and different abstraction alphabets are shown in Figure 2.8.

Figure 2.8: Dynamic system and quasi-congruence example: Σ̂1 = {a} (left), Σ̂1 =

{b} (middle), Σ̂1 = {d} (right).

In order to illustrate the concept of a quasi-congruence, we look at the dynamic H1,obs

for Σ̂1 = {b} in the middle of the figure. Here, the maps are as follows:

∆b :


1 → {1, 2, 3}
2 → {1, 2, 3}
3 → {1, 2, 3}

and ∆m :


1 → {1}
2 → ∅
3 → ∅

. (2.19)

18

Then, a quasi-congruence for this dynamic system would be given by the equivalence

relation φ with the canonical projection

cpφ :


1 → A

2 → B

3 → B

(2.20)

with two equivalence classes A and B. Specifically, we can determine the maps for

the concatenation in (2.17) as

φ ◦∆b :


1 → {A,B}
2 → {A,B}
3 → {A,B}

and φ ◦∆m :


1 → {A}
2 → ∅
3 → ∅

. (2.21)

That is, using (2.18), it holds that 1 ≡ 2 ≡ 3 for φ ◦∆b and 2 ≡ 3 for φ ◦∆m. When

taking the meet in (2.18) according to (2.16), we obtain that φ ◦∆b ∧φ ◦∆m induces

the equivalence relation that is described by the canonical projection cpφ introduced

above. That is, indeed

φ ≤ φ ◦∆b ∧ φ ◦∆m, (2.22)

which implies that φ is a quasi-congruence for the dynamic system H1. The associ-

ated partition of the states of G1 is shown below the dynamic system in the figure.

A similar analysis for the other examples in Figure 2.8 can be done to confirm the

respective quasi-congruences.

According to [34], the coarsest quasi-congruence φ⋆ ∈ E(X) for Hobs exists and can

be computed with the algorithm in [37] with a complexity of O(N3
X ·NT), where NX

and NT denote the number of states and transitions of G, respectively.

2.6.2 Verification of the Natural Observer Condition

It is now possible to check the natural observer condition based on the dynamic sys-

tem introduced in the previous sections. To this end, we introduce the (nondeter-

ministic) quotient automaton (QA) Gφ,Σ̂ = (Y, Σ̂ ∪ {τ0}, ν, y0, Ym) of an automaton

G = (X,Σ, δ, x0, Xm) for an equivalence relation φ ∈ E(X) and an alphabet Σ̂ ⊆ Σ

as in [34, 38]. It holds that Y := X/φ is the quotient set with the associated canon-

ical projection cpφ : X → Y . The initial state and the marked states in the QA are

19

y0 = cpφ(x0) and Ym = cpφ(Xm), respectively. Also τ0 ̸∈ Σ is an additional label.

The nondeterministic transition function ν : Y × (Σ̂∪{τ0}) → 2Y of Gφ,Σ̂ is defined

as

ν(y, σ) :=

 {cpφ(δ(x, σ))|x ∈ cp−1
φ (y)} if σ ∈ Σ̂

{cpφ(δ(x, γ))|γ ∈ (Σ \ Σ̂), x ∈ cp−1
φ (y)} \ {y} if σ = τ0.

Examples for the quasi-congruemces in Figure 2.8 are shown in Figure 2.9. The

states of the quotient automata correspond to the equivalence classes of the respective

quasi-congruence. In addition, transitions between the equivalence classes are intro-

duced for events in Σ̂ and for τ0 if there are transitions with events in Σ \ Σ̂ between

equivalence classes. This is for example the case for the event a of the automaton in

the middle of Figure 2.8.

Figure 2.9: Quotient automata for the example in Figure 2.8.

It is now possible to verify the natural observer condition using the QA Gφ⋆,Σ̂.

Theorem 2 (Observer Verification [34]). The projection p is an Lm(G)-observer iff

Gφ⋆,Σ̂ is deterministic and contains no τ0-transitions.

According to this theorem, the natural projection for the example on the left of Figure

2.9 is a natural observer, whereas the natural observer condition is violated for the

other examples. As an additional example, Figure 2.10 shows the case where the

quotient automaton is nondeterministic. Here, it is possible to reach the two different

equivalence classes C and D from the state B with the same event c.

2.6.3 Computation of Abstractions

In order to apply abstraction-based supervisory control, it is desired to compute ab-

stractions, while fulfilling the natural observer property. Hereby, it is generally the

case that certain events, denoted as Σ̂∩ must be in the abstraction alphabet, whereas

20

Figure 2.10: Nondeterministic quotient automaton.

the projection p : Σ⋆ → Σ̂⋆
∩ need not be a natural observer. In this case, it is de-

sired to add events to the abstraction alphabet Σ̂ in order to fulfill the natural observer

condition.

An efficient algorithm for this purpose was proposed in [36]. Since an extension of

this algorithm is developed in this thesis, we briefly describe the algorithm in [36]

with the help of several examples. Consider G1 and G2 in Figure 2.11. Here, it is the

case that the natural observer condition is violated due to τ0 transitions in the quotient

automaton. This problem can be resolved by simply adding the corresponding events

to the abstraction alphabet. For G1, a and c need to be added such that the projection

with the abstraction alphabet Σ̂1 = {a,b,c} is a natural observer. Similarly, it is

enough to add c to obtain Σ̂2 = {c,d} for G2. The respective abstraction automata

are also shown in the figure.

The situation is more complicated in the case of nondeterminism as can be seen in

Figure 2.12. Here, the events a and b have to be added to Σ̂ in order to avoid the

τ0-transition. In addition, the equivalence class corresponding to state B has two

outgoing transitions with c to different equivalence classes. In order to make the ab-

straction deterministic, it is hence required to split the states of this equivalence class.

This can be done by adding the events e and f to the abstraction alphabet. The main

point here is that the states 4 and 5 of G are so-called exit states that have transitions

in Σ̂ since c definitely belongs to Σ̂. Since the transitions with c introduce nondeter-

minism, the pair (4,5) is denoted as a bad exit state pair. Now, it is required to ensure

that both states are not reachable from each other in order to split the equivalence

21

Figure 2.11: Resolving τ0-transitions.

class. The result with the abstraction alphabet Σ̂ = {a,b,c,e,f,g,h} is also shown

in the figure.

Figure 2.12: Resolving nondeterminism.

The basic algorithm for the alphabet extension according to [36] is given as follows,

assuming that an automaton G and an initial abstraction alphabet Σ̂∩ are given:

1. Initialize: Σ̂ = Σ̂∩

22

2. Compute Gφ,Σ̂ using the algorithm in [37]

3. Determine all events that correspond to τ0-transitions in Gφ,Σ̂. Call these events

Στ

4. Σ̂ = Σ̂ ∪ Σ0

5. Compute all bad exit state pairs

6. Determine all events within equivalence classes that have bad exit state pairs.

Denote these events as Σb.

7. Σ̂ = Σ̂ ∪ Σb

8. For all events σ ∈ Σb

(a) Remove σ from Σ̂

(b) Check if the bad pairs are still split

(c) If no, put σ back into Σ̂

9. Check if the projection with the resulting Σ̂ is a natural projection

10. If yes, the algorithm terminates

11. If no, we re-start from item 2.

According to [36], it is guaranteed that the algorithm terminates since there is only

a finite number of events that can be added to Σ̂. Re-starting at item 11. is required,

since it is not guaranteed that the projection is a natural observer after splitting equiv-

alence classes with bad exit state pairs.

2.7 Abstraction-based Supervisory Control

The SCT described in the previous sections is based on the assumption of a single

plant automaton, a single specification and a single supervisor. Hence, this basic ver-

sion of the SCT is also denoted as monolithic supervisory control. Nevertheless, it

is the case in practice that DES have a modular structure with multiple components,

23

where each component has an individual automaton model. In addition, it is gener-

ally not the case that a specification for the overall system is given. Instead, several

specifications for different components and their interaction are usually given.

We can consider the system in Figure 2.13 with the corresponding automata models

in Figure 2.14 as an example of a manufacturing system that can be modeled in the

DES framework. Here, there are multiple components as follows:

• SF: this component represents a stack feeder, which is used to feed products to

the manufacturing system. It is modeled by an automaton with a single state

and a selfloop with the event s-r1, which represents feeding a product to the

neighboring component.

• RMT1: this component represents a reconfigurable machine tool with multiple

functions, which is modeled by an automaton with two states. It is assumed that

RMT1 received products from SF, then spends time in state 2 for processing and

delivers products to the neighboring RT with event r1-rt.

• RT: this component represents a rotary table that receives products from RMT1,

then rotates in direction of RMT2 and delivers products to RMT2 with the event

rt-r2.

• RMT2: this component has the same functionality as RMT1 but is located be-

tween RT and M1. It can receive products from RT (rt-r2) and M1 (m1-r2)

and deliver products to RT (r2-rt) and M1 (r2-m1).

• M1: this component represents a machine with a single function. It receives

products from RMT2 (r2-m1) and delivers products to RMT2 (m1-r2).

Note that the system components are described by very simple automata in order to

allow a simple representation.

In addition, we assume that the specification automata in Figure 2.15 are given for the

example problem.

• D1 specifies that products coming from SF to RMT1 should be delivered from

RMT1 to RT.

24

Figure 2.13: Example plant for abstraction-based control.

Figure 2.14: Plant automata for the example.

• D2 specifies that products coming RMT1 to RT should be transported to RMT2.

• D3 specifies that products coming from RT to RMT2 should be transported out

of the system.

• D4 specifies that products coming from RT to RMT2 should be transported to

M1.

• D5 specifies that products coming from RMT2 to M1 should return to RMT2

(after processing).

• D6 specifies that products coming from M1 to RMT2 should be transported to

RT.

In principle, the described scenario with multiple plant components and specifications

can be converted to the monolithic case by simply computing a single plant automaton

as the synchronous composition of all plant automata and a single specification as the

25

Figure 2.15: Specification automata for the example.

synchronous composition of all specification automata. However, such conversion

generally leads to the so-called state space explosion problem. Specifically, it is the

case that the state space of the plant automaton and specification automaton grows

exponentially with the number of components. In the example, this can be seen when

looking at the number of states of the plant automata, which have at most two states

each. However, the number of states of the synchronous composition is in the order

of the product of the component state numbers, which would be 24 in the example.

Accordingly, it is desired to avoid computing the synchronous composition of all plant

and specification automata. A method that serves this purpose is discussed next.

For the general case, we consider a DES that is modeled by multiple component

automata Gi, i = 1, . . . , n with the corresponding alphabets Σi = Σi,u∪̇Σi,c. We write

Σi,u and Σi,c for the uncontrollable and the controllable events, respectively. Then, it

is possible to define the shared events Σi,∩ =
⋃n

k=1,k ̸=i(Σi ∩ Σk) of each component.

Σi,∩ represents all the events that belong to Σi and at least one of the other component

alphabets. Then, the overall set of shared events is given by Σ∩ =
⋃n

i=1Σi,s.

In the scope of the monolithic SCT, the overall system model is G = ∥ni=1Gi with the

alphabet Σ =
⋃n

i=1Σi. Considering the shared events, it is reasonable to assume that

the controllability property of each shared event is unique. That is, if two components

share an event, then they should agree on the control status of this event, i.e. ∀i, k, i ̸=
k, Σi,u ∩ Σk,c = ∅. If this condition is fulfilled, we can define the overall sets of

uncontrollable and controllable events as Σu =
⋃n

i=1Σi,u and Σc =
⋃

i Σi,c.

As noted above, also multiple specifications are usually provided. We assume that

26

component specifications Ki ⊆ Lm(Gi), i = 1, . . . , n are given. In addition, there

can be a global specification K̂ ⊆ Σ̂⋆, whereby it is assumed that Σ∩ ⊆ Σ̂ ⊆ Σ. That

is, K̂ specifies the interaction behavior of the different plant components, which has

to be formulated using an alphabet that includes the shared events Σ∩. Then, the main

idea is to apply an abstraction-based approach as illustrated in Fig. 2.16 [38].

Figure 2.16: Hierarchical and decentralized control architecture.

Having the plant components Gi and the specifications Ki for i = 1, . . . , n, the first

step is to compute component supervisors Si, i = 1, . . . , n by applying the standard

supervisor computation as described in Section 2.4:

Lm(Si) = SupC(Ki, L(Gi),Σu,i).

The obtained closed loops represented by Gi||Si are then abstracted using projections

pi : Σ⋆
i → (Σi ∩ Σ̂)⋆ in order to obtain abstracted closed loops Ĝi, i = 1, . . . , n.

Hereby, the automata Ĝi are computed such that

Lm(Ĝi) = pi(Lm(Gi||Si)) and L(Ĝi) = pi(L(Gi||Si)).

In the next step, it is possible to compute the overall abstracted closed loop as the

synchronous composition of the abstracted closed-loops with

Ĝ = ||ni=1Ĝi

Noting that the alphabet of Ĝ is the same as the alphabet of the specification K̂, it is

now possible to determine an abstraction-based supervisor Ŝ such that

Lm(Ŝ) = SupC(K̂, L(Ĝ),Σu ∩ Σ̂).

Together, we obtained the supervisors Si for i = 1, . . . , n for the modular plant com-

ponents and the supervisor Ŝ for the coordination of the interaction behavior of the

different components. That is, we can realize the overall closed loop as

Ŝ||(||ni=1Si||Gi). (2.23)

27

The main important fact is that the overall closed loop in (2.23) is nonblocking if the

used projections pi, i = 1, . . . , n are all natural observers as shown in [9, 38].

Applying the described abstraction-based control method to the example system, we

first identify the component models. One possibility is to use all plant components as

separate models, which generally leads to an inefficient design. In this example, we

use two component models by grouping plant models as follows:

• G1 = HSF||HRMT1||HRT,

• G2 = HRMT2||HM1.

Then, the corresponding specifications can be written as

• C1 = D1||D2||D3 and K1 = Lm(C1),

• C2 = D4||D5||D6 and K2 = Lm(C2).

Computing SupC(K1, L(G1),Σ1,u) = Lm(S1) and SupC(K2, L(G2),Σ2,u) = Lm(S2),

the supervisors S1 and S2 in Figure 2.17 for the modular components G1 and G2

are obtained. Here, the the shared events are Σ∩ = {r2-rt,rt-r2}. In order

to fulfill the natural observer conditions for all abstractions, also the events s-r1

and r1-rt need to be added to the overall abstraction alphabet to obtain Σ̂ =

{s-r1,r1-rt,rt-r2,r2-rt}. The resulting abstracted closed loops Ŝ1 and Ŝ2

are shown in Figure 2.18 together with the overall abstracted closed loop Ĝ = Ŝ1||Ŝ2.

Figure 2.17: Low-level supervisors for the example.

28

Figure 2.18: Abstracted closed loops Ŝ1 and Ŝ2 and overall abstracted closed loop Ĝ.

In this example, we see that the overall abstracted closed loop is nonblocking. In ad-

dition, we want to apply a high-level specification Ĉ that is given by the automaton in

Figure 2.19. It specified that the events s-r1 and rt-r2 should always occur alter-

nately. Computing the corresponding high-level supervisor as SupC(K̂, L(Ĝ), Σ̂u) =

Lm(Ŝ), the result in Figure 2.20 is obtained. Then, the overall closed loop for this

example is given by

Ŝ||S1||S2||G1||G2.

Figure 2.19: High-level specification Ĉ.

29

Figure 2.20: High-level supervisor Ŝ.

2.8 State Attraction

Consider that G = (X,Σ, δ, x0, Xm) and G′ = (X ′,Σ, δ′, x′
0, X

′
m) are finite state

automata. G′ is a subautomaton of G, if X ′ ⊆ X , x′
0 = x0 and for all x ∈ X ′ and

σ ∈ Σ, it holds that δ′(x, σ)! ⇒ δ′(x, σ) = δ(x, σ). In words, the automaton (G′)

is extracted from G by removing states and transitions. Then, we write (G′ ⊑ G)

if (G′) is a subautomaton of G. G′ is a strict subautomaton of G if additionally

δ(x, σ) ∈ X ′ ⇒ δ′(x, σ) = δ(x, σ). In words, only states are removed from G to

obtain G′. Figure 2.21 shows an example automaton G and Figure 2.22 shows an

example of a subautomaton of G (in the left) and a strict subautomaton of G (in the

right).

Figure 2.21: Example automaton G.

Consider an automaton G = (X,Σ, δ, x0, Xm) and the uncontrollable events (Σu).

Then, the subset X ′ ⊆ X is denoted as invariant set in G if there is no transition

30

Figure 2.22: Subautomaton (left) and strict subautomaton (right) of G.

leaving the states in the subset X ′: [30]

∀x ∈ X ′ and σ ∈ Σ it must hold that δ(x, σ)! ⇒ δ(x, σ) ∈ X ′ (2.24)

Moreover, the set (X ′ ⊆ X) is denoted as weakly invariant set if all the transitions

that leave the states in the subset X ′ are transitions with controllable events: [30]

∀x ∈ X ′ and σ ∈ Σu it holds that δ(x, σ)! ⇒ δ(x, σ) ∈ X ′ (2.25)

We note that this notion of invariance for automata can be considered as a closure

property and should not be confused with the notion of invariance for linear systems.

Definition 2. Let A ⊆ X ′ ⊆ X and consider that A,X ′ are invariant sets in G. A is

denoted as a strong attractor for X ′ in G if

• the strict subautomaton of G with the state set X ′ \ A is acyclic

• ∀x ∈ X ′, there is u ∈ Σ⋆ s.t. δ(x, u) ∈ A

Briefly, Definition 2 means that there must be no arbitrarily long strings outside the

state set A and the set A must be reached after a limited number of event occurrences

in the system. We also need to mention that the computational complexity of verifying

this condition is O(|X| + |Σ|). When we think the example automaton G with A =

{5,9} and X ′ = {2,3,5,7,8,9} as in Figure 2.23, A is a strong attractor for X ′

in G since G′ is acyclic.

Figure 2.24 shows another example automaton G with A = {5,9} and X ′ =

{2,3,4,5,7,8,9}. In this case, A is not a strong attractor for X ′ in G because G′

is not acyclic and there is no path from state 4 to A.

31

Figure 2.23: Strong attractor example.

Figure 2.24: Strong attractor counterexample.

Definition 3. Let A ⊆ X ′ ⊆ X and consider that A,X ′ are invariant sets in G.

Σu ⊆ σ be the set of uncontrollable events. A is denoted as a weak attractor for X ′

in G if there was a state feedback supervisor S ⊑ G s.t. A is a strong attractor for

X ′ in S.

In words, the set is weak attractor if there exists a supervisor that makes the closed

loop system G||S a strong attractor for X ′ in S.

When we think the example automaton G which is given in Figure 2.21 and set of

uncontrollable events Σu = {a,c,e,g,k,m,n,p}, Figure 2.25 shows an example

state-feedback supervisor S with A = {5,9}. In this case, A is a weak attractor for

X ′ = {3,5,7,8,9} in G using supervisor S.

Moreover, based on the references [30, 39], there exists a supremal subset of X de-

noted as the set ΩG(A) ⊆ X such that A is a weak attractor for ΩG(A) in the plant

G with the uncontrollable events Σu. The computational complexity of the algo-

rithm that computes the set ΩG(A) is (O(|X| · |Σ|)). |X| represents number of state

32

Figure 2.25: State-feedback supervisor S.

whereas, |Σ| represents number of events used in the system, respectively. Finally,

we need to mention that the computational complexity of the algorithm that obtains

the supervisor (S ⊑ G) that makes A strong attractor for ΩG(A) in the supervisor S

is O(|X|2).

The literature provides polynomial-time methods for computing supervisors for state

attraction [39,40]. For example, [39] determine a minimally restrictive optimal (state-

feedback) supervisor S with complexity O(|X|2).

2.9 Motivation and Problem Statement

The supervisory controller of a DES can be changed depending on the active system

configuration using reconfiguration control. One of the requirements that have to be

taken into account is that a suitable design strategy should be scalable to large-scale

systems when designing a reconfiguration controller. This requirement is important

because in large-scale systems, as the number of components of the system grows, the

number of plant states grows exponentially and this is called state space explosion.

Abstraction-based supervisory control can be applied to large-scale DES to handle

this problem. In this thesis, we use the idea of modular control and compute suitable

abstractions for each module. Then, we compute separate supervisors for the modular

components and the obtained abstraction. In a reconfigurable manufacturing system,

it is desired to finish one configuration’s operation before moving on to the next. This

enables the completion of active configuration products and it requires state attraction.

33

Even if we can compute supervisors for the normal operation, we cannot compute

supervisors for state attraction at the current state of research since no methods are

available in the existing literature. Previous work only formulates conditions but there

are no analysis or synthesis algorithms.

The main subject of this thesis is filling the remaining gaps in the literature. We intro-

duce the concept of a strong attraction-preserving abstraction and define conditions on

abstractions that are suitable for state attraction. We further describe the methodology

and algorithm for the computation of attraction-preserving abstractions and provide

illustrations by negative and positive examples. We also formulate the concept of a

composed invariant set and a composed attractor. Using this concept together with

attraction-preserving abstractions, we compute supervisors that are suitable for modu-

lar and abstraction-based state attraction. These supervisors allow switching from the

normal operation of the system to state attraction when performing a reconfiguration.

We also clarify our methodology by an illustrative example.

34

CHAPTER 3

ABSTRACTION-BASED STATE ATTRACTION

The existing literature does not consider the computation of supervisor for state-

attraction using the idea of abstractions. This chapter develops the new idea of

abstraction-based supervisor computation for state-attraction based on the notion of

attraction-preserving natural observers as introduced in Section 3.1. Furthermore,

Section 3.2 develops an algorithm for the computation of attraction-preserving natu-

ral observers and Section 3.3 defines and applies the new concept of abstraction-based

state-feedback supervisor.

3.1 Strong Attraction-Preserving Abstraction

In order to motivate the problem addressed in this section, we consider the exam-

ple automaton G in Figure 3.1. Here, the alphabet Σ = {a,b,c,d, α, β, γ}, the

uncontrollable events are Σu = {a,b,d, β, γ} and the abstraction alphabet is Σ̂ =

{α, β, γ} such that p : Σ⋆ → Σ̂⋆ is a natural observer. The equivalence classes are

also shown in the figure.

Figure 3.1: p is a natural observer for Lm(G) but not for Lm(G
′).

Nevertheless, when computing a state feedback supervisor G′ for A = {1} in G, as

35

shown in the figure, it turns out that p is no longer a natural observer for Lm(G
′). In

particular, disabling the controllable event c in order to remove the cycle between the

states 4 and 5, changes the equivalence classes as can be seen in the figure.

In order to capture this effect, we first introduce a special automaton HG =

(X,Σ, δG, x0, Xm) from G using the equivalence classes E ∈ X/µ corresponding

to a natural projection p : Σ⋆ → Σ̂⋆ with the induced equivalence relation µ. Let Σu

be the set of uncontrollable events and GE = (E,Σ, δE,−,−) be the strict subau-

tomaton of G with state set E (we are not interested in the initial state and final states

of GE). Defining XE = ΩGE
(Eex), we further write SE = (XE,Σ, νE,−,−) for a

state-feedback supervisor such that Eex is a strong attractor for XE in GE .

An example for this construction is shown for the equivalence class E1 of the example

in Figure 3.1. Here, the exit states are highlighted in gray. It can be seen that the

supervisor SE2 disables the event c in order to remove the loop between the states 4

and 5. As a result, E2,ex = {4, 5} is a strong attractor for ΩGE2
(E2,ex) = {3, 4, 5}.

Figure 3.2: Subautomaton GE2 and state-feedback supervisor SE2 .

The idea for the construction of HG is now to replace each subautomaton GE by the

corresponding state-feedback supervisor SE in G. Since this replacement only affects

transitions with events in Σ\Σ̂, all transitions with events in Σ̂ are directly taken from

G. Formally, this means that we define the transition relation δG of HG such that

• ∀E ∈ X/µ, ∀x ∈ E,∀σ ∈ (Σ \ Σ̂) : νE(x, σ)! ⇒ δG(x, σ) = νE(x, σ),

• ∀E ∈ X/µ, ∀x ∈ E,∀σ ∈ Σ̂ : δ(x, σ)! ⇒ δG(x, σ) = δ(x, σ).

The automaton HG for the example in Figure 3.1 is shown in equal to the automaton

G′ in the same figure. After defining HG, it is now possible to introduce the notion of

an attraction-preserving natural observer as in Definition 4.

36

Definition 4. Let G = (X,Σ, δ, x0, Xm) be a plant automaton with alphabet Σ and

let p : Σ⋆ → Σ̂⋆ be a natural projection with Σ̂ ⊆ Σ that fulfills the natural observer

condition. Also assume that HG is constructed as described above using the alphabet

Σu of uncontrollable events. Then, p is an abstraction-preserving natural observer

for G if

1. p is a natural observer for HG,

2. p(Lm(HG)) = p(Lm(G)).

In words, Definition 4 states that p is an attraction-preserving natural observer for G if

it is possible to apply state attraction locally (only considering events in Σ \ Σ̂ within

the equivalence classes induced by p) without changing 1. the validity of the natural

observer property and 2. the language of the abstracted automaton. Specifically, this

implies that there is an automaton Ĝ such that Lm(Ĝ) = p(Lm(G)) = p(Lm(HG)).

Since the conditions in Definition 4 are violated for the Example in Figure 3.1, we

consider another example in Figure 3.3. In this example, the abstraction alphabet is

Σ̂ = {α, β} and there are two equivalence classes induced by the projection p. When

computing HG, the same equivalence classes are obtained and both G and HG have

the same abstraction automaton Ĝ.

A different situation is observed when changing the automaton G as can be seen in

Figure 3.4. Here, the transition with event β is removed from state 15 compared to

the previous example. Then, p is still a natural observer for Lm(G) but p is no longer

a natural observer for Lm(HG). This can be seen in Figure 3.4, where HG now has 3

equivalence classes and there is a transition with the event h ∈ Σ \ Σ̂ between E2 and

E3. The reason for the violation of the natural observer condition is that the transition

with event i has been removed when computing the state-feedback supervisor for

state attraction SE2 in G. As a result, it is the case that there is no longer a path with

only events in Σ \ Σ̂ from state 15 to state 14, where the event β ∈ Σ̂ is possible. It

is interesting to note that the abstraction automaton for G and HG is still the same as

shown by Ĝ in the figure. Nevertheless, condition 1. in Definition 4 is violated.

After giving some intuition about attraction-preserving natural observers, we next

determine a sufficient condition that allows checking if a given projection p is an

37

Figure 3.3: Attraction-preserving natural observer illustration: positive case.

attraction-preserving natural observer for a given plant G with the uncontrollable

events Σu.

Theorem 3. Let G = (X,Σ, δ, x0, Xm) be a plant automaton with alphabet Σ and

let p : Σ⋆ → Σ̂⋆ be a natural projection with Σ̂ ⊆ Σ that fulfills the natural observer

condition. Also assume that µ is the equivalence relation on X defined by p with the

corresponding set of equivalence classes X/µ and the canonical projection cpµ. In

addition, for each equivalence class E ∈ X/µ, we write Eex ⊆ E for the exit states

in E. Finally, for each x ∈ X , we write Σ̂(x) = {σ ∈ Σ̂|δ(x, σ)!} for the high-level

events possible at state x. Then, the abstraction p is an attraction-preserving natural

observer for G if it holds that

1. for each E ∈ X/µ, ΩGE
(Eex) = E,

2. for all E ∈ X/µ and ∀x, x′ ∈ Eex, Σ̂(x) = Σ̂(x′) or Σ̂(x) ⊂ Σ̂(x′) and

38

Figure 3.4: Attraction-preserving natural observer illustration: negative case.

x ∈ ΩGE
({x′})

In words, the first condition states that the optimal set of weak attraction for each

subautomaton GE and the set of exit state Eex must be equal to E. That is, when

computing a state-feedback supervisor for state attraction with the plant automaton

GE and the target set Eex, it should be possible to reach Eex from any state in E

within a bounded number of event occurrences. The second condition is based on the

fact that p is a natural observer. That is, p defines an equivalence relation µ on the

states X of G. In addition, we know from Section 2.6.2 that there are no bad exit state

pairs (according to the natural observer condition) in any equivalence class E ∈ X/µ.

However, when computing the supervisor SE for state attraction when constructing

HG, some of the transitions will be disabled such that potentially additional bad state

pairs can be created. Then, it is ensured that there are no additional bad state pairs

39

when applying state attraction if condition 2. is fulfilled. That is, for each equivalence

class E, either all exit states have the same outgoing high-level transitions or the set of

outgoing high-level transition of an exit state x is a subset of the outgoing high-level

transitions of another exit state x′ and x′ can be reached from x even when applying

state attraction.

This condition is fulfilled in the example in Figure 3.3. Here, there are two equiv-

alence classes E1 and E2. E1 only has a single state such that condition 1. and 2.

in Theorem 3 are trivially fulfilled. Looking at E2, the set of exit states is E2,ex =

{14, 15} and ΩGE2
(E2,ex) = {9, 10, 11, 12, 13, 14, 15}. That is condition 1. is ful-

filled. In addition, it holds that Σ̂(14) = {β} ⊂ Σ̂(15) = {α, β}. Since 14 ∈
ΩGE2

({15}), condition 2. is also fulfilled. That is, p is an attraction-preserving natu-

ral observer for this example.

We next provide a proof of Theorem 3.

Proof. We assume that condition 1. and 2. in the theorem are fulfilled and want to

show that

1. p is a natural observer for HG,

2. p(Lm(HG)) = p(Lm(G)).

in line with Definition 4.

Since p is a natural observer by assumption, it is sufficient to show condition 2. that

is, we pick an arbitrary string t ∈ p(L(G)) and have to show that t ∈ p(L(HG)).

Since t ∈ p(L(G)), there must be a s ∈ L(G) such that p(s) = t and hence δ(x0, s)!.

Furthermore, we know that x0 ∈ E for some equivalence class E ∈ X/µ. Writing

Ĝ = (X̂, Σ̂, δ̂, x̂0, X̂m) for the abstraction automaton of G, we also know that x̂0 =

cpµ(x0) is the corresponding state of x0 in Ĝ. Now we can write t = σ1σ2 · · ·σm,

with events σi ∈ Σ̂ for i = 1, . . . ,m. Since p(s) = t ∈ p(L(G)), it further holds that

δ̂(x̂0, σ1)!. That is, there must be a state x′ ∈ E such that δ(x′, σ1)!. Since σ1 ∈ Σ̂

is an event in the abstraction alphabet, this also implies that x′ must be an exit state

in Eex. Moreover, because of condition 1. in the theorem, there must be some exit

state x′′ ∈ Eex and a u′′ ∈ (Σ \ Σ̂)⋆ such that δG(x0, u
′′) = x′′. If the event σ1 is not

40

defined at x′′, then there must be a string u′ ∈ (Σ \ Σ̂)⋆ to a state x′ ∈ Eex where

σ1 is defined because of condition 2. in the theorem. That is, writing u1 = u′′u′,

δG(x0, u1σ1)! and leads to the equivalence class that corresponds to δ̂(x̂, σ1). Then,

the same argument can be repeated for the remaining events σ2, . . . , σm. That is

together, there is a string u = u1σ1u2σ2 · · ·umσm ∈ Σ⋆ such that p(u) = t and

δG(x0, u)!. Thus, u ∈ L(HG) and p(u) = t ∈ p(L(HG)). Since the string t was

arbitrary, this concludes the proof.

We next provide additional examples in order to further illustrate Theorem 3. Figure

3.5 shows an example plant automaton G1 with alphabet Σ1 = {a,b,c,d,e}. Let

p1 : Σ⋆
1 → Σ̂⋆

1 be a natural projection with abstraction alphabet Σ̂1 = {a,b,d,e}.

It can be verified that p1 is a natural observer for Lm(G1) and Figure 3.6 shows the

equivalence classes defined by p1 as well as the abstracted automaton Ĝ1.

Figure 3.5: Example automaton G1 for strong attraction-preserving abstraction.

Figure 3.6: Equivalence classes defined by p1 and abstraction of G1.

Regarding condition 1. in Theorem 3, we can see that E3 and E4 only have a single

41

state. Moreover, GE1 and GE2 are shown in Figure 3.7. It can be seen that both of

them contain all states of the respective equivalence class. That is, condition 1. of the

theorem is fulfilled.

Figure 3.7: Subautomata GE1 and GE2 .

Regarding condition 2. in Theorem 3, there are four equivalence classes defined by

p1. For E1, the set of exit states is Eex1 = {1,5}. It holds that Σ̂(1) = {a,c} and

Σ̂(5) = {a}, that is, Σ̂1(5) ⊂ Σ̂1(1). In addition, it can be observed from Figure

3.7 that 5 ∈ ΩG1({1}). Hence, this condition is also fulfilled. For E2, E3 and E4

set of exit states are Eex2 = {2}, Eex3 = {3} and Eex4 = {4} respectively and

since there is only one exit state in each set of exit states, both conditions are fulfilled.

Together, condition 2. in the theorem is fulfilled for all equivalence classes. Hence,

the abstraction p1 is a strongly attraction-preserving natural observer for Lm(G1) and

A.

We can further inspect the plant automaton G2 in Figure 3.8 as another example and

let p2 be an abstraction with abstraction alphabet Σ̂2 = {α, β}. In this example,

there is only one equivalence class which contains all states of G2, in other words

E = {1,2,3,4,5} and Eex = {3,5}. Since Σ̂(3) = {α} and Σ̂(5) = {β}, the

second condition in Theorem 4 is not fulfilled thus, the abstraction p2 is not a strongly

attraction-preserving natural observer for G2 and any A ⊆ X2. Figure 3.9 shows the

abstraction automaton Ĝ2 as well as the automaton HG2 with its equivalence classes.

It can be seen that there are transitions with event g ∈ Σ2\Σ̂2 between the equivalence

classes E1 = {1, 2, 3} and E2 = {4, 5}, which also clarifies the violation of Theorem

3.

Figure 3.10 shows one more example automaton G3 and let p3 be an abstraction with

abstraction alphabet Σ̂3 = {α, β}. In this example, there is only one equivalence

class with E = {1,2,3,4,5} and Eex = {3,5}. The set of outgoing high-level

transitions of the exit states are Σ̂(3) = {α, β} and Σ̂(5) = {β}. Since Σ̂(5) ⊂ Σ̂(3)

and 5 ∈ ΩE({3}) the abstraction p3 is a strongly attraction-preserving for G3. Figure

42

Figure 3.8: Example automaton G2 for strong attraction-preserving abstraction.

Figure 3.9: Ĝ2 and HG2 .

3.11 shows abstraction automaton Ĝ3 as well as the automaton HG3 .

Figure 3.12 shows a more complex example automaton G4 and let p4 be an abstraction

with abstraction alphabet Σ̂4 = {α, β, γ}. Figure 3.13 shows the three equivalence

classes defined by p4. If we look at the equivalence class E3, the set of exit states is

E4,ex = {17,18}. Since Σ̂4(17) = {α} and Σ̂4(18) = {β}, condition 2. in Theorem

3 is not fulfilled. Thus, p4 is not a strongly attraction-preserving abstraction for G4.

If we add a1, b1, s1, p1 to the abstraction alphabet Σ̂4, we get the equivalence classes

shown in Figure 3.14 for the same example. In that case, both conditions in Theorem 3

are fulfilled and p4 is a strongly attraction-preserving abstraction for G4. The resulting

abstracted automaton Ĝ4 is shown in Figure 3.15.

43

Figure 3.10: Example automaton G3 for strong attraction-preserving abstraction.

Figure 3.11: Ĝ3 and HG3 .

3.2 Computation of Attraction-Preserving Abstraction

When looking at G and HG in Figure 3.4, it can be seen that there is a way to achieve

an attraction-preserving natural observer by adding the high-level events h and i.

Here, the important observation is that this works because we want to put the states 14

and 15 in different equivalence classes. Specifically, these two states violate condition

2. in Theorem 3 because Σ̂(15) = {α} and Σ̂(14) = {β}. That is neither Σ̂(15) ⊆
Σ̂(14) nor Σ̂(14) ⊆ Σ̂(15). That is, in line with the discussion in Section 2.6.3, the

pair (14, 15) should be identified as a bad exit state pair, which has to be split by

adding events to the high-level alphabet. In the example, the two events i and h are

44

Figure 3.12: Example automaton G4 for strong attraction-preserving abstraction.

Figure 3.13: Equivalence classes defined by p4.

suitable for this purpose. The resulting automata G and HG with their equivalence

classes are shown in Figure 3.16.

In general, similar to the discussion in Section 2.6.3, we again try to identify bad

exit state pairs. Specifically, we look at the sets of abstraction events that are pos-

sible at different exit states. Consider two generic exit states x1 and x2 in the same

equivalence class E and denote their outgoing abstraction events as Σ1 = Σ̂(x1) and

Σ2 = Σ̂(x2). Then, we distinguish the following cases:

1. Σ̂1 = Σ̂2: in this case (x1, x2) is not a bad state pair,

2. Σ̂1 ⊂ Σ̂2 in this case, (x1, x2) is not a bad state pair if x1 ∈ ΩGE
({x2}). That

is, when computing an attractor, x2 is reachable from x1, which implies that

the same abstraction events are possible from x1 and x2. If the condition is

violated, (x1, x2) is a bad exit state pair,

3. Σ̂2 ⊂ Σ̂1: This is the reverse case of item 2.,

45

Figure 3.14: Equivalence classes defined by new abstraction p4.

Figure 3.15: Abstracted automaton Ĝ4 for strong attraction-preserving abstraction.

4. Σ̂1 \ Σ̂2 ̸= ∅ ∧ Σ̂2 \ Σ̂1 ̸= ∅:: In this case, (x1, x2) is a bad exit state pair since

different abstraction events are possible from these exit states. Hence, x1 and

x2 should not be in the same equivalence class.

After finding the bad exit state pairs as described above, we can apply the same algo-

rithm for splitting bad exit state pairs as presented in Section 2.6.3. Hereby, it is again

guaranteed that the algorithm terminates since only a finite number of events can be

successively added to the abstraction alphabet. Specifically, it is the case that Σ̂ = Σ

in the worst case. If Σ̂ = Σ, the conditions in Definition 4 are trivially fulfilled. The

described algorithm was implemented in the open-source C++ library libfaudes for

DES [41].

Figure 3.17 shows an example automaton G2 with two different abstraction alphabets.

For abstraction alphabet Σ̂2 = {a,b,e,f,g}, there are three equivalence classes E1,

E2 and E3 defined by this abstraction. If we consider E3, the set of exit states is

46

Figure 3.16: Attraction-preserving natural observer illustration: Modified alphabet

Σ̂.

Eex = {3,5}. Since Σ̂(3) = {e} and Σ̂(5) = {g}, it is not a strongly attraction-

preserving abstraction for G2 because (3, 5) is a bad state pair. In order to overcome

this problem, we can add event d to the abstraction alphabet. The new abstraction

alphabet Σ̂2 = {a,b,d,e,f,g} and equivalence classes E1, E2, E3 and E4 can be

seen in Figure 3.17 (right). In this case, since state 3 and 5 are no longer in the

same equivalence class, there is no more bad state pair. That is, p2 is an attraction-

preserving natural observer for G2.

47

Figure 3.17: Equivalence classes for different abstraction alphabets for G2: Σ̂ =

{a,b,e,f,g} (left); Σ̂ = {a,b,d,e,f,g} (right).

3.3 Abstraction-based State-Feedback Supervisor

In the previous sections, we defined the notion of an attraction-preserving natural

observer and presented sufficient conditions for checking this condition. In addition,

we were able to develop an algorithm for extending the abstraction alphabet in order

to obtain an attraction-preserving natural observer based on the definition of bad exit

state pairs. This section highlights the actual benefit of using attraction-preserving

natural observers. To this end, we first define an operation that characterizes the

application of a supervisor for state attraction on the abstracted level to the original

plant.

Definition 5. Let G = (X,Σ, δ, x0, Xm) be a plant automaton with alphabet Σ and

uncontrollable events Σu. Further, let p : Σ⋆ → Σ̂⋆ be a natural projection with

Σ̂ ⊆ Σ and assume that p is a natural observer with the abstracted plant automaton

Ĝ = (X̂, Σ̂, δ̂, x̂0, X̂m). Write µ for the equivalence relation induced by µ and cpµ :

X → X̂ for the corresponding canonical projection.

Then, we define the automaton S = (Q,Σ, ν, q0, Qm) = Ŝ⌈⌉G for Ŝ and G as fol-

lows:

1. q0 = x0 and Qm = Xm,

48

2. ∀x ∈ X ∧ σ ∈ (Σ \ Σ̂): δ(x, σ)! ⇒ ν(x, σ) = δ(x, σ),

3. ∀x ∈ X ∧ σ ∈ Σ̂: ν̂(cpµ(x), σ)! ∧ δ(x, σ)! → ν(x, σ) = δ(x, σ).

We call the automaton S the abstraction-based state-feedback supervisor candidate

for G.

Definition 5 assumes that a state-feedback supervisor Ŝ is computed for an abstracted

plant Ĝ, that is, Ŝ ⊑ Ĝ. Then, the definition states how Ŝ should be applied to the

original plant G. Specifically, it is considered that each state q ∈ Q̂ of Ŝ is actually

also a state q ∈ X̂ of Ĝ since Ŝ is a subautomaton of Ĝ. That is, each state q ∈ Q̂ of

Ŝ is associated with the corresponding states in G, which are exactly the states that

belong to the equivalence class q, that is, the states x ∈ X such that cpµ(x) = q.

For all these states, all events in Σ \ Σ̂ are enabled (they occur as in G) according

to condition 2. in Definition 5. In addition, events in Σ̂ are only enabled if they are

enabled by Ŝ as is stated in condition 3. of Definition 5.

In order to illustrate Definition 5, we consider the example in Figure 3.18. Here,

G constitutes the plant with its equivalence classes for the projection with alphabet

Σ̂ = {a,b,d,e,g} and Ĝ is the corresponding abstracted automaton. Then, Ŝ

represents a state-feedback supervisor for Ĝ. Hereby, the arrows in the figure show

the relation between the states of Ŝ and the corresponding equivalence classes in G.

That is, the enabled at the respective states should be enabled for the corresponding

equivalence classes according to Definition 5. The resulting state-feedback supervisor

S = Ŝ⌈⌉G for G is also shown in the figure.

Using the supervisor implementation in Definition 5, Theorem 4 shows that it is possi-

ble to compute state-feedback supervisors for state attraction based on the abstracted

automaton if the projection p is an attraction-preserving natural observer.

Theorem 4. Let G, p, Σ̂ ⊆ Σ, Ĝ, HG, µ and cpµ be defined as above. In addition,

for each equivalence class E ∈ X/µ, we write Eex ⊆ E for the exit states in E.

Assume that p is an attraction-preserving natural observer for Lm(G) and let Eex ⊆
A ⊆ X for some E ∈ X/µ. Suppose that Ŝ = (Q̂, Σ̂, ν̂,−,−) ⊑ Ĝ is a state-

feedback supervisor such that cpµ(A) is a strong attractor in Q̂ for Ŝ and compute

S = (Q,Σ, ν,−,−) = Ŝ⌈⌉HG. Then, A is a strong attractor for Q in S.

49

Figure 3.18: Illustration of Definition 5.

The theorem uses the operation ⌈⌉ in Definition 5 to obtain a state-feedback super-

visor for state attraction for the original plant G from a state-feedback supervisor

for state attraction for the abstracted plant Ĝ. Here, several conditions have to be ful-

filled. First, it is required that the natural projection is an attraction-preserving natural

observer. Second, the state-feedback supervisor Ŝ for the abstracted plant Ĝ has to

be computed for a target set that is the canonical projection of the target set A of the

original plant. Third, the target set for state attraction A has to include the set of exit

states Eex for at least one equivalence class E. This is necessary since the supervisor

Ŝ only disables events in Σ̂, whereas events in Σ\ Σ̂ occur according to the dynamics

of the automaton HG. Looking at the definition of HG in Section 3.1, this means that,

after entering an equivalence class E, it is ensured that states in Eex will be reached

in a finite number of transitions. This is exactly what is required in order to fulfill the

conditions Definition 2 for strong attraction. We next formally prove Theorem 4.

Proof. We need to show that A is a strong attractor for Q in S and recall that HG =

(X,Σ, δG, x0, Xm). Consider any state q ∈ Q. Then, by definition of the operation ⌈⌉,

it holds that Q ⊆ X . That is, q ∈ X . Furthermore, since p is an attraction-preserving

natural observer, q belongs to some equivalence class E and cpµ(q) = q̂ for some

state q̂ ∈ Q̂. Since Â = cpµ(A) is a strong attractor in Q̂ for Ŝ, there must be a

string t ∈ Σ̂⋆ such that ν̂(q̂, t) ∈ Â and |t| ≤ N̂ for some N̂ ∈ N. Then, with the

50

same argument as in the proof of Theorem 3, there must be a string u ∈ Σ⋆ such that

p(u) = t and δG(q, u)! and |u| ≤ N for some N ∈ N. Specifically, we can write

x = δG(q, u) and it must be the case that cpµ(x) ∈ Â. Accordingly, x must belong

to some equivalence class E such that Eex ⊆ A. Since ΩGE
(Eex) = E since p is an

attraction-preserving natural observer, there must be a string u′ ∈ (Σ\ Σ̂)⋆ and a state

x′ ∈ Eex such that δG(x, u′) = x′ and |u′| ≤ N ′ for some N ′ ∈ N. Together, this

implies that δG(q, uu′) ∈ A and uu′ ≤ N + N ′. Since q was chosen arbitrarily, A is

a strong attractor for Q in S.

We next apply Theorem 4 to the example in Figure 3.3. Here, Ŝ is a state-feedback

supervisor for Ĝ and the target set {E1}. Applying Ŝ to HG in the form Ŝ⌈⌉HG leads

to the automaton S in the Figure 3.19. It can be seen that the state set {7} is a strong

attractor in S.

Figure 3.19: Illustration of Theorem 4, example 1.

Finally, Figure 3.20 shows the application of Theorem 4 to the example in Figure

3.16. It is again the case that the resulting supervisor S has {7} as a strong attractor

after applying the supervisor Ŝ that is computed for the abstracted plant Ĝ.

51

Figure 3.20: Illustration of Theorem 4, example 2.

52

CHAPTER 4

ABSTRACTION-BASED SUPERVISOR COMPUTATION FOR STATE

ATTRACTION

Chapter 3 develops a new method for state attraction based on state-feedback super-

visor that is computed for the abstracted plant. This idea helps reducing the compu-

tational effort for computing the state-feedback supervisor for state attraction since

the abstracted plant usually has a smaller state space than the original plant due to

the attraction-preserving natural observer condition. However, similar to the classical

monolithic supervisory control theory described in Section 2.4, it is still required to

compute the overall plant G in order to obtain the abstraction Ĝ. As discussed in

Section 2.7, this is infeasible for systems of practical size because of the well-known

state space explosion problem.

As a remedy, the classical supervisory control theory introduces the idea of modular

and abstraction-based supervisory control as described in Section 2.7. This chapter

extends the existing ideas to the case of state attraction. In this context, it has to be

noted that the basic definitions were already introduced in [28] but without computa-

tional procedures for the analysis and synthesis of supervisors. These procedures are

developed in this chapter.

The organization of the chapter is as follows. Section 4.1 and 4.2 introduce the nec-

essary definitions of a composed invariant set and a strong composed attractor. The

supervisor computation method is developed in Section 4.3 and an illustrative exam-

ple is presented in Section 4.4.

53

4.1 Composed Invariant Set

The notion of an invariant set is introduced for a single automaton in Section 2.8.

We next present an extension of this condition to the case of multiple automata as

introduced in [28]. The notion of a composed invariant set is defined in Definition 6.

Definition 6. Let Ti = (Wi,Σi, ωi,−,−) be automata for i = 1, . . . , l and let C ⊆
W1 × · · · × Wl be a set of state tuples with one state from each automaton Ti. We

write Σ =
⋃l

i=1Σi and use the natural projections pi : Σ
⋆ → Σ⋆

i . C is denoted as

a composed invariant set for T1, . . . , Tl if it holds for all c = (c1, . . . , cl) ∈ C and

σ ∈ Σ that

ωi(ci, pi(σ))! for all i = 1, . . . , l

⇒(ω1(c1, p1(σ)), . . . , ωl(cl, pl(σ))) ∈ C. (4.1)

The idea of the definition is as follows. We consider states that can be reached when

applying the synchronous composition to the automata T1, . . . , Tl. Each such state

is described by a state tuple c = (c1, . . . , cl). Then the definition considers a subset

C ⊆ W1 × · · · × Wl of all states that belong to the synchronous composition. C is

called a composed invariant set if it holds for all states c ∈ C that starting from c

and following the synchronous composition of T1, . . . , Tl as stated in (4.1), all states

reached from c are again in C.

Definition 6 is illustrated by the example in Figure 4.1 with three automata T1, T2, T3.

The set C = {(1,1,1),(2,1,2),(3,1,3),(4,1,4),(2,2,5),(2,3,5),
(2,4,5),(6,1,2),(1,2,6),(1,3,6),(1,4,6),(5,1,1)} consists of

states that can be reached in the synchronous composition T1||T2||T3. Then, it can

be checked if C is a composed invariant set for T1, T2 and T3 by looking at each

state tuple of C and verifying the condition in (4.1). Consider for example state

c = (2, 1, 2) ∈ C. Here, the event b is possible in T1 and T3, whereas b does not

belong to the alphabet of T2. Hence, there is a transition with b in the synchronous

composition T1||T2||T3 leading to the state (3, 1, 3), which also belongs to C. In ad-

dition, the event c is possible in T1 but is not possible in T2 and T3, which means that

there is no transition with c from (2, 1, 2). The same is true for the event d. Together,

we verified that the only state reachable from (2, 1, 2) is the state (3, 1, 3), which also

54

belongs to C. Performing the same check for all the states in C, it can be verified

that c is a composed attractor. In the scope of this thesis, the composed invariant set

verification was implemented as a function in the C++ software library libfaudes [41].

Figure 4.1: Composed attractor example.

4.2 Strong Composed Attractor

The notion of an invariant set is required to define the concept of strong state attraction

as described in Section 2.8. Similarly, the notion of a composed invariant set is the

basis for introducing the strong composed attractor in Definition 7.

Definition 7. Let Ti, Σ and pi, i = 1, . . . , l be given as in Definition 6. Let C ⊆
W1 × · · · × Wl and A ⊆ C be composed invariant sets. Then, A is denoted as a

strong composed attractor for C in T1, . . . , Tl if for all c = (c1, . . . , cl) ∈ C

1. ∃u ∈ Σ⋆ and a = (a1, . . . , al) ∈ A such that ωi(ci, pi(u)) = ai for all i ∈
1, . . . , l.

2. ∃N such that |u| < N for all u that fulfill (1).

55

Definition 7 is a straightforward extension of Definition 2 to the case where the au-

tomaton under consideration is represented by the synchronous composition of mul-

tiple automata. Specifically, condition (1) in Definition 7 requires that, starting from

a composed state c = (c1, . . . , cl) (each Ti starts from ci), there must be a string u

that moves each automaton Ti to its component ai of a state in A. That is, all Ti,

i = 1, . . . , l jointly move to the set A. In addition, (2) requires that any such string

is not longer than a bound N . That is, starting from any state in C, the automata Ti,

i = 1, . . . , l will jointly move to A with a bounded number of transitions.

We can consider again the example in Figure 4.1 with the same composed state set C

as in Section 4.1. A = {(1,1,1)} is a strong composed attractor for C in T1, T2

and T3 because from any state in C, T1, T2 and T3 will jointly reach to A in a bounded

number of transitions. For example, from the composed state (3, 1, 3), the string

s = dfgce leads to the set A. In the scope of this thesis, the composed attractor

verification was implemented as a function in the C++ software library libfaudes [41].

4.3 Supervisor Computation

According to Section 4.1 and 4.2, it is possible to verify the conditions of a composed

invariant set and a strong composed attractor. Nevertheless, the missing important

step is to synthesize supervisors such that these conditions can be applied in the scope

of modular and abstraction-based supervisory control as described in Section 2.7.

Specifically, the task to be accomplished can be described with the help of Figure 4.2.

Figure 4.2: Switching from nonblocking control to state attraction.

Assume a nonblocking supervisory control loop has been designed for a DES accord-

56

ing to the procedure in Section 2.7. That is, there are n plant components G1, . . . , Gn

and their corresponding low-level supervisors S1, . . . , Sn. In addition, it is assumed

that abstractions Ĝ1, . . . , Ĝn of the low-level closed loops S1||G1, . . . , Sn||Gn are

computed using natural projections p1, . . . , pn that fulfill the natural observer con-

dition. The resulting abstracted plant is Ĝ = Ĝ1|| · · · Ĝn and Ŝ is a nonblocking

supervisor for Ĝ. That is, the overall nonblocking closed loop system is represented

by Ŝ||S1|| · · · ||Sn||G1|| · · · ||Gn.

If the DES evolves according to this closed loop, it is clear that the system will always

be in a state that is described as a tuple (x1, . . . , xn), where xi ∈ Xi is a state of the

automaton Gi for i = 1, . . . , n. Now assume that it is desired to move the system to a

pre-selected state (a1, . . . , an) or a pre-specified state set A ⊆ X1×· · ·×Xn. This is

for example necessary in the scope of reconfigurable manufacturing systems (RMS)

or in the fault-tolerant control (FTC) of DES. Considering RMS, the system generally

evolves according to some system configuration. If a change of the configuration is

required, the operations of the current configuration need to be completed and the new

configuration has to be initialized. This can be described by moving to a specific state

or state set of the DES. Hence, the supervisory control of the DES has to switch to a

different controller that realizes the described state attraction as illustrated in Figure

4.2. Considering FTC, it can be assumed that the DES is evolving according to its

desired operation as long as there is no fault. If a fault occurs, the DES should either

move to a system state, where the DES is safe or where it can continue its operation

with reduced performance. Again, it is required to apply state attraction.

Accordingly, we next focus on the design of abstraction-based supervisors for state

attraction for modular systems with multiple plant components G1, . . . , Gn. Hereby,

we intend to address the following conditions:

1. We want to design low-level supervisors Ri for each plant component Gi, i =

1, . . . , n and a supervisor R̂ for the abstracted plant Ĝ,

2. We want to use the same state space as the supervisors S1, . . . , Sn and Ŝ for the

supervisor design for state attraction.

Condition 1. is beneficial in order to make use of the concept of abstraction-based

57

supervisor design to avoid the state space explosion problem. Condition 2. is in-

troduced because of practical reasons. If this condition is fulfilled, it is possible to

simple switch from the supervisors S1, . . . , Sn, Ŝ to the supervisors R1, . . . , Rn, R̂.

After this discussion, it is now possible to present the proposed design procedure:

1. Compute the supervisors S1, . . . , Sn according to the desired system operation.

It is assumed that the desired low-level system operation is represented by low-

level specification automata C1, . . . , Cn.

2. Determine projections p1, . . . , pn for the system abstraction. Instead of com-

puting natural observers as described in Section 2.6.3, we compute attraction-

preserving observers as described in Section 3.2.

3. Compute a supervisor Ŝ for the abstracted plant Ĝ = Ĝ1|| · · · Ĝn according to

the desired system operation. It is assumed that the desired system operation

for the abstracted plant is represented by a specification automaton Ĉ.

4. Compute a state-feedback supervisor for state attraction R̂ for the abstracted

plant Ĝ using a target set Â.

5. Use the supervisors for state attraction R̂i = HSi
for each i = 1, . . . , n.

6. Obtain the overall closed loop under state attraction R̂⌈⌉(R1|| · · · ||Rn).

The critical step in this procedure is step 2. Here, the natural projections p1, . . . , pn

are attraction-preserving natural observers. That is, these projections are suitable for

both the supervisor design for the normal system operation in step 1. to 3. and also for

the state-feedback supervisor design for state attraction. As a result, the supervisors

S1, . . . , Sn can be directly used for the state attraction by computing HS1 , . . . , HSn in

step 5.

The operation ⌈⌉ is defined in Section 3.3 for a single automaton G. In step 6., this

automaton is given by the synchronous composition HS1|| · · · ||HSn = R1|| · · · ||Rn.

Nevertheless, it is not desired to evaluate this synchronous composition to avoid the

state space explosion. Accordingly, we next show how the operation ⌈⌉ can be applied

to each of the automata Ri, i = 1, . . . , n, separately. To this end, we first recall that

the abstracted automaton is computed as Ĝ = Ŝ1|| · · · ||Ŝn with the abstractions of

58

the low-level supervisors S1, . . . , Sn. That is, each state x̂ ∈ X̂ of Ĝ corresponds to

an n-tuple of states from Ŝ1, . . . , Ŝn and hence can be written as x̂ = (q̂1, . . . , q̂n).

The same is true for each state q̂ ∈ Q̂ of Ŝ since Ŝ is a state-feedback supervisor for

Ĝ. In addition, we know that Ŝ1, . . . , Ŝn are computed using the natural projections

p1, . . . , pn that all fulfill the attraction-preserving natural observer condition. That is,

each pi, i = 1, . . . n induces an equivalence relation µi and a corresponding canonical

projection cpµi
: Qi → Q̂i. This equivalence relation is the same for Si and Ri by

construction. Then, we define the supervisor action at each state q̂ = (q̂1, . . . , q̂n) ∈ Q̂

for the automaton Ri, i = 1, . . . , n as follows: Consider the states in the equivalence

class Ei ∈ Qi/µi such that cpµi
(Ei) = q̂i. Then, all events in (Σi \ Σ̂i)∪ (Σ̂(q̂)∩Σi)

are enabled at each state q ∈ Ei. The reason for this choice, is that, whenever Ŝ is

in a state q̂ = (q̂1, . . . , q̂n), each automaton Ri must be in one of the states of the

equivalence class Ei that belongs to the state q̂I . At each of these states, the control

action of Ŝ that is relevant for Ri is applied, whereby all the low-level events are

enabled.

We next show that state-attraction is achieved following the proposed procedure and

applying the described supervisor implementation.

Theorem 5. Consider the proposed procedure for abstraction-based state attraction

for modular systems. Assume that A ⊆ Q1×· · ·×Qn is a composed invariant set such

that E1,ex × · · · × En,ex ⊆ A for some set of exit states Ei,ex for each i = 1, . . . , n.

Let Â = {(cpµ1(a1), . . . , cpµn(an))|(a1, . . . , an) ∈ A} and R̂ be a state-feedback

supervisor for Ĝ such that Â is a strong attractor in R̂. Then, A is a strong composed

attractor in R̂⌈⌉(R1|| · · · ||Rn).

Theorem 5 starts with the assumption that it is desired to compute a state-feedback

supervisor for state attraction with the target set A for a composed system with the

plant components G1, . . . , Gn. Hereby, it is assumed that the canonical product of exit

state sets from the different plant components is included in A. This assumption is

motivated by the fact that it is always possible to reach some exit state when entering

an equivalence class according to the construction of the automaton HG. Then, the

procedure is to compute a state-feedback supervisor R̂ for the abstracted plant Ĝ and

apply this supervisor to the synchronous composition of the automata Ri = HSi
of

59

the different plant components i = 1, . . . , n. The main result of the theorem is that the

target set A is a strong attractor for the overall closed-loop system R̂⌈⌉(R1|| · · · ||Rn).

We next prove the theorem. Illustrative examples are provided in the next section.

Proof. In order to prove the theorem, we assume that the closed-loop system

R̂⌈⌉(R1|| · · · ||Rn) is in an arbitrary state given by the tuple (q1, . . . , qn, q̂). We further

write R = (Q,Σ, ν, q0, Qm) = R1|| · · · ||Rn. For convenience, we also introduce the

automaton R = (Q, σ, ν, q0, Qm) = R1|| · · · ||Rn.

Since Â is a strong attractor for Q̂ in Ŝ, there is a string v ∈ Σ̂⋆ with |v| ≤ N̂

for some N̂ ∈ N and such that ν̂(q̂, v) = q̂′ ∈ Â. Since p1, . . . , pn are natural

observers, it directly follows that there must be strings ui ∈ Σ⋆
i for i = 1, . . . , n

such that v ∈ ||ni=1ui. Writing q̂′ = (q̂′1, . . . , q̂
′
n), it must further be the case for

each i = 1, . . . , n that νi(qi, ui) = q′i ∈ Ei for some equivalence class Ei with

cpµi
(Ei) = q̂′i. That is, since Ei,ex is a strong attractor for Ei in GEi

by construction,

there exists a string u′
i ∈ (Σi \ Σ̂i)

⋆ such that νi(q′i, u
′
i) ∈ Ei,ex and |u′

i| ≤ Ni for

some Ni ∈ N. Furthermore, it holds that we can write ui as ui = u1
iσ1u

2
iσ2 · · ·um

i σm,

where σ1σ2 . . . σm is the sequence of high-level events in v that belong to Σi. Since

|v| ≤ N̂ , also |σ1σ2 · · ·σm| ≤ N̂ . Moreover, it holds for each uk
i , k = 1, . . . ,m that

|uk
i | ≤ Nk for some Nk ∈ N since each uk

i only passes equivalence classes that do not

have any cycles by construction. Together, we constructed strings uiu
′
i ∈ Σ⋆

i for each

i = 1, . . . , n such that νi(qi, uiu
′
i) ∈ Ei,ex and hence it holds for each string u ∈ ||ni=1

that ν(q, u) ∈ E1,ex × · · · × En,ex ⊆ A. Since uiu
′
i is bounded for each i = 1, . . . , n,

also there must be a bound N ∈ N such that |u| ≤ N . This implies that A is a string

composed attractor in R̂⌈⌉(R1|| · · · ||Rn).

4.4 Illustrative Example

This section provides an illustrative example to explain the supervisor computation

in the previous section. To this end, we first point out one more issue and its solution

in Section 4.4.1. After that, we demonstrate the supervisor computation for a system

with two components.

60

4.4.1 Low-Level Supervisor Computation

The automaton HG in Section 3.1 is computed to achieve state attraction in the

low level. Hereby, the conditions on HG require disabling of low-level cycles with

low-level events since they cannot be disabled by the computed abstracted supervi-

sor. The abstracted supervisor can only take care of cycles with high-level events.

However, not every supervisor is suitable for state attraction. A supervisor might

not be suitable for state attraction if not all its states are included in the optimal

set for state attraction. Figure 4.3 shows an low-level example supervisor G =

(X,Σ, δ, x0, Xm) which is not suitable for state attraction. Specifically, there is a

cycle with an uncontrollable event u1 between the states 7 and 9. This implies

that whenever state 7 or 9 are reached, the automaton might cycle between these

states forever. Accordingly, we get the optimal set for state attraction ΩG(A) =

{1,2,3,5,6,8,10,11,12,13,14,15,16,17,18} for the set A = {1}, which

does not include the states 7 and 9. That is, in this case, it is also clear that HG cannot

be computed as desired since ΩG(A) ̸= X .

Figure 4.3: Example low-level supervisor G not suitable for state attraction.

In this case, our aim is to find a modified low-level supervisor which is suitable for

state attraction. The basic algorithm for finding such modified low-level supervisor is

given as follows, assuming that an automaton G and attractive set A are given:

1. Compute ΩG(A)

2. Compute subautomaton G′ ⊏ G by removing states that do not belong to

ΩG(A) from G

61

3. Compute modified low-level supervisor Gm which is suitable for state attraction

using G′ as specification for the SupC algorithm.

The subautomaton G′ that fulfills state attraction and the corresponding modified low-

level supervisor Gm are given in Figure 4.4 and Figure 4.5, respectively. Gm is suit-

able for state attraction but it is not an attractive supervisor yet. It will be used in the

normal operation of the system, whereby HGm will be used for state attraction.

Figure 4.4: Subautomaton G′ that fulfills weak attractor.

Figure 4.5: Modified low-level supervisor Gm.

Moreover, if an abstraction is not an attraction-preserving natural observer, it is not

suitable for abstraction-based state attraction. If we consider the modified low-level

supervisor Gm in Figure 4.5 with abstraction alphabet Σ̂ = {α, β, γ,s1,p1}, the

states 12, 13, 14, 15, 16, 17 and 18 are in the same equivalence class and the states

17 and 18 are exit states. Their outgoing abstraction events are Σ̂17 = {α} and

Σ̂18 = {β}. In this case, (17, 18) is a bad pair since different abstractions events are

possible from these exit states and 17 and 18 should not be in the same equivalence

class. Therefore, the projection with Σ̂ is not an attraction-preserving natural observer

and it is not suitable for state attraction. Another bad exit state pair is (10, 11) because

the states 6, 8, 10 and 11 are in the same equivalence class and the states 10 and

62

11 are exit states. Their outgoing abstraction events are Σ̂10 = {β} and Σ̂11 =

{β, γ}. In this case, Σ̂10 ⊂ Σ̂11 and since 10 /∈ ΩGm({11}), (10, 11) is a bad pair.

(17, 18) can be split by adding event a1; (10, 11) can be split by adding event h1

to the abstraction alphabet Σ̂. That is extending the abstraction alphabet to Σ̂ =

{α, β, γ,a1,h1} will split these bad pairs. The resulting abstraction of Gm with

Σ̂ = {α, β, γ,s1,p1,h1,a1} is given in Figure 4.6.

Figure 4.6: Abstraction of modified low-level supervisor Gm.

After computing the modified low-level supervisor Gm and finding a suitable abstrac-

tion alphabet Σ̂, we can compute the automaton HGm by disabling low-level cycles

in Gm, We recall that it is not required to remove cycles with abstraction events since

the abstracted supervisor for state-attraction will achieve this. Since Gm in Figure 4.5

does not have any low-level cycles, it holds that HGm = Gm for this example.

4.4.2 Supervisor Computation for a Composed System

After the preparation in the previous section, we now apply the full abstraction-based

supervisor computation for state attraction to an example system with the two low-

level supervisors S1 and S2 in Figure 4.7. The desired abstraction alphabet is given

as Σ̂ = {α, β, γ, δ, ϕ}. We note that these supervisors can be considered as low-level

supervisors for the normal operation of an RMS.

Our aim is to first compute the supervisors for the normal operation of the DES by

computing an abstraction-based supervisor. Then, we want to compute low-level and

abstraction-based supervisors for state-attraction. First, we need to compute the mod-

ified low-level supervisors which are suitable for state attraction. Figure 4.8 shows

the modified low-level supervisors Sm1 and Sm2 that will be used for low-level attrac-

63

Figure 4.7: Example system with two low-level supervisors S1 and S2.

tor calculation. Hereby, it can be noted that Sm1 is the supervisor considered in the

previous section, whereas no modification is required for S2 such that Sm2 = S2.

Next, using the modified low-level supervisors, an attraction-preserving natural ob-

server for each supervisor is computed as in described in Section 3.2. Figure 4.9

shows the abstraction of Sm1 and Sm2 as Ŝ1 and Ŝ2.

Then, using the synchronous composition Ĝ = Ŝ1||Ŝ2 as the abstracted plant and the

specification C, which is given in Figure 4.10 compute an abstracted supervisor Ŝ

such that Lm(Ŝ) = SupC(Ĝ, Lm(C), Σ̂u). The computed supervisor Ŝ is shown in

Figure 4.11. That is, the normal operation of the DES (which can be considered as an

RMS) is given by applying the supervisors Ŝ||S1||S2.

Up to this point, the supervisors for the normal operation of the DES were computed.

Next, we want to compute the supervisors for state attraction. Assume, we want to

move to the target set A = {(1, 1)}, which could be considered as the start state

of a new configuration of an RMS. That is, we want to move to the initial state of

each of the low-level supervisors S1 and S2. Applying the canonical projection, this

64

Figure 4.8: Modified low-level supervisors Sm1 and Sm2.

corresponds to the target set Â = {1} in Ŝ. That is, we now compute a minimally

restrictive optimal supervisor for state attraction as in [39] for Ŝ. The resulting super-

visor for state attraction R̂ is shown in Figure 4.12.

Finally, the low-level supervisors R1 and R2 are computed as shown in Figure 4.13.

In addition, for clarity, all the supervisors R̂, R1 and R2 that are active during state

attraction are depicted in Figure 4.14. It can be seen that R̂ is going to move the RMS

from each state to the attractive set A when a reconfiguration switch is requested.

We finally describe a detailed example scenario with our example system. We recall

that Figure 4.8 shows the low-level supervisors and Figure 4.11 shows the abstraction-

based supervisor for the normal operation of the example system. Then, we consider

the case where the RMS is at the states (9, 1) of Sm1 and Sm2 during the normal

system operation and the abstraction-based supervisor Ŝ is at the corresponding state

9. When performing a configuration change, we want to move the RMS to the initial

state, which is described by the state triple (1, 1, 1). Hence, we now directly switch

to the supervisors for state attraction in Figure 4.14 starting from the current state

triple (9, 1, 9). That is, R1 is at state 9, R2 is at state 1 and R̂ is at state 9. Then, the

abstraction-based supervisor R̂ can move to the initial state with the string ŝ = βϕϕ.

65

Figure 4.9: Abstraction of Sm1 and Sm2.

The corresponding strings in the low level are s1 = j1t1q1β in R1 and s2 = ϕϕ in R2.

That is, jointly following these strings, the RMS also moves to initial state in the low-

levels. In detail, when starting at (9, 1), supervisor S1 can first evolve independently

from state 9 to state 14 with the string of low-level events j1t1q1. All these events

are enabled by the definition of R̂⌈⌉(R1||R2) and R̂ and R2 do not change state. That

is, the corresponding state triples are (9, 1, 9), (11, 1, 9), (13, 1, 9), (14, 1, 9). In the

state triple (14, 1, 9), the shared event β is possible in all supervisors. Hence, the

RMS moves to the triple (1, 2, 11) with β. Then, R1 is already in the desired state,

whereas R2 and R̂ jointly move from (1, 2, 11) to (1, 3, 12) with φ and to (1, 1, 1)

with φ, which is the target state for state attraction.

66

Figure 4.10: Specification C.

Figure 4.11: High-level supervisor Ŝ.

Figure 4.12: High-level attractor R̂.

67

Figure 4.13: Low-level attractors R1 and R2.

Figure 4.14: Supervisors for the example system.

68

4.5 Limitations: Maximal Permissiveness

The previous sections develop the supervisor computation method and includes an

illustrative example. However, it has to be mentioned that is not always possible to

compute such supervisors. Maximal permissiveness can be the limitation of the super-

visor computation method because if the abstraction-based supervisor architecture is

not maximally permissive, the closed loop with the abstraction-based supervisor will

not be the same as the closed loop with a monolithic supervisor.

In order to illustrate this limitation, we can think of the example with the low-level

plant G, which is given in Figure 4.15 with controllable events Σc = {d,f,h,i,j, β}
and abstraction alphabet Σ̂ = {α, β, γ, δ}.

Figure 4.15: Example plant G.

Figure 4.16 shows the abstraction Ĝ and the state-feedback supervisor Ŝ for the high-

level and for Â = {1} is shown in Figure 4.17. It can be seen that transition β has to

be disabled since there is a loop with γ and δ, which are both uncontrollable events

and they cannot be disabled.

Figure 4.16: Abstraction Ĝ.

Figure 4.18 shows computed state-feedback supervisor S for the low-level and for

69

Figure 4.17: State-feedback supervisor Ŝ for the high-level and for Â = {1}.

A = {1}.

Figure 4.18: State-feedback supervisor S for the low-level and for A = {1}.

However, if we compute abstraction-based state-feedback supervisor according to

Definition 5, this leads to a smaller attractor in the low-level for our example. The

overall closed loop T = Ŝ||S||G can be seen in Figure 4.19.

In summary, the abstraction-based supervisor architecture is not maximally permis-

sive. That is, it is possible that a larger set of weak attraction can be found in the

monolithic case compared to the abstraction-based case. This is not necessarily a

problem if a non-empty supervisor with a sufficient number of states can be com-

puted. Nevertheless, it is undesired if the weak set of state attraction does not contain

all the desired states. In order to overcome this problem, in the future work, local

control consistency should be checked [38]. It is known from the nonblocking hier-

archical and modular supervisory control that local control consistency is sufficient

for maximally permissive control. That is, it would be interesting to investigate if

70

Figure 4.19: The overall closed loop T .

the same condition is also suitable for maximally permissive abstraction-based state

attraction.

71

72

CHAPTER 5

CONCLUSION

Reconfigurable manufacturing systems (RMS) represent a new manufacturing idea

that allows manufacturing systems to quickly modify their production capacity and

functionality. In principle, the RMS controller design should allow users to switch

between more than one system configuration at any moment. Whenever a switch

is requested by the user, it is expected that the overall system should first finish the

active configuration and then start the requested configuration.

In this thesis, a new controller design methodology that supports modular design and

is scalable to large-scale RMS is developed. Specifically, modular and abstraction-

based control approaches for state attraction are devised and then applied to an ex-

ample for illustration. The thesis first summarizes the required basic notations about

discrete event systems, supervisory control theory, abstraction-based control using

natural observers and state attraction. When a reconfiguration is requested, an RMS

should finish the current configuration before starting the newly requested configura-

tion. A supervisor for state attraction can be used to accomplish this task. However,

supervisors for state attraction cannot be used for large-scale RMS due to the state

space explosion problem. As a first step to address this problem, the thesis develops a

new method for abstraction-based state attraction. This method is based on the notion

of an attraction-preserving natural observer, which is also introduced in the thesis.

Furthermore, the thesis provides an algorithm for computing attraction-preserving

natural observers and applies it to different examples.

It has to be noted that this method is only suitable for monolithic systems and hence

still not fully applicable to large-scale RMS. In order to accomplish state attraction

for large-scale systems, the proposed method is extended to composed state attrac-

73

tion. That is, we compute low-level supervisors for modular system components that

are then abstracted using attraction-preserving natural observers. Finally, a supervi-

sor for state attraction is computed for the abstracted system and then applied to all

the modular components. The suitability of this method is demonstrated by various

examples. All presented algorithms are implemented in the open-source C++ library

for DES libfaudes.

In future work, it is intended to study the suitability of the developed method in multi-

level hierarchies and to extend the method to maximally permissive abstraction-based

state attraction.

74

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems, Sec-

ond edition. Springer, 2008.

[2] W. M. Wonham, “Supervisory control of discrete-event systems,” Department

of Electrical and Computer Engineering, University of Toronto, 2021.

[3] K. Cai and W. Wonham, “Supervisory control of discrete-event systems,” in

Encyclopedia of Systems and Control, Springer London, UK, 2020.

[4] R. Wisniewski, M. Zhou, L. Gomes, M. P. Fanti, and R. Kumar, “Special issue

on recent advances in petri nets, automata, and discrete-event hybrid systems,”

IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 10,

pp. 3484–3487, 2020.

[5] B. Caillaud, P. Darondeau, L. Lavagno, and X. Xie, Synthesis and control of

discrete event systems. Springer Science & Business Media, 2002.

[6] C. Seatzu, M. Silva, and J. H. Van Schuppen, Control of discrete-event systems,

vol. 433. Springer, 2013.

[7] M. Iordache and P. J. Antsaklis, Supervisory control of concurrent systems: a

Petri net structural approach. Springer Science & Business Media, 2007.

[8] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete

event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp. 206–230, 1987.

[9] L. Feng and W. Wonham, “Supervisory control architecture for discrete-event

systems,” Automatic Control, IEEE Transactions on, vol. 53, no. 6, pp. 1449–

1461, 2008.

[10] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control of de-

centralized discrete event systems,” Automatic Control, IEEE Transactions on,

vol. 53, no. 10, pp. 2252–2265, 2008.

75

[11] K. Schmidt and C. Breindl, “Maximally permissive hierarchical control of de-

centralized discrete event systems,” IEEE Transactions on Automatic Control,

vol. 56, no. 4, pp. 723–737, 2011.

[12] J. Campos, C. Seatzu, and X. Xie, Formal methods in manufacturing. CRC

press, 2018.

[13] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and H. V.

Brussel, “Reconfigurable manufacturing systems,” CIRP Annals – Manufactur-

ing Technology, vol. 48, pp. 527–540, 1999.

[14] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, “Reconfigurable manufacturing

systems: Key to future manufacturing,” Journal of Intelligent Manufacturing,

vol. 11, pp. 403–419, 2000.

[15] H. A. ElMaraghy, Changeable and Reconfigurable Manufacturing Systems.

Springer Series in Advanced Manufacturing, 2009.

[16] Y. Koren, The global manufacturing revolution. Wiley, 2010.

[17] R. Sampath, H. Darabi, U. Buy, and L. Jing, “Control reconfiguration of discrete

event systems with dynamic control specifications,” Automation Science and

Engineering, IEEE Transactions on, vol. 5, no. 1, pp. 84 –100, 2008.

[18] J. Li, X. Dai, and Z. Meng, “Automatic reconfiguration of petri net con-

trollers for reconfigurable manufacturing systems with an improved net rewrit-

ing system-based approach,” Automation Science and Engineering, IEEE Trans-

actions on, vol. 6, no. 1, pp. 156 –167, 2009.

[19] G. Faraut, L. Piétrac, and E. Niel, “Formal approach to multimodal control de-

sign: Application to mode switching,” Industrial Informatics, IEEE Transac-

tions on, vol. 5, no. 4, pp. 443–453, 2009.

[20] F.-S. Hsieh, “Design of scalable agent-based reconfigurable manufacturing sys-

tems with petri nets,” International Journal of Computer Integrated Manufac-

turing, vol. 31, no. 8, pp. 748–759, 2018.

76

[21] H. Kaid, A. Al-Ahmari, Z. Li, and R. Davidrajuh, “Automatic supervisory con-

troller for deadlock control in reconfigurable manufacturing systems with dy-

namic changes,” Applied Sciences, vol. 10, no. 15, p. 5270, 2020.

[22] H. Kaid, A. Al-Ahmari, and Z. Li, “Colored resource-oriented petri net based

ladder diagrams for plc implementation in reconfigurable manufacturing sys-

tems,” IEEE Access, vol. 8, pp. 217573–217591, 2020.

[23] H. E. Garcia and A. Ray, “State-space supervisory control of reconfigurable dis-

crete event systems,” International Journal of Control, vol. 63, no. 4, pp. 767–

797, 1996.

[24] E. W. Endsley, E. E. Almeida, and D. M. Tilbury, “Modular finite state ma-

chines: Development and application to reconfigurable manufacturing cell con-

troller generation,” Control Engineering Practice, vol. 14, no. 10, pp. 1127 –

1142, 2006.

[25] K. W. Schmidt, “Optimal configuration changes for reconfigurable manufactur-

ing systems,” in Decision and Control, IEEE Conference on, pp. 7621–7626,

2013.

[26] K. Schmidt, “Computation of supervisors for reconfigurable machine tools,”

Discrete Event Dynamic Systems, vol. 25, no. 1-2, pp. 125–158, 2015.

[27] A. Nooruldeen and K. Schmidt, “State attraction under language specification

for the reconfiguration of discrete event systems,” Automatic Control, IEEE

Transactions on, vol. 60, pp. 1630–1634, June 2015.

[28] H. M. Khalid, M. S. Kırık, and K. W. Schmidt, “Abstraction-based supervisory

control for reconfigurable manufacturing systems,” IFAC Proceedings Volumes,

vol. 46, no. 22, pp. 157–162, 2013.

[29] R. Sengupta and S. Lafortune, “An optimal control theory for discrete event

systems,” SIAM J. Control Optim., vol. 36, no. 2, pp. 488–541, 1998.

[30] Y. Brave and M. Heymann, “Stabilization of discrete-event processes,”

Int. J. Control, vol. 51, pp. 1101–1117, 1990.

77

[31] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata theory,

languages, and computation,” Acm Sigact News, vol. 32, no. 1, pp. 60–65, 2001.

[32] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-event sys-

tems,” Discrete Event Dynamic Systems, vol. 6, pp. 241–273, 1996.

[33] R. J. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-based su-

pervisory control-part i: Serial case,” IEEE Transactions on Automatic Control,

vol. 50, no. 9, pp. 1322–1335, 2005.

[34] K. C. Wong and W. M. Wonham, “On the computation of observers in discrete-

event systems,” Discrete Event Dynamic Systems: Theory and Applications,

vol. 14, no. 1, pp. 55–107, 2004.

[35] K. Schmidt and T. Moor, “Marked-string accepting observers for the hierar-

chical and decentralized control of discrete event systems,” in Discrete Event

Systems, Workshop on, pp. 413–418, 2006.

[36] L. Feng and W. M. Wonham, “On the computation of natural observers in

discrete-event systems,” Discrete Event Dynamic Systems, vol. 20, no. 1, pp. 63–

102, 2010.

[37] J.-C. Fernandez, “An implementation of an efficient algorithm for bisimulation

equivalence,” Science of Computer Programming, vol. 13, pp. 219–236, 1990.

[38] K. Schmidt and C. Breindl, “Maximally permissive hierarchical control of de-

centralized discrete event systems,” Automatic Control, IEEE Transactions on,

vol. 56, no. 4, pp. 723 –737, 2011.

[39] Y. Brave and M. Heymann, “On optimal attraction of discrete-event processes,”

Information Sciences, vol. 67, pp. 245–276, 1993.

[40] R. Kumar, V. Garg, and S. I. Marcus, “Language stability and stabilizability of

discrete event dynamical systems,” SIAM J. Control Optim., vol. 31, pp. 132–

154, 1993.

[41] T. Moor, K. Schmidt, and S. Perk, “libfaudes—an open source c++ library for

discrete event systems,” in 2008 9th International Workshop on Discrete Event

Systems, pp. 125–130, IEEE, 2008.

78

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Preliminaries
	Discrete Event Systems
	Formal Languages
	Finite State Automata
	Supervisory Control Theory
	Natural Observer and Abstraction
	Verification of the Natural Observer Condition
	Dynamic System and Quasi Congruence
	Verification of the Natural Observer Condition
	Computation of Abstractions

	Abstraction-based Supervisory Control
	State Attraction
	Motivation and Problem Statement

	Abstraction-based State Attraction
	Strong Attraction-Preserving Abstraction
	Computation of Attraction-Preserving Abstraction
	Abstraction-based State-Feedback Supervisor

	Abstraction-Based Supervisor Computation for State Attraction
	Composed Invariant Set
	Strong Composed Attractor
	Supervisor Computation
	Illustrative Example
	Low-Level Supervisor Computation
	Supervisor Computation for a Composed System

	Limitations: Maximal Permissiveness

	Conclusion
	REFERENCES

