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ABSTRACT

ALMOST PERIODIC SOLUTIONS OF RECURRENTLY STRUCTURED
IMPULSIVE NEURAL NETWORKS

Top, Gülbahar
Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Marat Akhmet

March 2022, 84 pages

This thesis aims to conduct detailed and precise neural networks research with im-

pulses at nonprescribed moments in terms of periodic and almost periodic solutions.

Most of the actions in nature modeled by neural networks involve repetitions. Hence

periodic and almost periodic motions become crucial. So in this thesis, the existence,

uniqueness, and stability of the periodic and almost periodic motion are served for the

neural networks with prescribed and nonprescribed impacts. This impulsive system is

a neural network with innovative structured impacts that perfectly match the rates. If

one regards the impulses as limits of their continuous counterparts, this makes sense

for the application. Thus, the novel system also considers the neural networks’ nature

in the impulsive part since the sudden noises or impact disturbances can affect the

rates or activation functions. New conditions on the coefficients have been designed

to be more specific and detailed. The constructive stability conditions are delivered

directly related to the system’s coefficients. A detailed approach is performed to

the systems with variable moments of impulses. For the research, the method of B-

equivalence is employed, and the relationship between the original and B-equivalent

systems was explicitly established and provided. Furthermore, because the impulsive

component of the system is inherent to the neural network, the B-equivalent system
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also matches the original structure in terms of differential and impulsive parts. One of

the novel aspects of this work is that the possibility of negative capacitance in a neu-

rological system is not neglected. Together with the elimination of the capacitance’s

positivity requirement, the new structure allows for a more thorough study under op-

timal conditions. The probability of negative capacitance emphasizes the need for

impulses to maintain stability.

Keywords: Recurrent impulsive neural networks, Recurrently structured impacts,

Neural networks with negative/positive capacitance, Discontinuous almost periodic

motions, B-equivalence method, Asymptotic stability
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ÖZ

ÖZYİNELEMELİ YAPIDAKİ İMPALSİF SİNİR AĞLARININ HEMEN
HEMEN PERİYODİK ÇÖZÜMLERİ

Top, Gülbahar
Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Marat Akhmet

Mart 2022 , 84 sayfa

Bu tez, sabit ve değişken impals anlarına sahip sinir ağlarının periyodik ve hemen

hemen periyodik çözümleriyle ilgili detaylı ve açık bir araştırma yapmayı amaçla-

maktadır.

Sinir ağları tarafından modellenen doğadaki eylemlerin çoğu tekrarlıdır. Bu nedenle

periyodik ve hemen hemen periyodik sistemler öne çıkmaktadır. Dolayısıyla bu tezde

önceden belirlenmiş ve belirlenmemiş impalslara sahip sinir ağlarının periyodik ve

hemen hemen periyodik çözümlerinin varlığı, tekliği ve kararlılığı sunulmaktadır. Bu

impalsif sistem, diferansiyel denklem parçasına mükemmel şekilde uyan yenilikçi

yapılandırılmış impals denklemine sahip bir sinir ağıdır. İmpalslar, sürekli karşılıkla-

rının limitleri olarak kabul edilirse, bu uygulama için anlamlıdır. Böylece, yeni sis-

tem, ani gürültüler veya darbe bozuklukları hızları veya aktivasyon fonksiyonlarını

etkileyebileceğinden, sinir ağlarının doğasını dürtüsel kısımda da dikkate alır. Kat-

sayılar üzerindeki yeni koşullar daha spesifik ve ayrıntılı olacak şekilde tasarlanmış-

tır. Yapısal kararlılık koşulları, doğrudan sistemin katsayıları ile ilgili olacak şekilde

ayarlanmıştır. Değişken impals momentlerine sahip sistemlere ayrıntılı bir yaklaşım
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gerçekleştirilmiştir. Araştırmada B-equivalence yöntemi kullanılmış, orijinal ve B-

equivalent sistemler arasındaki ilişki açık bir şekilde kurulmuş ve sağlanmıştır. Ay-

rıca, sistemin impalsif bileşeni sinir ağına benzer olduğundan, B-equivalent sistem,

diferansiyel ve impalsif parçalar açısından da orijinal yapıyla eşleşir. Bu çalışmanın

yeni yönlerinden biri, nörolojik bir sistemdeki negatif kapasitans olasılığının ihmal

edilmemesidir. Yeni yapı, kapasitansın pozitiflik koşulunun ortadan kalkmasıyla bir-

likte, optimum koşullarda daha kapsamlı bir çalışma yapılmasına olanak tanır. Negatif

kapasitans olasılığı, kararlılığı sağlamak için impalsların rolünü vurgular.

Anahtar Kelimeler: Özyinelemeli impalsif sinir ağları, Özyinelemeli yapılandırılmış

impalslar, Negatif/pozitif kapasitanslı sinir ağları, Süreksiz hemen hemen periyodik

hareketler, B-denklik yöntemi, Asimptotik kararlılık
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Impulsive Differential Equations

It is well-known that ordinary differential equations are the main mathematical instru-

ment in studying many subjects and disciplines such as physics, chemistry, biology,

engineering, and economy applied for predicting motions, the exponential growth or

decay for species or diseases, and the investment industry.

In ordinary differential equations, the dynamics are continuous, and on the contrary,

not everything is in real world. Indeed, a system can be subject to instantaneous per-

turbations and abrupt changes at specific instants caused by switching phenomena,

frequency change, or some sudden noise. A pendulum, which is simply visualized

in Figure 1.1a, hit by a hammer at some point except from its equilibrium point, or

a bouncing ball [1] on a sinusoidally vibrating table illustrated in Figure 1.1b serves

as examples for sudden velocity change. This arouses the need to study discontin-

uous dynamics, and the analysis of Krylov and Bogolyubov [2] can be considered

one of the first steps in this direction. Inserting piecewise constant arguments and

impulses into a continuous system is a path to developing the theory of mathematical

models with discontinuities. Pavlidis examined this subject and introduced the term

"differential equations with impulses" in his work [3, 4].

Later, Samoilenko and Perestyuk [5] investigated the theory of impulsive differen-

tial equations for the existence and uniqueness of solutions, stability, periodicity

and almost periodicity properties methodically. In addition to that Lakshmikan-

tham et al. [6] published another book in the theory of impulsive differential equa-

tions. For the last several decades, many researchers have been aware of the role
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(a) pendulum’s velocity suddenly changes after the

moment of impact

B

P

(b) Mechanical model of a bead bounc-

ing on a vibrating table

Figure 1.1: Two models of discontinuous dynamical systems

of impulsive differential equations in mathematical modeling and solving problems

in different areas of research, therefore discontinuous dynamics is of intensively

search interest[5, 6, 1, 7, 8]. But systems with variable-moment of impacts are more

widespread in practice than fixed-moment impulsive systems. Consequently, Akhmet

investigated the differential equations with impulses at non-prescribed moments sys-

tematically in his book [1] and proposed the method called B-equivalence that reduces

the system with variable moments of impulses to a fixed-moment impulsive differen-

tial equation and makes analyzing possible.

Systems of differential equations with fixed moment of impulses consist of two parts:

differential equation part and impulse equations [1],

x′ = f(t, x),

∆x
∣∣
t=θk

= Ik(x),
(1.1)

where x ∈ Rn, t ∈ R, and the sequence θk can be a finite or infinite indexed sequence

but throughout this work, θk is increasing such that |θk| → ∞ as k → ∞. The jump

equations are set by the equation ∆x
∣∣
t=θk

= x(θk+)−x(θk), assuming that the limit

x(θk+) = lim
t→θ+k

x(t) exists[1] and x(t) is left-continuous. The left continuity is needed

due to mechanical reasons, like just before the hammer hits the pendulum, it has

an initial velocity. Theoretically every result in left-continuous case can be applied

2



to right-continuous solution but for the standard notation issues in mathematics and

since it is more realistic, the solution is set to be left-continuous. The impact moments

t = θk are prescribed before solving the differential equation and does not depend on

the solution.

A function ϕ(t) is called piecewise continuous function [1, 9] if it is left continuous

and continuous except possibly on a set of points θk where it has discontinuities of first

kind, that is lim
t→θ+k

ϕ(t) exists and lim
t→θ−k

ϕ(t) = ϕ(θk). A piecewise continuous function,

ϕ(t), with piecewise continuous derivative satisfying ϕ(t0) = x0 is a solution of (1.1)

if and only if [1, 9]

ϕ(t) =

 x0 +
∫ t

t0
f(s, ϕ(s))ds+

∑
t0≤θk<t Ik(ϕ(θk)), t ≥ t0,

x0 +
∫ t

t0
f(s, ϕ(s))ds−

∑
t≤θk<t0

Ik(ϕ(θk)), t < t0.
(1.2)

The last equation is called the equivalent integral equation for the impulsive differen-

tial equation (1.1). The Gronwall-Bellman Lemma is used in many proofs performed

for ordinary differential equations. The following lemma will be used in this study

and it is called Gronwall-Belmann Lemma for piecewise continuous functions.

Lemma 1 (Gronwall-Bellmann Lemma for piecewise continuous functions) [1, 9]

Let u(t), v(t) be two nonnegative piecewise continuous functions with discontinuities

at the sequence of values θk, and let βk be a nonnegative sequence, c ∈ R. If the

inequality

u(t) ≤ c+

∫ t

t0

v(s)u(s)ds+
∑

t0<θk<t

βku(θk), t ≥ t0, (1.3)

is satisfied, then

u(t) ≤ ce
∫ t
t0

v(s)ds
+

∏
t0<θk<t

(1 + βk), t ≥ t0. (1.4)

Furthermore, if the condition βk < 1 is imposed then from the inequality

u(t) ≤ c+

∫ t

t0

v(s)u(s)ds+
∑

t0<θk<t

βku(θk), t < t0, (1.5)

it follows that

u(t) ≤ ce
∫ t
t0

v(s)ds
+

∏
t0<θk<t

(1− βk)
−1, t < t0. (1.6)

3



1.1.1 Periodicity of impulsive systems

The system (1.1) is (ω, p)-periodic in t and k uniformly with respect to x if there

exists a positive number ω and a natural number p such that

i) impulse moments are (ω, p)-periodic, that is θk+p − θk = ω, k ∈ Z,

ii) function f(t, x) is ω−periodic in t uniformly with respect to x where t ∈ R, that

is f(t+ ω, x) = f(t, x),

iii) sequence of functions for impulses, Ik(x), is p−periodic in k uniformly with

respect to x where k ∈ Z, which means Ik+p(x) = Ik(x).

When we consider the system with non-fixed moments of impacts, the following will

be an additional condition for periodicity of the system

iv) surfaces of discontinuities satisfy τk+p(x) = τk(x) for k ∈ Z and x ∈ Rn.

1.1.2 Almost periodicity of impulsive systems

In this subsection, the definitions concerning almost periodicity of impulsive differ-

ential equations will be introduced. A set of numbers is called relatively dense [9], if

there is a positive number l, such that any interval of length l contains a member of

the set.

A sequence of real or complex n-dimensional vectors ai, i ∈ Z, is almost periodic

(a.p.), if for arbitrary positive ε there exists a relatively dense set Q of integers q ∈ Q,
that satisfy the inequality ∥ai+q − ai∥ < ε for all i ∈ Z [9]. The number q is an ε-

almost period of the sequence ai.

Consider the sequence of real numbers θk, k ∈ Z in the system (1.1), unbounded in

both directions and strictly increasing with respect to the index. Denote θjk := θk+j − θk.

The sequences θjk, obtained for each integer j, are said to be the derivative sequences

of θk.

The derivative sequences θjk, k, j ∈ Z, are called uniformly almost periodic in k,

if for arbitrary positive ε, there exists a set of ε-almost periods common for all the
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sequences θjk, j ∈ Z. If the derivative sequences are uniformly almost periodic then

there exist numbers θ > 0 and θ > 0, satisfying θ ≤ θk+1 − θk ≤ θ.

The α-property in the following definition is said to be conditional uniform continuity

of discontinuous functions, or shortly, conditional uniform continuity.

Consider a function φ(t) defined on R, that is left-continuous with discontinuities at

the moments θk, k ∈ Z, and the discontinuities are of the first kind. The function φ(t)

is discontinuous almost periodic (d.a.p.) [9] if

α) for any positive ε, there exists a positive δ such that if |t1 − t2| < δ then ∥φ(t1)−
φ(t2)∥ < ε where t1 and t2 are in the same interval of continuity,

β) for arbitrary positive ε there exists a respectively dense set T of ε-almost periods

τ ∈ T such that ∥φ(t+ τ)− φ(t)∥ < ε if t ∈ R and |t− θk| > ε for all integer k.

Let gk(x), k ∈ Z, be a sequence of functions with the common domain D ⊆ Rn. If

for arbitrary ε > 0, there exist relatively dense set Q of integers, q ∈ Q, such that

∥gk+q(x) − gk(x)∥ < ε for all x ∈ D, k ∈ Z, then the sequence gk(x), is said to be

almost periodic uniformly in x.

The system (1.1) is almost periodic if the following holds

i) the derivative sequences θjk, are positive and uniformly almost periodic in k, for all

j ∈ Z,

ii) the function f(t, x) is almost periodic uniformly in x,

iii) the sequence Ik is uniformly periodic in x.

In this thesis, periodic and almost periodic systems are separately investigated in de-

tail but in the title, only almost periodicity is mentioned because if a function or a

sequence is periodic, then it is almost periodic, i.e., the set of periodic functions or se-

quences are subsets of the set of almost periodic functions or sequences respectively.

To be more specific, consider a ω-periodic function, φ(t), that is φ(t + ω) = φ(t).

For all positive ε choose T = {kω}, k ∈ Z, then ∥φ(t+ ω)− φ(t)∥ = 0 < ε. Thus,

φ is almost periodic.

5



As an explicit example consider φ(t) = sin(5t) with period 2π
5

. Choose T = {2π
5
k}

this set is dense in the set of integers. For all ε, if q ∈ T then q = 2π
5
k for some

integer k. One can obtain

| sin(5(t + 2π

5
k)) − sin(5t)| = | sin(5t + 2πk)) − sin(5t)| = 0 < ε. Then sin(5t) is

almost periodic.

1.2 B-equivalence Method

Systems having variable impact moments are more common in reality than systems

with fixed-moment impulses. When we consider sudden changes in the population

density of some species due to harvesting or epidemics, it may depend on the number

of the species, namely the solution of the system. Consequently, research of the

systems with state-dependent impulses becomes essential. The system

x′ = f(t, x),

∆x
∣∣
t=θk+τk(x)

= Ik(x).
(1.7)

where x ∈ G ⊂ Rn t ∈ I ⊂ R, k ∈ Z, is an impulsive differential system with

non-fixed moment of impulses. G is an open connected set, I is an open interval. The

functions f(t, x) and τk(x) are continuous on their domains. The impulse moments

can be set as t = τk(x), but in this thesis for the theorems and simplicity of proofs the

impact moments are set as t = θk + τk(x) which can be arranged easily.

The method of B-equivalence which was introduced by M. Akhmet [1] is an effec-

tive instrument that is used in many papers for the analysis of systems with state-

dependent impulses [10, 11, 12]. The essence of the method is the reduction of the

system with variable moment of impulses to a system with fixed moment of impulses.

Let x0(t) be the solution of the differential equation x′ = f(t, x) satisfying x0(θk) =

x, and denote ξk = t = θk + τk(x0(ξk)) as the meeting moment of the solution with

the surface of discontinuity. Consider the system (1.7) together with the following

one

x′ = f(t, x),

∆x
∣∣
t=θk

= Wk(x).
(1.8)
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Let x(t) be solution of the system (1.7) and y(t) be solution of (1.8) with the same

initial conditions (θk, x). The oriented interval (̂a, b] is denoted as follows: (̂a, b] =

(a, b] if a < b and (b, a] if b < a.

We say that the systems (1.7) and (1.8) are B-equivalent in G ⊂ Rn if there exists a

set G1 ⊂ G such that for each solution x(t) of (1.7) defined on an interval U, with

discontinuity moments ξk and x(t) ∈ G1, t ∈ U , there is a solution y(t) : U → G of

(1.8) satisfying

x(t) = y(t), t /∈ (̂θk, ξk], if θk ̸= ξk, (1.9)

x(ξk) = y(θk), if θk = ξk, (1.10)

x(θk) = y(θk), x(ξk+) = y(ξk) if θk < ξk, (1.11)

y(ξk) = x(ξk), y(θk+) = x(θk) if ξk < θk. (1.12)

The solutions may intersect with the surfaces of discontinuities multiple times. To

minimize complications in the analysis, one needs to avoid beating against discon-

tinuity surfaces. That is, the solutions must interact with the discontinuity surface

exactly once. The conditions for this and the details of obtaining a B-equivalent sys-

tem, particularly for recurrent neural networks, will be presented in the forthcoming

parts of the thesis.

1.3 Neural Networks

Neural networks are inspired from the human nervous system and human brain, ac-

cepted as the most powerful computer. Arbib [13] considers the nervous system in

three-stages.The receptors, are linked to neurons and convert environmental energy

into changes in membrane potential, and it can transmit either actively or passively in

the neural network. Once data is collected, the brain, which might be regarded as the

head of the neural network and connected to both receptors and effectors, processes

the information, and makes the decision. Then the effectors transform the signal from

the network into responses as outputs.

Neurons are the structural unit of this neural network called the nervous system. They

have different characteristics. They also have basic shared features, for example soma
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is the body of the neural cell, dendrites branch off the soma, and they are input points

of the neurons. In addition, a fiber called the axon whose length might be long or short

up to neuron’s function, emerges from the cell body. The ends of the axon branches,

called nerve terminals, touch other neurons or effectors.

Figure 1.2: A basic neuron

The impulses are received by dendrites and transmitted to soma. Soma processes the

signal and a threshold function takes a part here, if the input impulse is big enough an

output is generated and delivered to the other neurons by axon through connections

named synapses. Shepherd and Koch [14] estimated the number of neurons in the

human cortex as approximately 10 billion and the number of synapses or connections

as 60 trillion, thus compared to computers brain has a very powerful system.

One of the first mathematical models of neurons was developed by McCulloch and

Pitts [15], who considered the characteristic of neural activity as all or none. They

revealed how to use excitation, inhibition, and threshold to form various neurons.

Each connection between two neurons as output from one to the other as input has

an attachment weight. Moreover, if the weight is positive, a synapse is excitatory and

inhibitory if the weight is negative. Also, each neuron is associated with a threshold.

If the sum of the product of inputs with corresponding synapse weights is larger than

the threshold, then the subsequent output is one; otherwise, it is zero. The mathe-

matical neuron model introduced by McCulloch–Pitts, and has been used throughout

most neural-network models, is shown in the Figure 1.3, where xi represents input,

wi stands for weight of the input xi, and θ represents the threshold function while y

stands for the output.
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Figure 1.3: The McCulloch–Pitts’ mathematical neuron model

Arbib [13] mentions that this model is used in neural computing and played a crucial

role in developing automata theory, whereas it is no longer active in computational

neuroscience.

Hebb [16] proposed a scenario where the activation of two neurons simultaneously

strengthens the connection between them. The predicament with this hypothesis

would be that the synapses would become stronger over time until they saturated,

removing any connection selectivity. This dilemma was eliminated by the normaliza-

tion of synapses by Malsburg [17], and to suppress the activity of neighboring cells,

he employed lateral inhibition.

In 1958, Rosenblatt [18] pursued a question to form a connection between biolog-

ical systems and the physical world, leading him to a model he named perceptron.

The hypothesis devised was a theoretical nerve system or machine. The perceptron

is intended to demonstrate some of the fundamental aspects of intelligent systems

in general, rather than becoming too confusing in the specific and often unknown

conditions that apply to specific biological organisms.

In time, McCulloch and Pitts’ studies were improved by several researchers [19].

Real neurons and the physical devices simulating them have some continuous prop-

erties. Thus, Hopfield [19] came up with an elaborated model. Hopfield’s model

demonstrates that the importance of McCulloch and Pitts’ model is preserved while

avoiding the simplification caused by all or none features. Neurons have two state,
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related to the output Vi: 0 or 1. The total input to each neuron is exhibited as

input to i = Hi =
∑
j ̸=i

TijVj + Ii, (1.13)

where the external inputs Ii and the input from other neurons Vj , with the synaptic

connection weight Tij are two type of source of inputs. The continuous Hopfield

model is loyal to original model. Continuous and monotone-increasing output Vi

which is a function of ui that is the instantaneous input and the range varies as V 0
i ≤

Vi ≤ V 1
i . The rate of change of ui is represented by the equation

Ci
dui
dt

=
∑
j

TijVj −
ui
Ri

+ Ii

ui = g−1
i (Vi)

(1.14)

where gi(ui), depicting a nonlinear amplifier’s input-output characteristic within a

short time, can be used to give inverse output-input relation g−1
i (Vi). The components

Ci, Ri and Tij are input capacitance, membrane resistance and impedance between

the output Vj and the cell i, respectively. The term Ii is external input to neuron

i. Besides, the electrical circuit without capacitance and resistances can be seen in

Figure 1.4 [19].

Once the Hopfield network’s input signals are analog and the output signals are dis-

crete values, it can be utilized as an effective interface between analog and digital

devices [20]. Furthermore, the Hopfield network’s ability to minimize energy is used

to solve optimization problems.

Another famous neural network model is the Cohen-Grossberg model. It was intro-

duced by Cohen and Grossberg [21] in 1983, and according to Cao [22], Hopfield

neural networks are one of the special cases of Cohen-Grossberg models. The corre-

sponding dynamical system for this model is [22]

x′i = ai(xi)

[
bi(xi)−

n∑
k=1

cikdk(xk)

]
, i = 1, . . . , n, (1.15)

where the components cij form a symmetric matrix.

Cohen-Grossberg [21] proposes a theorem for determining this particular type of neu-

ral network’s stability. They claim that the ability of the network to preserve the activ-

ity pattern is left invariant by self-organization, by an absolute stability theorem. As a
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inverting amplifier
resistor in Tij network

inputs

amplifier

Figure 1.4: Electrical circuit that corresponds to Eq. (1.14) without input capacitance

and resistances

result, identifying an absolutely stable class of systems restricts the self-organization

processes that a system can interact without getting destabilized in particular input

conditions.

In 1988, Chua and Yang [23, 24] introduced a new class of neural networks called

cellular neural networks (CNNs). Moreover, they examined the structure of the cel-

lular neural networks in detail. In cellular neural networks, a cell is the fundamental

circuit unit. Cellular neural networks are neural networks that are locally intercon-

nected, frequently repeated, and possibly multilayered. Each layer is divided into a

two-dimensional array of processing units known as cells C(i, j) with each cell act-

ing as a dynamical subsystem that is connected to its neighbors. For an integer r, the

r-neighborhood of a cell C(i, j) is defined [23, 24] as

Nr(i, j) = {C(k, l) : max{|k − i|, |l − j|} < r, 1 ≤ k ≤M ; 1 ≤ l ≤ N}. (1.16)

Linear capacitors, linear resistors, linear and nonlinear controlled sources, and inde-

pendent sources are examples of linear and nonlinear circuit parts. Cellular neural

networks have a structure such that adjacent cells can communicate with one another
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directly. Because of the transmission impacts of the continuous-time dynamics of

cellular neural networks, cells that are not directly coupled may affect each other in-

directly. As information-processing systems, CNNs have offered significant promise.

Bouzerdoum and Pinter [25], recognizing the broad application of shunting inhibi-

tion in neural networks [26, 27, 28, 29, 30, 31, 32], described a new class of neural

networks. They employed the following ordinary differential equation

x′ij = Lij(t)− aijxij −
∑

C(k,l)∈Nr(i,j)

ckijlf(xkl)xij, (1.17)

where xij is the activity of the cell C(i, j), can be considered as the difference be-

tween the resting potential and the membrane voltage; Lij(t) is the external input to

the cell; the constant aij > 0 represents rate of cell activity when it is not active;

cij is the connection weight of the activity of C(k, l) l transmitted to C(i, j); f(xkl)

is a positive continuous function named activation function and represents the cell

C(k, l)’s output rate. They analyzed the dynamical properties of shunting inhibitory

neural networks and analyzed stability results.

Neural networks are being studied for their application in image and signal process-

ing, vision pattern recognition, and optimization [29, 33, 34, 35]. Due to this attrac-

tion, numerous articles have been composed since 1980s [23, 24, 33, 34, 36, 37, 38,

39, 40, 41, 42, 43, 44]. In the paper [45], periodicity and global exponential stability

of recurrent neural networks with time delays were investigated and it is remarked

that recurrent neural networks are important because of their feedback connections,

dynamic properties and application in different fields. Recurrent neural networks

are used in image, speech and knowledge processing, associative memories, pattern

recognition, optimization, cryptography [46, 47, 48].

1.4 Impulsive Neural Networks

The state of the network can be exposed to sudden perturbations and abrupt changes

at some points in execution. In other words, the impulses model sudden disturbances

and can also be employed as an impact control for cognitive processing. All of this

encourages the study of impulsive neural networks. Mathematical models of neural
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networks were productively developed with insertion of piecewise constant arguments

and impulses [27, 49, 50, 51, 52, 53, 54, 55].

Many biological and cognitive activities such as heartbeat, respiration, mastication,

and memorization require repetition. Thus periodicity and almost periodicity are

among the essential properties to study for the dynamics of neural networks that got

increasingly attractive considering periodic and almost periodic solutions [5, 27, 49,

50, 51, 52, 56].

1.4.1 Periodic neural networks

The repetition in nature raises the need for periodic solutions when we study their

mathematical models. In [57] the stability properties for periodic solution of Bidirec-

tional Associative Memory (BAM) neural networks with impulses was analyzed. The

periodic solutions of Cohen–Grossberg BAM neural networks with impulses on time

scales are studied in [58] for the stability and existence.

1.4.2 Almost periodic neural networks

As mentioned in [12], dynamics of neural networks become more realistic if they

involve almost periodic environment and motions. Also in [27], it is claimed that

when environmental conditions are taken into account, the assumption of almost-

periodicity becomes more realistic and broad. As a result, almost periodicity is a

fascinating research topic in the study of neural networks. Various aspects of the

theory of almost periodic solutions for neural networks are considered in papers [29,

60, 61, 62, 63, 64, 65, 66].

1.5 Stability of Linear Impulsive Equations

In this section, we will be concerned with the asymptotic stability of the system

x′ = a(t)x, t ̸= θk,

∆x
∣∣
t=θk

= bkx,
(1.18)
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where θk is increasing and |θk| → ∞ as k → ∞, with constructive conditions de-

pending directly on the coefficients, a(t) and bk, of the system. One can easily get

that the equality

x(t, s) = e
∫ t
s a(u)du

∏
s≤θk<t

(1 + bk), t > s, (1.19)

stands for the transition solution [1] of the scalar system (1.18).

If the inequality,

|x(t, s)| ≤ Keγ(t−s), (1.20)

is satisfied with negative γ, then the zero solution of the system (1.18) is asymptoti-

cally stable [1].

In the forthcoming lemmas, we will examine the conditions for the inequality (1.20),

consequently the sufficient conditions for asymptotic stability of the system (1.18)

will be explained.

Lemma 2 Suppose that the following conditions are satisfied:

(i) there is a number χ, such that a(t) ≤ χ for all t ∈ R;

(ii) the inequality, θ ≤ θk+1− θk, holds for arbitrary integer k with a positive number

θ;

(iii) there is a positive number q such that the inequality 1 < |1 + bk| ≤ q holds for

every integer k.

Then one gets the inequality (1.20) with γ = (χ+
ln q

θ
) and K = eln q.

Proof. Fix the function κ(t, s) as

κ(t, s) =

∫ t

s

a(u)du+
∑

s≤θk<t

ln |1 + bk|. (1.21)

Then by (1.19) one can get that the following equation is valid:

|x(t, s)| = eκ(t,s). (1.22)
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Define i([s, t]) as the number of the discontinuity points, that belong to the interval

[s, t], given in the system (1.18). Using the following inequality,

i([s, t]) ≤ t− s

θ
+ 1, s ≤ t, (1.23)

which results from the second condition of the lemma, one can get the inequality that

we are looking for,

κ(t, s) =

∫ t

s

a(u)du+
∑

s≤θk<t

ln |1 + bk|

= χ(t− s) + i([s, t]) ln q

≤ (χ+
ln q

θ
)(t− s) + ln q. (1.24)

Combining the relations (1.24) and (1.22) we obtain

|X(t, s)| = eκ(t,s) ≤ eln qe(χ+
ln q
θ

)(t−s). (1.25)

That is the inequality (1.20) is correct with γ = (χ+
ln q

θ
) and K = eln q, and this is

precisely the assertion of the lemma. □ The expression eln q in previous lemma and

e−lnq in the forthcoming lemma can be rewritten as q and 1
q

respectively. But to keep

the exponential form in 1.22 we did not simplify.

Lemma 3 Assume that the following conditions hold:

(i) there exists a real number χ such that a(t) ≤ χ for all t ∈ R;

(ii) there exists a number θ such that 0 < θk+1 − θk ≤ θ, for each k ∈ Z;

(iii) the inequality, |1 + bk| ≤ q < 1 is satisfied for all integers k and a number q.

Then, the inequality (1.20) is satisfied with γ = (χ+
ln q

θ
) and K = e− ln q > 0.

Proof. Let the number of the discontinuity points of the system (1.18) that belong

to the interval [s, t], be denoted by i([s, t]), as in previous lemma. The condition (ii)

implies the inequality

i([s, t]) ≥ t− s

θ
− 1. (1.26)
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By using the last inequality and the equality (1.21), we can assert that

κ(t, s) =

∫ t

s

a(u)du+
∑

s≤θk<t

ln |1 + bk|

= χ(t− s) + i([s, t]) ln q

≤ (χ+
ln q

θ
)(t− s)− ln q. (1.27)

Thus, we obtain the inequality (1.20) with γ = (χ+
ln q

θ
) and K = e− ln q. □

Throughout the thesis, the norm is fixed as ∥u∥ = max
1≤i≤m

|ui|, u ∈ Rm, and its corre-

sponding matrix norm as ∥A∥ = max
1≤i≤m

m∑
j=1

|aij|, where A is an m ×m real constant

matrix.

If we denote X(t, s) = diag[x1(t, s), x2(t, s), . . . , xm(t, s)], it is the transition ma-

trix for the system (1.18), where xi(t, s), i = 1, 2, . . . ,m, are the solutions for each

subsystem in (1.18) satisfying xi(s, s) = 1. In order to get asymptotic results, the

following condition will be applied throughout the paper.

(C1) ∥X(t, s)∥ ≤ max
1≤i≤m

|xi(t, s)| ≤ Keγ(t−s) with constants K ≥ 1 and γ < 0.

Assume that in the system (1.18) for each i = 1, . . . ,m, the conditions of either

Lemma 2 or Lemma 3 are valid such that the inequalities |xi(t, s)| ≤ kie
γi(t−s) are

correct with γi < 0. Then the condition (C1) is satisfied, where K = max
1≤i≤m

ki and

γ = max
1≤i≤m

γi.

1.6 The Elaboration of the Recurrently Structured Impulsive Neural Network

Model

1.6.1 The review of the literature

Significant interest in the theory of recurrent neural networks is attracted to the sys-

tems of the form [63, 67],

x′i = ai(t)xi +
m∑
j=1

bij(t)fj(xj) + ci(t), (1.28)

where xi = xi(t) corresponds to the membrane potential of the unit with i = 1, 2, . . . ,m,

fij(.), i, j = 1, 2, . . . ,m, denote measure of response or activation to their incoming
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potentials, bij, i, j = 1, 2, . . . ,m, are the synaptic connection weights of the unit j

with the unit i, the functions ci(t), i = 1, 2, . . . ,m, correspond to the external in-

put from outside the network to the unit for i = 1, 2, . . . ,m, the coefficients ai(t),

i = 1, 2, . . . ,m, are the rates with which the units self-regulate or reset their poten-

tials when isolated from other units and inputs.

In implementations, the state of the network can be subject to instantaneous per-

turbations and experiences abrupt changes at certain instants, which may be caused

by switching phenomenon, frequency change, or other sudden noise. That is, the

impulses realize modeling of impact disturbances, and moreover can be used as an

impact control for the neural processes. All this stimulates the development of the

impulsive neural networks.

In paper [46], the recurrent neural network (1.28) was extended by adding jumps for

the membrane potentials, and the following model

x′i = aixi +
m∑
j=1

bijfj(xj) + ci, t ̸= θk,

∆xi
∣∣
t=θk

= Ii(xi), i = 1, 2, . . . ,m,

(1.29)

with impulses was considered for existence and global stability of equilibrium solu-

tions.

Also in [68], stability and periodicity of the following impulsive neural networks with

delays

x′ = −x+ Af(x) +Bf(x(t− τ)) + u, t ̸= tk , t ≥ 0,

∆x(tk) = Ik(x(tk)), k = 1, 2, . . . ,m,
(1.30)

which is represented in matrix-vector form is researched. In the systems 1.29 and

1.30, it is seen that the structure of the impulse action is different than that of the dif-

ferential equation. If impact actions are considered as limits of continuous dynamics,

it is clear that the jump equation must admit the functional structure related to the dif-

ferential equation of the neural network. For the applications one needs the structure

of the jump equation to be developed, more complex, and what is important adequate

to the differential equation. Hence, it is of great interest to consider neural networks

with the structure of the impulses identical to that of the rate. That is, the components
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of the impulsive equation must coincide with that one for the differential equation.

This will be exemplified in what follows, and one of the first steps in the direction is

made in the paper [53], and impulses in the system (1.29) are refined as follows,

x′i = ai(t)xi +
m∑
j=1

{bij(t)fj(xj) + cij(t)gj((kij ∗ xj)(t))}+ γi(t), t ̸= θk,

∆xi
∣∣
t=θk

=
m∑
j=0

Aij(k)xj + Ij(x) + µi(k), i = 1, 2, . . . ,m,

(1.31)

and the existence and stability of almost periodic solutions were studied.

Nevertheless, the impulsive equation in the last model still is not adequate completely

to the structure in the differential equation. This is also true for the paper [50], where

the neural network

x′i =
m∑
j=1

aij(t)xj +
m∑
j=1

αij(t)fj(xj(t− h)) + γi(t), t ̸= θk,

∆x
∣∣
t=θk

= Akx+ Ik(x) + γk, i = 1, 2, . . . ,m,

(1.32)

was studied, and the existence and uniqueness of almost periodic solutions were con-

sidered. In the systems from (1.28) to (1.31), the potential resetting rates ai(t) with

i = 1, 2, . . . ,m, are assumed to be negative [46, 53].

In the papers [69, 70] the neural network with variable moment of impulses were

considered, and the method of B-equivalence is used, but they have some deficiencies

and mistakes about application of the method. Firstly, construction of B-equivalent

system is not given explicitly because it is not obtained in the correct order of steps

in [69]. The operator that gives the reduced system is not formulated, consequently

it is not formed correctly. Lipschitz constant for the nonlinearity term in the reduced

system’s impulsive part, k(l) is not precise, which is a major deficiency. The de-

ficiency of estimation of the relationship between the original jump operator in the

state-dependent impulsive system and the new jump operator in the corresponding

fixed-time impulsive system has been fixed in the paper [10]. The reduced system in

[69] seems to be given row-by-row, but it includes a matrix added so there is a con-

ceptual mistake about dimensions. The most important part is that the contribution

of impulsive terms into stability is not seen. This is why it is crucial to provide a

complete research through B-equivalence, and we are motivated for the thorough and

careful study of the problem, which is free from mistakes.
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1.6.2 The model under research

The research of the present work is motivated by the results in [27, 46, 49, 50, 51,

52, 53, 54, 55, 56, 59, 71]. Since the impulses are the instruments that arise from

impacts or disturbances on the continuous dynamics, it is very natural to expect the

impacts to imitate the form of the rates. With this in mind, we newly suggest to in-

vestigate a system such that the equations for the impulses are of the same structure

as the differential equations. We also describe the physical perception of the impacts,

at first time in literature. Furthermore, we do not neglect the possibility of negative

capacitance [72, 73, 74], which has not been considered in the literature on neural

networks. These novelties open the model for a more thorough analysis and opti-

mized processes. The main tasks of the research are the existence, uniqueness and

asymptotic stability of discontinuous almost periodic solutions.

In the present research, we are encouraged by the results in [46, 50, 53] to consider

a model with the impulsive part, which is precisely identical in its components to the

differential equation. The following neural model is in the focus of our study,

x′i = ai(t)xi +
m∑
j=1

bij(t)fj(xj) + ci(t), t ̸= θk + τk(x),

∆xi
∣∣
t=θk+τk(x)

= dikxi +
m∑
j=1

eijkIi(xj) + hik, i = 1, 2, . . . ,m,

(1.33)

where xi ∈ R with i = 1, 2, . . . ,m, t ∈ R, and the sequence θk is increasing such that

|θk| → ∞ as k → ∞. The jump equations are set by ∆xi
∣∣
t=θk

= xi(θk+)− xi(θk),

assuming that the limit xi(θk+) = lim
t→θ+k

xi(t) exists.

The coefficients ai(t), bij(t), ci(t) and fij(·) for i, j = 1, 2, . . . ,m, are of the type

and the role as in (1.28), continuous and bounded functions, defined on the real line.

The continuous functions Ij(·) with j = 1, 2, . . . ,m, denote a measure of impact

response to its incoming potentials, a member of the sequence eijk denotes the instan-

taneous synaptic connection weight of the unit j on the unit i, the sequence member

hik corresponds to the external impulsive input from outside the network to the unit i

for i, j = 1, 2, . . . ,m, the coefficient dik, i = 1, 2, . . . ,m, is the impulsive rate with

which the unit self-regulates or resets its potential when isolated from other units and

inputs. The function Ii(·) and the sequences dik, eijk and hik are impact analogues of
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their counterparts in the equation (1.28), that is the functions fj(·), ai(t), bij(t) and

ci(t).

Apart from the previous studies, we do not demand that the rates are necessarily neg-

ative. Differently, in our model the coefficients aij(t) can be positive, negative or zero

valued, that is we do not directly assume stability we give constructive conditions on

the coefficients of the system, only the condition of almost periodicity is assumed,

and it is the most general assumption on electrical properties of the neural networks.

The rates presumed to be positive as well as negative, issuing from the possibility of

the negative capacitance [72, 73, 74] in electrical circuits. This is one of the novelties

of the present work, which makes the mathematical analysis more challenging and

the model flexible for applications. One of the novel aspects of this research is that

the possibility of negative capacitance is not ignored. The benefit of negative capac-

itance is that even if the differential equation is unstable the impulsive system might

be stable by contribution of impulses in stability. As a result, we get a more gen-

eral problem, which includes impulsive systems with unstable differential equations

but stable solutions. This is due to the inclusion of impact elements in the stability

equation.

One can easily see that the network (1.33) is the most developed, if one compares it

with the equations (1.29)-(1.32), since it is recurrently structured, and it is clear that

system (1.33) covers all previous models and many other conservative networks. That

is, we have established the coherence of the differential and impulsive parts of the

neural network. The recurrence is present in both, the differential and the impulsive

equation, this is why, we call the model under discussion as the recurrent impulsive

neural network (RINN).

1.6.3 Matrix-vector presentation

Consider the RINN (1.33) introduced in Section 1.6.2. For simplicity of notation, we

examine the system (1.33) in the matrix form as follows

x′ = A(t)x+ B(t)F (x) + C(t), t ̸= θk + τk(x),

∆x
∣∣
t=θk+τk(x)

= Dkx+ EkI(x) +Hk,
(1.34)
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where x = [x1, . . . , xm]
T ∈ Rm, t ∈ R, k ∈ Z, and T is the notation for the transpose

operation of a vector, the m×m matrix-functions A(t), B(t) defined on real numbers

are,

A(t) =


a1(t) 0 . . . 0

0 a2(t) . . .
...

...
... . . . 0

0 . . . 0 am(t)

, B(t) =


b11(t) b12(t) . . . b1m(t)

b21(t) b22(t) . . . b2m(t)
...

... . . . ...

bm1(t) bm2(t) . . . bmm(t)

 .
The m×m matrix sequences Dk are set by

Dk =


d1k 0 . . . 0

0 d2k . . . 0
...

... . . . ...

0 . . . 0 dmk

, Ek =


e11k . . . e1mk

e21k . . . e2mk

...

em1k . . . emmk

, k ∈ Z.

Lastly, m × 1 vector-functions F (x), C(t), and I(x), t ∈ R, x ∈ Rm, and m × 1

vector-sequence Hk, k ∈ Z, stand for

F (x) =


f1(x1)

f2(x2)
...

fm(xm)

, C(t) =


c1(t)

c2(t)
...

cm(t)

, I(x) =


I1(x1)

I2(x2)
...

Im(xm)

, Hk =


h1k

h2k
...

hmk

 .
Fix a positive H, from now on we will use the following notations:

α =
m∑
i=1

max
1≤i≤m

sup
t∈R

|ai(t)| <∞, β = max
1≤i≤m

sup
t∈R

m∑
j=1

|bij(t)|,

σ =
m∑
i=1

sup
t∈R

|ci(t)| <∞, mf = max
1≤i≤m

sup
∥u∥<H

|fi(u)|,

mI = max
1≤i≤m

sup
∥u∥<H

|Ii(u)|, mh = max
1≤i≤m

sup
k∈Z

|hik|,

mτ = sup
k∈Z

sup
∥x∥<H

= |τk(x)|, d = max
1≤i≤m

sup
k∈Z

|1 + dik|.

E = max
1≤i≤m

sup
k∈Z

m∑
j=1

|eijk|.

1.7 The Outline of the Thesis

The remaining part of this dissertation is organized as follows. In Chapter 2, the B-

equivalent system of our main model is reduced in a detailed way such that it will be
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utilized in Chapter 3 and 5.

In Chapter 3, conditions for the periodicity of the impulsive neural network is intro-

duced in detail. Then the B-equivalent system is studied for the proof of stability and

periodicity of its solution. Since the solutions of the B-equivalent systems are equal

to each other, the solution of the system with variable moments of impacts has the

same property on some certain set. Thus what is left is to prove that the main model

is satisfying stability and periodicity on the intersection of exterior of that set and the

domain of solution.

Chapter 4 can be considered as a preparation for Chapter 5 and it is concerned with

almost periodicity and stability of the recurrent neural network (RNN) with fixed

moment of impulses.

In Chapter 5, the almost periodicty conditions are explained. Then the B-equivalent

system is studied for the proof of stability and periodicity of its solution. The im-

pulsive neural network’s periodicity criteria are thoroughly discussed. If systems are

B-equivalent, the solution of the system with varying moments of impulses has the

same characteristic on a particular set. The only thing remaining is to show that our

model is stable and periodic on the intersection of that set’s exterior and the domain

of solution.

Lastly, in Chapter 6, we summarize the outcomes of this thesis and provide some

conclusion comments.
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CHAPTER 2

B-EQUIVALENCE METHOD

In this part, we will summarize B-equivalence and give the necessary conditions for

the absence of beating in the impulsive differential equtions.

2.1 The Absence of Beating

The study of the systems with variable moments of impulses is more complicated than

those with the fixed impulses, not only because of the unpredictability of the impact

moments but also the possibility of beating. That is, the solutions might intersect

with the surfaces of discontinuities multiple times. In order to avoid difficulties in

the analysis of stability and almost periodicity, one should prevent beatings against

the surfaces of discontinuities. In other words the solutions must meet the surface

of discontinuities exactly once. In this subsection, we propose the conditions that

guarantee the meeting of solutions with the surfaces of discontinuity exactly once.

The following assumptions, (C2)-(C6), are needed throughout the paper.

(C2) |fi(u)− fi(v)| ≤ ℓf |u− v|, for |u| < H , |v| < H, i = 1, . . . ,m;

(C3) |Iij(u)− Iij(v)| ≤ ℓI |u− v|, for |u| < H , |v| < H, i, j = 1, . . . ,m;

(C4) |τk(x)− τk(y)| ≤ ℓτ∥x− y∥, for ∥x∥ < H , ∥y∥ < H, k ∈ Z;

(C5) ℓτ (αh+ βmf + σ) < 1;

(C6) τk ((I +Dk)x+ EkI(x) +Hk) ≤ τk(x), for all k ∈ Z, and x ∈ Rn;

(C7) mτ (αH + βmf + C) < H .

The conditions (C1)-(C7) are the basic ones in our paper and they provide settings

for existence and uniqueness of asymptotically stable almost periodic solution of the
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system (1.34). Moreover, the conditions (C5) and (C6) guarantee that any solution

x(t) does not meet any surface of discontinuity more than once. This phenomenon is

called absence of beating [1].

2.2 Continuity in the Initial Data

Continuous dependence of the solutions on the initial data is one of the most useful

properties throughout the proofs in this study. Therefore, it is necessary to give the

inequalities related to this property. Let t0, t1 belong to the same interval of discon-

tinuity, such that t0 < t1, and x0(t) = x(t, t0, x), x1(t) = x(t, t1, y) are the solutions

of the system (1.34), where t is also in the same interval of continuity with t0 and t1;

that is, the solutions are continuous on the interval [t0, t].

Lemma 4 The solutions x0(t) = x(t, t0, x), x1(t) = x(t, t1, y) of the differential

equation (1.34) satisfies the following inequality

∥x(t, t0, x)− x(t, t1, y)∥

≤
(
∥x− y∥+ (t1 − t0)(αh+ βmf + σ)

)
e(α+βlf )(t−t1).

(2.1)

In addition to that if t0 = t1, that is the initial times are the same then one can get

∥x(t, t0, x)− x(t, t0, y)∥ ≤ ∥x− y∥e(α+βlf )(t−t0). (2.2)

Let t = ξk and ηk be the instants when the solutions x(t, t0, x) and x(t, t0, y) re-

spectively intersect with the surface of discontinuities of the system (1.34), formu-

lated by the equation t = θk + τk(x(t)). Then ξk and ηk satisfy the equations

ξk = θk + τk(x(ξk)) and ηk = θk + τk(y(ηk)). Without loss of generality assume

that θk ≤ ξk ≤ ηk.

Lemma 5 The impulsive instants θk ≤ ξk ≤ ηk satisfy the following

|ηk − ξk| ≤ lτe
(α+βlf )mτ∥x− y∥

1− lτ (αh+ βmf + σ)
(2.3)
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Proof. By the definition and the previous lemma one can easily obtain the following

inequalities

|ηk − ξk| = |τk(y(ηk))− τk(x(ξk))|

≤ lτ∥y(ηk)− x(ξk)∥

≤ lτ∥y(ξk) +
∫ ηk

ξk

(A(s)y(s) + B(s)F (y(s)) + C(s))ds− x(ξk)∥

≤ lτ

(
∥x− y∥e(α+βlf )mτ + |ηk − ξk|(αh+ βmf + σ)

)
.

Solving the last inequality for |ηk − ξk|, we obtain

|ηk − ξk|(1− lτ (αh+ βmf + σ)) ≤ lτe
(α+βlf )mτ∥x− y∥

|ηk − ξk| ≤ lτe
(a+βlf )mτ∥x− y∥

1− lτ (αh+ βmf + σ)
,

which is the expected inequality and the proof is complete.

2.3 The B-equivalent Model

In this section, we will reduce the system (1.33) to its B-equivalent counterpart which

admits the form,

y′i = ai(t)yi(t) +
m∑
j=1

bij(t)fj(yj(t)) + ci(t), t ̸= θk,

∆y
∣∣
t=θk

= dikyi(θk) +
m∑
j=1

eijkJjk(y) + gik(y),

(2.4)

where it has common coefficients with the system (1.33) except for Jjk and gik, they

will be defined later. The system (2.4) can be written in the matrix-vector form as

follows,

y′ = A(t)y(t) + B(t)F (y(t)) + C(t),

∆y
∣∣
t=θk

= Dky + EkJk(y) +Gk(y),
(2.5)

where Jk(y) = [J1k(y) J2k(y) . . . Jmk(y)]
T , Gk(y) = [g1k(y) g2k(y) . . . gmk(y)]

T

are m-dimensional vector functions with coordinates determined from (2.4), and the

other coefficients are as described in (1.34).
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The systems (2.5) and (1.34) are B-equivalent, if there exists a number h = h(H) <

H, such that for each solution x(t) : R → Rm of the system (1.34), satisfying

∥x(t)∥ < h, there exists a solution y(t) of the system (2.5), that satisfies y(t) = x(t)

for t values that are not between ηk and ξk, and ∥y(t)∥ < H for all t from R. The in-

stants ηk and ξk, k ∈ Z are discontinuity points of the solutions y(t) and x(t), respec-

tively. Moreover, if y(t) is any solution of the system (2.5), satisfying ∥y(t)∥ < h,

then there exists a solution x(t) of the system (1.34) such that y(t) = x(t), if t is not

an element of the interval with endpoints ηk and ξk, where ∥x(t)∥ < H for all t that

belongs to R.

(a) the graphs of the solutions men-

tioned in B-Equivalence on t−x co-

ordinate system

(b) the graphs of the solutions

x0(t), y0(t), x1(t), y1(t) of the sys-

tem 1.33 on t− x coordinates

Figure 2.1: Construction of the reduced B-equivalent system and continuous depen-

dence, whereW (x) = Dkx+EkJk(x)+Gk(x), and Γk is the surface of discontinuity

given by the equation Γk : t = θk + τk(x).

To construct J(x) and G(x) in the system (2.5), fix k, and let x0(t) and x1(t) be

solutions of differential equation in (1.34) with the initial conditions x0(θk) = x and

x1(ξk) = (I +Dk)x0(ξk)+EkI(x0(ξk)) as in Figure (2.1a). Then these solutions are

written as

x0(t) = x+

∫ t

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds

x0(ξk) = x+

∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds.

Taking the last equation as initial value and solving backwards direction one can
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obtain the solution:

x1(t) = x0(ξk+) +

∫ t

ξk

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds

= (I +Dk)x+ (I +Dk)
(∫ ξk

t

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds
)

+EkI(x0(ξk)) +Hk +

∫ t

ξk

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds.

Substituting t = θk in the last equation will help us getting impulsive part of B-

equivalent system as follows

x1(θk) = x0(ξk+) +

∫ θk

ξk

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds

=(I +Dk)x+ (I +Dk)
(∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds
)

+EkI(x0(ξk)) +Hk +

∫ θk

ξk

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds.

(2.6)

For B-equivalence of two systems, the equation

x1(θk)− x0(θk) = x1(θk)− x = Dkx+ EkJk(x) +Gk(x)

must be valid. Using this equality and substituting x1(θk) from (2.6), one gets

(I +Dk)x+ EkJk(x) +Gk(x)

= (I +Dk)x+ (I +Dk)
(∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds
)

(2.7)

+EkI(x0(ξk)) +Hk +

∫ θk

ξk

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds− x.

After cancellations in (2.7), we can equate the terms with similar roles to deduce that

Jk(x) = I(x0(ξk)) = I(x+

∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds). (2.8)

Gk(x) = (I +Dk)
(∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds
)

+

∫ θk

ξk

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds+Hk.

(2.9)
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Let us denote

k(mτk , ℓf ,mf ) = 1 +mτ (α + βℓf )e
(α+βℓf )mτ +

ℓτe
(α+βℓf )mτ (αh+ βmf + σ)

1− ℓτ (αh+ βmf + σ)
,

k̄(mτk , ℓf ,mf ) = mτ (α + βℓf )

(
(1 + dk)e

(α+βℓf )mτ

+
2 + dk + EkℓI + ℓτ (αh+ βmf + σ)

1− (αh+ βmf + σ)
e2(α+βℓf )mτ

)

+
(2 + dk)(αh+ βmf + σ)ℓτe

(α+βℓf )mτ

1− ℓτ (αh+ βmf + σ)
.

Lemma 6 If the conditions (C2)-(C7) are satisfied then for every x, y ∈ Dh = {x ∈
Rm : ∥x − x0∥ < H} and for any index k, the functions Gk(x) and Jk(x) are

Lipschitzian such that

∥Jk(x)− Jk(y)∥ < ℓIk(mτ , ℓf ,mf )∥x− y∥,

∥Gk(x)−Gk(y)∥ < k̄(mτ , ℓf ,mf )∥x− y∥.

Proof. Let x0(t) = x(t, θk, x), y0(t) = y(t, θk, y) be solutions of the system

(1.34) with corresponding initial values, and let ξk and ηk be the meeting points

of these solutions with the surfaces of discontinuities respectively, i.e., ξk = θk +

τk(x0(ξk)) and ηk = θk + τk(y0(ηk)). Moreover, let x1(t) = x(t, ξk, x0(ξk+)),

y1(t) = y(t, ηk, y0(ηk+)) be solutions of the system (1.34). Firstly, we will show

that Jk is Lipschitzian. Consider the following inequalities

∥Jk(x)− Jk(y)∥

= ∥I(x+
∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds)

−I(y +
∫ ξk

θk

(A(s)y0(s) + B(s)F (y0(s)) + C(s))ds)∥

≤ ℓI(∥x− y∥+
∫ ξk

θk

(∥A(s)∥∥x0(s)− y0(s)∥+ ∥B(s)∥∥F (x0(s))− F (y0(s))∥

+

∫ ηk

ξk

(∥A(s)∥∥y0(s)∥+ ∥B(s)∥∥F (y0(s))∥+ ∥C(s)∥)ds)

≤ ℓI

(
∥x− y∥+mτ (α + βℓf )∥x− y∥e(α+βℓf )mτ + |ηk − ξk|(αh+ βmf + σ)

)
≤ ℓI

(
1 +mτ (α + βℓf )e

(α+βℓf )mτ +
ℓτe

(α+βℓf )mτk (αh+ βmf + σ)

1− ℓτ (αh+ βmf + σ)

)
∥x− y∥.
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Furthermore, it will be shown that Gk(x) is Lipschitzian, before that, some inequal-

ities on x1(t) and y1(t) needs to be proved. One can easily show the following in-

equalities,

∥x1(ξk)− y1(ξk)∥

≤ ∥x0(ξk)− y0(ξk)∥+ ∥
∫ ηk

ξk

(A(s)y0(s) + B(s)F (y0(s)) + C(s))ds∥

+∥Dk(x0(ξk)− y0(ξk)−
∫ ηk

ξk

(A(s)y0(s) + B(s)F (y0(s)) + C(s))ds)∥

+∥Ek[I(x0(ξk))− I(y0(ξk) +

∫ ηk

ξk

(A(s)y0(s) + B(s)F (y0(s)) + C(s))ds)]∥

+∥
∫ ξk

ηk

(A(s)y1(s) + B(s)F (y1(s)) + C(s))ds∥

≤ ∥x0(ξk)− y0(ξk)∥+ (ηk − ξk)(αh+ βmf + σ)

+dk(∥x0(ξk)− y0(ξk)∥+ (ηk − ξk)(αh+ βmf + σ))

+ekℓI(∥x0(ξk)− y0(ξk)∥+ (ηk − ξk)(αh+ βmf + σ))

+(ηk − ξk)(αh+ βmf + σ)

= ∥x0(ξk)− y0(ξk)∥(1 + dk + ekℓI)

+∥x− y∥ℓτe
(α+βℓf )mτ (αh+ βmf + σ)

1− ℓτ (αh+ βmf + σ)
(1 + dk + ekℓI + 1)

= ∥x− y∥e(α+βℓf )mτ
1 + dk + ekℓI + ℓτ (αh+ βmf + σ)

1− ℓτ (αh+ βmf + σ)
.

Hence, we have

∥x1(s)− y1(s)∥ ≤ ∥x1(ξk)− y1(ξk)∥e(α+βℓf )mτ

≤ ∥x− y∥e2(α+βℓf )mτ
1 + dk + ekℓI + ℓτ (αh+ βmf + σ)

1− ℓτ (αh+ βmf + σ)
.

Now, using the last inequality and similar to Jk(x) one can get that Gk(x) also has

Lipschitz property as follows

∥Gk(x)−Gk(y)∥ =
∣∣∣(I +Dk)(

∫ ξk

θk

(A(s)x0(s) +B(s)F (x0(s)) + C(s))ds) +Hk

+

∫ θk

ξk

(A(s)x1(s) +B(s)F (x1(s)) + C(s))ds

− (I +Dk)(

∫ ηk

θk

(A(s)y0(s) +B(s)F (y0(s)) + C(s))ds)−Hk

−
∫ θk

ηk

(A(s)y1(s) +B(s)F (y1(s)) + C(s))ds
∣∣∣
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≤
∣∣∣(I +Dk)

(∫ ξk

θk

[
A(s)(x0(s)− y0(s)) +B(s)(F (x0(s))− F (y0(s)))

]
ds

−
∫ ηk

ξk

(A(s)y0(s) +B(s)F (y0(s)) + C(s))ds

)

+

∫ θk

ξk

[
A(s)(x1(s)− y1(s)) +B(s)(F (x1(s))− F (y1(s)))

]
ds

−
∫ ξk

ηk

(A(s)y1(s) +B(s)F (y1(s)) + C(s))ds
∣∣∣

≤ (1 + dk)
(∫ ξk

θk

[
α∥x0(s)− y0(s)∥+ βℓf∥x0(s)− y0(s)∥

]
ds

+

∫ ηk

ξk

(α∥y0(s)∥+ βmf + σ)ds
)

+

∫ ξk

θk

[
α∥x1(s)− y1(s)∥+ βℓf∥x1(s)− y1(s)∥

]
ds

+

∫ ηk

ξk

(α∥y1(s)∥+ βmf + σ)ds

≤ (1 + dk)
(
mτ (α + βℓf )∥x− y∥e(α+βℓf )mτ

+
ℓτe

(a+βℓf )mτ∥x− y∥
1− ℓτ (αh+ βmf + σ)

(αh+ βmf + σ)
)

+mτ (α + βℓf )∥x− y∥
(
1 + dk + EkℓI + ℓτ (αh+ βmf + σ)

1− (αh+ βmf + σ)

)
e2(α+βℓf )mτ

+
ℓτe

(a+βℓf )mτ∥x− y∥
1− ℓτ (αh+ βmf + σ)

(αh+ βmf + σ)

≤ ∥x− y∥

[
mτ (α + βℓf )

(
(1 + dk)e

(α+βℓf )mτ

+
2 + dk + EkℓI + ℓτ (αh+ βmf + σ)

1− (αh+ βmf + σ)
e2(α+βℓf )mτ

)

+
(2 + dk)(αh+ βmf + σ)ℓτe

(a+βℓf )mτ

1− ℓτ (αh+ βmf + σ)

]
.

Next we will show that ∥x(t)∥ < h implies ∥y(t)∥ < H . If t is not between ξk and

ηk, they are equal by the construction, so ∥y(t)∥ < h. Without loss of generality,

assume that ηk > ξk, let t ∈ [ηk, ξk], since y(ξk) = x(ξk), y(t) can be expressed by

the equation

y(t) = x(ξk) +

∫ t

ξk

(A(s)φ(s, ξk, xi(ξk)) +B(s)F (φj(s, ξk, xi(ξk))) + C(s))ds.
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Consequently, one can obtain the following inequalities

∥y(t)∥ ≤ ∥x(ξk)∥+

+

∫ t

ξk

(∥A(s)∥∥φ(s, ξk, xi(ξk))∥+ ∥B(s)∥∥F (φj(s, ξk, xi(ξk)))∥+ ∥C(s)∥)ds

≤ ∥x(ξk)∥+
∫ t

ξk

(α∥φ(s, ξk, xi(ξk))∥+ βmf + σ)ds

= h+ (αh+ βmf + C)mτ < H. □

For the forthcoming chapters some additional notations will be needed. So denote

ℓJ = ℓIk(mτ , ℓf ,mf ), ∥Jk(x)∥ ≤ mI = mj ,

ℓG = k̄(mτ , ℓf ,mf ),

∥Gk(x)∥ ≤ dkmτ (αH + βmf + σ) +mτ (αH + βmf + σ) +mH = mg.
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CHAPTER 3

PERIODIC RECURRENT NEURAL NETWORKS WITH NON-FIXED

MOMENT OF IMPULSES

In this chapter, we will first show the periodicity of the B-equivalent system under

some conditions and using B-equivalent system the periodicity of the original system

will be proved. The following periodicity conditions will be applied in the present

part of the thesis.

There exists a positive number ω and a natural number p such that

(P1) impulse moments are (ω, p)-periodic. That is, θk+p − θk = ω, k ∈ Z,

(P2) functions ai(t), bij(t), ci(t) are ω−periodic in t, for i, j = 1, 2, . . . ,m,

(P3) sequences dik, eijk, hik are p−periodic in k where i, j = 1, 2, . . . ,m, k ∈ Z,

(P4) sequence of discontinuity surfaces is p-periodic in k, such that τk+p(x) = τk for

all k ∈ Z and x ∈ Rm.

3.1 Periodicity of the Reduced Model

The main task of the present section is to prove that the sequences Jk(y) and Gk(y),

given in equations (2.8) and (2.9) are periodic in k. Hence we will prove that the

system (2.5) satisfies the conditions (P1)-(P4), consequently it is (ω, p)-periodic in k

uniformly with respect to x.

Let us denote by ξk, the impact moments where the solution of the system (2.5) meets

the surface of discontinuities, i.e. ξk is the real number in the interval [θk, θk +mτ ]

such that ξk = θk + τk(x(ξk, θk, x)).
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Consider x(ξk) and x(ξk+p) which are the solutions of ξk = θk + τk(x(ξk, θk, x))

and ξk+p = θk+p + τk+p(x(ξk+p, θk+p, x)) respectively, let x(t, θk, x) = x0(t) and

x(t, θk+p, x) = x0(t), then

x0(t) = x+

∫ t

θk

(A(s)x0(s) + B(s)f̃(x0(s)) + C(s))ds, where t ∈ [θk, θk +mτ ],

x0(t) = x+

∫ t

θk+p

(A(s)x0(s)+B(s)f̃(x0(s))+C(s))ds, where t ∈ [θk+p, θk+p+mτ ].

Also assume that the vector space on t ∈ [θk+p, θk+p+mτ ] is shifted ω units left with

the substitution t = u+ ω in the second equation to obtain:

x0(u+ω) = x+

∫ u+ω

θk+p

(A(s)x0(s)+B(s)f̃(x0(s))+C(s))dswhere u ∈ [θk, θk+mτ ].

Let x̄(t) = x0(t+ω) and use change of variables s = v+ω inside the integral. Hence,

it is true that

x̄(t) = x+

∫ t

θk

(A(s+ ω)x0(s+ ω) + B(s+ ω)f̃(x0(s+ ω)) + C(s+ ω))ds,

where t ∈ [θk, θk +mτ ].

Now observe that x̄(t) is the solution of the following differential equation

x̄′(t) = A(t+ ω)x̄(t) + B(t+ ω)f̃(x̄(t)) + C(t+ ω)

= A(t)x̄(t) + B(t)f̃(x̄(t)) + C(t),

with the initial conditions x̄(θk) = x and recall that x0(t) is the solution of the differ-

ential equation of the same system with the same initial conditions. So, x0(t + ω) =

x̄(t) = x0(t).

Lemma 7 The sequence of moments, ξk, where the solution meets the discontinuity

surfaces is p-periodic.

Proof. Consider ξk+p = θk+p + τk+p(x
0(ξk+p))

ξk+p = θk+p + τk+p(x
0(ξk+p)), where ξk+p ∈ [θk+p, θk+p +mτ ],

ξk+p − ω = θk + τk+p(x
0(ξk+p)), where ξk+p ∈ [θk+p, θk+p +mτ ],

ξk+p − ω = θk + τk(x0(ξk+p − ω)), where ξk+p − ω ∈ [θk, θk +mτ ].

(3.1)
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By definition of ξk, a solution of the equation t = θk + τk(t) on [θk, θk +mτ ] is ξk,

and by the absence of beating the solution meets each surface of discontinuity once.

then ξk+p − ω = ξk. □

Lemma 8 Under the conditions (C2)-(C7) and (P1)-(P4), the sequences in the B-

equivalent system (2.5), Jk(x), Gk(x), k ∈ Z are p-periodic uniformly in x.

Proof. The method for the proof of periodicity of Jk, and Gk are quite similar, firstly

the periodicity of Jk will be shown. As above, denote

x0(t) = x+

∫ t

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds with t ∈ [θk, θk +mτ ],

x0(t) = x+

∫ t

θk+p

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds, with t ∈ [θk+p, θk+p +mτ ].

To show periodicity of Jk(x) = I(x0(ξk)), the substituton s = u+ θk+p− θk = u+ω

and u = s− ω on Jk+p(x) and writing integrand with variable s result in

Jk+p(x) = I(x0(ξk+p)) = I(x+

∫ ξk+p

θk+p

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds)

= I(x+

∫ ξk

θk

(A(s+ ω)x0(s+ ω) + B(s+ ω)F (x0(s+ ω)) + C(s+ ω))ds)

= I(x+

∫ ξk

θk

(A(s)x̄0(s) + B(s)F (x̄0(s)) + C(s))ds)

= I(x+

∫ ξk

θk

(A(s)x0(s) + B(s)F (x0) + C(s))ds)

= Jk(x).

Using the equation

Gk(x) = (I +Dk)
(∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds
)

+

∫ θk

ξk

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds+Hk,

the proof of the periodicity of Gk(x) involves similar calculations as follows

Gk+p(x) = (I +Dk+p)
(∫ ξk+p

θk+p

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds
)

+

∫ θk+p

ξk+p

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds+Hk+p
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= (I +Dk+p)
(∫ ξk

θk

(A(s+ ω)x0(s+ ω)

+ B(s+ ω)F (x0(s+ ω)) + C(s+ ω))ds
)

+

∫ θk

ξk

(A(s+ ω)x1(s+ ω) + B(s+ ω)F (x1(s+ ω)) + C(s+ ω))ds+Hk+p

= (I +Dk)
(∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds
)

+

∫ θk

ξk

(A(s)x1(s) + B(s)F (x1(s)) + C(s))ds+Hk

= Gk(x).

Hence both Jk(x) and Gk(k) are p-periodic uniformly in x. □

Next, consider the linear homogeneous counterpart of the B-equivalent system (2.5).

Denote by D, the space of periodic functions such that they have common disconti-

nuity points, which are periodic, such that ∥φ(t)∥0 < H , where the (ω, p)-periodic

discontinuity points are θk, k ∈ Z, and the corresponding function norm on the space

D is, ∥φ(t)∥0 = sup
t∈(−∞,∞)

∥φ(t)∥, for φ(t) ∈ D.

On the space D, set the operator

Tφ(t) = (Tφ)(t)

=

∫ t

−∞
X(t, s)

(
B(s)F (φ(s)) + C(s)

)
ds

+
∑
θk<t

X(t, θk+)

(
EkJk(φ(θk)) +Gk(φ(θk))

)
.

The following assertions are needed through the remaining part of this chapter.

(C8) K

(
mfB + c

−γ
+
mJE +mg

1− eγθ

)
< H ,

(C9) K

(
ℓfB

−γ
+
ℓJE + ℓG
1− eγθ

)
< 1,

(C10) γ +Kβℓf +
ln(1+K(ℓJE+ℓG))

θ
< 0.

Lemma 9 Let φ(t) ∈ D and the conditions (C8) and (P1)-(P4) be valid. Then Tφ(t)

belongs to D, that is, T is invariant on D.

Proof. We need to show that if φ ∈ D then Tφ also belongs to D. Let us consider

the following inequalities
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∥Tφ(t)∥ ≤
∫ t

−∞
∥X(t, s)∥∥B(s)F (φ(s)) + C(s)∥

+
∑
θk<t

∥X(t, θk)∥∥EkJk(φ(θk)) +Gk(φ(θk))∥

≤
∫ t

−∞
Keγ(t−s)(∥B(s)∥∥F (φ(s))∥+ ∥C(s)∥

+
∑
θk<t

Keγ(t−θk)∥EkJk(φ(θk)) +Gk(φ(θk))∥

≤ K

(
mfβ + σ

−γ
+
mIE +mg

1− eγθ

)
.

The last statement, by the condition (C8) implies that ∥Tφ(t)∥ < H. Next we check

the periodicity of the image of T .

Tφ(t+ ω) =

∫ t

−∞
X(t+ ω, s+ ω)

(
B(s+ ω)F (φ(s+ ω)) + C(s+ ω)

)
ds

+
∑
θk<t

X(t+ ω, θk+q)

(
E(k+q)Jk+q(φ(θk+q)) +Gk+q(φ(θk+q))

)
=

∫ t

−∞
X(t, s)

(
B(s)F (φ(s)) + C(s)

)
ds

+
∑
θk<t

X(t, θk)

(
EkJk(φ(θk)) +Gk(φ(θk))

)
= Tφ(t).

This ends the proof, since Tφ(t) is in D and ω-periodic T is invariant on D. □

Lemma 10 Under the conditions (C8),(C9) and (P1)-(P4), the map T is a contraction

in D.

Proof. Suppose that φ(t) and ψ(t) are the functions that belong to D. Then, we can

assert the following inequality

∥Tφ(t)− Tψ(t)∥

≤
∫ t

−∞
∥X(t, s)∥∥B(s)(F (φ(s))− F (ψ(s)))∥ds

+
∑
θk<t

∥X(t, θk)∥∥Ek(J(φ(θk))− J(ψ(θk))) +Gk(φ(θk))−Gk(ψ(θk))∥

≤
∫ t

−∞
Keγ(t−s)∥B(s)∥ℓf∥φ(s)− ψ(s)∥ds

+
∑
θk<t

Keγ(t−θk)(ℓJE + ℓG)∥φ(θk)− ψ(θk)∥

37



≤
∫ t

−∞
Keγ(t−s)βℓf∥φ(s)− ψ(s)∥0ds

+
∑
θk<t

Keγ(t−θk)(ℓJE + ℓG)∥φ(θk)− ψ(θk)∥

≤
∫ t

−∞
Keγ(t−s) βℓf∥φ(t)− ψ(t)∥0ds

+
∑
θk<t

Keγ(t−θk)(ℓJE + ℓG)∥φ(t)− ψ(t)∥0

≤ Kℓfβ∥φ(t)− ψ(t)∥0
(

1

−γ

)
+K(ℓJE + ℓG)∥φ(t)− ψ(t)∥0

(
1

1− eγθ

)
≤ K

(
ℓfβ

−γ
+
ℓJE + ℓG
1− eγθ

)
∥φ(t)− ψ(t)∥0.

Then ∥Tφ(t) − Tψ(t)∥0 ≤ K

(
ℓfβ

−γ
+
ℓJE + ℓG
1− eγθ

)
∥φ(t) − ψ(t)∥0. Hence by the

condition (C9), the map T is a contraction. □

Theorem 11 Let (C1)-(C10) and (P1)-(P4) be fulfilled. Then the system (2.5) has a

unique asymptotically stable periodic solution.

Proof. The operator T satisfies the differential equation and impulsive part of the

system (2.5). Indeed, the derivative of Tφ(t) with respect to t is

(Tφ(t))′

=

∫ t

−∞
X(t, s)A(t)

(
B(s)f(φ(s)) + C(s)

)
ds

+ X(t, t)

(
B(t)f(φ(t)) + C(t)

)
+
d

dt

∑
θk<t

X(t, θk)

(
EkJk(φ(θk)) +Gk(φ(θk))

)

= A(t)

∫ t

−∞
xi(t, s)

(
B(s)f(φj(s)) + C(s)

)
ds

+ A(t)
∑
θk<t

X(t, θk)

(
EijkJij(φ(θk)) +Gk(x(θk))

)
+

(
B(t)fj(Tφj(t)) + C(t)

)
= A(t)T (φi(t)) +

(
B(t)fj(Tφj(t)) + C(t)

)
.

For the impulsive part, we will use xi(θq+, s) = xi(θq, s)(1 + diq), which leads us to
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xi(θq+, s)− xi(θq, s) = diq. As a result, it can be seen that

∆Tφj(t)
∣∣
t=θq

= Tφj(θq+)− Tφj(θq)

=

∫ θq+

−∞
xi(θq+, s)

( m∑
j=1

bij(s)fj(φj(s)) + ci(s)

)
ds

+
∑

θk<θq+

xi(θq+, θk)

( m∑
j=1

eijkJij(φ(θq)) + gik(x(θk))

)

−
∫ θq

−∞
xi(θq, s)

( m∑
j=1

bij(s)fj(φj(s)) + ci(s)

)
ds

−
∑
θk<θq

xi(θq, θk)

( m∑
j=1

eijkJij(φ(θq)) + gik(x(θk))

)

= (1 + diq − 1)

∫ θq

−∞
xi(θq, s)

( m∑
j=1

bij(s)fj(φj(s)) + ci(s)

)
ds

+ xi(θq+, θq+)

( m∑
j=1

eijqJij(φ(θq)) + gik(x(θq))

)

+
∑

θk<θq+

(xi(θq+, θk)− xi(θq, θk))

( m∑
j=1

eijkJij(φ(θq)) + gik(x(θk))

)

= diq

∫ θq

−∞
xi(θq, s)

( m∑
j=1

bij(s)fj(φj(s)) + ci(s)

)
ds

+ diq
∑

θk<θq+

xi(θq, θk)

( m∑
j=1

eijkJij(φ(θq+)) + gik(x(θk))

)

+

( m∑
j=1

eijqJij(Tφ(θq)) + gik(x(θq))

)
.

By the Lemma 9, the operator T is invariant on the space D. That is, if φ(t) ∈ D, then

Tφ(t) ∈ D, and by the Lemma 10 the operator is a contraction. Hence, by Banach’s

fixed point theorem [75], the space D has a unique element ω(t), such that Tω = ω,

and it is the unique solution of our system.

Let z(t) = [z1(t), . . . , zm(t)] be a solution of the system (2.5) with the initial data is

z(t0) = z0. Applying the equivalent integral equation for the initial value problem,

one can obtain
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∥z(t)− ω(t)∥

≤
∥∥X(t, t0)(z(t0)− ω(t0)) +

∫ t

t0

X(t, s)(B(F (z(s))− F (ω(s))))ds

+
∑

t0≤θk<t

X(t, θk)

(
Ek(J(z(θk))− J(ω(θk))) +Gk(z(θk))−Gk(ω(θk))

)∥∥
≤ ∥x(t, t0)∥∥(z(t0)− ω(t0))∥+

∫ t

t0

Keγ(t−s)βℓf∥z(s)− ω(s)∥ds

+
∑

t0≤θk<t

Keγ(t−θk)(ℓJE + ℓG)∥z(θk)− ω(θk)∥.

Multiplying both sides with e−γt and setting u(t) = e−γt∥z(t)−ω(t)∥ one can obtain

u(t) ≤ Ku(t0) +

∫ t

t0

Kβℓfu(s)ds+
∑

t0≤θk<t

K(ℓJE + ℓG)u(θk).

Now, the Gronwall-Bellman Lemma for piecewise continuous functions [1] implies

the inequality

u(t) ≤ Ku(t0)e
∫ t
t0

Kβℓfds
∏

t0≤θk<t

(1 +K(ℓJE + ℓG))

= Ku(t0)e
(t−t0)Kβℓf

∏
t0≤θk<t

(1 +K(ℓJE + ℓG)).

Finally, back-substituting u(t), multiplicating the inequality by eγt and using (1.23)

will result in

∥z(t)− ω(t)∥ ≤ Ke(γ+Kβℓf )(t−t0)∥z(t0)− ω(t0)∥ei([t0, t]) ln(1 +K(ℓJE + ℓG))

= KeΓ2(t− t0)(1 +K(ℓJE + ℓG))∥z(t0)− ω(t0)∥, (3.2)

where Γ2 =

(
γ+Kβℓf +

ln(1+K(ℓJE+ℓG))
θ

)
. Hence, the condition (C10) implies that

the solution ω(t) is asymptotically stable. □

3.2 The Main Periodicity Result

In the previous section, it is proved that B-equivalent system is (ω, p)-periodic and

asymptotically stable. This section is devoted to prove that the solution of the system

(1.34), which is a recurrent neural network with structured impulses at non-prescribed

moments, is periodic and asymptotically stable. First the periodicity of the impact
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moments will be proved, then the periodicity of the derivative sequences of impact

moments will be shown. Finally the main theorem of the paper will be stated and

proved.

Lemma 12 The discontinuity moments, ζk, of the solution of the system (1.34) are

periodic.

Figure 3.1: The graph of the periodic solution ψ(t) of the system (1.34) that has

periodicity conditions.

Proof. Let φ(t) be solution of the system (2.5) which is B-equivalent system of

(1.34) with initial condition φ(θk) = x0. Then the function φ(t), t ∈ R is a

discontinuous periodic function. Then the sequence φ(θk), k ∈ Z is periodic, i.e.

φ(θk+p) = φ(θk).

Denote xk(t) = x(t, θk, ψ(θk)) i.e. the continuous solution on the interval (θk, ζk].

Also let ψ(t) be solution of the system (1.34) with the same initial conditions ψ(θk) =

x0. Then by the definition of B-equivalence, ψ(t) = φ(t), for t values that are not in

the interval with the endpoints θk and ξk.

Lastly denote by ζk the points where the solution ψ(t) meets the surfaces of dis-

continuities t = θk + τk(x(t)). Thus ζk = θk + τk(ψ(ζk)) = θk + τk(φ(ζk)) =

θk + τk(x
k(ζk)).

If x0(t) is the solution of the system (1.34) with initial conditions x(θk) = x = φ(θk),
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then for t ∈ [θk, θk +mτ ]

x0(t) = x+

∫ t

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds.

As in preparation of Lemma 7, denote x̄(t) = x0(t+ ω), then x̄ is the solution of the

differential equation,

y′ = A(t+ ω)y(t) + B(t+ ω)F (y(t)) + C(t+ ω), (3.3)

where t ∈ [θk, θk +mτ ] with the initial conditions x̄(θk) = ψ(θk+p).

Hence x̄(t) = x0(t) on t ∈ [θk, θk +mτ ]. Using the equality

ζk+p = θk+p + τk+p(x
k(ζk+p)) = θk + ω + τk(x

k(ζk+p))

= θk + ω + τk(x0(ζk+p − ω)),

one can get that

ζk+p − ω = θk + τk(x0(ζk+p − ω)).

Since ζk is the only solution of t = θk + τk(x0(t)), the discontinuity moments satisfy

ζk+p − ω = ζk. This means that the sequence ζk is periodic. □

Theorem 13 If the conditions (C1)-(C10) and (P1)-(P3) are valid then the system

(1.34) admits a unique periodic and asymptotically stable solution ψ(t).

Proof. Let φ(t) be the periodic solution of the system (2.5). And set ψ(t) as in

Lemma 12. Recall by B-equivalence that

t ≤ θk; ψ(t) = φ(t) then ψ(θk) = φ(θk),

t ≥ ζk; ψ(t) = φ(t) then ψ(ζk) = φ(ζk),

and in the previous section, we proved that the periodic solution of the B-equivalent

system (2.5), φ(t), is asymptotically stable. So whenever φ(t) = ψ(t), the solution

ψ(t) is periodic. Now we should show that ψ(t) is periodic in the intervals when

ψ(θk) ̸= φ(θk). Observe that θk+p ≤ t + ω ≤ ζk+p whenever θk ≤ t ≤ ζk. On the

interval θk ≤ t ≤ ζk, the solution ψ(t) satisfies the following equation:

ψ(t) = φ(θk) +

∫ t

θk

(A(s)ψ(s) +B(s)F (ψ(s)) + C(s))ds. (3.4)
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Additionally, when θk+p ≤ t + ω ≤ ζk+p, one can obtain that the solution of the

system (1.34) satisfies

ψ(t+ ω) = φ(θk+p) +

∫ t+ω

θk+p

(A(s)ψ(s) +B(s)F (ψ(s)) + C(s))ds. (3.5)

Hence by a simple change of variable and the periodicity of φ(t) and the coefficients

one can get

ψ(t+ ω)

= φ(θk+p) +

∫ t

θk+p−ω

(A(s+ ω)ψ(s+ ω) +B(s+ ω)F (ψ(s+ ω)) + C(s+ ω))ds

= φ(θk) +

∫ t

θk

(A(s)ψ(s+ ω) +B(s)F (ψ(s+ ω)) + C(s))ds. (3.6)

Denote Ψ(t) = ψ(t+ ω) where θk ≤ t ≤ ζk. Then

Ψ(t) = φ(θk) +

∫ t

θk

(A(s)Ψ(s) +B(s)F (Ψ(s)) + C(s))ds. (3.7)

The last equation together with the equation (3.4) implies that ψ(t) = Ψ(t) = ψ(t +

ω). Asymptotic stability is proved in the same manner by using φ(t)’s asymptotic

stability. □
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CHAPTER 4

ALMOST PERIODIC RECURRENT NEURAL NETWORKS WITH FIXED

MOMENT OF IMPULSES

The following neural model with prescribed moments of impulses is in the focus of

this chapter,

x′i = ai(t)xi +
m∑
j=1

bij(t)fj(xj) + ci(t), t ̸= θk,

∆xi
∣∣
t=θk

= dikxi +
m∑
j=1

eijkIj(xj) + hik, i = 1, 2, . . . ,m,

(4.1)

where xi ∈ R with i = 1, 2, . . . ,m, t ∈ R, and the sequence θk is increasing such that

|θk| → ∞ as k → ∞. The jump equations are set by ∆xi
∣∣
t=θk

= xi(θk+)− xi(θk),

assuming that the limit xi(θk+) = lim
t→θ+k

xi(t) exists. The system coefficients are in

the same role as system 1.33 except for the impulse moments.

4.1 Almost Periodic Oscillations

Consider the RINN (4.1) and the associated homogeneous linear equations (1.18).

We will prove the solution of the system is unique and asymptotically stable that is

the main theorem of this chapter. To make it easier, the problem is divided into three

parts in what follows. First of all, for the discussion needs we defined a space of

discontinuous almost periodic functions and an operator acting on the space. In the

next step the invariance of the operator on the specified space and the contraction

property of it is proved. Finally, the main theorem will be verified. The following are

the conditions needed for almost periodicity.

(A1) The derivative sequences θjk, k, j ∈ Z are positive and uniformly almost periodic
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in k. Consequently, there exist numbers θ > 0 and θ > 0, with θ ≤ θk+1 − θk ≤ θ.

(A2) ai(t), bij(t), ci(t) are (uniformly continuous) almost periodic functions for i =

1, 2, . . . ,m.

(A3) The sequences dik, eijk, hi are almost periodic in k where i, j = 1, 2, . . . ,m,

k ∈ Z.

Lemma 14 [9] Let fi(t), i = 1, 2, . . . , n, be discontinuous almost periodic functions

with the common sequence of discontinuity moments θk, k ∈ Z, the sequences I ik,

k ∈ Z, i = 1, 2, . . . , p, are almost periodic, gik(x), k ∈ Z, i = 1, 2, . . . , l, are vector

functions uniformly almost periodic on their domains. Moreover for the system (4.1)

the condition (C1) is valid. Then for arbitrary positive ε and ν < ε there exists

relatively dense sets of real numbers R and integers Q such that

1. ∥fi(t+ τ)− fi(t)∥ < ε, for all t ∈ R, |t− θk| > ε i = 1, 2, . . . , n,

2. ∥gik+q(x)−gik(x)∥ < ε, for all x from the domain, for all k ∈ Z, i = 1, 2, . . . , l,

3. ∥I ik+q − I ik∥ < ε, for all k ∈ Z, i = 1, 2, . . . , p,

4. ∥θqk − τ∥ < ν, for all k ∈ Z,

if τ ∈ R and q ∈ Q.

This lemma is referred as the lemma on the hybrid common almost periods or shortly

the lemma on hybrid almost periods. By definition, it is helpful in the study of more

than one almost periodic discontinuous functions and sequences.

Lemma 15 [9] Let the conditions (C1) and (A1)-(A2) be valid. Then for any positive

ε there exists a relatively dense set of almost periods τ of A(t), such that

∥X(t+ τ, s+ τ)−X(t, s)∥ < εLe
γ
2
(t−s) (4.2)

where t ≥ s, |t− θk| > ε, and L is independent of ε and τ .

Let D be the space of discontinuous almost periodic (d.a.p.) functions bounded by

H, with discontinuity points θk, k ∈ Z. We will utilize in what follows the norm

∥φ(t)∥0 = sup
t∈R

∥φ(t)∥, where φ ∈ D.
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On the space D, φ ∈ D, set the operator T such that

Tφ(t) = (Tφ)(t) =

∫ t

−∞
X(t, s)

(
B(s)F (φ(s)) + C(s)

)
ds

+
∑
θk<t

X(t, θk)

(
EkI(φ(θk)) +Hk

)
.

Throughout this chapter the following conditions will be applied:

(C11) K
(
mfβ + σ

−γ
+
mIE +mh

1− eγθ

)
< H;

(C12) K
(
ℓfβ

−γ
+

ℓIE

1− eγθ

)
< 1;

(C13) γ +Kβℓf +
ln(1+KEℓI)

θ
< 0.

Lemma 16 If the conditions (C1),(C11) and (A1)-(A3) are satisfied, then T is invari-

ant on D.

Proof. For invariance, T (D) ⊆ D must be proven.

Let us fix φ ∈ D. To show invariance, estimate first ∥T (φ)∥. We have that

∥Tφ(t)∥ ≤
∫ t

−∞
∥X(t, s)∥∥B(s)F (φ(s)) + C(s)∥

+
∑
θk<t

∥x(t, θk)∥∥EkI(φ(θk)) +Hk∥

≤
∫ t

−∞
Keγ(t−s)(∥B(s)∥∥F (φ(s))∥+ ∥C(s)∥)

+
∑
θk<t

Keγ(t−θk)∥EkI(φ(θk)) +Hk∥

≤ K

(
mfβ + σ

−γ
+
mIE +mh

1− eγθ

)
.

The last inequality, by the condition (C11) implies that ∥Tφ(t)∥ < H.

Consider the numbers θ and θ as constants as mentioned before. Let j be the integer

such that θj < t ≤ θj+1. One can obtain the following expression∑
θk<t

eγ(t−θk) =
∞∑
n=0

eγ(t−θj)eγ(θj−θj−n) = eγ(t−θj)

∞∑
n=0

eγθn ≤ 1

1− eγθ
. (4.3)

The inequalities t− θj > 0 and |θk+q − τ − θk| < ε imply that

e
γ
2
(t−θj+q+τ) ≤ e−ε γ

2 . (4.4)
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By the last inequality one can obtain,

∑
θk<t

∥X(t+ τ, θk+q)−X(t, θk+q − τ)∥

≤
∑
θk<t

εLe
γ
2
(t+τ−θk+q) =

∞∑
n=0

εLe
γ
2
(t+τ−θj+q)e

γ
2
(θj+q−θj+q−n) = εLe−ε γ

2

∞∑
n=0

e
γ
2
θn

≤ εLe−ε γ
2

1

1− e
γ
2
θ
. (4.5)

If j is the integer satisfying θj < θk ≤ θj+1, then by using the Lemma 14 one can

obtain θk − θk+q + τ < η < ε < θ < θk − θj. Then θj < θk+q − τ. Similarly, θj+1 >

θk+q − τ. Consequently, combining two previous results as θj < θk+q − τ ≤ θj+1,

one can obtain that the products
∏

θk+q−τ≤θn<t

(1 + din) and
∏

θk≤θn<t

(1 + din), then they

are equal to each other.

Using the state transition solution of (1.18) and (C1) the following result is obtained

∑
θk<t

∥X(t, θk+q − τ)−X(t, θk)∥

=
∑
θk<t

∥e
∫ t
θk+q−τ A(u)du ∏

θk+q−τ≤θn<t

(I +Dn)− e
∫ t
θk

A(u)du
∏

θk≤θn<t

(I +Dn)∥

≤
∑
θk<t

Keγ(t−θk)|eεα − 1| ≤ |1− eεα|K
∑
θk<t

eγ(t−θk) ≤ |1− eεα| K

1− eγθ
.

By the Lemma 3.9 in [9], φ(θk) is an almost periodic sequence in k.

Applying Lemma 15 and lemma on hybrid almost periods, which is Lemma 14„ one

can show that

∥Tφ(t+ τ)− Tφ(t)∥

≤
∫ t

−∞
∥X(t+ τ, s+ τ)(B(s+ τ)F (φ(s+ τ)) + C(s+ τ))

− X(t, s)(B(s)F (φ(s)) + C(s))∥ds

+
∑
θk<t

∥X(t+ τ, θk+q)(E(k+q)I(φ(θk+q)) +Hk+q)−X(t, θk)(EkI(φ(θk)) +Hk)∥

≤
∫ t

−∞
∥X(t+ τ, s+ τ)−X(t, s)∥

∥∥B(s+ τ)F (φj(s+ τ)) + C(s+ τ)
∥∥ds

+

∫ t

−∞
∥X(t, s)∥∥B(s+ τ)− B(s)∥∥F (φ(s+ τ))∥ds
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+

∫ t

−∞
∥X(t, s)∥∥B(s)∥∥F (φ(s+ τ))− F (φ(s))∥ds

+

∫ t

−∞
∥X(t, s)∥∥C(s+ τ)− C(s)∥ds

+
∑
θk<t

(
∥X(t+ τ, θk+q)−X(t, θk+q − τ)∥+ ∥X(t, θk+q − τ)−X(t, θk)∥

)
×

×
∥∥Ek+qI(φ(θk+q)) +Hk+q

∥∥
+

∑
θk<t

∥X(t, θk)∥∥Ek+q − Ek∥
∥∥I(φ(θk+q))

∥∥
+

∑
θk<t

∥X(t, θk)∥∥Ek∥
∥∥I(φ(θk+q))− I(φ(θk))

∥∥
+

∑
θk<t

∥X(t, θk)∥∥Hk+q −Hk∥

≤
∫ t

−∞
εLe

γ
2
(t−s)(βmf + σ)ds+

∫ t

−∞
Keγ(t−s)εmfds

+

∫ t

−∞
Keγ(t−s)ℓfBεds+

∫ t

−∞
Keγ(t−s)εds

+
∑
θk<t

(εLe
γ
2
(t−(θk+q−τ)) +K(1− eεα)eγ(t−θk))(mIE +mH)

+
∑
θk<t

Keγ(t−θk)εmI +
∑
θk<t

Keγ(t−θk)ℓIEε+
∑
θk<t

Keγ(t−θk)ε

≤
(
2εL(βmf + σ) +Kεmf +KℓfBε+Kε

)
1

−γ

+

(
εLe−ε γ

2
1

1− e
γ
2 θ

+ (1− eεα)
K

1− eγθ

)
(mIE +mH)

+

(
KεmI +KℓIEε+Kε

)
1

1− eγθ
= Γ1(ε)ε,

where Γ1(ε) is a bounded function of ε. □

Lemma 17 If the conditions (C1), (C11)-(C12) and (A1)-(A3) are valid, then T is a

contractive map.

Proof. Let φ(t) and ψ(t) be elements of D. One can obtain the following inequality

∥Tφ(t)− Tψ(t)∥

≤
∫ t

−∞
∥X(t, s)∥∥B(s)(F (φ(s))− F (ψ(s)))∥ds

+
∑
θk<t

∥X(t, θk)∥∥Ek(I(φ(θk))− I(ψ(θk)))∥ (4.6)
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≤
∫ t

−∞
Keγ(t−s)∥B(s)∥ℓf∥φ(s)− ψ(s)∥ds+

∑
θk<t

Keγ(t−θk)EkℓI∥φ(θk)− ψ(θk)∥

≤
∫ t

−∞
Keγ(t−s)βℓf∥φ(s)− ψ(s)∥0ds+

∑
θk<t

Keγ(t−θk)EℓI∥φ(θk)− ψ(θk)∥

≤
∫ t

−∞
Keγ(t−s) βℓf∥φ(t)− ψ(t)∥0ds+

∑
θk<t

Keγ(t−θk)EℓI∥φ(t)− ψ(t)∥0

≤ Kℓfβ∥φ(t)− ψ(t)∥0
(

1

−γ

)
+KℓIE∥φ(t)− ψ(t)∥0

(
1

1− eγθ

)
≤ K

(
ℓfβ

−γ
+

ℓIE

1− eγθ

)
∥φ(t)− ψ(t)∥0. (4.7)

Then ∥Tφ(t) − Tψ(t)∥0 ≤ K

(
ℓfβ

−γ
+

ℓIE

1− eγθ

)
∥φ(t) − ψ(t)∥0. Hence by the con-

dition (C12), T is a contraction. □

Theorem 18 Assume that (C1), (C11)-(C13) and (A1)-(A3) are fulfilled. Then the

RINN (4.1) has a unique asymptotically stable discontinuous almost periodic solu-

tion.

Proof. By the Lemmas 16 and 17, the operator T is invariant on the space D. That

is, if φ(t) ∈ D, then Tφ(t) ∈ D, and the operator is a contraction. Hence, D has a

unique element ω(t), such that Tφ = φ, and it is the unique solution of our system.

Let z(t) = [z1(t), . . . , zm(t)] be the solution of the system (4.1) with the initial con-

ditions z(t0) = z0. Applying the equivalent integral equation for the initial value

problem one can obtain

∥z(t)− ω(t)∥ ≤
∥∥X(t, t0)(z(t0)− ω(t0)) +

∫ t

t0

X(t, s)(B(F (z(s))− F (ω(s))))ds

+
∑

t0≤θk<t

X(t, θk)
(
Ek(I(z(θk))− I(ω(θk)))

)∥∥
≤ ∥x(t, t0)∥∥(z(t0)− ω(t0))∥+

∫ t

t0

Keγ(t−s)βℓf∥z(s)− ω(s)∥ds

+
∑

t0≤θk<t

Keγ(t−θk)EℓI∥z(θk)− ω(θk)∥.

Multiplying both sides with e−γt and setting u(t) = e−γt∥z(t)−ω(t)∥ one can obtain

u(t) ≤ Ku(t0) +

∫ t

t0

Kβℓfu(s)ds+
∑

t0≤θk<t

KEℓIu(θk).
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Now, the Gronwall-Bellman Lemma for piecewise continuous functions [1] implies

the inequality

u(t) ≤ Ku(t0)e
∫ t
t0

Kβℓfds
∏

t0≤θk<t

(1 +KEℓI) = Ku(t0)e
(t−t0)Kβℓf

∏
t0≤θk<t

(1 +KEℓI).

Lastly, back substitution of u(t), and multiplying the inequality by eγt and using

(1.23) will result with

∥z(t)− ω(t)∥ ≤ Ke(γ+Kβℓf )(t−t0)∥z(t0)− ω(t0)∥ei([t0, t]) ln(1 +KEℓI)

= KeΓ3(t− t0)(1 +KEℓI)∥z(t0)− ω(t0)∥,
(4.8)

where Γ3 =

(
γ +Kβℓf +

ln(1+KEℓI)
θ

)
. Hence, the condition (C13) implies that the

solution ω(t) is an asymptotically stable solution. □

4.2 An Example

Let us consider the following system, which consists of two neurons,

x′1 = a1(t)x1 + b11(t) arctan(x1) + b12(t) arctan(
x2
2
) + c1(t), t ̸= θk, (4.9)

x′2 = a2(t)x2 + b21(t) arctan(x1) + b22(t) arctan(
x2
2
) + c2(t), t ̸= θk,

∆x1
∣∣
t=θk

= d1kx1 + e11k arctan(x1) + e12k
1

1 + ex2
+ h1k,

∆x2
∣∣
t=θk

= d2kx2 + e21k arctan(x1) + e22k
1

1 + ex2
+ h2k.

The fixed moments of impulses are given by the sequence θk = k +
1

8
(sin(k) +

cos(
√
2k)), k ∈ Z. One can check that the inequalities

3

4
≤ θk+1 − θk ≤ 5

4
are

correct for all k, and the condition (A1) is satisfied, that is the sequences θjk, j ∈ Z,

are positive and equipotentially almost periodic in k.

The self regulation rates, a1(t) = −2+
1

10
| sin(t)+cos(

√
7t)|, a2(t) =

1

2
+

1

10
| sin(t)+

cos(
√
11t)|, t ∈ R, the synaptic connection weights of unit j on the unit i for

i, j = 1, 2 b11(t) =
1

100
(sin(

√
2t) + cos(t)), b12(t) =

1

100
(sin(

√
3t) + cos(t)),

b21(t) =
1

100
(sin(

√
5t) + cos(t)), b22(t) =

1

100
(sin(

√
7t) + cos(t)), the external in-

puts c1(t) =
1

10
(sin(

√
2t) + cos(

√
5t)) and c2(t) =

1

10
(sin(

√
3t) + cos(

√
7t)) are

almost periodic functions [76].
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The impulsive rates are equal to d1k = 0, 8 − 1

10
| sin(k) + cos(

√
3k)|, d2k = −1 −

1

10
| sin(k)+cos(

√
5k)| and the instantaneous synaptic connection weights are e11k =

1

100
(sin(

√
2k)+cos(

√
3k)), e12k =

1

100
(sin(

√
3k)+cos(2k)), e21k =

1

100
(sin(2k)+

cos(
√
5k)), e22k =

1

100
(sin(

√
5k) + cos(

√
7k)). The members of the sequence hik

which corresponds to the external impulsive inputs are equal to h1k =
1

4
(sin(

√
2k) +

cos(
√
7k)) and h2k =

1

4
(sin(

√
2k) + cos(

√
7k)). The sequences dik, eijk, hi, i, j =

1, 2, are almost periodic in k ∈ Z [9]. Thus, the conditions (A2) and (A3) are satisfied.

The sigmoid activation functions, are presented by f1(u) = arctanu, f2(u) = arctan u
2

and the functions I1(u) = arctanu, I2(u) =
1

1 + e−u
, u ∈ R, denote measure of im-

pact responses or impact activations.

Moreover, the functions fi and Ii, i = 1, 2, satisfy Lipschitz condition with ℓf = 1

and ℓI = 1. Consider the initial conditions selected as (x1(0), x2(0)) = (4, 4), and

H = 20.One can verify that the coefficients of the system satisfy −2 ≤ a1(t) ≤ −1.8

and 1 < 1 + d1k ≤ 1.8 = q1, γ1 = −1.016284, k1 = 1.8, 0.5 ≤ a2(t) ≤ 0.7 and

0 ≤ |1 + d2k| ≤ 0.2 = q2, γ2 = −0.58755, k2 = 5. Hence, |xi(t, s)| ≤ kie
γi(t−s)

for i = 1, 2. Letting K = max
1≤i≤2

ki = 5 and γ = max
1≤i≤2

γi = −0.58755, we verify that

(C1) is satisfied, that is ∥X(t, s)∥ ≤ Keγ(t−s). One can check that K
(
mfβ + σ

−γ
+

mIE +mh

1− eγθ

)
= 11.834 and K

(
ℓfβ

−γ
+

ℓIE

1− eγθ

)
= 0.901, that is (C11) and (C12)

are valid. It is verified that γ +Kβℓf +
ln(1+KEℓI)

θ
= −0.144 < 0. This implies that

the condition (C13) holds.

Thus, by the Theorem 18 there exists a unique asymptotically stable almost periodic

solution of the system (4.9).
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Figure 4.1: The simulation of the solution of the system 4.9 on t−x1 and t−x2 axes
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CHAPTER 5

ALMOST PERIODIC RECURRENT NEURAL NETWORKS WITH

VARIABLE MOMENT OF IMPULSES

In this chapter, we study the system (1.33), in its matrix form (1.34) which is a recur-

rently structured impulsive neural network with non-prescribed moment of impulses,

under almost periodicity conditions. The system is studied for existence, uniqueness,

stability and almost periodicity of a solution. The Lemma 14 which is on the hybrid

almost periods and Lemma 15 from Chapter 4 will be employed in this chapter also.

5.1 Almost Periodicity of the Reduced Recurrent Neural Network

The B-equivalent system, (2.5), of (1.34) is the focus of this section. The almost

periodicity assumptions that are used in this chapter are the following.

(A1) The derivative sequences θjk, k, j ∈ Z are positive and uniformly almost periodic

in k. That is, for arbitrary positive ε, there exists a set of ε-almost periods common

for all the sequences θjk, j ∈ Z.

As a consequence of this condition there exist numbers θ > 0 and θ > 0, satisfying

θ ≤ θk+1 − θk ≤ θ.

(A2) ai(t), bij(t), ci(t) are almost periodic functions for i = 1, 2, . . . ,m.

(A3) The sequences dik, eijk, hi are almost periodic in k, k ∈ Z, i, j = 1, 2, . . . ,m.

Let us denote by ξk, the impact moments where the solution of the system (2.5) meets

the surface of discontinuities, i.e. ξk is the real number in the interval [θk, θk +mτ ]

such that ξk = θk + τk(x(ξk, θk, x)).
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Lemma 19 If the conditions (C2)-(C7) and (A1)-(A3) are satisfied, then the sequence

ξk − θk, k ∈ Z, is almost periodic.

Proof. We have that ξk = θk + τk(x0(ξk)) and ξk+q = θk+q + τk+q(x0(ξk+q)), where

x0(t) = x(t, θk, x) and x0(t) = x(t, θk+q, x) are solutions of the differential equation

x′ = A(t)x(t) + B(t)F (x(t)) + C(t)

with initial conditions x0(θk) = x and x0(θk+q) = x, respectively. Then the solutions

satisfy the following,

x0(t) = x+

∫ t

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds, t ∈ [θk, θk +mτ ],

x0(t) = x+

∫ t

θk+q

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds, t ∈ [θk+q, θk+q +mτ ].

Let us substitute t = u+ (θk+q − θk) to the last equation to obtain

x0(u+(θk+q−θk)) = x+

∫ u+(θk+q−θk)

θk+q

(A(s)x0(s)+B(s)F (x0(s))+C(s))ds, where

u ∈ [θk, θk +mτ ].

Denote x̄(t) = x0(t + (θk+q − θk)), from the last inequality x̄ is the solution of the

differential equation,

y′ = A(t+ (θk+q − θk))y(t) + B(t+ (θk+q − θk))F (y(t))

+ C(t+ (θk+q − θk)) (5.1)

where t ∈ [θk, θk +mτ ] with the initial conditions, x̄(t) = y(t, θk, x).

Recall that x0(t) = x(t, θk, x), where x(t, θk, x) is the solution of the system (2.5).

Observe that the coefficients of the right hand side of the differential equation satisfy

the inequality

∥A(t+(θk+q−θk))−A(t)∥ ≤ ∥A(t+(θk+q−θk))−A(t+τ)∥+∥A(t+τ)−A(t)∥ ≤ κA(ε)+ε,

∥B(t+(θk+q−θk))−B(t)∥ ≤ ∥B(t+(θk+q−θk))−B(t+τ)∥+∥B(t+τ)−B(t)∥ ≤ κB(ε)+ε,

∥C(t+(θk+q−θk))−C(t)∥ ≤ ∥C(t+(θk+q−θk))−C(t+τ)∥+∥C(t+τ)−C(t)∥ ≤ κC(ε)+ε,

where |θk+q − θk − τ | < ν are the cause for the presence of the κA(ε), κB(ε), κC(ε),

and A, B and C are uniformly continuous, and will be used in continuous dependence
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of the solution on the right hand side of the differential equation. Observe that as

ε→ 0, κA(ε) → 0, κB(ε) → 0, κC(ε) → 0.

Hence, by the continuous dependence on the right hand side of the differential equa-

tion [77],

∥x̄(t)− x0(t)∥ < κ(ε) (5.2)

on t ∈ [θk, θk +mτ ], and as ε→ 0, κ(ε) → 0

By definition, ξk = θk + τk(x0(ξk)) and ξk+q = θk+q + τk+q(x0(ξk+q)). Denoting

ξ′k = ξk+q−(θk+q−θk), then ξ′k = θk+τk+q(x̄(ξ
′
k)) holds. Without loss of generality,

assume that ξ′k > ξk then one can get,

|ξ′k − ξk| = |τk+q(x̄(ξ
′
k))− τk(x0(ξk))|

≤ |τk+q(x̄(ξ
′
k))− τk(x̄(ξ

′
k)) + τk(x̄(ξ

′
k))− τk(x0(ξk))|

≤ ε+ ℓτ∥x̄(ξ′k)− x̄(ξk) + x̄(ξk)− x0(ξk)∥

≤ ε+ ℓτκ(ε) + ℓτ∥
∫ ξ′k

ξk

(A(s+ (θk+q − θk))x̄(s)

+B(s+ (θk+q − θk)F ((̄s)) + C(s+ (θk+q − θk))ds∥

≤ ε+ ℓτκ(ε) + ℓτ∥(ξ′k+q − ξk)(αh+ βmf + σ)∥.

Hence

|ξ′k+q − ξk| ≤
ε+ ℓτκ(ε)

1− ℓτ (αh+ βmf + σ)
.

Since ε > 0 is arbitrarily small, it follows that the sequence ξ′k+q − ξk is almost

periodic. On the other hand |ξ′k+q − ξk| = |ξk+q − (θk+q − θk)− ξk| and this implies

|(ξk+q − θk+q)− (ξk − θk)| ≤
ε+ ℓτκ(ε)

1− ℓτ (αh+ βmf + σ)
. (5.3)

Hence the sequence ξk − θk is almost periodic. □

Lemma 20 The derivative sequences ξjk, j ∈ Z, are uniformly almost periodic in k.

Proof. Fix an integer j and fix a positive number ε. Since the derivative sequences,

θjk, are uniformly almost periodic and the sequence ξk − θk is almost periodic, by the

lemma on hybrid almost periods there is relatively dense set of common ε/3-almost

periods. Then one can obtain the following inequalities
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|ξjk+q − ξjk| = |ξk+j+q − ξk+j − ξk+j + ξk − θjk+q + θjk + θjk+q − θjk|

≤ |(ξk+j+q − θk+j+q)− (ξk+j − θk+j)− (ξk+q − θk+q) + (ξk − θk)|

+ |θjk+q − θjk|

≤ |(ξk+j+q − θk+j+q)− (ξk+j − θk+j)|+ |(ξk+q − θk+q)− (ξk − θk)|

+ |θjk+q − θjk|

≤ ε/3 + ε/3 + ε/3 = ε.

Consequently ξjk, j ∈ Z, are uniformly almost periodic. □

Lemma 21 Under the conditions (C2)-(C7) and (A1)-(A3), the coefficients in the B-

equivalent system (2.5) Jk(x), Gk(x) are uniformly almost periodic.

Proof. The method for the proof of almost periodicity of Jk, andGk are quite similar,

hence only almost periodicity of Jk will be shown. As above, denote

x0(t) = x+

∫ t

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds, where t ∈ [θk, θk +mτ ],

x0(t) = x+

∫ t

θk+q

(A(s)x0(s)+B(s)F (x0(s))+C(s))ds,where t ∈ [θk+q, θk+q+mτ ].

∥Jk+q(x)− Jk(x)∥ = ∥I(x0(ξk+q))− I(x0(ξk))∥

= ∥I(x+
∫ ξk+q

θk+q

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds)

−I(x+
∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds)∥

≤ ℓI∥
∫ ξk+q

θk+q

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds

−
∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds∥

(substitute s = u+ θk+q − θk in the first integral and write integrand with variable s,

and use notation ξk − (θk+q − θk)) = ξ′k

= ℓI∥
∫ ξ′k

θk

(A(s+ θk+q − θk)x
0(s+ θk+q − θk)

+B(s+ θk+q − θk)F (x
0(s+ θk+q − θk)) + C(s+ θk+q − θk))ds

−
∫ ξk

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds∥
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= ℓI∥
∫ ξ′k

ξk

(A(s+ θk+q − θk)x
0(s+ θk+q − θk)

+B(s+ θk+q − θk)F (x
0(s+ θk+q − θk)) + C(s+ θk+q − θk))ds∥

+ℓI∥
∫ ξk

θk

(A(s+ θk+q − θk)x̄0(s)−A(s)x0(s)

+B(s+ θk+q − θk)F (x̄0(s))− B(s)F (x0(s))

+C(s+ θk+q − θk)− C(s))ds∥

= ℓI∥
∫ ξ′k

ξk

(αh+ βmf + σ)ds∥

+ℓI∥
∫ ξk

θk

(A(s+ θk+q − θk)(x̄0(s)− x0(s)) + (A(s+ θk+q − θk)−A(s))x0(s)

+B(s+ θk+q − θk)(F (x̄0(s))− F (x0(s))) + (B(s+ θk+q − θk)− B(s))F (x0(s))

+C(s+ θk+q − θk)− C(s))ds∥

≤ ℓI |ξ′k − ξk|(αh+ βmf + σ) + ℓI∥
∫ ξk

θk

(α(x̄0(s)− x0(s)) + εAx0(s)

+βℓf (x̄0(s)− x0(s)) + εBF (x0(s)) + εC)ds∥

≤ ℓI
ε+ ℓτκ(ε)

1− ℓτ (αh+ βmf + σ)
(αh+ βmf + σ) + ℓImτ ((α + βℓf )κ(ε)

+(κA(ε) + ε)h+ (κB(ε) + ε)mf + κC(ε) + ε)

= M(ε).

Note that M(ε) → 0 as ε → 0. This ends the proof of the first part. As mentioned

before, the proof of the almost periodicity of Gk involves similar calculations. □

In what follows, almost periodicity of the solution of the system (2.5) which is the

B-equivalent system of (1.34) will be studied and proved. Consider the linear ho-

mogenous counterpart of the B-equivalent system (2.5)

y′i = ai(t)yi, t ̸= θk,

∆y
∣∣
t=θk

= dikyi(θk).
(5.4)

where ai(t), bij(t), ci(t), fj(u) are real valued continuous functions defined on real

numbers, also dik, eijk are sequences in integer k.

Denote by D, the space of discontinuous almost periodic (d.a.p.) functions bounded

by H, where the discontinuity points are θk, k ∈ Z, and the corresponding norm is

∥φ(t)∥0 = sup
t∈R

∥φ(t)∥, for φ(t) ∈ D.
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On the space D, set the operator

Tφ(t) = (Tφ)(t)

=

∫ t

−∞
X(t, s)

(
B(s)F (φ(s)) + C(s)

)
ds

+
∑
θk<t

X(t, θk)

(
EkJk(φ(θk)) +Gk(φ(θk))

)
.

Recall the following conditions which are needed through the remaining part of this

chapter.

(C8) K

(
mfB + c

−γ
+
mJE +mg

1− eγθ

)
< H ,

(C9) K

(
ℓfB

−γ
+
ℓJE + ℓG
1− eγθ

)
< 1,

(C10) γ +Kβℓf +
ln(1+K(ℓJE+ℓG))

θ
< 0.

Lemma 22 Let φ(t) ∈ D. If the conditions (C8) and (A1)-(A3) are valid, then φ(t)

belongs to T (D), that is, T is invariant on D.

Proof. We need to show that if φ ∈ D then Tφ also belongs to D. Let us consider

the following inequalities

∥Tφ(t)∥ ≤
∫ t

−∞
∥X(t, s)∥∥B(s)F (φ(s)) + C(s)∥

+
∑
θk<t

∥X(t, θk)∥∥EkJk(φ(θk)) +Gk(φ(θk))∥

≤
∫ t

−∞
Keγ(t−s)(∥B(s)∥∥F (φ(s))∥+ ∥C(s)∥)

+
∑
θk<t

Keγ(t−θk)∥EkJk(φ(θk)) +Gk(φ(θk))∥

≤ K

(
mfβ + σ

−γ
+
mIE +mg

1− eγθ

)
.

The last statement, by the condition (C8) implies that ∥Tφ(t)∥ < H.

Let θ and θ be the real numbers that satisfy θ ≤ θk+1 − θk ≤ θ, as mentioned before.

Let j be the integer, that gives the consecutive members of the sequence θk such that

θj < t ≤ θj+1. Then one can get the following

∑
θk<t

eγ(t−θk) =
∞∑
n=0

eγ(t−θj)eγ(θj−θj−n) = eγ(t−θj)

∞∑
n=0

eγθn ≤ 1

1− eγθ
. (5.5)
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Using the inequalities t− θj > 0 and |θk+q − τ − θk| < ε, we reach that

e
γ
2
(t−θj+q+τ) ≤ e−ε γ

2 . (5.6)

Moreover, the last inequality implies that∑
θk<t

∥X(t+ τ, θk+q)−X(t, θk+q − τ)∥

≤
∑
θk<t

εLe
γ
2
(t+τ−θk+q) =

∞∑
n=0

εLe
γ
2
(t+τ−θj+q)e

γ
2
(θj+q−θj+q−n)

= εLe−ε γ
2

∞∑
n=0

e
γ
2
θn

≤ εLe−ε γ
2

1

1− e
γ
2
θ
. (5.7)

Let j be the integer satisfying θj < θk ≤ θj+1. By Lemma 14 one can obtain θk −
θk+q + τ < η < ε < θ < θk − θj, and θj < θk+q − τ. Similarly, θj+1 > θk+q − τ.

Combining these two results as θj < θk+q − τ ≤ θj+1, one can state that the products∏
θk+q−τ≤θn<t

(1 + din) and
∏

θk≤θn<t

(1 + din), are equal to each other.

Using the state transition solution of (1.18) and the condition (C1), one can obtain∑
θk<t

∥X(t, θk+q − τ)−X(t, θk)∥

=
∑
θk<t

∥e
∫ t
θk+q−τ A(u)du ∏

θk+q−τ≤θn<t

(I +Dn)− e
∫ t
θk

A(u)du
∏

θk≤θn<t

(I +Dn)∥

≤
∑
θk<t

Keγ(t−θk)|eεα − 1| ≤ |1− eεα|K
∑
θk<t

eγ(t−θk) ≤ |1− eεα| K

1− eγθ
.

Furthermore, φ(θk) is an almost periodic sequence in k by the Lemma 3.9 in [9]. The

Lemma 14 which is on hybrid almost periods and Lemma 15 can be used to show that

∥Tφ(t+ τ)− Tφ(t)∥

≤
∫ t

−∞
∥X(t+ τ, s+ τ)

(
B(s+ τ)F (φ(s+ τ)) + C(s+ τ)

)
−X(t, s)

(
B(s)F (φ(s)) + C(s)

)
∥ds

+
∑
θk<t

∥∥∥∥X(t+ τ, θk+q)

(
E(k+q)Jk+q(φ(θk+q)) +Gk+q(φ(θk+q))

)
−X(t, θk)

(
EkJk(φ(θk)) +Gk(φ(θk))

)∥∥∥∥
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≤
∫ t

−∞
∥X(t+ τ, s+ τ)−X(t, s)∥

∥∥B(s+ τ)F (φ(s+ τ)) + C(s+ τ)
∥∥ds

+

∫ t

−∞
∥X(t, s)∥∥B(s+ τ)− B(s)∥∥F (φ(s+ τ))∥ds

+

∫ t

−∞
∥X(t, s)∥∥B(s)∥∥F (φ(s+ τ))− F (φ(s))∥ds

+

∫ t

−∞
∥X(t, s)∥∥C(s+ τ)− C(s)∥ds

+
∑
θk<t

(
∥X(t+ τ, θk+q)−X(t, θk+q − τ)∥+ ∥X(t, θk+q − τ)−X(t, θk)∥

)
×

×
∥∥Ek+qJk+q(φ(θk+q)) +Gk+q(φ(θk+q))

∥∥
+

∑
θk<t

∥X(t, θk)∥∥Ek+q − Ek∥
∥∥Jk(φ(θk+q))

∥∥
+

∑
θk<t

∥X(t, θk)∥∥Ek∥
∥∥Jk+q(φ(θk+q))− Jk(φ(θk))

∥∥
+

∑
θk<t

∥X(t, θk)∥
(
∥Gk+q(φ(θk+q))−Gk(φ(θk+q))∥+ ∥Gk(φ(θk+q))−Gk(φ(θk))∥

)
≤

∫ t

−∞
εLe

γ
2
(t−s)(βmf + σ)ds+

∫ t

−∞
Keγ(t−s)εmfds+

∫ t

−∞
Keγ(t−s)ℓfBεds

+

∫ t

−∞
Keγ(t−s)εds+

∑
θk<t

(
εLe

γ
2
(t−(θk+q−τ)) +K(1− eεα)eγ(t−θk)

)
(mJE +mG)

+
∑
θk<t

Keγ(t−θk)εmJ +
∑
θk<t

Keγ(t−θk)ℓJEε+
∑
θk<t

Keγ(t−θk)ε+
∑
θk<t

Keγ(t−θk)ℓGε

≤
(
2εL(βmf + σ) +Kεmf +KℓfBε+Kε

)
1

−γ

+

(
εLe−ε γ

2
1

1− e
γ
2 θ

+ (1− eεα)
K

1− eγθ

)
(mJE +mG)

+

(
KεmI +KℓJEε+Kε+KℓGε

)
1

1− eγθ
= Γ1(ε)ε.

Here Γ1(ε) is a bounded function of ε.Hence Tφ(t) is almost periodic. Consequently,

T is invariant on D. □

Lemma 23 Under the conditions (C9) and (A1)-(A3), T is a contraction.

Proof. Suppose that φ(t) and ψ(t) are the functions that belong to D. If we consider

Tφ(t)− Tψ(t) we can assert the following inequality
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∥Tφ(t)− Tψ(t)∥

≤
∫ t

−∞
∥X(t, s)∥∥B(s)(F (φ(s))− F (ψ(s)))∥ds

+
∑
θk<t

∥X(t, θk)∥∥Ek(J(φ(θk))− J(ψ(θk))) +Gk(φ(θk))−Gk(ψ(θk))∥

≤
∫ t

−∞
Keγ(t−s)∥B(s)∥ℓf∥φ(s)− ψ(s)∥ds

+
∑
θk<t

Keγ(t−θk)(ℓJE + ℓG)∥φ(θk)− ψ(θk)∥

≤
∫ t

−∞
Keγ(t−s)βℓf∥φ(s)− ψ(s)∥0ds

+
∑
θk<t

Keγ(t−θk)(ℓJE + ℓG)∥φ(θk)− ψ(θk)∥

≤
∫ t

−∞
Keγ(t−s) βℓf∥φ(t)− ψ(t)∥0ds+

∑
θk<t

Keγ(t−θk)(ℓJE + ℓG)∥φ(t)− ψ(t)∥0

≤ Kℓfβ∥φ(t)− ψ(t)∥0
(

1

−γ

)
+K(ℓJE + ℓG)∥φ(t)− ψ(t)∥0

(
1

1− eγθ

)
≤ K

(
ℓfβ

−γ
+
ℓJE + ℓG
1− eγθ

)
∥φ(t)− ψ(t)∥0. (5.8)

Then ∥Tφ(t) − Tψ(t)∥0 ≤ K

(
ℓfβ

−γ
+
ℓJE + ℓG
1− eγθ

)
∥φ(t) − ψ(t)∥0. Hence by the

condition (C9), T is a contraction. □

Theorem 24 Let (C1)-(C10) and (A1)-(A3) be fulfilled. Then the system (2.5) has a

unique asymptotically stable discontinuous almost periodic solution.

Proof. T is the integral operator of (2.5) so it satisfies the differential equation and

impulsive part of the system as shown before. By the Lemma 22, the operator T

is invariant on the space D. That is, if φ(t) ∈ D, then Tφ(t) ∈ D. Moreover by

Lemma 23 the operator is a contraction. Hence, D has a unique element ω(t) such

that Tω = ω, and it is the unique solution of our system.

Let z(t) = [z1(t), . . . , zm(t)] be the solution of the system (2.5) with the initial condi-

tion z(t0) = z0.Applying the equivalent integral equation for the initial value problem

one can obtain
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∥z(t)− ω(t)∥

≤
∥∥X(t, t0)(z(t0)− ω(t0)) +

∫ t

t0

X(t, s)(B(F (z(s))− F (ω(s))))ds

+
∑

t0≤θk<t

X(t, θk)

(
Ek(J(z(θk))− J(ω(θk))) +Gk(z(θk))−Gk(ω(θk))

)∥∥
≤ ∥x(t, t0)∥∥(z(t0)− ω(t0))∥+

∫ t

t0

Keγ(t−s)βℓf∥z(s)− ω(s)∥ds

+
∑

t0≤θk<t

Keγ(t−θk)(ℓJE + ℓG)∥z(θk)− ω(θk)∥.

Multiplying both sides with e−γt and setting u(t) = e−γt∥z(t)−ω(t)∥ one can obtain

u(t) ≤ Ku(t0) +

∫ t

t0

Kβℓfu(s)ds+
∑

t0≤θk<t

K(ℓJE + ℓG)u(θk).

Now, the Gronwall-Bellman Lemma for piecewise continuous functions [1] implies

the inequality

u(t) ≤ Ku(t0)e
∫ t
t0

Kβℓfds
∏

t0≤θk<t

(1 +K(ℓJE + ℓG))

= Ku(t0)e
(t−t0)Kβℓf

∏
t0≤θk<t

(1 +K(ℓJE + ℓG)).

Finally, multiplicating the inequality by eγt after back-substituting u(t), and using

(1.23) will result with

∥z(t)− ω(t)∥ ≤ Ke(γ+Kβℓf )(t−t0)∥z(t0)− ω(t0)∥ei([t0, t]) ln(1 +K(ℓJE + ℓG))

= KeΓ4(t−t0)(1 +K(ℓJE + ℓG))∥z(t0)− ω(t0)∥, (5.9)

where Γ4 =

(
γ + Kβℓf +

ln(1 +K(ℓJE + ℓG))

θ

)
. Hence, the condition (C10)

implies that the solution ω(t) is an asymptotically stable solution. □

5.2 The Main Almost Periodicity Result

This section is devoted to prove that the solution of the system (1.34), which is a

recurrent neural network with structured impulses at non-prescribed moments, is al-

most periodic and asymptotically stable. First the almost periodicity of the impact
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moments will be proved, then the uniform almost periodicity of the derivative se-

quences of impact moments will be shown. Finally the main theorem of the paper

will be stated and proved.

Lemma 25 Let x(t) be solution of the system (1.34) and let the sequence {ζk} be the

meeting points of the solution with the surfaces of discontinuities, then the sequence

ζk − θk is almost periodic.

Figure 5.1: The graph of the almost periodic solution ψ(t) of the system (1.34) which

is subject to almost periodicity conditions.

Proof. Let φ(t) be the solution of the system (2.5) which is B-equivalent system

of (1.34) with initial condition φ(θk) = x0. Then the function φ(t), t ∈ R is a

discontinuous almost periodic function. Then by Lemma 3.9 in [9] the sequence

φ(θk), k ∈ Z, is almost periodic i.e., for all ε > 0 there exists a relatively dense set of

integers q satisfying ∥φ(θk+q)− φ(θk)∥ < ε.

Denote xk(t) = x(t, θk, ψ(θk)) i.e., the solution on the subintervals of piece-wise

continuity. Also let ψ(t) be solution of the system (1.34) with the same initial condi-

tion ψ(θk) = x0 Then by the definition of B-equivalence, ψ(t) = φ(t), for t values

that are not in the interval with the endpoints θk and ξk.

Lastly denote by ζk the points where the solution ψ(t) meets the surfaces of dis-

continuities t = θk + τk(x(t)). Thus ζk = θk + τk(ψ(ζk)) = θk + τk(φ(ζk)) =

θk + τk(x
k(ζk)).
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If x0(t) is the solution of the system (2.5) with initial condition x(θk) = x = φ(θk)

then for t ∈ [θk, θk +mτ ]

x0(t) = x+

∫ t

θk

(A(s)x0(s) + B(s)F (x0(s)) + C(s))ds.

As in Lemma 19 denote x̄(t) = x0(t + (θk+q − θk)), then x̄ is the solution of the

differential equation (5.1), where t ∈ [θk, θk+mτ ] with the initial conditions x̄(θk) =

ψ(θk+q).

Hence, by the continuous dependence on the initial data and on the right hand side of

the differential equation, [78],

∥x̄(t)− x0(t)∥ < κ(ε) (5.10)

on t ∈ [θk, θk +mτ ].

Also denoting ζ ′k = ζk+q − (θk+q − θk), the following is obtained ζk+q = θk+q +

τk+q(φ(ζk+q)) = τk+q+θk+q(ψ(ζk+q)) = θk+q+τk+q(x
k+q(ζk+q)) = θk+q + τk+q(x̄(ζ

′
k)).

Using ζ ′k = θk + τk+q(x̄(ζ
′
k)) we will prove an inequality on |ζ ′k − ζk|

|ζ ′k − ζk| = |θk + τk+q(x̄(ζ
′
k))− (θk + τk(x(ζk)))|

= |τk+q(x̄(ζ
′
k))− τk(x0(ζk))|

≤ |τk+q(x̄(ζ
′
k))− τk(x̄(ζ

′
k)) + τk(x̄(ζ

′
k))− τk(x0(ζk))|

≤ ε+ ℓτ∥x̄(ζ ′k)− x̄(ζk) + x̄(ζk)− x0(ζk)∥

≤ ε+ ℓτκ(ε) + ℓτ∥
∫ ζ′k

ζk

(A(s− (θk+q − θk))x̄(s)

+B(s− (θk+q − θk)F ((̄s)) + C(s− (θk+q − θk))ds∥

≤ ε+ ℓτκ(ε) + ℓτ∥(ζ ′k − ζk)(αh+ βmf + σ).∥

One can solve this inequality for |ζ ′k − ζk| to obtain

|ζ ′k − ζk| ≤
ε+ ℓτκ(ε)

1− ℓτ (αh+ βmf + σ)

Since ε > 0 is arbitrarily small, it follows that the sequence ζ ′k−ζk is almost periodic.

On the other hand |ζ ′k − ζk| = |ζk+q − (θk+q − θk)− ζk| implies

|(ζk+q − θk+q)− (ζk − θk)| ≤
ε+ ℓτκ(ε)

1− ℓτ (αh+ βmf + σ)
, (5.11)

Hence the sequence ζk − θk is almost periodic. □
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Remark 1 Using the Lemma 14 and Lemma 25 we obtain that

|ζk+q − ζk − τ | = |ζk+q − ζk − τ + θk+q − θk − θk+q + θk|

= |(ζk+q − θk+q)− (ζk − θk) + θk+q − θk − τ |

≤ |(ζk+q − θk+q)− (ζk − θk)|+ |θk+q − θk − τ |

≤ ε+ ℓτκ(ε)

1− ℓτ (αh+ βmf + σ)
+ ε. (5.12)

Lemma 26 The derivative sequences ζjk, j, k ∈ Z, are uniformly almost periodic.

Proof of this assertion is similar with the one given for Lemma 20.

Theorem 27 Let (C1)-(C10) and (A1)-(A3) be fulfilled. Then solution ψ(t) of the

system (1.34) is unique and asymptotically stable, discontinuous almost periodic.

Proof. Let φ(t) be the discontinuous almost periodic solution of the system (2.5).

Thus ∥φ(t)∥ < h and t ∈ R given ε > 0, there exists a relatively dense set T , Q, and

there exists (τ, q) ∈ T ×Q, such that

(α) ∥φ(t+ τ)− φ(t)∥ < η < ε,

(β) the derivative sequences θjk are uniformly almost periodic.

Let ψ(t) be as in Lemma 25. Recall by B-equivalence that

t ≤ θk; ψ(t) = φ(t) then ψ(θk) = φ(θk)

t ≥ ζk; ψ(t) = φ(t) then ψ(ζk) = φ(ζk).

In the previous section, we proved that the almost periodic solution φ(t) of the B-

equivalent system (2.5) is asymptotically stable. So whenever φ(t) = ψ(t) the solu-

tion ψ(t) is almost periodic.

Let |t− ζk| > ε, and without loss of generality assume τk ≥ 0, we have two possibil-

ities:

(i) Consider ζk + ε ≤ t, by lemma on hybrid almost periods |ζk+q − ζk − τ | < ε is

satisfied, then −ε < ζk− ζk+q+ τ < ε hence one obtains 0 < ζk− ζk+q+ τ + ε < 2ε.

Also ζk + ε − ζk+q + τ < t − ζk+q + τ , consequently ζk+q < t + τ , parenthetically

ψ(t+ τ) = φ(t+ τ).
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Thus, ∥ψ(t+ τ)− ψ(t)∥ = ∥φ(t+ τ)− φ(t)∥ < η.

(ii) Consider t ≤ ζk − ε. In that case ψ(t) is given by the equation

ψ(t) = φ(θk) +

∫ t

θk

(A(s)ψ(s) +B(s)F (ψ(s)) + C(s))ds. (5.13)

Again using |ζk+q − ζk − τ | < ε in the other direction one obtains −2ε < ζk − ζk+q +

τ − ε < 0.

Additionally, t − ζk+q + τ < ζk − ζk+q + τ + ε so we get t + τ < ζk+q, then

ψ(t+ τ) ̸= φ(t+ τ), but ψ(t+ τ) satisfies

ψ(t+ τ) = φ(θk+q) +

∫ t+τ

θk+q

(A(s)ψ(s) +B(s)F (ψ(s)) + C(s))ds. (5.14)

Hence by a simple change of variable one can get

ψ(t+τ) = φ(θk+q)+

∫ t

θk+q−τ

(A(s+τ)ψ(s+τ)+B(s+τ)F (ψ(s+τ))+C(s+τ))ds.

Without loss of generality assume θk+q − τ < θk and make use of the equation (5.13)

together with (5.14), then it follows that

∥ψ(t+ τ)− ψ(t)∥

= ∥φ(θk+q) +

∫ t

θk+q−τ

(A(s+ τ)ψ(s+ τ) +B(s+ τ)F (ψ(s+ τ)) + C(s+ τ))ds

− φ(θk)−
∫ t

θk

(A(s)ψ(s) +B(s)F (ψ(s)) + C(s))ds∥

≤ ∥φ(θk+q)− φ(θk)∥+ ∥
∫ θk

θk+q−τ

(A(s+ τ)ψ(s+ τ)

+B(s+ τ)F (ψ(s+ τ)) + C(s+ τ))ds∥

+ ∥
∫ t

θk

(A(s+ τ)ψ(s+ τ)− A(s)ψ(s) +B(s+ τ)F (ψ(s+ τ))

−B(s)F (ψ(s)) + C(s+ τ)− C(s))ds∥

≤ ∥φ(θk+q)− φ(θk)∥

+ ∥
∫ θk

θk+q−τ

(A(s+ τ)ψ(s+ τ) +B(s+ τ)F (ψ(s+ τ)) + C(s+ τ))ds∥

+ ∥
∫ t

θk

(A(s+ τ)

(
ψ(s+ τ)− ψ(s)

)
+
(
A(s+ τ)− A(s)

)
ψ(s)

+ B(s+ τ)

(
F (ψ(s+ τ))− F (ψ(s))

)
+

(
B(s+ τ)−B(s)

)
F (ψ(s))

+C(s+ τ)− C(s))ds∥
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≤ ν + ν(αH + βmf + σ) + ∥
∫ t

θk

((α + βℓf )(ψ(s+ τ)− ψ(s)) + ν(H +mf + 1))ds∥

≤ ν + ν(αH + βmf + σ) +mτν(H +mf + 1) +

∫ t

θk

(α + βℓf )∥ψ(s+ τ)− ψ(s)∥ds,

By Gronwall-Bellman’s Lemma

∥ψ(t+ τ)− ψ(t)∥

≤ (ν + ν(αH + βmf + σ) +mτν(H +mf + 1))e
∫ t
θk

(α+βℓf )ds

≤ (ν + ν(αH + βmf + σ) +mτν(H +mf + 1))emτ (α+βℓf ). (5.15)

This finishes the proof as the method of proof carries over into all other possible cases

since each of them can be considered as (i) or (ii). Also, asymptotic stability is proved

in the same manner by using φ(t)’s asymptotic stability. □
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CHAPTER 6

CONCLUSION

The purpose of this thesis is to conduct detailed and precise research of neural net-

works with non-fixed impulse moments. To this aim, we suggested an impulsive

neural network with novel structured impacts that perfectly match the rates, that is

differential equation part. This has a sense for application if one considers the im-

pacts as limits of their continuous counterparts.

The new system also considers the neural networks’ nature in the impulsive part since

the sudden noises or impact disturbances can affect the rates or activation functions.

As impulsive actions are compatible with the model’s differential equation, the struc-

tured system covers all similar impulsive neural networks previously considered.

This is the first time in the literature that the recurrent neural networks with vari-

able moments of impulses are investigated in such a detailed approach. Specific and

refined conditions on the coefficients have been newly developed. The constructive

conditions for the stability are provided, directly related to the system’s coefficients.

Hence, one can see that we particularly did not assume the differential equation’s

stability, as some of our predecessors did.

The method of B-equivalence became widely used for theoretical and practical re-

search of systems with state-dependent impulses. We provide the most detailed de-

scription and proof concerning B-equivalence in the present work. We arranged and

offered the relation between the original system and the B-equivalent one explicitly

by the equations (2.7-2.9). This usually has been avoided in literature. Consequently,

the results are either wrong, unclear, or not sufficiently general as a modeling process

requires. Thus a strongly systematic interpretation was needed for the challenging
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problem of B-equivalent system reduction. Moreover, one can observe that; since

the impulsive part of our system is in the neural network’s nature, the B-equivalent

system we studied also replicates the original structure in terms of differential and

impulsive parts.

Furthermore, we presented the physical aspects of the impacts for the first time. And

we offer a property that was not considered before for the neural networks. One of

the innovative parts of this study is that the possibility of negative capacitance in a

neural system is not ignored since the advantages of negative capacitance are revealed

in electric circuit studies. The new structure and the elimination of the capacitance’s

positivity condition allow a more thorough analysis with optimized conditions. The

possibility of negative capacitance increases the importance of the contribution of

impulses into stability. Hence we have the most general system that additionally

covers the systems with unstable differential equation parts yet with stable solutions.

All these novelties provide more constructive and challenging circumstances for the

analysis. To make the presentation more transparent, we have analyzed the system in

the matrix-vector form, which improves the clarity of the work done.

We wanted to serve a detailed approach to the systems with variable moments of

impulses. Thus we first examined the B-equivalence method for the neural network

system in Chapter 2. While doing this, we defined a non-standard impulsive part. The

B-equivalent system’s impulse equation also mimics the neural network structure.

We studied the existence, uniqueness, and stability of the periodic and almost periodic

motion for the reduced system, which is B-equivalent of the initial system and is a

neural network with fixed moments of structured impulses. Then we applied those

results to the systems with state-dependent and structured impulses.

In chapter three, we dealt with the reduced system with periodicity properties. We

then proved the existence, uniqueness, and stability of a periodic solution of the RINN

with variable impulse moments.

The proofs concerning almost periodicity were more sophisticated than periodicity

proofs; thus, the case of almost periodicity is divided into two parts. Chapter 4 is

devoted to almost periodicity properties for a system with fixed moments of structured
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impulses. Then, a numerical example is offered to illustrate the results. Finally,

detailed proofs for the stability, uniqueness, and existence of almost periodic solutions

of the systems with non-fixed moments of structured impacts are served in Chapter 5.

The novelties in this study increase neural systems’ opportunities and improve the

power of neural networks studies in the application in different fields. These methods

can be improved to apply in different types of neural networks, such as shunting

inhibitory cellular neural networks and cellular neural networks.
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