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ABSTRACT

STABILIZED FINITE ELEMENT SIMULATIONS OF MULTISPECIES INVISCID
HYPERSONIC FLOWS IN THERMOCHEMICAL NONEQUILIBRIUM

CENGİZCİ, SÜLEYMAN
Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Prof. Dr. Tayfun E. Tezduyar

March 2022, 187 pages

For both military and civil aviation purposes, rockets, missiles, and spacecraft moving
at hypersonic speeds are being utilized in recent years. While these vehicles move at
speeds five times the speed of sound or more, they experience many extreme physical
and chemical conditions during their flight. Because of molecular friction, such high
velocities cause very high temperatures, and these high temperatures result in the
excitation of the components of the gas mixture in which the vehicle moves. This
situation causes various thermochemical interactions in the flow field and affects the
dynamics of the flight. These interactions need to be examined accurately, for both the
flight safety and the vehicle reaching the right target at the right time.

Wind tunnel experiments are both costly and insufficient to regenerate the high temper-
atures and shock interactions of hypersonic flights. These wind tunnel setups can also
take a long time to design, test, and finally obtain the experimental data with. There-
fore, computational fluid dynamics (CFD) tools are essential in analyzing the flight
dynamics of hypersonic vehicles and designing them for such high speeds. Classical
discretization methods need to be supplemented with stabilization and shock-capturing
techniques since they suffer from spurious oscillations in simulating such high-speed
flows.

In this thesis, hypersonic flows in thermochemical nonequilibrium are computationally
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studied. To this end, hypersonic flows of a five-species (O, N, NO, O2, N2) gas mixture
around a cylinder are examined with a 17-reaction chemical model. The gas particles
may be in different energy modes in hypersonic regimes due to the high temperatures:
translational, rotational, vibrational, and electron-electronic. Since they have the
similar time scales to reach equilibrium, the translational and rotational energy modes
can be represented by one temperature, and the vibrational and electron-electronic
energy modes by another. Therefore, a two-temperature chemical kinetic model is
adopted.

In the computations, the compressible-flow Streamline-Upwind/Petrov–Galerkin met-
hod is employed to stabilize the finite element formulation. The stabilized formulation
is supplemented with the YZβ shock-capturing to obtain good solution profiles at
shocks. The nonlinear system of equations resulting from the space and time dis-
cretizations is solved with the Newton–Raphson nonlinear iterative process and ILU-
preconditioned generalized minimal residual (GMRES) iterative search technique. The
solvers are developed in the FEniCS environment.

Keywords: Inviscid flow, Hypersonic flow, Finite elements, Compressible-flow SUPG,
Shock-capturing, Thermochemical nonequilibrium
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ÖZ

TERMOKİMYASAL DENGESİZLİKTEKİ ÇOK BİLEŞENLİ VİSKOZİTESİZ
HİPERSONİK AKIŞLARIN STABİLİZE EDİLMİŞ SONLU ELEMAN

BENZETİMLERİ

CENGİZCİ, SÜLEYMAN
Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Prof. Dr. Tayfun E. Tezduyar

Mart 2022, 187 sayfa

Hipersonik hızlarda hareket eden roketler, füzeler ve uzay araçları son yıllarda hem
askeri hem de sivil havacılık amaçlarıyla kullanılmaktadırlar. Bu araçlar, ses hızının beş
katı veya üzerindeki hızlarda hareket ederlerken, birçok şiddetli fiziksel ve kimyasal
etkileşim tecrübe ederler. Bu tür yüksek hızlar, moleküler sürtünmeler nedeniyle
çok yüksek sıcaklıklara, bu yüksek sıcaklıklar ise aracın içerisinde hareket ettiği
gaz karışımının bileşenlerinin uyarılmasına neden olurlar. Bu durum, akış ortamında
termokimyasal etkileşimlere neden olur ve aracın uçuş dinamiklerini etkiler. Hem
uçuşun güvenliği hem de aracın doğru zamanda doğru hedefe ulaşabilmesi için bu
etkileşimlerin hassas bir şekilde incelenmesi gerekmektedir.

Rüzgar tüneli testleri hipersonik uçuşların yüksek sıcaklık ve şok etkileşimlerini oluş-
turmada hem yetersiz kalmaktadırlar hem de çok maliyetlidirler. Dahası, bu deneysel
kurulumların tasarlanması, test edilmesi, ve nihayet deneysel verilerin elde edilmesi
oldukça uzun zaman alabilmektedir. Bu nedenle, hipersonik araçların uçuş dinamik-
lerinin analizinde ve bu tür yüksek hızlara uygun araçların dizaynında hesaplamalı
akışkanlar dinamiğinin (HAD) araçları büyük öneme sahiptirler. Standart ayrıklaştırma
metotlarının, bu tür yüksek hızlı akışların simülasyonlarında sahte salınımlar ürettikleri
için, stabilizasyon ve şok-yakalama teknikleri ile desteklenmeleri gerekmektedir.
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Bu tezde, termokimyasal dengesizlikteki hipersonik akışlar hesaplamalı olarak ince-
lenmektedir. Bu amaçla, 5-bileşenli (O, N, NO, O2, N2) bir gaz karışımının bir silindir
etrafındaki hipersonik akışı 17-reaksiyonlu bir kimyasal modelle ele alınmaktadır. Gaz
partikülleri hipersonik rejimlerdeki yüksek sıcaklıklar nedeni ile farklı enerji mod-
larında bulunabilirler: çizgisel, dönüşsel, titreşimsel, ve elektron-elektronik. Denge
durumuna ulaşmada benzer zaman ölçeklerine sahip olduklarından, çizgisel ve dönüş-
sel enerji modları aynı sıcaklıkla, titreşimsel ve elektron-elektronik enerji modları ise
bir diğer sıcaklıkla ifade edilebilirler. Bu nedenle, iki sıcaklıklı bir kimyasal kinetik
model benimsenmektedir.

Hesaplamalarda, sonlu elemanlar formülasyonunu stabilize etmek için sıkıştırılabilir-
akış Streamline-Upwind/Petrov–Galerkin metodu kullanılmaktadır. Stabilize edilmiş
formülasyon, şoklarda daha iyi çözüm profilleri elde etme amacıyla, YZβ şok-yakala-
ma tekniği ile desteklenmektedir. Uzay ve zaman ayrıklaştırmaları sonucu elde edilen
doğrusal olmayan denklem sistemleri Newton–Raphson lineer olmayan yinelemeli
çözüm metodu ve ILU yöntemi ile önkoşullandırılmış genelleştirilmiş minimal kalıntı
(GMRES) arama tekniği kullanılarak çözülmektedir. Çözücü kodlar FEniCS ortamında
geliştirilmektedir.

Anahtar Kelimeler: Viskozitesiz akış, Hipersonik akış, Sonlu elemanlar, Sıkıştırılabilir-
akış SUPG, Şok-yakalama, Termokimyasal dengesizlik
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There is a lot in this thesis: sadness, happiness, sleepiness, perseverance, despair,
hope, sometimes loneliness and sometimes crowd, and sometimes tears and sometimes

laughter...

I dedicate this thesis to my family,
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CHAPTER 1

INTRODUCTION

Flows that are five times or above the speed of sound are called hypersonic. The

term “hypersonic” first appeared in the literature in the mid-1940s and has been

actively studied since the late 1950s. Today, advances in technology, world’s growing

population and the consequent depletion of raw materials have made the hypersonic

research much more vital. For example, samples from other planets that scientists will

analyze in the search for a sign of extraterrestrial life should arrive quickly enough for

them to conduct their research effectively. If there will be space tourism, the capsule

that will carry the passengers should be safe and fast enough so that the passengers can

return to their lives on the Earth within a reasonable time. Besides, in today’s world,

many countries are developing their own hypersonic missiles and fighter spacecraft,

making tremendous investments. These and many other factors have increased the

interest in hypersonic research even more in recent years.

Hypersonic vehicles moving at such high speeds experience severe chemical and

physical interactions during their missions. The detection, understanding of their

causes, and accurate computation of these interactions are crucial both for the flight

safety and for the vehicle to reach the right destination at the right time. Therefore, this

chapter aims to provide fundamental knowledge about fluid dynamics with a special

emphasis on hypersonic aerodynamics.

Section 1.1, provides a brief introduction to the relevant fluid dynamics concepts.

Various flow regimes and the molecular structure of Earth’s atmosphere at certain

altitudes, real gas effects, catalytic and ablative effects, and finally, the shock wave

and the blackout phenomenon are discussed in Section 1.2. Section 1.3 examines the
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shapes of hypersonic configurations: the benefits they provide and the drawbacks they

cause. In Section 1.4, the classical tools used in computational fluid dynamics are

discussed briefly. Finally, the objectives and contributions of the study, as well as the

thesis layout, are presented in Section 1.5 and in Section 1.6, respectively.

1.1 Background

In fluid dynamics, flows can be classified various ways (based on their variation

based on space/time), such as viscous or inviscid, compressible or incompressible,

laminar or turbulent, etc. These different types of flows may result from the fluid’s

thermodynamic properties, the conditions of the environment in which the fluid flows,

or both.

The viscosity is a measure of the intermolecular frictions of a fluid. In general,

the frequency of intermolecular collisions increases with temperature, and thus the

viscosity of gases increases with temperature. Viscous flows are the flows in which

the fluid’s intermolecular forces are in action, while these forces are neglected for

inviscid flows. Viscous flows are governed by the Navier–Stokes (N–S) equations,

while inviscid flows by the Euler equations. Thus, the Euler equations can be obtained

by ignoring the viscous and thermal conductivity terms in the N–S equations.

There are various viscosity models for different phases of substances that depend on

temperature or pressure. For gases, the most commonly used model is Sutherland’s

temperature-dynamic viscosity formula [172]:

µgas = µ0
T0 + S

T + S

(
T

T0

) 3
2

, (1.1)

where T is the absolute temperature, µ0 is the reference viscosity at a reference

temperature T0, and S is the Sutherland’s constant. For moderate temperatures and

pressures, the constants appearing in Eq. (1.1) are given approximately as µ0 =

1.7894× 10−5 kg/(m·s), T0 = 273.11 K, and S = 110.56 K. However, Sutherland’s

formula is only valid for temperatures between 100 K and 1, 500 K, which is not

sufficient to handle extremely high temperatures arising in hypersonic flows. Therefore,

more suitable models are investigated for high-temperature flows in Chapter 2.
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If the fluid density remains nearly constant throughout the flow, then the flow is

called incompressible or divergence-free; otherwise, the flow is compressible. Com-

pressible flows are frequently called variable-density flows. Compressibility effects are

critical in this thesis because the flow simulations performed are entirely based on gas

flows that are compressible. Every fluid can be compressed to some extent in real life,

so incompressibility is just an assumption. In practice, if the density change during the

flow is not more than 5%, then the flow can be assumed to be incompressible [6].

Mach number, M , defined as the ratio of the vehicle’s speed to the speed of sound

(acoustic speed), is used for determining the magnitude of the level of compressibility

effects [6]. Since the sound consists of vibrations propagating as pressure waves,

the speed of sound can be used as an indicator of speed of transmission of small

disturbances in the air.

The speed of sound depends on the temperature and the environment it travels through.

For dry air, it is given as

csound =
√
γRT , (1.2)

where γ is the specific heat ratio, given as γ = 1.4, and R is the ideal-gas constant.

Here, T is the absolute temperature, which is given in Kelvin (K) as

T = 273.15 + ◦C. (1.3)

In Eq. (1.3), the term ◦C represents the temperature in Celsius with the ideal-gas

constant for air, given as R = 287.05 J/(kg·K), the speed of sound through dry air at

20◦C is approximately 343.23 m/s [205].

If the Mach number is lower than one (M < 1.0), then the compressibility effects can

be ignored, and the flow is called subsonic. Around M = 1.0, the compressibility

effects are quite important, and the flow is said to be transonic. For the values

1.0 < M < 5.0, the flow is called supersonic. The heating rates are very high at these

speeds, and the vehicle surface generates shock waves.

As mentioned before, flows with speeds of five times or higher than the speed of sound

are classified as hypersonic. However, it would be wrong to say that a flow with a

speed just below Mach 5.0, e.g., at M = 4.99, does not have a hypersonic character.

Similarly, it is also not correct to say that a flow occurring at just above Mach 5.0,
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for example, at M = 5.01, has a complete hypersonic character. Instead, it is more

sensible to consider a flow as hypersonic if it experiences the effects explained in the

following section. Table 1.1 summarizes flow characteristics based on various Mach

numbers.

Table 1.1: Flow classification based on the Mach number.

Vehicle Speed Classification Flow Characteristic
M < 1.0 Subsonic Compressibility effects can be ignored
M ≈ 1.0 Transonic Dangerous stress effects on vehicle’s body

1.0 < M < 5.0 Supersonic Compressibility effects must be considered
M > 5.0 Hypersonic Thermochemical nonequilibrium effects
M ≈ 25.0 Re-entry speeds Ionized gas (plasma) effects

In Figure 1.1, the propagation of the pressure waves according to various Mach

numbers is shown. The sound (pressure) waves propagate separately as the vehicle

moves at speeds below the speed of sound. However, when the Mach number is greater

than one, it is observed that the sound waves overlap and form shock waves.

Figure 1.1: Sonic boom diagram based on the Mach number [40].

1.2 Characteristics of Hypersonic Flows

As a rocket launched from the Earth to the Moon rises above the atmosphere, the

flow properties such as the density, temperature, pressure, etc., and consequently,

the dynamics of the flight change. Besides that, the flow becomes chemically and

thermally nonequilibrium due to the high temperatures caused by high speeds. The
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surface material of the rocket can even be affected by the high temperatures and reacts

with the air mixture constituting the flow field. Higher temperatures can cause the

ionization process to begin and the surface of the rocket to be covered with a plasma

layer, causing communication losses called blackout. These interactions are discussed

in detail in the following sections.

1.2.1 Low-Density Effects

Vehicles moving at hypersonic speeds may encounter different flow regimes that

correspond to continuum flow, slip flow, transitional flow, and free-molecular flow.

The dimensionless Knudsen number, Kn, defined as the ratio of the mean free path, λ,

to the characteristic length, L,

Kn =
λ

L
, (1.4)

is used to determine the characteristic of the flow regime [22]. If Kn < 0.01, the flow

regime is classified as continuum, as slip flow if 0.01 < Kn < 0.1, as transitional flow

if 0.1 < Kn < 10.0, and as free-molecular flow if Kn > 10.0.

At the altitudes above 120 km in Earth’s atmosphere, the Knudsen number takes a

value above Kn = 10.0, corresponding to free-molecular flows. The collisions of

gas particles between the gas particles rebounding from the vehicle’s surface and the

incoming ones are so rare that they can be ignored. Therefore, it is not necessary to

talk about any shock wave formation within this region [165].

At the altitudes between 90 km and 120 km, the Knudsen number ranges between 0.1

and 10.0. The collisions of gas particles in this regime can generate bow shocks, and

the classical N–S equations suffer from capturing the shocks. Therefore, higher-order

equations, such as the Boltzmann and Burnett equations, are required for simulating

such flows [165].

Between the altitudes of 80 km and 90 km, the Knudsen number takes a value between

0.01 and 0.1, corresponding to a slip flow. Flows in this regime can be assumed to be

a continuum except for the inner regions of shock layers. For simulating flows in this

regime, the direct simulation Monte Carlo (DSMC) methods are suitable [53].
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Below the altitudes of 80 km, which is the interest of this thesis, abrupt decreases are

observed in the velocity of the vehicle due to the increasing density and consequent

increases in the friction rates. Although the vehicles experience severe overheating

rates in this region, we take advantage of the fact that a cubic centimeter of air mixture

contains approximately 2.652× 1019 molecules and behaves like a continuum under

normal room conditions, ensuring the validity of differential models. In this regime,

the vast majority of the kinetic energy is transformed into the thermal energy that may

cause extremely high temperatures up to 50, 000 K [165]. During NASA’s Apollo

Project (1961–1975), plenty of data was collected that confirms this fact [143].

Earth’s atmosphere consists mainly of nitrogen (N2) and oxygen (O2) with the approx-

imate percentages of 78% and 21%, respectively. Therefore, a mathematical model

considering the particles O, N, NO, O2, and N2, also known as the five-species air

mixture model, can be used for simulating air flows [81, 135, 153]. For entries into

various media or environments, different cases should be considered. This five-species

model, for example, would not be appropriate for a Mars mission vehicle because

the Martian atmosphere consists of approximately 97% carbon dioxide (CO2) and 3%

nitrogen (N2) [206].

Aside from the studies on Earth’s atmosphere, it’s not surprising that the majority of

the atmospheric-entry research has focused on the Martian atmosphere. In [124], Li

and Jiang presented some comparisons of the atmospheres of Earth and Mars. In [26],

Braun and Manning, and later in [171], Subrahmanyam and Rasky, reviewed past

Mars landed missions presenting corresponding flight data. Wang et al. examined the

heating predictions for Martian entry vehicles considering both laminar and turbulent

flows in [201]. In [77], Hao et al. studied and compared several transport models for

simulating Martian entries. In [31], Carandente et al. reviewed and compared the

experimental data and numerical results regarding the entries into the atmosphere of

the Titan, which is the Saturn’s largest moon, and has a fluid cycle similar to that on

Earth. Justus and Braun [98] provide detailed information on the atmospheric entries

into the planets Venus, Earth, Mars, Saturn, and its moon Titan.
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1.2.2 Real-Gas Effects

The gases consist of particles such as molecules, atoms, and ions in random motion

called translational motion. These particles interact with each other due to their

electronic structure. These interactions are called intermolecular interactions. The

gases for which these interactions are ignored are called perfect (ideal) gas. If a gas

mixture is not chemically reactive and the intermolecular forces are small enough to

be neglected, then the gas is called thermally perfect gas. In addition, if the specific

temperatures are constant, then the gas is called calorically perfect gas.

In Earth’s atmosphere, the calorically perfect gas assumption can be made at tempera-

tures below 800 K. However, it would be wrong to make this assumption for higher

temperatures [56]. Since the vibrational excitements of oxygen (O2) and nitrogen (N2)

cannot be ignored in the atmosphere above temperatures 800 K, the gas mixture turns

into a thermally perfect gas. That is, the specific temperatures act as the functions

of temperature. When the temperature rises above 2, 000 K, oxygen (O2) molecules

begin to decompose into their atoms, and chemical reactions should be taken into

account. At temperatures above 4, 000 K, oxygen (O2) molecules are completely

decomposed into their atoms, and a similar decomposition process begins for nitrogen

(N2) molecules. And, when it reaches temperatures around 9, 000 K, nitrogen (N2)

molecules are completely decomposed into their atoms. As the temperature rises even

more, i.e., after 10, 000 K, ionization processes become significant [34]. One can refer

to [7] for further details.

Each particle’s individual translational energy (etrans) contributes to the total energy

(e) of the gas mixture. If the particles under consideration are molecules, the rotational

energy (erot) and vibrational energy (evib) should also be examined to calculate the

total energy. Another source of (internal) energy, called the electronic energy (eelec),

stems from the movement of electrons. These all different energy modes of a gas

mixture constitute the internal energy (eint) [107]:

eint = etrans + erot + evib + eelec + h0, (1.5)

where h0 is called the heat of formation of the mixture, and stands for the energy
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stored in chemical bonds. Then, the total energy is given as

e = eint +
1

2
‖u‖2, (1.6)

where the second term on the right hand side refers to the kinetic energy with the

velocity vector u. Here, the norm ‖ · ‖ stands for the standard Euclidean norm.

If the time scale that the chemical reactions take place is much shorter than the time

scale that a fluid (gas) particle moves in the flow, then this situation is called chemical

equilibrium. The dimensionless Damköhler number (Da) is used to determine whether

the flow time scale or chemical reaction time scale is more significant. It is defined as

follows [166]:

Da =
Fluid motion time scale

Chemical reaction time scale
=

Diffusion time
Reaction time

. (1.7)

The gas reaches equilibrium as Da approaches infinity. As Da approaches zero, the

gas is assumed to be frozen, with no chemical reactions taking place. When the

fluid and flow properties result a state between these two extreme states, chemical

nonequilibrium exists.

Thermal nonequilibrium can be examined concerning the particles’ four different

energy modes and corresponding temperatures, as illustrated on a diatomic molecule,

called the dumbbell model, in Figure 1.2. These energy modes are:

1. Translational energy results from the Brownian motion of particles; and the

corresponding temperature is denoted by Tt,

2. Rotational energy results from the rotations of the molecules around their

center of mass; and the corresponding temperature is denoted by Tr,

3. Vibrational energy results from the periodic motion of atoms in molecules;

and the corresponding temperature is denoted by Tv,

4. Electron-electronic energy results from the states (energy levels) of electrons;

and the corresponding temperature is denoted by Te.

When a molecule is in thermal equilibrium, a single temperature, T , can be used to

model all energy modes. If the molecule is not in thermal equilibrium, then each
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Figure 1.2: Different energy modes for a diatomic molecule [107].

mode should be represented by its own temperature, i.e., by Tt, Tr, Tv, and Te. As

reported in [129], the translational and rotational energy modes reach equilibrium very

rapidly within 5–10 collisions, and therefore, they can be represented by the same

temperature [106]:

T = Tt = Tr. (1.8)

The vibrational mode requires many more collisions, on the order of 20, 000, to reach

equilibrium [34]. One common approach given in [146,207] is to model the vibrational

and electron-electronic temperatures by the same temperature as follows:

TV = Tv = Te. (1.9)

As a result, in this thesis, a two-temperature model with the translational-rotational

temperature, T , and vibrational-electron-electronic temperature, TV , is used. The

details on computing TV are presented in Section 4.7.

1.2.3 Catalytic and Ablation Effects

Although we enforce neither catalytic nor ablative wall conditions in simulations

performed in this study, catalytic boundary conditions and ablation effects should
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be mentioned briefly because they are critical in hypersonic flows. As mentioned

in Section 1.2.2, as a result of extremely high temperatures generated in the imme-

diate vicinity of high-speed vehicles, some chemical reactions such as dissociation,

recombination, etc. may occur. Besides the intermolecular reactions of gas particles,

their interaction with the vehicle’s surface material should also be considered. These

reactions can be classified into catalytic wall and ablative wall interactions.

Catalytic wall interactions are those in which the vehicle’s surface acts as a catalyst,

increasing the rate of the reaction without changing or being consumed. The surface

only helps the gas particles to have chemical reactions (generally recombination). On

the other hand, the ablation process is pretty much complex than the catalytic one

because it is the case in which the vehicle surface interacts with the free-stream gas

particles to form new particles. The thermal protection systems (TPS) of spacecraft

undergo shape changes and mass loss as a result of this process. One can find more on

hypersonic TPSs in [38].

This section is actually a specialization of material science, so the details are beyond

the scope of this study. The interested readers are referred to the sudies [100] by Kasen,

and [194] by Tissera for more on wall chemistry.

1.2.4 Shock Wave Phenomena

In high-speed flows, shock waves are very common, and understanding the flow

properties across the shock waves is critical for hypersonic computations. When an

air vehicle travels faster than the speed of sound through the atmosphere, the sound

waves superpose, causing a rapid increase in pressure, which is known as a shock

wave. A normal shock wave occurs when the shock wave occurs perpendicular to

the flow direction. As can be seen in Figure 1.3, the downstream velocity behind the

shock decreases while the other flow properties such as the pressure (p), density (ρ),

temperature (T ), and entropy (s) increase.

The shock waves that are inclined to the flow direction, depending on the shape

and velocity of the vehicle, are known as oblique shock waves. Oblique shocks are

generated by the nose and leading edges of the wings and tail. Normal shock waves
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Figure 1.3: Normal shock wave and changes in the flow field.

can be considered as a special case of oblique shocks. An illustration of an oblique

shock wave is given in Figure 1.4. The angles β and θ are called shock angle and

deflection angle, respectively. The downstream Mach number, M2, may be subsonic,

sonic, and super or hypersonic depending on the deflection angle, θ, and the upstream

(free-stream) Mach number, M1. For calorically perfect gases, an important equation

for calculating shock angles, called the θ–β–M equation, is given as follows [6]:

tan (θ) = 2 cot(β)
M2 sin2 (β)− 1

M2 (γ + cos(2β)) + 2
, (1.10)

where γ is the ratio of specific heats which is typically set γ = 1/4 for standard

conditions. For the derivation of Eq. (1.10), the interested reader refers to [6] by

Anderson.

One can point out from Figure 1.5 that, as the free-stream Mach number, M1, increases,

the shock angle, β, decreases. The maximum value that the deflection angle, θ, can

take in this range is denoted by θmax. If the half wedge angle is greater than θmax, i.e.,

δ > θmax, then a curved shock, called detached oblique shock or simply bow shock, is

observed. The bow shock phenomena is illustrated in Figure 1.6.

1.2.5 Radio Blackout

Another important issue to mention caused by high temperatures is the radio commu-

nication blackout. High temperatures create a weakly ionized plasma layer around the
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Figure 1.5: Effect of the free-stream Mach number on oblique shocks.

vehicle. The free electrons caused by the ionization occurring in the plasma layer may

prevent the propagation of radio frequency electromagnetic waves. In this case, the

plasma layer reflects radio waves, causing telemetry attenuation or non-transmission

of radio waves. This phenomenon takes about 4–10 minutes in the process of entering

Earth’s atmosphere, while it takes about 30 minutes as entering the atmosphere of

Jupiter [170]. Gilmann et al. studied the blackout phenomenon in detail in a NASA
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Report [69].

1.3 On the Shapes of Hypersonic Vehicles

One interesting point regarding the shapes of hypersonic vehicles is their blunt-shaped

configurations. The question “Wouldn’t it be more reasonable for a high-speed vehicle

to have sharp leading edges to reduce drag forces?” may arise. If the only point of view

is the reduction of drag forces, sharp edges would be indispensable. However, it should

be noticed that the sharp edges generate severe high temperatures. This situation could

not be fully analyzed until the early 1950s. The slender designs with sharp leading

edges were used to minimize possible shocks at supersonic speeds. However, these

designs would, at hypersonic speeds, cause sharp edges to melt due to overheating.

After the studies of Hayes and Probstein [80] and Moretti and Abbett [141] in 1966,

hypersonic research focused on blunt-body configurations.

Anderson explains the relationship between the energy and shapes of the vehicles in

a very elegant way in [7]. Let us consider an aircraft moving at a very high altitude

and speed. Both the kinetic and potential energies are very high due to the speed and

altitude, and, when it lands on the ground, both energies will disappear. So, where
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did this energy spend? The answer is: “it was spent on heating the flow environment

and the body of the vehicle flying.” If the design of the vehicle has a slender shape

with sharp leading edges, then the possible shock waves will be weak. Therefore, a

large amount of the energy will be spent on heating the vehicle. As the radius of the

blunt nose increases, possible shocks will be stronger. Thus, most of the energy will

be spent on heating the flow environment, which will reduce the vehicle’s heating.

In [173], Sziroczak and Smith give a historical overview, and discuss the technical

issues associated with the designs of hypersonic vehicles taking a multi-disciplinary

approach. They furthermore present a summary of hypersonic vehicles by country of

origin, first launch date, maximum speed, flight altitude, and payload.

The blunt-nose design is vital for hypersonic aerodynamics as it reduces the aerody-

namic heating of the vehicle. As reported in [142] by Grundmann, any blunt-nose

shaped (re-)entry vehicle experiences extremely high velocities around 11.2 km/s

called orbital escape velocity, and at these speeds, the temperature behind the bow

shock is about 11, 000 K, while the temperature at the surface of the Sun is about

5, 000 K [7]. The simplified models are extremely insufficient to simulate the high-

temperature effects accurately. Moreover, the calorically perfect gas assumption is

no longer valid at these temperatures. Therefore, there is a need for models that

can provide more realistic and accurate results. Further details are investigated in

Chapter 2.

In high-speed flow computations conducted in this thesis, 2D configurations are

adopted as a space vehicle’s blunt-nose. Although the 2D simulations are not always

possible for many 3D models (they may not be good representations of the real

problem), the 2D reduction might be quite advantageous in many aspects in modeling

plane stress, plane strain, and axisymmetric problems. Some advantages of reducing

suitable 3D models to 2D under appropriate conditions can be summarized as follows:

• They provide drastic savings in terms of memory usage, computational time,

and power consumption.

• They provide insight and guidance on how the 3D model (real-life phenomenon)

works.
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• If commercial software is not used, it is quite possible to get lost in 3D models.

Furthermore, diagnosing and resolving a problem encountered in a 3D model

can be much more difficult than in a 2D model.

For more discussion on the representativeness of 2D models used in industrial and

academic simulations, the interested reader can refer to [51, 110, 155].

1.4 Notes on the Tools of CFD

Computational fluid dynamics (CFD) is a sub-discipline of fluid mechanics that uses

numerical methods to simulate and analyze fluid flows. The main tools of CFD are

based on three discretization methods in general: the finite difference method (FDM),

the finite volume method (FVM), and the finite element method (FEM). Each of

these methods has its own set of benefits and drawbacks discussed in the following

paragraphs briefly. In comparison to the other two methods and their variants, the

finite volume methods are much more widely used for solving CFD problems.

The FDM is the oldest method for the numerical solution of differential equations

and is based on replacing the derivatives appearing in differential equations with

corresponding finite difference approximations [61]. This procedure usually comes

with a large but finite system of algebraic equations. Compared to other methods, the

FDM is relatively simpler to employ in terms of both computation and programming.

Besides that, the method has a very robust theory. Unfortunately, the FDM suffers

from the inability to handle complex geometries. One can refer to [123] by LeVeque

for more on finite difference methods for solving ordinary and partial differential

equations.

The FVM was first proposed by McDonald [137] and MacCormac and Paullay [130]

for solving 2D Euler equations in the early 1970s and is based on balancing fluxes

through control volumes from a physical point of view. Conservation equations (laws)

are discretized directly in space in their integral formulation, and the method ensures

that quantities (mass, momentum, and energy) are conserved at a discretized level, that

is, at a local scale. The fluxes between adjacent control volumes are directly balanced.

The method is able to handle discontinuities accurately. Although not as much as the
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FEM and FDM, it has an strong theoretical background. Its deficiency is the inability

to achieve high-order accuracy on general grids because of the extended stencils. One

can find more details and applications concerning the FVM in [61, 199].

Although Clough [41] introduced the phrase “finite element method” into the liter-

ature in a paper on solving plane elasticity problems in 1960, the concepts of finite

elements date back much further. The FEM originates from Courant’s work [46]

conducted in 1943; the first attempt to use piecewise continuous functions defined

over triangular domains appears in the applied mathematics literature. After being

implemented to various linear and nonlinear structural mechanics problems, the FEM

was subsequently employed for solving continuous field problems in 1965 by Cheung

and Zienkiewicz [39]. The FEM is very suitable for multi-physics problems defined on

complex geometries. It has an extensively developed mathematical theory in terms of

convergence, stability, and accuracy analyses. The method is still employed for solving

a wide range of problems arising in industry and for academic research, increasingly.

FEM’s historical development can be found in [60] by Felippa.

Many CFD problems are governed by first-order systems such as the Euler equations,

and their solutions usually contain discontinuities, especially near shocks. The FEM

approximations suffer from containing nonphysical oscillations for simulating high-

speed flows and in solving convection-dominated problems (see Section 3.1). Even

though these instability issues can be overcome with stabilized formulations and shock-

capturing techniques in the context of finite element methods, the FVM has become

a favorite against the FEM over time. However, CFD’s history shows that once a

suitable FEM formulation is determined, the method is used exclusively because of its

advantages in handling complex geometries and achieving higher-order accuracy [52].

For more on the tools of CFD from various perspectives, one can refer to [63,111,154,

195].

1.5 Objective and Contribution of the Thesis

The determination of this topic is immensely affected by the fact that the classical

discretization methods (e.g., the Galerkin finite element method, central finite differ-
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ences scheme) experience drastic instability issues in simulating high-speed flows.

In performing such simulations, the Galerkin finite element method (GFEM) can be

stabilized using the compressible-flow Streamline-Upwind/Petrov–Galerkin (SUPG)

formulation. However, even if a stabilized formulation is used, it is a well-known fact

that there is still a need for special techniques to resolve strong gradients accurately at

shocks and near discontinuities. Therefore, the stabilized formulations are needed to

be supplemented with shock-capturing (also called discontinuity-capturing) techniques

as well. To this end, the objectives of this thesis can be given as follows:

• As we approach the middle of the 21st century, humanity’s curiosity and search

for extraterrestrial life are increasing day by day for many reasons. The rockets

and capsules to perform such missions are exposed to tremendous high speeds

and resulting high-temperature effects that must be carefully examined and

evaluated for these tasks to be carried out successfully. The main objective of

this study is to contribute to a better understanding of high-speed flow research

by simulating flows ranging from thermochemical equilibrium to nonequilibrium

states and supersonic to hypersonic regimes.

• As discussed in Section 1.4, although the FEM achieves successful (nonoscilla-

tory) results in solving the problems arising in CFD when supplemented with

appropriate stabilization methods and shock-capturing techniques, the FVM has

become a favorite tool in CFD over time. Therefore, this study aims to contribute

to breaking down the hesitations about the employment of the finite element

methods for simulating high-speed flows by using appropriate stabilization and

shock-capturing techniques.

• Since the vast majority of research in the literature to simulate high-speed flows

is based on commercial software, and almost all commercial flow solvers rely on

finite volume methods, it is not surprising that high-speed flow research is over-

whelmingly based on finite volume methods. Therefore, one of the objectives

of this thesis is to develop compressible flow solvers in the FEniCS environ-

ment (an open-source FEM solver) as well for simulating hypersonic flows in

thermochemical equilibrium/nonequilibrium. Some of the reasons for choosing

FEniCS are that it is open-source, available free of charge, being developed
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continuously collaboratively, has a growing experience sharing platform, and

has a language for mathematical abstractions and definitions very similar to

pen-and-paper notation that the reader can easily understand. Further details on

the FEniCS project are provided in Section 4.8.

The principal contributions of the thesis can be summarized as follows:

• A comprehensive set of convection-dominated test problems, including the

Burgers’-type equations at high Reynolds numbers, are studied by employing

the SUPG formulation. The SUPG-stabilized formulations are also augmented

with YZβ shock-capturing terms in order to obtain better solution profiles

around sharp gradients. We modify the SUPG-YZβ formulation, which has been

almost always used for computing compressible flows, to solve 2D convection-

dominated equations, including the Burger’s-type equations.

• High-speed (supersonic and hypersonic) flows in thermochemical equilibri-

um/nonequilibrium are investigated. Towards this end, a compressible-flow

SUPG formulation supplemented with YZβ shock-capturing is proposed. For

the equilibrium case, nitrogen (N2) flow around a cylinder is studied. For the

nonequilibrium case, flow of a five-species (O, N, NO, O2, N2) air mixture

around a cylinder is considered with 17 chemical reactions. In nonequilibrium

simulations, Park’s two-temperature (T − TV ) model is adopted. We modify

the compressible-flow SUPG-YZβ formulation for computing nonequilibrium

flows for the first time in this thesis. The solvers are developed in the FEniCS

environment.

• Enforcing the slip (zero-normal-velocity, no-penetration, impermeable) bound-

ary conditions on solid surfaces (walls) is not a trivial task in simulating inviscid

flows compared to the well-known no-slip boundary conditions of viscous flows.

Two different approaches, i.e., weak implementation and a penalty technique,

are employed for imposing the slip boundary condition on the cylinder surface.

The performances of these methods are compared in simulating high-speed flows

for the first time.
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1.6 Thesis Layout

This thesis consists of six chapters. There is also an Appendices section at the end of

the study that contains any additional information that the reader may require.

Chapter 2 presents the equations governing inviscid flows of five-species (O, N, NO,

O2, N2) air mixture. The formulations are given for both the N–S equations that govern

viscous flows and the Euler equations that govern inviscid flows.

In Chapter 3, the SUPG formulation and YZβ shock-capturing technique are intro-

duced for solving convection-dominated problems. The proposed formulations are

tested on a wide range of problems, e.g., steady-state/ time-dependent, linear/nonlinear,

scalar/coupled.

The computational details of the simulations performed in the thesis are the focus

of Chapter 4: the computational domain, mesh, and initial and boundary conditions

are addressed, the implementation of the zero-normal-velocity boundary condition on

the cylinder surface is introduced. The chapter ends with an introduction of temporal

discretization of the governing equations, as well as a discussion of iterative techniques

for solving linear/nonlinear equation systems.

In Chapter 5, the simulations of supersonic and hypersonic flows around a cylinder

are carried out. The relevant simulations are performed for both thermochemical

equilibrium and nonequilibrium flows.

Finally, Chapter 6 summarizes the methods and techniques used in the thesis and

discusses the results obtained. In addition, a comprehensive list of suggestions for

future research directions is presented.
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CHAPTER 2

MATHEMATICAL MODELING AND THERMOCHEMISTRY

BEHIND HYPERSONIC FLOW

The Navier–Stokes (N–S) equations are at the heart of computational fluid dynamics

(CFD). In physics, mathematics, and engineering sciences, as well as in industry, the

N–S equations have numerous applications. They are reduced to the Euler equations

when the viscous forces are completely ignored, i.e., the stress tensor is controlled

only by the pressure contribution. Since the Reynolds number is high, i.e., viscosity

is low, at high velocities, viscosity and turbulence effects are negligible except for a

small region near the walls [61]. Therefore, the Euler equations of compressible flows

are very useful descriptive tools for high-speed flow simulations.

Although the presence of viscous stress terms, mathematically expressed by second-

order derivatives, complicates the N–S equations, the situation is quite different from

a computational viewpoint; indeed, the presence of these terms plays a crucial role

in viscous regularization (stabilization) of (numerical) solutions [75]. The Euler

equations, on the other hand, lack viscous terms and allow for shock waves and

(contact) discontinuities in solutions, necessitating the use of advanced computational

techniques to capture these phenomena accurately. Besides that, because the flow

is considered inviscid, the fluid cannot adhere to walls and slips [61]. As a result,

problems involving the Euler equations require the enforcement of slip (zero-normal-

velocity) boundary conditions (as opposed to the well-known no-slip condition of N–S

equations), i.e., the normal velocity vanishes at walls. Imposing the slip condition

for complex geometries (e.g., on a nonrectangular obstacle) is a challenging task

that involves the use of specialized techniques [145]. The details are discussed in
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Section 4.3.4. For characteristic properties of the Euler equations, one can also refer

to Appendix B. Besides, Appendix C presents a brief survey on the existence and

uniqueness of the Euler equations of compressible flows in the continuous setting.

In this chapter, multispecies N–S equations of compressible flows are studied for

modeling hypersonic flows in thermochemical nonequilibrium. Thermodynamic

relations, transport properties, and chemical reaction mechanisms are examined in

detail. First, the N–S equations are given more compactly in a quasi-linear form. Then,

the compressible Euler equations are presented for single-species gas flows. Finally,

single-species Euler equations are extended to include five-species. Although only the

Euler equations are used in this thesis for computing hypersonic flows, we start with

the N–S equations in order to better understand the physics behind the formulations.

2.1 Governing Equations of Five-Species Viscous Hypersonic Flow

In this section, the classical N–S equations are modified for thermochemical nonequi-

librium flow computations to include multispecies as done in the NASA technical

report by Gnoffo et al. [72]. For a simpler chemistry model with a special emphasis

on the symmetrization of the conservation equations in terms of the entropy variables,

one can refer to the study [34] by Chalot et al.

2.1.1 Conservation Equations

The 2D five-species mass conservation equations of compressible flows can be given

as follows [72, 107]:

∂ρO

∂t
+
∂ρOu1

∂x1

+
∂ρOu2

∂x2

=
∂
(
ρDO

∂YO
∂x1

)
∂x1

+
∂
(
ρDO

∂YO
∂x2

)
∂x2

+ ωO, (2.1)

∂ρN

∂t
+
∂ρNu1

∂x1

+
∂ρNu2

∂x2

=
∂
(
ρDN

∂YN
∂x1

)
∂x1

+
∂
(
ρDN

∂YN
∂x2

)
∂x2

+ ωN, (2.2)

∂ρNO

∂t
+
∂ρNOu1

∂x1

+
∂ρNOu2

∂x2

=
∂
(
ρDNO

∂YNO
∂x1

)
∂x1

+
∂
(
ρDNO

∂YNO
∂x2

)
∂x2

+ ωNO, (2.3)
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∂ρO2
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+ ωO2 , (2.4)

∂ρN2

∂t
+
∂ρN2u1

∂x1

+
∂ρN2u2

∂x2

=
∂
(
ρDN2

∂YN2

∂x1

)
∂x1

+
∂
(
ρDN2

∂YN2

∂x1

)
∂x2

+ ωN2 , (2.5)

where the subscripts O, N, NO, O2, and N2 represent the species. Here, u1 and u2

are the components of the velocity field u in spatial directions x1 and x2, respectively.

The term ρs denotes the density of species s, and the Ds are the effective diffusion

coefficients of the species. The terms ωs stand for the species mass rates of production,

as well as any other components that may enter the equations, such as external forces.

The mass fraction of species s is given as

Ys =
ρs
ρ
, (2.6)

where the mixture density, ρ, is given by Eq. (2.12). One should notice that the sum of

the species mass fractions is one:∑
s

Ys =
∑
s

ρs
ρ

= 1. (2.7)

The molar mass (molecular weight), M , of the gas mixture is given as

M =

(∑
s

Ys
Ms

)−1

=

(∑
s

cs

)−1

, (2.8)

where the molecular concentration of species s is defined as

cs =
ρs
ρMs

. (2.9)

Unless otherwise stated, throughout this thesis, the notations
∑
s

and
∑
mol

refer to the sum-

mations over species s ∈ {O, N, NO, O2, N2} and molecules mol ∈ {NO, O2, N2}.

The 2D global (mixture) momentum conservation equations are given as [107]

∂ρu1

∂t
+
∂ (ρu2

1 + p)

∂x1

+
∂ (ρu1u2)

∂x2

=
∂

∂x1

σ11 +
∂

∂x2

σ12, (2.10)

∂ρu2

∂t
+
∂ (ρu2u1)

∂x1

+
∂ (ρu2

2 + p)

∂x2

=
∂

∂x1

σ21 +
∂

∂x2

σ22, (2.11)
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where the ρ is the density of the gas mixture given as [72]

ρ =
∑
s

ρs. (2.12)

The σij’s are the viscous stress tensors defined as

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ µB

∂uk
∂xk

δij, (2.13)

where the term µ denotes the shear viscosity. The term µB represents the bulk viscosity

and is defined as

µB = −2

3
µ. (2.14)

The term δij represents the Kronecker delta:

δij =

 1, if i = j,

0, if i 6= j.
(2.15)

To this end, based on the Stokes’ hypothesis for Newtonian fluids, the viscous stresses

are explicitly written as follows:

σ11 =
4

3
µ
∂u1

∂x1

− 2

3
µ
∂u2

∂x2

, (2.16)

σ12 = σ21 = µ

(
∂u1

∂x2

+
∂u2

∂x1

)
, (2.17)

σ22 =
4

3
µ
∂u2

∂x2

− 2

3
µ
∂u1

∂x1

. (2.18)

The mixture pressure, p, is obtained by using Dalton’s partial pressures law [72]:

p =
∑
s

ps =
∑
s

ρsRsT =
∑
s

ρs
Ru

Ms

T, (2.19)

where the ps are the species individual pressures, and the Rs are the species specific

gas constants defined as

Rs =
Ru

Ms

. (2.20)

Here, Ru = 8, 314.4598 J/(kmol·K) is the universal gas constant, and the Ms are the

species molar masses (see Appendix A).
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The 2D total energy conservation equation reads [107]:

∂ρe
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∂x1

)
∂x1
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∂
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∂x2

)
∂x2

, (2.21)

where the total enthalpy, h, is given as [72]

h = e+
p

ρ
, (2.22)

and the total energy, e, is defined by Eq. (1.6). The terms hs denote the species

enthalpy, and T is the translational-rotational temperature.

The 2D total vibrational-electron-electronic energy is governed by [107]

∂ρeV
∂t

+
∂ (ρeV u1)

∂x1

+
∂ (ρeV u2)

∂x2

=
∂
(
kv

∂TV
∂x1

)
∂x1

+
∂
(
kv

∂TV
∂x2

)
∂x2

+

∂

(∑
s

ρDseV,s
∂Ys
∂x1

)
∂x1

+

∂

(∑
s

ρDseV,s
∂Ys
∂x2

)
∂x2

+ ωV , (2.23)

where TV represents the vibrational-electron-electronic temperature. Besides, ktr and

kv represent the thermal conductivities for the translational-rotational and vibrational

energy modes, respectively. The term ktr is calculated as the sum of the thermal

conductivities of the translational and rotational energy modes as follows [107]:

ktr = kt + kr. (2.24)

The terms eV,s represent the species vibrational-electron-electronic energies, and ωV

is the mixture vibrational-electronic energy source term. If the vibrational-electron-

electronic energy equation (2.23) is ignored in the coupled system of governing

equations, then thermal equilibrium is assumed.

All the terms appearing in governing equations are discussed in detail in the following

sections.
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2.1.2 Transport Properties

The Wilke–Blottner–Eucken rule can be used for determining the flow field’s transport

properties. It is reported in [150] that this approach is reliable up to temperatures of

10, 000 K. For higher temperatures, up to 30, 000 K, it is reported in [76] that Gupta’s

collision cross-section rule is more reliable.

The Lewis number, (Le), plays a crucial role in transport phenomena and is defined as

Le =
Schmidt number (Sc)
Prandtl number (Pr)

. (2.25)

As given in [107], a constant Lewis number approach can be adopted for calculating

the species diffusion coefficients:

Ds = D = Le
ktr
ρCtr,p

, (2.26)

where Ctr,p is the mixture translational-rotational specific heat at constant pressure.

Another approach proposed in [208] reads:

Ds =


(1−Ys)µ

(1−χs)ρSc , if s is not ion,

Me

∑
i=ion

Di(Yi/Mi)∑
i=ion

Yi
, if s is ion.

(2.27)

For atomic and molecular particles, the Schmidt number is Sc = 0.5, while for ions, it

is set Sc = 0.25. The Prandtl number is defined as the ratio of momentum diffusivity

to thermal diffusivity. For specific values of the Prandtl number, one can refer to [200].

The term Me in Eq. (2.27) represents the molecular weight of an electron.

The idea behind expressing the species diffusion coefficients, Ds, with a single coeffi-

cient, D, stems from the fact that the species used to model the air mixture have similar

molecular weights. This assumption would not be appropriate in a model involving the

particles hydrogen and oxygen, for example, due to the considerable molecular weight

difference between these particles. Besides, it is reported in [74] that the models with

a single diffusion coefficient do not give accurate results for speeds over 10 km/s.

Another constant Lewis number diffusion model used in [74] and the mixing rule
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of [72] can be combined as in [78]:

ρDs =


Le (1−Ys)

(1−χs)
ktr
Ctr,p

, if s is not ion,

2Le (1−Ys)
(1−χs)

ktr
Ctr,p,s

, if s is ion,
(2.28)

where χs denotes the molar fraction of species s, and is given as [72]

χs =

ρs
Ms

Ns∑
i=1

ρi
Mi

. (2.29)

Here, the term Ns represents the number of species, and Ctr,v,s is the species specific

heat at constant volume. The Lewis number is generally set Le = 1.4 for a reacting

air mixture. In this model, the diffusion transportation for electrons is

ρDe = Me

∑
s=ion

ρsDs (Ys/Ms)∑
s=ion

(Ys/Ms)
. (2.30)

The translational-rotational specific heat for species s is given as the sum of the

translational and rotational specific heats at constant volume as [107]

Ctr,v,s = Ctrans,v,s + Crot,v,s. (2.31)

Note that the rotational energy is only defined for molecular particles since mono-

atomic particles do not have rotational energies. Therefore, the translational-rotational

specific heat of species s can be given as follows [107]:

Ctr,v,s =


5
2
Ru
Ms
, if s is molecule,

3
2
Ru
Ms
, if s is atom.

(2.32)

The specific heat of species s for vibrational energy mode at constant volume is given

as (see Appendix A)

Cvib,v,s =


Ru
Ms

(
θv,s
Tv

)2
exp

(
θv,s
Tv

)
[
exp

(
θv,s
Tv

)
−1
]2 , if s is molecule,

0, if s is atom/electron.

(2.33)

The viscosity and thermal conductivity of the gas mixture are determined using Wilke’s

mixing rule [204]. The mixture viscosity is defined as [107]

µ =
∑
s

χsµs
φs

, (2.34)
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and the thermal conductivity is given as

κ =
∑
s

χsks
φs

, (2.35)

where the scaling factor is as follows:

φs =
Ns∑
r=1

χr

[
1 +

√
µs
µr

(
Mr

Ms

) 1
4

]2

√
8

(
1 + Ms

Mr

) . (2.36)

The terms µs and ks represent the species viscosity and the species thermal conductivity,

respectively.

The species viscosity coefficients, µs, are determined by using Blottner’s curve-fitting

approach [24]:

µs = 0.1 exp

[(
As lnT +Bs

)
lnT + Cs

]
, (2.37)

where As, Bs, and Cs are the Blottner’s curve-fitting coefficients given in Appendix A.

Then, the mixture viscosity can be computed as given in Eq. (2.34).

The thermal conductivity terms of species s for the translational, rotational, and

vibrational energy modes are determined by using the Eucken’s relation [57] as

follows:

ktrans,s =
5

2
µsCtrans,v,s, (2.38)

krot,s = µsCrot,v,s, (2.39)

kvib,s = µsCvib,v,s. (2.40)

As reported in [72], the thermal conductivity associated with the vibrational energy

mode can be assumed to be equal to that of the rotational mode,

kvib,s = krot,s. (2.41)

Then, the thermal conductivity terms associated with different energy modes can be

calculated using Eq. (2.35).
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2.1.3 Energy Equations

Based on the discussion conducted in Section 1.2.2, the translational-rotational energy,

etrs , of species s now can be given as follows [107]:

etrs = etranss + erots = Ctr,v,sT, (2.42)

where etranss and erots are species translational and rotational energies. Therefore, the

mixture total translational-rotational energy reads

etr =
∑
s

ρs
ρ
etrs . (2.43)

The vibrational energy for diatomic molecules O2, N2, and NO, based on the harmonic

oscillator model, is given as [200]

evibs =


Rsθv,s

exp
(
θv,s
Tv

)
−1
, if s is molecule,

0, if s is atom.
(2.44)

The electron-electronic energy of species s can be written as

eelecs = Rs

∞∑
i=1

θeleci,s gi,s exp
(
− θeleci,s

Te

)
g0,s +

∞∑
i=1

gi,s exp
(
− θeleci,s

Te

) , (2.45)

where θv,s is the characteristic vibrational temperature, θeleci,s is the characteristic elec-

tronic temperature, and Te is the electron-electronic excitation temperature (see Ap-

pendix A). The terms g0,s and gi,s are the degeneracy of the ground and the ith

electronic level, respectively. As discussed in Section 1.2.2, we assume that the

electron-electronic and vibrational temperatures are equal:

TV = Tv = Te. (2.46)

The mixture vibrational-electron-electronic energy, eV , can be given by the relation

ρeV =
∑
s

(
ρse

vib
s + ρse

elec
s

)
. (2.47)

If the electron-electronic energies are neglected, the mixture total vibrational energy

reads

eV =
∑
s

ρs
ρ
evibs . (2.48)
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Then, the internal energy can be defined as [208]

eint = etrans + erot + evib + eelec + h0

= etr + eV +
∑
s

ρs
ρ
h0,s, (2.49)

where the species heat of formation energies, h0,s, are given in Appendix A.

The species enthalpies are defined as [66]

hs =

 RsT + eints , if s is molecule/atom,

ReTV + einte , if s is electron,
(2.50)

where the species internal energies are given as

eints =

 etrs + h0,s + eV,s, if s is molecule/atom,

eV,e, if s is electron.
(2.51)

The vibrational-electron-electronic energy, eV,s, for species s is

eV,s =

 evibs + eelecs , if s is molecule/atom,

Ctrans,v,eTV , if s is electron,
(2.52)

with

Ctrans,v,e =
3

2

Ru

Me

. (2.53)

Now, the total energy addressed by Eq. (1.6) in Section 1.2.2 can be given as follows:

e = etr + eV +
∑
s

ρs
ρ
h0,s +

1

2
‖u‖2. (2.54)

The vibrational-electron-electronic energy given in Eq. (2.48) is obtained by solving

the governing equations. The computational details for obtaining the translational-

rotational temperature, T , and the vibrational-electron-electronic temperature, TV , of

the two-temperature model are discussed in Section 4.7. The norm ‖ · ‖ represents the

standard Euclidean norm.

2.1.4 Chemical Reactions Source Terms

Since a five-species air mixture model is adopted in simulations performed in this thesis,

the most important chemical reactions between the species O, N, NO, O2, and N2 can
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be given as follows [152]:

N2 + Π 
 2N + Π,

O2 + Π 
 2O + Π,

NO + Π 
 N + O + Π,

N2 + O 
 NO + N,

NO + O 
 O2 + N,

where Π ∈
{

O, N, NO, O2, N2

}
is one of the possible collision partners. The first

three reactions are called dissociation process, and the last two are called exchange

reactions or Zel’dovich reactions. These both types of reactions may take place in the

forward and backward directions, as shown by bidirectional arrows.

Let kfr and kbr denote the reaction rate coefficients in the forward and the backward

directions, respectively, then the corresponding reaction rates become [72]

R1 =
∑
s

[
− kfr1s

ρN2

MN2

ρs
Ms

+ kbr1s
ρN

MN

ρN

MN

ρs
Ms

]
, (2.55)

R2 =
∑
s

[
− kfr2s

ρO2

MO2

ρs
Ms

+ kbr2s
ρO

MO

ρO

MO

ρs
Ms

]
, (2.56)

R3 =
∑
s

[
− kfr3s

ρNO

MNO

ρs
Ms

+ kbr3s
ρN

MN

ρO

MO

ρs
Ms

]
, (2.57)

R4 = −kfr4s
ρN2

MN2

ρO

MO
+ kbr4s

ρNO

MNO

ρN

MN
, (2.58)

R5 = −kfr5s
ρNO

MNO

ρO

MO
+ kbr5s

ρO2

MO2

ρN

MN
. (2.59)

As one can point out from Eqs. (2.55)–(2.59), we assume that seventeen different

chemical reactions can take place in the flow field.

The effective (controlling) temperature is given based on Park’s two-temperature

model as [152]

T = T aT bV , (2.60)

where a+ b = 1. The vast majority of the studies in the literature concentrate on the

two scenarios:

T =
√
TTV (2.61)

and

T = T 0.7T 0.3
V . (2.62)
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It is reported by Sarma [164] and Candler and Nompelis in [30] that Eq. (2.62) gives

better results and is adopted in this thesis.

It is clear that in the case of thermal equilibrium, the translational-rotational and

vibrational temperatures are equal, i.e., T = T . The effective temperature-dependent

forward reaction rate coefficients are calculated with a modified form of Arrhenius

formula [72]:

kfr
(
T
)

= CfrT
Υr

exp

(
− Ear

RuT

)
, (2.63)

where Cfr is the reaction rate constant, Υr is the pre-exponential factor, and Ear is the

activation energy for reaction r. Then, the corresponding backward rate coefficients

are given by the relation [200]

Keq,r =
kfr
kbr

. (2.64)

Here, the term Keq,r represents the equilibrium constant for reaction r and is expressed

in the same fashion as given in [152]:

Keq,r (T ) = exp
[
A1 (1/Z) + A2 + A3 ln (Z) + A4 (Z) + A5 (Z)2] , (2.65)

where

Z =
10, 000

T
. (2.66)

Another approach for determining the equilibrium constant, Keq,r, is the Gibbs free

energy formula [12], but this will not be addressed in this study.

The species source terms can be given in a canonical form [72]:

ωs = Ms

nr∑
r=1

(αsr − βsr) (Rbr −Rfr) , (2.67)

where nr denotes the total number of reactions, αsr and βsr are the stoichiometric

coefficients of the reactants and products in reaction r, respectively. Eventually, the

species source terms emerging from the chemical reactions are given as follows [72]:

ωO = MO

(
− 2R2 −R3 +R4 +R5

)
, (2.68)

ωN = MN

(
− 2R1 −R3 −R4 −R5

)
, (2.69)

ωNO = MNO

(
R3 −R4 +R5

)
, (2.70)

ωO2 = MO2

(
R2 −R5

)
, (2.71)

ωN2 = MN2

(
R1 +R4

)
. (2.72)
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One should notice that the sum of the species’ source terms is zero being compatible

with the conservation of the total mass.

2.1.5 Vibrational Energy Source and Relaxation Model

This section examines the energy exchange mechanism caused by elastic/inelastic

collisions between the gas particles. Although various energy exchange processes,

such as the translational-electron, translational-vibrational, and vibrational-vibrational

energy exchanges are likely in the flow field, only the translational-vibrational energy

exchanges are considered in this thesis, as in many studies in the literature (see,

e.g., [103, 106, 107]). For further details, e.g., the energy contribution of collisions

between electrons and neutral atoms, energy loss due to the ionization reactions, and

energy transfer between the translational and electron modes, the interested reader can

refer to [78, 112].

The vibrational-electron-electronic energy source term, ωV , appearing in Eq. (2.23)

accounts for the energy exchanges between the translational-rotational and the vibra-

tional energy modes due to collisions, and for the vibrational energy exchanges due to

the dissociation and recombination processes. This term can be given as follows [107]:

ωV = Qchem
v +Qt−v

transfer, (2.73)

where the species average vibrational energy production rate due to chemical reactions

and electrons is defined as [107]

Qchem
v,s = ωs

(
evibs + eelecs

)
. (2.74)

Here, the term ωs represents the species chemical source term (see Section 2.1.4).

Then, the net vibrational energy production rate arising from chemical reactions and

electrons is as follows [107]:

Qchem
v =

∑
s

Qchem
v,s . (2.75)

The energy transport between the translational and vibrational energy modes can be

given based on the Landau–Teller model [107]:

Qt−v
s,transfer = ρs

êvibs − evibs
τ vibs

, (2.76)
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where the term êvibs denotes the species equilibrium vibrational energy that is obtained

by calculating at the translational-rotational temperature T , and τ vibs is the molar

averaged species characteristic vibrational relaxation time that is given based on the

Millikan–White model as follows [122, 138]:

τ vibs =

Ns∑
r=1

χr

Ns∑
r=1

χr
τvibsr

. (2.77)

The terms complementing Eq. (2.77) are given as follows [107]:

τ vibsr =
1

p
exp

[
Asr

(
T−

1
3 − 0.015µ

1
4
sr

)
− 18.42

]
, (2.78)

Asr = 1.16× 10−3µ
1
2
srθ

4
3
v,s, (2.79)

µsr =
MsMr

Ms +Mr

. (2.80)

According to the Landau–Teller model, a molecule’s vibrational energy level can

change by only one quantum level at a time [200]. The term θv,s stands for the

characteristic vibrational temperature of species s (see Appendix A), µsr denotes the

reduced mass of colliding particles, and τ vibsr is the inter-species relaxation time. The

pressure, p, is expressed in atmospheric pressure (atm). Since 1 atm is 101, 325 Pascal,

the term τ vibsr is multiplied by 101, 325 to convert the pressure unit from atm to Pascal.

Eventually, the vibrational energy source term reads [107]:

ωV =
∑
s

Qt−v
s,transfer +

∑
s

ωs
(
evibs + eelecs

)
. (2.81)

For temperatures between 3, 000 K and 8, 000 K, the Millikan–White model can be

exploited. The Park’s correction term [152] should be added to the formulation for tem-

peratures higher than 8, 000 K since the Millikan–White model yields unrealistically

large relaxation rates [30] due to the over-predicted collision cross-sections.

2.2 Quasi-Linear Form of the Governing Equations

Due to the complexity of the governing equations presented in the preceding sections,

it is more convenient to rewrite them as a coupled system in the following form (see,
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for example, [34, 72, 103, 208]:

∂U

∂t
+
∂F1

∂x1

+
∂F2

∂x2

=
∂E1

∂x1

+
∂E2

∂x2

+ S, (2.82)

where the conservation variables are in U, the inviscid fluxes are in F1 and F2, the

viscous fluxes are in E1 and E2, and eventually, the source terms are in S:

U =



ρO

ρN

ρNO

ρO2

ρN2

ρu1

ρu2

ρe

ρeV



, F1 =



ρOu1

ρNu1

ρNOu1

ρO2u1

ρN2u1

ρu2
1 + p

ρu1u2

ρu1h

ρu1eV



, F2 =



ρOu2

ρNu2

ρNOu2

ρO2u2

ρN2u2

ρu1u2

ρu2
2 + p

ρu2h

ρu2eV ,



, S =



ωO

ωN

ωNO

ωO2

ωN2

0

0

0

ωV



, (2.83)

E1 =



ρDO
∂YO
∂x1

ρDN
∂YN
∂x1

ρDNO
∂YNO
∂x1

ρDO2

∂YO2

∂x1

ρDN2

∂YN2

∂x1

σ11

σ12

u1σ11 + u2σ12 + q1 +
∑
s

ρDshs
∂Ys
∂x1

qV,1 +
∑
s

ρDseV,s
∂Ys
∂x1



, (2.84)
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E2 =



ρDO
∂YO
∂x2

ρDN
∂YN
∂x2

ρDNO
∂YNO
∂x2

ρDO2

∂YO2

∂x2

ρDN2

∂YN2

∂x2

σ21

σ22

u1σ21 + u2σ22 + q2 +
∑
s

ρDshs
∂Ys
∂x2

qV,2 +
∑
s

ρDseV,s
∂Ys
∂x2



. (2.85)

The translational-rotational heat fluxes are given as

q1 = ktr
∂T

∂x1

+ kv
∂TV
∂x1

, (2.86)

q2 = ktr
∂T

∂x2

+ kv
∂TV
∂x2

, (2.87)

and the electron-electronic-vibrational heat fluxes are as

qV,1 = kv
∂TV
∂x1

, (2.88)

qV,2 = kv
∂TV
∂x2

. (2.89)

The numerical treatment of inviscid (advective) fluxes is crucial since they convey

the essential information of wave transport. The inviscid fluxes can be expressed as

follows:
∂F1

∂x1

=
∂F1

∂U

∂U

∂x1

(2.90)

and
∂F2

∂x2

=
∂F2

∂U

∂U

∂x2

. (2.91)

Letting

A1 =
∂F1

∂U
(2.92)

and

A2 =
∂F2

∂U
, (2.93)
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Eq. (2.82) can be recast as follows:

∂U

∂t
+ A1

∂U

∂x1

+ A2
∂U

∂x2

=
∂E1

∂x1

+
∂E2

∂x2

+ S. (2.94)

Here, the advective Jacobians A1 and A2 have real eigenvalues and corresponding

linearly independent eigenvectors. One can find more on the advective Jacobians in

Appendix B.

Similarly, the viscous fluxes, E1 and E2, can also be expressed as follows:

∂Ei

∂xi
=

∂

∂xi

[
Kij

∂U

∂xj

]
, (2.95)

where the positive semi-definite matrices Kij are called diffusivity matrices. Explicitly,

E1 = K11
∂U

∂x1

+ K12
∂U

∂x2

, (2.96)

E2 = K21
∂U

∂x1

+ K22
∂U

∂x2

. (2.97)

Consequently, Eq. (2.82), and equivalently Eq. (2.94), can be recast as

∂U

∂t
+ A1

∂U

∂x1

+ A2
∂U

∂x2

=
∂

∂x1

[
K11

∂U

∂x1

+ K12
∂U

∂x2

]
+

∂

∂x2

[
K21

∂U

∂x1

+ K22
∂U

∂x2

]
+ S. (2.98)

The advective Jacobians A1 and A2 are given explicitly by the matrices in Eq. (2.99)

and Eq. (2.100).
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A1 =



(1− YO)u1 −YOu1 −YOu1 −YOu1 −YOu1 YO 0 0 0

−YNu1 (1− YN)u1 −YNu1 −YNu1 −YNu1 YN 0 0 0

−YNOu1 −YNOu1 (1− YNO)u1 −YNOu1 −YNOu1 YNO 0 0 0

−YO2
u1 −YO2

u1 −YO2
u1 (1− YO2

)u1 −YO2
u1 YO2

0 0 0

−YN2
u1 −YN2

u1 −YN2
u1 −YN2

u1 (1− YN2
)u1 YN2

0 0 0

γO − u21 γN − u21 γNO − u21 γO2 − u21 γN2 − u21 u1 (2− β) −βu2 β Φ

−u1u2 −u1u2 −u1u2 −u1u2 −u1u2 u2 u1 0 0

u1 (γO − h) u1 (γN − h) u1 (γNO − h) u1 (γO2
− h) u1 (γN2

− h) h− βu21 −βu1u2 u1 (β + 1) Φu1

−u1eV −u1eV −u1eV −u1eV −u1eV eV 0 0 u1



, (2.99)

A2 =



(1− YO)u2 −YOu2 −YOu2 −YOu2 −YOu2 0 YO 0 0

−YNu2 (1− YN)u2 −YNu2 −YNu2 −YNu2 0 YN 0 0

−YNOu2 −YNOu2 (1− YNO)u2 −cNOu2 −YNOu2 0 YNO 0 0

−YO2
u2 −YO2

u2 −YO2
u2 (1− YO2

)u2 −YO2
u2 0 YO2

0 0

−YN2
u2 −YN2

u2 −YN2
u2 −YN2

u2 (1− YN2
)u2 0 YN2

0 0

−u1u2 −u1u2 −u1u2 −u1u2 −u1u2 u2 u1 0 0

γO − u22 γN − u22 γNO − u22 γO2 − u22 γN2 − u22 −βu1 u2 (2− β) β Φ

u2 (γO − h) u2 (γN − h) u2 (γNO − h) u2 (γO2
− h) u2 (γN2

− h) −βu1u2 h− βu22 u2 (β + 1) Φu2

−u2eV −u2eV −u2eV −u2eV −u2eV 0 eV 0 u2



. (2.100)
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The terms appearing in matrices given in Eqs. (2.99)–(2.100) are defined as fol-

lows [72]:

β =
∂p

∂ρe
, (2.101)

Φ =
∂p

∂ρeV
=

Ru

ρCvib,v

ρe
Me

− β, (2.102)

γs =
∂p

∂ρs
=
RuTq
Ms

+ β
‖u‖2

2
− βes − ΦeV,s, (2.103)

where the term Cvib,v is the vibrational specific heat of the mixture at constant volume:

Cvib,v =
∑
s

YsCvib,v,s. (2.104)

The term Tq is equal to TV for electrons, otherwise, Tq = T . The frozen speed of

sound, csound, is given by the following relation [72]:

c2
sound =

∑
s

Ysγs + β
[
h−

(
u2

1 + u2
2

)]
+ ΦeV = (1 + β)

p

ρ
. (2.105)

Note that Eq. (2.102) reduces to

Φ = −β, (2.106)

for a non-ionized gas mixture.

2.3 Governing Equations of One-Species Inviscid Hypersonic Flow

Consider a spatial domain Ω ⊂ Rnsd with boundary Γ over a time interval It = (0, tf],

where nsd denotes the spatial dimension, and tf is the final time. Euler equations of

compressible flows can be given as (see, for example, [44, 193])

∂ρ

∂t
+∇ · (ρu) = 0 in Ω× It, (2.107)

∂ (ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0 in Ω× It, (2.108)

∂ (ρe)

∂t
+∇ · (ρuh) = 0 in Ω× It. (2.109)

The governing equations given by Eqs. (2.107)–(2.109) can be written in a more

compact way as follows:

∂U

∂t
+
∂F1

∂x1

+
∂F2

∂x2

= 0, (2.110)
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where the vector of the conservation variables U, and the inviscid fluxes Fi are

U =


ρ

ρu1

ρu2

ρe

 , Fi =


ρui

ρuiu1 + δi1p

ρuiu2 + δi2p

ρuih

 . (2.111)

Here, the δij are the components of the identity matrix I. Consider the quasi-linear

form of Eq. (2.110) given as follows:

∂U

∂t
+ A1

∂U

∂x1

+ A2
∂U

∂x2

= 0, (2.112)

where the advective Jacobians are explicitly written as

A1 =


0 1 0 0

(γ − 1)‖u‖2/2− u2
1 (3− γ)u1 (1− γ)u2 γ − 1

−u1u2 u2 u1 0

(γ − 1)‖u‖2u1/2− u1h h− (γ − 1)u2
1 (1− γ)u1u2 γu1

 (2.113)

and

A2 =


0 0 1 0

−u1u2 u2 u1 0

(γ − 1)‖u‖2/2− u2
2 (1− γ)u1 (3− γ)u2 γ − 1

(γ − 1)‖u‖2u2/2− u2h (1− γ)u1u2 h− (γ − 1)u2
2 γu2

 , (2.114)

where the total enthalpy, h, is defined by Eq. (2.22).

The boundary and initial conditions associated with Eq. (2.112) are in the form of

U (x, t) = G for an inflow boundary, u · n = 0 for a slip surface, and U (x, 0) =

U0 (x), where G and U0 are given functions. Here, n is the unit normal vector, u is

the velocity vector, and ‖ · ‖ is the standard Euclidean norm.

2.4 Governing Equations of Five-Species Inviscid Hypersonic Flow

Considering similar spatial and temporal domains given for one-species Euler equa-

tions (2.107)–(2.109), five-species Euler equations of thermochemical nonequilibrium
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flows can be given as follows (see, for example, [103, 208]):

∂ρs
∂t

+∇ · (ρsu) = ωs in Ω× It, (2.115)

∂ (ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0 in Ω× It, (2.116)

∂ (ρe)

∂t
+∇ · (ρuh) = 0 in Ω× It, (2.117)

∂ (ρeV )

∂t
+∇ · (ρueV ) = ωV in Ω× It, (2.118)

where the terms appearing in the system are introduced in the previous sections. A

quasi-linear form of Eqs. (2.115)–(2.118) reads

∂U

∂t
+
∂F1

∂x1

+
∂F2

∂x2

= S, (2.119)

where the vectors are given as

U =



ρO

ρN

ρNO

ρO2

ρN2

ρu1

ρu2

ρe

ρeV



, F1 =



ρOu1

ρNu1

ρNOu1

ρO2u1

ρN2u1

ρu2
1 + p

ρu1u2

ρu1h

ρu1eV



, F2 =



ρOu2

ρNu2

ρNOu2

ρO2u2

ρN2u2

ρu1u2

ρu2
2 + p

ρu2h

ρu2eV



, S =



ωO

ωN

ωNO

ωO2

ωN2

0

0

0

ωV



. (2.120)

A quasi-linear form of Eq. (2.119) reads

∂U

∂t
+ A1

∂U

∂x1

+ A2
∂U

∂x2

= S. (2.121)

where the advective Jacobians are defined by Eqs. (2.99)–(2.100). The species source

terms, ωs, and the vibrational-electronic source term, ωV , are computed as explained

in Sections 2.1.3–2.1.5.

The boundary and initial conditions associated with Eq. (2.121) are similar to those

given for Eq. (2.112) and will be discussed in detail in Chapter 4.

Although the existence and uniqueness of solutions are essential concepts in studying

all kinds of PDEs, they are even more vital for (hyperbolic) conservation equations
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(laws) governed by PDEs since they rarely have classical solutions [58]. If they

have classical solutions, then the question of whether this solution is unique arises

naturally. To this end, Appendix C is devoted to reviewing the theory on the existence

and uniqueness of the solutions in the continuous setting for conservation equations

briefly.
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CHAPTER 3

THE STREAMLINE-UPWIND/PETROV–GALERKIN

FORMULATION

In this chapter, a general framework for the stabilized finite element formulations and

shock-capturing techniques is sketched first. Then, the historical development of the

Streamline-Upwind/Petrov–Galerkin (SUPG) method and its role in high-speed flow

research are investigated. Finally, a comprehensive set of 2D test computations is

provided to demonstrate the importance of stabilized formulations and shock-capturing

techniques in solving convection-dominated problems.

3.1 General Framework

The numerical methods employed for simulating CFD problems are usually determined

according to whether the problem under consideration is convection-dominated. In

the world of finite elements, since the convection operators are not self-adjoint, the

(stiffness) matrices associated with the convection terms are not symmetric. Therefore,

the “best approximation” property does not hold in the presence of the convection terms.

Besides, the standard methods may also cause violation of basic physical principles

such as the entropy condition and the positive definiteness of species concentrations

(see Section 1.4). Hence the classical discretization methods often lead to instability

problems (spurious oscillations) in the simulation of convection-dominated flows, and

stabilized formulations are strictly needed. Contrary to popular opinion, such non-

physical oscillations can occur not only in convection-dominated problems but also in

reaction-dominated problems with strong gradients due to high reaction rates [190].
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Stabilized finite element formulations are obtained by adding mesh-dependent sta-

bilization term(s) into the standard (Bubnov–) Galerkin finite element formulation,

in general. The common idea underlying these methods is to add the products of

appropriate perturbation terms and residuals to the standard Galerkin formulation. The

primary goal is to increase stability without degrading accuracy [85]. Therefore, in

stabilized formulations, the correct determination of the stabilization parameter(s),

conventionally denoted by “τ” in its scalar form and by “τ” in matrix form, plays a

crucial role. These parameters should be determined in a way that a good compromise

between accuracy and stability is achieved [79].

There have been numerous studies on efficient and correct determination of stabi-

lization parameters. Although many studies have been devoted to the subject from

computational and theoretical perspectives, the challenge of determining appropri-

ate and optimal stabilization parameters is still an active area of research today. In

the following parts of the thesis, we restrict our attention to stabilized formulations

in terms of the Streamline-Upwind/Petrov–Galerkin (SUPG) method. For more

on various stabilization techniques, the interested readers are referred to the stud-

ies [33,43,64,83,89,92–96,104,177,189] and the references therein. Besides, one can

also refer to [27, 156] for further discussions on the need for stabilized formulations.

A numerical scheme is called monotone if the solution generated retains the sign of

the previous time-step at all nodes of the spatial discretization. If it only preserves the

monotonicity of the initial data, it is called monotonicity-preserving [42]. According

to the “Godunov’s order barrier theorem,” proved in [73], the class of higher-order

accurate linear difference methods cannot be monotone, and the SUPG method falls

into that category [85]. Since the SUPG is neither monotone nor monotonicity-

preserving, the stabilized approximations may still contain spurious local oscillations

near sharp gradients [42].

Shock-capturing techniques aim to introduce some artificial (numerical) diffusion in

the crosswind direction, where rapid and abrupt changes in the numerical solution

occur; in comparison, the SUPG formulation introduces numerical diffusion in the

streamline direction. The interested reader may also refer to [42, 87, 158, 177, 190] for

more on shock-capturing operators.
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Consequently, while the SUPG alone is not a sufficiently robust method (in capturing

spurious oscillations localized in narrow layers) for shock wave phenomena in fluids,

when it is supplemented with the so-called “shock-capturing” operators, it has proven

to be an industrial-strength technology [36].

3.2 A Brief History of the SUPG

The SUPG formulation was first introduced for simulating incompressible flows by

Hughes and Brooks in a 1979 ASME paper [84]. The work was later published as a

journal article by the same authors [28] with further details in 1982. One can refer

to [181] and the material therein for more on the stabilized formulations for computing

incompressible flows.

Subsequently, again in 1982, Tezduyar and Hughes introduced the compressible-flow

SUPG formulation in the context of the conservation variables in a NASA technical

report [187]. The authors published the work with further examples as an AIAA

paper [188], and then as a journal paper in [90]. Later on, various compressible-flow

methods similar to the SUPG were developed, such as the Taylor–Galerkin method [54]

and the streamline-diffusion method [96]. The compressible-flow SUPG formulation

introduced in [90,187,188] is now called “(SUPG)82,” and the class of the stabilization

parameters used is denoted by “τ82.”

Although promising results were obtained with the (SUPG)82, the test computations

revealed that the formulation needed to be improved near the regions where shocks

occur. Thus, the idea of adding shock-capturing term(s) to the stabilized formulations

was emerged to achieve better solution profiles at shocks. The SUPG formulation was

supplemented with a shock-capturing term for simulating compressible flows for the

first time in [88] by Hughes et al. in 1986. In 1987, Hughes et al. [86] reformulated the

(SUPG)82 in terms of the entropy variables, and supplemented with a shock-capturing

term. Later, in 1991, Le Beau and Tezduyar [121], and then, in 1993, Le Beau et

al. [120] reformulated the (SUPG)82 in terms of the conservation variables adding a

shock-capturing term very similar to one introduced in [86]. The shock-capturing

parameter introduced in [121] in 1991 is today called “δ91.”
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The SUPG-stabilized formulation for solving advection-diffusion-reaction equations

introduced in [190] included a shock-capturing term and a stabilization parameter

that took into account the interaction between the shock-capturing and SUPG terms.

Thus, the shock-capturing term does not increase the SUPG effect when the advection

and shock directions coincide. In [121], the stabilization parameter τ82 was slightly

modified. Although the definition of (SUPG)82 underwent some minor modifications

in subsequent years, they were still used with the same shock-capturing parameter, δ91,

until 2004.

In 2004, new ways of determining the stabilization and shock-capturing parameters

in the (SUPG)82 were introduced in [183–185]. These new stabilization parameters

are today called “τ04,” and they are in matrix form for viscous flows and are reduced

to scalar for inviscid flows. The new shock-capturing parameters defined can be

divided into two categories: in a style the discontinuity-capturing directional dis-

sipation (DCDD) [158, 182, 185], and through the residual-based YZβ [183–185]

shock-capturing.

In the remaining parts of this thesis, we restrict our attention only to the YZβ shock-

capturing technique because it is one of the major components of the computations

performed. It is simpler to calculate the YZβ shock-capturing parameter than δ91.

Besides, the parameter β of YZβ offers options for mild and sharp shocks. It was also

reported in [16,159,191–193] that the YZβ parameter yields more accurate results than

δ91 does. The details are provided in the following parts of the thesis (see Section 3.4

and Section 4.1).

In recent years, many new developments have been published in determining the

stabilization parameters and element length scales. The interested reader may refer

to [113, 148, 175–178, 196] for further details.

3.3 The SUPG in High-Speed Flow Research

For the last four decades, the methods used in computational fluid dynamics (CFD)

reported in the literature have mostly been stabilized methods. Since the classical

discretization methods result in numerical instabilities in simulating flows at high
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Reynolds and Mach numbers, as well as in the presence of shocks, stabilization is

required. The following paragraphs summarize the SUPG literature for computing

high-speed flows briefly.

Chalot et al. [34] presented advection-diffusion systems for computing hypersonic

flows and their symmetrization in terms of the entropy variables taking into account

high-temperature effects as a result of their study [86], in which they developed

and analyzed a space-time finite element formulation for linear symmetric advection-

diffusion systems. Mallet et al. performed hypersonic computations on the geometry of

the Hermes vehicle in [134]. The compressible-flow SUPG formulation was employed

for computing flows in thermochemical nonequilibrium by Chalot et al. in [35]. The

compressible-flow SUPG methods in terms of the conservation and entropy variables

were compared in simulating subsonic, transonic, and supersonic flows in [120], with

the results obtained being almost the same. The compressible-flow SUPG method

of [121] was employed in [180, 186] in parallel computations.

In [203], Wienken et al. introduced a N–S solver supplemented with the SUPG

formulation for simulating laminar and turbulent large-eddy simulations (LES). The

authors considered a turbulent channel flow and a transonic flow past a sphere at Mach

1.53. In [159,191–193], Tezduyar et al. computed inviscid supersonic flows employing

the compressible-flow SUPG formulation supplemented with the YZβ shock-capturing.

Kirk et al. analyzed the effects of several types of stabilization parameters used in the

SUPG formulations for computing hypersonic flows in [106]. A SUPG formulation

was employed for simulating nonequilibrium hypersonic flows around a cylinder and

3D blunt-nosed configurations by Bova et al. in [107].

Bova and Kirk analyzed the effects of artificial diffusion introduced in the SUPG for-

mulation for computing Euler and N–S equations in [25]. Kirk and Oliver investigated

the validity of the SUPG formulation for shockwave/turbulent boundary layer interac-

tion problems in [108]. In [82], Howard utilized a SUPG-stabilized formulation for

high-speed aerothermoelastic systems. Kirk et al. [109] employed a SUPG formulation

for investigating aerothermal dynamics of atmospheric entry vehicles with thermal

protection systems (TPS). They considered the Favre-averaged N–S equations coupled

with the Spalart–Allmaras turbulence model. In [8], Anderson et al. implemented a
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SUPG formulation into the FUN3D, a CFD suite of tools actively developed at NASA

Langley Research Center. The authors employed a SUPG formulation augmented

with a shock-capturing technique to solve problems ranging from 1D to 3D flows

and supersonic to hypersonic regimes in [44]. Most recently, Rajanna et al. [157]

employed a compressible-flow SUPG formulation for hypersonic flows governed by

N–S equations.

In this present thesis, the compressible-flow SUPG formulation is used in combination

with the YZβ shock-capturing, i.e., SUPG-YZβ, for simulating high-speed flows in

thermochemical equilibrium/nonequilibrium ranging from Mach 2 to Mach 8 in the

light of studies [191–193] by Tezduyar et al. (see Chapters 4–5).

3.4 Illustrative Computations with the SUPG Formulation

In this section, a comprehensive set of test computations is presented to demonstrate

the implementation and effectiveness of the SUPG formulation supplemented with the

YZβ shock-capturing, SUPG-YZβ, prior to hypersonic flow simulations performed

in Chapter 5. For theoretical aspects of each problem, one can refer to the provided

references and the material therein.

For all computations performed here, the relative error tolerances for Newton–Raphson

iterations are set to 1.0× 10−10. Since the systems of equations are not large, a direct

method, i.e., sparse LU decomposition, is employed for solving linear systems. For

more on the solution of algebraic equation systems, the interested reader can refer to

Section 4.6.

3.4.1 A Convection-Dominated Linear Convection-Diffusion Equation

Consider the following singularly perturbed steady-state convection-diffusion equa-

tion [210]:

−∇ · (ε∇u) + b · ∇u = f in Ω = (0, 1)2 , (3.1)

u = gD on ∂Ω, (3.2)

48



where the source term, f = f (x1, x2), is given as

f(x1, x2) = (x1 + x2)

(
1− exp

(
x1 − 1

ε

)
exp

(
x2 − 1

ε

))
+ (x1 − x2)

(
exp

(
x2 − 1

ε

)
− exp

(
x1 − 1

ε

))
. (3.3)

The term ε is the diffusion parameter (frequently called the singular perturbation

parameter) arising from the nature of the problem under consideration, with 0 < ε� 1.

The Dirichlet boundary condition associated with Eq. (3.1), specified by Eq. (3.2), is

given as gD = gD(x1, x2) = 0. Then, the exact solution to Eqs. (3.1)–(3.2) is [210]:

u(x1, x2) = x1x2

(
1− exp

(
x1 − 1

ε

))(
1− exp

(
x2 − 1

ε

))
. (3.4)

The discrete SUPG formulation augmented with shock-capturing can be given as

follows: find uh ∈ Sh such that for all test functions wh ∈ Vh,∫
Ω

wh
[
−∇ ·

(
ε∇uh

)
+ bh · ∇uh − fh

]
dΩ

+

nel∑
e=1

∫
Ωe
τSUPG

(
−∇ ·

(
ε∇uh

)
+ bh · ∇uh − fh

) (
bh · ∇wh

)
dΩ

+

nel∑
e=1

∫
Ωe
νSHOC

(
∇uh · ∇wh

)
dΩ = 0. (3.5)

The solution and test function spaces are defined as follows:

Sh = {uh|uh ∈ Hh1(Ω), uh = gD on ΓD}, (3.6)

Vh = {wh|wh ∈ Hh1(Ω), wh = 0 on ΓD}. (3.7)

Here, the finite-dimensional space H1h (Ω) is defined as

Hh1(Ω) = {Φh|Φh ∈ C0
(
Ω
)
,Φh|Ωe ∈ P1(Ωe),∀Ωe ∈ T h}, (3.8)

where T h is the set of elements arising from the finite element discretization of the

computational domain Ω, C0
(
Ω
)

denotes the class of all continuous functions defined

on the closure of Ω, and the space P1 represents the set of linear polynomials. It is also

assumed that Ω =
⋃

Ωe∈T h
Ωe. The term ΓD represents the part of boundary Γ = ∂Ω

where Dirichlet-type boundary conditions apply. If ΓN corresponds to the part of the

boundary Γ where Neumann-type boundary conditions are prescribed, then it is clear

that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.
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The first line in Eq. (3.5) is from the standard Galerkin finite element formulation,

the second one is for stabilization, and the third is for shock-capturing. In this

formulation, the convection (advection) vector is defined as b = [b1, b2]T = [1, 1]T ,

and nel represents the number of triangular elements. The terms τSUPG and νSHOC are

the stabilization and shock-capturing parameters, respectively. How these parameters

are determined directly affects the accuracy of approximations. Here, we use the

stabilization parameter τSUPG, which was introduced in a Ph.D. thesis [167] first and

later analyzed in a journal paper [168]:

τSUPG =

[(
2‖bh‖
he

)2

+

(
4ε

(he)2

)2
]− 1

2

, (3.9)

where he is the smallest edge length associated with element e [140]. The superscript

“h” indicates that the function is coming from a finite-dimensional space, and the norm

‖ · ‖ refers to the standard Euclidean norm. For time-dependent problems, Eq. (3.9) is

modified as follows [167]:

τSUPG =

[(
2

∆t

)2

+

(
2‖bh‖
he

)2

+

(
4ε

(he)2

)2
]− 1

2

, (3.10)

where the term ∆t represents the time-step length.

The shock-capturing parameter, νSHOC, is modified from [191–193] by replacing the

density ρ with the unknown solution u, in the term j (see Eqs. (3.15)–(3.16)), and can

be written as

νSHOC = |Y−1Z|

(
Y−1

nsd∑
i=1

∣∣∣∂uh
∂xi

∣∣∣2)β
2
−1(

hSHOC

2

)β
, (3.11)

where nsd denotes the number of space dimensions, and Y is a scaling parameter. Note

that for coupled problems, the parameter Y becomes a matrix. In our computations,

we set β = 2:

νSHOC = |Y−1Z|
(
hSHOC

2

)2

, (3.12)

since the problems we deal with are highly dominated by convection. The quantity Z

is given as

Z = bh
1

∂uh

∂x1

+ bh
2

∂uh

∂x2

− fh = bh · ∇uh − fh. (3.13)

For time-dependent problems, Eq. (3.13) can be modified as

Z =
∂uh

∂t
+ bh

1

∂uh

∂x1

+ bh
2

∂uh

∂x2

− fh =
∂uh

∂t
+ bh · ∇uh − fh. (3.14)
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Figure 3.1: A 2D linear shape function on a generic triangular mesh.

The element length scale, hSHOC, and the unit vector j in the direction of ∇uh, are

defined as follows:

hSHOC = 2

(
nen∑
a=1

|j · ∇Na|

)−1

, (3.15)

j =
∇uh

‖∇uh‖
, (3.16)

where the norm given in Eq. (3.16) is the standard Euclidean norm, and Na denotes

the shape (interpolation, basis, hat) function associated with element node a. Without

loss of generality, the 2D linear shape functions associated with a triangular element e

and its three nodes can be defined as follows:

N
(e)
i (x1, x2) =

1

2A(e)

[
a

(e)
i + b

(e)
i x1 + c

(e)
i x2

]
, i = 1, 2, 3, (3.17)

where A(e) is the area of element e. Note that Eq. (3.17) should satisfy the following

condition [116]:

N
(e)
i

(
x

(j)
1 , x

(j)
2

)
=

 1, if i = j,

0, if i 6= j,
(3.18)

where the point
(
x

(j)
1 , x

(j)
2

)
represents the coordinate of the jth node of element e,

and N (e)
i is the shape function associated with the ith node of element e. Then, the

constants a(e)
i , b

(e)
i , c

(e)
i , given in Eq. (3.17), can be determined uniquely. Figure 3.1

illustrates an example 2D linear shape function associated with an arbitrary node on a

generic triangular mesh. For more on the shape functions, one can refer to [116].
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Notice that since the stabilization terms and shock-capturing parameter include the

residual of Eq. (3.1) as a factor, these added terms vanish when the exact solution is

substituted into the SUPG-YZβ formulation given by Eq. (3.5).

The computations for solving Eqs. (3.1)–(3.2) are performed on two different meshes of

625 nodes and 1, 152 elements, and 1, 369 nodes and 2, 592 elements (see Figure 3.2).

The scaling term Y of YZβ is set as Y= 1.0. The numbers of Newton–Raphson

iterations in SUPG-YZβ computations are 5 and 4 for meshes with 1, 152 elements

and 2, 592 elements, respectively.

(a) (b)

Figure 3.2: Meshes used for solving Eqs. (3.1)–(3.2): (a) nen = 625 and nel = 1, 152,
and (b) nen = 1, 369 and nel = 2, 592.

The GFEM, SUPG, and SUPG-SC (the SUPG formulation supplemented with YZβ

shock-capturing, i.e., SUPG-YZβ) approximations to the solution of Eqs. (3.1)–(3.2)

are shown in Figure 3.3, Figure 3.4, and Figure 3.5, respectively. As can be seen from

these elevation plots, the GFEM solutions involve spurious oscillations, especially

as the problem becomes more convection dominated, particularly for the values of ε

less than 1.0× 10−3 (see Figure 3.3). The approximations obtained with the SUPG

formulation do not contain globally-propagated non-physical oscillations, unlike the

GFEM yields (see Figure 3.4). However, it is clearly observed that the SUPG-stabilized

formulation needs special treatment for resolving steep gradients. As can be seen

in Figure 3.5, when the SUPG formulation is augmented with YZβ shock-capturing,

sharp gradients are captured successfully. In Figure 3.6, the SUPG and SUPG-YZβ
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approximations are compared for ε = 10−8, and corresponding absolute errors are

presented.

Figure 3.3: GFEM solutions of Eqs. (3.1)–(3.2) for various values of ε; nel = 2, 592.

In computations, three different norms, L2 norm ‖ · ‖L2 , maximum norm ‖ · ‖L∞ , and

ε-weighted (standard) energy norm [29,160,161] ‖ · ‖Lε are used to measure the errors

in approximations obtained by the proposed formulations. These norms are defined as

follows:

‖v‖L2 =

√∫
Ω

v2dx, (3.19)

‖v‖L∞ = max
i
|vi|, (3.20)

‖v‖Lε =
√
ε‖∇v‖2

L2 + ‖v‖2
L2 . (3.21)

The convergence rate, ρN , can be also calculated in the sense of the double-mesh
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Figure 3.4: SUPG solutions of Eqs. (3.1)–(3.2) for various values of ε; nel = 2, 592.

principle [59] from

ρN =
lnEN − lnE2N

ln 2
, (3.22)

where EN = u− uN and E2N = u− u2N are pointwise (nodal) errors associated with

the meshes constructed with N ×N and 2N × 2N elements. Here, u represents the

exact solution.

Table 3.1 and Table 3.2 compare the errors in approximations obtained in various

norms for varying values of the diffusion parameter ε. Note that the errors measured

in the ε-weighted norms are slightly larger than those measured in the L2 norm. For

decreasing values of ε, the errors measured in both norms are identical. It should

also be noticed that the errors in the SUPG approximations are smaller than those

obtained by employing the SUPG-YZβ formulation for the values of ε smaller larger

than ε = 10−3. The reason for this is that for values less than ε = 10−3, convection-

dominance becomes significant. In Figure 3.7, semi-logarithmic plots comparing the
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Figure 3.5: SUPG-YZβ solutions of Eqs. (3.1)–(3.2) for various values of ε; nel =

2, 592.

degrees of freedom and errors in approximations are presented. From these figures,

the superiority of the SUPG-YZβ solutions is clearly observed.

Finally, in Figure 3.8, the solutions obtained by employing the proposed methods are

compared along the line x2 = 0.2, and the success of YZβ technique in capturing

strong gradients is clearly observed.

In comparison to the results obtained in [210], the problem given by Eqs. (3.1)–(3.2)

is considered with much lower diffusivity here, i.e., on the order of ε = 10−8, while

it is on the order of ε = 10−4 at most in [210]. However, it is still observed that the

SUPG-YZβ formulation eliminates nonphysical oscillations entirely. In addition, it

accomplishes this without using any adaptive mesh strategy.
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Figure 3.6: Effect of shock-capturing technique in solving Eqs. (3.1)–(3.2) with
absolute errors; ε = 10−8, and nel = 2, 592.

(a) (b)

Figure 3.7: Comparison of errors in solving Eqs. (3.1)–(3.2): (a) ε = 10−4, and (b)
ε = 10−8.
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Table 3.1: Comparison of approximations for solving Eqs. (3.1)–(3.2) in various
norms; nel = 1, 152.

ε ‖ESUPG‖L2 ‖ESC‖L2 ‖ESUPG‖L∞ ‖ESC‖L∞ ‖ESUPG‖Lε ‖ESC‖Lε
100 3.725e-5 9.199e-5 7.165e-5 1.475e-4 1.843e-4 5.586e-4

10−1 3.139e-3 7.376e-3 1.229e-2 2.658e-2 1.176e-2 3.323e-2
10−2 7.460e-3 2.830e-2 9.516e-2 3.233e-1 2.478e-2 9.192e-2
10−3 1.911e-2 1.104e-2 3.353e-1 1.264e-1 2.888e-2 1.574e-2
10−4 2.317e-2 8.749e-3 4.240e-1 9.442e-2 2.466e-2 9.169e-3
10−5 2.236e-2 8.517e-3 4.343e-1 9.085e-2 2.376e-2 8.558e-3
10−6 2.365e-2 8.493e-3 4.354e-1 9.051e-2 2.366e-2 8.498e-3
10−7 2.365e-2 8.491e-3 4.355e-1 9.048e-2 2.365e-2 8.492e-3
10−8 2.365e-2 8.491e-3 4.355e-1 9.047e-2 2.365e-2 8.491e-3

Table 3.2: Comparison of approximations for solving Eqs. (3.1)–(3.2) in various
norms; nel = 2, 592.

ε ‖ESUPG‖L2 ‖ESC‖L2 ‖ESUPG‖L∞ ‖ESC‖L∞ ‖ESUPG‖Lε ‖ESC‖Lε
100 1.660e-5 3.747e-5 3.189e-5 6.039e-5 8.224e-5 2.399e-4

10−1 1.453e-3 3.207e-3 5.694e-3 1.143e-2 5.617e-3 1.621e-2
10−2 1.033e-2 2.236e-2 1.508e-1 2.974e-1 4.665e-2 1.007e-1
10−3 1.380e-2 5.755e-3 2.986e-1 7.809e-2 2.667e-2 1.038e-2
10−4 1.850e-2 2.869e-3 4.250e-1 2.205e-2 2.097e-2 3.086e-3
10−5 1.901e-2 2.613e-3 4.405e-1 1.634e-2 1.928e-2 2.631e-3
10−6 1.906e-2 2.588e-3 4.421e-1 1.609e-2 1.909e-2 2.590e-3
10−7 1.907e-2 2.583e-3 4.423e-1 1.607e-2 1.907e-2 2.585e-3
10−8 1.907e-2 2.585e-3 4.423e-1 1.607e-2 1.907e-2 2.585e-3
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Figure 3.8: Comparison of solutions along line x2 = 0.2 for solving Eqs. (3.1)–(3.2);
ε = 10−6, and nel = 2, 592.
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3.4.2 A Convection-Dominated Linear Reaction-Convection-Diffusion Equation

Consider the following singularly perturbed reaction-convection-diffusion equation [125]:

−∇ · (ε∇u) + b · ∇u+ u = f in Ω = (0, 1)2 , (3.23)

u = 0 on ∂Ω, (3.24)

where the source function, f = f(x1, x2), is given as follows:

f(x1, x2) = x1(1− x1) + x2(1− x2). (3.25)

There is no known analytic solution of this problem [125]. The SUPG-YZβ for-

mulation can be deduced from Eq. (3.5) presented for solving the previous linear

problem. Here, the convection vector b = [1, 11/7]T , and unlike the previous problem,

Eq. (3.23) contains a linear reaction term, i.e., u.

For solving Eqs. (3.23)–(3.24), the mesh shown in Figure 3.2b is used. In computations,

the scaling term Y of YZβ is set as Y= 1.0. The number of Newton–Raphson iterations

in SUPG-YZβ computations is 5 for both meshes with 1, 152 elements and 2, 592

elements.

One can point out from Figure 3.9 that the GFEM yields unacceptable solutions

in solving Eqs. (3.23)–(3.24) for the values of the perturbation parameter less than

ε = 10−2. In Figure 3.10, the solutions obtained with the SUPG and SUPG-YZβ

formulations are compared, and the effect of shock-capturing term is illustrated. In

Figure 3.11, semi-logarithmic plots comparing the degrees of freedom and errors in

approximations are given.

Finally, in Figure 3.12, the solutions obtained by employing the proposed methods

are compared along the line x2 = 0.9, and the success of YZβ technique in capturing

strong gradients is clearly observed.

The authors of [125] perform their computations with linear elements on Shiskin-type

meshes for solving Eqs. (3.23)–(3.24). The results obtained in [125] are found to be

in good agreement with those obtained by employing the SUPG-YZβ formulation

without exhibiting any oscillatory behavior.
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(a) (b)

(c) (d)

Figure 3.9: GFEM approximations for solving Eqs. (3.23)–(3.24): (a) ε = 1.0, (b)
ε = 10−2, (c) ε = 10−4, and (d) ε = 10−6; nel = 2, 592.

(a) (b)

Figure 3.10: Effect of shock-capturing in solving Eqs. (3.23)–(3.24): (a) SUPG
solution, (b) SUPG-YZβ solution; ε = 10−8, and nel = 2, 592.
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(a) (b)

Figure 3.11: Comparison of errors in solving Eqs. (3.23)–(3.24) for (a) ε = 10−4, and
(b) ε = 10−8.

Figure 3.12: Comparison of solutions along line x2 = 0.9 for solving Eqs. (3.23)–
(3.24); ε = 10−4, and nel = 2, 592.
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3.4.3 A Convection-Dominated Nonlinear Reaction-Convection-Diffusion Equa-

tion

Consider the following singularly perturbed nonlinear stationary reaction-convection-

diffusion equation [13, 198, 209]:

−∇ · (ε∇u) + β · ∇u+ αu+ r(u) = 0 in Ω = (0, 1)2, (3.26)

where

β = [−x2, x1]T , α = 1, r(u) = − u

u+ 1
. (3.27)

Here, β is the convection vector, α is the linear reaction constant, and the function

r(u) represents the nonlinear reaction term. For specific assumptions that should be

made on these terms, one can refer to [13, 198, 209].

The Dirichlet and Neumann boundary conditions are given as follows:

gD (x1, x2) =


1, if x1 ∈ [1/3, 2/3] and x2 = 0,

0, if x1 ∈ [0, 1/3] ∪ [2/3, 1] and x2 = 0,

0, if x1 = 1,

0, if x2 = 1,

(3.28)

and gN (x1, x2) = 0 for x1 = 0 and x2 ∈ [0, 1], respectively.

The SUPG formulation with shock-capturing can be given as follows: find uh ∈ Sh

such that for all test functions wh ∈ Vh,∫
Ω

wh
[
−∇ ·

(
ε∇uh

)
+ βh · ∇uh + αuh + r(uh)

]
dΩ

+

nel∑
e=1

∫
Ωe
τSUPG

(
βh · ∇uh + αuh + r(uh)

) (
βh · ∇wh

)
dΩ

+

nel∑
e=1

∫
Ωe
νSHOC

(
∇uh · ∇wh

)
dΩ = 0, (3.29)

where the solution and test function spaces are defined as follows:

Sh = {uh|uh ∈ Hh1(Ω), uh = gD on ΓD}, (3.30)

Vh = {wh|wh ∈ Hh1(Ω), wh = 0 on ΓD}, (3.31)

Here, the finite-dimensional spaceH1h is defined as given in Eq. (3.8), and the function

gD = gD(x1, x2) defined in Eq. (3.28) represents the Dirichlet boundary condition
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Figure 3.13: Mesh used for solving Eq. (3.26); nen = 2, 401 and nel = 4, 608.

that Eq. (3.26) is subject to. The term ΓD represents the part of boundary Γ = ∂Ω

where Dirichlet-type boundary conditions apply.

The stabilization and shock-capturing parameters are determined as in the linear prob-

lems studied in Sections 3.4.1–3.4.2. The mesh constructed from 2, 401 nodes and

4, 608 triangular elements, shown in Figure 3.13, is used for solving Eq. (3.26). The

Newton-Raphson process fails to converge in GFEM computations for the values

smaller than ε = 10−3. The scaling parameter Y of YZβ is set as Y = 0.25 in compu-

tations. The number of the Newton–Raphson iterations in SUPG-YZβ computation is

6.

In Figure 3.14, the GFEM solutions of Eq. (3.26) for various values of the diffusion

parameter, ε, are presented. Figure 3.15 compares the approximations obtained by

the GFEM and SUPG formulations for ε = 10−8. It is seen that the solution obtained

by using the SUPG formulation eliminates the spurious oscillations significantly.

However, similar to the linear examples, it is observed that the SUPG formulation

needs to be strengthened for the regions where strong gradients occur, even though

the spurious oscillations are significantly reduced. As can be seen in Figure 3.16,

when the SUPG formulation is supplemented with YZβ shock-capturing, the spurious
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oscillations are eliminated almost completely. Figure 3.17 compares the SUPG and

SUPG-YZβ solutions obtained along line x2 = 0.2, and it reveals that that SUPG-YZβ

formulation captures sharp gradients accurately without spurious oscillations.

While the studies existing in the literature, for example, see [13,198,209], can generally

eliminate the spurious oscillations by using higher-order polynomials or much finer

meshes, or a combination of these, and thus with a much higher degree of freedom,

the SUPG-YZβ formulation is found to be successful in eliminating nonphysical

oscillations even with linear elements and relatively much coarser meshes.

(a) (b)

(c) (d)

Figure 3.14: GFEM solutions of Eq. (3.26) for (a) ε = 10−1, (b) ε = 10−2, (c)
ε = 10−3, and (d) ε = 10−4; nel = 4, 608.
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(a) (b)

Figure 3.15: Comparison of the GFEM and SUPG solutions in solving Eq. (3.26): (a)
GFEM solution, and (b) SUPG solution; ε = 10−4, and nel = 4, 608.

(a) (b)

(c) (d)

Figure 3.16: Effect of shock-capturing in solving Eq. (3.26): (a) SUPG solution for
ε = 10−7, (b) SUPG-YZβ solution for ε = 10−7, (c) SUPG solution for ε = 10−8, and
(d) SUPG-YZβ solution for ε = 10−8; nel = 4, 608.

65



Figure 3.17: Comparison of solutions along line x2 = 0.2 for solving Eq. (3.26); nel =
4, 608.
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3.4.4 A Burgers’-type Equation at High Reynolds Number

Consider the following 2D uncoupled Burgers’ equation [10, 139]:

∂u

∂t
+ u

∂u

∂x1

+ u
∂u

∂x2

=
1

Re

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
, t ∈ (0, 1], Ω = [0, 1]2, (3.32)

where the initial and Dirichlet boundary conditions are prescribed such that the exact

solution [139], given by

u(x1, x2, t) =
1

1 + exp
(
Re(x1+x2−t)

2

) , (3.33)

is satisfied.

The SUPG-YZβ formulation of Eq. (3.32) can be derived in the light of the procedures

followed for previous test computations. Note that the diffusion parameter ε is defined

as ε = 1
Re

(see definitions of the stabilization parameters given by Eqs. (3.9)–(3.10)).

One can also refer to Section 3.4.5 in which the derivation of the SUPG-YZβ formula-

tion of nsd-dimensional coupled Burgers’ equations is presented since the formulations

for the decoupled cases can be easily deduced from it.

In computations, the mesh shown in Figure 3.18, constructed with 1, 849 nodes and

3, 528 triangular elements, is used. The scaling term Y of YZβ is set as Y= 1.0. Time

integration is performed by using the implicit Euler method: as we step from time-step

n to n+ 1,
∂u

∂t
≈ un+1 − un

∆t
. (3.34)

The average number of the Newton–Raphson iterations at each time step for the GFEM,

SUPG, and SUPG-YZβ are 4, 4, and 5, respectively, where ∆t = 5.0× 10−3 s. It is

observed that the average number of nonlinear iterations in SUPG-YZβ computations

reduces to 4 when the time-step length is set as ∆t = 1.0× 10−3 s.

In Figure 3.19, the effect of the shock-capturing term is clearly observed; steep

gradients are captured successfully. Since the GFEM approximation does not contain

globally propagated spurious oscillations (only local oscillations are observed about

steep gradients, see Figure 3.19a), the SUPG formulation has no significant effect in

stabilizing the GFEM solution, and both formulations fail to capture rapid and abrupt

changes. Figure 3.20 compares the absolute errors in approximations. Even though
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Figure 3.18: Mesh used for solving Eq. (3.32); nen = 1, 849, and nel = 3, 528.

the absolute error in the SUPG-YZβ approximation is higher than the others, it does

not exhibit any oscillatory behavior, unlike the others. It is important to note that the

primary goal is to find a compromise between stability and accuracy. In Figure 3.21,

the solutions obtained by employing the proposed methods are compared along the

line x2 = 0.45, and the success of YZβ technique in capturing strong gradients is

clearly observed.

The problem given by Eq. (3.32) is treated by employing a numerical scheme based on

modified bi-cubic B-spline functions in [139] and using a numerical formulation based

on trigonometric cubic B-spline functions in [10]. The computations in these studies

are performed for very moderate Reynolds numbers, i.e., Re = 100 and Re = 50,

respectively. In our computations, although we work with much higher Reynolds

numbers, e.g., Re = 104, the solutions obtained with the SUPG-YZβ formulation do

not contain any spurious oscillations.
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(a) (b)

(c) (d)

Figure 3.19: Solution of Eq. (3.32) for tf = 1.0 s: (a) GFEM, (b) SUPG, (c) SUPG-
YZβ, and (d) exact solution; Re = 104, nel = 3, 528, and ∆t = 5.0× 10−3 s.
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(a) (b)

(c)

Figure 3.20: Absolute errors in solving Eq. (3.32) for t = 1.0 s: (a) GFEM, (b) SUPG,
and (c) SUPG-YZβ; Re = 104, nel = 3, 528, and ∆t = 5.0× 10−3 s.
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Figure 3.21: Comparison of solutions along line x2 = 0.45 for solving Eq. (3.32);
Re = 104, nel = 3, 528, t = 1.0 s, and ∆t = 5.0× 10−3 s.
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3.4.5 A Coupled System of Burgers’-type Equations at High Reynolds Num-

bers

Consider the following 2D coupled Burgers’ equations [169, 179]:

∂u

∂t
+ u

∂u

∂x1

+ v
∂u

∂x2

=
1

Re

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
, (3.35)

∂v

∂t
+ u

∂v

∂x1

+ v
∂v

∂x2

=
1

Re

(
∂2v

∂x2
1

+
∂2v

∂x2
2

)
, (3.36)

where (x1, x2) ∈ Ω = [0, 1]2 and t ∈ (0, tf ], with tf > 0. The initial and Dirichlet

boundary conditions are prescribed such that the component-wise exact solutions,

given as [62]

u(x1, x2, t) =
3

4
− 1

4

[
1 + exp

[
Re
32

(
− 4x1 + 4x2 − t

)]] , (3.37)

v(x1, x2, t) =
3

4
+

1

4

[
1 + exp

[
Re
32

(
− 4x1 + 4x2 − t

)]] , (3.38)

are satisfied.

It is possible to recast the nsd-dimensional coupled Burgers’ equations as follows:

∂ui
∂t

+ (u · ∇ui) =
1

Re
∆ui, i = 1, 2, . . . , nsd, (3.39)

where

u =


u1

u2

...

unsd

 , ∇ =


∂
∂x1

∂
∂x2
...
∂

∂xnsd

 , and ∆ = ∇ · ∇. (3.40)

Then, a semi-discrete GFEM formulation of Eq. (3.39) can be given as follows: find

uhi ∈ Shui such that ∀whi ∈ Vhui ,∫
Ω

whi

(
∂uhi
∂t

+ uh · ∇uhi
)
dΩ +

1

Re

∫
Ω

∇whi ·∇uhi dΩ−
∫

Γhi

whi hhi dΓ = 0, (3.41)

where i = 1, 2, . . . , nsd. The given function “hi” denotes the Neumann boundary

condition associated with the ith equation, and Γhi is the part of the boundary where
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such conditions are prescribed. The finite-dimensional solution and test function

spaces are defined as follows:

Shui = {uhi ∈ Hh1(Ω)|uhi = gDi on ΓD}, (3.42)

Vhui = {whi ∈ Hh1(Ω)|whi = 0 on ΓD}, (3.43)

where the finite element space H1h is defined as given in Eq. (3.8). The term ΓD

represents the part of boundary Γ = ∂Ω where Dirichlet-type boundary conditions

apply. If ΓN corresponds to the part of the boundary Γ where Neumann-type boundary

conditions are prescribed, then it is clear that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

A semi-discrete SUPG formulation of Eq. (3.39) can be given as follows: find uhi ∈ Shui
such that ∀whi ∈ Vhui ,∫

Ω

whi

(
∂uhi
∂t

+ uh · ∇uhi
)
dΩ +

1

Re

∫
Ω

∇whi · ∇uhi dΩ−
∫

Γhi

whi hhi dΓ

+

nel∑
e=1

∫
Ωe
τ iSUPG

(
uh · ∇wi

)(∂uhi
∂t

+ uh · ∇uhi −
1

Re
∇ · ∇uhi

)
dΩ

+

nel∑
e=1

∫
Ωe
νiSHOC

(
∇whi · ∇uhi

)
dΩ = 0, (3.44)

for each 1, 2, . . . , nsd. The terms τ iSUPG and νiSHOC are the stabilization and shock-

capturing parameters associated with the ith equation, respectively. Note that the first

line in Eq. (3.44) represents the standard GFEM formulation introduced in Eq. (3.41),

the second line contains the stabilization and residual terms, and the last one is for

shock-capturing.

The stabilization parameters, τ iSUPG’s, given as [167]

τ iSUPG =

[(
2

∆t

)2

+

(
2‖uh‖
he

)2

+

(
4ν

(he)2

)2
]− 1

2

(3.45)

construct the diagonal stabilization matrix τ SUPG, where i = 1, 2, . . . , nsd. Here, the

term he is the smallest element edge associated with element e, and ∆t is the time-step

length. Note the viscosity, ν, is defined as ν = 1
Re

.

The shock-capturing parameters, νiSHOC’s, are modified as follows:

νiSHOC = |Y−1
i Zi|

(
nsd∑
k=1

∣∣∣Y−1
i

∂uhi
∂xk

∣∣∣2)β
2
−1(

hiSHOC

2

)β
, (3.46)

73



for each i = 1, 2, . . . , nsd. In this formulation, for stationary problems, the quantities

Zi’s are given as

Zi = uh · ∇uhi −
1

Re
∆uhi , (3.47)

where i = 1, 2, . . . , nsd. For time-dependent problems, the quantities Zi’s can be

defined as

Zi =
∂uhi
∂t

+ uh · ∇uhi −
1

Re
∆uhi . (3.48)

We use Eq. (3.48) in our computations. The element length scales, hiSHOC’s, and the

unit vectors ji’s are given as follows:

hiSHOC = 2

(
nen∑
a=1

|ji · ∇N i
a|

)−1

, (3.49)

ji =
∇uhi
‖∇uhi ‖

, (3.50)

for each i = 1, 2, . . . , nsd. In Eq. (3.49), the term N i
a represents the shape function

associated with element node “a,” and ji is the unit vector in the direction of the

gradient of ui.

Note that because the stabilization terms and shock-capturing parameter include the

residual of Eq. (3.39) as a factor, these added terms vanish when the exact solution is

substituted into the SUPG-YZβ formulation given by Eq. (3.44).

The time integration is performed through the implicit Euler scheme (see Eq. (3.34)).

The average number of the Newton–Raphson iterations at each time step for the GFEM,

SUPG, and SUPG-YZβ are 4. The scaling matrix Y of YZβ is set as Y = 2.5 I.

The results obtained by using the shock-capturing technique at various time steps

were depicted in Figure 3.22 and Figure 3.24. Figure 3.23 and Figure 3.25 show that

the GFEM gives unacceptable results. Again, by comparison, it is clear that when

shock-capturing is used, nonphysical oscillations are almost completely eliminated. In

Figures 3.26–3.27, the solutions obtained by using the proposed methods are compared

along the line x2 = 0.9, and the success of YZβ technique in capturing strong gradients

is clearly observed.

Figure 3.28 depicts the stabilization (see Eq. (3.45)) and shock-capturing (see Eq. (3.46))

parameters computed at t = 2.0 s. Figure 3.28b corresponds to shock-capturing pa-
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rameter for Eq. (3.35) and Figure 3.28c corresponds to that of Eq. (3.36). One can

point out from these figures that the component-wise shock-capturing parameters

introduce artificial dissipation only for the regions where localized sharp gradients

(rapid changes) occur. Thus, as expected, the effect of shock-capturing parameters

vanishes where the solution is smooth. Besides that, it is observed that the stabilization

parameter introduces more artificial diffusion where advection dominates the flow

field, as expected.

The problem given by Eqs. (3.35)–(3.36) is treated by using a numerical scheme

based on exponential cubic B-spline functions in [169] and by employing an implicit

logarithmic finite-difference method in [179]. In both studies, the authors carry out the

computations for Re = 100, which is not sufficiently high to evaluate the performance

of the proposed techniques in eliminating spurious oscillations. Even though the

Reynolds number is set to Re = 104 in our computations, the SUPG-YZβ formulation

manages to capture strong gradients accurately.
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(a) (b)

(c) (d)

Figure 3.22: Solution of u(x1, x2, t) in Eqs. (3.35)–(3.36) obtained with SUPG-YZβ
at (a) tf = 0.75 s, (b) tf = 1.5 s, (c) tf = 2.25 s, and (d) tf = 3.0 s; Re = 104, and
∆t = 5.0× 10−3 s.
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(a) (b)

(c) (d)

Figure 3.23: Solution of u(x1, x2, t) in Eqs. (3.35)–(3.36) at tf = 2.0 s: (a) GFEM, (b)
SUPG, (c) SUPG-YZβ, and (d) exact solution; Re = 104, and ∆t = 5.0× 10−3 s.
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(a) (b)

(c) (d)

Figure 3.24: Solution of v(x1, x2, t) in Eqs. (3.35)–(3.36) obtained with SUPG-YZβ
at (a) tf = 0.75 s, (b) tf = 1.5 s, (c) tf = 2.25 s, and (d) tf = 3.0 s; Re = 104, and
∆t = 5.0× 10−3 s.
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(a) (b)

(c)
(d)

Figure 3.25: Solution of v(x1, x2, t) in Eqs. (3.35)–(3.36) at tf = 2.0 s: (a) GFEM, (b)
SUPG, (c) SUPG-YZβ, and (d) exact solution; Re = 104, and ∆t = 5.0× 10−3 s.
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Figure 3.26: Comparison of solutions for u(x1, x2, t) along line x2 = 0.9 for solving
Eqs. (3.35)–(3.36); Re = 104, nel = 3, 528, tf = 2.0 s, and ∆t = 5.0× 10−3 s.

Figure 3.27: Comparison of solutions for v(x1, x2, t) along line x2 = 0.9 for solving
Eqs. (3.35)–(3.36); Re = 104, nel = 3, 528, tf = 2.0 s, and ∆t = 5.0× 10−3 s.
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(a)

(b)

(c)

Figure 3.28: Stabilization and shock-capturing parameters in solving Eqs. (3.35)–
(3.36): (a) Stabilization parameter, (b) shock-capturing parameter for u-component,
and (c) shock-capturing parameter for v-component; Re = 104, nel = 3, 528, tf = 2.0

s, and ∆t = 5.0× 10−3 s.
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CHAPTER 4

COMPUTATIONAL SETUP FOR HIGH-SPEED FLOW

SIMULATIONS

The compressible-flow SUPG formulations of the governing equations are introduced

in this chapter, as well as the computational details of the simulations performed. To

that end, the one-species thermochemical equilibrium equations are studied first, fol-

lowed by the multispecies nonequilibrium equations. Subsequently, the computational

details are provided.

4.1 SUPG Formulations of the Governing Equations

In this section, the SUPG formulations of the governing equations for equilibrium

and nonequilibrium flows are given, the stabilization and shock-capturing parameters

associated with these formulations are introduced.

4.1.1 SUPG Formulation: Thermochemical Equilibrium Flows

Let us recast the 2D one-species Euler equations of compressible flow (for details, see

Section 2.3):

∂ρ

∂t
+∇ · (ρu) = 0 in Ω× It, (4.1)

∂ (ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0 in Ω× It, (4.2)

∂ (ρe)

∂t
+∇ · (ρuh) = 0 in Ω× It. (4.3)
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As given before by Eq. (2.112), the governing equations can be expressed in a quasi-

linear form as
∂U

∂t
+ A1

∂U

∂x1

+ A2
∂U

∂x2

= 0. (4.4)

Then, the GFEM formulation of Eq. (4.4) can be given as follows: find Uh ∈ Sh
U such

that for all test functions Wh ∈ Vh
U,∫

Ω

Wh ·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

)
dΩ = 0, (4.5)

where the solution and test function spaces are defined as follows:

SU
h = {Uh : Uh ∈ [H1h (Ω)]nsd+2,Uh = G(x, t) on ΓD}, (4.6)

VU
h = {Wh : Wh ∈ [H1h (Ω)]nsd+2,Wh = 0 on ΓD}. (4.7)

Here, the finite-dimensional space H1h (Ω) is defined as

H1h = {Φh : Φh ∈ C0
(
Ω
)
,Φh|Ωe ∈ P1 (Ωe) ,∀Ωe ∈ T h}, (4.8)

where T h is the set of elements arising from the finite element discretization of the

computational domain Ω, C0
(
Ω
)

denotes the class of all continuous functions defined

on the closure of Ω, the space Pk represents the set of polynomials of order at most k,

and the function G(x, t) is the Dirichlet boundary conditions associated with Eq. (4.4).

It is assumed that Ω =
⋃

Ωe∈T h
Ωe. The term ΓD represents the part of boundary Γ = ∂Ω

where Dirichlet-type boundary conditions apply.

The compressible-flow SUPG formulation of Eq. (4.4) is obtained by adding stabiliza-

tion terms to the standard GFEM formulation as follows: find Uh ∈ Sh
U such that for

all test functions Wh ∈ Vh
U,∫

Ω

Wh ·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

)
dΩ

+

nel∑
e=1

∫
Ωe
τ SUPG

(
∂Wh

∂x1

Ah
1 +

∂Wh

∂x2

Ah
2

)
·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

)
dΩ = 0. (4.9)

The solution and test function spaces are defined as given in Eqs. (4.6)–(4.7), nel is the

number of elements, and e is the element counter. The stabilization parameter, τ SUPG,

is constructed from the following components [191–193]:

τ ρSUGN1 = τu
SUGN1 = τ eSUGN1 =

(
nen∑
a=1

|uh · ∇Na|

)−1

, (4.10)
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τ ρSUGN2 = τu
SUGN2 = τ eSUGN2 =

∆t

2
, (4.11)

where ∆t is the time-step size, the superscripts ρ, u, and e denote the variables that

the parameters are associated with, nen is the number of element nodes, and Na is

the shape function associated with node a (for details, see Section 3.4.1). Then, the

diagonal stabilization matrix is given as follows:

τ SUPG =


τ ρ 0 0 0

0 τu,x 0 0

0 0 τu,y 0

0 0 0 τ e

 . (4.12)

The stabilization parameters, using the “r-switch” combination [189], are given as

τ ρ = (τ ρSUPG)UGN =

(
1

(τ ρSUGN1)
r +

1

(τ ρSUGN2)
r

)− 1
r

, (4.13)

τu = (τu
SUPG)UGN =

(
1

(τu
SUGN1)

r +
1

(τu
SUGN2)

r

)− 1
r

, (4.14)

τ e = (τ eSUPG)UGN =

(
1

(τ eSUGN1)
r +

1

(τ eSUGN2)
r

)− 1
r

, (4.15)

where, typically, r = 2 [189].

Notice that since the stabilizing terms added in the SUPG-stabilized formulation

given by Eq. (4.9) include the residual of the original problem given by Eq. (4.4)

as a factor, these added terms vanish when the exact solution is substituted into the

SUPG-stabilized formulation.

The SUPG formulation of Eq. (4.4) supplemented with the YZβ shock-capturing is

given as follows: find Uh ∈ Sh
U such that for all test functions Wh ∈ Vh

U,∫
Ω

Wh ·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

)
dΩ

+

nel∑
e=1

∫
Ωe
τ SUPG

(
∂Wh

∂x1

Ah
1 +

∂Wh

∂x2

Ah
2

)
·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

)
dΩ

+

nel∑
e=1

∫
Ωe
νSHOC

(
∂Wh

∂x1

· ∂Uh

∂x1

+
∂Wh

∂x2

· ∂Uh

∂x2

)
dΩ = 0, (4.16)

where the solution and test function spaces are defined as given in Eqs. (4.6)–(4.7).

85



The shock-capturing parameter, νSHOC, is from [191–193]:

νSHOC =
∥∥Y−1Z

∥∥( nsd∑
i=1

∥∥∥Y−1∂Uh

∂xi

∥∥∥2
)β

2
−1(

hSHOC

2

)β
, (4.17)

where the element length scale, hSHOC, is given as

hSHOC = 2

(
nen∑
a=1

|j · ∇Na|

)−1

(4.18)

and

j =
∇ρh

‖∇ρh‖
. (4.19)

The norm ‖ · ‖ and inner product “·” stand for the standard Euclidean norm and inner

product, respectively.

Tezduyar et al. reported in [191–193] that the parameter β of YZβ term can be set

β = 1 for mild shocks, and set β = 2 for stronger shocks. A compromise can then be

reached between the two situations by using an average as follows:

νSHOC =
1

2
((νSHOC)β=1 + (νSHOC)β=2) . (4.20)

The scaling matrix Y reads

Y = diag[(U1)ref, (U2)ref, (U3)ref, (U4)ref],

where the diagonal elements are reference values for ρ, ρu, and ρe. These refer-

ence values are set to the corresponding initial conditions (inflow values) but the

x2-component of the velocity vector since it is assumed to be zero. Instead, it is set

as (U3)ref = (U2)ref, where (U2)ref is the inflow value of ρu1. Here, the term u1 is the

x1-component of the velocity vector u, and ρ is the gas density.

The vector Z can be defined in two ways:

Z = Ah
1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

(4.21)

or

Z =
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

. (4.22)

In this thesis, Eq. (4.22) is used in computations since we deal with time dependent

simulations.
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Note that the Z term of YZβ shock-capturing includes the residual of the original

problem given by Eq. (4.4) as a factor. Recalling that the SUPG-stabilized formulation

is also residual-based (see Eq. (4.9)), then one reaches the standard GFEM formulation

when the exact solution is substituted into the SUPG-YZβ formulation given by

Eq. (4.16).

4.1.2 SUPG Formulation: Thermochemical Nonequilibrium Flows

Let us recast the 2D multispecies Euler equations of compressible flow (see Sec-

tion 2.4):

∂ρs
∂t

+∇ · (ρsu) = ωs in Ω× It, (4.23)

∂ (ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0 in Ω× It, (4.24)

∂ (ρe)

∂t
+∇ · (ρuh) = 0 in Ω× It, (4.25)

∂ (ρeV )

∂t
+∇ · (ρueV ) = ωV in Ω× It. (4.26)

As given before by Eq. (2.121), the governing equations can be expressed in a quasi-

linear form as
∂U

∂t
+ A1

∂U

∂x1

+ A2
∂U

∂x2

= S. (4.27)

Then, the GFEM formulation of Eq. (4.27) can be given as follows: find Uh ∈ Sh
U

such that for all test functions Wh ∈ Vh
U,∫

Ω

Wh ·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

− Sh
)
dΩ = 0, (4.28)

where the solution and test function spaces are defined as follows:

SU
h = {Uh : Uh ∈ [H1h (Ω)]nsd+Ns+2,Uh = G(x, t) on ΓD}, (4.29)

VU
h = {Wh : Wh ∈ [H1h (Ω)]nsd+Ns+2,Wh = 0 on ΓD}. (4.30)

The term Ns denotes the number of species, and the finite-dimensional space H1h (Ω)

is defined by Eq. (4.8).

The compressible-flow SUPG formulation of Eq. (4.27) is obtained by adding stabi-

lization terms to the standard GFEM formulation given by Eq. (4.28) as follows: find
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Uh ∈ Sh
U such that for all test functions Wh ∈ Vh

U,

∫
Ω

Wh ·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

− Sh
)
dΩ

+

nel∑
e=1

∫
Ωe
τ SUPG

(
∂Wh

∂x1

Ah
1 +

∂Wh

∂x2

Ah
2

)
·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

− Sh
)
dΩ = 0, (4.31)

where the solution and test function spaces are defined as given in Eqs. (4.29)–(4.30),

nel is the number of elements and e is the element counter. The stabilization parameter,

τ SUPG, is constructed from the following components:

τ ρ,sSUGN1 = τu
SUGN1 = τ eSUGN1 = τ eVSUGN1 =

(
nen∑
a=1

|uh · ∇Na|

)−1

, (4.32)

τ ρ,sSUGN2 = τu
SUGN2 = τ eSUGN2 = τ eVSUGN2 =

∆t

2
. (4.33)

The superscripts ρ, u, e, and eV denote the variables that the parameters are associated

with, as in the equilibrium case. Here, the difference between the equilibrium and

nonequilibrium cases is that the stabilization matrix includes the stabilization parame-

ters associated with the species densities (τ ρ,s’s) and vibrational-electron-electronic

energy (τ eV ). Then, the diagonal stabilization matrix is given as follows:

τ SUPG =



τ ρ,O 0 0 0 0 0 0 0 0

0 τ ρ,N 0 0 0 0 0 0 0

0 0 τ ρ,NO 0 0 0 0 0 0

0 0 0 τ ρ,O2 0 0 0 0 0

0 0 0 0 τ ρ,N2 0 0 0 0

0 0 0 0 0 τu,x 0 0 0

0 0 0 0 0 0 τu,y 0 0

0 0 0 0 0 0 0 τ e 0

0 0 0 0 0 0 0 0 τ eV



. (4.34)
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The stabilization parameters, using the “r-switch” concept [189], are given as

τ ρ,s = (τ ρ,sSUPG)UGN =

(
1

(τ ρ,sSUGN1)
r +

1

(τ ρ,sSUGN2)
r

)− 1
r

, (4.35)

τu = (τu
SUPG)UGN =

(
1

(τu
SUGN1)

r +
1

(τu
SUGN2)

r

)− 1
r

, (4.36)

τ e = (τ eSUPG)UGN =

(
1

(τ eSUGN1)
r +

1

(τ eSUGN2)
r

)− 1
r

, (4.37)

τ eV = (τ eVSUPG)UGN =

(
1

(τ eVSUGN1)
r +

1

(τ eVSUGN2)
r

)− 1
r

, (4.38)

where, typically, r = 2.

The SUPG formulation of Eq. (4.27) supplemented with the YZβ shock-capturing is

given as follows: find Uh ∈ Sh
U such that for all test functions Wh ∈ Vh

U,∫
Ω

Wh ·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

− Sh
)
dΩ

+

nel∑
e=1

∫
Ωe
τ SUPG

(
∂Wh

∂x1

Ah
1 +

∂Wh

∂x2

Ah
2

)
·
(
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

− Sh
)
dΩ

+

nel∑
e=1

∫
Ωe
νSHOC

(
∂Wh

∂x1

· ∂Uh

∂x1

+
∂Wh

∂x2

· ∂Uh

∂x2

)
dΩ = 0, (4.39)

where the solution and test function spaces are defined as given in Eqs. (4.29)–(4.30).

In this formulation, the first line is the standard Galerkin finite element formulation,

the second one is for stabilization, and the third is for shock-capturing.

The shock-capturing parameter, νSHOC, can be defined in a similar way that the equi-

librium parameter is. The differences between the definitions of shock-capturing

parameters given for equilibrium and nonequilibrium cases are in the scaling matrix,

Y, and in vector Z. Here, the scaling matrix Y is defined as follows:

Y = diag[(U1)ref, (U2)ref, . . . , (U9)ref],

where the reference values are set to the corresponding initial conditions but the

x2-component of the velocity vector since it is assumed to be zero. Instead, it is

set as (U7)ref = (U6)ref, where (U6)ref is the inflow value of ρu1. Here, u1 is the

x1-component of the velocity vector u, and ρ denotes the (gas) mixture density defined

by Eq. (2.12).
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Finally, the vector Z can be taken as

Z = Ah
1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

− Sh, (4.40)

or

Z =
∂Uh

∂t
+ Ah

1

∂Uh

∂x1

+ Ah
2

∂Uh

∂x2

− Sh. (4.41)

We use Eq. (4.41) in nonequilibrium computations in a similar trend followed in [16].

Notice that both the SUPG-stabilized (see Eq. (4.31)) and SUPG-YZβ (see Eq. (4.39))

formulations are residual-based as in the equilibrium case, and thus, the SUPG-YZβ

formulation is equivalent to the GFEM formulation given by Eq. (4.27) when the exact

solution is substituted.

4.2 Computational Domain

The computational domain is shown in Figure 4.1, where u∞ denotes the free-stream

velocity. All essential boundary conditions are imposed at the inlet and are set to

the free-stream conditions. No boundary condition is specified at the outlet since all

the flow information can only travel downstream. At the top and bottom boundaries,

u2 = 0. The initial conditions are also set to the free-stream (inflow) conditions. The

boundary conditions are studied in detail in the next section.

u∞

1.0

0.0
0.0

0.5 0.1

0.5 2.0

Figure 4.1: Computational domain. All dimensions are in meters.
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The mesh is constructed in Gmsh [68] and has 6, 059 nodes and 11, 816 triangular

elements (see Figure 4.2). Figure 4.3 shows the layers of constant-thickness elements

near the cylinder. It is constructed by first creating constant-thickness element layers

around the cylinder and then determining the number of element nodes on the walls.

Figure 4.2: Mesh used in the computations. It has 6,059 nodes and 11,816 elements.

Figure 4.3: Mesh near the cylinder.
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4.3 Boundary and Initial Conditions

The appropriate determination of the boundary and initial conditions is crucial in CFD

simulations because the improper determination of these conditions may cause non-

physical effects in simulations, as well as severe problems concerning the convergence

speed and stability of the solutions. Various types of boundary conditions used in

computations are briefly discussed in the following paragraphs.

4.3.1 Solid-Wall Conditions

In our case, the solid wall is a cylinder that is considered as a space vehicle’s blunt

nose. The details on how to apply the zero-normal-velocity condition is examined in

Section 4.3.4. No wall temperature is specified on the cylinder surface since we deal

with inviscid flows.

4.3.2 Far-Field Conditions

The far-field boundary conditions should have two characteristic properties [23]:

• the truncated (computational) domain should be a good representative of the

real infinite domain,

• the computational domain should not reflect any effect into the flow field back.

The far-field conditions are classified as subsonic or supersonic depending on inflow

(free-stream) and outflow velocities, resulting in four different scenarios. Let u∞

represents the inflow velocity vector, n be the nsd-dimensional outward-oriented unit

normal vector to the boundary ∂Ω = Γ (see Figure 4.4 for a 2-dimensional illustration),

and csound be the speed of sound. Then, an inflow boundary (inlet) is defined as the set

of boundary points, i.e., x ∈ ∂Ω, such that u∞ ·n < 0, and an outflow boundary (outlet)

is defined as the set of boundary points such that u∞ · n > 0, where the dot product

“·” represents the standard Euclidean inner product. Following that, classification of

the boundary conditions is carried out as follows [23, 66, 144]:
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• Subsonic inflow: u∞ and n are in opposite directions with |u∞ · n| < csound.

One characteristic variable is determined (extrapolated) from the interior (flow

field) data. The rest is set to the inflow values.

• Subsonic outflow: u∞ and n are in the same direction with |u∞ · n| < csound.

One boundary condition (pressure) is required to be specified at the outlet. The

others are determined (extrapolated) from the interior data.

• Supersonic/hypersonic inflow: u∞ and n are in opposite directions with |u∞ ·
n| > csound. Then, all flow characteristics enter the flow domain. All boundary

conditions should be specified at the inlet, setting as the inflow values.

• Supersonic/hypersonic outflow: u∞ and n are in the same direction with |u∞ ·
n| > csound. Then, all flow characteristics leave the flow domain. No boundary

condition needs to be specified at the outlet.

Ω

∂Ω = Γ

n

u∞

Figure 4.4: A 2D illustration of the inflow vector u∞ and unit normal vector n to the
boundary ∂Ω = Γ.

In this study, all advective Jacobians have positive eigenvalues because both inflow

and outflow velocities are assumed to be supersonic/hypersonic. Therefore, there is no

need to specify any boundary condition at the outlet. However, all inflow values are

imposed at the inlet. For further details, the interested reader can refer to Appendix B.
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4.3.3 Initial Conditions

The initial conditions are determined according to the vehicle’s speed and free-stream

conditions where the flow occurs in the atmosphere. Properties of the air mixture and

the corresponding Mach numbers for a vehicle moving at 5500 m/s are presented in

Table 4.1. One can refer to the NASA Standard Atmosphere Report [197] for further

details.

Table 4.1: The free-stream conditions and corresponding Mach numbers for 5500 m/s
in Earth’s atmosphere.

Altitude (km) Temperature (K) Density (kg/m3) Speed of sound (m/s) Mach
H T∞ ρ∞ csound M

39.60 249.930 4.08 ×10−3 316.49 17.38
50.00 270.650 7.87 ×10−4 329.80 16.68
60.50 244.050 2.70 ×10−4 313.17 17.56
71.00 214.650 6.42 ×10−5 293.70 18.73

The initial densities of the species are determined using their mass fractions in the

air mixture. For instance, at an altitude of 50 km in the atmosphere, the initial values

(densities) for oxygen and nitrogen are given as ρO2 = 0.20946× 7.87× 10−4 kg/m3

and ρN2 = 0.78084×7.87×10−4 kg/m3. Here, YO2 = 0.20946 and YN2 = 0.78084 are

the mass fractions of oxygen and nitrogen at that altitude. For other species densities,

i.e., for O, N, and NO, this value is set to zero. Then, the mixture density is obtained

simply by summing the species densities as given in Eq. (2.12). The initial value of the

velocity vector u is set u = (5500, 0) m/s that corresponds to different Mach numbers

at different altitudes (see Table 4.1). Finally, the initial values of the energies e and eV

are determined by the free-stream temperature, T∞, and velocity, u∞.

4.3.4 Implementation of the Zero-Normal-Velocity Condition

Some CFD problems, such as the Navier–Stokes equations with free capillary bound-

aries [11], large-eddy simulations of turbulent flows [65], and inviscid flows around

objects [145], require the enforcement of slip boundary conditions. Such boundary

conditions are better suited than Dirichlet-type conditions for modeling many phe-

nomena observed in nature, such as fluid penetration into pores during fluid flow in a
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porous medium or the fact that hurricane vortices do not stick to the boundaries but

move [91]. As these examples indicates, it is critical to take into account whether the

fluid can pass through the boundaries. Such boundary conditions can be enforced (at

least) four different ways [118]:

• a direct implementation,

• a Lagrange multiplier implementation,

• a penalty approach,

• replacing the “no-slip” condition with the “slip with friction” condition.

Here, we modify the model given in [91] that takes into account the penetration

phenomenon in a similar way done in [145] to apply the zero-normal-velocity condition

in a weak sense. In our case, the zero-normal-velocity (slip) boundary condition,

i.e., u · n = 0, applies on the cylinder surface. Algebraic manipulations can also

be made in the assembled system of equations to enforce the condition strongly.

Various approaches have been proposed for the direct enforcement of the slip boundary

conditions, for example, Le Beau et al. [120] achieved it in a more direct way, by

introducing a local coordinate rotation.

The test function wh
u ⊂ Wh, corresponding to the momentum equation, can be

decomposed into its orthonormal components on the cylinder surface [91, 118]:

wh
u =

(
wh
u · n

)
n +

nsd−1∑
k=1

(
wh
u · τ k

)
τ k, (4.42)

where the tangential vectors, τ k, are chosen such that the set {n, τ 1, . . . τ nsd−1} builds

an orthonormal system of vectors in nsd-dimensions. Then, by the definitions of

the slip with linear friction and penetration with resistance boundary conditions, the

following boundary integrals are added to the variational formulation [91]:∫
ΓCYL

α−1
(
uh · n

) (
wh
u · n

)
dΓ +

∫
ΓCYL

η

nsd−1∑
k=1

(
uh · τ k

) (
wh
u · τ k

)
dΓ. (4.43)

Here, the positive constants α and η represent the penetration and friction parameters,

respectively, and ΓCYL denotes the cylinder surface. As α tends to zero, the cylinder

surface stands as fully impermeable. If α → 0 and η → ∞, then the well-known
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“no-slip” (homogeneous Dirichlet) boundary condition of the viscous flows (governed

by Navier–Stokes equations) is prescribed. In this thesis, we enforce the zero-normal-

velocity condition by adding the term∫
ΓCYL

α−1
(
uh · n

) (
wh
u · n

)
dΓ (4.44)

to the variational formulations. We also use a weak implementation of the zero-normal-

velocity condition by adding the term

−
∫

ΓCYL

(
uh · n

) (
Wh ·Uh + whe p

h
)
dΓ (4.45)

to the variational formulations, as done in [174], where whe ⊂Wh is the test function

corresponding to the energy equation.

The interested reader may also refer to [97] for more details on enforcing general

boundary conditions, including slip boundary conditions.

4.4 Temporal Discretization

The time-stepping is performed by using the backward Euler method. As we step from

time level n to n+ 1,
∂U

∂t
≈ Un+1 −Un

∆tn
. (4.46)

The backward Euler scheme is an implicit method because the rest of the terms in

discrete formulations resulting from substitution of Eq. (4.46) into spatially discretized

(semi-discrete) formulations are also expressed in terms of time level n+ 1.

Hyperbolic PDEs have wave-like solutions, which means that if a disturbance is

introduced into the initial data, it does not affect every point in space (flow field) at

the same time; instead, disturbances propagate at a finite speed relative to a fixed

time coordinate (for more on hyperbolic PDEs, see Appendix C). Therefore, the time-

step size must be kept at less than a certain limit when solving hyperbolic problems

numerically; otherwise, stability issues related to the numerical scheme may arise.

The Courant–Friedrichs–Lewy (CFL), a necessary condition for stability, was intro-

duced in a 1928 paper by Courant, Friedrichs, and Lewy [47]. It can be expressed

as given in [114] by Laney: “The full numerical domain of dependence must contain
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the physical domain of dependence.” This expression says without using technical

terms: “The time-step should be kept small enough so that the information (wave) has

enough time to propagate (travel) through the space discretization.” In other words, in

simulating unsteady problems, as stepping from one time-step to the next one, it must

be ensured that the information is conveyed to the adjacent cells (elements) entirely

within these consecutive time steps.

In our computations, we follow a similar way to that done in [145]. For a given

Courant number, C∆t, the local time-step size (∆tn)e for element e is determined from

the CFL condition:

(∆tn)e =
C∆th

e

λe
, (4.47)

where he is the smallest edge length of the element, and λe is defined as

λe = max
a

(cea + ‖uea‖). (4.48)

Here, cea and uea are the acoustic speed and velocity at element node a, and the norm

is the standard Euclidean norm. Then, the time-step size, ∆tn, is determined as the

smallest value among all the elements globally:

∆tn = min
e

(∆tn)e . (4.49)

For the first time-step, we use the initial conditions to estimate λe. In this study, we

set C∆t = 10.0 for equilibrium flows and C∆t = 1.0 for nonequilibrium flows (see,

e.g., [67, 119, 202]).

It is worth noting that, instead of the mesh shown in Figure 4.2, finer meshes can

help for resolving strong gradients and capturing shocks more accurately, potentially

obviating the need for stabilization and shock-capturing techniques. Finer meshes, on

the other hand, result in smaller mesh elements, necessitating smaller time-step sizes.

Therefore, the computational time significantly increases due to the increasing number

of elements and smaller time steps.

Finally, note that as the Mach number (M ) increases, the term λe also increases, and

consequently, the time-step size (∆tn) decreases. It is clear that smaller time-step sizes

mean more iterations.
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4.5 Numerical Integration

The solver environment, FEniCS, is able to determine an appropriate quadrature rule

and the minimum number of points required for numerical integration through the

Unified Form Language technology (see Section 4.8). If the integrand is a polynomial,

FEniCS uses the exact quadrature rule automatically. However, when integrating

the nonlinear terms (e.g., ratios of polynomials, transcendental functions, etc.) in

high-speed flow computations, we manually set the quadrature degree to four, despite

the fact that FEniCS can determine (estimate) an appropriate value automatically.

4.6 Solution of System of Algebraic Equations

This section studies the methods and techniques used for solving algebraic equation

systems arising from the space and time discretizations of the governing equations.

To this end, since the resulting algebraic systems are nonlinear, the Newton–Raphson

(N–R) nonlinear solver is introduced first. The generalized minimal residual algorithm

is then presented for solving the linearized systems resulting from the N–R process.

Finally, preconditioning strategies are discussed briefly, with a particular emphasis on

incomplete LU factorization.

4.6.1 Nonlinear Solver

The N–R method is a classical method for solving a system of nonlinear algebraic

equations. The N–R process linearizes the system of nonlinear algebraic equations at

hand using an initial estimate. If a good starting (initial) solution can be guessed, the

N–R algorithm works almost flawlessly.

Let u be the vector of unknowns and f(u) be the vector of nonlinear equations, i.e.,

u =


u1

...

uN

 , f(u) =


f1(u)

...

fN(u)

 , (4.50)

where f(u) = 0, and N denotes the number of unknowns and equations. Then, the N–
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R method for solving a system of nonlinear equations, f(u) = 0, can be described as

follows: for a given initial vector u0, a vector ∆u0 is sought so that f(u0 + ∆u0) = 0.

By making use of the first-order Taylor series expansion, one obtains the following

approximation:

0 = f(u0 + ∆u0) ≈ f(u0) +
∂f

∂u
(u0)∆u0, (4.51)

where the term J = ∂f
∂u

represents the Jacobian of f with respect to u:

J =
∂f

∂u
=


∂f1
∂u1

∂f1
∂u2

. . . ∂f1
∂uN

...
...

...
...

∂fN
∂u1

∂fN
∂u2

. . . ∂fN
∂uN

 . (4.52)

After simple algebra, the vector ∆u0 can be given as

∆u0 ≈ − [J0]−1 f(u0), (4.53)

where J0 = f(u0). Note that the new vector u0 +∆u0 represents the next iteration, i.e.,

u1 = u0 + ∆u0. This process can be carried out until a desired tolerance between two

consecutive iterations is achieved. Then, the (n+ 1)th iteration of the N–R algorithm

can be given as follows:

un+1 = un − [Jn]−1 f(un), (4.54)

where Jn = ∂f
∂u

(un).

It should be noted that the inverse of the Jacobian matrix Jn is mostly a dense matrix

and should not be stored due to extensive memory usage. Besides, the algebraic

operations required to compute the inverse matrices at each N–R iteration may increase

the computation time considerably. Dealing with inverse matrices is, in a nutshell,

an expensive process. In fact, Eq. (4.54) represents a system of linear equations and

can be expressed in the form of Ax = b. Consequently, one can exploit the material

presented in the next section for solving such (linear) systems. For more on the

nonlinear solvers (e.g., quasi-Newton update methods), one can refer to [55].

4.6.2 Linear Solver

In general, there are two types of approaches for solving a system of linear equations:

direct solution methods (e.g., Gauss elimination, inverse matrix method, matrix factor-
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ization methods) and iterative solution methods (e.g., Jacobi method, Gauss–Siedel

method, conjugate gradient method, etc.). The use of direct solution methods would

be very expensive because the problems discussed in this thesis lead to relatively

large systems. The direct solution methods also lead to fill-in (a phenomenon that

occurs during matrix operations and causes the sparse structure of the matrices to

be distorted) [55]. Therefore, using iterative methods is often preferable over direct

methods.

In this thesis, the generalized minimal residual (GMRES) search technique is employed

for solving linear systems. The GMRES was developed by Saad and Schultz in [163]

as a generalization of the minimal residual method (MINRES) introduced by Paige

and Saunders in [149]. The MINRES and GMRES do the same calculations in

exact arithmetic for symmetric problems. Since the MINRES prone to suffer from

orthogonality loss much more than the GMRES, the GMRES can be described as the

best implementation of the MINRES. The following paragraphs explain the GMRES

technique briefly.

Consider a system of linear equations Ax = b, where the coefficient matrix A ∈ Rn×n

is assumed to be a large, sparse, nonsingular, and nonsymmetric, and vector b ∈ Rn is

given. One of the most eminent and reliable classes of iterative methods for solving

such a system is the Krylov subspace projection. Krylov methods seek approximations

in the form of [162]

A−1b ≈ xk = x0 +Kk (A, r0) (4.55)

satisfying the Petrov–Galerkin orthogonality condition

(b−Axk) ⊥ Lk, (4.56)

where Lk is a k-dimensional subspace other than the affine subspace x0 + Kk, and

x0 ∈ Rn is an appropriate initial guess. Different selections of the subspace Lk
result in different methods, e.g., if Lk = AKk (A, r0), then the projection is called

the generalized minimal residual (GMRES) algorithm, where the Krylov subspace is

defined as follows [162]:

Kk (A, r0) = Kk = span
{
r0,Ar0,A

2r0, . . . ,A
k−1r0

}
. (4.57)

Here, the initial residual vector, r0, is defined as r0 = b − Ax0. As the iteration

number k increases, it is natural that the set of vectors r0,Ar0,A
2r0, . . . ,A

k−1r0
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spanning the Krylov subspace Kk lose orthogonality (become linearly dependent) and

this causes accuracy issues. Therefore, an orthonormal basis spanning the Krylov

subspace Kk is constructed with the help of an orthogonal projection method, e.g.,

Arnoldi’s method, Householder process, Gram–Schmidt algorithm.

Recall that the GMRES computes the kth approximation (iteration) as given in

Eq. (4.55) such that (b−Axk) ⊥ AKk (A, r0). Then, the following relation is

equivalent to Eq. (4.55):

xk = argmin
x0∈(x0+Kk)

‖b−Ax‖ = x0 + Vkyk, (4.58)

where the matrix Vk is constructed from the columns that form an orthonormal basis

for Kk, and the vector yk is defined as

yk = argmin
y∈Rk

‖r0 −AVky‖. (4.59)

Letting β = ‖r0‖ and v1 = r0/β, one finds

r0 −AVky = Vk+1 (βe1 −Hk+1,ky) , (4.60)

where the matrix Hk+1,k is defined as

Hk+1,k =

 Hk

hk+1,ke
T
k

 . (4.61)

Here, Hk is the Hessenberg matrix of size k × k, and the vector ek represents the kth

column of the identity matrix. Then, the original problem turns into the following least

squares problem:

xk = x0 + Vkyk, where (4.62)

yk = argmin
y∈Rk

‖βe1 −Hk+1,ky‖. (4.63)

Computing the minimizer of Eq. (4.63), y, is not expensive since it requires the

solution of the least squares problem of size (k + 1)× k, which is much smaller than

the size of the original problem (n× n).

Notice that, at each GMRES iteration, the dimension of the Krylov subspace increases

by one. This situation also increases the amount of memory required and the computing

time. Fortunately, restarting techniques can be used to overcome this challenge. The
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restarting process, on the other hand, may cause the convergence rate to slow down

and stagnate. Again, fortunately, preconditioning techniques (see Section 4.6.3) can be

exploited to accelerate the convergence rates. For further details, the interested reader

can refer to [162].

4.6.3 Preconditioning

As any scientific computing or numerical analysis textbook would address, the effi-

ciency of the methods used in solving a specific problem depends primarily on the

nature of the problem, e.g., convection dominance, the degrees of freedom of the

system, etc. This is also the case for the methods for solving systems of algebraic

equations. For this reason, there is a need for special techniques that do not change

the solution of the system at hand but improve the convergence characteristics, called

the preconditioning techniques. These techniques generally work as follows: let the

following system of linear equations is given:

Ax = b, (4.64)

where the matrix A is a non-singular matrix. Then, the solution of the system

M−1Ax = M−1b, (4.65)

and that of the original system are theoretically the same. The matrix M here should be

chosen so that the convergence properties provided by the matrix M−1A are better than

the properties provided by the matrix A. A large class of preconditioning strategies

is based on the lower upper (LU) factorization method, i.e., M = LU, where the

matrices L and U are lower and upper factorization matrices of A. Then, Eq. (4.65)

becomes

U−1L−1Ax = U−1L−1b. (4.66)

Since an exact LU factorization of matrix A usually results in a lot of fill-in, an

incomplete version of this process, known as ILU, is used to generate approximate

factorization matrices that limit the fill-in in exchange for not getting an exact factor-

ization [55].

In summary, nonlinear equation systems encountered in hypersonic flow computa-

tions in this thesis are handled with the Newton–Raphson method. The GMRES

102



update technique, an iterative Krylov subspace method, is used to solve the linear

equation systems. And finally, the GMRES technique is supplemented with ILU

preconditioning.

Although the solver environment, FEniCS, uses direct (Gaussian elimination) methods

by default unless otherwise specified, it allows many modern and classical techniques.

The FEniCS book [126] can be examined for many examples for solving systems of

linear and nonlinear algebraic equations in the FEniCS environment.

4.7 Computation of Vibrational-Electronic Temperature

Although it has easy access to a lot of information concerning hypersonic flow simula-

tions, getting clear information about some stages, particularly how to compute the

temperatures in Park’s two-temperature model, is both time-consuming and tedious.

Therefore, it is desired to address this issue under a separate section.

Let us consider the governing equations of nonequilibrium flows, Eqs. (2.115)–(2.118),

introduced in Section 2.4. Also, recall the vibrational energy equation given in

Section 2.1.3 by Eq. (2.44):

evibs =


Rsθv,s

exp
(
θv,s
Tv

)
−1
, if s is molecule,

0, if s is atom.

Here, the vibrational temperature, Tv, and the electronic temperature, Te, are as-

sumed to be the same by Eq. (2.46), i.e., TV = Tv = Te. To obtain the vibrational-

electronic temperature, Tv, the governing equations (2.115)–(2.118) are solved, and

the vibrational-electron-electronic energy eV is obtained. Then, Eq. (2.44) is solved

for TV , with a nonlinear solver.

The translational-rotational temperature, T , is straightforward to compute since

Eq. (2.42), given in Section 2.1.3, is linear in T :

etrs = etranss + erots = Ctr,v,sT.
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4.8 The FEniCS Project

In this study, all computations are carried out in the FEniCS environment. FEniCS

is a C++/Python library for solving (partial) differential equations and performing

scientific computations. The acronym, FEniCS, is frequently referred to as “Finite

Elements nurtured in Computer Science” or “For Everything new in Computational

Science.” The project was launched in 2003 at the University of Chicago with the goal

of changing the state-of-the-art in scientific computing.

The FEniCS project is open-sourced and available for free, i.e., it can be easily

downloaded, used, and modified. Its main advantage over traditional finite element

packages is its ability to generate automated codes for local finite element tensors

using high-level mathematical abstraction. Besides, the mathematical formulations

and their corresponding FEniCS codes are so similar that usually no additional effort is

required to use FEniCS, thanks to the Unified Form Language technology (UFL) [4].

Instead of comprising certain physical and mathematical models, FEniCS allows the

user to set models and perform scientific computations through the Just-in-Time (JIT)

compilations. In terms of solving PDEs by employing the FEM, FEniCS is the first

platform in which the user can utilize all types of finite element spaces, interpolation

functions, and degrees of freedom for discretizing the problem under consideration

spatially [9].

At the early times, FEniCS had only two core components: the Dynamic Object-

oriented Library for FINite element computation (DOLFIN) [128] and FInite element

Automatic Tabulator (FIAT) [105]. Today, it includes various modern software com-

ponents such as the FEniCS Form Compiler (FFC) [127], Unified Form-assembly

Code (UFC) [3], Unified Form Language (UFL) [4], and Symbolic Finite Elements

(SyFi) [5]. The interested reader can find more on FEniCS from various perspectives

in [1, 115, 126].
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CHAPTER 5

2D HYPERSONIC FLOW SIMULATIONS

The materials preceding this chapter aim to form a background for the computations

and simulations performed here. The basic concepts and characteristics of hypersonic

flows are discussed in Chapter 1. Following that, Chapter 2 studies the governing

equations of compressible flows in thermochemical equilibrium/nonequilibrium in

detail. The stabilization and shock-capturing concepts exploited here for compressible

flow computations are tested on a comprehensive set of “relatively simpler” problems

in Chapter 3, demonstrating both the need for and the success of such methods and

techniques. Finally, the details concerning the computational setup in performing

high-speed flow simulations here have been explained in Chapter 4. One can also refer

to the Appendices for complementary and supplementary materials and discussions,

i.e., the physical and chemical constants used in computations, a brief introduction to

the characteristics of compressible Euler equations, and the existence and uniqueness

of solutions.

In this chapter, thermochemical equilibrium/nonequilibrium flow simulations at su-

personic and hypersonic speeds are performed. First, one-species nitrogen (N2) flows

in thermochemical equilibrium are considered. Since the flow field is assumed to be

in thermochemical equilibrium, the one-species assumption is natural. The choice of

N2 is based on the fact that it is the major constituent of Earth’s atmosphere in terms

of the molar fraction. Next, the simulations of a five-species (O, N, NO, O2, N2) gas

mixture in thermochemical nonequilibrium are carried out. Again, this five-species gas

mixture is chosen because oxygen (O2) is the secondary major component of Earth’s

atmosphere in terms of volume; thus, it is reasonable that this set of five species would
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be a good representative for nonequilibrium simulations when chemical reactions

are also taken into account. For free-stream velocities between 8 and 10 km/s, the

five-species model is widely accepted and used in the literature [70]. For further details,

one can refer to Section 1.2.1.

Since the simulations obtained with the weak implementation of the slip boundary

condition on the cylinder surface, employing Eq. (4.45), and the penalty approach,

using Eq. (4.44), do not contain significant differences in terms of the flow charac-

teristics, only the simulations performed using the penalty approach are presented.

However, we investigate how the weak formulation given by Eq. (4.45) for enforcing

the zero-normal-velocity boundary condition works near the cylinder surface and

compare the results obtained for various Mach numbers.

For all computations performed here, the relative error tolerances for Newton–Raphson

and GMRES iterations are set to 1.0 × 10−6. For more on the solution of algebraic

equation systems, the interested reader can refer to Section 4.6.

5.1 Hypersonic Nitrogen Flow in Equilibrium

Recall the governing equations of 2D one-species hypersonic nitrogen (N2) flow

introduced in Section 2.3 by Eqs. (2.107)–(2.109):
∂ρN2

∂t
+∇ · (ρN2u) = 0, (5.1)

∂ρN2u

∂t
+∇ · (ρN2u⊗ u) +∇p = 0, (5.2)

∂ρN2e

∂t
+∇ · (ρN2uh) = 0, (5.3)

where the system is equipped with boundary conditions introduced in Section 4.2.

Note that the compressible-flow SUPG formulation of Eqs. (5.1)–(5.3) supplemented

with YZβ shock-capturing is presented by Eq. (4.16) in Section 4.1.1.

The test computations are carried out for three different Mach numbers: M = 2.0,

M = 5.0, and M = 8.0. In all three cases, the initial density and temperature are set to

the free-stream values, i.e., ρ∞ = 1.165 kg/m3 and T∞ = 300.0 K. We set the penalty

parameter of zero-normal-velocity boundary condition as α = 1.0× 10−5 m2·s/kg. In

the YZβ term, β = 2. All three computations are performed until t = 1.0× 10−3 s.
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The system of algebraic equations resulting from the space and time discretizations of

Eqs. (5.1)–(5.3) has 24, 236 unknowns. One can refer to Section 4.6 for more on the

linear and nonlinear solvers used in computations. We apply the CFL condition by

setting the Courant number as C∆t = 10.0 (see Section 4.4).

For all cases, test simulations show that despite very high speeds and strong gradients

occurring in solutions, the compressible-flow SUPG formulation supplemented with

YZβ shock-capturing works well in yielding shock representations without any non-

physical oscillations. Although the results obtained here are in a quite agreement with

those obtained in [159], more rapid decreases in the magnitude of the velocity vector

are observed when applying the zero-normal-velocity condition with the penalty term.

5.1.1 Mach 2.0

We set the inflow velocity vector as u∞ = (706.13, 0.0) m/s. Figure 5.1 shows the

elevation plots for the pressure, density, and temperature. Figures 5.2a–5.2c show the

velocity magnitude, density, and temperature around the cylinder.

At the stagnation point, the gas density rises to around 3.4 kg/m3 while it drops to

0.5 kg/m3 right behind the cylinder. The temperature increases in regions where the

velocity magnitude decreases, as expected, and this increasing temperature spreads to

the cylinder’s front and rear. The temperature and pressure, like density, reach their

highest values at the stagnation point.

It is seen that the temperature around the cylinder is about 600 K. As discussed in

Section 1.2.2, for temperatures below 800 K, the gas mixture can be assumed to

be calorically perfect gas, and chemical reactions can be ignored. Therefore, the

thermochemical equilibrium assumption is still valid for such speeds.

The Mach elevation and line plots are shown in Figure 5.3, revealing that the penetra-

tion parameter of the slip boundary condition, which is set to α = 1.0× 10−5 m2·s/kg

in computations, works well forM = 2.0. Figure 5.3 illustrates that the velocity vector

completely vanishes at the stagnation point. Notice that for α = 1.0× 10−1 m2·s/kg

and α = 1.0 × 10−2 m2·s/kg, the penalty approach yields unacceptable results, i.e.,

impermeability of the cylinder surface cannot be achieved.
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Figure 5.4 illustrates the behavior of the Courant number (C∆tn) as time evolves for

M = 2.0. At each time step, Courant numbers stay below 1.0, indicating the choice of

C∆t = 10.0 works well at M = 2.0.

The average number of Newton–Raphson iterations is 4. The number of time steps

required to reach the final time is 33.
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Figure 5.1: Density (kg/m3), pressure (P), and temperature (K) at M = 2.0.
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(a)

(b)

(c)

Figure 5.2: (a) Velocity (m/s), (b) density (kg/m3), and (c) temperature (K) atM = 2.0.
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Figure 5.3: Mach elevation and line plots in front of the cylinder (along the stagnation
line) at M = 2.0 for various values of penetration parameter α.

Figure 5.4: Courant number (C∆tn) versus number of time steps (n) for M = 2.0.
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5.1.2 Mach 5.0

In computations, the free-stream velocity vector is taken as u∞ = (1765.33, 0) m/s.

Figure 5.5 shows the elevation plots for the pressure, density, and temperature. Fig-

ures 5.6a–5.6c show the velocity magnitude, density, and temperature around the

cylinder.

The gas density rises to around 5.5 kg/m3 at the stagnation point and drops below 1.0

kg/m3 behind the cylinder. As expected, the temperature increases in areas where the

velocity magnitude falls, and this increasing temperature spreads to the cylinder’s front

and back. At the stagnation point, temperature and pressure, as well as density, reach

their highest values.

It can be seen that the temperature around the cylinder is about 2, 000 K. At these

temperatures, the gas mixture can be no longer assumed to be calorically perfect

gas, and as discussed in Section 1.2.2, dissociation processes begin for O2 molecules.

Therefore, the chemical reactions that may occur in the flow field should also be taken

into consideration.

The Mach elevation and line plots are shown in Figure 5.7, revealing that the pen-

etration parameter of the zero-normal-velocity boundary condition, which is set to

α = 1.0× 10−5 m2·s/kg in computations, works well for M = 5.0. As can be seen in

Figure 5.7, the velocity vector completely vanishes at the stagnation point. Note that

for α = 1.0× 10−1 m2·s/kg, α = 1.0× 10−2 m2·s/kg, and α = 1.0× 10−3 m2·s/kg,

the penalty approach gives unacceptable results. Although it is observed that the flow

penetrates the cylinder very slightly for α = 1.0 × 10−4 m2·s/kg, it is seen that the

velocity vector disappears completely at the stagnation point for α = 1.0 × 10−5

m2·s/kg and smaller values of the penalty parameter.

Figure 5.8 illustrates the behavior of the Courant number (C∆tn) as time evolves for

M = 5.0. Except for the initial steps, Courant numbers stay below 1.0, demonstrating

the selection of C∆t = 10.0 works well at M = 5.0.

The number of time steps required to reach the final time is 65. The average number

of Newton–Raphson iterations at each time-step is 5.
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Figure 5.5: Density (kg/m3), pressure (Pa), and temperature (K) at M = 5.0.
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(a)

(b)

(c)

Figure 5.6: (a) Velocity (m/s), (b) density (kg/m3), and (c) temperature (K) atM = 5.0.
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Figure 5.7: Mach elevation and line plots in front of the cylinder (along the stagnation
line) at M = 5.0 for various values of penetration parameter α.

Figure 5.8: Courant number (C∆tn) versus number of time steps (n) for M = 5.0.
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5.1.3 Mach 8.0

The inflow velocity vector is set as u∞ = (2824.53, 0) m/s. Figure 5.9 shows the

elevation plots for the pressure, density, and temperature. Figures 5.10a–5.10c show

the velocity magnitude, density, and temperature around the cylinder.

The gas density rises to around 6.0 kg/m3 at the stagnation point before falling under

1.0 kg/m3 behind the cylinder. As expected, the temperature arises in regions where the

velocity magnitude decreases, and this increasing temperature spreads to the cylinder’s

front and back. At the stagnation point, temperature and pressure, like density, reach

their highest levels.

One can see in Figure 5.9 that the temperature around the cylinder is about 4, 500 K (it

is about 4, 600 K at the stagnation point). At these temperatures, it is known that O2

molecules are completely dissociated, and the same processes begin for N2 molecules

above temperatures 4, 000 K, as discussed in Section 1.2.2. It is worth noting that the

ionization processes should also be taken into account for even higher temperatures.

The Mach elevation and line plots are shown in Figure 5.11, revealing that the penalty

parameter of the impermeable boundary condition, which is set to α = 1.0 × 10−5

m2·s/kg in computations, works well for M = 8.0. As in the M = 2.0 and M = 5.0

cases, it is seen in Figure 5.7 that the velocity vector completely vanishes at the

stagnation point. Note that for α = 1.0× 10−1 m2·s/kg, α = 1.0× 10−2 m2·s/kg, and

α = 1.0× 10−3 m2·s/kg, the penalty approach results in unacceptable velocity profiles.

It is observed that the flow penetrates the cylinder very slightly for α = 1.0 × 10−4

m2·s/kg. The velocity vector vanishes completely at the stagnation point for α =

1.0× 10−5 m2·s/kg and smaller values of the penalty parameter.

Figure 5.12 illustrates the behavior of the Courant number (C∆tn) as time evolves

for M = 8.0. As in the M = 5.0 case, except for the first few time steps, Courant

numbers stay below 1.0, indicating the choice of C∆t = 10.0 works well at M = 8.0,

as well.

The number of time steps to reach the final time is 98. The average number of

Newton–Raphson iterations at each time-step is 6.
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Figure 5.9: Density (kg/m3), pressure (Pa), and temperature (K) at M = 8.0.
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(a)

(b)

(c)

Figure 5.10: (a) Velocity (m/s), (b) density (kg/m3), and (c) temperature (K) at
M = 8.0.
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Figure 5.11: Mach elevation and line plots in front of the cylinder (along the stagnation
line) at M = 8.0 for various values of penetration parameter α.

Figure 5.12: Courant number (C∆tn) versus number of time steps (n) for M = 8.0.
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5.1.4 Weak Enforcement of the Zero-Normal-Boundary Condition

Figure 5.13 shows the solutions along the stagnation line, i.e., x2 = 0.5, obtained by

imposing the zero-normal-velocity condition with Eq. (4.45) for M = 2.0, M = 5.0,

and M = 8.0. Although the weak enforcement yields similar velocity profiles as

presented in [159], it is observed that as the Mach number increases, the flow slightly

penetrates the cylinder.

On the other hand, it is observed that the penalty approach enforced with Eq. (4.44)

apparently works well for various values of the Mach number (see Figures 5.3, 5.7,

and 5.11). For values of the penalty parameter larger than α = 1.0× 10−4, the penalty

approach fails to ensure the impermeability of the cylinder surface.

Figure 5.14 demonstrates the performance of the penalty approach for imposing the

impermeability condition on the cylinder surface for various Mach numbers and

α = 1.0× 10−5 m2·s/kg. Compared to the results obtained with the weak enforcement

(see Figure 5.13), it is clear that the velocity vectors vanish totally and more sharply at

the stagnation point.

Figure 5.13: Mach elevation and line plots in front of the cylinder (along the stagnation
line) at various values of M for weakly imposed zero-normal-velocity condition.

120



Figure 5.14: Mach elevation and line plots in front of the cylinder (along the stagnation
line) at various values of M for penalized zero-normal-velocity condition, α = 1.0×
10−5 m2·s/kg.
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5.1.5 Stabilization Parameters

Figure 5.15 shows the distributions of the mesh-dependent stabilization parameters (see

Section 4.1.1 and Section 4.1.2) forM = 2.0,M = 5.0, andM = 8.0. The parameters

are only given for the equilibrium flows because the meshes used in computations

are the same, and the flow characteristics (velocity profiles) are very similar to those

associated with equilibrium flows.

The sharp gradients formed by the velocity vector vanishing due to the enforcement of

the no-penetration boundary condition right front the cylinder surface result in higher

values of the stabilization parameter in these regions, which is consistent with the

formulation given by Eqs. (4.13)–(4.15).

(a) (b)

(c)

Figure 5.15: Stabilization parameters for equilibrium flows at (a) M = 2.0, (b)
M = 5.0, and (c) M = 8.0.
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5.1.6 Mesh Size Convergence

The mesh convergence process entails reducing the element size and assessing its

effect on the accuracy of the solutions. This type of study is done in order to find a

compromise between accuracy and computational cost.

Instead of a pre-adaptive mesh, i.e., shown in Figure 4.3, we employ an unstructured

mesh generated in the FEniCS environment for computational simplicity since gener-

ating an adaptive mesh for each case would be very challenging. The CFL condition

is applied by setting C∆t = 1.0 because the nonlinear iteration process fails to con-

vergence when such regular (non-adaptive) meshes are used. Besides that, the Mach

number is set M = 5.0 in computations because, due to the regular meshes used, the

nonlinear process fails in computing flows at M = 8.0, even with very small Courant

numbers.

The mixture densities and pressures are compared along the stagnation line, i.e.,

x2 = 0.5, for a series of six meshes in Figure 5.16 and Figure 5.17, respectively.

It is seen that the solutions (density and pressure profiles along the stagnation line)

obtained with the meshes constructed with nel = 3, 061 or more elements are almost

indistinguishable.

Figure 5.18 and Figure 5.19 compare the solutions obtained on a reference mesh

constructed with nel = 5, 107 elements and on the actual mesh (see Figure 4.2) for

density and pressure at M = 2.0, respectively. It is observed that the solutions

obtained with the reference (regular) mesh are prone to exhibit oscillatory behavior

near the stagnation point where steep gradients occur. The solutions obtained with

the pre-adaptive mesh reveal that the sharp gradients near the cylinder are resolved

accurately. The layers of constant-thickness elements near the cylinder are what make

the pre-adaptive mesh successful (see Figure 4.3).
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Figure 5.16: Mesh convergence. Densities (kg/m3) along the stagnation line for
equilibrium flow at M = 5.0.

Figure 5.17: Mesh convergence. Pressures (Pa) along the stagnation line for equilib-
rium flow at M = 5.0.
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Figure 5.18: Comparison of densities (kg/m3) obtained with a reference mesh (nel =

5, 107) and with actual mesh; M = 2.0.

Figure 5.19: Comparison of pressures (Pa) obtained with a reference mesh (nel =

5, 107) and with actual mesh; M = 2.0.
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5.2 Multispecies Hypersonic Flow in Nonequilibrium

Recall the governing equations of 2D five-species hypersonic nonequilibrium flows

introduced in Section 2.4 by Eqs. (2.115)–(2.118):
∂ρs
∂t

+∇ · (ρsu) = ωs, (5.4)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = 0, (5.5)

∂ρe

∂t
+∇ · (ρuh) = 0, (5.6)

∂ρeV
∂t

+∇ · (ρueV ) = ωV , (5.7)

where the system is equipped with boundary conditions introduced in Section 4.2.

Recall that the compressible-flow SUPG formulation of the problem supplemented

with YZβ shock-capturing is presented by Eq. (4.39).

In all computations, the initial densities of species O, N, and NO are set to zero.

The free-stream conditions used in computations are set ρO2 = 0.29× 1.331 kg/m3,

ρN2 = 0.79×1.165 kg/m3, and T∞ = 300.0 K. Note that, compared to the equilibrium

case, besides the additional initial conditions for the species densities, vibrational

energy equation given by Eq. (5.7) also requires an additional initial condition. It is

prescribed through the vibrational temperature, TV , by specifying it as TV,∞ = T∞,

where TV,∞ represents the free-stream value of the vibrational temperature.

The penalty parameter of zero-normal-velocity condition is set as α = 1.0 × 10−5

m2·s/kg. In the YZβ term, we set β = 2. Test computations are performed until

t = 1.0× 10−3 s. The system of algebraic equations resulting from the space and time

discretizations of Eqs. (5.4)–(5.7) has 54, 531 unknowns. The details on the linear and

nonlinear solvers used in computations can be found in Section 4.6. Here, we apply the

CFL condition by setting the Courant number as C∆t = 1.0 (see Section 4.4). This se-

lection has also effect on the Newton-Raphson iterations. It is observed that the number

of N–R iterations decreases compared to those in the equilibrium computations.

A modified form of the exponential Arrhenius formula is used to calculate the forward

rate coefficients in chemical reactions. The Landau–Teller model is combined with the

Millikan–White model for the vibrational relaxation time to calculate the vibrational

energy transfers. The computation of thermochemical source terms is explained in

126



Chapter 2. For the physical and chemical constants and curve-fitting parameters used

in nonequilibrium computations, one can refer to Appendix A.

The huge thermochemical source terms, which make the solution process even more

challenging, are also involved here, even though the same high velocities are used, as

in the equilibrium simulations. However, it is observed that the simulations obtained

with the combination of compressible-flow SUPG and YZβ shock-capturing do not

contain any local or global spurious oscillations.

The 2D velocity and mixture density plots for nonequilibrium flows are not shown

because the flow characteristics in equilibrium and nonequilibrium simulations show

very similar trends (see Figures 5.2, 5.6, and 5.10). The simulations show that the

mass fraction of oxygen atoms (O) is higher than that of nitrogen atoms (N), as

expected; since the oxygen molecules (O2) begin to dissociate at lower temperatures

than nitrogen molecules (N2) do (see Section 1.2.2). Notice that the mass fraction of

nitrogen atoms is lower than that of nitric oxide (NO) molecules since the nitrogen

atoms dissociated combine with oxygen atoms immediately and form NO molecules.

The results are consistent with those of other published reports in the literature, see,

for example [103, 107, 136, 208].

Although computed with different free-stream conditions and computational setups,

the results for species mass fraction obtained here show similar solution profiles to

those performed in [131]. The findings are also in line with those reported in [106,107].

Again, the thermal equilibrium process follows a similar trend as in [32].

5.2.1 Mach 2.0

We set the free-stream velocity vector as u∞ = (706.13, 0) m/s. The species densities

are presented for the hypersonic thermochemical nonequilibrium flow at M = 2.0

in Figure 5.20. The species mass fractions are presented in Figure 5.21. Figure 5.22

shows the elevation plots for the pressure, translational-rotational temperature, and

vibrational temperature around the cylinder.

The cylinder, as expected, generates bow shocks by causing moderate jumps in species

densities, pressure, and temperatures. The high pressure and temperature distributions
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predominantly accumulated near the stagnation point in a small area (see Figure 5.20

and Figure 5.22). It is seen that the densities of O2 and N2 increase up to 1.0 kg/m3

and 2.0 kg/m3, respectively, right in front of the cylinder. Right behind the cylinder,

these values decrease to around 0.1 kg/m3 and 0.25 kg/m3, respectively. Since enough

high temperatures are not reached at speeds of M = 2.0 for the production of species

O, N, and NO, their densities remain at low levels.

The first molecule to decompose in the flow field as a result of high temperatures is O2,

as expected. Although only to a small extent, as can be seen in density plots, O, N, and

NO productions begin in the flow field. Figure 5.21 indicates that the dissociation of N2

molecules can be neglected at such speeds. Therefore, the calorically gas assumption

can be made for flows at M = 2.0.

At the stagnation point, the translational-rotational temperature and vibrational temper-

ature are about T = 588 K and TV = 584 K, respectively. The controlling temperature

is around T = 587 K. These results indicates that a state of thermal equilibrium has

been reached.

Figure 5.23 indicates that thermal equilibrium cannot be achieved when the translational-

vibrational energy exchange term, Qt−v
transfer, is omitted from the computations (for

comparison, see Figure 5.22).

The number of time steps to reach the final time is 270. The average number of

Newton–Raphson iterations at each time-step is 3.
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(a) (b)

(c) (d)

(e)

Figure 5.20: Densities (kg/m3) of species (a) O, (b) N, (c) NO, (d) O2, and (e) N2 at
M = 2.0.
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(a) (b)

(c) (d)

(e)

Figure 5.21: Mass fractions of species (a) O, (b) N, (c) NO, (d) O2, and (e) N2 at
M = 2.0.
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(a)

(b)

(c)

Figure 5.22: (a) Pressure (Pa), (b) translational-rotational temperature (K), and (c)
vibrational temperature (K) at M = 2.0.
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(a)

(b)

Figure 5.23: (a) Translational-rotational temperature (K), (b) vibrational temperature
(K) computed ignoring the translational-vibrational energy exchange term Qt−v

transfer at
M = 2.0.
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5.2.2 Mach 5.0

The inflow velocity vector is taken as u∞ = (1765.33, 0) m/s. The species densities

are presented for the hypersonic thermochemical nonequilibrium flow at M = 5.0

in Figure 5.24. The species mass fractions are presented in Figure 5.25. Figure 5.26

shows the elevation plots for the pressure, translational-rotational temperature, and

vibrational temperature around the cylinder.

The cylinder generates bow shocks by causing rapid changes in species densities,

pressure, and temperatures, which are stronger than those observed in the supersonic

(M = 2.0) case, as expected. The high pressure and temperature distributions predom-

inantly accumulated near the stagnation point in a small region (see Figure 5.24 and

Figure 5.26).

It is observed that the densities of O2 and N2 increase up to 2.0 kg/m3 and 5.0 kg/m3,

respectively, around the stagnation point. Right behind the cylinder, these values

decrease to around 0.2 kg/m3 and 0.5 kg/m3, respectively. Due to the increasing speed

and resulting higher temperatures, the species densities have reached significant levels

when compared to the M = 2.0 case. The species densities are around 0.3 kg/m3 for

O, 0.005 kg/m3 for N, and 0.01 kg/m3 for NO at the stagnation point.

As can be seen in density and mass fraction plots, nitrogen (N2) and oxygen (O2)

molecules begin to dissociate, and O, N, and NO productions begin in the flow field.

Figure 5.25 shows that N2 dissociation reaches critical levels that must be taken

into account. Therefore, the calorically gas assumption cannot be made for flows at

M = 5.0.

The translational-rotational temperature and vibrational temperature are about T = 782

K and TV = 782 K at the stagnation point, respectively. Therefore, the controlling

temperature is also around T = 782 K. These results indicates that a state of thermal

equilibrium has been reached.

The number of time steps to reach the final time is 539. At each time-step, the average

number of Newton–Raphson iterations is 3.
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(a) (b)

(c) (d)

(e)

Figure 5.24: Densities (kg/m3) of species (a) O, (b) N, (c) NO, (d) O2, and (e) N2 at
M = 5.0.
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(a) (b)

(c) (d)

(e)

Figure 5.25: Mass fractions of species (a) O, (b) N, (c) NO, (d) O2, and (e) N2 at
M = 5.0.
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(a)

(b)

(c)

Figure 5.26: (a) Pressure (Pa), (b) translational-rotational temperature (K), and (c)
vibrational temperature (K) at M = 5.0.
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5.2.3 Mach 8.0

In computations, we set the free-stream velocity vector as u∞ = (2824.53, 0) m/s.

The species densities are presented for the hypersonic thermochemical nonequilibrium

flow at M = 8.0 in Figure 5.27. The species mass fractions are presented in Fig-

ure 5.28. Figure 5.29 shows the elevation plots for the pressure, translational-rotational

temperature, and vibrational temperature around the cylinder.

Compared to the previous nonequilibrium cases, i.e., M = 2.0 and M = 5.0, the

cylinder generates stronger bow shocks with large jumps in species densities, pressure,

and temperatures. The high pressure and temperature distributions predominantly

accumulated near the stagnation point in a small area (see Figure 5.27 and Figure 5.29).

It is observed that the densities of O2 and N2 increase up to 1.8 kg/m3 and 7.0 kg/m3,

respectively, around the stagnation point. Right behind the cylinder, these values

decrease to around 0.2 kg/m3 and 0.5 kg/m3, respectively. Due to the even increasing

speed and resulting even higher temperatures, the species densities have reached

significant levels when compared to the M = 2.0 and M = 5.0 cases. The species

densities are around 1.4 kg/m3 for O, 0.05 kg/m3 for N, and 0.08 kg/m3 for NO at the

stagnation point.

As can be seen in density and mass fraction plots, O, N, and NO productions are

significant for such speeds. Figure 5.28 shows that, at higher temperatures, the

dissociation of N2, which was negligible at M = 2.0 but significant at M = 5.0,

became even more important in the flow field at M = 8.0.

At the stagnation point, the translational-rotational temperature and vibrational tem-

perature are about T = 1, 107 K and TV = 1, 107 K, respectively. Then, naturally, the

controlling temperature is also around T = 1, 107 K. These results indicates that a

state of thermal equilibrium has been reached.

The number of time steps to reach the final time is 808. The average number of

Newton–Raphson iterations at each time-step is 3.

137



(a) (b)

(c) (d)

(e)

Figure 5.27: Densities (kg/m3) of species (a) O, (b) N, (c) NO, (d) O2, and (e) N2 at
M = 8.0.
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(a) (b)

(c) (d)

(e)

Figure 5.28: Mass fractions of species (a) O, (b) N, (c) NO, (d) O2, and (e) N2 at
M = 8.0.
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(a)

(b)

(c)

Figure 5.29: (a) Pressure (Pa), (b) translational-rotational temperature (K), and (c)
vibrational temperature (K) at M = 8.0.
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CHAPTER 6

CONCLUSIONS AND DISCUSSIONS

In this thesis, high-speed flows past a cylinder have been investigated. The simulations

have been carried out for various Mach numbers from supersonic (M = 2.0) to hyper-

sonic (M = 5.0 and M = 8.0). Both types of flows of thermocehmical equilibrium

and nonequilibrium have been considered.

Prior to the high-speed flow computations, relatively simpler problems, i.e., 2D

convection-dominated reaction-convection-diffusion equations, have been consid-

ered first to establish a basis for the stabilization and shock-capturing concepts. To-

wards this end, the Streamline-Upwind/Petrov–Galerkin (SUPG) formulation and YZβ

shock-capturing technique have been proposed for solving a variety of convection-

dominated problems, including the Burgers’-type equations. The numerical results

have demonstrated that both local and global spurious oscillations have been success-

fully eliminated.

The compressible-flow SUPG method has been employed to overcome the instability

issues encountered in simulating high-speed flows by using the standard Galerkin finite

element method. The YZβ shock-capturing has also assisted the SUPG-stabilized

formulation to obtain better shock representations around strong gradients. The CFL

condition has been used to ensure stability in time with an implicit Euler temporal

discretization.

The flow of nitrogen (N2) gas has been considered for the equilibrium computations.

For the nonequilibrium case, a five-species (O, N, NO, O2, N2) air mixture with a

17-reaction kinetics model has been used. Chemical source terms have been computed
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using Park’s two-temperature (controlling-temperature) approach.

The enforcement of the zero-normal-velocity (impermeable, slip) boundary condition

on the cylinder surface has been accomplished by adding a penalizing term to the

momentum equation in variational formulations. Besides that, for applying the slip

condition on the cylinder surface, a weak enforcement approach has also been proposed,

and the results have been compared to those obtained using the penalty technique. The

system of nonlinear equations resulting from space and time discretizations has been

solved with the Newton–Raphson method and the ILU-preconditioned GMRES search

technique.

The followings provide a summary of the main findings and outcomes of the computa-

tions performed in this thesis.

• On a large set of 2D problems, the need for stabilized formulations and the

necessity of the stabilized formulations should also be augmented with shock-

capturing operators for solving convection-dominated problems has been demon-

strated. Towards this end, the SUPG formulation supplemented with YZβ shock-

capturing, SUPG-YZβ, has been applied to five test problems, including the

Burgers’-type equations at high Reynolds numbers.

Although the SUPG formulation has been quite successful in preventing global

oscillations, the results have demonstrated that the method was insufficient in

resolving local oscillations where steep gradients occurred. When the SUPG-

stabilized formulation has been also supplemented with the YZβ shock-capturing,

it has been observed that spurious oscillations have been eliminated almost com-

pletely.

• Supersonic and hypersonic flows past a cylinder in thermochemical equilibri-

um/nonequilibrium have been successfully simulated in the FEniCS environment.

The simulations obtained do not contain any local or global spurious oscilla-

tions, although they have very sharp gradients near the cylinder where shocks

occur. This situation indicates that the SUPG-YZβ formulation works well for

simulating high-speed flows in thermochemical equilibrium/nonequilibrium.

• Even if the GFEM formulations have been stabilized with the SUPG method, the
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iterative nonlinear solution process (N–R method) could not achieve convergence

for solving the governing equations in the case of M = 5.0 and M = 8.0. This

situation has demonstrated that the use of a shock-capturing technique has

become compulsory for hypersonic flow conditions.

• High-speed equilibrium flow simulations have shown that for the speeds above

M = 2.0, the calorically perfect gas assumption is not appropriate and chemical

reactions that may take place in the flow field should also be taken into account.

• It has been observed that the weak implementation of the zero-normal-velocity

condition with the penalty approach (see Eq. (4.44)) on the cylinder surface

works well, and the cylinder surface stands fully impermeable for α = 1.0 ×
10−5 m2·s/kg. It has been observed that the penalty approach failed to ensure

impermeability of the cylinder surface for values of α larger than α = 1.0×10−4

m2·s/kg. For the values of the parameter α = 1.0× 10−5 m2·s/kg and less, the

cylinder surface acts completely impermeable.

We have also enforced the slip boundary condition weakly (see Eq. (4.45)) and

observed that the penalty approach worked better since the weakly enforced

formulation allowed the fluid (gas) to penetrate the cylinder, even if to a small

extent.

• The nonequilibrium simulations have revealed that oxygen O2 is the primary

species dissociating in the five-species air mixture. The reason for that is the

energy required for the dissociating of N2 is higher than that for O2. It has

also been observed that a significant proportion of the N atoms released due

to the dissociation of N2 molecules combined with free O atoms to form NO

molecules.

• During the computational experiments, it has been seen that the main con-

tribution to the vibrational energy source term, ωV , is from the translational-

vibrational energy exchange term, Qt−v
transfer, rather than the source term associated

with the vibrational energy component, Qchem
v , emerging from chemical reac-

tions. The thermal equilibrium could not have been reached if the term Qt−v
transfer

had been omitted from the computations.

• Huge chemical and vibrational source terms, i.e., ωs’s and ωV ’s, emerging in
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thermochemical nonequilibrium flows have required the Courant number to be

set much smaller, e.g., C∆t = 1.0, and the computational time and memory use

increased considerably. Note that it has been set C∆t = 10.0 in equilibrium

computations.

• The process of obtaining the vibrational temperature with a nonlinear solver

during the computations is one of the many challenging steps in performing

nonequilibrium simulations, such as the handling of shocks and discontinuities

and treatment of huge thermochemical source terms. This challenge has been

easily handled in the FEniCS with an appropriate implementation. Consequently,

it has been noticed that even if they have highly complex mathematical formula-

tions, when the compressible-flow SUPG formulation is supplemented with the

YZβ shock-capturing, hypersonic flows in thermochemical equilibrium/nonequi-

librium can be effectively simulated, and the FEniCS is a suitable environment

for performing such simulations. However, it should be noted that direct imple-

mentation of the zero-normal-velocity boundary condition on nonrectangular

walls is quite challenging in FEniCS.

• Even if the problem addressed is linear, the SUPG-YZβ formulation results in

nonlinear algebraic equation systems. If the problem under consideration is

already nonlinear, the nonlinearity of the system is further enhanced. Therefore,

naturally, it has been observed that the number of nonlinear iterations increased

slightly in the computations performed with the SUPG-YZβ formulation.

Some possible extensions of the numerical methods, computational techniques, and

thermochemical models used in this study may be listed as follows:

• The governing equations used in simulating high-speed equilibrium/nonequi-

librium laminar flows can be coupled with various turbulence models, e.g., the

Spalart–Allmaras model.

• The simulations performed for inviscid flows, obtained by neglecting the diffu-

sive and heat conduction terms, can be extended to multispecies viscous flows,

i.e., Navier–Stokes equations (see Eq. (2.98)).
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• Instead of a five-species air mixture model, a seven-species or an eleven-

species model can be used. Besides, different temperature models (e.g., a

three-temperature model) can also be used and compared.

• The high-speed flow simulations carried out in this study, assuming that they

occur in Earth’s atmosphere, can be performed for other atmospheres with

different chemical structures, e.g., the atmosphere of the red planet Mars or

Saturn’s satellite, Titan.

• The development of novel stabilized formulations (particularly techniques for

calculating element length scales) for the finite element methods is still an active

area of research. The compressible-flow solvers developed in this present study

can be modified for novel stabilized formulations and equipped with different

shock-capturing terms.

• Instead of the semi-discrete SUPG formulation that has been solved with the

implicit Euler time-integration algorithm, the space-time SUPG formulations

can be preferred.

• The isogeometric analysis (IGA) formulations introduced by Hughes et al.

in [85] (see also [14, 15, 17–20, 45, 99, 177]) with the goal of bridging the gap

between computer-aided design (CAD) and finite element analysis (FEA) can

be also used in conjunction with the compressible-flow SUPG formulation and

various shock-capturing techniques.

• For simulating flows faster than Mach 8, ionization processes are quite common,

and the effects of ionization should be also taken into account in computations.

Future research may incorporate computational models for such high speeds as

well.
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APPENDIX A

PHYSICAL AND CHEMICAL CONSTANTS

This appendix presents the physical, chemical, and curve-fitting constants used in

simulations carried out in this thesis. For further details, the interested reader may also

refer to [72, 151–153]

In Table A.1, the species molar masses, Ms, heats of formation, h0
s, and characteristic

vibrational energies, θvs, are given.

Table A.1: Species chemical data [107].

Species Ms (kg/kmol) h0
s (J/kg) ×10−6 θvs (K)

O 16.000 15.420 -
N 14.008 33.622 -

NO 30.008 2.996 2, 817

O2 32.000 0.000 2, 239

N2 28.016 0.000 3, 395

Table A.2 presents the Blottner’s curve-fitting parameters used in Eq. (2.37) for deter-

mining the species viscosities.

Table A.2: Blottner’s curve-fitting coefficients [24].

Species As Bs Cs
O 0.0203144 0.4294404 −11.6031403

N 0.0115572 0.6031679 −12.4327495

NO 0.0436378 −0.0335511 −9.5767430

O2 0.0449290 −0.0826158 −9.2019475

N2 0.0268142 0.3177838 −11.31555130
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Table A.3 shows the constants to calculate the forward reaction rate coefficients used

in Eq. (2.63).

Table A.3: Coefficients for calculating the forward reaction rates in Arrhenius for-
mula [107].

Reaction Π Cfr (m3/kmol·s) Υr Ear (cal/mol)

N2 + Π 
 2N + Π

O 3× 1019 −1.6 224, 815.2

N 3× 1019 −1.6 224, 815.2

NO 7× 1018 −1.6 224, 815.2

O2 7× 1018 −1.6 224, 815.2

N2 7× 1018 −1.6 224, 815.2

O2 + Π 
 2O + Π

O 2× 1018 −1.5 118, 167.0

N 2× 1018 −1.5 118, 167.0

NO 2× 1018 −1.5 118, 167.0

O2 1× 1019 −1.5 118, 167.0

N2 1× 1019 −1.5 118, 167.0

NO + Π 
 N + O + Π

O 5× 1012 0.0 149, 943.0

N 5× 1012 0.0 149, 943.0

NO 5× 1012 0.0 149, 943.0

O2 5× 1012 0.0 149, 943.0

N2 5× 1012 0.0 149, 943.0

N2 + O 
 NO + N - 6.4× 1014 −1.0 76, 262.0

NO + O 
 O2 + N - 8.4× 109 0.0 38, 628.0

In Table A.4, the curve-fitting parameters used in Eq. (2.65) for determining the species

equilibrium constants, Keq,r, are given.

Table A.4: Curve-fitting coefficients for calculating the equilibrium constants [152].

Reaction A1 A2 A3 A4 A5

N2 + Π 
 2N + Π 3.898 −12.611 0.683 −0.118 0.006

O2 + Π 
 2O + Π 1.335 −4.127 −0.616 0.093 −0.005

NO + Π 
 N + O + Π 1.549 −7.784 0.228 −0.043 0.002

N2 + O 
 NO + N 2.349 −4.828 0.455 −0.075 0.004

NO + O 
 O2 + N 0.215 −3.652 0.843 −0.136 0.007
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APPENDIX B

CHARACTERISTIC PROPERTIES OF THE COMPRESSIBLE

EULER EQUATIONS

From the mathematical point of view, the Euler equations of compressible flows are

nonlinear, coupled, and hyperbolic system of equations. Some featuring properties of

hyperbolic equations can be given as follows:

• They accept discontinuous solutions, i.e., shocks and contact discontinuities can

be observed in their solutions,

• Their solutions can be expressed as a combination of eigenvectors called the

characteristics or characteristic speeds.

There is a close relationship between the characteristics of the Euler equations and

shocks. The effect of an explosion at any point in the flow field propagates at charac-

teristic speeds, which are the speeds of shock waves. Studying these characteristics

has two advantages: it guides in the understanding of equations with a much more

complex nonlinear nature, and it provides a framework for numerical methods to be

used or developed to solve them.

The advective Jacobians, Ai, can be factorized as follows:

Ai =
∂Fi

∂U
= LiΛiRi, (B.1)

where Λi is a diagonal matrix composed of the eigenvalues of the advective Jacobian

Ai, Ri is the matrix of row eigenvectors, and Li is the matrix of column eigenvectors

of Ai, with

LiRi = I. (B.2)
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B.1 Characteristic Analysis of Compressible Euler Equations in 1D

Consider the 1D Euler equations of compressible flows given as follows:

∂U

∂t
+
∂F(U)

∂x
= S(x, t,U), (B.3)

where

U =


ρ

ρu

e

 , F =


ρu

ρu2 + p

u(e+ p)

 . (B.4)

The equation of state is given as

p = p(ρ, e) = (γ − 1)

(
E − 1

2
ρu2

)
= (γ − 1) ρe, (B.5)

where the term E denotes the total energy per unit volume and is defined as

E = ρe
1

2
+ ρu2. (B.6)

If we rewrite the vectors U and F in terms of new variables u1, u2, and u3, we obtain

U =


u1

u2

u3

 , F =


f1

f2

f3

 =


u2

u22
u1

+ (γ − 1)
(

u3 + 1
2

u22
u1

)
u2
u1

[
u3 + (γ − 1)

(
u3 + 1

2

u22
u1

)]
 . (B.7)

Then, the advective Jacobian A is given as

A =
∂F

∂U
=


∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

∂f2
∂u1

∂f2
∂u2

∂f2
∂u3

∂f3
∂u1

∂f3
∂u2

∂f3
∂u3

 (B.8)

=


0 1 0

γ−3
2
u2 (3− γ)u γ − 1

−γEu
ρ

(γ − 1)u3 γE
ρ
− 3(γ−1)u2

2
γu

 . (B.9)

Now, if we freeze the Jacobian A at a reference state, e.g., at A0, then we have

∂U

∂t
+ A0

∂U

∂x
= S. (B.10)

By using Eq. (B.2), we find

∂U

∂t
+ A0 R0L0︸ ︷︷ ︸

I

∂U

∂x
= S. (B.11)
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Multiplying both sides of Eq. (B.11) by L0, one finds

L0

[
∂U

∂t
+ A0R0L0

∂U

∂x
= S

]
. (B.12)

Since the matrix A0 is a constant matrix, its factors are also constant matrices:

∂L0U

∂t
+ L0A0R0︸ ︷︷ ︸

Λ0

∂L0U

∂x
= L0S, (B.13)

where the diagonal matrix consisting of the eigenvalues of A0 is given as follows:

Λ0 =


λ1 0 0

0 λ2 0

0 0 λ3

 =


u− a 0 0

0 u 0

0 0 u+ a

 , (B.14)

with the corresponding eigenvectors
1

u− a
u2

2
− au+ a2

γ−1

 ,


1

u

u2

2

 ,


1

u+ a

u2

2
+ au+ a2

γ−1

 . (B.15)

Here, the term a denotes the speed of the sound, i.e., a = csound =
√

γp
ρ

. Note that all

the eigenvalues are real in Eq. (B.14). Thus, by definition [58], Eq. (B.3) represent a

hyperbolic system.

Letting L0U = W and L0S = G, one finds

∂W

∂t
+ Λ0

∂W

∂x
= G, (B.16)

where the vector W is called the Riemann invariant or characteristic variable.

Eq. (B.16) can be recast in a fully decoupled form as follows:

∂wi
∂t

+ λ0,i
∂wi
∂x

= gi, (B.17)

where i = 1, 2, 3.

It is obvious that we have a wave equation for each i, where a = λ0,i and u = wi.

Therefore, any process or analysis applied to wave equations holds also for each

characteristic equation of wi. Notice that the eigenvalue λ0,i denotes the speed of

the wave convected for the ith equation. As a consequence, the wave equation is an

appropriate model problem for analyzing the Euler equations.
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B.2 Extension to 2D Single-Species Euler Equations

The factorization matrices for the advective Jacobians introduced in Eqs. (2.113)–

(2.114) can be given as follows:

L1 =


(γ−1)q+au1

2a2
(1−γ)u1−a

2a2
(1−γ)u2

2a2
(γ−1)
2a2

a2−(γ−1)q
a2

(γ−1)u1
a2

(γ−1)u2
a2

(1−γ)
a2

(γ−1)q−au1
2a2

(1−γ)u1+a
2a2

(1−γ)u2
2a2

(γ−1)
2a2

u2 0 −1 0

 , (B.18)

R1 =


1 1 1 0

u1 − a u1 u1 + a 0

u2 u2 u2 −1

h− au2 q h+ au1 −u2

 , (B.19)

L2 =


(γ−1)q+au2

2a2
(1−γ)u1

2a2
(1−γ)u2−a

2a2
(γ−1)
2a2

a2−(γ−1)q
a2

(γ−1)u1
a2

(γ−1)u2
a2

(1−γ)
a2

(γ−1)q−au2
2a2

(1−γ)u1
2a2

(1−γ)u2+a
2a2

(γ−1)
2a2

−u1 1 0 0

 , (B.20)

R2 =


1 1 1 0

u1 u1 u1 1

u2 − a u2 u2 + a 0

h− au2 q h+ au2 u1

 , (B.21)

with the eigenvalues located on the main diagonal of the following matrices:

Λ1 =


u1 − a 0 0 0

0 u1 0 0

0 0 u1 + a 0

0 0 0 u1

 (B.22)

and

Λ2 =


u2 − a 0 0 0

0 u2 0 0

0 0 u2 + a 0

0 0 0 u2

 . (B.23)
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B.3 Extension to 2D Multispecies Euler Equations

The factorization matrices for the advective Jacobians introduced in Eqs. (2.99)–

(2.100) are given by matrices (B.26)–(B.29) [72]. The norms appearing in the matrices

given by Eqs. (B.28)–(B.29) stand for the standard Euclidean norm. The other terms

have been explained in Section 2.2.

The eigenvalues located on the main diagonal of the following matrices [72]:

Λ1 =



u1 0 0 0 0 0 0 0 0

0 u1 0 0 0 0 0 0 0

0 0 u1 0 0 0 0 0 0

0 0 0 u1 0 0 0 0 0

0 0 0 0 u1 0 0 0 0

0 0 0 0 0 u1 0 0 0

0 0 0 0 0 0 u1 + a 0 0

0 0 0 0 0 0 0 u1 − a 0

0 0 0 0 0 0 0 0 u1



, (B.24)

Λ2 =



u2 0 0 0 0 0 0 0 0

0 u2 0 0 0 0 0 0 0

0 0 u2 0 0 0 0 0 0

0 0 0 u2 0 0 0 0 0

0 0 0 0 u2 0 0 0 0

0 0 0 0 0 u2 0 0 0

0 0 0 0 0 0 u2 + a 0 0

0 0 0 0 0 0 0 u2 − a 0

0 0 0 0 0 0 0 0 u2



. (B.25)
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L1 =



a2 − YOγO −YOγN −YOγNO −YOγO2 −YOγN2 βu1YO βu2YO −βYO βYO

−YNγO a2 − YNγN −YNγNO −YNγO2 −YNγN2 βu1γN βu2γN −βYN βYN

−YNOγO −YNOγN a2 − YNOγNO −YNOγO2 −YNOγN2 βu1YNO βu2YNO −βYNO βYNO

−YO2γO −YO2γN −YO2γNO a2 − YO2γO2 −YO2γN2 βu1YO2 βu2YO2 −βYO2 βYO2

−YN2γO −YN2γN −YN2γNO −YN2γO2 a2 − YN2γN2 βu1YN2 βu2YN2 −βYN2 βYN2

−u2 −u2 −u2 −u2 −u2 0 1 0 0

γO − u1a γN − u1a γNO − u1a γO2 − u1a γN2 − u1a a− βu1 −βu2 β −β
γO + u1a γN + u1a γNO + u1a γO2 + u1a γN2 + u1a −a− βu1 −βu2 β −β
−eV γO −eV γN −eV γNO −eV γO2 −eV γN2 βu1eV βu2eV −βeV a2 + βeV



(B.26)

L2 =



a2 − YOγO −YOγN −YOγNO −YOγO2 −YOγN2 βu1YO βu2YO −βYO βYO

−YNγO a2 − YNγN −YNγNO −YNγO2 −YNγN2 βu1γN βu2γN −βYN βYN

−YNOγO −YNOγN a2 − YNOγNO −YNOγO2 −YNOγN2 βu1YNO βu2YNO −βYNO βYNO

−YO2γO −YO2γN −YO2γNO a2 − YO2γO2 −YO2γN2 βu1YO2 βu2YO2 −βYO2 βYO2

−YN2γO −YN2γN −YN2γNO −YN2γO2 a2 − YN2γN2 βu1YN2 βu2YN2 −βYN2 βYN2

u1 u1 u1 u1 u1 −1 0 0 0

γO − u1a γN − u1a γNO − u1a γO2 − u1a γN2 − u1a −βu1 A− βu2 β −β
γO + u1a γN + u1a γNO + u1a γO2 + u1a γN2 + u1a −βu1 −a− βu2 β −β
−eV γO −eV γN −eV γNO −eV γO2 −eV γN2 βu1eV βu2eV −βeV a2 + βeV



(B.27)
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R1 =



1
a2

0 0 0 0 0 YO
2a2

YO
2a2

0

0 1
a2

0 0 0 0 YN
2a2

YN
2a2

0

0 0 1
a2

0 0 0 YNO
2a2

YNO
2a2

0

0 0 0 1
a2

0 0
YO2

2a2
YO2

2a2
0

0 0 0 0 1
a2

0
YN2

2a2
YN2

2a2
0

u1
a2

u1
a2

u1
a2

u1
a2

u1
a2

0 u1+a
2a2

u1−a
2a2

0

u2
a2

u2
a2

u2
a2

u2
a2

u2
a2

−1
a2

u2
2a2

u2
2a2

0
β‖u‖2−γO

βa2
β‖u‖2−γN

βa2
β‖u‖2−γNO

βa2
β‖u‖2−γO2

βa2
β‖u‖2−γN2

βa2
u2
a2

h+au1
2a2

h−au1
2a2

1
a2

0 0 0 0 0 0 ev
2a2

ev
2a2

1
a2



(B.28)

R2 =



1
a2

0 0 0 0 0 YO
2a2

YO
2a2

0

0 1
a2

0 0 0 0 YN
2a2

YN
2a2

0

0 0 1
a2

0 0 0 YNO
2a2

YNO
2a2

0

0 0 0 1
a2

0 0
YO2

2a2
YO2

2a2
0

0 0 0 0 1
a2

0
YN2

2a2
YN2

2a2
0

u1
a2

u1
a2

u1
a2

u1
a2

u1
a2

0 u1
2a2

u1
2a2

0

u2
a2

u2
a2

u2
a2

u2
a2

u2
2a2

−1
2a2

u2+a
2a2

u2−a
2a2

0
β‖u‖2−γO

βa2
β‖u‖2−γN

βa2
β‖u‖2−γNO

βa2
β‖u‖2−γO2

βa2
β‖u‖2−γN2

βa2
u1
a2

h+au2
2a2

h−au2
2a2

1
a2

0 0 0 0 0 0 ev
2a2

ev
2a2

1
a2



(B.29)
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APPENDIX C

ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS

OF EULER EQUATIONS

Many desirable characteristics of solving a partial differential equation (PDE) are

captured by the concept of a “well-posed problem.” If a PDE has a solution, the

solution is unique, and it is continuously dependent on the initial (given) data, then

the problem governed by this PDE is called well-posed [58]. If the uniqueness (of the

solution) requirement does not hold, the primary mathematical concern is to classify

the solutions. It is preferable to solve a problem in such a way that the well-posedness

criteria are satisfied; however, when studying conservation laws, the solutions that are

not continuously differentiable or even not continuous must be taken into account as

well.

In general, conservation equations do not have classical solutions, but they are well-

posed if properly defined generalized or weak solutions are allowed [58]. Consequently,

the nature of the problem may force one to abandon searching for smooth solutions,

encouraging one to look for broader classes of solution candidates, e.g., weak solutions,

instead of achieving well-posedness conditions for classical solutions. To this end,

in this section, it is necessary to use the tools of general topology, real analysis,

and functional analysis for constructing appropriate function spaces in the search for

solutions to conservation equations.

Even today, a solid mathematical understanding of the theory on the existence and

uniqueness of solutions of multidimensional nonlinear conservation equations is still

very limited [58]. For this reason, the studies on conservation equations are generally

carried out in one-dimensional spaces or for spaces equipped with severe constraints.
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One can refer to [50, 58, 147] for further details.

The nonlinear system of differential equations governing inviscid compressible flows

without source terms, studied in Section 2.3, can be given in the following general

form [58, 147]:
∂U

∂t
+

nsd∑
j=1

∂

∂xj
Fj (U) = 0, (C.1)

where the flux vectors Fj =
[
F

(j)
1 , . . . , F

(j)
m

]T
: Ω→ Rm consist of continuously dif-

ferentiable functions, m represents the number of equations involving in system (C.1),

and Ω ⊂ Rm is the domain (open set) occupied by a fluid (gas). We consider Eq. (C.1)

in a space-time cylinder QT = Ω× (0, T ), where T > 0 denotes the final time.

Even when the initial data is sufficiently smooth, certain physical phenomena such

as wave breaking, shock waves, and vortices cause the solution of problem (C.1) to

develop singularities in finite time [37]. Therefore, the classical analytic techniques

used in the theory of other types of PDEs (e.g., parabolic, elliptic, or mixed) cannot

be applied to hyperbolic PDEs directly. The nonstrict hyperbolicity of the governing

equations is another major issue. For the Euler equations, this degeneracy occurs at

the vacuum states or due to the multiple eigenvalues of the system [37].

System (C.1) is said to be a system of conservation laws, and can be written in a

quasi-linear form as follows:

A0 (U)
∂U

∂t
+

nsd∑
j=1

Aj (U)
∂U

∂xj
= 0, (C.2)

where the Jacobian matrix of flux Fj is

Aj =
∂Fj (U)

∂U
, j = 1, 2, . . . , nsd, (C.3)

and A0 (U) = I is the unit matrix of order m.

Even the simplest equations having the form of Eq. (C.2) are known to exhibit nonlinear

phenomena such as the nonexistence of global smooth solutions on a large set of

initial/boundary data [147]. The 1D inviscid Burgers’ equations, for example, are one

of the best examples of this phenomenon:

∂u

∂t
+ u

∂u

∂x
= 0, x ∈ Ω = R, t > 0, (C.4)
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with initial conditions u(x, 0) = sx, s = ±1. If s = 1, the exact solution to Eq. (C.4)

is given as u = x
1−t , and it is clear that the solution blows up at t = 1.

The 3D Euler equations are, of course, the only realistic perspective on space dimension.

In many cases, however, a 2D or even a 1D model is sufficient to describe significant

aspects of a physical configuration. Besides, in understanding the main features of the

Euler equations, some facts from the theory of quasi-linear system of PDEs should be

presented. The following lines provide a brief review of the theory on the existence

and uniqueness of solutions to conservation equations.

Theorem [147]: Let Ω ∈ Rm be a open set and be the domain of the matrices Aj (U),

j = 1, . . . , nsd. System (C.2) is symmetrizable in Ω if for any U ∈ Ω, there is a

positive definite matrix Ã0 (U) such that

(i) for any D1 ⊂ D1 ⊂ Ω,

c−1‖z‖2 ≤ z ·
(
Ã0 (U) z

)
≤ c‖z‖2, Ã0 (U) = Ã0 (U)T ,

with a positive constant c independent of U ∈ D1, and z ∈ Rnsd , where ‖ · ‖
represents the standard Euclidean norm, and “·” denotes the standard Euclidean

inner product;

(ii) for each j = 1, . . . , nsd, the following statement holds:

Ã0 (U) Aj (U) = Ãj (U) , where Ãj (U) = Ãj (U)T .

If a set of conservation laws can be symmetrized, then the theory of linear symmetric

hyperbolic systems can be used to study the solutions to equations in the form of

Eq. (C.2).

Definition: System (C.2) is said to be hyperbolic in a region Ω ⊂ Rm if all solutions

(so-called the generalized eigenvalues), λj = λj (U, ñ), j = 1, . . . , nsd, of equation

det

(
λA0 (U)−

nsd∑
j=1

ñjAj (U)

)
= 0 (C.5)

are real for any ñ ∈ Rnsd and U ∈ Ω. If these eigenvalues are all distinct, then

system (C.2) is said to be strictly hyperbolic. System (C.2) is called diagonally and
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strictly hyperbolic if the matrix

P =

nsd∑
j=1

ñjAj (U) (C.6)

is diagonalizable. That is, there exists a nonsingular matrix T (U, ñ) such that

T−1PT = diag (λ1, λ2, . . . , λm) =


λ1

. . .

λm

 .
System (C.1), and correspondingly system (C.2), should naturally be equipped with

certain initial conditions:

U (x, 0) = U0 (x) , (C.7)

where U0 is a given function. Then, the initial-value (Cauchy) problem can be

expressed as follows:

∂U

∂t
+

nsd∑
j=1

∂

∂t
Fj (U) = 0, in QT = Ω× (0, T ) , (C.8)

U (x, 0) = U0 (x) , x ∈ Ω. (C.9)

Definition [147]: Let Ω ⊂ Rnsd be the domain set of functions Fj , j = 1, . . . , nsd. The

vector U is said to be the classical solution of (the Cauchy problem) Eqs. (C.8)–(C.9)

if the followings hold:

(i) U ∈ C1 (Ω× (0, T ))m ∩ C (Ω× [0, T ))m,

(ii) U (x, t) ∈ Ω,∀ (x, t) ∈ QT ,

(iii) U (x, t) satisfies Eqs. (C.8)–(C.9) for all (x, t) ∈ QT and x ∈ Ω, and for x ∈ Ω

and t = 0.

Here, the space of continuous functions defined on domain Ω is represented by C (Ω),

or equivalently, by C0 (Ω), and the space of functions whose first derivatives and

themselves are continuous is represented by C1 (Ω). It can be generalized as follows:

the space Ck (Ω) represents the space of functions with continuous zeroth through

kth-order derivatives. Then, the following statement holds:

C∞ (Ω) =
∞⋂
m=0

Cm (Ω) . (C.10)
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Definition: Let X be a normed space (see, for example, [2]), and A be a subset of X.

If every sequence of points in A has a subsequence converging to an element in A,

then A is called compact. Compact sets are closed and bounded sets, but closed and

bounded sets need not be compact if X is not a finite-dimensional space.

Definition: Let Ω ⊂ Rnsd is an open set, and let f : Ω→ R be a continuous function.

The support of f is defined as

suppf = {x ∈ Ω : f(x) 6= 0}. (C.11)

The function f is called compactly supported if supp f is a compact set.

Note that the subspace C∞0 (Ω) ⊂ C∞ (Ω) consists of functions from C∞ (Ω) that have

compact support.

Theorem [147]: Let the following linear and scalar Cauchy problem be given

∂u

∂t
+ a (x, t)

∂u

∂x
= 0, x ∈ Ω = R, t > 0, (C.12)

where u(x, 0) = u0(x) ∈ C1 (R), a(x, t) and da
dx

belong to C
(
QT

)
. Then, for any

(x, t) ∈ QT there exists a unique classical solution. If a (x, t) is a constant function,

the solution (traveling wave) is given as

u (x, t) = u0(x− at). (C.13)

Theorem [147]: Let the following 1D linear system of conservation laws be given:

∂U

∂t
+ A

∂U

∂x
= 0 in R× (0,∞), (C.14)

equipped with initial conditions U (x, 0) = U0 (x). Let A be anm×m diagonalizable

matrix and has real eigenvalues, i.e., λ1, λ2, . . . , λm ∈ R. Besides, let U0 can be

expanded into the basis formed by {rj}:

U0 (x, t) = u0
j(x)rj, ∀x ∈ R, t ∈ [0,∞). (C.15)

Then, there exists a unique classical solution, U ∈ C1 (R× (0,∞))m, given as follows:

U (x, t) =
m∑
j=1

u0
j (x− λjt) rj, (C.16)

where rj is the eigenvector corresponding to eigenvalue λj .
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Theorem [147]: Let the following nonlinear conservation equation be given

∂u

∂t
+
∂f(u)

∂x
= 0, x ∈ Ω = R, t > 0, (C.17)

where u(x, 0) = u0(x). Let f ∈ C2 (R) and u0(x) ∈ C2 (R) ∪W 1,∞ (R). Then, there

exists a positive number z ∈ D

T <

(∥∥u′0(x)
∥∥
L∞(R)

sup
z∈D

∣∣f ′′(z)
∣∣)−1

, (C.18)

such that there is a unique classical solution to Eq. (C.17), where

D = {u0(x) : x ∈ R}. (C.19)

The solution is given as

u(x, t) = u0(x− f ′(u)t). (C.20)

For further details, one can refer to [21,71,117] and the material therein. The definition

of the Sobolev space W 1,∞ (R) can be deduced from Eq. (C.25).

Definition: A measurable function u is called essentially bounded on Ω if there is a

constant K such that |u(x)| ≤ K, ∀x ∈ Ω. The space L∞ (Ω) represents the space of

Lebesgue measurable functions defined on Ω that are essentially bounded, where the

norm ‖ · ‖L∞(Ω) is defined as

‖u‖L∞(Ω) = ess sup
x∈Ω
|u(x)|. (C.21)

Definition: Let α = (α1, α2, . . . , αn) be an n-tuple of nonnegative integers, then α is

said to be a multiindex of order n. The length of this multiindex is given as follows:

|α| =
n∑
j=1

αj. (C.22)

Then, for a real function u = u (x1, x2, . . . , xn) with n variables, the αth-order partial

derivative of u can be given as follows:

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαnn

. (C.23)

Definition: A function ϕ : Ω → R belonging the space of infinitely differentiable

functions with compact support, C∞0 (Ω), is called a test function.
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Definition: A function u defined almost everywhere on Ω is called locally integrable

on Ω provided u ∈ L1 (Ω) for every open subset of Ω, and it is denoted by u ∈ Lloc
1 (Ω).

It can be generalized as follows: u ∈ Lloc
p (Ω) if u|Ω′ ∈ Lp (Ω′) for any bounded

Ω′ ⊂ Ω such that Ω′ ⊂ Ω, where the term u|Ω′ represents the restriction of function u

to the set Ω′.

Definition: Let the functions u, v ∈ Lloc
1 (Ω), and α be a multiindex. The αth weak

(distributional) derivative of u, Dαu, is given by Dαu = v, provided that∫
Ω

uDαϕdx = (−1)|α|
∫

Ω

vϕdx, ∀ϕ ∈ C∞0 (Ω) . (C.24)

Definition: Let k ≥ 0 be an integer and 1 ≤ p ≤ ∞. Then, the Sobolev space

W k,p (Ω) is the space of all functions u ∈ Lp (Ω) such that their weak derivatives up

to the order k are also elements of the space Lp (Ω):

W k,p (Ω) = {u ∈ Ω : Dαu ∈ Lp (Ω) for 0 ≤ |α| ≤ k}. (C.25)

The Sobolev space W k,p is equipped with the norm:

‖u‖Wk,p(Ω) =

( ∑
0≤|α|≤k

‖Dαu‖pLp(Ω)

)1/p

, if 1 ≤ p <∞, (C.26)

‖u‖Wk,∞(Ω) = max
0≤|α|≤k

‖Dαu‖L∞(Ω), if p =∞. (C.27)

In other words, Sobolev spaces are vector spaces consisting of functions whose weak

(distributional) partial derivatives satisfy certain integrability conditions. Notice that if

p = 2, then

W k,2 (Ω) = Hk (Ω) . (C.28)

The letter “H” in Eq. (C.28) indicates the space Hk (Ω) is a Hilbert space. Note that

H0 (Ω) = L2 (Ω).

Theorem [37]: Let Ω ⊂ Rnsd , and U0 (x, t) : Ω → G ⊂ Rnsd+2 be in Hs ∩ L∞,

where G is the state space, and s > nsd
2

+ 1. Then, there exists a finite time T =

T
(
‖U0‖Hs(Ω), ‖U0‖L∞(Ω)

)
∈ (0,∞) for the Cauchy problem given by Eqs. (C.8)–

(C.9) such that there is a unique bounded classical solution U ∈ C1 (Ω× [0,∞]) with

U (x, t) ∈ G for (x, t) ∈ (Ω× [0,∞]) and U ∈ C ([0, T ], Hs) ∩ C1 ([0, T ], Hs−1).
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Note that the governing equations of hypersonic equilibrium flow introduced in Chap-

ter 2 and numerically simulated in Section 5.1 can be recast in the form of Eqs. (C.8)–

(C.9). Therefore, this theorem also applies to the governing equations of hypersonic

flows in equilibrium.

Majda [132] proved this theorem, which is based solely on the elementary linear

existence theory for symmetric hyperbolic systems with smooth coefficients (see [48]

by Courant and Hilbert). Kato [101] provided a proof of the theorem, which treats

appropriate linearized problems using the abstract semigroup theory of evolution

equations. Kato also formulated and applied this basic idea in an abstract framework

in [102], resulting in the local existence of smooth solutions for a variety of interesting

problems of mathematical physics. Makino et al. [133] used the theory of quasi-

linear symmetric hyperbolic systems to apply the local existence theory to the Cauchy

problem with compactly supported initial data for multidimensional Euler equations.

For further discussion, one can refer to [49] by Crandall and Souganidis.

The authors of [37] considered conservation equations having the form of Eqs. (C.8)–

(C.9) with a source term (vector) S(U):

∂U

∂t
+

nsd∑
j=1

∂

∂xj
Fj (U) = S(U), in QT = Ω× (0, T ) , (C.29)

U (x, 0) = U0 (x) , x ∈ Ω. (C.30)

The source term S(U) generally arises from the chemical reactions that occur in the

flow field or due to the kinetic relaxation scheme employed for solving the system

under consideration. For more on chemical reaction terms that might enter the system,

one can refer to Section 2.1.4.

Notice that the governing equations of hypersonic nonequilibrium flow introduced

in Chapter 2 and numerically simulated in Section 5.2 can be recast in the form of

Eqs. C.29–C.30. Therefore, the theory also applies to multispecies nonequilibrium

flow equations that are the focus of this thesis.

The fact that there are generally no globally defined smooth solutions, even for simple

quasilinear scalar conservation equations, raises the need to define weaker formulations

for systems having the form of Eqs. (C.8)–(C.9).
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Definition: Let U0 ∈ [Lloc
∞ (Ω)]m, where Ω ⊂ Rnsd . The vector U is called a weak

(integral) solution of Eqs. (C.8)–(C.9) if U ∈ [Lloc
∞ (Ω× [0,∞))]m and the following

statement holds [147]:∫ ∞
0

∫
Ω

(
U · ∂ϕ

∂t
+

nsd∑
j=1

Fj (U) · ∂ϕ
∂xj

)
dx dt

+

∫
Ω

U0 (x) ·ϕ (x, 0) dx = 0, (C.31)

∀ϕ ∈ [C∞0 (Ω× [0,∞))]m. This definition can also be given for Eqs. (C.29)–(C.30)

in a similar way.

Any classical solution of Eqs. (C.8)–(C.9) is also a weak solution (see [147]). However,

since the weak solutions of conservation equations do not have to be unique, the

concept of weak solutions is still insufficient alone; therefore, certain additional

conditions, e.g., the entropy condition, are needed to select an appropriate weak

solution. The entropy condition is based on the second law of thermodynamics, which

implies that the entropy of individual fluid particles cannot decrease as time goes. One

can find further discussion on entropy conditions in [50, 58, 147] and the material

therein.

This appendix has aimed to present a general and concise discussion on the existence

and uniqueness of the solutions of the conservation equations, which have been

considered computationally in the thesis. For many more theoretical concepts on the

properties of solutions, the interested reader can exploit the references provided in the

above lines. Besides that, tor more on the special function spaces and norms briefly

introduced in this section, the interested reader may refer to [2, 58].
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