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ABSTRACT 

 

PHYSICALLY-BASED MODELING OF RAINFALL-TRIGGERED 

LANDSLIDES IN KAPTANPASA, RIZE  

 

 

Durmaz, Muhammet 

Master of Science, Civil Engineering 

Supervisor : Assoc. Prof. Nejan Huvaj Sarıhan 

Co-Supervisor: Assoc. Prof. Marcel Hurlimann Ziegler 

 

 

 

February 2022, 112 pages 

 

Physically-based models are reliable tools for landslide susceptibility assessment. 

However, they are, based on various simplifications, affected by different factors, 

and applicable for particular landslides. Therefore, landslide inventories are 

recommended to be subdivided into subsets reflecting different controlling factors 

and failure mechanisms, and the analysis should reflect these differences. Many 

physically-based models are based on infinite slope assumptions. The applicability 

of this assumption is associated with having large and long dimensions compared to 

their depth. This study investigates morphometric features of more than 1000 

individual landslides triggered by a rainfall event on Sept 27- Oct 4 in 2017 in 

Kaptanpaşa, Rize (Northern Turkey). The failures were classified according to their 

morphology, slope types, and whether the infinite slope assumption is valid or not. 

45% of failures on hillslopes and 24.1% of failures in other slopes confirm the 

infinite slope assumption. Depth of landslide can be represented by Weibull 

distribution with a mean depth of 1.05 m.  Two different hydrological (FSLAM, 

TRIGRS) and stability (infinite-slope, 3D slope stability via SCOOPS3D) methods 

are tested for physically-based modeling of these failures. Stability parameters 

 (ø′, 𝑐′, 𝑧) and antecedent conditions were calibrated semi-automatically via a 
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MATLAB code. Then hydraulic parameters were calibrated iteratively. In the 

calibration, only failures confirming the models' assumptions were employed. The 

performance of FSLAM was evaluated as highest in terms of area under curve 

(AUC), indicating that the final pore pressure condition is close to saturation. 

SCOOPS3D estimated unstable areas less than infinite slope solution with higher 

ratio of True Positive Rate (TPR) / False Positive Rate (FPR) , confirming the other 

studies in the literature. Moreover, the performance of the stability assumption is 

shown to be dependent on the morphology of failures. 

 

Keywords: Lanslide morphology, landslide susceptibility, TRIGRS, FSLAM, 

SCOOPS3D 
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Fiziksel tabanlı modeller, heyelan duyarlılık değerlendirmesi için güvenilir 

araçlardır. Ancak, çeşitli basitleştirmelere dayanırlar, çeşitli faktörlerden etkilenirler 

ve belirli heyelanlar için geçerlidirler. Bu nedenle, heyelan envanterlerinin çeşitli 

kontrol faktörlerini ve yenilme mekanizmalarını yansıtan alt gruplara ayrılması 

tavsiye edilir ve analiz bu farklılıkları yansıtmalıdır. Birçok fiziksel tabanlı model, 

sonsuz şev varsayımına dayanmaktadır. Bu varsayımın uygulanabilirliği, 

derinliklerine kıyasla büyük ve uzun boyutlara sahip olmaları ile ilişkilidir. Bu 

çalışmada, 27 Eylül-4 Ekim 2017 tarihlerinde Rize, Kaptanpaşa'da (Kuzey Türkiye) 

yağışların tetiklediği 1000’den fazla heyelanın morfometrik özellikleri 

araştırılmıştır. Yenilmeler morfolojilerine, şev tiplerine ve sonsuz şev varsayımının 

uyup uymadığına göre sınıflandırılmıştır. Yamaçlardaki yenilmelerin %45'i ve diğer 

şevlerdeki yenilmelerin %24.1'i sonsuz şev varsayımına uygundur. Heyelanların 

derinliği, ortalama 1,05 m derinliğe sahip Weibull dağılımı ile temsil edilebilir. Bu 

heyelanların fiziksel tabanlı modellemesi için iki farklı hidrolojik (FSLAM, 

TRIGRS) ve stabilite varsayımı (sonsuz şev, SCOOPS3D ile 3-boyutlu kayma) test 

edilmiştir. Stabilite parametreleri ve öncül hidrolik koşullar, bir MATLAB kodu 
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aracılığıyla yarı otomatik olarak kalibre edilmiştir. Daha sonra hidrolik parametreler 

iteratif olarak kalibre edilmiştir. Kalibrasyonda sadece modellerin varsayımlarına 

uygun heyelanlar kullanılmıştır. FSLAM'ın performansı, son boşluk basıncı 

koşulunun doygunluğa yakın olduğunu göstererek, eğri altındaki alan (AUC) 

açısından en yüksek olarak değerlendirilmiştir. SCOOPS3D, literatürdeki diğer 

çalışmaları doğrulayarak, daha yüksek Doğru Tahmin Oranı (TPR) / Yanlış Tahmin 

Oranı (FPR)  değeri ile sonsuz eğim çözümünden daha az duraysız alan tahmin 

etmiştir. Ayrıca, stabilite varsayımının performansının, yenilmelerin morfolojisine 

bağlı olduğu gösterilmiştir. 

 

Anahtar Kelimeler: Heyelan morfolojisi, heyelan duyarlılık analizi, FSLAM, 

SCOOPS3D, TRIGRS. 
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CHAPTER 1  

1 INTRODUCTION  

Landslides are one of the most hazardous natural phenomena, causing loss of lives 

and properties worldwide (Hong et al., 2007). Different studies demonstrate the 

severe consequences of landslides across the globe and in Turkey (e.g. Filiz et al., 

2011; Görüm & Fidan, 2021; Hong et al., 2007). In the USA, landslides cause 2 

billion dollars of damage and the death of 25-50 people annually (Hong et al., 2007). 

A recent study conducted by Görüm and Fidan (2021) reports that 1343 fatal 

landslides between 1929-2009 caused 389 deaths in Turkey, and 55% of these 

landslides occurred in the Northern part of the country, known as the Black Sea 

region.  

Rize province is the province most affected by landslides in Tukey, in which 

landslides occupy 89 % of the disasters that occur in the region (Filiz et al., 2011).  

Reis et al. (2008) highlighted that rainfall is the triggering factor in 99% of the 

landslides between 1964 and 2008 in Rize. Rize is the city with the highest average 

annual rainfall in Turkey (2299 mm based on data from 1928 to 2017, (Uyeturk et 

al., 2020), which is about 4 times the average annual rainfall in Turkey). Significant 

rain, mountainous topography, weathered volcanic materials, and land-use 

alterations over the years from forest to tea-plantation are other predisposing factors 

in the development of large numbers of landslides in Rize every year.  

Physically-based landslides susceptibility models are reliable tools for preventing 

devastating consequences of landslides providing future estimations (Corominas et 

al., 2014; Fell et al., 2008). They can be utilized for both land-use planning and early 

warning system. However, their accuracy depends on detailed soil geotechnical 

properties, hydrological conditions, and topography. Besides, each physically-based 

method has different simplifying assumptions. Therefore, it is essential to collect as 

much data as possible to improve the accuracy assessment of these models. 
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Furthermore, the back-analysis of multiple models make it possible to determine the 

most suitable model for a specific area and calibrate the model.  

1.1 Problem Statement  

Physically-based landslide susceptibility models have different assumptions for 

hydrological and slope stability calculations. Hydrological assumptions are grouped 

based on the main triggering mechanisms such as lateral flows (Montgomery & 

Dietrich, 1994; Pack et al., 1998)), vertical infiltration dealing with saturated (Baum 

et al., 2002; Iverson, 2000) and unsaturated (Baum, Savage, et al., 2008) conditions 

or both (Medina et al., 2021; Montrasio and Valentino 2008). Also, these models are 

differentiated between those that deal with the time variation of stability (An et al., 

2016; Baum et al., 2008; Lanni et al., 2012) or those that use simplified approaches 

(Medina et al., 2021; Montrasio & Valentino, 2008). Stability assumptions are based 

on failure surface geometry. The infinite slope assumption is the most widely used; 

3D stability methods are also adopted  (Brien & Reid, 2007; Mergili et al., 2014; 

Oguz et al., 2021).  

The performance of the adopted method depends on the accuracy of several 

parameters such as geotechnical parameters, soil depth, cell size in which 

computations are carried out, etc. Due to the multitude of influential factors, 

calibration of the input parameters is inevitable. Landslide inventories are utilized to 

calibrate susceptibility models. Therefore, the validity of the assumptions made by 

the model is essential to accomplish accurate results. Accordingly, detailed 

exploitation of landslide inventories is crucial. Although the morphometric 

characteristics of the landslides are indicated as a metric in selecting the suitable 

stability method (Hutchinson, 1994; Milledge et al., 2012; Tiwari et al., 2014), they 

are generally ignored in the literature.  

Secondly, to decide which model is more favorable for a specific area, two essential 

factors should be considered, which are (i) accuracy of the prediction capability of 

the model with available data (ii) computational cost of the model. Comparing 
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different hydrological and stability models in the back-analysis of events is an 

efficient way of making this decision.  

1.2 Research Objective 

From the perspective explained in the previous section, the primary purposes of this 

study are as follows.  

• This study aims to document morphometric characteristics of shallow 

landslides triggered by a rainfall event (that occurred between September 27- 

October 4 in 2017) in Kaptanpaşa, Rize. The prominence of these 

characteristics to improve the performance of physically-based susceptibility 

models is discussed.  

• This study proposes a morphology-based classification of landslides to 

compromise the stability assumption of the available model.  

• Three different susceptibility models (FSLAM, TRIGRS, SCOOPS3D) are 

compared. These models have different hydrological and stability 

assumptions with varying computational requirements. Performance 

discussions of all models are made by considering both accuracy and 

computational cost.  

• The effect of landslide morphology on the performance of physical-based 

models is shown. 

• A new time-saving and straightforward calibration method of physically-

based models is introduced for data-scarce environments.  

1.3 Thesis Structure 

The thesis continues with a literature review in chapter 2. The literature review 

consists of (i) summarizing landslide classification systems (ii) defining 

morphometric features of landslides, (iii) summarizing the relation between 

landslides’ morphology and stability assumptions, (iv) explaining the methods for 
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obtaining morphological features of landslides (v) summarizing available 

physically-based methods in the literature and discussing influential factors in 

physically-based models, (vii) and reviewing the other studies related with this study. 

Chapter 3 introduces the study area, a summary of available data, methods used for 

obtaining morphometric features, and physically-based back analysis.  

In chapter 4, results are presented, and relevant discussions are made. 

In chapter 5, the primary outcomes of this study are summarized, and 

recommendations for future studies are given.  
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CHAPTER 2  

2 LITERATURE REVIEW  

2.1 Landslide classification system and morphometric features of landslides 

The landslide classification system is mainly followed in the literature based on the 

proposals of   Varnes (1958, 1978), Hutchinson (1988), and Cruden & Varnes 

(1996). Recently, Hungr et al. (2014) updated this classification system (Table 2.1). 

The classification considers the type and rate of the movement, geotechnical and 

geological properties of the sliding material, state of activity, and water content. 

The types of movement of slides are assorted considering the dimensions of 

landslides. Skempton & Hutchinson (1969) reported that landslides' thickness to 

length ratio is lower than 0.1 for translational, and between 0.15 to 0.33 for rotational 

failures. Intermediate values are associated with compound slides. A significant 

internal disturbance is observed in flow failures (Cruden and Varnes, 1996). 

However, understanding which type of movement governs the failure ( boundary 

slide or inner distortion ) is always challenging (Hungr et al., 2001).  

In addition to the classification system proposed by Cruden & Varnes (1996), 

landslides are categorized as deep-seated and shallow. The reason for making this 

distinction is that deep-seated and shallow landslides are different in terms of the 

damages they may cause, the stabilization measures required, their geometry, 

volume, and frequency (Baum et al., 2008). Shallow landslides are often associated 

with a triggering event, and their failure planes are generally more affected by 

seasonal changes and contain non-soil components such as tree roots. On the other 

hand, deep landslides are often triggered by a combination of multiple factors, there 

is greater uncertainty about their depth, and they require more geotechnical 

investigations (Baum al., 2008). Generally, 5 m depth is considered as a boundary 

between deep-seated and shallow landslides (Burns & Mickelson, 2016).   
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Table 2.1 Updated version of Varnes landslide classification system (Hungr et al., 

2014). 

Types of Movement Rock Soil 

Fall Rock/ice Fall Bouldar/debris/silt fall 

Topple 

Rock block topple 

Gravel/sand/silt topple 

Rock Flexural topple 

Slide 

Rock rotational slide  Clay/silt rotational slide 

Rock planar slide Clay/silt planar slide 

Rock wedge slide Gravelsand debris slide 

Rock compound slide Claysilt compound slide 

Rockk irregular slide  

Flow Rock/ice avalanche 

Sand/silt/debris dry flow 

Sand/siltdebris flowslide 

Sensitive clay flowslide 

Debris flow 

Mud flow 

Debris flood 

Debris avalanche 

Earth flow 

Peat flow 

Slope deformation 

Mountain slope deformation Soil slope deformation 

Rock slope deformation 

Soil creep 

Soilfluction 
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There is a close relationship between stability modeling and the morphology of 

landslides. Limit equilibrium analyses based on the assumption of the infinite slope 

are commonly used for shallow landslides. Landslides that are not suitable for 

modeling in this way should be modeled in 2D or 3D. Although it is generally 

thought that the infinite slope assumption underestimates the stability, it can give 

unconservative results because it neglects the interaction between the soil columns 

(Mergili et al., 2014). 

The prerequisite for modeling landslides with infinite slope is that the side boundary 

effects in the transverse directions to the slip are negligible; that is, they can be 

modeled in 2D (Gens et al., 1988; Griffiths & Marquez, 2007; Hutchinson, 1994; 

Wei et al., 2009; Zhang et al., 2011). Lateral boundary effects decrease in landslides 

that are wider compared to their depths (Figure 2.2). These effects also depend on 

the soil’s cohesion, lateral earth pressure, failure condition (drained, undrained), and 

pore pressure state (Bellugi et al., 2021; Hutchinson, 1994).  Hutchinson (1994) 

compared 2D and 3D factors of safety of the sliding mass based on rectilinear sliding 

block  analyses and proposed charts for critical depth to width ratio in 2D solutions 

(so that the error remains under 10  percent) and recommended to use 3D models if 

the depth to width ratio exceeds the critical value from the chart. 
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Figure 2.1. Geometric features of landslides adopted in this study. 

Validity of infinite slope assumption needs high “length to depth ratio”. Several 

attempts have been made to determine a critical value. Griffiths et al. (2011) 

compared finite element and limit equilibrium solutions for an infinite slope, 

concluding that both solutions of the infinite slope's stability are in good agreement.  

They reported that the LH/D ratio of landslides should be higher than 16 to use the 

infinite slope assumption, where LH presents horizontal length and D is depth of 

sliding surface (Figure 2.1). Using the finite element method, Milledge et al. (2012) 

highlighted that the soil's cohesion affects the error resulting from the infinite-slope 

assumption. A higher LH/D ratio is required to minimize the error with increasing 

cohesion. After a threshold LH/D ratio of 25, the error is expected to be less than 5 

percent regardless of the cohesion. Tiwari et al.  (2014) reported 20 as the critical 

“length to depth ratio” using the spectral element method. 
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2.2 Mechanisms of rainfall-triggered shallow landslides 

Different proposals and observations exist in the literature to explain the triggering 

of landslides by rainfall. These proposals mainly focus on two different movements 

of the water in the soil: lateral and vertical (Lu & Godt, 2011). During rainfall's 

vertical infiltration, the soil suction decreases with advancing wetting front. 

Depending on the shear strength of the soil and the slope geometry, failure may occur 

in the negative pore pressure stage (Chae et al., 2015; Lu & Godt, 2011). When the 

wetting front encounters a less permeable layer, positive pore pressure is generated 

(Lu & Godt, 2011; Simoni et al., 2008). These failures are observed in steep slopes 

with small internal friction angles and cohesion. The less permeable layers might be 

bedrock or a more consolidated layer (Corominas et al., 2014; Lu & Godt, 2011).  

The advancement of the wetting front depends on the soil's pore pressure 

distribution, rainfall pattern, and hydraulic conductivity (Lu & Godt, 2011). If the 

pore pressure distribution is uniform and rainfall intensity is high, the wetting front 

advancement from top to bottom is observed. On the other hand, if the soil's 

permeability is high compared with the rainfall intensity, positive pore pressure rise 

takes place at the bottom of more permeable layers (Montrasio & Valentino, 2008). 

Macro pores and preferential flow paths originating from the seasonal volumetric 

changes of the soil and plant roots can accelerate the soil's response to rain (Shao et 

al., 2015). Bordoni et al. (2021) observed that pore pressure response of soil is “rising 

water table from bottom of the top layer”, not “advancing wetting front from top to 

bottom”,  due to macropores and stress cracks in the natural slope that they followed 

for seven years (Bordoni et al., 2021). Springman et al. (2013) reported that these 

behaviors could vary with the season.  

When the accumulated water on the less permeable layer in the soil becomes 

connected, they form the perched water table and start to flow laterally (Lanni et al., 

2012). If the macro-pores in the soil are connected, this lateral flow might be rapid 

during the rainfall, which is called stormflow (Lu & Godt, 2011).  This case causes 

a rapid rise of the perched water table at the topographic convergence points 
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(Montgomery & Dietrich, 1994). It is expected that the landslides triggered in this 

way will be more at the topographic convergence points (close to the streams). 

Figure 2.1 shows the stratification of natural slopes and possible movements of water 

during rainfall. The layer at the very top is very loose, consists of organic materials 

and debris and its depth varies according to climate and vegetation (Dennis et al., 

2011). Layer A consists of a mixture of decayed organic and inorganic materials 

(Dennis et al., 2011). In the B layer, on the other hand, it is expected that the 

percentage of inorganic matter will be higher, but it does not show the characteristics 

of the parent rock that it is originated from (Lu & Godt, 2011). This layer can vary 

from a few centimeters to several meters and contains cracks and hollows with 

dramatically different hydraulic conductivity to the soil matrix (Lu & Godt, 2011). 

On the other hand, the C layer shows the characteristics of the bedrock depending on 

the weathering level (Lu & Godt, 2011). The perched water table may form on the 

bedrock surface or between different layers during heavy rainfall (Lu & Godt, 2011). 

It is also possible to see a capillary barrier effect if the underlying layer has coarser 

particle size distribution (Lu & Godt, 2011).  

When the landslides in Rize are observed, the hydraulic conductivity difference 

between the layers seems to cause these failures. When the organic and mineral 

contents of the samples collected from the failure surfaces are examined, it is thought 

that these landslides occurred in the B horizon (Uyetürk, 2019). 

In which layer the landslide will occur may vary depending on the hydraulic 

properties of these layers and the rainfall pattern (Tsai & Chiang, 2013). For this 

reason, the most accurate modeling is modeling layered systems by determining the 

hydraulic and strength properties of these layers (Li et al., 2021; Lizárraga et al., 

2017; Lizárraga & Buscarnera, 2019; Tsai & Chiang, 2013). However, the average 

hydraulic conductivity is also employed as a simplified approach, taking into account 

the layer where the landslide is located (Sorbino et al., 2010). 
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Figure 2.2. Stratification of natural hillslopes and possible movement of water during 

rainfall (Lu & Godt, 2011).  

If the water moving laterally between layers with different permeability, or in cracks 

in the bedrock face, encounters an obstacle, it moves upwards, called bedrock 

exfiltration (Lu & Godt, 2011). In this case, the resulting pore water pressure is 

higher than the hydrostatic pressure and may trigger a landslide (Sitarenios et al., 

2021). In general, such failures are local and need to be modeled in a site-specific 

manner (Cascini et al., 2011; Sitarenios et al., 2021). 

In general, flow failures are associated with positive pore water pressure in the soil. 

The volumetric change of the soil can also cause this positive pore water pressure 

during rainfall, which can be formed by the aforementioned mechanisms (Song et 

al., 2020). 

All of the above mechanisms can be seen in one area during a rainfall event. In 

addition to these mechanisms, sudden changes in the topography and anthropogenic 

factors also cause the emergence of different failure mechanisms (Cascini et al., 

2008). Therefore, it is challenging to successfully model all failure types in the area 

with a single model (Sorbino et al., 2010). 
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2.3 Landslide Inventories 

Landslide inventories show the location, classification, activity status, volume, date 

of occurrence, and other characteristic features of landslides (Fell et al., 2008). 

Landslide inventories are a crucial part of landslide studies because the primary 

assumption of susceptibility studies is that conditions that caused landslides in the 

inventory will also trigger landslides in the same region in the future (Corominas et 

al., 2014).  

Inventories are used in physically-based landslide susceptibility studies to compare 

model results and previous landslides. In this way, the model's performance can be 

evaluated, and model parameters can be calibrated (Corominas et al., 2014; Medina 

et al., 2021). In addition, information on the size and depth of landslides provides 

important information in the calibration of models (Lizárraga & Buscarnera, 2019; 

Mergili et al., 2014). 

Conventional landslide inventory compiling methods include collecting historical 

information, mapping landslides by field survey, and visual interpretation of aerial 

images. Furthermore, high spatial resolution satellites, synthetic aperture radar 

(SAR), light detection and ranging (LIDAR), and unmanned aerial vehicles (UAV) 

are recently adopted as data-providing platforms for landslide mapping (Gorum, 

2019; Guzzetti et al., 2012). 

High-resolution digital elevation models (DEM) can be employed to get 

morphometric properties of failures. By comparing DEMs from before and after a 

landslide episode, the 3D geometry of the failure zone can be acquired. Although 

this method is reasonably practical,  it suffers from the low temporal frequency of 

available data (Zieher et al., 2016). Due to the time interval between successive data 

collections, linking all failures to a single rainfall event is not possible (Zieher et al., 

2016). Furthermore, owing to climatic and human influences, distinguishable 

characteristics of tiny landslides may change or vanish over time, and transported 

debris (or plants) may cover landslide scars (Zieher et al., 2016).  
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A single DEM acquired after the  landslides can also be used as an alternative. This 

approach is free of time-related mistakes, although it necessitates procedures for 

precisely evaluating landslide geometric characteristics. There are protocols to 

follow in the literature for this aim (Burns and Madin 2009; Slaughter et al. 2017). 

2.4 Physically-based susceptibility models for rainfall-induced landslides 

Different physically-based models have been proposed considering the failure 

mechanisms described in Chapter 2. Since it is impossible to solve all failure 

mechanisms in a single model, each model has its simplifications and hydrological 

assumptions. The proposed models differ in terms of the triggering movement of 

water in the soil (lateral, vertical) and calculation methods, the method of coping 

with geotechnical uncertainties, the stability calculation method they use, and 

whether they take into account the volume change. 

The lateral flow of water is considered in two states: transient and steady-state (Lanni 

et al., 2012; Montgomery & Dietrich, 1994). The steady-state approach is a 

simplification of a time-dependent process. This approach represents storm flow 

during rain or the antecedent hydrological state of the ground before precipitation 

that triggers a landslide. The proposed models for vertical flow (infiltration) differ 

in that they solve transient infiltration (Richards equation) or use simplified methods.  

As for the soil's shear strength, some models consider the contribution of soil suction 

to stability in the unsaturated stage. 

Additionally, models that consider the ground's uncertainty and make deterministic 

analyses are also distinguished from each other.  
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 Table 2.2 Physically-based models in literature and their assumptions.  

 

The selected models are shown in Table 2.2. Only the main assumptions are 

indicated in the table. The models differ from each other, with some features not 

mentioned in the table. For example, the cLinus is distinguished by analyzing 

stratified slopes and volume change during rainfall. Detailed information about the 

models can be obtained from the references given.  
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In Rize province, landslide susceptibility studies are mostly performed by data-

driven methods (Nefeslioglu et al., 2011; Yalcin & Bulut, 2007). Recently, SINMAP 

is adopted by Keles & Nefeslioglu (2021) to investigate landslide susceptible areas 

in the Güneysu catchment area.  

In this study, TRIGRS, FSLAM, and SCOOPS3D are selected to compare 

performance of different hydrological and stability assumption considering available 

data and time. 

2.4.1 Inputs and Effective Parameters 

In the following sections, the common input parameters that are needed in a 

physically-based landslide susceptibility study will be discussed. The factors 

considered are rainfall, geotechnical parameters, soil thickness, vegetation and 

digital elevation model.  

2.4.1.1 Rainfall 

In the landslide literature, rainfalls are discussed in two aspects: the event rainfall 

that triggers the landslide and the antecedent rainfall that affects the pore water 

pressure before the event rainfall. Generally, landslides are triggered by heavy 

rainfall (Lu & Godt, 2011; Rahardjo et al., 2001; Reis et al., 2008). Therefore, event 

rainfall represents the rain in the time interval when the precipitation is intense. 

Antecedent rainfall determines the ground response during rainfall by influencing 

the groundwater table and affecting the vertical pore pressure distribution in the soil 

(Baum et al., 2010; Iverson, 2000; Medina et al., 2021; Napolitano et al., 2016). 

While the effect of the vertical movement of the rainwater occurs in a shorter time, 

the impact of the lateral movement emerges in a long time (Baum et al., 2008). 

Therefore, according to the selected hydrological model, the time interval to be  

chosen for the event precipitation and the antecedent precipitation should be 

compatible with the model's assumption. For example, in models that perform 

analysis based on 1D infiltration, the event precipitation should include short periods 
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in which lateral movement will not be dominant (Baum et al., 2008). Iverson (2000) 

mathematically explained which type of movement would be significant in which 

time interval for nearly saturated soil. The lateral flow will be dominant within the 

time interval that is longer than the contributing area (drainage basin of the slope) 

over diffusivity (t > A/D0 ). In a shorter time than D2/ D0, (where D is depth of slide 

surface) the transient effect of vertical infiltration governs the pore pressure 

response. However, there is no agreed period for the antecedent period. Generally, 

two weeks to one month mean precipitation is applied for antecedent rainfall (Baum 

et al., 2010; Marin & Mattos, 2020; Medina et al., 2021). Since the period is long 

and rainfall intensity is low, evapotranspiration is also essential, while it is neglected 

in event rainfall (Simoni et al., 2008).  Steady-state hydrological models do not 

necessitate antecedent rainfall.   

2.4.1.2 Geotechnical parameters 

Depending on the complexity of the model, different geotechnical parameters are 

required for physically-based models such as internal friction angle (ø'), effective 

cohesion (𝑐′), hydraulic conductivity (ks), unit weight (γ), soil-water retention curve 

(SWRC) parameters, hydraulic conductivity function (HCF) etc.  Determining these 

parameters as representative of the whole study area is essential to accurate 

susceptibility zonation. However, obtaining these parameters may not always be 

possible. In the lack of adequate site investigation, suggestions from the literature 

can be adopted considering different textural and lithological classes and might be 

calibrated (Hürlimann et al., 2022).   

The models considering material uncertainty are more accurate than the deterministic 

model (Medina et al., 2021; Raia et al., 2014). At the same time, spatial variation of 

these parameters also affects the model performances (Oguz et al., 2021). 
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2.4.1.3 Soil thickness 

Soil thickness is one of the main components of sensitivity modeling, which refers 

to the depth from the surface to the more consolidated layer (Corominas et al., 2014). 

Many studies have shown that model performances increase when the variability of 

soil thickness throughout the study area is considered (Catani et al., 2010; Dietrich 

et al., 2007; Lanni et al., 2012). For this reason, different strategies have been 

proposed to model the soil depth continuously in the field. These strategies include; 

using different soil thicknesses at various locations throughout the study area (Baum 

et al., 2005), spatial interpolation (Kim et al., 2013), associating soil thickness with 

simple topographical parameters (Salciarini et al., 2006; Saulnier et al., 1997), 

process-based soil production model (Dietrich et al., 2007) and building multivariate 

statistical models (Segoni et al., 2012; Tesfa et al., 2009). In addition to these models 

(Vieira et al., 2010, 2018) considered different depth scenarios for the study area 

considering possible movable layers. 

2.4.1.4 Vegetation 

Vegetation affects the slopes both hydrologically and mechanically. From a 

hydrological point of view, the vegetation shows the feature of decreasing surface 

runoff and increasing infiltration. At the same time, leaves store water during rain 

and delay the meeting of rainwater with the soil (Kim et al., 2013; Oorthuis et al., 

2021). At the same time, plant roots reduce the moisture content of the soil before 

the precipitation due to transpiration (Oorthuis et al., 2021). The mechanical 

contribution of the plant roots is to increase their stability by anchoring the soil. This 

effect is included in the analysis as root cohesion which varies according to the type 

of vegetation (Guo et al., 2022; Hürlimann et al., 2022). Vegetation density also 

affects the overall contribution of roots to soil stability (Moos et al., 2016). 

Furthermore, the surcharge effect can also be considered as a reducing factor for the 

slope stability (Kim et al., 2013; Wu & Sidle, 1995).  
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2.4.1.5 Digital Elevation Models 

Digital elevation models provide a base map to perform stability analysis for 

susceptibility modeling. The accuracy of the DEM is crucial for evaluating 

predisposing factors to landslides (Godt et al., 2008). Also, the resolution of DEM 

influences the model performance by affecting the derived slope and contribution 

area (Claessens et al., 2005; Fuchs et al., 2014; Tarolli & Tarboton, 2006). 

2.4.2 Performance evaluation 

Quantitative performance analysis is crucial for making a reliable prediction about 

future events (Corominas et al., 2014). Therefore, several methods for performance 

assessment have been proposed in the literature. These proposals are success rate 

curves (Zinck et al., 2001), receiver operating characteristic, ROC, curves (Baum et 

al., 2005; Zizioli et al., 2013), Succes index (SI) and error-index (EI) (Sorbino et al., 

2010), scar concentration, and landslide potential (Vieira et al., 2010) probability of 

detection-false alarm ratio and critical success index (Liao et al., 2011), D index (Liu 

& Wu, 2008) ,and landslide ratio (LR ratio) for each predicted FS class (Park et al., 

2013). Frattini et al. (2010) incorporated the cost curve into the ROC curves to 

quantify the cost arising from false classification. 

This section describes the ROC curve which is adopted in this study because it is the 

most widely used accuracy statistic in the literature with multiple performance 

indices (Medina et al., 2021; Oguz et al., 2021; Salciarini et al., 2008; Schilirò et al., 

2016). Many of the performance indices mentioned above are very similar to the 

different metrics in ROC analysis.  

ROC curves are a method produced for the correct classification of radio signals and 

are used in many different areas apart from landslide studies today such as medicine 

(Obuchowski & Bullen, 2018). The creation of the curve is based on binary 

classification (positives and negatives). Thanks to the ROC curves, different 

functions that perform binary classification can be compared. In addition, the critical 
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value (cut-off) of the selected function can be determined to make the optimum 

classification.  

Binary classification is made by using a threshold value of the test function (this 

function may be the safety factor or the probability of failure). Then a contingency 

table is created by comparing the classification and the observation (Table 2.3). The 

indexes shown in Table 2.4 are calculated with the values obtained from this table.  

Table 2.3 Contingency table for ROC analysis. 

Model Prediction 

Observation 

Positive ( Landslide)  Negative (Stable ) 

Positive (P) True Positive (TP) False Positive (FP) 

Negative (N) False Negative (FN) True Negative (TN) 

 

Table 2.4 Accuracy statistics used in this study.  

True Positive Rate, TPR (Sensitivity) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False Positive Rate, FPR (1-Spesificity) 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Accuracy (ACC) 𝑇𝑃𝑅 + (1 − 𝐹𝑃𝑅)

2
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Figure 2.3. ROC curve plane and perfect classification. 

Binary classification is made with multiple thresholds, and the ROC curve is drawn 

on the TPR-FPR plane.  Area under ROC curve (AUC) is 1.0 for a perfect 

classification, and the ideal cutoff value is the left upper corner (Figure 2.3). For a 

deterministic physically-based model natural cutoff value is FS equal to 1.0. 

However, different cutoff values can also be employed because the errors come from 

DEM resolution, stability model selected, and material uncertainity (Zieher et al., 

2017). 

Although ROC curves are valuable tools for accuracy assessment, they lack spatial 

information of the error, which is their drawback (Corominas et al., 2014). 

2.5 Theoretical Background of TRIGRS, FSLAM, and SCOOPS3D 

2.5.1 TRIGRS 

The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model 

(TRIGRS) computes time-dependent pore pressure and respective change of the 



21 

 

factor of safety due to rainfall (Baum, Savage, et al., 2008). It can calculate pore 

pressure change based on saturated (Baum et al., 2002) and unsaturated (Baum, 

Savage, et al., 2008) initial conditions. The saturated version infiltration method is 

based on the method proposed by Iverson (2000), and the unsaturated infiltration 

model uses the analytical solution of the Richards equation given by Srivastava and 

Yeh (1991). In this study, only the unsaturated model of TRIGRS is adopted, which 

is explained below.  

The unsaturated model of TRIGRS considers soil as a two-layered (saturated and 

unsaturated) system (Baum et al., 2010). The unsaturated layer stores the infiltrated 

water and transmits the rest to the saturated part. The constitutive relation between 

soil suction and hydraulic conductivity and volumetric water content is defined by 

Gardner (1958) as follows. 

𝐾(𝛹) = 𝐾𝑠exp (𝛼𝛹∗) (2.1) 

 

Ɵ = Ɵ𝑟 + (Ɵ𝑠 − Ɵ𝑟)exp (𝛼𝛹∗) (2.2) 

Where, 𝐾𝑠 is saturated hydraulic conductivity, Ψ is suction head,   𝛹∗ =  𝛹 − 𝛹0, 

where  𝛹0 is equal to 0 or -1/α depending on whether capillary rise exists (Baum, 

Savage, et al., 2008). Ɵ, Ɵ𝑠, Ɵ𝑟  are volumetric water content relevant to pressure 

head, saturated and residual water content, respectively, and α is inverse of the 

capillary rise.  

Initial hydraulic conductivity of unsaturated layer is calculated employing steady-

state background flow; 

𝐾(𝑍, 0) = 𝐼𝑧𝑙𝑡 − [𝐼𝑧𝑙𝑡 − 𝐾𝑠 exp(𝛼1𝛹0) exp (-𝛼1(𝑑𝑢 − 𝑍)] (2.3) 
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And hydraulic conductivity change with time and depth  is given as; 

𝐾(𝑍, 𝑡) = 𝐼𝑛𝑧 − [𝐼𝑛𝑧 − 𝐾𝑠 exp(𝛼1𝛹0) exp (-𝛼1(𝑑𝑢 − 𝑍)] 

-4(𝐼𝑛𝑧 − 𝐼𝑧𝑙𝑡)exp(
𝛼1𝑍

2
)exp(−𝐷𝛹

𝑡

4
) 

. ∑
sin [⋀𝑚 − 𝛼1(𝑑𝑢 − 𝑍)]sin [⋀𝑚𝛼1𝑑𝑢]

1 +
𝛼1𝑑𝑢

2
+ 2⋀𝑚

2 𝛼1𝑑𝑢

exp (−⋀𝑚
2 𝐷𝛹𝑡)

∞

𝑚=1

 

(2.4) 

Where Λm is the positive roots of Eqn. 2.5. 

𝑡𝑎𝑛(⋀𝛼1𝑑𝑢 ) +  2⋀  =  0 (2.5) 

Time-dependent change of vertical pressure head distribution is  

𝛹(𝑍, 𝑡) =  
cos (𝜃)

𝛼1
ln [

𝐾(𝑍, 𝑡)

𝐾𝑠
] + 𝛹0 

(2.6) 

In Eqn 2.4, Izlt is steady-state background flow InZ is the rainfall infiltration in the 

corresponding time interval, 𝛼1 is equal to αcos2(δ) (Figure 2.4), and 𝐷𝛹 is soil water 

diffusivity which is;  

𝐷𝛹 =
𝛼1𝐾𝑠

(𝜃𝑠 − 𝜃𝑟)
  

(2.7) 

 

The infiltration in each time interval is limited by saturated hydraulic conductivity. 

The excess rainfall is computed as surface runoff and transferred to adjacent grids 

according to the flow direction of DEM simultaneously in the same time interval.  
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Figure 2.4. Illustration of TRIGRS model. 

Basal flux at the bottom of the unsaturated soil is calculated at the end of each time 

step (Eqn 2.8). Then, excess flux calculated from the difference between unsaturated 

basal flux and bedrock drainage (Eqn 2.9 and Eqn 2.10) is used to calculate water 

table rise. 

𝑞(𝑑𝑢, 𝑡) = 𝐼𝑛𝑍 − 4(𝐼𝑛𝑍 − 𝐼𝑧𝑙𝑡) exp (
𝛼1𝑑𝑢

2
) exp (−𝐷𝛹

𝑡

4
)  

. ∑
⋀𝑚sin [⋀𝑚 − 𝛼1sin [⋀𝑚𝛼1𝑑𝑢]

1 +
𝛼1𝑑𝑢

2 + 2⋀𝑚
2 𝛼1𝑑𝑢

exp (−⋀𝑚
2 𝐷𝛹𝑡)

∞

𝑚=1

  

(2.8) 

 

𝑞𝑧𝑚𝑎𝑥 =  𝐾𝑠(𝛽 − 1)  (2.9) 

 

In Eqn 2.9,   β = cos2 (θ)– IZlt/Ks.  

𝑞𝑧𝑒𝑥 = 0 𝑖𝑓 𝑞(𝑑𝑢, 𝑡) ≤ 𝑐𝑑(𝑞𝑧𝑚𝑎𝑥 − 𝐼𝑍𝑙𝑡) 

or 𝑞𝑧𝑒𝑥 =  𝑞(𝑑𝑢, 𝑡) − 𝑐𝑑(𝑞𝑧𝑚𝑎𝑥 − 𝐼𝑍𝑙𝑡) 

(2.10) 
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In Eqn 2.10, the cd is a constant equal to 0.1 for an impervious boundary.  

The factor of safety calculation can be conducted in TRIGRS in different depths 

based on the infinite slope equation;  

𝐹𝑆(𝑍, 𝑡) =
tan (∅′)

tan (𝜃)
+

𝐶 − 𝛹(𝑍, 𝑡)𝛾𝑤tan (∅′)

𝛾𝑠𝑍𝑠𝑖𝑛(𝜃)cos (𝜃)
 

(2.11) 

Where, Ψ(Z, t) is pore pressure head and where the soil is unsaturated Ψ(Z, t) is 

multiplied by effective saturation which is χ =( Ɵ - Ɵr ) / (Ɵs – Ɵr).  

In this section, only basic equations of TRIGRS defined by Baum et al. (2008, 2010) 

are provided above to show essential parameters to compute pore pressure change. 

A detailed description of the models can be found in the original references.  

In this study, TRIGRS v.2.1 (M. Alvioli & Baum, 2016) is utilized to compute pore 

pressures during rainfall. 

2.5.1 FSLAM 

In FSLAM, water table height at the bottom of a particular soil column is calculated 

employing contributing area (a) of the cell in which soil column is located and 

antecedent recharge (qa) following the methodology proposed by Montgomery and 

Dietrich (1994). 

ℎ𝑎 =  
𝑎

𝑏

𝑞𝑎

𝐾𝑍𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
 (2.12) 

 

Where K is horizontal hydraulic conductivity, b is the cell size of the raster, and a is 

the contributing area of the cell. 
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Figure 2.5 Calculation of height of water table before the event rainfall (modified 

from Montgomery & Dietrich, (1994).  

Water table rise due to event rainfall is calculated by Eqn. 2.13 

ℎ𝑒 =
𝑞𝑒

𝑛∗
 (2.13) 

In Eqn. 2.13 𝑞𝑒  is total event infiltration which is computed by curve number (CN) 

(Eqn 2.14) used in surface hydrology (USDA, 1986). The n* is considered as a 

calibration term in this study instead of using soil porosity proposed by Medina et 

al. (2021) , which is discussed in section 3.3.2 

𝑞𝑒 = 𝑃𝑒 −
(𝑃𝑒 − (

5080
𝐶𝑁 − 51))2

𝑃𝑒 + 4(
5080
𝐶𝑁 − 51)

 (2.14) 

 

Where, Pe is the cumulative event rainfall.  

Following the Eqn. 2.12-14 factor of safety is calculated at the bottom of the soil 

column with infinite slope assumption (Eqn 3.18) 

 

𝐹𝑆 =  
tan (∅′

)

tan(𝜃)
(1 − (

ℎ𝑎+ℎ𝑒

𝑍
) (

𝜌𝑤

𝜌𝑠

)) +
𝐶

𝜌𝑠𝑍𝑔𝑠𝑖𝑛(𝜃)cos (𝜃)
 (2.15) 
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The cohesion term in Eqn 2.11 and 2.15 should be considered as the total of cohesion 

provided by soil (𝑐𝑠
′) and plant roots (𝑐𝑟).  

Additionally, FSLAM is able to compute the probabilistic distribution of Factor of 

Safety considering cohesion and friction angle as normally distributed parameters.  

The analytical solution of the distribution of FS can be found in (Medina et al., 2021).  

2.5.1 SCOOPS3D  

SCOOPS3D applies the 3D method of column approach to calculate the factor of 

safety (Reid et al., 2000, 2015). A three-dimensional search lattice is generated for 

trying spherical failure surfaces. Each point on the search lattice is determined as the 

center of the trial surface. While varying the radius, SCOOPS3D calculates stability 

of spherical failure surface by employing DEM data, 3D material properties, and 

ground water conditions (Reid et al., 2015). The illustration of the search is shown 

in Figure 2.6. 

Firstly, columns involved in the failure surface are determined for each potential 

failure surface. The planar failure surface is assumed considering the location of 

points that slip surface enter and exit the soil column. Then the volume of the column 

above the failure surface is calculated. Failure surface may include either full or 

partial columns (Figure 2.7), which increases the accuracy of stability calculation 

and reduces the number of columns needed for satisfactory approximation (Reid et 

al., 2015). The weight of the column is calculated by Eqn 2.16. 

𝑊𝑐 = ∫ 𝑉𝑐𝛾(𝑧)𝑑𝑧 (2.16) 

Where Vc is the volume of the column, 𝛾(𝑧) is the unit weight of the soil. 
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Figure 2.6. Illustration of search lattice (Tran et al., 2018). 

 

  

 

Figure 2.7. (a) Partial column (b) full column 

The shear strength of the soil on the trial surface is calculated by the Coulomb-

Terzaghi rule (Reid et al., 2000).  

𝜏 = 𝑐′ + (𝜎𝑛 − 𝑢)tan (ø′) (2.17) 

 

(a) (b) 
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Where, 𝜎𝑛 is total stress normal to failure surface, u is pore pressure. When pore 

pressure is negative, SCOOPS3D can calculate the contribution of suction to shear 

strength, but in this study, suction is ignored in the SCOOPS3D  for simplification. 

The factor of safety of the entire failure surface can be modeled by a 3D extension 

of the Ordinary Fellenious method or Bishop’s simplified method in SCOOOPS3D. 

The difference between the two models is that whereas the Ordinary method neglects 

the intercolumn forces, Bishop’s method assumes their direction to be horizontal. On 

the other hand, both methods satisfy both force and moment equilibrium in contrast 

to the method proposed by Hovland (1977). In this study, Bishop’s simplified 

method (Eqn 2.18) is adopted to calculate FS, since it is more accurate especially 

where positive pore pressure exists (Reid et al., 2015).  

𝐹𝑠3𝐷 =
∑ 𝑅𝑖,𝑗[𝑐𝑖,𝑗𝐴ℎ𝑖,𝑗

+ (𝑊𝑖,𝑗 − 𝑢𝑖,𝑗𝐴ℎ𝑖,𝑗
)𝑡𝑎𝑛ø𝑖,𝑗]/𝑚𝛼𝑖,𝑗

∑ 𝑊𝑖,𝑗(𝑅𝑖,𝑗𝑠𝑖𝑛𝛼𝑖,𝑗 + 𝑘𝑒𝑞𝑒𝑖,𝑗)
 (2.18) 

 

In Eqn. 2.18 𝑅𝑖,𝑗 the radius of failure surface, 𝐴ℎ𝑖,𝑗
 is the horizontal area of the soil 

column, 𝑢𝑖,𝑗 is pore pressure at failure surface, 𝛼𝑖,𝑗 is apparent dip angle (Figure 2.8) 

of failure surface on column base, 𝑘𝑒𝑞 is horizontal pseudo-acceleration, 𝑒𝑖,𝑗 is 

moment arm of horizontal force, 𝑚𝛼𝑖,𝑗
 = cos𝜀𝑖,𝑗 +(𝑠𝑖𝑛𝛼𝑖,𝑗𝑡𝑎𝑛ø𝑖,𝑗)/𝐹𝑠3𝐷, where 𝜀𝑖,𝑗  

is true dip of trial surface (Figure 2.8).  
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Figure 2.8 Dip angles of failure surface at the base of soil column (Reid et al., 2015).  

In a particular column, many failure surfaces pass through. SCOOPS3D reports the 

minimum factor of safety for each column.  

Regarding pore pressure, different options exist in SCOOPS3D, defining 3D pore 

pressure distribution, piezometric level, or pore pressure ratio. 

2.6 Literature Review on TRIGRS, FSLAM, SCOOPS3D 

2.6.1 TRIGRS 

This section will summarize studies using TRIGRS, FSLAM, and SCOOPS3D. 

Compared to FSLAM and SCOOPS3D, TRIGRS has been implemented in many 

places. For this reason, only some of the studies using TRIGRS will be described. 

While selecting the studies, the place in the literature and the use of TRIGRS for 

different purposes, and the evolution of the software were taken into consideration. 

Thanks to TRIGRS transient pore pressure capability, it is used in susceptibility 

assessment and assessment of rainfall threshold and hazard analysis. For this 

purpose, Salciarini et al.(2008) adopted TRIGRS to calculate the recurrence period 
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of rainfall triggered landslides occurring on the slopes of Seattle, using different 

rainfall intensity-duration-frequency, IDF curves. 

Baum et al. (2010) introduced the unsaturated module of TRIGRS and applied it to 

landslides in Seattle. At the end of the application, the unsaturated module correctly 

predicted less landslide area instability than the saturated module and the static 

saturation situation (m=hw/z=1),  whereas overestimated unstable areas also were 

much less than others (Baum et al., 2010). 

Sorbino et al. (2010) applied TRIGRS to landslide types with different failure 

mechanisms that they detected in Campania region (northern Italy). It has been 

emphasized that although the performance of TRIGRS is better compared to 

SHALSTAB, the model accuracy varies according to different landslide types, and 

some types of landslides cannot be modeled with TRIGRS. The study also 

highlighted that although SHALSTAB had low accuracy in landslide detection, it 

can be employed to distribute pore water pressure measurements in the field for use 

as initial conditions for TRIGRS. 

Liao et al. (2011) introduced the Matlab version of TRIGRS (MaTRIGRS) and used 

it to predict landslides triggered by hurricanes in Macon County (North  Carolina). 

In the same study, they proposed Probability of Detection (POD) and False Alarm 

Ratio  (FOS) in an early warning system.   

Park et al. (2013) employed TRIGRS to detect the initiation points of the debris flow 

in the Woomyeon Mountain area in Seoul (South Korea). Then utilizing a flow 

routing scheme, debris flow susceptibility zones were established.  

Kim et al. (2013) incorporated tree surcharge and root cohesion into the TRIGRS 

model and showed the mechanical contribution of trees to slope stability during 

rainfall in Bonghiwa, Korea. 

Raia et al. (2014) created the probabilistic version of TRIGRS, which handles 

hydraulic and mechanical parameters’ uncertainties. The model includes both 

normal distribution and uniform distribution options of input parameters. While the 

latter is proposed for areas that are poorly investigated, normal distribution is 
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suggested when sufficient geotechnical exploration is available. They showed that 

the probabilistic model has better performance to estimate landslides in Seattle 

comparing with deterministic model.  

Uncertainty in the initial water table depth dramatically affects the performance of 

TRIGRS analyses. To overcome this difficulty, Grelle et al. (2014) proposed an 

exponential slope-dependent function for the initial water table of TRIGRS and 

optimized the function to minimize initially unstable areas. Their strategy ended up 

with high performance in terms of the ratio of correctly predicted landslide areas to 

overestimated unstable areas (SI/EI). 

Alvioli et al.(2014)employed TRIGRS to estimate the landslide size distribution and 

determine the required I-D threshold value for landslide triggering in Upper Tiber 

River Basin (Central Italy). Their findings pointed out that TRIGRS can reproduce 

two scaling properties of landslides (Alvioli et al. 2014). Then Alvioli et al. (2018) 

investigated the impact of climate change on hazard assessment considering change 

of the previous study's findings. 

Viet et al. (2017) examined the impact of DEM decisions on TRIGRS performance. 

Their results showed that the ideal grid size differs in finding the landslide location 

and predicting the failure time. Furthermore, Sarma et al. (2020) reported that DEMs 

from diverse sources resulted in different performances.  

There are few studies which focused on parameter uncertainty in the literature. 

Zieher et al. (2017) tested ten thousand different combinations of input parameters 

to calibrate the input parameters deterministically. Depina et al. (2020) proposed a 

Bayesian framework to take spatial variability of soil parameters into account to 

improve the performance of TRIGRS. 

2.6.2 FSLAM 

UnlikeTRIGRS, since FSLAM is a new model, it has been employed only in a few 

places in the literature. FSLAM is introduced by (Medina et al., 2021) with 
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theoretical background, assumptions, and sensitivity analysis. Cohesion was 

determined as the most critical parameter in the sensitivity analysis. The model is 

successfully applied in Andorra in an area larger than 100 km2, in very short 

computational time. Furthermore, the probabilistic and deterministic approaches 

were compared, and the probabilistic model is assessed to be more accurate than the 

deterministic model (Medina et al., 2021). 

In Hürlimann et al. (2022),  FSLAM was used in the Val d'Aran region (Pyrenees, 

Spain) to determine landslide-prone areas in the future, under changes in climate and 

land use and land cover, LULC. A landslides episode in 2013 is employed for model 

calibration. They concluded that although average daily rainfall will increase in the 

future, landslide-prone areas will reduce because of the growth of forest areas. 

QGIS plugin of FSLAM is published recently (Guo et al., 2022). That paper explains 

how to use plugins via QGIS. In addition, landslide episodes in 1982 in Bergueda 

(NE Spain) were replicated using FSLAM. 

2.6.3 SCOOPS3D 

Although SCOOPS3D is applied for hazard assessment on a slope and regional scale, 

few studies employed SCOOPS3D for rainfall-induced landslides (Baum et al., 

2002, 2005; Brien & Reid, 2007; Ma, 2018).   

Tran et al. (2018) combined TRIGRS and SCOOPS3D for the first time to assess 

time-dependent stability. The infiltration analysis of the landslides in 2011 on the 

Umyeon mountain in South Korea was conducted by TRIGRS and the infinite slope 

assumption and SCOOPS3D are adopted for the stability analysis. They report that 

SCOOPS3D resulted in less unstable area than that estimated by TRIGRS. Although 

the correctly estimated landslides were more in TRIGRS, SCOOPS3D had slightly 

better performance in terms of the LR class index. 

He et al.(2021) applied SCOOPS3D and TRIGRS combinations to determine the 

rainfall threshold in the Niangniangba river basin in China. They compared the 
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ability of TRIGRS and SCOOPS3D to replicate landslide episodes in 2013. 

Confirming the result reported by Tran et al. (2018), SCOOPS3D ended up with a 

higher LR class ratio. Moreover, the correctly predicted landslide area is also larger 

in their studies.  

Palazzolo et al. (2021) applied a genetic algorithm to improve the search 

performance of SCOOPS3D. In their model, SCOOPS3D gave more unstable areas 

than TRIGRS both in landslide areas and in other units of terrain. The LR class index 

of SCOOPS3D was higher than that of the infinite slope solution, similar to other 

studies.  
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CHAPTER 3  

3 MATERIALS AND METHODS  

3.1 Study Area  

3.1.1 Location of the study area 

The study areas, Yesiltepe, Kaptanpasa, Gurpınar, and Cukurluhoca villages, are 

situated in Cayeli County of Rize. Rize province is one of the most prone areas to 

rainfall-triggered landslides in Turkey, because of its mountainous topography, steep 

slopes, high annual average rainfall (Uyeturk et al., 2020), and frequent high-

intensity short-duration rainfall events (recurrence period of 100 mm/day, which is 

very-high-intensity short-duration rainfall event, in Rize is 1.8 years (Çiçek, 2015))),  

high relative humidity throughout the year (annual average relative humidity is 80% 

) ((Polat & Sunkar, 2017))), city with the highest number of rainy days per year 

(178.5 days (Çicek, 2015)), recent land-use alteration, and deforestation due to the 

high demand for tea plantations.  

The areas of interest cover an area of 14 km2 which are located between 40°55ˈ54ˈˈ −

40°58ˈ30ˈˈ N latitude and 40°45ˈ17ˈˈ − 45°49ˈ10ˈˈ E longitude. The location of the 

site is shown in Figure 3.1. The elevation and slope are derived from the 1/25000 

scale contour map provided by the General Directorate of Mapping, Turkey. 

According to the 10 m resolution Digital Elevation Model (DEM), the elevation of 

the study area changes between 370 to 1207 m. The maximum slope is calculated as 

67.5 degrees. Elevation and slope maps are shown in Figure 3.1b and Figure 3.1c, 

respectively. 
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Figure 3.1. (a) Location of the study area. (b) Digital elevation model (c) slope map.  

3.1.2 Regional geology 

The regional geology of Rize province is studied by Alan et al. ( 2019 ), Gedik et al. 

(1992), and  Tuysuz et al. (2008). Latest study performed by Alan et al. (2019) 

reports that the geology of the area of interest consists of  Çatak formation, Kızılkaya 

formation and Kaçkar granitoid 1. The Çatak formation consists of sandstone, 

siltstone, marl, shale, limestone, basalt, andesitic lava, and pyroclastics. Kızılkaya 

formation is composed of rhyolitic, clayey limestone, and dacitic lavas, in which 

alteration is widely observed. Kaçkar granitoid composed of granite, granodiorite, 

diorite, tonalite and monzonite (Alan et al. 2019). Landslides are observed on the 

residual soil that lies on these geological units.  Geology map of the area is illustrated 

in Figure 3.2. 
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Figure 3.2. Geology of the study area with landslides. 

3.1.3 Rainfall 

Intense rainfall between September 27 to October 4, 2017, triggered many landslides. 

There is one rainfall station in the study area. Rainfall data obtained by this station 

is shown in Figure 3.3. Cumulative rainfall recorded by the station is 175 mm, and 

daily rain is measured as 61 mm and 56 mm on September 27 and on October 1. 

Based on the data from 1928 to 2020, the average monthly rainfall in Rize changes 

between 96 mm to 292.3 mm (TSMS, 2021). The rainiest months are October (292.3 

mm), November (255.2), and September (254.8 mm) (TSMS, 2021).  

Although many of these landslides were reported between September 27-29, 

inventory data was obtained by Comert et al. (2019) after October 4. Reported 

landslides by Comert et al. (2019) can be seen in Figure 3.2. Therefore, landslides 

triggered after September 29 can be involved in inventory data. Landslides that 
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occurred between September 27-29 caused one casualty and evacuation of one 

hundred houses.  

 

Figure 3.3. The rainfall data obtained by the nearest rainfall station. 

3.1.1 Land use and land cover  

The majority of the study area is covered by forest and tea plantations (Figure 3.4). 

Tea planted areas are located near the houses of local people. These areas were 

observed to have more landslides. Although it is challenging to identify landslides 

under forest cover, data obtained by Comert et al. (2019) are believed to capture most 

of the failures under trees as landslides are fresh at the time of data acquisition.  
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Figure 3.4. Land cover and land use map (Comert, 2022 (personal communication)). 

3.2 Landslide Inventory 

Landslide inventory data and the 10 cm resolution digital surface model (DSM)  

provided by Comert et al. (2019) are employed to obtain morphometric features of 

failure source areas. 

3.2.1 3D visualization: RRIM images 

First of all, discrimination of landslides’ source areas is needed. For this purpose, red 

relief images (RRIM) are derived (Chiba et al., 2008) as can be seen in Figure 3.5. 

RRIM images are a way of 3D visualization of a surface model produced by 

superposing I-value map and slope map. The advantage of these images is to be 

independent of azimuthal direction (Chiba et al., 2008). Detailed description of 

production and use of these images for landslide mapping can be found in Gorum 

(2019). In this study, to derive required data SAGA GIS, 7.8.2 is used. An example 
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of a landslide and corresponding RRIM is shown in Figure 3.5a and Figure 3.5b. 

After deriving RRIM images, source areas of landslides are identified. Contour lines 

are also utilized to accurately determine the borders of source areas.  

3.2.2 Determination of morphometric characteristics of landslides 

Landslides’ length (L), horizontal length (LH), the vertical depth of slide surface (D), 

thickness normal to the surface (t), slope height (H), area, width (w) slope of 

landslides (θ) are considered geometric features in this study. These morphometric 

features are illustrated in Figure 3.5c. The protocol suggested by Slaughter et al. 

(2017) is followed. Adjacent stable slope is used as suggested by Slaughter et al.          

(2017) to calculate the mean slope angle of failures. However, two different methods 

are adopted to calculate the depth of the failure surface. Slaughter et al. (2017) 

proposed to measure landslides’ depth at the scarp of landslides. Scarp height is 

recommended to be considered as the depth of the failure surface. Nevertheless, this 

procedure is unsuitable since it overestimates the depth of failures in which the scarp 

profile is not vertical. Therefore, this procedure is modified as in Eqn. 3.1. 

Additionally, the depth of landslides is measured by taking cross-section through 

flow direction. The original approach proposed by Slaughter et al. (2017) is named 

as Original Washington Protocol (OWP), the modified version in this study is named 

as Modified Washington Protocol (MWP), and taking cross-section is named as X-

section method. OWP method is used for comparison purposes, whereas other two 

approaches are needed because measuring the scarp length or obtaining a reliable 

cross-section is not possible for some situations.  These are; 

(i) If an obstacle (such as houses, trees, retaining structures) hindering 

ground features  (Figure 3.6a-b-d) is located at scarp, MWP can not be 

used. If these obstacles are located at the side of the failure X-section 

method is not applicable. 

(ii) Cases that topography unevenly changes (Figure 3.6b): In these cases, the 

X-section method results in either overestimation or underestimation of 

failure depth. 
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(iii) Adjoint landslides (Figure 3.6c): In this case, the relevant method can not 

be used where adjoint landslides exist. 

 

D = Hs – Ls ∙ tan θ 

 

(3.1) 

 

Scarp height is measured at different locations, as Burns & Madin (2009) 

recommended. Multiple cross-sections are taken along the flow direction. The 

maximum depth measurement is assigned as the maximum depth of landslides. The 

mean of the depth measurements is considered as the mean depth of landslides.  

The area of landslides’ sources is calculated automatically by ArcGIS 10.7. The 

width of landslides is calculated by dividing landslide area by landslides’ length           

( A/LH ). The thickness of landslides is calculated by the following equation. 

t = D ∙ cos (θ) (3.2) 
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Figure 3.5. (a) Orthophoto of a landslide (b) RRIM images (c) mean slope calculation 

(d)illustration of morphometric fetures. 

 

Figure 3.6. The cases reducing reliability of depth calculation methods. (a) an 

obstacle on scarp (b) unevenly changing topography (c) adjoint landslides (d) dense 

tree cover.  
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3.2.3 Volume calculation 

The volumes of the failures are calculated by two methods (i) half ellipsoid (Cruden 

and Varnes 1996), (ii) multiplying area, and mean depth derived by X-section 

method (prism method). The failure shape assumptions of these two methods are 

shown in Figure 3.7. Firstly, equivalent width is calculated, assuming the failure area 

is an ellipse, to use the half ellipsoid method. The following equation is used: 

V = 
1

6
∗ 𝜋 ∗ 𝐷𝑚𝑎𝑥 ∗ 𝑊𝑒𝑞 ∗ 𝐿 (3.3) 

 

 

Figure 3.7. Volume calculation methods (a) prism method (b) ellipsoid method. 

 

3.3 Physically-based modeling 

To perform a back-analysis of the failures that took place during the event, FSLAM 

and TRIGRS are selected as hydrological models. As stated previously, FSLAM 

involves both vertical and lateral low, whereas TRIGRS considers only vertical 

infiltration. Furthermore, TRIGRS computes time-dependent change of pore 
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pressures (transient analysis). On the other hand, FSLAM considers the asymptotic 

situation, in which all infiltrated rainfall accumulates at the bottom of the soil 

column. Therefore, their computational times are also different from each other 

(Medina et al., 2021). Accordingly, the purpose of using these models is to compare 

different hydrological assumptions with varying levels of complexity. To compare 

alternating stability assumptions, SCOOPS3D is adopted as an alternative to the 

infinite slope assumption of TRIGRS and FSLAM.  

The water table depth computed by FSLAM and equivalent piezometric level to pore 

pressure at failure surface in TRIGRS is defined for SCOOPS3D analysis.  

In addition to stability and pore pressure assumptions, search parameters are also 

relevant for the accurate determination of safety factors in SCOOPS3D. These 

parameters are maximum and minimum area or volume of landslides, the vertical 

and horizontal resolution of search lattice, the maximum and minimum height of 

search lattice, resolution of the DEM file.  

Since optimum parameters may change through the terrain, an iterative approach is 

adopted in this study. Search parameters are set firstly by considering the suggestion 

of Reid et al. (2015) (Table 3.1). Then, these parameters are extended to check if the 

results are affected by the limits. Furthermore, SCOOPS3D has two search options: 

simple search and coarse to fine search. In the preliminary sensitivity analysis coarse 

to fine search was observed to be inaccurate though it is more computationally 

efficient (Reid et al., 2015). This could be due to the complex topography of the 

study area. Therefore, a simple search option is employed in all analyses.  
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Table 3.1 Initial Search parameters in SCOOPS3D. 

Search Parameter Initial Selection 

Maximum Area (Amin), m2 2000 

Minimum area (Amax), m2 100 

Maximum elevation of Search 

Lattice (Zmax), m 

The maximum elevation of search area + 2 

times topographic relief 

The maximum elevation of Search 

Lattice (Zmin), m 

Minimum elevation of search area + half of 

topographic relief 

Vertical Resolution, m Equal to DEM resolution 

Radius Increment, m Half of DEM resolution 

The horizontal extent of search 

lattice 
Equal to DEM file 

Horizontal multiplier 5 

 

3.3.1 Available data and sensitivity analysis 

Uyeturk et al. (2020) and Uyeturk and Huvaj (2021) conducted a geotechnical 

characterization of residual soils of landslide-prone areas of Rize province. The 

sampling sites of these studies do not cover the current study area. However, they 

provide a reliable range for estimating relevant material properties in similar soils in 

Rize. Therefore, calibration of these material properties is needed. Since calibration 

of all parameters is not possible, sensitivity analysis is performed to determine the 

most relevant inputs.  

Sensitivity analysis is conducted for (i) understanding the importance of each 

parameter (ii) selecting the parameter set to be calibrated (iii) determining the impact 

of each important parameter on the factor of safety in the available data set (iv) 

comparing the influence of similar parameters in different models (Gioia et al., 2016; 

He et al., 2021; Medina et al., 2021). During the sensitivity analysis, the value of 

each parameter is changed when other parameters are kept constant in their default 
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value. This is a simple and commonly adopted way of sensitivity analysis (Zieher et 

al., 2017). Larger ranges of values than parameter datasets are used for sensitivity 

analysis to show the response of factor of safety to parameters’ variation. Using a 

larger data range than a dataset in sensitivity analysis is important to understand 

possible limiting conditions to parameter sensitivity. For example, greater hydraulic 

conductivity leads to more infiltration rate in TRIGRS, but the rainfall intensity 

limits it. 

Required input parameters, their respective ranges and default values, and available 

data are listed in Table 3.1. In the material properties (Ks, 𝑐′, ø′, 𝛾, ƞ ) are reported 

by (Uyeturk et al., 2020). Gardner’s (1958) SWCC parameters are determined by 

fitting the data provided by Uyeturk (2019) up to suction head of 50 kPa ( Figure 3.8 

and Table 3.3). The range of soil depth is determined considering the depth of 

landslide data (90 % of failures are shallower than 2 m ). The default value is selected 

as the mean value of failure depths. In the literature, hydraulic diffusivity is used as 

5 to 500 times of hydraulic conductivity (Baum et al., 2005; Liu & Wu, 2008; Park 

et al., 2013). The default value of these parameters is taken as 100Ks, which is the 

most widely assumed value (Luo et al., 2021; Salciarini et al., 2008; Tran et al., 

2018). Curve number is determined based on the land cover in the area (USDA, 

1986).  

The steady-state infiltration rate and antecedent recharge are used to compute pore 

pressure conditions at the onset of the event rainfall. However, their missions differ, 

and they rely on different hydrological assumptions. While the former is employed 

for determining vertical pore pressure change, the latter is adopted to find out water 

table depth in slope-parallel flow regime. However, both parameters depend on 

antecedent rainfall conditions, evapotranspiration, and the hydraulic properties of 

soil. Mean precipitation two weeks and three days before the event rainfall is 

measured as 0.36  and 2.09 mm/day, respectively.  
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Table 3.2: Required input parameters, available data, and the data range considered 

in the sensitivity analysis (S.A: Sensitivity Analysis,  * indicates for which software 

the parameter is required). 

 

 
FSLAM TRIGRS SCOOPS 3D 

Range in  

Sensitivity 

Analysis 

Range in 

Available data 

Default 

Value in S.A 

Soil Depth z (m) * *  * 0.5/1/2/3/5 0.5-2 1 

Intial depth of 

water table, dwi (m) 
 *  0.25z/0.5z/0.75z/1z No Data 1 

Steady state 

infiltration, Izlt  
 *  0/0.1Ks No Data 0  

Antecedent 

recharge, Pa 

(mm/day) 

*   0.2  No Data 0.2  

Soil Cohesion, csˈ 

(kPa) 
* * * 

Considered in 

 total cohesion 
3.4-7.6 0 

Total Cohesion,        

csˈ+ crˈ (kPa) 
* * * 0/3/10/20/30/50 No data 0 

Friction angle, øˈ 

(degree) 
* * * 20/25/30/35/40 31.1-38.0 35 

Saturated 

hydraulic 

conductivity, Ks 

(m/s) 

* *  10-10/10-8/10-6/10-4 1.1*10-6/1.5*10-7 10-6 

Saturated 

hydraulic 

diffusivity, D0 (Ks) 

 *  5/25/100/250/500 No Data 100 Ks 

Saturated 

volumetric water 

content, Ɵs 

 *  0.4/0.6/0.8 0.608-0.485 0.519 

Residual 

volumetric water 

content, Ɵr 

 *  0.1/0.2/0.4/ 0.318-0.236 0.294 

Water storage 

capacity, Ɵs - Ɵr 
 *  0.1/0.2/0.3 0.298-0.195 0.225 

Gardner’s SWRC 

exponent, α (1/m) 
 *  

0.6/1.13/1.5/2.5/3.5/

4.5 
3.76-0.66 1.13 
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Unit weight of soil 

γsoil (kN/m3) 
* * * 17.66/19.62/21.58 15.4-18.83 17 

Fillable Porosity, 

n* 
*   

0.1/0.2/0.225/0.25 

/0.3/0.35/0.4 
0.38-0.66  0.225  

Slope Angle    20/25/30/35/40 20-50 25 

Curve number, CN *   30/50/70/100 96-58 70 

Total event 

rainfall, Pe (mm) 
* *  82.6 82.6 82.6 

 

 

Figure 3.8. Gardner’s (1958) SWRC curves of available data (site numbers 

correspond to landslides reported in Uyeturk et al. (2020)). 

Table 3.3 Gardner’s (1958) SWRC parameters of available data.  

Site Number Ɵ𝒔 Ɵ𝒓 𝜶 (1/m) 

10-1 0.608 0.318 3.76 

10-2 0.605 0.307 1.17 

11 0.490 0.295 0.66 

12 0.485 0.236 1.89 

All data 0.519 0.295 1.13 
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3.3.1.1 Digital elevation model (DEM) 

The digital elevation model should belong to the date before the landslide episode. 

Due to the high-resolution DEM source scarcity 1/25000 scale, the 10 m interval 

contour line map provided by the General Directorate of Mapping of Turkey is used 

for DEM production. Since the higher resolution is not compatible with these maps, 

10 m resolution was selected for FSLAM and TRIGRS. One advantage of this 

resolution is its high length to depth ratio, which is compatible with the infinite slope 

assumption (Hutchinson, 1994; Milledge et al., 2012). On the other hand, as 

discussed in section 4.1.3, most of the landslides are smaller than the resolution of 

DEM. The drawback of this resolution is also taken into account in performance 

analysis. The second disadvantage of this resolution is being insufficient for adequate 

computation of factor of safety in SCOOPS3D. Therefore, SCOOPS3D analysis was 

performed on 1 m resolution DEM produced from the same contour map. To be 

consistent in the comparison of TRIGRS, FSLAM, and SCOOPS3D same DEM 

elevation model is used in a small area (SCOOPS3D is applied only in a small 

portion of the study area).  

3.3.1.2 Input rainfall 

As indicated in Figure 3.1, the precipitation amount is very low until September 23, 

and low precipitation is measured between Sept. 23-27. After Sept. 27, intense 

rainfall was observed until Sept. 29. The majority of landslides are reported in this 

period. Therefore, the precipitation in this period is considered as triggering event. 

The cumulative amount of rainfall is sufficient as an input parameter for FSLAM,  

but TRIGRS  needs hourly-based input. The input rainfall used in TRIGRS 

computation is shown in Figure 3.9. The Red dashed line shows the most expected 

value of Ks, which is a limit for infiltration rate (Baum et al., 2010).  
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Figure 3.9. Input rainfall for TRIGRS analysis. 

3.3.2 Comparison of FSLAM and TRIGRS hydrological model 

An initial sensitivity analysis is conducted to assess the consequence of these 

different assumptions of the hydrological model of FSLAM and TRIGRS. The water 

table rise due to event rainfall in two models is compared with the parameters’ 

default values in Table 3.2. 

In the FSLAM models, the calibration term, n*, is taken equal to water storage 

capacity (Ɵs – Ɵr).  

Although total infiltrated water computed by FSLAM is more than TRIGRS, water 

table rise of FSLAM model is less than water table rise computation of TRIGRS at 

the time when rainfall ceased (Table 3.4).  

Table 3.4 Comparison of total infiltration and water table rise computations of 

TRIGRS and FSLAM 

 TRIGRS FSLAM 
Total Infiltration (mm), qe 57.0 62.24 
Total Basal Flux (mm), qu 33.5  

Total excess Flux (mm), qu-qz 33.5  

Water table Rise (m), h 0.666 0.276 
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The reason for this difference is illustrated in Figure 3.10. Since TRIGRS can model 

variable water content with depth, fillable pore volume decreases as the water table 

approaches.  

Accordingly, a higher water table rise is observed. Furthermore, water table rise in 

TRIGRS depends on both unsaturated layer thickness and soil types. If TRIGRS 

analysis continues after rainfall ceases water table continues to rise. If TRIGRS 

analysis continues until all infiltrated water reaches the saturated layer, the 

asymptotic value of the water table rise is obtained. This asymptotic value is 

independent of unsaturated layer thickness (Figure 3.10).  The asymptotic value of 

TRIGRS and FSLAM converges when alpha increases. Because the desaturation rate 

of the soil increases as alpha increases, that means presence of a higher fillable 

volume at the beginning of the analysis. This condition represents the behavior of 

granular soils. 

Comparison between FSLAM and TRIGRS infiltration models implies that the 

“porosity” term used to calculate water table (Medina et al., 2021) rise during event 

rainfall in FSLAM can be considered a calibration term. The closest physical 

meaning of this term is; 

𝑛∗ ≥ 𝑛 × (1 − 𝑆𝑟) (3.4) 

 

Where 𝑛 is porosity and Sr is the average degree of saturation through the depth 

before the event rainfall. Sr depends on both soil type and antecedent rainfall 

condition. The same approach is also used in the SLIP model (Montrasio & 

Valentino, 2008). Although asymptotic water table rise computation of TRIGRS is 

more conservative and stability of a slope may decrease after rainfall ceases, the 1D 

infiltration assumption of TRIGRS is not valid until the asymptotic case is reached. 

The lateral flow becomes more significant in time (Baum, Savage, et al., 2008). With 

the same perspective, n* should be greater than the right side of the Eqn. 3.4. If the 
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soil is coarse-grained or has macro-pores, the difference will be more negligible 

(Schilirò et al., 2016).  

 

  

 

Figure 3.10. Comparison of infiltration model of FSLAM and TRIGRS. (a) 

Conceptual illustration of water table rise.  (b) Water table rise computation of 

TRIGRS and FSLAM in different initial water table depth and different alpha 

conditions.  

(a) (b) 
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CHAPTER 4  

4 RESULTS AND DISCUSSIONS   

4.1 Landslide inventory 

In this study, the source area of 1025 landslides was determined. Although Cömert 

et al.  (2019) reported 1057 landslides, some reported landslides were found to be 

very shallow surface erosion. In addition, it was understood that some landslides that 

were thought to be separate landslides were, in fact, parts of a single landslide which 

was not clearly visible due to the leaves/shades of the trees. However, some new 

landslides have also been detected. The number of source areas mapped and the 

methods used for depth calculation are given in Table 4.1. 

Table 4.1 Summary of the number of landslides and their depth calculation methods. 

 

Table 4.2 summarizes the statistics of the morphometric properties of the source 

areas. The depth in Table 4.2 was calculated by the X-section method and volume 

by half ellipsoid method. Three landslides are classified as deep-seated. Because 

their thicknesses are measured as 5 m, 4.98 m, and 4.87 m, except for these three 

landslides, the thickness of all other 826 landslides is less than 3.6 m. The average 

landslide depth, length, and width are determined as 1.05 m, 14.3 m, and 8.5 m, 

Depth could 

not be 

measured 

Shallower 

than 0.4 m 

Deeper than 0.4 m 

199 55 

771 

X-section 

method 

MWP 

method 

Both 

methods 

467 84 220 
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respectively (Table 4.2). The average slope angle is 35.9 degrees, and the elevation 

of these landslides varies between 463 and 985.5 m. 

Table 4.2 Summary of the statistical properties of morphometric features of 

landslides 

 
Mean Max. Min. 

Standard 

deviation 

Depth, D (m) 1.05 6.6 0.1 0.63 

Thickness, t (m) 0.89 5.5 0.03 0.64 

Length, L (m) 14.3 79.7 1 12.2 

Width, w (m) 8.5 49.1 1.6 5.08 

LH / D  17.0 290.0 1.5 19.5 

w / D 10.6 99.3 1.7 9.6 

Area (m2) 146.6 1775.5 2.3 200.0 

Volume (m3) 165.7 5366.8 0.4 421 

Elevation (m) 666.4 985.5 463  

Slope Height (m) 10.9 316.5 0.7 13.0 

Slope Angle (deg.) 35.9 67 15.6 7.7 

4.1.1 Slope types 

The failures are observed in three different slope types; hillslopes, cut slopes, and 

riverbanks. Their possible different failure mechanisms entail this separation. 

Failures in cut slopes and river banks might be initiated by toe weakening, whereas 

hillslope failures are related to pore pressure change of the entire pitch (Zieher et al., 

2017). While shallow hillslope failures are expected to be translational (Haneberg, 
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2004), cut slopes are not. Consequently, slope types of the failures should be taken 

into account during susceptibility assessment. For example, cut slope and riverbank 

failures are steeper than hillslopes (Figure 4.1(b)). More than 85% of the landslides 

in the inventory are hillslope type (Figure 4.1(a)). 

  

 

Figure 4.1. (a) Types of slopes (b) Slope angle of failures in in different slope types. 

4.1.2 Depth of Landslides 

4.1.2.1 Comparison of different depth calculation methods 

The typical tea plantation height is assumed as 0.4 meters. Since depths are 

calculated using DSM, 0.4 meters is deducted from measured failure depth in tea 

planted areas. Accordingly, landslides shallower than 0.4 meters are considered as 

superficial damages of tea plants, which might also result from surface runoff (Table 

4.1). Consequently, landslides' minimum depth and thickness are calculated as 0.1 

m and 0.03 m (Table 4.2).  These values might be lower than the precision of the 

applied model, but presenting results without elimination is preferred. 

As stated in the methodology section, MWP, OWP, and X-section methods are 

employed to calculate failure depth. The maximum and average depth of failures was 

calculated by the X-section method. On 220 landslides, all three methods are used 
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and compared (Figure 4.2a).  The respective mean depths calculated by OWP, MWP, 

and X-section methods is 2.08, 0.99, and 1.00 m. This comparison shows 

overestimation of landslide depth by OWP method as compared to other two 

methods. Furthermore, the mean error between the mean depth calculated by the X-

section method and MWP is small; on the other hand, their correlation is low (Figure 

4.2b).   

 
 

 

Figure 4.2. Depth of landslides, (a) comparison of 3 methods, (b) comparison of 

MWP and X-section methods. 

4.1.2.2 Statistical distribution of depth of landslides 

Only the X-section method (Dmax) is used to derive the failure's statistical 

distribution. Since 98% of failures are shallower than 3 meters, greater values are 

excluded. Consequently, landslide depth's mean and standard deviation are 

calculated as 1.05 m and 0.63 m, respectively. 
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Figure 4.3. a) Probability density plot of landslide depth, (b) Probability plot of 

Weibull distribution. 

Gamma, lognormal and Weibull distributions are tested because of the asymmetrical 

distribution of failure depths. The fitness of the distributions is compared with 

probability plots (Figure 4.3b). Two parameters of Weibull distribution ended up 

with the best performance (a=1.1871, b= 1.7278 in Eq. 4.1).  The probability density 

plots of tested distributions are shown in Figure 4.3a. The same distribution 

represents a spatial variation of soil depth by Burton et al. (1998)  in their study area. 

𝑃(𝑥\𝑎, 𝑏) =
𝑏

𝑎
(

𝑥

𝑎
)

𝑏−1

𝑒−(
𝑎

𝑏
)𝑏

    (Eq. 4.1) 

4.1.2.3 Spatial distribution of depth of landslides 

When soil thickness (which is one of the input parameters in common physically-

based susceptibility models) obtained by direct measurements  in the field is not 

available the depth of landslides can be utilized for this purpose (Frattini et al., 2004; 

Zieher et al., 2017). The simple soil thickness prediction methods are examined for 

the study area. Some of the correlations to estimate soil thickness utilize linear slope 

gradient (Saulnier et al., 1997), exponential slope angle (Salciarini et al., 2006), 

linear elevation (Saulnier et al. 1997), topographic wetness index (TWI) (Lee & Ho, 

2009), and topographical position-elevation-slope combined models (Zizioli et al., 

2013). Additionally, the kriging spatial interpolation technique was also tested.  70% 

of data is used for training and others are used for testing (a total of 687 landslides). 
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When a mean square error (MSE) between prediction and test data is compared, MSE 

is observed to be greater than the variance of test data, meaning that the performance 

of the models is less than the average of the data (Lanni et al., 2012). Consequently, 

landslide depths do not give plausible results with these simple models to estimate 

soil thickness. The cumulative distribution of all models and landslide depths are 

shown in Figure 4.4. 

 

Figure 4.4. Comparison of soil thickness models and landslide depths from DSM 

4.1.3 Other dimensions of landslides 

The cumulative distribution of length and width of landslides indicates that these 

failures are very small (Figure 4.5). Length of 48.3 percent of flows and width of 

70.3 percent of them are smaller than 10 m, which is the resolution of the DEM used 

in susceptibility analysis (Fig. 4.5). Figure 4.5 highlights the importance of the 

resolution of DEM and its compatibility with the dimensions of the landslides in the 

inventory. When a cell size of 10 m is used in susceptibility analyses, some percent 

of landslides in the inventory will not be captured by the analyses, since they are 

smaller than 10 m.  
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(a) (b) 

Figure 4.5. Comparison of the compatibility of 5 m and 10 m resolution DEM to (a) 

Cumulative distribution of length of landslides (b) Cumulative distribution of width 

of landslides. 

4.1.4 Classification of failures for modeling approaches 

In this section, the earth flows are categorized according to dimension ratio 

thresholds reported by both Skempton & Hutchinson (1969) and Milledge et al.  

(2012).  In Table 4.3 L/t ratio thresholds for translational, compound, and rotational 

failures are adopted as 10, 6.67, and 3, respectively. As for the validity of the infinite 

slope assumption, LH/D ratios of 18 and 25 are thresholds respective to 10%, and 5% 

error, independent of the cohesion of the soil. LH/D ratio equal to 10 is considered as 

an acceptable threshold for this area, considering low cohesion values of similar soils 

in Rize (Uyeturk et al., 2020). LH/D ratio larger than 10, means that the slope can be 

modeled with infinite-slope approach. The cumulative distribution of hillslope 

failures according to both criteria is shown in Figure 4.6a, indicating that some 

percent of landslides in the inventory cannot be classified as infinite-slope type. 
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Table 4.3 Percent of landslides according to thresholds for “translational 

landslides” and “infinite-slope” assumptions. 

 

As widely accepted in the literature (Haneberg 2004), shallow landslides on natural 

hillslopes have a high L/t ratio. On the other hand, failures in cut slopes and river 

banks are shorter compared with their depth. 

The chart provided by ( Hutchinson, 1994) was adopted to decide whether lateral 

boundaries affect stability, i.e. whether 2-dimensional or 3-dimensional analyses 

should be done. D/W ratio of 0.13 is selected as a threshold for this purpose 

considering fully saturated and normally consolidated conditions. Accordingly, 55.8 

% of hillslopes and 43.5 % of cut slope-riverbank failures are above this threshold 

(Figure 4.6b).  

 
 

(a)  (b) 

Figure 4.6. (a) Cumulative distribution of natural hillslope failures according to both 

translational failure and infinite slope criteria. (b) Cumulative distribution of 

depth/width ratio. 

LH/D 

L/t 
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Figure 4.7. Landslides in the study area with appropriate modeling approaches 

From the combination of proposals made by Miledge et al. (2012) and Hutchinson 

(1994), 294 out of 652 (45%) of failures on hillslopes and 30 of 119 (24.2%) of 

failures on other slopes are concluded to be suitable for infinite slope assumption 

(Figure 4.7). This conclusion highlights different morphology of failures on 

hillslopes and cut slopes- river banks.  

The locations of failures with suitable stability assumptions are shown in Figure 4.8. 
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Figure 4.8. The location of failures according to their suitable assumptions. 

4.1.5 Failure types 

Considering the available DEM resolution (10 m), slope types, and morphology of 

landslides, all failures are grouped into four types explained below (Figure 3.1). 

(i) Type 1: The hillslope failures conforming infinite slope assumptions and 

having greater dimensions than 10 m are grouped under this type. These 

failures are the most compatible type with the assumptions of models based 

on infinite slope..  

(ii) Type 2: The hillslope failures with dimensions greater than 10 m and 

unsuitable for infinite slope assumptions. 

(iii) Type 3: The cut slope and riverbank failures with dimensions greater than 

10 m.  
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(iv) Types 4: All failures with dimensions smaller than 10 m. 

 

 

Figure 4.9. Location of different types of failures.  

 

4.1.6 Landslide sizes and scaling properties 

Landslide sizes and their distributions are one of the main parameters of hazard 

assessment. The interrelations of these features assist in estimating one metric from 

the others. Depth, area, volume are the main metrics used for this purpose (Larsen et 

al., 2010; Malamud et al., 2004; Stark & Hovius, 2001). Frequency distribution of 

landslide sizes is used for estimating their probability of occurrence in a particular 

field (Ardizzone et al., 2002). The probability of occurrence of landslides sizes is 

reported decreasing after a roll-over point which is the most expected size. Inverse-

Gamma distribution is the most widely applied model to describe this relation 
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(Malamud et al., 2004). Proposed inverse-gamma distribution by Malamud et al. 

(2004) ;  

𝑝(𝐴𝐿; 𝑝, 𝑎, 𝑠) =
1

𝑎Г(𝑝)
[

𝑎

𝐴𝐿−𝑠
]

𝑝+1

exp [−
𝑎

𝐴𝐿−𝑠
]  (Eq 1.2) 

Where; AL is the area of individual landslides, (p+1) power-law exponent, a is the 

maximum observed area, s is the power exponent of small landslides.  

Kernel density distribution of landslide source areas and maximum likelihood 

estimation of inverse-gamma distribution is shown in Figure 4.10. 

 Model parameters p, a, and s are calculated as 1.4739, 1.05×10-4 km2, and 1.45×10-

5 km2. The relation between source areas and the depth of landslides (Dmax) is shown 

in figure Figure 4.11. Their relations are in the same trend as soil landslides reported 

by Larsen et al. (2010).  

As stated in section 3.2.3, the volumes of the landslides are calculated by half 

ellipsoid and prism methods. The estimated volume by prism method overestimates 

the volume by a factor of 1.23 as compared to the prism method (Figure 4.12a). 

Considering the shape of the failure surface, the elipsoid assumption seems to be 

more suitable for volume calculation (Figure 4.13). Overestimation of volume by the 

prism method was also stated by Guzetti et al. (2009).  
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Figure 4.10. Probability density distribution of source areas. 

 

 

Figure 4.11. Relation between area and depth of landslides’ sources. 
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Figure 4.12. (a) Comparison of ellipsoidal and prismatic volume calculation (b) 

Landslide area vs. landslide volume. 

Interrelation between the area and volume of landslides is suggested as V=A. This 

relation is useful for volume estimation in areas where direct measurement is 

impossible. Empirical relation is evaluated as V=0.134A1.33 (Figure 4.12b) in the 

study area. Larsen et al. (2010) reported that the scaling exponent of soil landslides 

is between 1.1-1.3, which agrees with this study's outcome. 

 

Figure 4.13. Cross-section of randomly selected landslide source areas. 
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Lastly, the total volume was calculated as 1.13809×105 m3. Considering this is an 

event inventory and it is expected to be once a year, the mobilization rate is 

calculated as 7.7 mm/year for a 14.83 km2 area.  

Different metrics are utilized in the literature to decide event magnitude. For this 

purpose, total number-based (Malamud et al. 2004) and total volume-based (Guzzetti 

et al., 2009) proposals were adopted. The event magnitude of this episode is 

calculated as 3 and 5 according to Malamud et al. (2004) and Guzetti et al. (2009) 

proposals, respectively. 

4.1.7 Relation between landslides and conditioning factors 

This section examines the conditioning factors of landslides. Generally, these factors 

are a matter of statistical studies. Regarding statistical studies, many factors can be 

examined, such as vegetation, distance to roads, distance to streams, geology, 

topographical factors, and hydrology-related parameters (topographic wetness, 

stream power, etc.). These influential factors differ, and their contribution differs in 

different areas. Some of these factors, such as slope gradient, soil thickness, soil 

strength parameters, and hydraulic parameters, are also the input of physically-based 

models. On the other hand, some of them (geology, elevation, land cover, etc.) are 

indirectly included, affecting the input parameters. Knowing the contribution of 

these factors can be adopted to increase the performance of physically-based models. 

Mean slope angle, elevation, land cover, geology, slope curvature, and slope aspect 

classes are taken into account for this landslide inventory, since these parameters are 

frequently adopted in statistical susceptibility studies in Rize (Akgun et al., 2008; 

Dağ et al., 2020; Reis et al., 2008; Yalcin, 2008; Yalcin & Bulut, 2007). The percent 

frequency of observed landslides is calculated based on the area and the number of 

landslides. The average elevation, curvature, and slope aspect are computed in the 

landslide polygon while considering the number of landslides. On the other hand, the 

area-based classification of elevation and geology, cell counts in ArcGIS are 



 

 

68 

considered. In contrast, the area of individual landslides in that class is calculated for 

the curvature, aspect, and land cover. The effect of each conditioning factor is 

represented by the likelihood ratio (eq 4.3) (Akgun et al., 2008).  

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑅𝑎𝑡𝑖𝑜 = 
% 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠 

% 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎
    (Eq 4.3) 
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(d) (e) 

Figure 4.14. Effect of conditioning factors (a) slope aspect, (b) elevation, (c) land 

cover (d) geology (e) slope curvature class. 

Slopes facing south, south-east, and south-west directions seem to be more likely to 

fail (Figure 4.14a), which is a agrees with with the conclusions of Akgun et al (2008) 

in other landslide sites in Rize. Nevertheless, different critical aspects were reported 

by various studies in other parts of Rize province (Yalcin and Bulut 2007; Yalcin 

2008). Besides, larger landslides are observed in the southwest direction. 

The vegetation seems to be one of the major affecting factors as was also highlighted 

in other studies in Rize (Yalcin and Bulut 2007; Akgun et al. 2008; Yalcin 2008; 

Dag and Bulut 2012; Dağ et al. 2020) (Figure 4.14c). The physical influence of the 

presence of trees contributes to stability by detaining water on canopies and by 

providing root cohesion. On the other hand,  tree surcharge has an inverse impact 

(Kim et al., 2013). The overall effect of trees increases the stability in the study area. 

As for the geologic formations, the likelihood of failures in Kaçkar Granitoid is 

slightly higher than in the Çatak formation(Figure 4.14d). Kızılkaya formation is not 

comparable to others since it covers minimal areas. 

It is worth noting that the likelihood ratio ignores interrelation between conditioning 

factors (Akgün et al., 2008). For example, dramatic decay in landslide areas after 
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800 m elevations might be related to a reduction in chemical weathering or decreased 

tea-planted areas. Consequently, more effort is needed to use this contribution in 

statistical models. 

4.2 Physically-based modeling 

4.2.1 Results of sensitivity analysis 

Sensitivity analysis is conducted for (i) understanding the importance of each 

parameter (ii) selecting the parameter set to calibrate, and (iii) determining the 

impact of each critical parameter on the factor of safety in the available data set 

(Gioia et al., 2016; He et al., 2021; Medina et al., 2021). During the sensitivity 

analysis, the value of each parameter was changed when other parameters were kept 

constant in their default value. This is a simple and commonly adopted sensitivity 

analysis (Zieher et al., 2017). Larger values than the parameter dataset were used for 

sensitivity analysis to show the response of factors of safety to parameters’ variation 

(Table 3.2).  

In order to represent sensitivity, two indicators are used. These are percent changes 

in factor of safety; 

𝛻𝐹𝑆, % =
𝐹𝑆𝑖 − 𝐹𝑆𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝐹𝑆𝑑𝑒𝑓𝑎𝑢𝑙𝑡
∗ 100 

(4.4) 

 

and , 

Relative change of parameter =
𝑃𝑖−𝑃𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛
 (4.5) 
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Figure 4.15. Sensitivity of input parameters. (a) TRIGRS (b) FSLAM (c) Scoops3D  

(d) Effect of variability of TRIGRS’s important inputs in available data range (e) 

Impact of FSLAM’s essential inputs variability in the available data range (f) 

Comparison of the effect of stability parameters in the available data range. 

(b) (a) 

(c)  
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While default rainfall condition is used as specified in Table 3.2 for FSLAM and 

TRIGRS, the dry state is considered in SCOOPS3D. Then a change of a factor of 

safety with different water table depths is examined. The same unit weight is used 

under and above the water table. 

Sensitivity plots of TRIGRS, FSLAM, and SCOOPS3D are shown in Figure 4.15a, 

Figure 4.15b, Figure 4.15c. The sensitivity of steady-state background infiltration 

and saturated hydraulic diffusivity was also tested in TRIGRS. Since their effects are 

insignificant compared to others, they are not included in sensitivity plots. 

For the TRIGRS and FSLAM cohesion, friction angle, soil depth, and slope angle  

(in the following part of the thesis, these parameters are called stability parameters)   

are the most critical parameters. Because these parameters are directly included in 

the infinite-slope factor of safety calculation, therefore, these three parameters 

determine the possible minimum (saturated condition )  and maximum ( dry state for 

sensitivity analysis) factors of safeties ( are shown in figures with dashed lines). 

Variation in hydraulic parameters changes factors of safety within these two extreme 

conditions (dry and saturated). Therefore the significance of stability (c,θ,ø,z,γ) and 

hydraulic parameters should be considered separately. Change of FS resulted by 

variation of inputs in the available dataset is shown in Figure 4.15d and Figure 4.15e 

for TRIGRS and FSLAM. Among the stability parameters, cohesion is the most 

significant parameter for all three models. However, it should be noted that the 

results of sensitivity analysis bias to the default value of the input parameters. For 

example, stability of the soil column increases with increasing soil thickness in 

Figure 4.15a-b since the default value of cohesion is zero. Increasing soil thickness 

decreases the inverse effect of water table rise instability. 

On the other hand, if the default value of cohesion were higher, soil depth would 

have an inverse effect on the factor of safety. Furthermore, the sensitivity of results 

to soil thickness would be higher. Consequently, default values in sensitivity analysis 

should be the expected (representative) values in the field. 
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Soil thickness is less significant in SCOOPS3D (Figure 4.15f) than in other models. 

This difference is that the depth of bedrock coincides with failure surface in FSLAM 

and TRIGRS, whereas in SCOOPS3D, the depth of critical surface depends on slope 

height, cohesion, friction angle, and unit weight of soil (Reid et al., 2015). Soil depth 

is only a lower limit for failure surface. 

Among the TRIGRS’ hydraulic parameters, saturated hydraulic conductivity is the 

most important one as it changes both the amount of infiltration and the response 

rate of pore pressure to infiltration. The factor of safety is inversely affected by 

increasing hydraulic conductivity until all rainfall infiltrates. After this point, the 

change of Ks does not affect the FS.  On the other hand, hydraulic conductivity is 

considered in the lateral direction in the FSLAM model. Therefore, it positively 

affects the stability of the slope. FS safety decreases as Ks reduces until the soil 

column becomes saturated. It is worth noting that Ks and antecedent recharge is 

assumed to be independent in the sensitivity analysis. However, steady-state slope-

parallel flow is valid because rainfall duration is long, and rainfall intensity 

compared with Ks is very small (Iverson, 2000). 

4.2.2 Calibration of the model 

As indicated in sensitivity analysis, a factor of safety of a soil column is dominated 

by the stability parameters (c', ø, z, θ). These parameters change spatially in the area, 

but during rainfall, they are stationary. In other words, if a soil column has a lower 

safety factor than another soil column before the event rainfall, the same situation is 

expected to be after rainfall provided that hydraulic parameters of soil columns 

corresponding to infiltration are not significantly different than each other. For 

reasonable input parameters, pixels with a lower factor of safeties before the event 

rainfall should be located in inventory polygons. In other words, when two stability 

parameter sets are compared, parameters representing the study area better, should 

result in the higher area under the curve in before-event rainfall conditions. And ROC 

curve of the parameter set should not change significantly with rainfall. This 
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hypothesis was tested with different parameter assemblies. When ROC curves are 

compared before and after TRIGRS analysis, approximately the same ROC curves 

are observed. 

The similarity of ROC curves before and after event rainfall is taken advantage of 

for calibration of both stability and hydraulic parameters. The calibration of stability 

parameters is conducted in the before-rainfall condition considering the AUC of the 

model. Then, hydraulic parameters are calibrated with the rainfall evaluating the 

accuracy (ACC) of the model. The followed methodology is explained below. 

(i) 108 hillslope failures (430 pixels) suitable for infinite slope assumption 

(Type 1 failures) and 15000 random pixels outside the inventory polygons were 

selected for the calibration. Since 15000 random pixels are considered stable, these 

points were sampled from outside of the 10 m buffer zone of landslide polygons. 

(ii) Three different geological units exist in the study area. Two units were 

considered since one of these geological units covers a tiny space. The parameter 

range utilized for calibration is shown in Table 4.4. Additional to stability 

parameters, antecedent recharge was also taken into account to evaluate the water 

table depth before the event rainfall. In Table 4.4, the root cohesion range was 

determined based on the related literature (Bathurst et al., 2010; Hürlimann et al., 

2022; Wu & Sidle, 1995).  

(iii) A MATLAB code was generated to couple all combinations of parameters 

and automatically calculate each pixel's safety factor. Moreover, for each parameter, 

assembly ROC curve is constructed using different FS thresholds. Also, AUC, 

unstable areas (Initially positive rate ), the TPR in the saturated condition, and the 

TPR of the model corresponding to maximum accuracy points were calculated.  

(iv) Higher AUC indicates that pixels with smaller FS favor inventory polygons. 

Therefore, a better parameter set is expected to have a higher AUC. Besides, for an 

adequate parameter group for a physically-based model, ACC should be high when 

FS=1.0 is selected as a cut-off value. Nevertheless, the pore pressure stage at failure 
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is unknown. Therefore, it is not possible to calculate accuracy directly in MATLAB. 

Accordingly, an indirect approach is developed to eliminate unrealistic parameter 

couples. Maximum TPR considering FS=1 can be achieved when all soils within the 

area are saturated. As indicated in Figure 4.16, if TPR at saturated condition is lower 

than TPR of maximum accuracy point (with different FS threshold) of ROC curve, 

maximum accuracy can not be obtained by calibrating hydraulic parameters. For that 

reason, parameter sets ending up with these consequences were eliminated. By doing 

that, parameter groups with unreasonably high stability are sifted.  

(v) The Second criterion was applied by considering initially-unstable areas 

(unstable areas after MATLAB computation). Initially-unstable areas (initial 

positive rates, IPR) should be less for suitable parameters. On the other hand, initially 

unstable areas might be steep rock surface, steep slopes remaining stable with initial 

suction, or stabilized slopes with retaining structures. Therefore there is no strict 

threshold for this criterion. Parameter sets with more than 2 percent IPR were 

eliminated in this study, considering the whole dataset.  

 

Figure 4.16. Use of ROC curve for calibration of hydraulic parameters.  
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(vi) After determining suitable stability parameters (Table 4.5) hydraulic 

parameters were calibrated iteratively If the maximum accuracy cannot be 

approached sufficiently by changing the hydraulic parameters, the calibration can be 

continued with another stability parameter group The calibrated hydraulic 

parameters are shown in Table 4.6. 

The advantage of this calibration procedure is to be time-saving since stability and 

hydraulic parameters are calibrated separately. For example, a combination of all 

parameter values listed in Table 4.4 was tested in 3 hours, approximately equal to 

one TRIGRS run with the same computer. The calibration without separating 

stability and hydraulic parameters might be more accurate, but it needs high 

computational power and more time (Zieher et al., 2017). 

Table 4.4 Parameter range and increment used in calibration. 

(minimum:increment:maximum) 

 

Soil 

Cohesion, 

Cs (kPa) 

Friction 

Angle, ø 

(degree) 

Root 

Cohesion, 

Cr (kPa) 

Antecedent 

Recharge 

Coefficient 

qa/ks 

Soil depth, Z (m) 

Kackar 

Granitoid 
0:2:8 30:2:38  

0.00:0.001:0.01 

and 

0.01:0.01:0.24 

1.5:0.1:2.0 

Kızılkaya-

Çatak 

Formation 

0:2:8 30:2:38  

Forest - - 0:2:10 

Tea 

Plantation 
- - 0 
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Table 4.5 Calibrated stability parameters. 

 

Soil 

Cohesion, 

Cs (kPa) 

Friction 

Angle, ø 

(degree) 

Root 

Cohesion, Cr 

(kPa) 

Soil depth, 

Z (m) 

Kackar Granitoid (kg) 4 30  1.5 

Kızılkaya-Çatak Formation (kk-

kç) 
4 32  1.5 

Forest * * 10 1.5 

Tea Plantation * * 0 1.5 

Artificial Surface * * 0 1.5 

* Respective soil parameters are used. 

 

 

Table 4.6 Calibrated hydraulic parameters. 

Geology 

TRIGRS FSLAM 

α (1/m) Ɵs-Ɵr Ks n* CN 

kg 0.7 0.2 10-6 0.045 - 

kk-kç 0.7 0.2 10-6 0.045 - 

Forest - - - - 73 

Tea Plantation - - - - 76 

Articifial Surface     96 
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4.2.2.1 Effect of lateral flow 

It is observed that incorporating antecedent recharge increases the AUC. In the case 

of stability parameters in table 3 are used the change of AUC, IPR, and TPR with 

antecedent recharge is shown in Figure 4.17.  Although incorporating antecedent 

recharge into the model improves the performance, initially unstable areas also 

increase. This trend may be because lateral flow during precipitation also contributes 

to failures (Montgomery and Dietrich, 1994; Park et al. 1998, Lanni et al., 2012).  

 

Figure 4.17. Contribution of lateral flow to model performance. 

4.3 Comparison of different hydrological models 

As default, TRIGRS does not compute the lateral flow effect of antecedent rainfall. 

Therefore, it needs the water table depth measurement. Different assumptions are 

adopted in the literature to estimate initial water table depth when it is unknown 

(Grelle et al., 2014; Salciarini et al., 2007).  The most widely employed assumption 

is the water table coinciding with model boundary (Baum et al., 2010; Marin & 
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Mattos, 2020; Park et al., 2013). When we apply this assumption to TRIGRS, TPR 

is calculated as 0.29 (Figure 4.18).  

As stated in the previous section, incorporating antecedent recharge into the models 

enhances the model performance, increasing initially unstable areas. On the other 

hand,  determining steady-state recharge is complicated. It depends on water 

retention properties of soil, antecedent rainfall, vegetation, evapotranspiration, 

contributing area of slope (Iverson, 2000; Park et al., 2013). Therefore, antecedent 

recharge is determined by considering initially unstable areas and the resulting model 

performance. When steady-state recharge is applied as 0.001Ks to create the initial 

condition of the TRIGRS with the same approach with FSLAM, TPR rise up to 0.45 

(Figure 4.18) whereas initially unstable areas increase from 2% to 3%; therefore, this 

amount is selected as antecedent recharge in TRIGRS and FSLAM. This amount 

corresponds to one-fourth of the average rainfall for two weeks before the landslides. 

The ROC curves and the points that correspond to FS=1.0 points are shown in Figure 

4.18. In addition to FSLAM and TRIGRS, saturated conditions are also considered.  

 

Figure 4.18. ROC plot of TRIGRS and FSLAM and saturated condition after 

calibration (Only Type 1 failures are considered in ROC analysis). Points represent 

FS=1.0. 
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According to the results, the highest AUC is obtained by the FSLAM model. 

However, the TPR of FSLAM and saturated conditions is very close to (0.49 and 

0.51). Unstable areas are underestimated by TRIGRS models comparing the others 

(Figure 4.19). It is worth noting that the calibration of TRIGRS is based on the 

physical properties obtained by laboratory tests. The SWRC parameters are kept in 

the range of available data. Other studies also report underestimation of unstable 

areas with the TRIGRS-unsaturated model (Schilirò et al., 2016; Zizioli et al., 2013). 

On the other hand, n* terms in the FSLAM corresponds to the fillable mean unit 

volume before the rainfall do not have any physical constraints. The calibrated value 

of n* of 0.045 indicates two possibilities. The first possibility is that the water content 

of the soil is high before the rain. The second possibility is that even if the water 

content of the soil is not high, the rainwater fills less volume through cracks in the 

grounds, and the pore pressure in the failure plane increases (Bordoni et al., 2015, 

2021). The final perched water table conditions are shown in Figure 4.20. The final 

condition of FSLAM is close to saturation correspondingly cumulative distribution 

of the factor of safety of the saturated state, and FSLAM is close (Figure 4.22b).  

It is worth noting that forest areas are stable in all cases. There are some failures in 

forest areas, but compared with the tea plantation area, it is significantly less (Figure 

4.14 ). Therefore, root cohesion calculated for forest area is high. The model 

performance might be improved by figuring out why some forest areas fail while 

others do not. The difference might result from different species of trees or trunk 

density or changes in soil thickness etc. These questions are left to future studies 

because they need additional data.  
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Figure 4.19. Factor of safety map after scenarios (a) Inital Condition, (b) TRIGRS, 

(c) FSLAM, (d) Saturated condition. 

 

(b) 

(c) (d) 

(a) 
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Figure 4.20. Comparison of water table height (m=hw/z) computed by TRIGRS and 

FSLAM. (a) FSLAM (b) TRIGRS 

Considering the different failure types, the highest TPR in all hydrological conditions 

was observed in Type 2 failures, which is logical because these slopes are natural 

hillslopes that; analyzing these failures with an infinite slope equation is expected to 

give lower FS. As discussed earlier, Type 3 (cut slopes) and Type 4 (small failures) 

are not compatible with these models. As expected, TPR is less than other types; 

however, these failures were also recognized by the models with close accuracy with 

Type 1. 

(a) (b) 
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Figure 4.21. (a) True Positive Rates in different types of failures and different initial 

conditions. Type1: hillslope-infinite, Type2: hillslope-not-infinite, Type3: cutslopes, 

Type4: smaller (<10 m) slopes. (b) Cumulative distribution of factors of safety in 

different hydrological scenarios.  

4.4 Comparison of infinite slope and SCOOPS3D solutions 

SCOOP3D analysis was performed in a small part of the study area to compare with 

the infinite-slope solution (Figure 4.19a). A small portion of the study area is selected 

because of the high computational time of the SCOOPS3D. First of all, DEM is 

resampled to 1 m resolution for SCOOPS3D analysis since it affects the model's 

performance. To get a reasonable accuracy from SCOOPS3D, at least 200 cells are 

recommended by Reid et al. (2015) to be included in the failure surface. As stated 

before, the reliable resolution for available DEM data is 10 m. Therefore smallest 

landslides area considered in performance analysis is more than 100 m2. Therefore, 

considering both the smallest landslide area and computation time, 1 m resolution is 

selected.   

One meter resolution is employed in FSLAM and TRIGRS to be consistent in the 

comparison. However, since lateral flow accumulation is affected by DEM 

resolution, the initial water table computed for the whole study area resampled to 1 

(a) (b) 
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m resolution. In other words, initial conditions were kept the same with the entire 

study area. The pore pressure conditions in SCOOPS3D were created by considering 

water table depth respective to pore pressures on the failure planes in TRIGRS 

(Figure 4.22b) and FSLAM (Figure 4.22d) and saturated condition (Figure 4.22f). 

Unsaturated soil strength is ignored in SCOOPS3D for practical purposes. Because 

of the computational capacity limit of the used computers, SCOOPS3D analysis was 

conducted on 18 smaller areas. In all areas, a larger search lattice is used than DEM. 

Afterwards, smaller areas are merged by considering the lowest calculated factor of 

safety. 

Comparison of factor safety maps derived from infinite slope assumption (TRIGRS 

and FSLAM) and SCOOP3D is shown in figure Figure 4.22.  

 

 

 

 

 

(a) (b) 
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Figure 4.22. Comparison of infinite slope and SCOOPS3D factor of safety maps. (a), 

(c), and (e) are infinite slope, (b), (d), (f) are SCOOPS3D solutions. The hydrological 

conditions are TRIGRS, FSLAM, and saturated conditions in (a-b), (c-d), and (e-f), 

respectively.  

Similar to the whole area difference between the infinite slope solution of FSLAM, 

TRIGRS, and differences for saturated conditions are not dramatic. However, 

SCOOP3D solution with water table depth derived by TRIGRS significantly 

underestimated the unstable areas. This difference might result from the fact that 

stable cells due to lower water table height on failure surface increase the stability of 

whole failure surface in SCOOPS3D, but in TRIGRS, the cells are independent of 

each other. This result indicates that FSLAM better represents the actual pore 

pressure state.  

(c) (d) 

(e) (f) 
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Although the TPR of the SCOOPS3D is lower than infinite slope solutions, FPR also 

lower. Since the model parameters are calibrated using infinite slope models, cut-off 

dependent comparison metrics (TPR, Accuracy, etc.) might be misleading. 

Therefore, TPR/FPR ratio, which is also employed in literature (Chae et al., 2015; 

Oguz et al., 2021), is also adopted to compare the overall performance of the infinite 

slope SCOOPS3D solution. TPR/FPR ratio of 3D solution of   FSLAM and TRIGRS 

is greater than 1D (infinite slope) solution, whereas, in the saturated condition, they 

are almost the same (Table 4.7 ). These results are consistent with studies performed 

by (He et al., 2021; Tran et al., 2018).  

 

Table 4.7 Comparison of global performance of infinite slope and SCOOPS3D 

solution. 

 TRIGRS FSLAM Saturated 

 1D  3D 1D  3D 1D 3D 

TPR 0.465 0.116 0.494 0.367 0.550 0.520 

FPR 0.295 0.064 0.312 0.212 0.343 0.327 

TPR/FPR 1.58 1.82 1.58 1.74 1.60 1.59 

 

Considering failure classes, the performance of the 1D solution is less in type 2 

failures which is inverse of the global trend. In contrast, the 3D solution of scenarios 

FSLAM and saturated conditions better results in “type 2” failures, which is a 

significant result because it indicates that the morphology of landslides affects the 

performance of stability assumptions. The physical explanation of these results is 

that the rotational failure assumption of SCOOPS3D become unconservative in wide 

and long failures compared with their depth. Because in these failures, the actual 

failure surface is planar instead of circular. The SCOOPS3D draws an inner tangent 

sphere to the failure surface since the depth is limited. One other possibility is these 
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large failures might be deeper than the soil depth used in the analysis. The shallower 

failures than 1.5 m (Type1*) were also examined to eliminate this possibility. In this 

case, also SCOOPS3D has a higher TPR in Type 2 than Type 1 (Figure 4.23). In 

both stability assumptions, smaller landlsides (Type 4) are better predicted than 

others, indicating that small landslides are collected in unstable areas. 

  

 

 

Figure 4.23. Comparison of infinite slope and SCOOPS3D solutions regarding 

different types of failures (a) TRIGRS (b) FSLAM (c) Saturated condition 
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CHAPTER 5  

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES  

5.1 Conclusion 

This study investigated landslide episodes in multiple aspects between September 27 

to September 29, 2017, in Kaptanpaşa, Rize. The first aspect is obtaining 

morphometric features of these failures and discussing the importance of these 

features. The second part is physically-based modeling of this landslide event with 

different hydrological and stability assumptions considering the aspects discussed 

former part. Therefore, the results are presented below in two parts.  

5.1.1 Landslide inventory 

• This study discusses a suitable depth measurement method on three different 

methods. It is shown that using scarp height as landslide depth overestimates 

the depth of slip surface. A depth calculation method proposed in the 

literature (Washington Protocol, OWP) was modified to estimate the actual 

depth correctly. The depths derived by original protocol (OWP), modified 

protocol (MWP), and cross-section method (X-section) are 2.08 m, 0.99 m, 

and 1.05 m. As it can be seen, the depths derived by X-section and MWP 

methods are close to each other. 

• The mean value of depth, length, and width of the landslides are calculated 

as 1.05 m, 14.3 m, and 8.5 m, respectively. 

• The observed failures are classified according to their morphology and the 

slope types. This discrimination is essential for the validity of the 

assumptions in physically-based models. Most physically-based models are 

based on the infinite slope assumption and are suitable for natural slopes. In 
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this study, the failures are classified according to their compatibility with the 

infinite slope assumption.  

• It is concluded that 45.0 % of the failures on hillslopes, whereas 24.2 % of 

failures on other slopes are suitable for modeling with infinite slope 

assumption. These results also justify that differentiating different slope 

types is vital for adequate performance assessment of the physically-based 

models. 

• Statistical distribution of failure depth is adequately represented by Weibull 

distribution. 

• This study discusses the overall relation between DEM cell size in the 

physically-based models and landslide sizes. In the landslide episode, most 

failures are smaller than grid sizes, which is one weakness of this study.  

• Two methods are used to calculate the volume of the landslides. Prismatic 

assumption gave 1.23 times higher volume than half ellipsoid method. It is 

believed that the half ellipsoid method is more compatible with the shape of 

failure surfaces observed in the field. 

• Landslides' size-frequency distribution is evaluated, the first study that 

reports these features in Rize province.  

5.1.2 Physically-based modeling of landslides 

• In this study, 2 different hydrological and mechanical models are compared 

to predict these landslides considering different failure types in terms of 

morphology and slope types that failure occurred. 

• Strong influences of stability parameters on the resulting safety factor are 

stressed in the sensitivity analysis, and a simple two-stage calibration method 

is proposed. The calibration of models like TRIGRS is time-consuming and 

needs high computational power. The proposed calibration approach is 

expected to be functional for the areas hydraulic behavior does not 

dramatically change.  
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• Thousands of different combinations of stability parameters and antecedent 

recharge (to create an initial water table ) combinations are examined. It is 

observed that incorporation of lateral flow into the model improves the model 

performance, but initially unstable areas also increase. Therefore, as 

antecedent recharge, 0.1% of hydraulic conductivity in the lateral direction 

is adequate to create initial conditions considering models performances and 

initially unstable areas. 

• Comparing the hydrological model, FSLAM ended up with the best results 

in terms of AUC. But the results show that the pore pressure state is close to 

saturation during landslides.  

• Since the FSLAM model is more flexible than TRIGRS, it resulted in better 

performance. Additionally, the curve number approach also contributed to 

the performance of FSLAM. However, since any constraint did not limit 

calibration parameter n*, whether calibrated n* is valid for future events 

should be tested. The model parameters are calibrated considering infinite 

slope models because it is not practical to perform it with SCOOPS3D.  

• Only type 1 failures are employed during the calibration since they are 

compatible with the model’s assumption and available resolution. The final 

True positive rate of TRIGRS, FSLAM, and saturated hydrostatic conditions 

are 0.45, 0.49, and 0.51.  

• In the whole area, the infinite slope model gave the best performance for 

predicting type 2 failures. It is reasonable because the infinite slope 

assumption is conservative for these failures. Type 3 and type 4  failures were 

predicted with close TPR to type 1 except for TRIGRS. Type 4 failures are 

small failures compared with DEM resolution. Their high TPR indicates that 

these failures are located in unstable ares. In the study area, there are small 

landslides that are very close to each other. The model seems to give a 

conservative result in these parts. Using a DEM of higher resolution, 

susceptibility zonation might be more accurate in these parts.  
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• In all cases, SCOOPS3D yielded less unstable areas. The difference between 

infinite-slope and SCOOPS3D solutions is more in pore pressure conditions 

calculated by TRIGRS. But in all states except for the saturated case, 

TPR/FPR of SCOOPS3D is higher than the infinite slope solution; they are 

equal when soil is saturated. This index is similar to the LR class index, and 

the results are compatible with other studies in the literature.  

• Within the smaller area selected for comparison, infinite-slope and 

SCOOPS3D solutions have an inverse trend indicating that landslide 

morphology affects the performance of stability assumption. SCOOPS3D is 

less successful in calculating the unstable areas of wide and long failures. 

This study is the first attempt to consider landslide morphology in comparing 

the SCOOPS3D and infinite-slope models.  

5.2 Recommendation for future studies 

• In this study, landslides’ depths under forest cover could not be calculated in 

most failure spots. A LIDAR is needed to investigate landslide depth in the 

forest.  

• The effect of land cover on size distribution can be explored in the future. 

• With higher resolution DEM these failures can be modeled better. The 

influence of cell size might be examined.  

• The forest areas are evaluated as stable in all cases. But it is known that there 

are failures. This error arose from the poor classification of LULC. Root 

cohesion provided by trees changes according to trunk density and the kind 

of the trees. The change in forest cover can be studied with additional data.  

• Stratification of soil, change of soil thickness, seasonal change of soil 

behavior in the region might be explored with further site investigation to 

assess susceptibility more accurately.  
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• If the factors affecting the landslide morphology (topography, soil thickness, 

etc.) are evaluated, the variation of the stability through the landscape can be 

calculated more accurate. 
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