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ABSTRACT

DESIGN OF ATTITUDE ESTIMATION ALGORITHMS FOR INERTIAL
SENSORS ONLY MEASUREMENT SCENARIOS

Candan, Batu
M.S., Department of Aerospace Engineering

Supervisor: Assist. Prof. Dr. Halil Ersin Soken

March 2022, 81 pages

This thesis proposes four novel robust Kalman filter algorithms for attitude estimation

using only the measurements of an inertial measurement unit. Efficiency and optimal-

ity of the Kalman filter based attitude filters are correlated with appropriate tuning of

the covariance matrices. Manual tuning process is a difficult and time-consuming

task. Specifically, the inertial measurement unit-only attitude estimation filters are

prone to the external accelerations unless their covariances are adapted to gain ro-

bustness. The proposed algorithms provide an adaptive method for tuning the mea-

surement noise covariance such that they can accurately estimate the attitude. The

proposed methodologies are tested and compared with other filtering algorithms in

the literature under different dynamical conditions and using real-world experimental

datasets in order to validate their effectiveness. Results show that in highly dynamic

scenarios especially the multiple tuning factor strategy can increase the attitude esti-

mation accuracy more than two-times compared to the competitive algorithms.

Keywords: Attitude estimation, covariance tuning, robust Kalman filter
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ÖZ

SADECE ATALETSEL SENSÖR ÖLÇÜM SENARYOLARI İÇİN YÖNELİM
TAHMİNİ ALGORİTMALARININ TASARIMI

Candan, Batu
Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi Halil Ersin Söken

Mart 2022 , 81 sayfa

Bu tez, yalnızca bir ataletsel ölçüm biriminin ölçümlerini kullanarak yönelim tahmini

için dört yeni gürbüz Kalman filtresi algoritması önermektedir. Kalman filtresi tabanlı

yönelim filtrelerinin verimliliği ve optimalliği, kovaryans matrislerinin uygun şekilde

ayarlanması ile ilişkilidir. Manuel ayar işlemi zor ve zaman alıcı bir iştir. Spesifik ola-

rak, yalnızca ataletsel ölçüm birimi tabanlı yönelim tahmini filtreleri, kovaryansları

gürbüzlük kazanmak üzere uyarlanmadıkça dış ivmelere karşı savunmasızdır. Öne-

rilen algoritmalar, yönelimin doğru bir şekilde tahmin edebileceği uyarlanabilir bir

yöntem ortaya koymaktadır. Önerilen metodolojiler, etkinliklerini doğrulamak için

farklı dinamik koşullar altında ve gerçek dünya deneysel veri kümeleri kullanılarak

literatürdeki diğer mevcut filtreleme algoritmaları ile karşılaştırılmıştır. Sonuçlar, di-

namik senaryolarda, özellikle çoklu ayar faktörü stratejisinin, rakip algoritmalara kı-

yasla yönelim tahmini doğruluğunu iki kattan fazla artırabildiğini göstermektedir.

Anahtar Kelimeler: Yönelim tahmini, kovaryans ayarlama, gürbüz Kalman filtresi
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CHAPTER 1

INTRODUCTION

Orientation estimation has been a significant problem for decades in various applica-

tions such as robotics, navigation, aerospace, motion tracking, positioning and local-

ization of the objects. Over decades, the humanity relies on to use information from

both internal and external sensors for determining the orientation and position infor-

mation. The fusion of global navigation satellite system or global positioning system

and inertial navigation system emerged from the need of accurate determination of

position and orientation. Table 1.1 shows that these two systems complement each

other’s weakness and fusing their data can provide a complete solution in most cases

[1].

Table 1.1: Important characteristics of INS and GNSS

Characteristics INS GNSS

Solution Accuracy
Nice short term accuracy, but

deteriorates in prolonged scenarios

Nice long term accuracy with

noisy sampling within short time period

Initial Condition Requirement Yes No

Attitude Information Availability Available Generally not available

Sensitive against Gravity Yes No

Self-Sufficient Yes No

Immune against Electronic Attacks Yes No

Output Sampling Rate High Low

As seen in Table 1.1, GNSS is sensitive against the external disturbances and threats

such as jamming or spoofing. Moreover, implementing GPS receivers and antennae

within the systems increases the costs of operation. This leads the scientists and

researchers to seek for self-contained solutions that are able to provide the position

and orientation information accurately using only internal sensor frameworks.
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Inertial navigation system is such a framework composed of inertial sensors (ac-

celerometers and gyroscopes). In order to estimate the orientation appropriately in

all three axes, required sensor layout for all of these methods is usually a set of mag-

netic, angular rate and gravity sensors also known as attitude and heading reference

systems. Especially, over the past two decades technological developments resulted

in lightweight, economical, accurate magnetic and inertial measurement units. How-

ever, despite the latest improvements, it is important to emphasize each sensor ex-

hibits some form of uncertain error characteristics so that numerous sensor fusion

algorithms have appeared in literature [2].

Numerous applications such as the stability control of the land and aerial platforms,

human balancing require only the attitude angles and not the heading, yaw angle since

the accelerometer is not able to sense and extract the rotation about the yaw axis. If

needed, yaw angle can be estimated in addition from the magnetometer measure-

ments. Owing to the accessibility of small and cheap IMUs, today IMU-only attitude

estimation has a diverse application field. IMUs are used for orientation estimation of

not only robots, drones, cars and other autonomous vehicles that we can think of, but

also in many other fields from motion capture for movies and gaming to ambulatory

treatment [3]. Attitude information can be obtained in a straightforward way in the

absence of any external acceleration via decomposing the gravity vector along the

axes. However, the accelerometer measurements are usually disturbed by the exter-

nal acceleration of the platform during the motion, prohibiting their use for accurate

attitude estimation. Thus, our main aim is to provide an IMU-only two-dimensional

attitude estimation method, which is robust against external accelerations and can

be used in different applications without requiring extensive modification other than

adapting to the actual problem and tuning.

Following survey is to light the way from the beginning of sensor orientation deter-

mination studies. A review is provided for the studies on accelerometer-gyroscope

fusion for estimating the roll and pitch angles, commonly referred as the tilt angles

that are two of the attitude states.
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1.1 Literature Survey

The optimal algorithms for the attitude estimation problem using only INS or/and

magnetometers have been developed for last fifty years and divided into three com-

mon groups, algebraic/static methods, KFs and CFs, respectively. First efforts to

correctly estimate the attitude start to seek a solution for Wahba’s problem, that is to

search and find a rotation matrix between two different coordinate systems from vec-

tor observations [4]. In literature, solutions using pure algebra started to appear and

some of the acknowledged methods are Davenport’s q-Method [5], using quaternion

algebra, Black’s TRIAD [6], Shuster’s QUEST algorithm [7], Markley’s Singular

Value Decomposition (SVD) method and Mortari’s Estimators of the Optimal Quater-

nion algorithms (ESOQ1-2) [8]. Later, originated from the work of Rudolf E. Kalman

[9], various algorithms have been proposed using this recursive method for estimating

the attitude and the orientation of a system. In attitude estimation problems, KF-based

methods focus on the accurate modeling of the external acceleration, disturbances and

fine tuning of the noise covariance matrices with different approaches such as fuzzy,

adaptive, and even manual tuning methods. All of these methods usually focus the

accurate modelling of the measurement noise covariance. Neural network and fuzzy

logic based applications [10, 11], adaptive algorithms [12, 13, 14], cascaded struc-

tures that include different but coupled KFs [15] and other methods that use unscented

Kalman filtering and gradient-descent strategies [16, 17, 18] are proposed in literature

for solving the attitude estimation problem. On the other hand, simpler and less com-

plex CF methodology due to the frequency-based solution scheme, becomes another

strategy developed for the attitude estimation problem. In [19, 20, 21, 22, 23], the

attitude is evaluated via fusing the gyroscope and accelerometer readings in a com-

plementary fashion. However, it is reported that the performance of common CFs de-

teriorates in prolonged and highly dynamic scenarios [24]. Nevertheless, Madgwick

and Mahony filters [25, 26] are depicted as the benchmark algorithms in this study due

to their popularity, ease of implementation in various applications and computational

efficiency.
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With advancing computational capacity, KFs and nonlinear Kalman filtering algo-

rithms (e.g. EKF) are also being used in orientation estimation. They tend to be-

have better in terms of attitude estimation accuracy [27, 28]. In [29, 30, 31, 32, 33],

EKF-based methods are used for solving the attitude estimation problem via focusing

on accurate modeling of the external acceleration and fine tuning of the noise co-

variances with different approaches such as fuzzy, adaptive, and even manual tuning

methods. In [34], authors represented the external acceleration as first-order low-

pass filtered white noise process and altered the measurement noise covariance ma-

trix during the dynamic conditions where the external accelerations present. At first

look, this methodology seems to perform better when compared with benchmark al-

gorithms, but it cannot sustain efficient estimation quality due to some fundamental

reasons. First, the estimated external acceleration is assumed to be split equally in

all the axes, which is not the general case in practice. Second, the filter gain cannot

correct the predictions optimally since the modelled external acceleration process is

low pass filtered with the same cutoff constant all along the motion. Therefore, it

can be stated that the accurate filter gain adaptation and the compensation of exter-

nal acceleration become very important. The general trend behind these methods is

the appropriate adjustment of measurement noise covariance which is related with

the accurate compensation of external accelerations and disturbances. In [24], cas-

caded filtering structure is proposed, that is similar to the one proposed in [15], but

does not need to rely on any external sensor framework. Including two different, but

coupled KFs, for both the attitude and gyro bias estimation, measurement noise co-

variance matrix is tuned via weighting matrix and adaptive cutoff constant strategy

for improving the attitude estimation quality is incorporated. Another strategy in the

literature is to adapt the measurement noise covariance matrix via introducing fuzzy-

logic adaptations as in [35] and [36]. Recent studies have shown that the ellipsoidal

method [37] and UKF [38] can be also used for estimating the attitude of different

systems. However, it should be noted that while there is an increasing trend for hav-

ing more accurate solutions with complex algorithms, computational load becomes

one of the crucial drawbacks.
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1.2 Contribution of the Thesis

This thesis study proposes four different RKF algorithms for estimating the two-axis

attitude (i.e., roll and pitch angles) using the measurements of only an IMU. The pro-

posed methods addresses the covariance uncertainty due to the external accelerations

via adaptively scaling and tuning the measurement noise covariance matrix, while

keeping the estimation algorithm in the KF framework. In contrast to the existing

literature, both algorithms incorporate a straightforward adaptation method, which

has almost no extra computational demand and is easy to apply. Rather than using

an approximate value for the covariance as in [34], the statistics are more accurately

represented with the adaptively scaled and tuned covariance. A similar covariance

tuning method given in [39, 40] scales the whole covariance matrix, whenever a mea-

surement fault is detected.

In this work, apart from these studies, the scaling methodology is applied into the

attitude estimation problem and the filter gain is adapted, when an external acceler-

ation is detected, rather by estimating an additional covariance due to the external

accelerations. Two different approaches for the two different RKF schemes differ by

the number of scaling and tuning factors used for covariance adaptation. In scaling

perspective, the measurement noise covariance matrix is to be scaled as whole by

SSF and MSF respectively in line with the method given in [41]. In tuning perspec-

tive, first, the measurement noise covariance matrix is split into two parts, and a STF

is introduced for tuning one part of measurement noise covariance matrix that is ac-

counting for the external accelerations in line with the method given in [42]. However,

even though showing enhanced performance, the scalar tuning process is not efficient

enough due to the use of single scalar which adapts all measurement channels, si-

multaneously. The second approach adapts the same part of the covariance matrix

via introducing MTFs to compensate the external accelerations more efficiently [43].

MTF approach mitigates the drawbacks of STF methodology since it is able to tune

each measurement channels of the sensors, separately, during the motion. Both ap-

proaches are evaluated using the datasets for a micro aerial vehicle provided by [44]

and [45], and the results are compared with a bunch of benchmark algorithms.
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Main contribution of this thesis study is to introduce four different robust-adaptive

approaches via scaling and tuning the measurement noise covariance matrix in KF

structure and compensating the external accelerations efficiently in an adaptive way.

Developed methodologies can be used in wide range of applications from pedestrian

localization/navigation with limb-mounted or phone-integrated IMUs to unmanned

platform navigation under the absence of external sensors such as visual-based sen-

sors or GPS where the navigation and localization are able to be executed with only

IMU sensor measurements.

1.3 The Outline of the Thesis

Organization of the paper is basically to give a brief theoretical background and pre-

liminaries for the attitude estimation problem in Section II. In Section III, the different

branches of the attitude estimation methodologies are given with a bunch of bench-

mark methods used for the performance comparison and evaluation in the next sec-

tion. Finally, in Section IV, the proposed methods including two different strategies

with two different approaches of the proposed RKF algorithms are given. Section V

gives the evaluation and comparison of the performance for the proposed algorithms

and the benchmarks methods selected from the recent literature. Last section, Section

VI concludes the article with further discussions and future work opportunities with

the extend of the scope of this thesis study.
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CHAPTER 2

PRELIMINARIES

2.1 Coordinate Frames

In this section, the coordinate systems and attitude representation preference that are

used in the context of this thesis are to be given. Four different coordinate systems

are used to define and represent the attitude, velocity and the position of the vehicle.

2.1.1 Earth-Centered Inertial Frame

As indicated by Sir Isaac Newton, ECI frame is a non-rotating and non-accelerating

frame with its origin at the center of the Earth with respect to the fixed and distant

stars. The x-axis points in the vernal equinox direction, while the z-axis points in

the direction of the geographical North Pole and y-axis lies in the equatorial plane,

ensuring the right-hand rule. In this study, the ECI frame is denoted simply by ‘I’ and

to be called as "inertial frame".

2.1.2 Earth-Centered Earth-Fixed Frame

ECEF coordinate frame is somewhat similar to the inertial frame since they share

the same origin. However, unlike inertial frame, ECEF frame rotates along with the

Earth. The x-axis goes through the intersection of equatorial plane and the Greenwich

meridian, while the z-axis points in the direction of the geographical North Pole as in

ECI and y-axis lies in the equatorial plane, ensuring the right-hand rule. Figure 2.1

summarizes the illustration of ECI and ECEF coordinate frames [1].
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Figure 2.1: A demonstration of the ECI and ECEF coordinate frames

2.1.3 Navigation (Local-Level) Frame

As known as local geodetic frame or local-level frame, the navigation frame is used

for indicating the system’s attitude and position on or near to the surface of the Earth.

Different representation for local-level frame can be made such as NED frame, East-

North-Up frame. Figure 2.2 shows the ENU navigation frame in relation with ECI

and ECEF frames. Note that x-axis points toward to east while y-axis points to the

true north and z-axis completes the right-handed triad [1].

Figure 2.2: ENU navigation frame in relation to the ECI and ECEF frames
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2.1.4 Wander Frame

Navigation frame includes a subtle detail that higher rotation rates about the z-axis

are required in order to maintain the orientation of the navigation frame in the polar

regions of the Earth (higher latitudes) than near the equator (lower latitudes), since

the y-axis always points towards to the true north. So, as can be seen on Figure

2.3b, when moving towards to the pole, reaching its maximum when it crosses the

north pole, the navigation frame must rotate at higher rates to maintain its orientation.

If the navigation frame passes over the pole, rotation rate can be infinite resulting

in singularities. The wander frame eliminates the singularity problems via instead

of always pointing northward, it rotates about z-axis with respect to the navigation

frame. Figure 2.3 demonstrates the wander frame and its relation with the navigation

frame. Note that the y-axis rotates by an angle α which is referred as "wander angle",

anticlockwise from north, the z-axis is orthogonal to the reference ellipsoid pointing

upward and x-axis completes the right-handed triad [1].

Figure 2.3: A demonstration of the wander frame in relation with the navigation frame

2.1.5 Body Frame

As known as "sensor frame" in most of the applications since the sensitive axes of

inertial sensors usually are made to coincide with the axes of moving system that

the sensors are deployed. Usually, the origin coincides with the center of gravity

of the system while the y-axis points towards the front of the system, x-axis points

towards transverse and the z-axis points towards vertical direction that is completing

the right-handed triad [1].
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However, it is possible to define different frame configurations similar as navigation

frames. Figure 2.4 shows the body frame for a MAV platform.

Figure 2.4: A demonstration of the body frame for a MAV platform

2.2 Sensor Models

In this section of the thesis, inertial and magnetic sensors being considered/used in

this study and the models governing their measurement characteristics are to be given.

It is important to emphasize that in practice each sensor exhibits not only constant

bias offset, but also varying bias errors, which are not accounted in the given models.

Assuming that the sensor signals are stabilized after a few minutes of warm-up, the

effect of varying biases can be neglected. So, in line with [34], the proposed algorithm

does not take inertial sensor biases into account.

2.2.1 Gyroscope Model

Gyroscopes (shortly gyros) are the sensors that are able to measure angular rotation

rates w.r.t. an inertial frame. They can output either angular rate or angles them-

selves depending on what types of gyro are used in practice [1]. Today, gyroscopes

can be classified as mechanical, optical and microelectromechanical systems gyros.

Measurement signals from the gyroscope (yG) can be modelled as following,

yG = Sω + bG + SGSω + NG
Sω + nG. (2.1)
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Sω and nG are the actual angular rates and the gyroscope noise assumed to be uncor-

related, zero-mean white Gaussian noise characterized by E[nGn
T
G] = σ2

GI3 where

σ2
G is the variance of gyro noise assumed to be split same along all axes. Other terms

to be neglected in this study are gyroscope bias vector bG, gyro scaling factor matrix

SG and the matrix representing the non-orthogonality effects of the gyro NG, respec-

tively.

2.2.2 Accelerometer Model

Accelerometers are the devices that can measure specific translational acceleration

w.r.t. the inertial reference frame along their sensitive axis and can be found in dif-

ferent forms such as pendulous mass, vibratory and MEMS accelerometers in this

era [1]. Measurement signals from the accelerometer sensor (yA) can be modelled as

following,

yA = Sa+ Sg + bA+ S1(
Sa+ Sg)+ S2(

Sa+ Sg)2 + NA(Sa+ Sg)+ δg +nA. (2.2)

Sa and Sg are the actual external acceleration and the gravity vector resolved in the

body frame, respectively. nA is the accelerometer noise assumed to be uncorrelated,

zero-mean white Gaussian noise characterized by E[nAn
T
A] = σ2

AI3 where σ2
A is

the variance of accelerometer noise assumed to be split same along all axes. Other

terms to be neglected in this study are accelerometer bias vector bA, accelerometer

linear scaling factor matrix S1, accelerometer non-linear scaling factor matrix S2,

the matrix representing the non-orthogonality effects of the accelerometer NA, and

deviation from the true/theoretical gravity δg respectively. Moreover, in [34], external

acceleration (at) was modeled as a first-order low-pass filtered white noise process as

following,

at = caat−1 + εt, (2.3)

where ca is a dimensionless, determinator constant specified for the cutoff frequency

and the value of this constant is varying between 0 and 1. Time-varying error dur-

ing the acceleration process is represented by εt which is modeled as Gaussian white

noise. Table 2.1 demonstrates the general performance comparison of inertial mea-

surement sensors.
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Table 2.1: Performance classification of inertial measurement units

Performance Indicators Strategic Grade IMUs Navigation Grade IMUs Tactical Grade IMUs Commercial Grade IMUs

Gyroscope Bias (°/h) 0.0001-0.01 <0.01 1-10 360

Gyroscope ARW (°/
√
h) Negligible 0.002 0.05-0.02 >1

Accelerometer Bias (µg) 0.1-1 <100 100-1000 >1000

Positional Accuracy (km/h) <0.1 2 20-40 >100

Application Area Submarines, ICBMs Mapping, Georeferencing Short time ammunitions Research, Low-Cost navigation solutions

Note that, in this study main focus is to be limited within the use of commercial grade

inertial sensors.

2.2.3 Magnetometer Model

Used for measuring either the magnetic field direction or magnitude of the magnetic

field, magnetometers become an important part of navigation solutions together with

inertial sensors. In this sense, signals from three-axis magnetometer measurement

can be modeled as following [46].

yM = (I3 + D)−1(ISRTBI + bM + nM). (2.4)

Here, BI is the magnetic field vector in reference ECI frame. bM = [ bMx bMy bMz ]T

denotes the magnetic bias vector, ISR is the direction cosine matrix of the sensor frame

with respect to the inertial frame to be explained with details in following subsection

and D matrix is referred as "scaling matrix", representing the scaling, symmetrical

soft iron and non-orthogonality effects. nM is the magnetometer noise assumed to be

uncorrelated, zero-mean white Gaussian noise characterized by E[nMn
T
M ] = σ2

MI3

where σ2
M is the variance of magnetometer noise assumed to be split same along all

axes. It is important to emphasize that D matrix is assumed to have symmetrical

property (any non-symmetrical soft iron and misalignment errors are neglected) with

six independent terms as following.

D =


D11 D12 D13

D12 D22 D23

D13 D23 D33

 . (2.5)
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2.3 Inertial and Magnetic Sensor Performance Characteristics and Errors

Errors for sensor measurements are given previously showing how each error will

affect the measurement output mathematically. However, before to go a step further,

error characteristics and how each error changes the nature of the easement physically

are required to be investigated. First, all of the sensors’ performance can be assessed

with following general terms [1].

• Repeatability is the ability of a sensor to provide the same output when the re-

peated same input is given assuming other factors are constant. Variation between

provided outputs over multiple samplings gives the idea about the sensor’s repeata-

bility.

• Stability is the ability of a sensor to provide the same output when the same, con-

stant input is given on a period of time assuming other factors are constant. Varia-

tion between obtained output over single sampling gives the idea about the sensor’s

stability.

• Drift is the measure of change in output when the given input to the system is

constant and is not changed.

These general terms are closely related with terms sensor scale factor, sensor bias,

sensor noise and bandwidth that are to be discussed in following sub-section.

2.3.1 Inertial Sensor Errors

Inertial sensor errors are divided into two major categories named as systematic and

random (stochastic) errors. While systematic errors are able to be compensated by

laboratory or on-field calibration methods, random errors should be modelled stochas-

tically for mitigating their negative consequences. These errors tend to appear in

much more complex ways while the cost of the equipment is decreasing. Following,

the most common errors observed on inertial sensors are to be investigated [1].
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2.3.1.1 Offset Bias

Appeared both in accelerometers and gyroscopes, offset bias is independent from

specific forces or angular rates to be measured and it can be defined by the shift from

the true value when there is no input (zero input) even though the platform experiences

no motion. These sensors’ physical properties change resulting with different error

characteristics over time and the sensor bias would increase depending on sensor

usage and time. Figure 2.5 visually demonstrates this situation as following.

Figure 2.5: Visualization of the offset bias

2.3.1.2 Scale Factor and Sign Asymmetry

Appeared again both in accelerometers and gyroscopes, scale factor error is the shift

of the input-output gradient from the unity. While the gyroscope scale factor error

is associated with the true angular rate about the sensitive axis, accelerometer scale

factor error is related with the true specific force along the sensitive axis. Figure 2.6

visually demonstrates this situation [1].
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Figure 2.6: Visualization of the scale factor error

In some cases, scale factor error for given positive and negative inputs may differ. In

this case, scale factor sign asymmetry is to appear and the situation would be like in

Figure 2.7 [1].

Figure 2.7: Visualization of the scale factor sign asymmetry error

2.3.1.3 Non-Linearity

As its name indicates, the non-linearity error is originated from the non-linearity be-

tween the input and the output and the situation can be seen in Figure 2.8 [1].
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Figure 2.8: Visualization of the non-linearity error

2.3.1.4 Dead Zone

As seen in Figure 2.9, the dead zone error can be defined that the presence of unavail-

able output even though there is a related input on the system [1].

Figure 2.9: Visualization of the dead zone error

2.3.1.5 Quantization

If the digital systems use the inputs coming from analog machines that results with

transmitting analog signals, the quantization error is observed in all digital systems

as can be seen in Figure 2.10 [1].
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Figure 2.10: Visualization of the quantization error

2.3.1.6 Non-Orthogonality

As its name indicates, the non-orthogonality error is related with the break down

of axes mutual orthogonality due to the manufacturing errors usually. Figure 2.11

demonstrates this error situation where θzy and θzx depict the angular offset from the

planes.

Figure 2.11: Visualization of the non-orthogonality error
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2.3.1.7 Misalignment

Usually occur in cases when the sensitive axes of the inertial sensors are mounted

with an offset with respect to the body frame. This imperfection is visible on Figure

2.12 in which δθ is the small angle offset between the axes due to the misalignment.

Figure 2.12: Visualization of the misalignment error

2.3.1.8 Run-to-Run Bias

Under the sub-group of the bias repeatability term, run-to-run bias is defined as the

change in bias offset for each run time [1].

2.3.1.9 Bias Drift

Stochastic changes in the bias over the measurement period is classified under bias

drift. In other words, it can be defined as the instability of the sensor bias during

the run time. Whereas bias offset is deterministic, bias drift is random error seen in

inertial sensors and it is usually dependent on the changes in temperature.
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Figure 2.13: Visualization of the bias drift error

2.3.1.10 Scale Factor Instability

Usually due to the temperature variations on the working environment, there exist

random changes in scale factor during a measurement session. This gives an idea

about the repeatability of the sensor and is called as the scale factor instability or the

run-to-run scale factor.

2.3.1.11 White Noise

Uncorrelated random signal set is called as white noise which is evenly distributed

in whole frequency spectrum. Usually caused by power electronics or semiconductor

devices within inertial sensors, effect of this phenomenon is visible in Figure 2.15 as

following [1].

Figure 2.14: Visualization of the white noise error

19



2.3.2 Notes on Inertial Sensor Errors

Manufacturers of inertial sensors generally express the random errors and random-

ness via the "random walk" perspective. While velocity random walk is given for

accelerometers with units of µg/
√
Hz or m/s/

√
hr, angular random walk is given

for gyroscopes with units of deg/hr/
√
Hz or deg/

√
hr as given on Figure 2.5 pre-

viously. These units indicate that while the one defines the randomness on inertial

sensors, sampling frequency of the sensors and data acquisition systems is another

important fact effecting the noise characteristics. This is closely related with the

bandwidth (with unit Hz) of the sensors, defining the frequency interval that can be

monitored via sensors, and the one should increase the bandwidth of the sensors for

obtaining higher frequency data. However, while the monitoring process is facilitated

by expanding the frequency interval, the measurements detected by the sensors would

become much noisier [1].

2.3.3 Magnetic Sensor Errors

Three axis magnetometer (TAM) errors occur due to the internal, external error sources

and inherent sensor errors. Briefly mentioned previously on magnetometer model

section, now these errors can be listed with details as following.

2.3.3.1 Soft Iron Error

Materials that are generating magnetic fields in response to the external magnetic field

sources are called as soft irons. Both magnitude and direction of the external field

affect the generated field and the error originated from this phenomenon is called as

soft iron bias. Note that since the orientation of the Earth’s magnetic field with respect

to the platform continuously changes for moving platforms, resulting soft iron errors

are to be time-varying. Following, the soft iron error representation with 3× 3 matrix

Dsi is shown [47, 48].

Dsi =


αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 , (2.6)
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where αij are the coefficients of soft iron effects which show the proportional relation-

ship between the magnetic field applied to a soft iron and resulting induced magnetic

field.

2.3.3.2 Hard Iron Error

Unlike soft irons, materials that have their own constant or slowly time-varying mag-

netic field (unwanted, interfering permanent magnetic fields) are called as hard irons,

primarily composed from ferromagnetic materials, and the error to be originated from

these materials is called as hard iron bias. This bias (denoted with bhi) is usually taken

constant and must be subtracted for the sake of attitude determination process [48].

2.3.3.3 Null-Shift Error

In addition, there exists a null-shift error, denoted with bns, due to the sensor imper-

fections which is adding a constant bias on the magnetometer measurements [48].

2.3.3.4 Magnetometer Scaling Error

Whereas the one expects the output of magnetometer triad is to be same from both

sensitive axes, there might exist different sensitivity levels between axes and this dif-

ference should be taken account and represented via 3 × 3 matrix Dsf as following

[48].

Dsf =


1 + ξx 0 0

0 1 + ξy 0

0 0 1 + ξz

 , (2.7)

Note that, ξx, ξy and ξz are the scale factors which might change over time due to the

environmental effects and it needs to be emphasized they indicate the input-to-output

sensitivity of each axis.

21



2.3.3.5 Magnetometer Non-Orthogonality Error

In case of the non-orthogonality between the sensors that are not orthogonal to each

other, this error should be taken account to the measurements as a transformation of

vector space basis. Denoted via 3 × 3 matrix Dno, non-orthogonality is represented

as following [48],

Dno =


1 0 0

sin ρ cos ρ 0

sinφ cosλ sinλ cosφ cosλ

 , (2.8)

where ρ, φ and λ are the angles between the y-sensor and y-axis, z-sensor and y − z
plane and the z-sensor and y − z plane visually shown on Figure 2.16 as following.

Figure 2.15: Visualization of the non-orthogonality error for magnetic sensors

2.3.3.6 Magnetometer Misalignment Error

Similar to the misalignment problem on inertial sensors due to the wrong mounting

and imperfections, there exist errors caused by misalignment of magnetic sensors

within body frame. Denoted via 3 × 3 matrix Dm, misalignment is represented as

following [48],

Dm =


1 −εz εy

εz 1 −εx
−εy εx 1

 , (2.9)

22



and note that the misalignment error matrix is defined with a skew-symmetric matrix

composed from three small rotation angles εx, εy and εz.

2.3.4 Notes on Magnetic Sensor Errors

On Figure 2.17, errors that are originated from the internal/external disturbances are

given in white boxes while the inherent sensors errors are given in dark gray boxes.

In addition, errors that may be either inherent to sensor or originated from the distur-

bances are given with light gray boxes [48].

Figure 2.16: Summary of magnetic sensor errors

2.4 Attitude Representation

There are numerous different alternatives for representing the attitude of a system via

vectors of three parameters, four parameters, and different sized matrices [49]. A

brief survey about some of these alternatives can be given as following.
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2.4.1 Euler Angles

Introduced by Leonhard Euler for representing the orientation of a system w.r.t. the

fixed reference frame with three successive rotations, the theorem by his own words

states that "Any two independent orthonormal coordinate frames can be related by

a sequence of rotations (not more than three) about coordinate axes, where no two

successive rotations may be about the same axis." [50]. Whereas intuitively easy

to understand, choice uncertainty between different sequences (at least twelve) and

singularity/ambiguity problems make this methodology disadvantageous for applica-

tions [51]. Figure 2.6 demonstrates conventional ZYX Euler angle rotation sequence

as following [52].

Figure 2.17: ZYX Euler angle rotation sequence

2.4.2 Euler-Rodrigues Symmetric Parameters and Quaternions

2.4.2.1 Rodrigues’ Rotation Formula

In order to compute the rotation matrix R in the 3D rotation group, SO(3), corre-

sponding to a rotation by an angle θ about a fixed reference axis specified by the unit

vector r = (rx, ry, rz)εR3, Olinde Rodrigues proposed following solution scheme

intuitively straightforward to understand geometrically [53, 54].

R(r, θ) = I3 + r̃ sin θ + (1− cos θ)r̃2. (2.10)
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The symbol (~) represents the cross-product operator which is transforming a column

vector c = [ c1 c2 c3 ]T to a matrix form as,

c̃ =


0 −c3 c2

c3 0 −c1
−c2 c1 0

 . (2.11)

2.4.2.2 Symmetric Parameters and Quaternions

Euler-Rodrigues parameters which are closely connected with the quaternions, were

developed step by step by Euler and Rodrigues but unlike the methods they individu-

ally introduced, Euler-Rodrigues approach utilizes a different parameterization tech-

nique [49]. In order to compute the rotation matrix R in the 3D rotation group,SO(3),

corresponding to a rotation by an angle θ about a fixed reference axis specified by

the unit vector r = (rx, ry, rz)εR3, Euler-Rodrigues proposed following symmetrical

parameters.

β0 = cos(
θ

2
), (2.12)

β = [β1, β2, β3] = sin(
θ

2
)r, (2.13)

These parameters are constrained by following expression,

β2
0 + β.β = 1, (2.14)

and this means that the symmetrical parameters can be also used for defining a unit

quaternion proposed by W.R. Hamilton and the relation between Hamilton’s quater-

nions and Euler-Rodrigues parameters are shown as following [55].

q = q0 + q1 + q2 + q3, (2.15)

q0 = β0 = cos(
θ

2
), (2.16)

qvec = [q1,q2,q3] = [β1i, β2j, β3k], (2.17)
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where i, j and k denote the basic quaternions, spatial axes on space. Therefore, resul-

tant rotation matrix, R, can be shown as following [51].

R(q) =


2(q20 + q21)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 2(q20 + q22)− 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1

 . (2.18)

2.4.3 Cayley-Klein Parameters

Four complex parameters, denoted by α-β-γ-δ, defined by Cayley and Klein are also

used for characterizing the orientation of the system. In terms of these parameters,

the rotation matrix can be extracted with following expression [56].

R(α,β,γ,δ) =


0.5(α2 − γ2 + δ2 − β2) 0.5i(γ2 − α2 + δ2 − β2) γδ − αβ
0.5i(α2 + γ2 − δ2 − β2) 0.5(α2 + γ2 + δ2 + β2) −i(αβ + γδ)

βδ − αγ i(αγ + βδ) αδ + βγ

. (2.19)

2.4.4 Axis-Angle Representation

Represented with "axis", specified by unit vector r = (rx, ry, rz) that is denoting

the axis of rotation, and angle θ that is denoting the magnitude of rotation w.r.t. the

axis of rotation, axis-angle representation is another straightforward methodology to

interpret the attitude of a system. The one can obtain rotation matrix via applying

Rodrigues’ rotation formula in this representation and following result for rotation

matrix is to be achieved.

R(r, θ) =


(1− cos θ)r2x + cos θ (1− cos θ)rxry − rz sin θ (1− cos θ)rxrz + ry sin θ

(1− cos θ)rxry + rz sin θ (1− cos θ)r2y + cos θ (1− cos θ)ryrz − rx sin θ

(1− cos θ)rxrz − ry sin θ (1− cos θ)ryrz + rx sin θ (1− cos θ)r2z + cos θ

. (2.20)

2.4.5 Direction Cosine Matrix

Since Euler angles depiction has the singularity problem for large interval of rotations

and quaternion representation, even though being widely used in 3-D orientation es-

timation, is inefficient in 2-D attitude estimation because there are two redundant

parameters, in this study, DCM representation is chosen for attitude representation.
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Moreover, only three parameters of the DCM is to be used for roll and pitch angle

estimation even though this matrix has nine parameters within so that this makes

DCM approach as the best candidate for the current problem as stated in [24]. Let I

and S demonstrate the inertial and the sensor frame coordinates, respectively. I
SR is

the DCM of the sensor frame with respect to the inertial frame and to be denoted as

R for convenience. Using the conventional Z-Y-X Euler angle sequence, R can be

constructed as following,

R =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ cαsβsγ − cαsγ
−sβ cβsγ cβcγ

 . (2.21)

In this representation, α (yaw), β (pitch), and γ (roll) are the rotation angles about

the Z, Y, and X axes, respectively and c and s stand for cosine and sine trigonometric

functions. It is obvious that the two-axis attitude estimation is able to be executed

using only the last row of matrix R whose entries are functions of roll and pitch

angles, which are the angles to be estimated. These angles can be evaluated from

basic trigonometric identities as,

γ = tan−1
(
R32

R33

)
, (2.22)

β = tan−1

(
−R31√
R2

32 +R2
33

)
. (2.23)

Here Rij represents (i, j)th entry of matrix R. Therefore, this last row can also be

used as the state vector for this work as following,

x = RTe =


R31

R32

R33

 , (2.24)

where e vector is defined as e = [ 0 0 1 ]T . Note that when R31 = ±1 singularity

arises for this used Euler angle sequence. If the platform never experiences ±90◦

pitch angle such singularity will not occur. Otherwise, method of sequential rotations

can be used to avoid singularity [57]. Hereafter, left superscript "S" will be omitted

for convenience.

Table 2.2 demonstrates the advantages and disadvantages of representing the attitude

using the common three methods mentioned previously.
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Table 2.2: Summary of the various methods for the parameterization of the attitude

Representation Methods Advantages Disadvantages

Euler Angles Three parameters

Non-linear equations

Order of rotation is important

Singularity problem

DCM
Linear differential equations

No singularity

9 parameters

Computational complexity

Quaternion

Four parameters

No singularity

Simple computation

Hard to understand intiuitively

Transformation matrix is difficult to extract

2.5 Coordinate Transformations

Transformation between the coordinate frames can be accomplished via the methods

mentioned on previous sub-sections, in other words, direction cosines, Euler angles or

quaternions. Since all of these methods are able to provide direction cosine matrices,

in this study, transformations are done with DCMs.

2.5.1 Transformation Between ECI and ECEF

As shown in Figure 2.1, the reason behind the required transformation between ECI

and ECEF frames is the Earth’s rotation rate denoted with ωe that is approximately

7.2921159 × 10−5 radians per second. EI R is the DCM which is responsible for exe-

cuting transformation from the inertial frame to the ECEF frame [1].

E
I R =


cosωet sinωet 0

− sinωet cosωet 0

0 0 1

 . (2.25)

Inverse transformation, from ECEF to the inertial frame can be done via taking the in-

verse of EI R which is resulting with matrix I
ER since rotation matrices are orthogonal.

I
ER = (EI R)−1 = (EI R)T . (2.26)
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2.5.2 Transformation Between Navigation Frame and ECEF

E
NR is the DCM which is responsible for executing transformation from the navigation

frame to the ECEF frame and in order to do this transformation, the navigation frame

must be rotated θ−90 degrees around its east axis and then−90−λ around its z-axis

where θ and λ denote the latitude and the longitude [1].

E
NR =


− sinλ − sin θ cosλ cosθ cosλ

cosλ − sin θ sinλ cosθ sinλ

0 cos θ sin θ

 . (2.27)

Inverse transformation, from ECEF to the navigation frame can be done via taking

the inverse of ENR which is resulting with matrix N
ER since rotation matrices are or-

thogonal.
N
ER = (ENR)−1 = (ENR)T . (2.28)

2.5.3 Transformation Between Navigation Frame and Wander Frame

As mentioned while describing the wander frame, there is a wander angle, α, between

the navigation and wander frames. The wander frame contains a rotation about z-axis

of the navigation frame by this angle. So, NWR is the DCM which is responsible for

executing transformation from the wander frame to the navigation frame [1].

N
WR =


cosα − sinα 0

sinα cosα 0

0 0 1

 . (2.29)

Inverse transformation, from navigation to the wander frame can be done via taking

the inverse of N
WR which is resulting with matrix W

N R since rotation matrices are

orthogonal.
W
N R = (NWR)−1 = (NWR)T . (2.30)
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CHAPTER 3

ATTITUDE ESTIMATION METHODS

3.1 Static Attitude Determination Methods

As mentioned in the introduction section, Grace Wahba, a retired statistician today,

proposed a problem as known as "Wahba’s Problem", which becomes the main ques-

tion behind spacecraft attitude determination, in 1965 during her graduate years in

Stanford and Maryland Universities [58]. The question is basically to find the appro-

priate, three dimensional orthogonal R matrix that is minimizing the following cost

function.

J(R) =
1

2

N∑
i=1

ai|bi − Rri|2, (3.1)

where, ai is the set of non-negative weighting factors, ri and bi denote the unit vector

measurements resolved in the reference frame and body frame respectively for each

observation. After this point, numerous solutions regarding to extract an optimal so-

lution for the problem are proposed and detailed studies can be found in literature.

Following, some of the most recognized methods for attitude determination via de-

terministic methods are listed [59].

3.1.1 TRIAD Method

While the space race was escalated between the super-powers of the world, numer-

ous technological improvements, thought to be impossible to achieve, became reality

step-by-step. Satellite navigation was one of the important disciplines during these

years, and scientists were seeking for a solution that can be used in space environment

for accurately navigating the satellites.
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Johns Hopkins Applied Physics Laboratories was one of the centers for these studies,

and Harold Black was one of the people who were responsible United States’ transit

satellite system. At this time, in 1964, TRIAD methodology was developed by Black

and this approach becomes one of the earliest solutions for spacecraft orientation

determination before the researchers started to be interested with Wahba’s problem.

Black’s classical solution follows the steps to be given as following. Two unit vector

measurements resolved in body frame (b1, b2) form the first triad (Mb), while their

navigation frame counterparts (r1, r2) form the second triad (Mr). It is important to

emphasize that TRIAD algorithm assumes one of the unit vector measurements is less

accurate than other one and this less accurate information is to be disregarded [60].

Mb =
[
b1

b1×b2

|b1×b2| b1 × b1×b2

|b1×b2|

]
, (3.2)

Mr =
[
r1 r1×r2

|r1×r2| r1 × r1×r2
|r1×r2|

]
. (3.3)

Therefore, the orthogonal direction cosine responsible for transformation between

navigation and body frames can be obtained as following via TRIAD.

Mr = RMb, (3.4)

R = MrM−1b = MrMT
b . (3.5)

In addition, TRIAD algorithm itself facilitates to refine measurements coming from

sensors before Kalman or complementary filtering operations and today it is still a

preferable algorithm for various attitude determination tasks [39]. The ways to im-

prove TRIAD method are basically using more measurements and scaling the mea-

surements according to their weights. Following methods are devoted for improving

the TRIAD, one of the earliest solutions for attitude determination problem.

3.1.2 Davenport’s q-Method

In 1968, Paul Davenport, a NASA mathematician published his studies about finding

a solution for Wahba’s problem. The solution he came up with is known Davenport’s

q-Method today, and is the first elegant and useful algorithm for attitude determination

applications [61].
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In his famous solution that was used in NASA’s HEAO-1 and HEAO-B attitude deter-

mination system algorithms, Davenport defined the loss function in appropriate way

via using the orthogonality of attitude matrix R and rewriting (3.1) as following [62].

|bi − Rri|2 = |bi|2 + |Rri|2 − 2bi · (Rri) = 2− 2tr(RribTi ), (3.6)

and the loss/cost function becomes,

J(R) = λ0 − tr(RBT ), (3.7)

where,

λ0 =
N∑
i=1

ai, (3.8)

B =
N∑
i=1

aibirTi . (3.9)

Davenport then realized that the loss function is minimized when J ′
(R) is to be max-

imized. The expression for the derivative of loss function can be given as following.

J
′
(R) =

N∑
i=1

riRbi. (3.10)

Before to proceed, it is important to state that Davenport preferred to parameterize

the attitude direction cosine matrix in terms of quaternions and then gave the deriva-

tive of loss function. Quaternion parameterization of DCM is executed in line with

quaternion conventions defined in (2.11).

R(q) = (q20 − q · q)I3 + 2qqT − 2q0q̃. (3.11)

Note that, q is defined in line with (2.15). Now it is possible to substitute (3.11)

into (3.10), and after tedious and considerable matrix operations, following result

obtained.

J
′
(R(q)) = qTKq, (3.12)

where,

K =

σ zT

z S− σI3

 , (3.13)

σ = tr(B), (3.14)
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S = B + BT , (3.15)

z =


B23 −B32

B31 −B13

B12 −B21

 . (3.16)

Thus, the optimal attitude quaternion (qopt) is an eigenvector of matrix K.

Kqopt = λmaxqopt, (3.17)

This choice of matrix K as the largest eigenvector ensures to maximize J ′
(R) while

minimizing the main cost function. After this point, the problem turns into the eigen-

problem, the hardest part for the commerical computers in old days, that can be solved

in different ways.

3.1.3 Quaternion Estimator Method

Launched in 1979, NASA’s MAGSAT mission satellite carried a novel algorithm with

itself developed by Malcolm D. Shuster and known as QUEST algorithm that aims

to solve Wahba’s problem via a different perspective and within an efficient compu-

tational time interval [63]. The QUEST algorithm aims to provide attitude estimation

results within acceptable frequency interval which q-Method is not able to do. Now,

if one thinks (3.17) as eigenvalue problem, following expression is to be obtained.

(λmaxI4 −K)qopt = 04, (3.18)

and this expression can be split into two equations as,

(λmax − σ)q0 − zTq = 0, (3.19)

((λmax + σ)I3 − S)q− q0z = 0. (3.20)

If the characteristic function of (3.13) is given, one can obtain a fourth degree quartic

equation as following.

((λmaxtr(B))det[(λmax + σ)I3 − S)]− zTadj[(λmax + σ)I3 − S)]z = 0. (3.21)
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After this point, with adequate matrix algebra, one is able to obtain the largest root

of the quartic function via using Newton-Raphson iteration. Main advantage of the

QUEST algorithm is its computational efficiency and robustness.

3.1.4 Singular Value Decomposition Technique

Rather than to deal with quaternions like in Davenport’s and Shuster’s methods,

Markley proposed a matrix-based solution scheme for Wahba’s problem using the

SVD which is dealing with direction cosine matrices. Reported by Markley, even

though Davenport’s and Shuster’s methodologies behave more efficient and faster

than his own algorithm, the SVD is still preferable algorithm since it is able to pro-

vide eigenvalues and eigenvectors of covariance matrices that facilitate the analysis

process [61]. SVD of the matrix B can be given as,

B = UΣVT = Udiag([s1 s2 s3])VT , (3.22)

where s1 ≥ s2 ≥ s3 ≥ 0, and matrices U and V are orthagonal. Thus, after consider-

able matrix algebra, the optimal DCM, attitude matrix of the system can be given as

following [64].

Ropt = Udiag([1 1 detU detV])VT . (3.23)

3.1.5 Estimator of Optimal Quaternion Method

Daniel Mortari’s ESOQ method avoids the requirement for explicit rotations via deal-

ing with the components of the quaternion more symmetrically than QUEST method-

ology. Even though the strategy behind to locate the maximum magnitude component

of the quaternion and to determine λmax via Newton-Raphson iteration of the K ma-

trix of Davenport, Mortari observed that the optimal quaternion is to be evaulated

by normalizing not only the fourth column but any column of adj(λmaxI4 − K).

Whereas ESOQ might be preferred in order to exchange some computational bur-

den with straightforward indexing operations, it should not be forgotten that QUEST

method has a long history along the wide range of successful applications [65].
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3.1.6 Fast Optimal Attitude Matrix Method

FOAM method carries some of the same features with SVD methodology as QUEST

carries the similar features of Davenport’s method. Computation of λmax is done iter-

atively and simple matrix operations facilitates the determination of optimal attitude

matrix via avoiding singular value decomposition [66].

3.2 Complementary Filtering

The main principle behind the complementary filtering for attitude estimation can

be explained with following words. The attitude estimation can be executed accu-

rately if the motion of a body remains smooth and constant since the measurements

from accelerometer and magnetometer are relatively accurate and reliable at this time

while the calculated attitude from gyroscope integration is to diverge within a very

short period because of the gyroscope’s characteristic errors. On the other hand, if

the motion of a body becomes agile, the accelerometer’s output is disturbed by exter-

nal acceleration that makes the estimated attitude unreliable while the gyroscope can

mitigate such errors at this time. So, it can be stated that accelerometer and gyroscope

can "complement" each other in the frequency domain and this frequency-based be-

haviour of the two inertial sensors is the fundamental principle of attitude estimation

from inertial sensors using complementary filters [67]. So, in this study, as bench-

mark methods, two of the most common CFs are selected. These are Mahony’s and

Madgwick’s filters, used in wide perspective for orientation estimation.

3.2.1 Mahony’s Filter

Mahony presents a complementary filtering method which is basically a proportional-

integral compensation approach to the attitude estimation problem via fusing the gy-

roscope and accelerometer measurements [25]. After obtaining gyro and accelerome-

ter measurements, firstly, orientation error is calculated by using accelerometer mea-

surements while gyro measurements are updated with PI compensation of accelera-

tion effect.
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Then, orientation incremental calculation and finally, numerical integration for ob-

taining the estimated quaternion can be done. Figure 3.1. demonstrates the visual

overview of Mahony’s filter [68].

Figure 3.1: Overall algorithm scheme of Mahony’s filter

Steps of Mahony’s algorithm can be summarized via interpreting Figure 3.1. as fol-

lowing,

• Step 1: Acquisition of Sensor Measurements,

• Step 2: Orientation Error Computation via using Accelerometer Measurements,

v(IWqest,t) =


2(q2q4 − q1q3)
2(q1q2 + q3q4)

(q21 − q22 − q23 + q24)

 , (3.24)

et+1 = Iat+1 × v(IWqest,t), (3.25)

ei,t+1 = ei,t+1 + et+1∆t. (3.26)

• Step 3: Updating the Gyroscope Measurements with PI Compensation,

Iωt+1 = Iωt+1 + Kpet+1 + Kiei,t+1. (3.27)
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• Step 4: Quaternion Derivative Calculation via using Gyroscope Measurements,

I
W q̇ω,t+1 = 0.5IWqest,t ⊗ [0Iωt+1]

T . (3.28)

• Step 5: Computation of the Estimated Quaternion via Numerical Integration.

I
Wqest,t+1 = I

Wqest,t + I
W q̇ω,t+1∆t. (3.29)

It is important to emphasize that these steps should be repeated in each sampling and

only tunable parameters of the algorithm are PI gains Kp and Ki.

3.2.2 Madgwick’s Filter

Madgwick treats the attitude estimation as a minimization problem and proposes a

CF method, which is basically depending on the gradient decent strategy that uses

the steepest decent algorithm to solve the problem recursively [26]. After obtaining

gyro and accelerometer measurements, firstly, orientation incremental components

from accelerometer and gyro are independently calculated. It is important to empha-

size that the orientation increment from accelerometer is compensated with steepest

decent gradient algorithm against disturbances and this algorithm is basically con-

trolled by one parameter. Then, orientation incremental calculation and finally, nu-

merical integration for obtaining the estimated quaternion can be done. Figure 3.2.

demonstrates the visual overview of Madgwick’s filter [69].

Figure 3.2: Overall algorithm scheme of Madgwick’s filter
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Steps of Madgwick’s algorithm can be summarized via interpreting Figure 3.2. as

following,

• Step 1: Acquisition of Sensor Measurements,

• Step 2: Quaternion Derivative Calculation via using Accelerometer Measure-

ments,

∇f(IWqest,t,
Wg, Iat+1) = JT (IWqest,t,

Wg)f(IWqest,t,
Wg, Iat+1). (3.30)

• Step 3: Quaternion Derivative Calculation via using Gyroscope Measurements,

I
W q̇ω,t+1 = 0.5IWqest,t ⊗ [0Iωt+1]

T . (3.31)

• Step 4: Fusing the Information Sources (Accelerometer and Gyroscope).

I
W q̇est,t+1 = 0.5IWqest,t ⊗ [0Iωt+1]

T . (3.32)

I
Wqest,t+1 = I

Wqest,t + I
W q̇ω,t+1∆t. (3.33)

It is important to emphasize that these steps should be repeated in each sampling

and only tunable parameter of the algorithm is β which is the trade-off weighting

parameter between the gyroscope and accelerometer measurements.

3.3 Kalman Filtering

In order to estimate the states of a linear dynamic systems containing white Gaussian

noise with using the information from measurements of the system also corrupted

with white Gaussian noise, the Kalman filter algorithm is widely used today in nu-

merous disciplines [70]. Table 3.1 and Figure 3.3 demonstrate the terminology behind

the Kalman filtering operation and overall summary of recursive Kalman filtering pro-

cedure respectively as following.
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Table 3.1: Terminology of Kalman filtering

Φ: State transition matrix H: Observation matrix

x: State vector Pk(−): A priori estimation covariance matrix

x̂k(−): A priori value of the estimated state vector Pk(+): A posteriori estimation covariance matrix

x̂k(+): A posteriori value of the estimated state vector w: Process noise

z: Measurement vector v: Measurement noise

K: Kalman gain Q&R: Process and measurement noise covariance matrices

Figure 3.3: Overall summary of Kalman filtering procedure

Recursive characteristics of KF have been investigated on Figure 3.3, but more accu-

rate algorithm flow diagram with following steps are provided for ease of understand-

ing [1].

• Step 1: Initialization of the filter via providing initial estimates for states and

estimation covariance matrix which is the measure of how much are known

from the initial state estimates. Moreover, the measurement noise covariance

matrix R and the system noise covariance matrix Q are required to be provided

in order to initialize the filter. Prior knowledge about the system or adaptive

structures within the algorithm are required to obtain the best estimates about

the states.

• Step 2: Initial state is propagated via the aid of state transition matrix Φ, eval-

uated before the epoch, and propagated state is to be shown with x̂k(−) or x−k .
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This is the first prediction step within the algorithm.

• Step 3: In second step of prediction procedure in KF algorithm, estimation

covariance matrix is propagated from previous epoch. State transition matrix,

system noise covariance matrix and previous value of estimation covariance

are responsible for the propagation and it is important to emphasize that if the

system uncertainties/process noise is high, estimation covariance is to increase

resulting with a lower confidence in the predicted states.

• Step 4: In the fourth step, correction/update procedure of the filter is executed.

In this manner, Kalman gain Kk is computed and note that this calculation

is dependent on a priori estimation covariance Pk(−), the measurement noise

covariance matrix Rk and output design matrix Hk.

• Step 5: In the second part of the correction/update procedure of the filter, pre-

dicted or a priori states x̂k(−) are corrected whenever a measurement is availabe

for the algorithm. Corrected states are evaulated based on the difference be-

tween the actual measurements zk and the predicted measurements Hkx̂k(−).

The new information about the states from correction come from this difference

and when Kalman gain is relatively smaller, the new information obtained from

the measurement is given less weight and the a priori estimate is considered to

be relatively accurate but when Kalman gain is relatively bigger, difference is

weighted heavier and it is added to the a priori estimate in order to update this

to the a posteriori estimate x̂k(+).

• Step 6: Correction of the state estimate brings the end for one epoch of the re-

cursive KF loop. After this, update of a priori estimation covariance is also done

and it is propagated through to the a posteriori estimation covariance Pk(−) and

KF goes a step further.

This brief discussion gives essentials about the Kalman filtering, but as mentioned in

the literature survey, there are numerous different KF algorithms typically for nonlin-

ear systems e.g. extended Kalman filter, unscented Kalman filter and serving different

purposes.
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3.3.1 Tilt Angles Estimation via Kalman Filtering

In this study, in order to execute Kalman filtering algorithm for attitude estimation, a

linear KF structure is selected with following process and measurement models. The

process model is governed by the following equation as,

x−t = Φt−1xt−1 + wt−1, (3.34)

where "−" superscript denotes the prediction. Φ is the state transition matrix that

propagates the system states from previous time and w is the noise vector for the pro-

cess model, assumed to be zero mean white Gaussian. In order to derive expressions

for the state transition matrix and the process noise covariance matrix, time propaga-

tion of the rotation matrix, R, is to be investigated. First order approximation for this

propagation with gyro measurements can be given as,

Rt = Rt−1 (I3 + ∆tω̃t−1) , (3.35)

where ∆t is the sampling time and ω̃t−1, is skew-symmetric matrix that includes ideal

gyro rates of the body at time t− 1. Instead of propagating the whole rotation matrix,

the state vector itself can be propagated for estimating the attitude. The propagation

of the state vector, given on the second section as the last row of DCM, can be given

as following,

x−t = (I3 + ∆tω̃t−1)
T xt−1. (3.36)

However, it is obvious that the ideal angular rates cannot be obtained by gyroscopes

due to the existence of the measurement noise. Hence, (3.36) can be rewritten with

the real gyroscope signal (yG = Sω + nG) as following,

x−t = (I3 −∆tỹG,t−1) xt−1 + ∆t(−x̃t−1)nG. (3.37)

Therefore, the state transition matrix and process noise can be defined from (3.37) as,

Φt−1 = I3 −∆tỹG,t−1, (3.38)

wt−1 = ∆t(−x̃t−1)nG. (3.39)

Finally, the process noise covariance matrix is obtained via expectation operator ap-

plied into the process noise. Thus, the resultant matrix (Qt−1) can be redefined as,
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Qt−1 = E[wt−1w
T
t−1] = −∆t2x̃t−1ΣGx̃t−1, (3.40)

where ΣG is the noise covariance matrix of the gyroscope which is given as σ2
GI3

assuming that the variance of gyro noise, σ2
G, is distributed equal to all axes for the

same gyro. On the other hand, the measurement model is governed by the following

equation as,

zt = Hxt + vt, (3.41)

where z is the measurement vector, H is the output matrix, relating the system states

to the outputs and v is the noise vector for the measurement model, assumed to be

zero mean white Gaussian.

H = gI3, (3.42)

vt = εt + nA, (3.43)

where εt and nA are time-varying error during the motion and the accelerometer noise

assumed to be uncorrelated, zero-mean white Gaussian noise. These two uncorrelated

noise terms lead to a measurement noise covariance matrix as follows,

Mt = E[vtv
T
t ] = Σacc + ΣA. (3.44)

Here ΣA is the covariance matrix for the accelerometer measurement noise and Σacc

is the covariance matrix for the acceleration modelling error. ΣA is straightforward to

set as σ2
AI3 assuming that that the variance of accelerometer noise, σ2

A, is distributed

equal for all axes for the same accelerometer. However, time varying component of

(3.44), Σacc, cannot be analytically obtained since the actual external acceleration

when the measurements are sampled at each step is unknown.

Following benchmark methods from the literature seek an efficient strategy for com-

pensating the external disturbances via manipulating the measurement noise covari-

ance matrix or adding magnetometer measurements into the system for estimating the

attitude better.
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3.3.1.1 Lee’s Filter

Lee proposed a KF structure, which is able to adapt itself by automatically tuning the

unknown component of the measurement noise covariance matrix [34]. As following

formulation suggests this method assumes that the external acceleration is distributed

the same along all axes:

Σacc = 3−1c2a||at−1||2I3. (3.45)

In order to derive expressions for the measurement model components, Lee split (2.3)

into two equations given as,

a−t = caat−1, (3.46)

εt = at − a−t , (3.47)

where a−t is the predicted (a priori) acceleration at time t, and at−1 is the estimated

(a posteriori) external acceleration at time t − 1. Now, it is possible to rewrite (2.2)

via inserting (2.3) into the acceleration term in (2.2) and showing the gravity vector

resolved in the body frame as the product between the state vector and scalar gravity

as following,

yA,t − caat−1 = gxt + εt + nA. (3.48)

Here, the scalar gravitational acceleration is given as g = 9.81m/s2. Therefore, via

comparing (3.41) and the resultant equation, (3.48), zt becomes,

zt = yA,t − caat−1, (3.49)

3.3.1.2 Harada’s Filter

Harada proposed a switch-gain KF structure, which is able to adapt the measurement

noise covariance matrix by switching its value based on external acceleration. During

the highly disturbed/accelerated scenarios, the filter basically ignores the measure-

ments coming from the accelerometer [71]. Following formulation demonstrates the

logic of the algorithm where δ is the threshold and zt = yA,t.

Σacc =

0, if |||yA,t|| − g| ≤ δ,

∞, otherwise.
(3.50)
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3.3.2 Full Attitude/Orientation Estimation via Kalman Filtering

Rather than to evaluate the tilt angles (i.e. roll and pitch), some applications require

the calculation of full attitude, orientation of the system. In this case, layout of MARG

sensors is required and quaternion representation is preferred within the developed

algorithms.

3.3.2.1 Guo’s Filter

Guo et al proposed a quaternion-based fast Kalman filter algorithm in order to deal

with the orientation estimation problem. In this method, the process model is formed

via using kinematic quaternion equation while the attitude quaternion from accelerometer-

magnetometer fusion is preferred as the backbone of the measurement model [72].

So, following equations demonstrate the prediction step of the algorithm using quater-

nion kinematic equation.

q−t = I4 +
∆t

2
[Ω×]qt−1, (3.51)

P−t = [I4 +
∆t

2
[Ω×]]Pt−1[I4 +

∆t

2
[Ω×]]T + Q, (3.52)

where,

[Ω×] =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0

 . (3.53)

After the prediction step, state and covariance correction can be done via the aid of

Kalman gain as following.

Kt = P−t [P−t + R]−1, (3.54)

qt = q−t + Kt(qmeas,t − q−t ), (3.55)

Pt = [I4 −Kt]P−t . (3.56)
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3.3.2.2 Dai’s Filter

Dai et al proposed a lightweight quaternion-based extended Kalman filter algorithm

in order to deal with the orientation estimation problem with low-cost sensor frame-

works. In this method, the process model is formed via using kinematic quaternion

equation similar to Guo’s filter while a simplified measurement model formed by

accelerometer and magnetometer measurements is used [33]. Following equations

demonstrate the prediction step of the algorithm using quaternion kinematic equa-

tion.

q−t = I4 +
∆t

2
[Ω×]qt−1, (3.57)

Ft = I4 +
∆t

2
[Ω×], (3.58)

P−t = FtPt−1FTt + Q, (3.59)

After the prediction step, state and covariance correction can be done via the aid of

Kalman gain. It is important to note that again the measurement vector is not sole

attitude quaternion as Guo’s study and one might expect that the computational time

advantage is on Guo’s filter. However, Dai stated that the LEKF is slightly faster

than Guo’s FKF and the reason is given as rather than to deal with extracting the at-

titude quaternion from accelerometer-magnetometer fusion, simplified measurement

components are to reduce the computational time of the algorithm [33].

Kt = P−t Ht[HtP−t HT
t + R]−1, (3.60)

zmeas,t =
[
ax ay az

aymz−azmy

mN

]T
(3.61)

qt = q−t + Kt(zmeas,t −Htq−t ), (3.62)

Pt = [I4 −KtHt]P−t . (3.63)
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CHAPTER 4

ROBUST KALMAN FILTERING FOR ATTITUDE ESTIMATION

4.1 Adaptive Kalman Filtering with Noise Covariance Scaling

Adaptive measurement noise covariance scaling methodology is basically to change

KF gain via scaling the measurement noise covariance matrix autonomously during

the estimation process. Therefore, it means that the filter can adapt itself to this new

environment via comparing theoretical and real values of the innovation covariance

[40, 41] when there exist external disturbances on the measurement system so that

these effects can be compensated. Definition of innovation in KF structure is,

et = zt −Hx−t (4.1)

where x−t is the predicted state vector and et is the innovation sequence. Kalman filter

gain changes with varying innovation covariance if there exist mismatches between

the process and measurement models, therefore the innovation covariance after filter

adaptation can be defined as following with KF gain,

Ĉet = HP−t HT + StMt (4.2)

Kt = P−t HT (HP−t HT + StMt)
−1

(4.3)

where P−t is the predicted covariance matrix during the KF process and St is the

measurement noise covariance matrix scaling factor (SF). If the real value of KF

error exceeds the theoretical error, which can be shown as,

tr(ete
T
t ) ≥ tr(HP−t HT + Mt) (4.4)

filtering process must be done adaptively. In (4.4), tr(.) denotes the trace operation

of the related matrix.
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There are two possible options for scaling the measurement noise covariance matrix,

single-scale factor and multiple-scale factor options, respectively. The idea to apply

this strategy into the attitude estimation problem is covered in one of our recent works

[42]. For both approaches the common frame of the algorithm is similar and presented

in the Figure 4.1. Calculation of Σacc differs in two approaches as will be explained.

Figure 4.1: Common frame for the proposed RKF with scaling algorithms

4.1.1 Single-Scale Factor Method

In the first approach, in the SSF is introduced directly to modify the Mt matrix as in

(4.3). In order to obtain the SSF, first, let us insert St into the inequality in (4.4) and

take the condition where two innovations are equal as the basis as,

tr(ete
T
t ) = tr(HP−t HT ) + Sttr(Mt) (4.5)

therefore, St can be expressed as,

St =
eTt et − tr

{
HtP

−
t HT

t

}
tr {Mt}

(4.6)

If there is no external acceleration or disturbance detected i.e. condition given in (4.4)

is not met, St simply becomes St = 1.
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4.1.2 Multiple-Scale Factor Method

In the second approach, the MSF methodology is introduced. Rather than to adap-

tively tune the Kalman gain via scalar factor, it becomes appropriate to use a matrix

structure with multiple factors since SSF approach rejects the measurements from all

channels, even if the external acceleration is sensed in one direction. Therefore, using

the same method for derivation of the SSF, but instead estimating a matrix composed

of multiple factors St can be written as,

St = (ete
T
t −HP−t HT )M−1

t (4.7)

Same as mentioned, if there is no external acceleration or disturbance detected i.e.

condition given in (4.4) is not ensured again, now, St simply becomes as following.

St = diag(s1, s2, s3), (4.8)

si = max {1,Sii} , i = 1, 2, 3. (4.9)

It is very important to note that Mt in the proposed methods equals to ΣA matrix

representing the noise distribution of the accelerometer and it is always diagonal.

Therefore, divergence problems of KF process would be out of the question.

4.2 Adaptive Kalman Filtering with Noise Covariance Tuning

In this section, the problem of tuning the measurement noise covariance matrix is to

be covered and two different adaptive tuning approaches, which have common back-

ground, are to be proposed. Theoretical background behind both the proposed algo-

rithms is performing an innovation based adaptive tuning for the measurement noise

covariance matrix. In line with the idea in our recent work [43], the method relies on

comparison of the theoretical and real values of the innovation covariance. Therefore,

when external acceleration exists, the filter can adapt itself to this new environment.

Innovation in KF structure was defined at (4.1) and if there exist mismatches between

the process and measurement models, due to the unaccounted external accelerations,

KF gain changes with varying innovation covariance that can be represented as,

Ĉet = HP−t HT + Σ̂acc + ΣA, (4.10)
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and KF gain becomes,

Kt = P−t HT (HP−t HT + Σ̂acc + ΣA)
−1
, (4.11)

where P−t is the predicted covariance matrix during the KF process and Σ̂acc is the

estimate for Σacc matrix given in (4.11). The real innovation covariance Ĉet is to be

presented individually for the proposed two approaches. It is the fact that, in steady-

state, if the real value of error for an optimally running KF exceeds the theoretical

error as,

tr(ete
T
t ) ≥ tr(HP−t HT + Σ̂acc + ΣA), (4.12)

there is external acceleration and the filtering process must be executed adaptively. In

(4.12), tr(.) denotes that the trace of the matrix. Only the real innovation covariance

at time t is considered to be able to detect the instantaneous variations in the external

acceleration. There are two possible options for tuning the measurement covariance

matrix, STF and MTF options, respectively. These two different approaches with a

novel perspective are to be proposed and explained next.

For both approaches the common frame of the algorithm is similar and presented in

the Figure 4.2. Calculation of Σacc differs in two approaches as will be explained.

Figure 4.2: Common frame for the proposed RKF with tuning algorithms
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4.2.1 Single-Tuning Factor Method

In the first approach, compensating the external acceleration in all three-axes equally

is considered and the Σ̂acc matrix is estimated as a matrix whose diagonals are all

equal and tuned with a STF. Denoting this STF as St, first let us write the Kalman

gain as,

Kt = P−t HT (HP−t HT + StI3 + ΣA)
−1
. (4.13)

In this case, by representing the real innovation covariance as Ĉet = ete
T
t , (4.10) can

be rewritten as,

ete
T
t = HP−t HT + StI3 + ΣA, (4.14)

having trace of both side of the equation gives,

eTt et = tr
{
HtP

−
t HT

t

}
+ 3St + tr {ΣA} . (4.15)

Then the STF to be used for this approach becomes,

St =
eTt et − tr

{
HtP

−
t HT

t

}
− tr {ΣA}

3
. (4.16)

Therefore, the RKF with STF approach is able to perform the gain correction for

the KF adaptively in case of any external acceleration by defining the estimated co-

variance matrix as Σ̂acc = StI3. If the inequality condition mentioned in (4.12) is

met, then St and innovation covariance automatically increase resulting with smaller

Kalman gain. Thus, smaller gain improves the attitude estimation quality via reduc-

ing the effect of the external accelerations. In all other cases when the inequality

(4.12) does not hold, the filter is assumed to operate optimally, so there is no need to

introduce an additional measurement covariance Σ̂acc. In this case, and also when the

algorithm returns a negative value of St, implying negative covariance, which has no

physical significance, the STF is simply set as St = 0. Despite proposing a straight-

forward solution to reflect the covariance of the unaccounted modeling errors into the

Kalman gain, the STF approach tunes the covariance with a single factor by ignoring

any uneven external acceleration that might be experienced in three axes. To solve

this problem, next, we propose another tuning approach with MTFs.
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4.2.2 Multiple-Tuning Factor Method

In the second approach, the MTF methodology is introduced with same modifications

defined in previous approach. However, rather than to adaptively tune the Kalman

gain via scalar factor, it becomes appropriate to use a matrix structure with multiple

factors since STF approach rejects the measurements from all channels, even if the

external acceleration is sensed in one direction. Nevertheless, MTF approach only

disregards the measurements of the axis in which external acceleration is sensed. In

this case, by also redefining the innovation covariance as,

Ĉet =
1

µ

k∑
j=k−µ+1

eje
T
j , (4.17)

(4.11) can be rewritten to give the condition for estimating the Σ̂acc matrix,

1

µ

k∑
j=k−µ+1

eje
T
j = HP−t HT + St + ΣA. (4.18)

Here St is the tuning matrix composed of MTFs and µ defines the size of the moving

window for innovation covariance calculation. By rearranging we can have the tuning

matrix as,

St =
1

µ

k∑
j=k−µ+1

eje
T
j −HtP

−
t HT

t −ΣA. (4.19)

Therefore, RKF with MTF approach is able to perform the optimal correction as STF

does, but with an improved way since multiple factors are used. Element/s of St

,which correspond to the axes with external acceleration, adapt itself if the inequality

condition mentioned in (4.12) is met, and this provides efficient tuning procedure for

the measurement noise covariance matrix. It should be emphasized that,

• Rather than using directly the St matrix as the covariance estimate, having the

diagonal elements is required since there is no assumed correlation in between the

external accelerations (and modeling errors) sensed in each axis.

• A negative covariance value does not have physical significance, so if the estima-

tion result is negative, setting the estimate to 0 is necessary.

Thus the final estimate for Σ̂acc can be obtained as,

Σ̂acc = diag(s1, s2, s3), (4.20)
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si = max {0,Sii} , i = 1, 2, 3. (4.21)

Here, Sii represents the ith diagonal element of the matrix S. As mentioned, if the

there is external acceleration, S changes the measurement noise covariance matrix

and in all other cases, diagonal values are zero. Following section is to demonstrate

the proposed methods and compare their results with those of a number of benchmark

algorithms using the real-world datasets for MAVs.
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CHAPTER 5

EXPERIMENTAL RESULTS

Results are given as the evaluation and performance comparison of the proposed adap-

tive KF methods including two different strategies with two different approaches and

selected benchmark methods. In this case, there are experiment-based and simulation-

based options for the extraction of the results. Since the experimental data represent

the real-world better in terms of random and sudden external disturbances, in this the-

sis study, two notable experimental UAV datasets from the literature and the dataset

for a ground vehicle retrieved from SAGE are used.

Detailed information about the dataset environment, experimental and instrumental

setup used during the data collection can be found in the papers of these studies

referenced in the following subsections. Attitude estimation is executed with the

benchmark algorithms explained in the previous section and some basic algorithms

excluded from this section due to absence of any adaptation against external dis-

turbances. Excluded methods are gyroscope-only and accelerometer-only attitude

estimation in which the attitude estimation problem is tried to be solved by only re-

lying gyro and accelerometer measurements. Four different RKF method proposed

in this thesis study are tested and evaluated. Moreover, rather than to estimate the

attitude in 2D with the methods mentioned, Guo’s and Dai’s filters are implemented

into the study for 3D attitude estimation with the magnetometer measurements. Mag-

netometer measurements are created by using IGRF and these filters are executed for

estimating the attitude in 3D. The reason why to add these two full attitude filters is

that to see even though the magnetometer measurements are taken into account, the

estimation performance cannot surpass the proposed RKF algorithms in existence of

the external acceleration and disturbances during the motion.
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5.1 The Zurich Urban MAV Dataset Results

Provided by Majdik et al from University of Zurich, the dataset is collected with a

camera equipped MAV that was flown within urban areas of Zurich at low altitudes.

The 2 km dataset includes time synchronized aerial high-resolution images, global

positioning system, GPS and IMU sensor data, ground-level street view images, and

ground truth data that makes this dataset is suitable for navigation studies [44]. Table

5.1 demonstrates the attitude estimation results on this specific dataset.

Table 5.1: Attitude Estimation Results on Zurich MAV Dataset

Methods Roll RMSE (°) Pitch RMSE (°)

Gyroscope-Only 69.0203 34.8541

Accelerometer-Only 3.3078 2.2880

Mahony’s Filter 1.0216 0.9231

Madgwick’s Filter 1.6038 1.2753

Lee’s Filter 0.9795 0.9152

Harada’s Filter 2.3409 2.1916

Guo’s Filter 2.3651 1.9623

Dai’s Filter 2.3441 1.9134

Standard KF (St=0) 3.0872 2.1149

RKF (SSF) / Approach 1 1.2256 1.2117

RKF (MSF) / Approach 2 0.6700 0.5764

RKF (STF) / Approach 1 0.6741 0.5805

RKF (MTF) / Approach 2 0.5437 0.4627

Obviously, the performance of the proposed method with its scaling approach, i.e.

RKF with MSF is slightly improving the estimation quality of the KF-based Lee’s

filter. Nevertheless, the accuracy of the proposed method with its second tuning ap-

proach (RKF with MTF) is superior against all of the benchmark algorithms, even

Lee’s filter, which is one of the widely accepted and reliable solutions for attitude

estimation problem. Figure 5.1, 5.2, 5.3 and 5.4 visually demonstrate the estimation

performance of the proposed RKF algorithms with respect to Lee’s filter.
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Figure 5.1: Roll and pitch angle estimation errors for the Zurich MAV dataset for

RKF with MTF

Figure 5.2: Roll and pitch angle estimation errors for the Zurich MAV dataset for

RKF with STF
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Figure 5.3: Roll and pitch angle estimation errors for the Zurich MAV dataset for

RKF with MSF

Figure 5.4: Roll and pitch angle estimation errors for the Zurich MAV dataset for

RKF with SSF

58



The reason behind this superior performance in terms of the attitude estimation accu-

racy is basically the capability of the filters for representing the measurement noise

covariances more accurately whenever the platform is subjected to the external accel-

erations during the motion. Better construction of the measurement noise covariance

matrix via using multiple factors in case of acceleration and the accurate compensa-

tion of external accelerations improve the attitude estimation performance during the

filtering process. This is a feature that Lee’s filter cannot provide using (3.40) as the

covariance for external accelerations. Standard KF (where St = 0) is less accurate

than the Lee’s filter as it does not apply any covariance correction for external ac-

celerations. Harada’s filter, on the other hand, can estimate the attitude better than

the standard KF in this scenario by completely ignoring the measurements when the

external acceleration is detected. The RKF with SSF, MSF and STF can increase the

accuracy with a better representation of the covariance compared to (3.40), but falls

behind the RKF with MTF as using STF ignores all measurements regardless of the

actual direction that the platform is accelerating.

5.2 EuRoC MAV Dataset Results

EuRoC visual-inertial dataset is collected on board a MAV that was flown on an

industrial machine hall and Vicon room that is specially designed for localization

studies. The dataset includes synchronized stereo images, IMU measurements and

accurate 6D ground truth pose and in this work, machine hall datasets are used in

which the ground truth values are extracted by simultaneous localization and map-

ping algorithms [45]. Note that, this dataset is for different motion profiles including

relatively higher external accelerations and more agile maneuvers than the Zurich

MAV dataset. Ranging from slow flights in a small, cluttered workspace to dynamic

flights in a large hall, EuRoC MAV dataset allows evaluating the algorithms in various

flight conditions. Readers may refer to these studies for the details of the datasets, cal-

ibration procedure and ground truth evaluation. For all evaluations the process noise

covariance matrix and ΣA part of the measurement noise covariance matrix are set in

accordance with the sensor specifications. Table 5.2, 5.3 and 5.4 are given in order to

show the attitude estimation results for these dataset.
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Table 5.2: Attitude Estimation Results on EuRoC MAV Dataset

(Machine Hall 01)

Methods Roll RMSE (°) Pitch RMSE (°)

Mahony’s Filter 7.0809 2.4944

Madgwick’s Filter 7.0607 2.3238

Lee’s Filter 1.6999 1.3085

Harada’s Filter 1.8993 1.4014

Guo’s Filter 2.7652 1.6617

Dai’s Filter 2.5241 1.6143

Standard KF (St=0) 3.4809 1.8592

RKF (SSF) / Approach 1 1.2256 1.2117

RKF (MSF) / Approach 2 1.1529 1.2070

RKF (STF) / Approach 1 1.2211 1.1436

RKF (MTF) / Approach 2 1.0629 1.1783

Table 5.3: Attitude Estimation Results on EuRoC MAV Dataset

(Machine Hall 02)

Methods Roll RMSE (°) Pitch RMSE (°)

Mahony’s Filter 6.1953 2.3371

Madgwick’s Filter 8.9748 3.1815

Lee’s Filter 1.7447 0.8074

Harada’s Filter 2.9069 1.2201

Guo’s Filter 2.3651 1.9623

Dai’s Filter 2.3441 1.9123

Standard KF (St=0) 2.3350 0.9962

RKF (SSF) / Approach 1 1.2256 1.2117

RKF (MSF) / Approach 2 1.1805 0.5312

RKF (STF) / Approach 1 1.2565 0.5156

RKF (MTF) / Approach 2 1.1940 0.4973
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Table 5.4: Attitude Estimation Results on EuRoC MAV Dataset

(Machine Hall 05)

Methods Roll RMSE (°) Pitch RMSE (°)

Mahony’s Filter 5.6700 2.1121

Madgwick’s Filter 6.9964 2.3728

Lee’s Filter 2.1221 0.9282

Harada’s Filter 4.7355 1.4126

Guo’s Filter 2.3651 1.9623

Dai’s Filter 2.3441 1.9123

Standard KF (St=0) 2.4533 1.9092

RKF (SSF) / Approach 1 1.2256 1.2117

RKF (MSF) / Approach 2 1.1529 1.2070

RKF (STF) / Approach 1 1.8415 0.4714

RKF (MTF) / Approach 2 0.8823 0.4021

Note that three individual dataset with increasing motion complexity are used in at-

titude estimation process. As to the Lee’s filter, RKFs provide accurate estimates

compared to other benchmark algorithms in all other cases. In the end, its accuracy

depends on how well the Σacc can be represented for the actual acceleration profile

that the platform is experiencing. Depending on the acceleration profile, Harada’s

filter may provide less accurate results even compared to the standard KF, since it

does not use the measurements at all when the acceleration is detected. The pro-

posed RKFs, on the other hand, consistently assure the highest estimation accuracy.

Even the STF approach brings about noteworthy improvement in the accuracy despite

mapping all three channel accelerations to a STF, which has deficiencies in practice

as discussed. Together with the results in Tables 5.2, 5.3 and 5.4, it becomes clear that

the performance of the CFs deteriorate due to the existence of highly dynamic sce-

narios whereas KF-based Lee’s filter shows the best performance among the bench-

mark algorithms. Moreover, Figure 5.5-5.8 visually demonstrate (for Machine Hall

05 dataset) that the proposed RKF algorithms, compared to Lee’s KF, achieves better

accuracy during the whole flight course of the MAV.
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Figure 5.5: Attitude angles estimation errors for the EuRoC MAV dataset for RKF

with MTF (Machine Hall 05)

Figure 5.6: Attitude angles estimation errors for the EuRoC MAV dataset for RKF

with STF (Machine Hall 05)
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Figure 5.7: Attitude angles estimation errors for the EuRoC MAV dataset for RKF

with MSF (Machine Hall 05)

Figure 5.8: Attitude angles estimation errors for the EuRoC MAV dataset for RKF

with SSF (Machine Hall 05)
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As seen from the Figure 5.5-5.8, the RKF with MTF, compared to Lee’s KF, achieves

better accuracy in terms of attitude estimation during the whole flight course of the

MAV. Occasionally, the attitude estimation error for Lee’s filter increases and be-

comes as large as 8◦. However, the error for RKF with MTF is within the ±2◦ and

±1◦ bounds for roll and pitch angles, respectively, throughout the whole duration.

Moreover, Figure 5.9 visualizes the MTFs and the sensed external accelerations in all

three sensor axes in this scenario. External acceleration is computed by subtracting

the gravity vector in the body frame, which is obtained using the true orientation,

from the accelerometer measurements. Compensation effect of adaptation by means

of variations in the MTFs can be clearly seen especially after the 20th second.

Figure 5.9: External acceleration profile during the motion and response of tuning

factors (EuRoC Machine Hall 05)

Moreover, it is important to see whether the filter works efficiently and without any

problems. Therefore, Figure 5.10, 5.11 and 5.12 are given in order to show the error

residuals (variation between filter estimations and real values) for the states during the

estimation process is within the 3σ boundaries of the error covariance matrix. Finally,

Figure 5.13 demonstrates the effects of different ca values, the cutoff frequency of the

low-pass filter for external accelerations, on the accuracy of the algorithm. Results are

compared with those of Lee’s filter, which depends on the set ca values for external

acceleration compensation. For the whole spectrum of ca values, the RKF with MTF

repeatedly prevails in terms of accuracy.
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Figure 5.10: Estimation error and 3σ error boundaries for RKF with MTF

Figure 5.11: Estimation error and 3σ error boundaries for RKF with STF

It is observed from the Figure 5.10-5.11 that the proposed algorithms with tuning

approach demonstrate enhanced performance in terms of the estimation performance

with respect to Lee’s filter given on Figure 5.12. Lee’s filter cannot squeeze the

estimation error within the 3σ boundaries due to its inefficiency for setting the optimal

measurement noise covariance matrix during the disturbed and accelerated motion.
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Figure 5.12: Estimation error and 3σ error boundaries for Lee’s filter

Figure 5.13: Comparison of filter accuracies for different cutoff frequency constant

(ca) values (EuRoC Machine Hall 05)

As expected, while the cut-off frequency is lowered such that the external acceler-

ations are not low-pass filtered, the accuracy gap in between two filters increases.

Specifically for this dataset, Lee’s filter works better only if the oscillations in the

external accelerations can be filtered out with larger ca values. Even in this case the

RKF with MTF is almost two times more accurate as already discussed.
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Table 5.5: Algorithm Execution Time of Each Filter for Zurich MAV Dataset over

100 Independent Runs

Method Madgwick’s Filter Mahony’s Filter Lee’s Filter Harada’s Filter Guo’s Filter Dai’s Filter

Average Execution Time (s) 0.683 0.546 1.244 1.251 1.267 1.289

Method Standard KF RKF (SSF) RKF (MSF) RKF (STF) RKF (MTF)

Average Execution Time (s) 1.244 1.244 1.246 1.245 1.247

The computational load of the proposed algorithms and the benchmark methods are

evaluated via storing their run times for 100 different runs. The computational perfor-

mance evaluation is done for Zurich Urban MAV dataset on a computer with specifi-

cations Intel Core i-7, 2.20GHz, 16GB RAM using MATLAB version R2020b. Table

5.5 summarizes the results in terms of average execution times. More or less all the

KF structured algorithms require similar run times while required time for the CF

algorithms, denoted as simpler and computationally efficient, is below under the av-

erage time for KF algorithms [24]. However, it is important to note that Dai’s and

Guo’s filter are the most sluggish between the competitors since these algorithms are

full attitude filters and also take the magnetometer measurements into account.

Before to conclude the results for EuRoC MAV dataset, it is also appropriate to men-

tion the effect of the tuning factors. The one might think that the maximum value of

multiple tuning factors can be chosen during the whole filtering procedure for better

compensation. In this context, for EuRoC 05 dataset, maximum values of tuning fac-

tors are obtained and the diagonals of St are set as these values. This methodology

will be called as RKF (Smax) and results on Table 5.6 shows the performance compar-

ison between RKF (MTF) and RKF (Smax) strategies in terms of attitude estimation

RMSE.

Table 5.6: The Effect of Constant Maximum Tuning Factors over Estimation Results

Methods Roll RMSE (°) Pitch RMSE (°)

RKF (MTF) / Approach 2 0.8823 0.4021

RKF (Smax) Approach 2.3776 1.2694
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Figure 5.14 shows the visual representation of this performance comparison between

these two methods.

Figure 5.14: Estimation error and 3σ error boundaries for Lee’s filter

Even though intuitions might be the tuning matrix with the constant maximum tuning

factors is able to compensate external accelerations via smaller Kalman gain during

whole flight. However, as observed from Table 5.6 and Figure 5.14, Smax approach

shows no improvement and the performance of this method is very poor when to

be compared with RKF (MTF) approach. The reason why this low-performance is

basically the non-existence of any online adaptation, which MTF method can execute.

These results indicate the proposed MTF methodology with online adaptation of St is

better than Smax strategy in terms of the attitude estimation quality.

5.3 TUBITAK SAGE Dataset Results

The experimental dataset used in this study is retrieved from TUBITAK SAGE for

the sake of this thesis study. It includes the accelerometer, with a velocity ran-

dom walk value of (< 50µg/
√
Hz) and gyroscope, with an angular walk value of
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(< 0.002°/
√
h), measurements from a navigational grade inertial measurement unit

which provides to test the proposed algorithms not only commercial and tactical grade

IMUs but also in different IMU platforms. The experiment was conducted with the

land vehicle on the rural area of Ankara, IMU data is collected on-board and the 6-

DoF ground truth is obtained via GPS/INS solution. It is important to emphasize that

the sampling rate of IMU is 512Hz while GPS/INS solution, i.e. reference orien-

tation is obtained with 200Hz. So, applying the different filter configurations from

the benchmark methods mentioned previously and novel Kalman filter approaches,

following results are obtained as seen on Table 5.7.

Table 5.7: Attitude Estimation Results on TUBITAK SAGE Dataset

Methods Roll RMSE (°) Pitch RMSE (°)

Gyroscope-Only 23.6548 21.2391

Accelerometer-Only 16.7451 12.3572

Mahony’s Filter 6.4713 4.3128

Madgwick’s Filter 3.9964 2.4715

Lee’s Filter 0.1439 0.0969

Harada’s Filter 0.1851 0.1137

Guo’s Filter 0.1057 0.0641

Dai’s Filter 0.1242 0.0734

Standard KF (St=0) 0.2531 0.2097

RKF (SSF) / Approach 1 0.0312 0.1045

RKF (MSF) / Approach 2 0.0214 0.0093

RKF (STF) / Approach 1 0.0216 0.0089

RKF (MTF) / Approach 2 0.0210 0.0088

Moreover, Figure 5.15 and 5.16 visually demonstrate that the RKF with two tuning

approaches, compared to Lee’s KF, achieves better accuracy in terms of attitude esti-

mation quality both for the pitch and roll angles during the whole drive course of the

land vehicle.
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Figure 5.15: Attitude angles estimation errors for SAGE dataset for RKF with MTF

Figure 5.16: Attitude angles estimation errors for SAGE dataset for RKF with STF

As can be observed from the Figure 5.15-5.16, Lee’s KF is not able to compensate

highly dynamic external disturbances along the prolonged scenario and estimation

accuracy deteriorates as time passes. RKF algorithms show better performance in

both angle estimations and RKF with MTF performs superior performance against all

of the methods. It is able to lower the negative side effects of the external disturbance

via accurately compensating those in the filtering architecture and estimation error is

not deteriorating but bounded within a small interval.

70



Figure 5.17 visualizes the MTFs and the sensed external accelerations in all three

sensor axes in this scenario.

Figure 5.17: External acceleration profile during the motion and response of tuning

factors (TUBITAK SAGE Dataset)
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CHAPTER 6

CONCLUSION

In this thesis study, novel RKF algorithms are proposed for estimating the attitude

only using the IMU measurements. The performance of the proposed methods in

terms of the estimation quality are evaluated using real-world datasets and compared

with the methods selected from the current literature. In the first part, a detailed in-

troduction to the attitude determination with IMU and recent works in the literature

are given. The fundamentals and theoretical background about the attitude determi-

nation problem are provided for the sake of future sections of this study. Then, the

attitude estimation methodologies, proving their performances on IMU-only attitude

determination, are selected from the literature. Finally, evaluation and performance

comparison of the proposed methods including two different strategies with two dif-

ferent approaches are provided.

Results extracted via using real-world datasets show that when the dataset scenarios

include prolonged and high external accelerations with other disturbances, KF-based

algorithms designed for to compensate those disturbances in the literature exhibit

gradually increasing estimation errors. These algorithms set initial adaptation for the

measurement noise covariance matrix but do not make an online adaptation so that

when unexpected, sudden disturbances occur, the estimation accuracy starts to de-

teriorate. Similar reasons apply for CFs during the estimation process. The scaling

factor strategy with its single and multiple scaling approaches show just a slight im-

provement in the estimation accuracy against the benchmark methods. The reason

why this accuracy cannot be improved much better is inefficient measurement noise

covariance setting via scaling rather than tuning.
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While in the tuning strategy, the first approach with single tuning factor slightly im-

proves the estimation accuracy compared to benchmark KF-based filters and widely

used complimentary filters, while the second approach with multiple tuning factors

shows superior performance against all competitors. However, despite improving the

accuracy, the RKF with STF cannot distinguish the external accelerations in different

axes. On the other hand, the MTF approach can compensate the external accelera-

tions in different axes individually and embodies a more effective way for adapting

the KF.

Both algorithms incorporate a straightforward adaptation method, which has almost

no extra computational demand and is easy to apply. However, full attitude filters

such as Guo’s and Dai’s filters, designed for obtaining the orientation rather than the

attitude, are more sluggish and do not enhance the estimation accuracy for the attitude

which make them infeasible for IMU-only estimation.

Main focus on further investigations will be using the similar methods for estimating

three-axis attitude, i.e. the full orientation for platforms including also the magne-

tometers and when the magnetometer measurements are corrupted with time-varying

errors. In this manner, it is planned to design an adaptive multiplicative extended

Kalman filter which would use a static attitude determination method such as TRIAD,

QUEST or another alternative for combining the accelerometer and magnetometer

measurements. Then, these refined measurements are fed into an adaptive MEKF

architecture where the gyro measurements are used for propagating the states. More-

over, the effect of the same adaptations in orientation determination are to be investi-

gated with advanced forms of Kalman filters such as UKF and CKF which are widely

used for "capturing" the nonlinear dynamics of the states with weighted sampling

points. Therefore, with those assumptions, it would also become possible to calibrate

and compensate the errors of inertial and magnetic sensors.

The source codes are available on https://github.com/dukynuke/robustKFimuOnly for

those who are interested. This website provides MATLAB scripts used in this thesis

study.
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