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ABSTRACT

VARIATIONAL SMOOTHING FOR EXTENDED TARGET TRACKING
WITH RANDOM MATRICES

Kartal, Savaş Erdem
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Umut Orguner

April 2022, 83 pages

In this thesis, two Bayesian smoothers are proposed for random matrix based ex-

tended target tracking (ETT). The proposed smoothers are based on the variational

Bayes techniques and they are derived for an extended target model without and with

orientation. The random matrix models of Feldman et al. and Tuncer and Özkan are

used as the extended target models without and with orientation, respectively. The

performance of both smoothers is evaluated using simulation results on two different

scenarios. It is seen that the variational smoothers derived for both models outper-

form the previous smoother recently given in the literature on the scenario with a

non-maneuvering target. On the other hand, it is seen that the performance of the

smoother for the model without orientation is reduced significantly below expecta-

tions on the scenario with maneuvers. Nevertheless, the smoother for the model with

orientation is shown to have little performance degradation in the maneuvering sce-

nario. Overall the results obtained in this thesis show that:

• the variational approach results in better smoothers than the existing smoother

in the literature,
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• the explicit modeling of orientation is beneficial in smoothing as well as filter-

ing for tracking maneuvering extended targets.

Keywords: Extended target tracking, smoother, variational Bayes, random matrices,

target extension, target orientation
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ÖZ

RASTLANTISAL MATRİSLER İLE BÜYÜK HEDEF TAKİBİ İÇİN
VARYASYONEL DÜZGÜNLEŞTİRME

Kartal, Savaş Erdem
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Umut Orguner

Nisan 2022 , 83 sayfa

Bu tezde, rastlantısal matris tabanlı büyük hedef takibi (BHT) için iki Bayesyen düz-

günleştirici sunulmuştur. Sunulan düzgünleştiriciler varyasyonel Bayes tekniği taban-

lıdır ve oryantasyonlu ve oryantasyonsuz büyük hedef takip modelleri için türetilmiş-

tir. Feldmann vd.’nin ve Tuncer ve Özkan’ın rastlantısal matris modelleri sırasıyla or-

yantasyonsuz ve oryantasyonlu büyük hedef modelleri olarak kullanılmıştır. Her düz-

günleştiricinin performansı iki ayrı senaryo üzerinde yapılan simülasyonlar ile değer-

lendirilmiştir. Her iki model için türetilen varyasyonel düzgünleştiricilerin, manevra

yapmayan hedef senaryosunda literatürde yakın zamanda verilen önceki düzgünleş-

tiriciden daha iyi performans gösterdiği görülmektedir. Öte yandan oryantasyonsuz

modeli kullanan düzgünleştiricinin performansının manevralı senaryoda beklentilerin

oldukça altında kaldığı gözlemlenmiştir. Bununla birlikte, oryantasyonlu modeli kul-

lanan düzgünleştiricinin performansı manevralı senaryoda çok az düşüş göstermiştir.

Genel olarak tezde elde edilen sonuçlar göstermektedir ki:

• varyasyonel yaklaşım kullanılarak türetilen düzgünleştirici literatürdeki düz-

günleştiriciden daha iyi sonuç vermektedir,
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• belirgin oryantasyon modellemesi manevra yapan büyük hedefleri izlemek için

filtreleme kadar düzgünleştirmede de faydalıdır.

Anahtar Kelimeler: Büyük hedef takibi, düzgünleştirici, varyasyonel Bayes, rastlan-

tısal matris, hedef uzantısı, hedef oryantasyonu
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CHAPTER 1

INTRODUCTION

The conventional target tracking applications usually consider the objects to be ob-

served as point sources. However, due to the recent increase in sensor resolutions, the

objects might give rise to multiple distinct detections in varying numbers. For exam-

ple, short-range applications such as surveillance, autonomous weapons, autonomous

driving, or robotics often consider the object of interest as extended and such applica-

tions require extended target tracking (ETT). With the integration of high-resolution

sensors into an increasing number of application areas, the ETT has become an im-

portant and emerging research field recently.

In extended target tracking applications, in addition to the kinematic state, the object

extension should also be considered as an “internal degree of freedom” characterizing

an extended object. Therefore, the object extension needs to be included in the object

state and has to be estimated jointly with the kinematic state. The combined state

leads to a nonlinear estimation problem whose solution requires some approximations

and nonlinear estimation techniques. Studies in the literature can be classified by

different models used to represent the shape of the object extension, measurements,

and object dynamics.

The object extension can be modeled in different shapes. A rectangular shape rep-

resenting the object extension is used in [4] and [5]. Modeling the extension by an

ellipsoidal shape is another approach that is widely used because ellipse shape is usu-

ally sufficient for the measurement modeling, see, e.g., [6–8]. There are also more

complex arbitrary shape models for the scenarios where the object extension can not

be modeled by a geometric shape, see, e.g., [9], [10]. However, in the scope of this

thesis, the ellipsoidal object extension model will be adopted.
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The measurement models differ in their assumptions about the number of detections

and the position on the object on which these detections are generated. Early exam-

ples assume a measurement model which describes the detections as reflections from

fixed sources on the object [11], [12]. This approach is also used in [13–15] for the

modeling of the reflection points on cars. The accuracy of this approach decreases as

the uncertainty of the number and location of the detections increases. Gilholm et al.

proposed another approach in [16] and [17], that models the measurements spatially

distributed over the target. In this model, the number of measurements is Poisson

distributed.

The nonlinear nature of the extended target tracking requires nonlinear estimation

techniques. The Extended Kalman Filter [18] can be used where nonlinearities are

weak but the performance of this algorithm is reduced significantly as the nonlinear-

ities get higher. An alternative method based on particle filtering, also known as the

Monte Carlo method, is proposed in [19] where posterior distribution of the target

state is represented by a set of particles; each of which has an importance weight

assigned to it. Instead of propagating densities with prediction and update equations,

these particles and weights are propagated to obtain an approximation to the target’s

posterior distribution. Other examples utilizing this approach can be found in [20]

and [21].

One of the popular approaches of extended target tracking is the random hypersurface

model developed by Baum and Hanebeck in [9] and [22], that models the object

extensions in star-convex shapes. The algorithm they developed is capable of tracking

arbitrary shaped extended targets by using a parametric representation of the shape

contour.

A more recent model is proposed by Wahlström and Özkan in [23], where they use

Gaussian processes to learn the shape of the object. Their model is capable of esti-

mating a variety of object shapes. This model is also used later in [24] and [25].

Another well-known approach to extent modeling and estimation is the random ma-

trix (RM) model. This model, first proposed by Koch in [6], is an example of spatially

distributed measurement models. It uses symmetric positive definite random matri-

ces to model the object extension and thus assumes that the object has an ellipsoidal

2



shape. The measurements are assumed to be spatially distributed over the object with

a Gaussian distribution whose covariance is the object extension. Koch’s model is

then improved by Feldmann et al. in [1, 26, 27], where the sensor error is also con-

sidered as a parameter affecting measurement distribution. In [2], Granström and

Bramstång present Bayesian smoothing algorithms for both Koch’s and Feldmann et

al.’s models. The approximations of Feldmann et al.’s measurement update generate

the questions of optimality. In [28], Orguner derives an analytical measurement up-

date using variational inference to solve this. The variational Bayes technique is later

used in [3] to track the target’s heading angle explicitly.

In the context of this thesis, the random matrix model will be used. Therefore, the

rest of the document will be limited to the scope of this model. For a more detailed

overview of current research in extended target tracking, including different aspects

of modeling approaches, [29] can be studied. Moreover, an elaborate comparison

of random matrix and random hypersurface models is given in [30] by showing the

different assumptions and properties of the two methods.

The previous studies show that the smoothing algorithms show better performance

than the filtering algorithms. Moreover, the variational Bayes technique also im-

proves the estimation performance. None of the studies in the literature combines the

power of smoothers with the variational Bayes technique and this lead us to study on

such an algorithm. In substance, this thesis study proposes two variational smoothing

algorithms for the random matrix based extended target tracking applications under

measurement noise. Using the analytical techniques of variational Bayes inference,

this work presents approximate smoothing algorithms for the extended target tracking

models with and without considering the orientation angle of the target. The perfor-

mance of the proposed algorithms is validated with two different simulation studies.

1.1 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we first provide an overview of

the previous research on RM based ETT by focusing on the filtering and smooth-

ing algorithms in the literature and elaborating on some studies which form the basis

3



of this study. Then, the variational inference technique is explained and the brief

information about the studies using this technique in the literature is given. In Chap-

ter 3, we propose our first smoothing algorithm which is based on an ETT model

without orientation. The derivation steps are provided in detail and the pseudo-code

for the implementation of the algorithm is given. At the end of this chapter, we ex-

plain why we need another algorithm that treats the orientation as a separate random

variable by providing some reasoning on the initial simulation results. In Chapter 4,

we propose another algorithm that is based on an ETT model with orientation. The

derivation steps and pseudo-code of this algorithm are given in this chapter. In Chap-

ter 5, the performance of the proposed algorithms is compared with the other filtering

and smoothing algorithms in the literature on two different ETT simulation scenarios.

The comments on the results and a comparison table for the computation time of the

algorithms is provided at the end of the chapter. Finally, in Chapter 6, the thesis is

concluded with a summary of our study and potential future work.
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CHAPTER 2

BACKGROUND

The objective of this chapter is to provide a review of the studies in the literature

on random matrix based extended target tracking. First, filtering and smoothing al-

gorithms based on the random matrix model will be investigated. Then, necessary

information about the variational inference will be given and some of the studies

which use this method for extended target tracking will be reviewed.

2.1 Extended Target Tracking using Random Matrices

The random matrix model, which is realized within the Bayesian Framework, is a

well-known approach in extended target tracking. The approach is based on aug-

menting the kinematic state vector xk at each time tk, which represents the target’s

position, velocity, and in some cases acceleration, by the additional state matrix Xk

representing target’s extension.

The rest of this section is organised to introduce different filtering and smoothing

algorithms based on the random matrix model. The studies in [1–3], [6], [28], which

form the basis of our study, will be explained in detail.

2.1.1 Filtering Algorithms

The random matrix model, which is proposed originally by Koch in [6] and later de-

veloped by Feldmann et al. in [1], is highly promising and thus has been a pioneer for

many other filtering algorithms. In this subsection, we will provide information about

the filtering algorithms that have been leveraged for the derivation of the smoothers
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proposed in our study.

2.1.1.1 Koch’s Model

The method proposed by Koch in [6] estimates both the kinematic and the extent

states of the target recursively. The target extent is modeled as an ellipsoidal object

which is described by a symmetric positive definite (SPD) random matrix Xk to be

estimated from the sensor measurements. The target extent matrix is distributed with

an inverse Wishart density (see [31]).

Within the Bayesian Framework, the extended object tracking algorithm is a recursive

estimation scheme for the conditional probability density p(xk, Xk|Y0:k) of the object

state (xk, Xk) at each time tk using the accumulated measurements Y0:k up to and

including time tk, dynamic model describing the temporal evolution of the objects,

and sensor model parameters.

The dimension of the kinematic state vector xk is rd, where d is the object dimension

and r− 1 defines up to which derivative the kinematic state is modeled. For example,

the kinematic state xk containing position and velocity can be shown as

xk = [xx, xy, vx, vy]
T, (2.1)

in two spatial dimensions.

We assume that there are mk conditionally independent position measurements at

scan k belonging to the target given as

yjk = Hxk + wjk for j = 0, ...,mk. (2.2)

In (2.2), H represents the measurement matrix which extracts the position informa-

tion from the kinematic vector xk. It can be expressed as

H = [Id, 0d] = H̃ ⊗ Id, (2.3)

where H̃ = [1, 0], d is the object dimension; i.e., d = 2 for 2D position tracking, and

⊗ is the Kronecker product. The measurement noise wjk is normally distributed with

mean of zero and covariance of Xk. These individual measurements form the set of

measurements Yk = {yjk}
mk
j=1 at each scan k, where mk is the number of measure-

ments. The accumulated measurement sequence up to time k are denoted as Y0:k.
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Since this approach assumes the statistical sensor error to be negligible, extension

becomes the only factor affecting the spread of the measurements. Thus, the mea-

surement noise can be written as a zero mean normally distributed random vector

with covariance Xk. The likelihood of the measurement set Yk given the number of

measurements, kinematic state and extension becomes

p(Yk|mk, xk, Xk) =

mk∏
j=1

N (yjk;Hxk, Xk), (2.4)

where N (x;µ,Σ) denotes a normal density with mean µ and variance Σ. The mean

and spread of the measurements can be written as

yk =
1

mk

mk∑
j=1

yjk and Y k =

mk∑
j=1

(yjk − yk)(y
j
k − yk)

T, (2.5)

respectively. The joint density in (2.4) can be factorized as

p(Yk|mk, xk, Xk) ∝ N
(
yk;Hxk,

Xk

mk

)
W(Y k;mk − 1, Xk), (2.6)

where W(X; ν, V ) denotes the Wishart density of a d × d SPD random matrix X ,

with a scalar degrees of freedom ν, a d × d SPD scale matrix V , and a normalizing

constant Z, which is defined as follows [31].

W(X; ν, V ) =
1

Z
|V |−(1/2)ν |X|(ν−d−1)/2etr

[
1

2
V −1X

]
, ν ⩾ d (2.7)

where etr(.) is used for exp(tr(·)). The expected value of X is given as

E[X] = νV. (2.8)

The Bayes update equation for the joint density (xk, Xk) is given as

p(xk, Xk|Y0:k) =
p(Yk|mk, xk, Xk)p(xk−1, Xk−1|Y0:k−1)∫

p(Yk|mk, xk, Xk)p(xk−1, Xk−1|Y0:k−1)dxkdXk

. (2.9)

By exploiting the Bayes formula in (2.9), we can obtain that the posterior density

p(xk, Xk|Y0:k) is proportional to the product of the likelihood p(Yk|mk, xk, Xk) and

the prior density p(xk−1, Xk−1|Y0:k−1) . The prior density can be factored as

p(xk−1, Xk−1|Y0:k−1) = p(xk−1|Xk−1,Y0:k−1)p(Xk−1|Y0:k−1), (2.10)

where

p(xk−1|Xk−1,Y0:k−1) = N (xk, x̂k|k−1, Pk|k−1 ⊗Xk), (2.11)

p(Xk−1|Y0:k−1) = IW(Xk; νk|k−1, Vk|k−1). (2.12)
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Here x̂k|k−1 and Pk|k−1 are the kinematic state mean vector and covariance matrix,

respectively. IW(X; ν, V ) denotes the inverse Wishart density of a d×d SPD random

matrix X , with a scalar degrees of freedom ν, a d × d SPD scale matrix V , and a

normalizing constant Z, which is defined as [31]

IW(X; ν, V ) =
1

Z
|V |(1/2)(ν−d−1)|X|−(1/2)νetr

[
−1

2
V X−1

]
. (2.13)

The expected value of X ∼ IW(X; ν, V ) is given as

E[X] =
V

ν − 2d− 2
, ν − 2d− 2 > 0. (2.14)

We can write the product of the measurement likelihood and the prior density as

p(Yk|mk, xk, Xk)p(xk, Xk,Y0:k−1) ∝ N
(
yk;Hxk,

Xk

mk

)
×N (xk; x̂k|k−1, P̃k|k−1 ⊗Xk)

×W(Y k;mk − 1, Xk)

× IW(Xk; νk|k−1, Vk|k−1). (2.15)

The kinematical part N (xk, x̂k|k, P̃k|k ⊗ Xk) can be extracted from the product of

Gaussians on the RHS of (2.15) as

N
(
yk;Hxk,

Xk

mk

)
N (xk; x̂k|k−1, P̃k|k−1 ⊗Xk) =N (xk, x̂k|k, P̃k|k ⊗Xk)

×N (yk;Hx̂k|k−1, S̃k|k−1Xk).

(2.16)

The parameters x̂k|k and P̃k|k are given as

x̂k|k = x̂k|k−1 + (K̃k|k−1 ⊗ Id)(yk −Hx̂k|k−1), (2.17a)

P̃k|k = P̃k|k−1 − K̃k|k−1S̃k|k−1K̃
T
k|k−1, (2.17b)

where S̃k|k−1 is the scalar innovation variance

S̃k|k−1 = H̃P̃k|k−1H̃
T +

1

mk

, (2.18)

and K̃k|k−1 is the gain

K̃k|k−1 = P̃k|k−1H̃
TS̃−1

k|k−1. (2.19)
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In order to obtain the update equation for the extent, we need to calculate the product

of factors depending on the extent Xk on the RHS of (2.15). First, using the form of

the Gaussian distribution, the second term on the RHS in (2.16) can be written as

N (yk;Hx̂k|k−1, S̃k|k−1Xk) ∝ |Xk|−1/2etr
[
−1

2
Nk|k−1X

−1

]
, (2.20)

where Nk|k−1 is being an innovation matrix defined as

Nk|k−1 = (yk −Hx̂k|k−1)(yk −Hx̂k|k−1)
T. (2.21)

Then, combining (2.20) with the product of the Wishart and inverse Wishart distribu-

tion in (2.15) we get

IW(Xk; νk|k, Vk|k) ∝W(Y k;mk − 1, Xk)IW(Xk; νk|k−1, Vk|k−1)

× |Xk|−1/2etr
[
−1

2
Nk|k−1X

−1

]
, (2.22)

with the parameters νk|k and Vk|k that can be written as

Vk|k = Vk|k−1 + S̃−1
k|k−1Nk|k−1 + Y k, (2.23a)

νk|k = νk|k−1 +mk. (2.23b)

As a result of the measurement update, we get the posterior density of the joint state

(xk, Xk) as

p(xk, Xk|Y0:k) = p(xk|Xk,Y0:k)p(Xk|Y0:k). (2.24)

The next step of the recursive Bayesian estimation, called prediction, requires the

joint probability density p(xk, Xk|Y0:k) to be updated in time using the underlying

model of the system.

p(xk−1, Xk−1|Y0:k−1)
evolution−−−−→
models

p(xk, Xk|Y0:k−1). (2.25)

By using Markov-type assumptions, the underlying evolution model of the system,

represented by the joint transition density p(xk, Xk|xk−1, Xk−1,Y0:k−1) can be written

as

p(xk, Xk|xk−1, Xk−1,Y0:k−1) = p(xk, Xk|xk−1, Xk−1)

= p(xk|Xk, xk−1)p(Xk|Xk−1). (2.26)
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In (2.26), it is also assumed that the kinematic state has no effect on the time update

of the object extension. The temporal evolution of the kinematic state can be modeled

as

xk = Axk−1 + vk, (2.27)

where v is the process noise with p(vk) = N (vk; 0, Q̃k ⊗Xk), and A = Ã⊗ Id is the

state transition matrix.

When we integrate the product of this joint transition density and the posterior distri-

bution of the previous measurement update step, we get the Chapman-Kolmogorov

equation

p(xk, Xk|Y0:k−1) =

∫
p(xk, Xk|xk−1, Xk−1,Y0:k−1)

× p(xk−1, Xk−1|Y0:k−1)dxk−1dXk−1,

=

∫
p(xk|Xk, xk−1)p(Xk|Xk−1)

× p(xk−1|Xk−1,Y0:k−1)p(Xk−1|Y0:k−1)dxk−1dXk−1. (2.28)

Assuming that the kinematical part of the filtered distribution at time tk−1 is a Gaus-

sian and the temporal evolution of the object extension has no effect on the prediction

of this part, we get

p(xk−1|Xk−1,Y0:k−1) ≈ p(xk−1|Xk,Y0:k−1), (2.29a)

p(xk−1|Xk,Y0:k−1) = N (xk−1; x̂k−1|k−1, P̃k−1|k−1 ⊗Xk). (2.29b)

Substituting (2.29b) into (2.28), the predicted density of the kinematical part becomes

p(xk|Xk,Y0:k−1) =

∫
N (xk;Axk−1, Q̃⊗Xk)

×N (xk−1; x̂k−1|k−1, P̃k−1|k−1 ⊗Xk)dxk−1, (2.30a)

= N (xk; x̂k|k−1, P̃k|k−1 ⊗Xk), (2.30b)

where the parameters x̂k|k−1 and P̃k|k−1 are given as

x̂k|k−1 = Ax̂k−1|k−1, (2.31a)

P̃k|k−1 = ÃP̃k−1|k−1Ã
T + Q̃. (2.31b)
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For the object extension part, let us assume that the filtered distribution at time tk−1

is inverse Wishart and it is given by

p(Xk−1|Y0:k−1) = IW(Xk−1; νk−1|k−1, Vk−1|k−1), (2.32a)

∝ |Xk−1|−(1/2)νk−1|k−1etr
[
−1

2
Vk−1|k−1X

−1
k−1

]
. (2.32b)

Assuming that the expectation of the previous filtered density is equal to the expecta-

tion of the filtered density, the following equality holds.

Vk|k−1

νk|k−1 − 2d− 2
=

Vk−1|k−1

νk−1|k−1 − 2d− 2
. (2.33)

The degrees of freedom ν determines the covariance of the inverse Wishart distribu-

tion, so we can expect it to decrease with increasing sampling periods ∆tk = tk−tk−1.

The following prediction update equations consider this effect and also keep the ex-

pectation the same.

νk|k−1 = exp

(
−∆tk

τ

)
νk−1|k−1, (2.34a)

Vk|k−1 =
νk|k−1 − 2d− 2

νk−1|k−1 − 2d− 2
Vk−1|k−1. (2.34b)

2.1.1.2 Feldmann et al.’s Model

The Bayesian algorithm derived in [6] and described in the previous subsection is

capable of estimating both the kinematic and extension states of an object. However, it

assumes that the object extension dominates the spread of the measurements and thus

ignores the effect of measurement noise. In presence of sensor error, this approach

would estimate extension and measurement noise together and thus the estimated

target extent becomes biased by the measurement noise covariance. In cases where

the sensor error is comparable with the object extension, the estimation performance

of this approach will be degraded.

In order to compensate for this effect, the measurement likelihood function is adjusted

in [1]. The updated likelihood function taking the possible sensor errors into account

can be written as

p(Yk|mk, xk, Xk) =

mk∏
j=1

N (yjk;Hxk, sXk +R), (2.35)
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where R is the sensor error covariance matrix and s is the scaling factor of the object

extension. Including the effect of the scale factor enables us to model the spread of

the measurements in a better way.

For the likelihood in (2.35), no analytical solution can be found for the Bayes update

equation because of the additional R. Therefore, approximations are needed.

In [1], the predicted object extension x̂k|k−1 is assumed to be significantly close to

true extent Xk. Also, the kinematic state density is approximated such that it is no

longer conditioned on the object extension. Thus, we can write the joint state density

as

p(xk, Xk|Y0:k) ≈ p(xk|Y0:k)p(Xk|Y0:k). (2.36)

Assuming that the prior distribution of the kinematic state is normal, i.e.,

p(xk|Y0:k−1) = N (xk; x̂k|k−1, Pk|k−1), (2.37)

we can use standard Kalman filter update equations to obtain the posterior density

p(xk|Y0:k) = N (xk; x̂k|k, Pk|k). (2.38)

The update equations for the parameters x̂k|k and Pk|k of the posterior are given as

x̂k|k = x̂k|k−1 +Kk|k−1(yk −Hx̂k|k−1), (2.39a)

Pk|k = Pk|k−1 −Kk|k−1Sk|k−1K
T
k|k−1, (2.39b)

where Sk|k−1 is an approximation of the innovation covariance

Sk|k−1 = HPk|k−1H
T +

sXk|k−1 +R

mk

, (2.40)

and Kk|k−1 is the gain

Kk|k−1 = Pk|k−1H
TS−1

k|k−1. (2.41)

The sensor error becomes an effective parameter of the kinematic state measurement

update equations due to the modified version of the innovation covariance in (2.40).

In the measurement update of the object extension part in [1], the extent Xk|k, which

is the expected value of the inverse Wishart posterior distribution, is estimated instead

of the scale matrix Vk|k. Also, αk|k = νk|k − 2d− 2 is updated instead of the degrees
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of freedom νk|k for easier calculation. The resulting measurement update equations

of the object extension are given as

Xk|k =
1

αk|k
(αk|k−1Xk|k−1 + N̂k|k−1 + Ŷk|k−1), (2.42a)

αk|k = αk|k−1 +mk, (2.42b)

where the parameters N̂k|k−1 and Ŷk|k−1 are given by

N̂k|k−1 =X
1/2
k|k−1S

−1/2
k|k−1Nk|k−1(S

−1/2
k|k−1)

T(X
1/2
k|k−1)

T, (2.43a)

Ŷk|k−1 =X
1/2
k|k−1(sXk|k−1 +R)−1/2Y k|k−1((sXk|k−1 +R)−1/2)T(X

1/2
k|k−1)

T. (2.43b)

The resulting posterior density is in the form of an inverse Wishart distribution, i.e.,

p(Xk|Y0:k) ≈ IW(Xk; νk|k, αk|kXk|k). (2.44)

Similar to [6], Kalman filter prediction equations are used to update the kinematic

state in time.

x̂k|k−1 = Ax̂k−1|k−1, (2.45a)

Pk|k−1 = APk−1|k−1A
T +Q. (2.45b)

Notice that the dimensions of the matrices used in (2.31b) and (2.45b) are different.

In (2.31b), r × r state covariance P̃k|k−1, process noise variance Q̃k|k−1 and the state

transition model Ã matrices are used. However, in (2.45b) these matrices are used in

full dimension nx × nx.

The expected value of the object extension is assumed to remain constant during the

time update.

Xk|k−1 = Xk−1|k−1. (2.46)

Similar to (2.34a), the time update equation of the degrees of freedom parameter is

exponentially decreasing over time, i.e.,

αk|k−1 = 2 + exp

(
−∆tk

τ

)
(αk−1|k−1 − 2). (2.47)

2.1.1.3 Variational Bayes Approach

Feldmann et al.’s approach requires some assumptions to derive a Bayesian solution.

In [28], Orguner proposed a variational Bayes approach for the measurement update
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of the random matrix model. This technique is also used in [3] to derive the varia-

tional measurement update for extended target model with the orientation angle as an

additional target state. A more detailed description of this approach is going to be

given in Section 2.2.

2.1.1.4 Other Approaches

Other studies on the random matrix model are available in literature. For example,

a prediction update for extended targets has been proposed in [32], where the ob-

ject extension transformation is considered to be dependent on the kinematic state

of the object. As shown in (2.26), previous work assumes that the time update of

the object extension is independent of the kinematic state. However, this assumption

would lose its validity during a constant or variable turn-rate maneuver. As a solu-

tion, a generalized prediction update for the extension based on the minimization of

the Kullback-Leibler divergence has been derived.

Another research on the random matrix filtering is given in [33], where the time vari-

ation and distortion of the object extension is also considered. This study accounts

for the changes in the object shape and orientation in addition to the size. Also, it

proposes a solution for the distortion of the object extension problem that is caused

by the sensor-to-target geometry.

Unlike the previous approaches where measurement data is considered to be received

from a single sensor, a network of multiple sensors is considered in [34]. The study

deals with the difficulty of varying object extension due to different sensor perspec-

tives and compares four different measurement updates for the extended target track-

ing random matrix model.

2.1.2 Smoothing Algorithms

Koch’s and Feldmann et al.’s approaches provides similar but different filtering (for-

ward) algorithms for the recursive Bayesian estimation of the extended target random

matrix model. Although Koch discusses the backward recursion briefly in [6], the de-
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tailed information is not given. In [2], the smoothing (backward) expressions for both

algorithms are derived to refine filtering estimates. In the view of this thesis, we will

only use the model in [1] and therefore will only mention the smoothing expressions

related to this model.

2.1.2.1 Granström and Bramstång’s Approach

The Bayesian smoothing for an extended object starts with the filtered density at

the final time step K. The well-known RTS-smoother is used in [35] to derive the

backward recursion equations.

p(xk, Xk|Y0:K) = p(xk, Xk|Y0:k)

×
∫
p(xk+1, Xk+1|xk, Xk)p(xk+1, Xk+1|Y0:K)

p(xk+1, Xk+1|Y0:k)
dxkdXk. (2.48)

The backward recursion starts with the final posterior density. Suppose that an inter-

mediate smoothed density is Gaussian inverse Wishart distribution, i.e.,

p(xk+1, Xk+1|Y0:K) = p(xk+1|Y0:K)p(Xk+1|Y0:K)

= N (xk+1;xk+1|K , Pk+1|K)IW(Xk; νk+1|K , Vk+1|K). (2.49)

Assuming that the transition density of the kinematic state does not depend on the

extent state, we get

p(xk, Xk|xk−1, Xk−1) = p(xk|xk−1)p(Xk|Xk−1)

= N (xk;Axk−1, Q)W

(
Xk;nk,

MXk−1M
T

nk

)
, (2.50)

whereM is a d×d invertible matrix describing the change of the object extension over

time, the smoothed density p(xk−1, Xk−1|Y0:K) is also in the same Gaussian inverse

Wishart form, i.e.,

p(xk, Xk|Y0:K) = N (xk; x̂k|K , Pk|K)IW(Xk; νk|K , Vk|K). (2.51)

15



The parameters of the smoothed density can be calculated by using the following

smoothing expressions.

x̂k|K = x̂k|k +G(xk+1|K − xk+1|k), (2.52a)

Pk|K = Pk|k +G(Pk+1|k − Pk+1|K)G
T, (2.52b)

νk|K = νk|k + η−1

(
νk+1|K − νk+1|k −

2(d+ 1)2

n

)
, (2.52c)

Vk|K = Vk|k + η−1M−1(Vk+1|K − Vk+1|k)(M
−1)T, (2.52d)

G = Pk|kA
TP−1

k+1|k, (2.52e)

η = 1 +
νk+1|K − νk+1|k − 3(d+ 1)

n
. (2.52f)

2.2 Variational Bayes Inference

The measurement update equations proposed in [1] make the assumption that the

predicted object extension is almost the same as the true extent. Considering the

cases where this assumption is not applicable, we need to think of a more structured

Bayesian approximation scheme. For this purpose, the well-known variational in-

ference method (see [36, Ch. 10] and [37]) can be used. The implementations of

the variational method to derive the measurement update equations of different target

tracking scenarios can be found in [3], [28], and [38] .

Before explaining the previous work that uses variational method in extended target

tracking applications, we need to understand the details of the variational inference.

Consider a system where Y denotes the set of observed variables and X denotes

the set of all latent variables and parameters. The log-likelihood function can be

decomposed as

ln p(Y ) = L(q) + KL(q||p), (2.53)

where

L(q) =
∫
q(X) ln

{
p(Y,X)

q(X)

}
dZ, (2.54)

KL(q||p) = −
∫
q(X) ln

{
p(X|Y )

q(X)

}
dZ. (2.55)
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KL(q||p) is the Kullback-Leibler divergence [39] (also known as relative entropy)

between p(X|Y ) and q(X). Noting that KL(q||p) is always non-negative, we can

write that ln p(Y ) ⩾ L(q). This result shows that L(q) is a lower bound of the log-

likelihood. It is equal to ln p(Y ) only if KL(q||p) is equal to zero, which occurs when

q(X) is equal to p(X|Y ). The optimization problem can be solved by maximizing

the lower bound L(q) with respect to the distribution q(X), which consequently max-

imizes the log-likelihood.

Consider the restricted family of distributions where q(X) can be partitioned into

number of disjoint groups. In this restricted family, q distributions approximated as

the factorization of these groups, such that

q(X) =
M∏
i=1

qi(Xi). (2.56)

In order to maximize the lower bound, we need to optimize L(q) with respect to each

factor of q(X). By substituting (2.56) into (2.54), we can write L(q) as

L(q) =
∫ ∏

i

qi

ln p(Y,X)−
∑
i

ln qi

 dX. (2.57)

We can modify (2.57) to investigate the dependence on one of the factors qj(Xj),

which is denoted simply by qj , as follows.

L(q) =
∫
qj


∫

ln p(Y,X)
∏
i ̸=j

qidXi

 dXj −
∫
qj ln qjdXj + const. (2.58)

Here introducing the expectation with respect to distributions qi for i ̸= j

Ei ̸=j[ln p(Y,X)] =

∫
ln p(Y,X)

∏
i ̸=j

qidXi, (2.59)

we can modify L(q) as

L(q) =
∫
qj ln p̃(Y,Xj)dXj −

∫
qj ln dXj + const, (2.60)

where

ln p̃(Y,Xj) = Ei ̸=j[ln p(Y,X)] + const. (2.61)

The form of the (2.60) is a negative Kullback-Leibler divergence between qj and

p̃(Y,Xj). Therefore, in order to maximize L(q), we need to have qj = p̃(Y,Xj). The

optimal solution q∗j (Xj) is given by

ln q∗j (Xj) = Ei ̸=j[ln p(X,X)] + const. (2.62)
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The optimal solution given in (2.62) forms the basis of the variational method. It

shows that the logarithm of optimal solution for the factor qj can be obtained by

taking the expectation of the joint distribution’s logartihm with respect to all the other

factors qi ̸=j .

2.2.1 Orguner’s Approach

Based on the result (2.62), Orguner proposed a variational measurement update for

extended target tracking random matrix model in [28]. In order to be able to generate

an analytical solution, the noise-free measurements are defined as additional latent

variables. The measurement likelihood can be written as

N (yjk;Hxk, sXk +R) =

∫
N (yjk; z

j
k, R)N (zjk;Hxk, sXk)dz

j
k, (2.63)

where zjk represents the noise-free measurements of the noisy measurements yjk. In-

cluding Zk into the list of quantities to be estimated, the joint posterior density

p(xk, Xk,Zk|Y0:k) needs to be computed. This joint smoothing posterior density can

be approximated by using the following variational approximation:

p(xk, Xk,Zk|Y0:k) ≈ q(xk, Xk,Zk) = qx(xk)qX(Xk)qZ(Zk), (2.64)

where qx(.), qX(.), qZ(.) are the approximate posterior densities of xk, Xk, and Zk,

respectively. The analytical solutions of the estimates q̂x(.), q̂X(.), and q̂Z(.), can be

obtained using (2.62) as follows.

log q̂x(xk) = Eq̂X ,q̂Z [log p(xk, Xk,Zk,Yk|Y0:k−1)] + cx, (2.65a)

log q̂X(Xk) = Eq̂x,q̂Z [log p(xk, Xk,Zk,Yk|Y0:k−1)] + cX , (2.65b)

log q̂Z(Zk) = Eq̂x,q̂X [log p(xk, Xk,Zk,Yk|Y0:k−1)] + cZ , (2.65c)

where cx, cx, and cZ are constant with respect to xk, Xk, and Zk, respectively.

The equations for the (i + 1)th iterates of the posteriors are obtained using (2.65).

These equations form the convergent recursive algorithm to obtain approximate pos-
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teriors. The posterior densities are given as

q(i+1)
x (xk) = N (xk; x̂

(i+1)
k|k , P

(i+1)
k|k ), (2.66a)

q
(i+1)
X (Xk) = IW(Xk; νk|k, V

(i+1)
k|k ), (2.66b)

q
(i+1)
Z (Zk) =

mk∏
i=1

N (zjk; ẑ
j.(i+1)
k ,Σ

z,(i+1)
k ). (2.66c)

The update equations for the parameters of the kinematic state are given as follows.

x̂
(i+1)
k|k = P

(i+1)
k|k (P−1

k|k−1x̂
(i+1)
k|k−1 +mkH

T(sXk)−1zk), (2.67)

P
(i+1)
k|k = (P−1

k|k−1 +mkH
T(sXk)−1H)−1, (2.68)

where

zk ≜
1

mk

mk∑
j=1

E
q
(i)
Z
[zjk],

(sXk)−1 ≜ E
q
(i)
X
[(sXk)

−1].

The update equations for the extent state are given as follows.

νk|k = νk|k−1 +mk, (2.69)

V
(i+1)
k|k = Vk|k−1 +

1

s

mk∑
j=1

(zjk −Hxk)(z
j
k −Hxk)T, (2.70)

where

(zjk −Hxk)(z
j
k −Hxk)T ≜ E

q
(i)
x ,q

(i)
Z

[
(zjk −Hxk)(z

j
k −Hxk)

T
]
.

Finally, the update equations for the noise-free measurements are given as follows.

ẑ
j,(i+1)
k = Σ

z,(i+1)
k ((sXk)−1Hxk +R−1yjk), (2.71)

Σ
z,(i+1)
k = ((sXk)−1 +R−1)−1, (2.72)

where xk ≜ E
q
(i)
x
(xk).

2.2.2 Tuncer and Özkan’s Approach

The variational Bayes technique proposed by Orguner in [28] is used to estimate ap-

proximate posteriors but it relies only on the forgetting factor for the changes in the
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object orientation. Such an approach would not be sufficient in cases where the object

orientation changes significantly over time. In [3], Tuncer and Özkan proposed an-

other solution that provides the ability to track the orientation of the target separately

from its extent.

In this study, the extent state is composed of the orientation angle θk ∈ R, and diag-

onal positive definite axis length matrix Λk ∈ Rd×d, Λk =diag(λ1k, λ
2
k, ..., λ

d
k). The

measurement likelihood becomes

p(yjk|xk,Λk, θk) ∼ N (yjk;Hxk, sTθkΛkT
T
θk
+R), (2.73)

where Tθk ∈ Rd×d is the rotation matrix.

Tθk =

cos(θk) − sin(θk)

sin(θk) cos(θk)

 . (2.74)

In order to derive the variational smoother algorithm required in the context of this

thesis study, we have benefited from the results of [28] and [3]. Therefore, the detailed

derivations of both studies are given in Chapter 3 to derive the related smoothing

expressions.
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CHAPTER 3

VARIATIONAL SMOOTHER FOR THE MODEL WITHOUT

ORIENTATION

The extended target tracking algorithm proposed by Koch was very promising be-

cause it was capable of estimating both kinematic and extension states of a target.

This algorithm was later improved by Feldmann et al. by including the effect of

measurement error in the problem. However, due to the additional measurement error

parameter, the problem had no analytical solution and thus required heuristic assump-

tions and approximations. Later, Orguner proposed an iterative analytical measure-

ment update based on well-known variational inference. Moreover, Granström and

Bramstång derived the Bayesian smoothing algorithm for both Koch’s and Feldmann

et al.’s model to observe the benefits of smoothing [35] on extended target tracking

applications.

In this chapter, the variational smoothing algorithm, which can be considered as a

combination of Orguner’s algorithm with Granström and Bramstång’s, will be ex-

plained. We will first describe the solution of variational smoothing for the extended

target tracking. Then, the derivation of the variational smoother for the extended

target random matrix model will be provided. Later, the psuedo-code for the algo-

rithm will be given. Lastly, brief comments about the algorithm performance will be

provided.

3.1 System Description and Problem Formulation

For an extended target of interest, one can assume that the target state consists of

the kinematic state xk ∈ Rnx and the symmetric and positive definite extent ma-
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trix Xk ∈ Rny×ny where nx and ny are the dimensions of the kinematic state and

the measurements respectively. The measurements at time k can be represented by

Yk ≜ {yjk ∈ Rny}mk
j=1, where mk is the number of measurements at time k. The

individual measurements yjk at time k are assumed to be independent and normally

distributed given the kinematic and extension states. Each measurement is indepen-

dent and identically distributed as

yjk ∼ N (yjk;Hxk, sXk +R), (3.1)

where H ∈ Rny×nx is the measurement matrix, s is the scaling factor, and R is the

covariance of the measurement noise.

Bayesian filtering of extended objects is a recursive estimation cycle formed by the

Chapman-Kolmogorov prediction (2.28) and Bayes update (2.9) steps. The extended

smoother is the backward recursion of the filtered estimates. The recursion starts at

the final time step K and given all the measurements, it aims to refine the filtered

estimates. The smoothing equation of an extended target is given in (2.48).

The aim of our variational smoothing algorithm is to obtain an analytical approxi-

mation for the posterior density of the kinematic state x0:K and the object extension

X0:K . Since the exact analytical solution is not available due to covariance addition

in the measurement distribution (3.1), a new variable zjk representing the noise-free

measurements is introduced as in [28] (see (2.63) for the resulting measurement like-

lihood).

The joint density of the noisy measurements yjk and noise-free measurements zjk can

be written as

p(yjk, z
j
k|xk, Xk) = N (yjk; z

j
k, R)N (zjk;Hxk, sXk). (3.2)

Including Zk ≜ {zjk}
mk
j=1 into the list of quantities to be estimated, the posterior den-

sity to be calculated becomes p(x0:K , X0:K ,Z0:K |Y0:K). In order to generate an ap-

proximate analytical solution for this posterior, following variational approximation

is used.

p(x0:K , X0:K ,Z0:K |Y0:K) ≈ q(x0:K , X0:K ,Z0:K) ≜ qx(x0:K)qX(X0:K)qZ(Z0:K),

(3.3)
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where qx(.), qX(.), and qZ(.) are the approximate posterior densities of x0:K , X0:K ,

and Z0:K , respectively. The well-known variational inference technique [36, Ch. 10]

can be used to calculate the estimates q̂x, q̂X , and q̂Z of the approximate posterior

densities as

q̂x, q̂X , q̂Z = argmin
qx,qX ,qZ

KL(q(x0:K , X0:K ,Z0:K)||p(x0:K , X0:K ,Z0:K |Y0:K)), (3.4)

where KL(q(x)||p(x)) ≜
∫
q log( q

p
)dx is the Kullback-Lieber divergence [39]. As

explained previously in Section 2.2, the optimal solution of this problem satisfies the

following equations:

log q̂x(x0:K) = Eq̂X ,q̂Z [log p(x0:K , X0:K ,Z0:K ,Y0:K)] + cx, (3.5a)

log q̂X(X0:K) = Eq̂x,q̂Z [log p(x0:K , X0:K ,Z0:K ,Y0:K)] + cX , (3.5b)

log q̂Z(Z0:K) = Eq̂x,q̂X [log p(x0:K , X0:K ,Z0:K ,Y0:K)] + cZ , (3.5c)

where cx, cX , and cZ are constants with respect to variables x0:K , X0:K , and Z0:K ,

respectively. In order to obtain a solution for (3.5), fixed-point iteration can be used

where only one factor is updated and the expected values on the right-hand sides are

calculated using the last estimated values of other factors. The iteration is guaranteed

to converge to a local optima of (3.4).

The joint smoothing posterior density to be approximated can be written as

p(x0:K ,X0:K ,Z0:K |Y0:K) ∝ p(x0:K , X0:K ,Z0:K ,Y0:K)

= p(Y0|Z0)p(Z0|x0, X0)p(x0, X0)

×
K∏
k=1

p(Yk|Zk)p(Zk|xk, Xk)p(xk|xk−1)p(Xk|Xk−1), (3.6)

In order to obtain the state transition densities we need to examine the dynamical

model of the system. The kinematical dynamics of the object can be expressed by the

following state space model.

xk = Axk−1 + wk, wk ∼ N (0, Q), (3.7)

where A is the state (temporal evolution) matrix and wk is the Gaussian distributed

process noise with zero mean and covariance Q. This dynamic model results in the

following state transition density for the kinematic state.

p(xk|xk−1) = N (xk;Axk−1, Q). (3.8)
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The dynamical model for the object extension is adopted from [40] where the Beta-

Bartlett stochastic evolution model was proposed. In this model, for an inverse

Wishart distributed matrix Xk ∈ Rd×d parametrized as

p(Xk−1) = IW(Xk−1; νk−1|k−1, Vk−1|k−1), (3.9)

the transition density p(Xk|Xk−1) is given such that the predicted density also be-

comes inverse Wishart distributed with

p(Xk) = IW(Xk; νk|k−1, Vk|k−1). (3.10)

The parameters of the predicted density are updated as follows.

νk|k−1 = ψνk−1|k−1 + (1− ψ)(2d+ 2), (3.11a)

Vk|k−1 = ψVk−1|k−1, (3.11b)

where 0≪ ψ ≤ 1 is the forgetting (covariance discount) factor.

The backwards smoothing recursion equations are given as follows.

νk|K = (1− ψ)νk|k + ψνk+1|K , (3.12a)

Vk|K =
(
(1− ψ)V −1

k|k + ψV −1
k+1|K

)−1

. (3.12b)

3.2 Derivation of the Variational Smoothing Equations

In this section, starting from the ith iterates of qx(.), qX(.), and qZ(.), the equations

for the (i + 1)th iterates, denoted as q(i+1)
x (.), q

(i+1)
X (.), and q(i+1)

Z (.) are derived. For

simplicity all the constant terms are denoted as c throughout the derivation.

The joint smoothing posterior density in (3.6) can be expressed as

p(x0:K ,X0:K ,Z0:K ,Y0:K)

=

m0∏
j=1

N (yj0; z
j
0, R)N (zj0;Hx0, sX0)

N (x0; x̂0, P0)IW(X0; ν0, V0)

×
K∏
k=1

mk∏
j=1

N (yjk; z
j
k, R)N (zjk;Hxk, sXk)

 p(xk|xk−1)p(Xk|Xk−1),

(3.13)
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where x̂0, P0 and ν0, V0 are the initial values for the kinematic and extent states, re-

spectively.

In order to obtain the optimal solution, the expected value of the posterior density in

(3.13) with respect to the last estimates of the fixed variables needs to be calculated.

Some expected values are shown with the lines over the variables for simplicity.

3.2.1 Derivation for the approximate posterior q(i+1)
x (.)

Using (3.5a), we can write

log q(i+1)
x (x0:K) = logN (x0; x̂0, P0) +

K∑
k=1

logN (xk;Axk−1, Q)

+
K∑
k=0

mk∑
j=1

−0.5 tr
[
((zjk −Hxk)(z

j
k −Hxk)

T(sXk)−1
]
+ c,

(3.14a)

= logN (x0; x̂0, P0) +
K∑
k=1

logN (xk;Axk−1, Q)

+
K∑
k=0

−0.5 tr
[
mk(zk −Hxk)(zk −Hxk)T(sXk)−1

]
+ c,

(3.14b)

= logN (x0; x̂0, P0) +
K∑
k=1

logN (xk;Axk−1, Q)

+
K∑
k=0

logN

zk;Hxk, (sXk)−1
−1

mk

+ c, (3.14c)

where

zjk ≜ E
q
(i)
Z
[zjk], (3.15a)

zk ≜
1

mk

mk∑
j=1

zjk, (3.15b)

(sXk)−1 ≜ E
q
(i)
X
[(sXk)

−1]. (3.15c)

Observing that (3.14c) has the form as the logarithm of the joint posterior distribu-

tion of the kinematic state in a linear Gaussian state-space model with the process
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noise covariance Q and the measurement noise covariance
(
E
q
(i)
X
[(sXk)

−1]
)−1

, the

well-known RTS smoother can be used to compute the approximate posterior density

q
(i+1)
x (x0:K).

3.2.1.1 Forward Recursion

It is necessary for the smoother to preserve the functional form of the state density.

Thus, initializing the kinematic state with a Gaussian distributed prior q(i+1)
x,0|−1(x0) =

N (x0; x̂0, P0), the filtered posterior can be written as

q
(i+1)
x,k|k (xk) = N (xk; x̂

(i+1)
k|k , P

(i+1)
k|k ), (3.16)

whose parameters are updated with the following measurement update equations.

x̂
(i+1)
k|k =P

(i+1)
k|k ((P

(i+1)
k|k−1)

−1x̂
(i+1)
k|k−1 +mkH

T(sXk)−1zk)
−1, (3.17a)

P
(i+1)
k|k =((P

(i+1)
k|k−1)

−1 +mkH
T(sXk)−1H)−1. (3.17b)

Different than Feldmann’s measurement update equation in (2.39a), the above mea-

surement update uses the average of noise-free measurements instead of noisy mea-

surements.

The prediction step requires the solution to the following Chapman-Kolmogorov

equation:

p(xk, Xk, |Y0:k−1) =

∫
p(xk, Xk|xk−1, Xk−1)

× p(xk−1, Xk−1|Y0:k−1)dxk−1dXk−1. (3.18)

Assuming that the dynamical models of the kinematic and extent states are indepen-

dent, the time update of these states can be separated. Using Kalman filter prediction

equations, the predicted density q(i+1)
x,k+1|k(xk+1) can be obtained in the form of a Gaus-

sian as

q
(i+1)
x,k+1|k(xk+1) = N (xk+1; x̂

(i+1)
k+1|k, P

(i+1)
k+1|k), (3.19)

whose parameters are updated with the following time update equations.

x̂
(i+1)
k+1|k = Ax̂

(i+1)
k|k , (3.20a)

P
(i+1)
k+1|k = AP

(i+1)
k|k AT +Q. (3.20b)
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3.2.1.2 Backward Recursion

Using the RTS Smoother equations, the smoothed density q(i+1)
x,k|K(xk) is also in the

form of a Gaussian as

q
(i+1)
x,k|K(xk) = N (xk; x̂

(i+1)
k|K , P

(i+1)
k|K ), (3.21)

with the following backward recursion equations

Gk = P
(i+1)
k|k AT(P

(i+1)
k+1|k)

−1, (3.22a)

x̂
(i+1)
k|K = x̂

(i+1)
k|k +Gk(x̂

(i+1)
k+1|K − Ax̂

(i+1)
k|k ), (3.22b)

P
(i+1)
k|K = P

(i+1)
k|k +Gk(P

(i+1)
k+1|K − P

(i+1)
k+1|k)G

T
k . (3.22c)

3.2.2 Derivation for the approximate posterior q(i+1)
X (.)

Using (3.5b), we can write

log q
(i+1)
X (X0:K) = log IW(X0; ν0, V0) +

K∑
k=1

log p(Xk|Xk−1)

+
K∑
k=0

E
q
(i)
x ,q

(i)
Z
[log p(Z|xk, Xk)] + c, (3.23a)

= log IW(X0; ν0, V0) +
K∑
k=1

log p(Xk|Xk−1)

+
K∑
k=0

−0.5 tr

 mk∑
j=1

(zjk −Hxk)(z
j
k −Hxk)T(sXk)

−1


+

K∑
k=0

−0.5mk log |Xk|+ c, (3.23b)

where

(zjk −Hxk)(z
j
k −Hxk)T ≜ E

q
(i)
x ,q

(i)
Z

[
(zjk −Hxk)(z

j
k −Hxk)

T
]
. (3.24)

Taking the exponential of both sides we can write

q
(i+1)
X (X0:K) ∝ IW(X0; ν0, V0)

K∏
k=1

p(Xk|Xk−1)
K∏
k=0

L
(i+1)
X,k (Xk), (3.25)
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where

Li+1
X,k(Xk) ≜ |Xk|−

1
2
mk exp

−1

2

mk∑
j=1

tr (zjk −Hxk)(z
j
k −Hxk)T(sXk)

−1

 (3.26)

for k = 0, ..., K. The posterior density in (3.25) corresponds to a standard smoothing

problem for the following Markov model.

X0 ∼ IW(X0, ν0, V0), (3.27a)

Xk|Xk−1 ∼ p(Xk|Xk−1), k = 1, ..., K, (3.27b)

Y
(i+1)
X,k ∼ p(Y

(i+1)
X,k |Xk) ≜ L

(i+1)
X,k (Xk), k = 0, ..., K, (3.27c)

with some pseudo-measurements Y (i+1)
X,k and their likelihood L(i+1)

X,k (.). The solution

to this problem can be obtained using a forward and backward recursion.

3.2.2.1 Forward Recursion

Suppose that the prior density is inverse Wishart distribution, i.e.,

q
(i+1)
X,k|k−1 = IW(Xk, νk|k−1, Vk|k−1). (3.28)

In the Bayesian update equations, the posterior density is proportional to the prod-

uct of the prior with the measurement likelihood. Using the pseudo-likelihood, the

posterior can be obtained as

q
(i+1)
X,k|k(Xk) ∝ L

(i+1)
X,k (Xk)q

(i+1)
X,k|k−1(Xk). (3.29)

Notice that the form of the pseudo-likelihood function given in (3.26) have resem-

blance to the form of an inverse Wishart distribution. Therefore, the multiplication in

(3.29) results in an inverse Wishart posterior as

q
(i+1)
X,k|k(Xk) = IW(Xk, νk|k, V

(i+1)
k|k ), (3.30)

whose parameters are updated as follows.

νk|k = νk|k−1 +mk, (3.31a)

V
(i+1)
k|k = V

(i+1)
k|k−1 +

1

s

mk∑
j=1

(zjk −Hxk)(z
j
k −Hxk)T. (3.31b)
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Note that the update equation of the degrees of freedom parameter νk|k does not

depend on any expected value calculated at the estimates of the previous iteration.

Hence, it does not change after the first iteration.

The prediction update formula can be expressed as

q
(i+1)
X,k+1|k(Xk+1) =

∫
p(Xk+1|Xk)q

(i+1)
X,k|k(Xk)dXk. (3.32)

When the posterior (3.30) is substituted into the prediction update formula (3.32) and

using the Beta-Bartlett transition density prediction update formulae given in (3.11),

an inverse Wishart predicted density q(i+1)
X,k+1|k(Xk+1) is obtained.

q
(i+1)
X,k+1|k(Xk+1) = IW(Xk+1, νk+1|k, V

(i+1)
k+1|k), (3.33)

where its parameters can be updated as

νk+1|k = ψνk|k + (1− ψ)(2ny + 2), (3.34a)

V
(i+1)
k+1|k = ψV

(i+1)
k|k . (3.34b)

Note that the forward recursion preserves the inverse Wishart form of the predicted

and posterior densities.

3.2.2.2 Backward Recursion

The backward recursion starts with the filtered density at final time step K. Suppose

that an intermediate smoothed density is inverse Wishart as given below.

q
(i+1)
X,k+1|K(Xk+1) = IW(Xk+1, νk+1|K , V

(i+1)
k+1|K). (3.35)

The backward update formula can be expressed as

q
(i+1)
X,k|K(Xk) =

∫ p(Xk+1|Xk)q
(i+1)
X,k|k(Xk)

q
(i+1)
X,k+1|k(Xk+1)

q
(i+1)
X,k|K(Xk+1)dXk+1. (3.36)

When the smoothed density (3.35) is substituted into the backward update formula

(3.36) and using the Beta-Bartlet transition density backward smoothing update for-

mulae given in (3.12), an inverse Wishart smoothed density q(i+1)
X,k|K(Xk) is obtained.

q
(i+1)
X,k|K(Xk) = IW(Xk, νk|K , V

(i+1)
k|K ), (3.37)
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where

νk|K = (1− ψ)νk|k + ψνk+1|K , (3.38a)

V
(i+1)
k|K =

(
(1− ψ)

(
V

(i+1)
k|k

)−1

+ ψ
(
V

(i+1)
k+1|K

)−1
)−1

. (3.38b)

Note here again that the backward recursion also preserves the inverse Wishart form

of the filtered density.

3.2.3 Derivation for the approximate posterior q(i+1)
Z (.)

Using (3.5c), we can write

log q
(i+1)
Z (Z0:K) =

K∑
k=0

mk∑
j=0

logN (yjk; z
j
k, R)

+
K∑
k=0

mk∑
j=0

−0.5 tr
[
(zjk −Hxk)(z

j
k −Hxk)

T(sXk)−1
]
+ c,

(3.39a)

=
K∑
k=0

mk∑
j=0

logN (yjk; z
j
k, R)

+
K∑
k=0

mk∑
j=0

logN (zjk;Hxk, (sXk)−1
−1
) + c, (3.39b)

where xk ≜ E
q
(i)
x
(xk). Observing Gaussian multiplication and using Kalman Filter

measurement update formulas the approximate posterior can be expressed as

q
(i+1)
Z (Zk) =

mk∏
j=1

N (zjk; ẑ
j,(i+1)
k ,Σ

z,(i+1)
k ), (3.40)

whose update formulas are given as follows.

ẑ
j,(i+1)
k = Σ

z,(i+1)
k

(
(sXk)−1Hxk +R−1yjk

)
, (3.41a)

Σ
z,(i+1)
k =

(
(sXk)−1 +R−1

)−1

. (3.41b)

3.2.4 Calculation of the Expected Values

The equations derived in subsections 3.2.1-3.2.3 can be used to set up a variational

smoothing algorithm to obtain approximate smoothed estimates sequentially. Thanks
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to the factorization, the noise-free measurement set Z0:K can easily be marginalized

out from the joint density to obtain approximate smoothed density p(x0:K , X0:K |Y0:K)

≈ qx,k|K(xk)qX,k|K(Xk).

The expected values given in the smoother equations can be calculated as

xk = x̂
(i)
k|K , (3.42a)

zjk = ẑ
j,(i)
k , (3.42b)

(sXk)−1 = νk|K(sV
(i)
k|K)

−1, (3.42c)

(zjk −Hxk)(z
j
k −Hxk)T = (ẑ

j,(i)
k −Hx̂(i)k|K)(ẑ

j,(i)
k −Hx̂(i)k|K)

T

+HP
(i)
k|KH

T + Σ
z,(i)
k . (3.42d)

Note that for the inverse Wishart distributed random matrix X ∼ IW(X; ν, V ), its

inverse is Wishart distributed with X−1 ∼ W (X−1; ν, V −1) [31]. We can obtain

(3.42c) by using this fact and the expected value equation of the Wishart distribution

given in (2.8).
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3.3 Variational Smoothing Algorithm for the model without Orientation

The psuedo-code for the proposed variational smoothing algorithm is given in Algo-

rithm 1.
Algorithm 1: Variational Smoother for the Model without Orientation

1 Inputs: A,H, x̂0, P0, v0, V0, ψ and Y0:K

2 Initialization:

x̂
(0)
k|K ← x̂0, P

(0)
k|K ← P0, V

(0)
k|K ← V0, ν

(0)
k|K ← ν0

{zj,(0)k }mk
j=1 ← {y

j
k}

mk
j=1, Σ

z,(0)
k ← s V0

ν0−2ny−2
for k = 0, ..., K

3 for i = 0 to imax − 1 do

4 Calculate the expectations in (3.42)

5 Initialize the predicted estimates

x̂0|−1 ← x̂0, P0|−1 ← P0, ν0|−1 ← ν0, V0|−1 ← V0

6 for k = 0 to K do

7 Measurement Update

8 Update x̂(i+1)
k|k and P (i+1)

k|k using (3.17)

9 Update νk|k and V (i+1)
k|k using (3.31)

10 Update ẑj,(i+1)
k and Σ

z,(i+1)
k using (3.41) for j = 1, ...,mk

11 Prediction

12 Update x̂(i+1)
k+1|k and P (i+1)

k+1|k using (3.20)

13 Update νk+1|k and V (i+1)
k+1|k using (3.34)

14 end for

15 for k = K − 1 down to 0 do

16 Smoothing

17 Update x̂(i+1)
k|K and P (i+1)

k|K using (3.22)

18 Update νk|K and V (i+1)
k|K using (3.38)

19 end for

20 end for

21 Set final smoothed estimates:

x̂k|K ← x̂
(imax)
k|K , Pk|K ← P

(imax)
k|K , Vk|K ← V

(imax)
k|K , νk|K ← νk|K , and

Xk|K = Vk|K/(νk|K − 2ny − 2) for k = 0, ..., K.

Leaving a proper margin in the selection of the iteration number imax so that the recur-
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sion converges, we can use the resulting expected values of the smoothed posteriors

for xk and Xk as the estimates for the object’s kinematic and extent states.

3.3.1 Comments on the Algorithm Performance

The variational smoother proposed in this chapter is an iterative analytical algorithm

that can be used to estimate the kinematic and extent states of an extended target.

In order to see the effect of variational method on the smoothing algorithm, we can

compare its performance with the Bayesian Smoother proposed by Granström and

Bramstång in [2].

In the context of this thesis study, we studied two different extended target tracking

scenarios. The first scenario simulates a target that moves along an almost straight

path with constant velocity (see Figure 3.1). The second scenario, which is a popular

simulation trajectory in extended target tracking studies and used in several papers

such as [1], [3], [33], simulates a maneuvering target on a trajectory composed of one

45°and two 90°turns (see Figure 3.2). The simulation results and estimation errors of

both scenarios are investigated in detail. It was observed that the derived variational

smoother shows satisfactory performance in the first scenario where target does not

have sharp turns. However, when we run this algorithm in the second scenario, its

estimation accuracy degrades due to poor performance during the turns.

These results have led us to search for a more developed algorithm that can improve

the estimation performance in maneuvering tracking scenarios. In order to overcome

this problem, we propose a modified version of the variational smoother that also esti-

mates the orientation of the target. The modified algorithm is elaborated in Chapter 4

with the derivation steps. The detailed simulation results and estimation performance

metrics of all the algorithms mentioned are given in Chapter 5.
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Figure 3.1: Scenario 1 - Target moving along an almost straight path with nearly

constant velocity

0 1000 2000 3000 4000 5000

x [m]

-2000

-1500

-1000

-500

0

500

1000

1500

2000

y
[m

]

Ground Truth
Measurements

Figure 3.2: Scenario 2 - Maneuvering target with constant velocity

34



CHAPTER 4

VARIATIONAL SMOOTHER FOR THE MODEL WITH ORIENTATION

The variational smoothing algorithm proposed in Chapter 3 is capable of estimating

the extent matrix but it relies only on the forgetting factor ψ for all of the changes in

the object orientation. Such an approach would not be sufficient in cases where object

orientation changes significantly over time. This expectation is also supported by the

simulation results given in Chapter 5.

In [3], another solution that provides the ability to track both the orientation and the

extent of a target is proposed. The purpose of this chapter is to provide necessary

information about this model and the derivation steps of the smoothing algorithm

based on such a model. After the derivation details, the psuedo-code of the algorithm

will be provided at the end of the chapter.

4.1 System Description and Problem Formulation

When the orientation of the object is considered as another variable to be estimated,

the extent state is composed of the orientation angle θk ∈ R, and diagonal positive

definite axis length matrix Λk ∈ Rny×ny , Λk ≜ diag(λ1k, λ
2
k, ..., λ

ny

k ). The measure-

ment likelihood can be written as

p(yjk|xk,Λk, θk) ∼ N (yjk;Hxk, sTθkΛkT
T
θk
+R), (4.1)

where Tθk ∈ Rny×ny is the rotation matrix. In two spatial dimensions it is defined as

Tθk ≜

cos(θk) − sin(θk)

sin(θk) cos(θk)

 , (4.2)

and satisfies the following properties: T−1
θk

= TT
θk

, and det(Tθk) = 1.
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Separating the orientation from the extent matrix adds another variable to be esti-

mated to the Bayesian framework. Therefore, the variables to be estimated become

the kinematic state vector xk, axis length matrix Λk, and orientation angle θk. Note

that different than the extent matrix specified in the previous chapter, the axis length

matrix represents only the size of the ellipsoidal shape of the target. Therefore, it is a

diagonal matrix whose diagonal elements specify the axis lengths of the ellipse.

Assume that the joint prior distribution of the kinematic state, axis length matrix, and

orientation angle has the following form:

p(x0,Λ0, θ0) = N (x0; x̂0, P0)

 ny∏
ℓ=1

IG(λℓ0;αℓ0, βℓ0)

N (θ0; θ̂0,Θ0), (4.3)

where IG(λ;α, β) denotes the inverse Gamma distribution of the scalar variable λ

with the scalar shape parameter α and scalar scale parameter β, defined as

IG(λ;α, β) = βα

Γ(α)
(λ)−α−1 exp

(
−β
λ

)
, (4.4)

where Γ(.) denotes the gamma function. The mean of the distribution is given as

E[λ] =
β

α− 1
for α > 1. (4.5)

The parameters x̂0, P0, {αl0}
ny

l=1, {βl0}
ny

l=1, and θ̂0,Θ0 are the initial values for the kine-

matic, axis length, and orientation states, respectively.

Applying the modification described above, additional to the densities of the kine-

matic state vector x0:K and the axis length matrix Λ0:K , we also need to calculate the

posterior density of the orientation angle θ0:K . Therefore, the joint posterior density

can be written as

p(x0:K ,Λ0:K , θ0:K ,Z0:K |Y0:K) ∝ p(x0:K ,Λ0:K , θ0:K ,Z0:K ,Y0:K)

= p(Y0|Z0)p(Z0|x0,Λ0, θ0)p(x0,Λ0, θ0)

×
K∏
k=1

p(Yk|Zk)p(Zk|xk,Λk, θk)p(xk|xk−1)p(Λk|Λk−1)p(θk|θk−1). (4.6)

Assuming that the dynamical models of the kinematic, axis length, and orientation

states are independent, the time update of these states can be separated. Since the

prior distributions of the kinematic and orientation states are both Gaussian, their
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dynamical models can be expressed in a similar way such as

xk = Axxk−1 + wk,x wk,x ∼ N (0, Qx), (4.7a)

θk = Aθθk−1 + wk,θ wk,θ ∼ N (0, Qθ). (4.7b)

Hence, their state transition densities can be written as

p(xk|xk−1) = N (xk;Axxk−1, Qx), (4.8a)

p(θk|θk−1) = N (θk;Aθθk−1, Qθ), (4.8b)

where A is the state (temporal evolution) parameter and Q is the covariance of the

process noise. The subscripts x and θ represent that these parameters are related to

the kinematic or orientation state part of the system dynamics, respectively.

For the dynamical model of the axis length matrix, we need to modify the Beta-

Bartlett stochastic evolution model given in (3.11) and (3.12) for an inverse Gamma

distributed variable. Using Appendix A, we can set α = ν
2
− 1, β = ψ

2
, and d = 1.

Hence, the prediction update equations become

αk|k−1 = ψαk−1|k−1 + (1− ψ), (4.9a)

βk|k−1 = ψβk−1|k−1, (4.9b)

where 0≪ ψ ≤ 1 is the forgetting (covariance discount) factor.

This parameter change does not affect the backwards smoothing equations. However,

in order to show the Beta-Bartlett updates with the same notation, we can re-write

them as

αk|K = (1− ψ)αk|k + ψαk+1|K , (4.10a)

βk|K =
(
(1− ψ)β−1

k|k + ψβ−1
k+1|K

)−1

. (4.10b)

4.2 Derivation of the Variational Smoothing Equations

The joint posterior density in (4.3) can be written explicitly as

p(x0:K ,Λ0:K , θ0:K , Z0:K ,Y0:K)

=

m0∏
j=1

N (yj0; z
j
0, R)N (zj0;Hx0, sTθ0Λ0T

T
θ0
)


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×N (x0; x̂0, P0)

 ny∏
ℓ=1

IG(λℓ0;αℓ0, βℓ0)

N (θ0; θ̂0,Θ0)

×
K∏
k=1

mk∏
j=1

N (yjk; z
j
k, R)N (zjk;Hxk, sTθkΛkT

T
θk
)


×N (xk;Axk−1, Q)p(Λk|Λk−1)p(θk|θk−1). (4.11)

We will use the same method of variational approximation to obtain an analytical

solution for this posterior.

p(x0:K ,Λ0:K , θ0:K ,Z0:K ,Y0:K) ≈ q(x0:K ,Λ0:K , θ0:K ,Z0:K)

≜ qx(x0:K)qΛ(Λ0:K)qθ(θ0:K)qZ(Z0:K), (4.12)

where qx(.), qΛ(.), qθ(.), and qZ(.) are the approximate posterior densities of x0:K ,

Λ0:K , θ0:K , and Z0:K , respectively. The optimal solution of this problem satisfies the

following equations:

log q̂x(x0:K) = Eq̂Λ,q̂θ,q̂Z [log p(x0:K ,Λ0:K , θ0:K ,Z0:K ,Y0:K)] + cx, (4.13a)

log q̂Λ(Λ0:K) = Eq̂x,q̂θ,q̂Z [log p(x0:K ,Λ0:K , θ0:K ,Z0:K ,Y0:K)] + cΛ, (4.13b)

log q̂θ(θ0:K) = Eq̂x,q̂Λ,q̂Z [log p(x0:K ,Λ0:K , θ0:K ,Z0:K ,Y0:K)] + cθ, (4.13c)

log q̂Z(Z0:K) = Eq̂x,q̂Λ,q̂θ [log p(x0:K ,Λ0:K , θ0:K ,Z0:K ,Y0:K)] + cZ , (4.13d)

where cx, cΛ, cθ, and cZ are constants with respect to variables x0:K ,Λ0:K , θ0:K , and

Z0:K , respectively.

4.2.1 Derivation for the approximate posterior q(i+1)
x (.)

Substituting (4.9) into (4.13a), we can write the approximate posterior of the kine-

matic state as

log q(i+1)
x (x0:K) = logN (x0; x̂0, P0) +

K∑
k=1

logN (xk;Axk−1, Q)

+
K∑
k=0

mk∑
j=1

−0.5 tr
[
((zjk −Hxk)(z

j
k −Hxk)

T(sTθkΛkT
T
θk
)−1
]
+ c, (4.14a)

= logN (x0; x̂0, P0) +
K∑
k=1

logN (xk;Ax̂k−1, Q)
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+
K∑
k=0

−0.5 tr
[
mk(zk −Hxk)(zk −Hxk)T(sTθkΛkTT

θk
)−1
]
+ c, (4.14b)

= logN (x0; x̂0, P0) +
K∑
k=1

logN (xk;Ax̂k−1, Q)

+
K∑
k=0

logN

zk;Hxk, (sTθkΛkTT
θk
)−1

−1

mk

+ c, (4.14c)

where zjk is given in (3.15a), zk is given in (3.15b), and

(sTθkΛkT
T
θk
)−1 ≜ E

q
(i)
Λ ,q

(i)
θ
[(sTθkΛkT

T
θk
)−1). (4.15)

Taking the exponential of both sides in (4.14c), we can observe that it has the form of

the joint posterior distribution for the kinematic state in a linear Gaussian state-space

model with the process noise covariance Q and the measurement noise covariance(
E
q
(i)
Λ ,q

(i)
θ
[(sTθkΛkT

T
θk
)−1)

)−1

. Hence, we can use RTS smoother to compute the ap-

proximate posterior density q(i+1)
x (x0:K).

4.2.1.1 Forward Recursion

Initializing the forward recursion with a Gaussian prior q(i+1)
x,0|−1(x0) = N (x0; x̂0, P0)

and using the Kalman Filter measurement update equations, the Gaussian posterior

q
(i+1)
x,k|k (xk) can be obtained as a

q
(i+1)
x,k|k (xk) = N (xk; x̂

(i+1)
k|k , P

(i+1)
k|k ), (4.16)

where its parameters are updated by using the following equations.

x̂
(i+1)
k|k = P

(i+1)
k|k ((P

(i+1)
k|k−1)

−1x̂
(i+1)
k|k−1 +mkH

T(sTθkΛkT
T
θk
)−1zk), (4.17a)

P
(i+1)
k|k = ((P

(i+1)
k|k−1)

−1 +mkH
T(sTθkΛkT

T
θk
)−1H)−1 (4.17b)

Using the Kalman filter time update equations, the predicted density q(i+1)
xk+1|k(xk+1) is

also Gaussian

q(i+1)
xk+1|k

(xk+1) = N (xk+1; x̂
(i+1)
k+1|k, P

(i+1)
k+1|k), (4.18)

where we can write the update equations for its parameters as

x̂
(i+1)
k+1|k = Axx̂

(i+1)
k|k , (4.19a)

P
a,(i+1)
k+1|k = AxP

a,(i+1)
k|k AT

x +Qx. (4.19b)
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4.2.1.2 Backward Recursion

Using the RTS smoother equations, the smoothed density q(i+1)
xk|K (xk) can be written in

the Gaussian form as

q(i+1)
xk|K

(xk) = N (xk; x̂
(i+1)
k|K , P

(i+1)
k|K ), (4.20)

with the backward update equations are given as

Gk = P
(i+1)
k|k AT

x (P
(i+1)
k+1|k)

−1, (4.21a)

x̂
(i+1)
k|K = x̂

(i+1)
k|k +Gk(x̂

(i+1)
k+1|K − Axx̂

(i+1)
k|k ), (4.21b)

P
(i+1)
k|K = P

(i+1)
k|k +Gk(P

(i+1)
k+1|K − P

(i+1)
k+1|k)G

T
k . (4.21c)

4.2.2 Derivation for the approximate posterior q(i+1)
Λ (.)

Substituting (4.9) into (4.13b) we get

log q
(i+1)
Λ (Λ0:K) =

ny∑
ℓ=1

log IG(λℓ0;αℓ0, βℓ0) +
K∑
k=1

log p(Λk|Λk−1)

+
K∑
k=0

E
q
(i)
x ,q

(i)
θ ,q

(i)
Z
[log p(Zk|xk,Λk, θk)] + c, (4.22a)

=

ny∑
ℓ=1

log IG(λℓ0;αℓ0, βℓ0) +
K∑
k=1

log p(Λk|Λk−1)

+
K∑
k=0

−0.5 tr
mk∑
j=1

(zjk −Hxk)(z
j
k −Hxk)T(sTθkΛkTT

θk
)−1

+
K∑
k=0

−0.5mk log |Λk|+ c, (4.22b)

where

(zjk −Hxk)(z
j
k −Hxk)T(sTθkΛkTT

θk
)−1

≜ E
q
(i)
x ,q

(i)
θ ,q

(i)
Z

[
(zjk −Hxk)(z

j
k −Hxk)

T(sTθkΛkT
T
θk
)−1
]
. (4.23)

Taking the exponential of both sides, we get the posterior density

q
(i+1)
Λ (Λ0:K) ∝

 ny∏
ℓ=1

IG(λℓ0;αℓ0, βℓ0)

 K∏
k=1

p(Λk|Λk−1)
K∏
k=0

L
(i+1)
Λ,k (Λk), (4.24)
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where

L
(i+1)
Λ,k (Λk) ≜ |Λk|−

1
2
mk

× exp

−1

2
tr

(sΛk)
−1

mk∑
j=1

TT
θk
(zjk −Hxk)(z

j
k −Hxk)TTθk)


 (4.25)

for k = 0, ..., K. The over-lined part on the right hand side of (4.25) represents the

following intermediate expected value

TT
θk
(zjk −Hxk)(z

j
k −Hxk)TTθk ≜ E

q
(i)
x ,q

(i)
θ ,q

(i)
Z

[
TT
θk
(zjk −Hxk)(z

j
k −Hxk)

TTθk)
]
.

(4.26)

The posterior density in (4.24) corresponds to a standard smoothing problem for the

following Markov model

Λ0 ∼
ny∏
ℓ=1

IG(λℓ0;αℓ0, βℓ0), (4.27a)

Λk|Λk−1 ∼ p(Λk|Λk−1), k = 1, ..., K, (4.27b)

Y
(i+1)
Λ,k ∼ p(Y

(i+1)
Λ,k |Λk) ≜ Li+1

Q,k(Λk), k = 0, ..., K, (4.27c)

with some pseudo-measurements Y (i+1)
Λ,k and their likelihood L(i+1)

Q,k (.). Thus, we can

solve it using forward and backward recursion.

Define

Mk ≜
mk∑
j=1

TT
θk
(zjk −Hxk)(z

j
k −Hxk)TTθk , (4.28)

so that we can write the likelihood as

L
(i+1)
Λ,k (Λk) ≜ |Λk|−

1
2
mk exp

(
−1

2
tr
(
(sΛk)

−1Mk

))
. (4.29)

Since Λk = diag(λ1k, ..., λ
ny

k ) is a diagonal matrix, we can write its determinant and

inverse as

|Λk| =
ny∏
ℓ=1

λℓk, Λ−1
k = diag

(
1

λ1k
, ...,

1

λ
ny

k

)
.

Hence, the exponential term on the right hand side of (4.29) can be written as

tr
(
(sΛk)

−1Mk

)
=

1

s

ny∑
j=1

[Mk]ll
λℓk

, (4.30a)

exp

(
−1

2
tr
(
(sΛk)

−1Mk

))
=

ny∏
ℓ=1

exp

(
− 1

2s

[Mk]ll
λℓk

)
. (4.30b)
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Substituting (4.30b) into (4.29), the likelihood of each diagonal element of Λk is given

as

L
(i+1),ℓ
Λ,k (λℓk) = (λℓk)

− 1
2
mk exp

(
− 1

2s

[Mk]ll
λℓk

)
, (4.31)

resulting in a likelihood of

L
(i+1)
Λ,k (Λk) =

ny∏
ℓ=1

[
L
(i+1),ℓ
Λ,k (λℓk)

]
. (4.32)

Assume that the transition density of the axis length matrix is given as

p(Λk|Λk−1) =

ny∏
ℓ=1

p(λℓk|λℓk−1), (4.33)

where p(λℓk|λℓk−1) is the Beta-Bartlett transition density for the scalar λℓk.

By combining these results, the approximate posterior of each diagonal element of

the axis length matrix can be expressed as

q
(i+1)
λ (λℓ0:K) ∝ IG(λℓ0;αℓ0, βℓ0)

K∏
k=1

p(λℓk|λℓk−1)
K∏
k=0

L
(i+1),ℓ
Λ,k (λℓk), (4.34)

and the approximate posterior of the axis length matrix is given as

q
(i+1)
Λ (Λ0:K) ∝

ny∏
ℓ=1

IG(λℓ0;αℓ0, βℓ0) K∏
k=1

p(λℓk|λℓk−1)
K∏
k=0

L
(i+1)
Λ,k (λℓk)

 , (4.35a)

∝
ny∏
ℓ=1

q
(i+1)
λ (λℓ0:K). (4.35b)

4.2.2.1 Forward Recursion

Suppose that the prior density is inverse Gamma

q
(i+1)
Λ,k|k−1(Λk) =

ny∏
ℓ=1

IG(λℓ,(i+1)
k ;α

ℓ,(i+1)
k|k−1 , β

ℓ,(i+1)
k|k−1 ). (4.36)

Using the following measurement update formula

q
(i+1)
Λ,k|k (Λk) ∝ L

(i+1)
Λ,k (Λk)q

(i+1)
Λ,k|k−1(Λk), (4.37)

we get an inverse Gamma posterior q(i+1)
Λ,k|k (Λk) thanks to the form of the diagonal axis

length matrix and pseudo-likelihood function given in (4.32).

q
(i+1)
Λ,k|k (Λk) =

ny∏
ℓ=1

IG(λℓ,(i+1)
k ;α

ℓ,(i+1)
k|k , β

ℓ,(i+1)
k|k ), (4.38)
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whose parameters can be updated with the following equations

α
ℓ,(i+1)
k|k = α

ℓ,(i+1)
k|k−1 +

1

2
mk, (4.39a)

β
ℓ,(i+1)
k|k = β

ℓ,(i+1)
k|k−1 +

1

2s

mk∑
j=1

[
TT
θk
(zjk −Hxk)(z

j
k −Hxk)TTθk

]
ll
. (4.39b)

When the posterior in (4.38) is substituted into the prediction update formula given in

(3.32) and using the Beta-Bartlett transition density prediction update formulae given

in (4.9), an inverse Gamma predicted density q(i+1)
Λ,k+1|k(Λk+1) is obtained.

q
(i+1)
Λ,k+1|k(Λk+1) =

ny∏
ℓ=1

IG(λℓ,(i+1)
k+1 ;α

ℓ,(i+1)
k+1|k , β

ℓ,(i+1)
k+1|k ), (4.40)

where we can write the update equations for its parameters as

αℓk+1|k = ψαℓk|k + (1− ψ), (4.41a)

β
ℓ,(i+1)
k|k−1 = ψβ

ℓ,(i+1)
k−1|k−1, (4.41b)

for ℓ = 1, ..., ny. This results show that all filtered densities are in the form of an

inverse Gamma distribution.

4.2.2.2 Backward Recursion

Suppose that an intermediate smoothed density is inverse Gamma as given below.

q
(i+1)
Λ,k+1|K(Λk+1) =

ny∏
ℓ=1

IG(λℓ,(i+1)
k+1 ;α

ℓ,(i+1)
k+1|K , β

ℓ,(i+1)
k+1|K ) (4.42)

When the smoothed density (4.42) is substituted into the backward update formula

(3.36) and using the backwards smoothing update formulae for Beta-Bartlett transi-

tion density given in (4.10), an inverse Gamma smoothed density q(i+1)
Λ,k|K(Λk) is ob-

tained.

q
(i+1)
Λ,k|K(Λk) =

ny∏
ℓ=1

IG(λℓ,(i+1)
k ;α

ℓ,(i+1)
k|K , β

(i+1)
k|K ) (4.43)

whose parameters are updated as follows.

αℓk|K = (1− ψ)αℓk|k + ψαℓk+1|K , (4.44a)

β
ℓ,(i+1)
k|K =

(
(1− ψ)

(
β
ℓ,(i+1)
k|k

)−1

+ ψ
(
β
ℓ,(i+1)
k+1|K

)−1
)−1

, (4.44b)

for ℓ = 1, ..., ny. Notice that the backward update equations also preserve the inverse

Gamma form of the posterior.
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4.2.3 Derivation for the approximate posterior q(i+1)
θ (.)

Substituting (4.9) into (4.13c) we get

log q
(i+1)
θ (θ0:K) = logN (θ0; θ̂0,Θ0) +

K∑
k=1

log p(θk|θk−1)

+ E
q
(i)
x ,q

(i)
Λ ,q

(i)
Z

[
log p(Zk|xk,Λk, θk)

]
+ c, (4.45a)

= logN (θ0; θ̂0,Θ0) +
K∑
k=1

log p(θk|θk−1)

+
K∑
k=0

mk∑
j=1

−0.5 tr
[
(zjk −Hxk)(z

j
k −Hxk)T(sTθkΛkTT

θk
)−1
]
+ c,

(4.45b)

where

(zjk −Hxk)(z
j
k −Hxk)T(sTθkΛkTT

θk
)−1

= E
q
(i)
x ,q

(i)
Λ ,q

(i)
Z

[
(zjk −Hxk)(z

j
k −Hxk)

T(sTθkΛkT
T
θk
)−1
]
. (4.46)

Since the rotation matrix Tθk is a non-linear function of the orientation angle θk, the

exact solution for q(i+1)
θ (θ0:K) does not exist. Therefore, a first order approximation

will be used for the non-linear function f(θk) ≜ TT
θk
(zjk−Hxk) using its Taylor series

expansion around θ̂(i)k|k,

f(θk) = f(θ̂
(i)
k|k) +∇f(θ̂

(i)
k|k)(θk − θ̂

(i)
k|k) +H.O.T., (4.47)

where ∇f(θ̂(i)k|k) ≜
∂f

∂θk

∣∣∣∣
θk=θ̂

(i)
k|k

.

When the first order approximation of f(θk) is substituted into (4.45), we can write

the expectation term as

E
q
(i)
x ,q

(i)
Λ ,q

(i)
Z

[
(a− bθk)T(sΛ)−1(a− bθk)

]
, (4.48)

where

a ≜
[
f(θ̂

(i)
k|k)−∇f(θ̂

(i)
k|k)θ

(i)
k|k

]
, (4.49a)

b ≜ −∇f((θ̂(i)k|k). (4.49b)

Observing that this expectation term is the Gaussian likelihood of θk, the posterior

q
(i+1)
θ (θ0:K) density can be computed by using RTS smoother.
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4.2.3.1 Forward Recursion

Forward recursion start with the Gaussian prior density q
(i+1)
θ,0|−1(θ0). The approxi-

mate posterior density can be expressed as Gaussian with mean θ̂(i+1)
k|k and covariance

Θ
(i+1)
k|k ,

q
(i+1)
θk|k

(θk) = N (θk; θ̂
(i+1)
k|k ,Θ

(i+1)
k|k ), (4.50)

where the mean and covariance of the posterior density can be computed by using

Kalman filter measurement update equations as follows.

θ̂
(i+1)
k|k = Θ

(i+1)
k|k

(
(Θ

(i+1)
k|k−1)

−1θ̂
(i+1)
k|k−1 + δ

)
, (4.51a)

Θ
(i+1)
k|k =

(
(Θ

(i+1)
k|k−1)

−1 +∆
)−1

, (4.51b)

δ =

mk∑
j=1

tr

[
(sΛk)−1(T ′

θ̂
(i)
k|k
)T(zjk −Hxk)(.)T(T

′
θ̂
(i)
k|k
)θ̂

(i)
k|k

]
− tr

[
(sΛk)−1(T

θ̂
(i)
k|k
)T(zjk −Hxk)(.)T(T

′
θ̂
(i)
k|k
)

]
, (4.51c)

∆ =

mk∑
j=1

tr

[
(sΛk)−1(T ′

θ̂
(i)
k|k
)T(zjk −Hxk)(.)T(T

′
θ̂
(i)
k|k
)

]
, (4.51d)

where

(sΛk)−1 ≜ E
q
(i)
Λ
[(sΛk)

−1], (4.52a)

(zjk −Hxk)(.)T ≜ E
q
(i)
x ,q

(i)
Z

[
(zjk −Hxk)(z

j
k −Hxk)

T
]
, (4.52b)

T ′
θ̂
(i)
k|k

≜
∂Tθk
∂θk

∣∣∣∣
θk=θ̂

(i)
k|k

. (4.52c)

Kalman filter prediction equations can be used in the time update step of the orien-

tation state. The dynamics of the orientation state can be expressed by the following

state space model.

θk = Aθθk−1 + wk, wk ∼ N (0, Qθ). (4.53)

Using the system dynamics above, the predicted density q(i+1)
θk+1|k

(θk+1) can be obtained

in the form of a Gaussian as

q
(i+1)
θk+1|k

(θk+1) = N (θk; θ̂
(i+1)
k+1|k,Θ

(i+1)
k+1|k), (4.54)
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where

θ̂
(i+1)
k+1|k = Aθθ̂

(i+1)
k|k , (4.55a)

Θ
(i+1)
k+1|k = AθΘ

(i+1)
k|k AT

θ +Qθ. (4.55b)

4.2.3.2 Backward Recursion

Using the well known RTS smoother formulas, the smoothed density q(i+1)
θk|K

(θk) be-

comes also in the form of a Gaussian as

q
(i+1)
θk|K

(θk) = N (θk; θ̂
(i+1)
k|K ,Θ

(i+1)
k|K ), (4.56)

where

Gk = Θ
(i+1)
k|k AT

θ (Θ
(i+1)
k+1|k)

−1, (4.57a)

θ̂
(i+1)
k|K = θ̂

(i+1)
k|k +Gk(θ̂

(i+1)
k+1|K − Aθθ̂

(i+1)
k|k ), (4.57b)

Θ
(i+1)
k|K = Θ

(i+1)
k|k +Gk(Θ

(i+1)
k+1|K −Θ

(i+1)
k+1|k)G

T
k . (4.57c)

4.2.4 Derivation for the approximate posterior q(i+1)
Z (.)

Substituting (4.9) into (4.13c) we get

log q
(i+1)
Z (Z0:K) =

K∑
k=0

log p(Yk|Zk) +
K∑
k=0

E
q
(i)
x ,q

(i)
Λ ,q

(i)
θ

[
log p(Zk|xk,Λk, θk)

]
+ c,

(4.58a)

=
K∑
k=0

mk∑
j=0

logN (yjk; z
j
k, R)

+
K∑
k=0

mk∑
j=0

−0.5 tr
[
(zjk −Hxk)(z

j
k −Hxk)

T(sTθkΛkT
T
θk
)−1
]
+ c,

(4.58b)

=
K∑
k=0

mk∑
j=0

logN (yjk; z
j
k, R)

+
K∑
k=0

mk∑
j=0

logN
(
zjk;Hxk, (sTθkΛkT

T
θk
)−1

−1
)
+ c, (4.58c)
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where xk ≜ E
q
(i)
x
(xk). Observing Gaussian multiplication and using Kalman Filter

measurement update formulas, the approximate posterior of the noise-free measure-

ments can be written as follows.

q
(i+1)
Z (Zk) =

mk∏
j=1

N (zjk; ẑ
j,(i+1)
k ,Σ

z,(i+1)
k ), (4.59)

where its parameters are updated as follows

ẑ
j,(i+1)
k = Σ

z,(i+1)
k

(
(sTθkΛkT

T
θk
)−1Hxk +R−1yjk

)
, (4.60a)

Σ
z,(i+1)
k =

(
(sTθkΛkT

T
θk
)−1 +R−1

)−1

. (4.60b)

4.2.5 Calculation of the Expected Values

xk = x̂
(i)
k|K , (4.61a)

zk =
1

mk

mk∑
j=1

ẑ
j,(i)
k , (4.61b)

(sΛk)−1 = diag

 α
1,(i)
k|K

sβ
1,(i)
k|K

,
α
2,(i)
k|K

sβ
2,(i)
k|K

, ...,
α
ny ,(i)

k|K

sβ
ny ,(i)

k|K

 , (4.61c)

(zjk −Hxk)(.)T = HP
(i)
k|KH

T + Σ
z,(i)
k

+
(
ẑ
j,(i)
k −Hx(i)k|K

)(
ẑ
j,(i)
k −Hx(i)k|K

)T
, (4.61d)

TT
θk
(zjk −Hxk)(z

j
k −Hxk)TTθk = E

q
(i)
θ

[
TT
θk

((
z
j,(i)
k −Hx(i)k|K

)(
z
j,(i)
k −Hx(i)k|K

)T
+HP

(i)
k|KH

T + Σ
z,(i)
k

)
Tθk

]
, (4.61e)

The expectation in (4.61e) can be calculated using the property TT
θk

= T−θk of the

rotation matrix and Lemma 1.

4.2.5.1 Calculation of E
q
(i)
Λ ,q

(i)
θ
[(sTθkΛkT

T
θk
)−1]:

The derivation steps given in Lemma 1 are taken from [28] and repeated here only for

the sake of completeness.
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Lemma 1. (Taken from [28]) Given

M−1 =

m11 m12

m21 m22

 , (4.62)

and q(i)θ (θk|K) = N (θk; θ̂
(i+1)
k|K ,Θ

(i+1)
k|K ), the entries of the matrix E

q
(i)
θ
[(TθkMTT

θk
)−1]

can be computed as

E
q
(i)
θ
[(TθkMTT

θk
)−1]11 =

[
m11 m22 − (m12 +m21)

]
K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
,

E
q
(i)
θ
[(TθkMTT

θk
)−1]12 =

[
m12 −m21 (m11 −m22)

]
K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
,

E
q
(i)
θ
[(TθkMTT

θk
)−1]21 =

[
m21 −m12 (m11 −m22)

]
K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
,

E
q
(i)
θ
[(TθkMTT

θk
)−1]22 =

[
m22 m11 (m12 +m21)

]
K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
, (4.63)

where

K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
≜

1

2


1 + cos(2θ̂k|K) exp(−2Θ(i)

k|K)

1− cos(2θ̂k|K) exp(−2Θ(i)
k|K)

sin(2θ̂k|K) exp(−2Θ(i)
k|K)

 . (4.64)

Since Λk is diagonal by definition, we can write

E
q
(i)
Λ ,q

(i)
θ
[(sTθkΛkT

T
θk
)−1] = (1− exp(−2Θ(i)

k|K))
tr((sΛk)−1)

2
I2

+ exp(−2Θ(i)
k|K)

(
T
θ̂
(i)
k|K

(sΛk)−1TT

θ̂
(i)
k|K

)
. (4.65)

Let’s define

(zjk −Hxk)(.)T ≜ N =

n11 n12

n21 n22,

 . (4.66)

We need to calculate E[TT
θk
NTθk ]. In order to be able to do this, we are going to put

this expected value in the form of Lemma 1.

TT
θk
NTθk = (TT

θk
N−1Tθk)

−1 = (T−θkN
−1TT

−θk)
−1, (4.67)

E[TT
θk
NTθk ] = E

[
(T−θkN

−1TT
−θk)

−1
]
, (4.68)

E
q
(i)
θ
[TT
θk
NTθk ]11 =

[
n11 n22 + (n12 + n21)

]
K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
,

E
q
(i)
θ
[TT
θk
NTT

θk
]12 =

[
n12 − n21 (n22 − n11)

]
K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
,

E
q
(i)
θ
[TT
θk
NTT

θk
]21 =

[
n21 − n12 (n22 − n11)

]
K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
,

E
q
(i)
θ
[TT
θk
NTT

θk
]22 =

[
n22 n11 − (n12 + n21)

]
K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
, (4.69)
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with the K
(
θ̂
(i)
k|K ,Θ

(i)
k|K

)
defined in (4.64).

4.2.5.2 Calculation of E
q
(i)
Λ
[(sΛk)]

This expectation will be used to initialize the covariance of the noise-free measure-

ments Σz
k and to calculate the resulting expected value of the axis length matrix. It

can be calculated by using the mean of an inverse Gamma distribution given in (4.5).

E
q
(i)
Λ
[(sΛk)] = (sΛk) = diag

 sβ
1,(i)
k|K

α
1,(i)
k|K − 1

,
sβ

2,(i)
k|K

α
2,(i)
k|K − 1

, ...,
sβ

ny ,(i)

k|K

α
ny ,(i)

k|K − 1

 , (4.70)

4.3 Variational Smoothing Algorithm for the Model with Orientation

The psuedo-code for the proposed variational smoothing algorithm is given in Algo-

rithm 2.
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Algorithm 2: Variational Smoother for the Model with Orientation

1 Inputs: A,H, x̂0, P0, {αℓ
0, β

ℓ
0}

ny

ℓ=1, θ̂0,Θ0, ψ and Y0:K

2 Initialization:

x̂
(0)
k|K ← x̂0, P

(0)
k|K ← P0, θ̂

(0)
k|K ← θ̂0, Θ

(0)
k|K ← Θ0,

{αℓ,(0)
k|K }

ny

ℓ=1 ← {αℓ
0}

ny

ℓ=1, {βℓ,(0)
k|K }}

ny

ℓ=1 ← {βℓ
0}

ny

ℓ=1, {zj,(0)k }mk
j=1 ← {y

j
k}

mk
j=1,

Σ
z,(0)
k ← E

q
(0)
Λ

[(sΛk)] using (4.70), for k = 0, ...,K

3 for i = 0 to imax − 1 do

4 Calculate the expectations in (4.61)

5 Initialize the predicted estimates

x̂0|−1 ← x̂0, P0|−1 ← P0,

{αℓ
0|−1}

ny

ℓ=1 ← {αℓ
0}

ny

ℓ=1, {βℓ
0|−1}

ny

ℓ=1 ← {βℓ
0}

ny

ℓ=1,

θ̂0|−1 ← θ̂0, Θ0|−1 ← Θ0,

6 for k = 0 to K do

7 Measurement Update

8 Update x̂(i+1)
k|k and P (i+1)

k|k using (4.17)

9 Update αℓ,(i+1)
k|k and βℓ,(i+1)

k|k using (4.39) for ℓ = 1, ..., ny

10 Update θ̂(i+1)
k|k and Θ

(i+1)
k|k using (4.51)

11 Update ẑj,(i+1)
k and Σ

z,(i+1)
k using (4.58) for j = 1, ...,mk

12 Prediction

13 Update x̂(i+1)
k+1|k and P (i+1)

k+1|k using (4.19)

14 Update αℓ,(i+1)
k+1|k and βℓ,(i+1)

k+1|k using (4.41) for ℓ = 1, ..., ny

15 Update θ̂(i+1)
k+1|k and Θ

(i+1)
k+1|k using (4.55)

16 end for

17 for k = K − 1 down to 0 do

18 Smoothing

19 Update x̂(i+1)
k|K and P (i+1)

k|K using (4.21)

20 Update αℓ,(i+1)
k|K and βℓ,(i+1)

k|K using (4.44) for ℓ = 1, ..., ny

21 Update θ̂(i+1)
k|K and Θ

(i+1)
k|K using (4.57)

22 end for

23 end for

24 Set final smoothed estimates:

x̂k|K ← x̂
(imax)
k|K , Pk|K ← P

(imax)
k|K , θ̂k|K ← θ̂

(imax)
k|K , Θk|K ← Θ

(imax)
k|K ,

{αℓ
k|K}

ny

ℓ=1 ← {α
ℓ,(imax)
k|K }ny

ℓ=1, {βℓ
k|K}

ny

ℓ=1 ← {β
ℓ,(imax)
k|K }ny

ℓ=1,

Λk|K = diag
(

β1
k|K

(α1
k|K−1)

,
β2
k|K

(α2
k|K−1)

, ...,
β
ny
k|K

(α
ny
k|K−1)

)
,

Xk|K =
(
1− exp(−2Θk|K)

)
tr(Λk|K)

2 I2 + exp(−2Θk|K)(Tθ̂k|K
Λk|KT

T
θ̂k|K

),

for k = 0, ...,K

50



CHAPTER 5

SIMULATION RESULTS

In this chapter, we will present the simulation results of the algorithms proposed in

Chapter 3 and Chapter 4. For simpler representation, we will denote these algorithms

as VS and VSO, which stands for variational smoother and variational smoother with

orientation, respectively. In order to evaluate the performances of the proposed al-

gorithms, their results will be compared with Feldmann et al.’s filter, denoted as

FFK, proposed in [1], Granström and Bramstång’s smoother, denoted as GB, pro-

posed in [2], and Tuncer and Özkan’s variational filter for the model with orientation,

denoted as TO, proposed in [28].

Throughout the simulation study, two different extended target tracking scenarios

were utilized. In the first scenario, a target moving on a straight trajectory with nearly

constant velocity is simulated. In the second scenario, a maneuvering target with

constant velocity is used. The simulations were performed 100 times and the error

metrics are given as the average of these 100 MC runs. The details of these scenarios,

the model and initial parameters, and the error metrics used to evaluate the algorithm

performances will be provided in the following sections.

5.1 Scenario 1: Non-maneuvering Target Case

In this simulation scenario, an object which moves with nearly constant velocity on an

almost straight path is used. In the following subsections, we provide the parameters

and equations used to generate measurements for this scenario. Then, the algorithm

results are given with the related error metrics.
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5.1.1 Measurement Generation

At each MC run, the scenario is generated randomly by using the constant velocity

state space model for the kinematic state given as

xk+1 = Axxk +Bwk,x, wk,x ∼ N (wk,x; 0, Qx), (5.1)

where xk = [pxk, p
y
k, v

x
k , v

y
k ]

T and nx = 4, in two spatial dimensions. wk,x is the zero

mean andQx = σ2I2 covariance process noise of the kinematic state with σ = 1m/s2

and I2 is the 2 × 2 identity matrix. The true parameters of the state space model are

given as

Ax =

I2 TI2

02 I2

 , B =

T 2I2

TI2

 , (5.2)

where 02 is 2 × 2 zero matrix and T = 10 s is the sampling period. Initializing a

Gaussian prior for the kinematic state x0 ∼ N (x0; x̂0, P0) with mean and covariance

x̂0 =
[
0m 0m 10m/s 10m/s

]T
, (5.3a)

P0 = diag
([

1m2 1m2 1m2/s2 1m2/s2
])

, (5.3b)

we generate the true kinematic state for k = 0, ..., 70. We consider the orientation

angle as the inverse tangent of the ratio of the velocities in the x and y direction to

calculate the rotation matrix.

θk = tan−1(vxk/v
y
k), Tθk ≜

cos(θk) − sin(θk)

sin(θk) cos(θk)

 . (5.4)

The lengths of the major and minor axes are set to λ1k = 1702m2 and λ2k = 402m2,

respectively. The axis length matrix is Λk = diag(λ1k, λ
2
k). The true extent can be

obtained as follows.

Xk = TθkΛkT
T
θk
. (5.5)

The measurement set Yk = {yjk}
mk
j=1 is generated as follows.

mk = max
(
2,m ∼ Poisson(10)

)
, (5.6a)

yjk ∼ N (y;Hxk, sXk +R), (5.6b)

where s = 0.25 is the scaling factor, R = 52I2m
2 is the sensor noise, H = [I2 02×2]

is the measurement matrix, and Poisson(M ) represents the Poisson density with ex-

pected value M .

52



5.1.2 Model and Initial Density Parameters

The predicted kinematic state estimates and covariance are initialized with the initial

kinematic state mean and covariance such that

x0|−1 = x̂0, (5.7a)

P0|−1 = P0. (5.7b)

For the models with orientation, the shape and scale estimates of the axis length

matrix are initialized as α1,2
0|−1 = [2 2]T and β1,2

0|−1 = [1002 1002]T. The predicted

mean of the orientation is initialized as θ0|−1 = θ0 using the true orientation angle and

the predicted covariance is set to Θ0|−1 = 0.01 rad2. The state transition parameter of

the orientation is given as Aθ = 1, and the process noise covariance of the orientation

is given as Qθ = 0.001 rad2. In order to initialize the algorithms with equivalent

extent estimates, the expected value of their extents are equalized. The initial extent

estimate can be obtained by using Lemma 1 and (4.70).

X0|−1 = EqΛ,qθ [Tθ0Λ0T
T
θ0
] = Eqθ [Tθ0 EqΛ [Λ0]T

T
θ0
]

= Eqθ [(Tθ0(EqΛ [Λ0])
−1TT

θ0
)−1]

= (1− exp(−2Θ0|−1))
tr(Λ0)

2
I2

+ exp(−2Θ0|−1)
(
Tθ0(Λ0)T

T
θ0

)
. (5.8)

For the models without orientation, the initial degrees of freedom is set to ν0|−1 = 7

and the scale matrix is calculated as

V0|−1 = X0|−1(ν0|−1 − 2ny − 2). (5.9)

The forgetting factor is set to ψ = 0.85 for VS, VSO, and TO algorithms. The

equivalent time constant parameter τ of FFK, and the degrees of freedom parameter

nk of GB can be obtained using the forgetting factor as described in Appendix B. The

resulting equivalences are given as

τ = − T

lnψ
, (5.10a)

nk =
νk|k − 2ny − 2

1
ψ
− 1

. (5.10b)
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5.1.3 Error Metrics

The estimation performance of the algorithms are compared using the error metrics

of Gaussian Wasserstein (GW) distance [41] and root-mean-square-error(RMSE).

5.1.3.1 Gaussian Wasserstein Distance

The error metrics of the estimated kinematic state vector and axis length matrix are

calculated using their Gaussian Wasserstein distances with respect to the ground truth

of the target. The GW distance can be obtained as follows.

GW1(pk,gt,Λk,gt, pk|K ,Λk|K)2

≜ ||pk,gt − pk|K ||22 + tr
[
Λk,gt + Λk|K − 2(Λ

1/2
k,gtΛk|KΛ

1/2
k,gt)

1/2
]
, (5.11)

where pk,gt and Λk,gt represent the ground truth of the target center and axes lengths,

while pk|K and Λk|K represent the smoothed estimates of the center and axes lengths.

The GW1 distance in (5.11) is divided into two parts representing the position and

axis length error separately. These terms are given as follows.

GWp = ||pgt − pk|K ||22, (5.12a)

GWΛ = tr
[
Λgt + Λk|K − 2(Λ

1/2
gt Λk|KΛ

1/2
gt )1/2

]
. (5.12b)

In order to include the effect of the orientation error in GW distance, we also calculate

the GW distance using the extent matrix.

GW2(pk,gt, Xk,gt, pk|K , Xk|K)
2

≜ ||pk,gt − pk|K ||22 + tr
[
Xk,gt +Xk|K − 2(X

1/2
k,gtXk|KX

1/2
k,gt)

1/2
]
, (5.13)

where Xk,gt represents the ground truth of the target extent and Xk|K represents the

smoothed estimates of the extent. The individual extent error can be written as fol-

lows.

GWX = tr
[
Xgt +Xk|K − 2(X

1/2
gt Xk|KX

1/2
gt )1/2

]
. (5.14)
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5.1.3.2 Root-mean-square-error

In order to obtain the error of the orientation, we use the RMSE metric which can be

calculated as follows.

RMSE(θgt, θk|K) =

√√√√ 1

K

K∑
k=1

(θk,gt − θk|K)2, (5.15)

where K is the final time step, θgt and θk|K are the orientation of the ground truth and

smoothed estimate, respectively.

5.1.4 Simulation Results

In order to be able to compare the performance of the algorithms, the average error

metrics are given for each time step in Figure 5.2-Figure 5.7. Moreover, an example

trajectory of the target with the algorithm estimates is given in Figure 5.1. In all plots,

filtering algorithms are shown in dashed lines, while smoothing algorithms are given

in solid lines.

As it can be seen on the trajectory in Figure 5.1, the positional error of the filtering

algorithms increase when the number of measurements is low at a particular scan. On

the other hand, smoothing algorithms are able to overcome this issue thanks to the

refining nature of the backward recursion. Since the target orientation does not tend

to change over time, there is no significant difference in the extent and orientation

estimates of the algorithms.

The average GW distance of the kinematic state is given in Figure 5.2. We can ob-

serve that the average GWx of the smoothing algorithms VS, VSO, and GB are lower

throughout the trajectory. Since the update equations of the kinematic state are sim-

ilar to each other, the average GWx distance of the filtering algorithms are close to

each other at each time. Likewise, no significant difference is observed on the average

GWx distance of the smoothing algorithms.

When we look at the average GW distances of the axis length matrices, which are

given in Figure 5.3, we can observe that the proposed algorithms VS and VSO show

the best performance throughout the trajectory. The other smoothing algorithm GB
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Figure 5.1: An example target trajectory of scenario 1. The results of the filtering

algorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.
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Figure 5.2: Average GWx distance for scenario 1. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.
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also shows better performance than the filtering algorithms but its performance is

lower than the proposed variational smoothers. This result is expected because of the

iterative structure of the variational algorithms. The same difference can be observed

in the average GWΛ distances of TO and FFK algorithms. The variational nature of

the TO algorithm provides better estimation results.

0 100 200 300 400 500 600 700

Time (s)

20

40

60

80

100

120

140

G
W

D
is
ta
n
ce

A
x
is

L
en

g
th

(m
2
)

VS
VSO
TO
FFK
GB

Figure 5.3: Average GWΛ distance for scenario 1. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.

In Figure 5.4 the average GW1 distance, which is a combination of GWx and GWΛ

distances, is given. Since kinematic state error dominates the overall error, the shape

of the GW1 is similar to GWx. However, it can be clearly seen that the performance of

the variational algorithms are better within their respective group (smoother or filter).

The GW1 distance provides us the information about the algorithm’s performance

on estimating the kinematic state and axis length matrix but it doesn’t contain in-

formation about the estimation performance of the orientation. In order to evaluate

this, the average RMSE of the orientation is given in Figure 5.5. When we examine

the average RMSE(θ), it shows that the orientation error of the VSO is lower than

other smoothing algorithms and the orientation error of TO is lower than FFK. As

expected, these results show that estimating the orientation separate from the extent

provides lower orientation error.
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Figure 5.4: Average GW1 distance for scenario 1. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.
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Figure 5.5: Average RMSE(θ) for scenario 1. The results of the filtering algorithms

are shown with dashed lines while those of the smoothing algorithms are shown with

solid lines.

Combining the RMSE of the orientation with the GW distance of the axis length ma-

trix, we can obtain the GW distance of the extent matrix in Figure 5.6. Compared

to the Figure 5.3, the performance differences between the algorithms for the model

with and without orientation becomes more evident. The effect of the orientation esti-
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mation can also been seen by looking at the TO and GB. Although GB is a smoothing

algorithm, its GWX is so close to the filtering algorithm TO and even exceeds TO’s

error in some regions.
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Figure 5.6: Average GWX distance for scenario 1. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.

The average GW2 distance, which shows the overall error of the kinematic state and

extent matrix errors, is given in Figure 5.7. Similar to GW1, the smoothing algorithms

show better performance compared to the filtering algorithms. Also, the variational

algorithms have less error within their respective group.

The overall performance of the algorithms is reported as the average GW distance and

orientation RMSE in Table 5.1. The proposed smoothers VS and VSO achieves the

best results followed by the 3rd smoother GB. This result demonstrate the superiority

of the smoothing algorithms over filtering algorithms. In addition, the advantage of

the variational technique can be observed by looking at the results of TO and FFK

or VS and GB. TO outperforms FFK while VS and VSO outperform GB thanks to

their iterative structure. Estimating the orientation separately does not provide an

exceptional performance differentiation due to the target’s nearly constant velocity

behavior in this scenario.

59



0 100 200 300 400 500 600 700

Time (s)

18

20

22

24

26

28

30

32

G
W

2
D
is
ta
n
ce

(m
)

VS
VSO
TO
FFK
GB

Figure 5.7: Average GW2 distance for scenario 1. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.

Table 5.1: Average GW distance and RMSE results of Scenario 1.

GWx [m2] GWΛ [m2] GW1 [m] RMSE(θ) [°] GWX [m2] GW2 [m]

VS 338.12 38.78 15.81 0.67 123.52 18.50

VSO 334.14 36.63 15.66 0.60 116.28 18.23

TO 639.27 68.84 21.42 0.85 152.61 23.48

FFK 639.49 86.57 21.77 0.98 182.35 24.16

GB 331.81 55.54 16.21 0.68 147.68 19.03

5.1.5 Effects of Low Number of Measurements

In order to see the effect of number of measurements on algorithm performance, the

simulations are repeated using an average of 3 measurements at each scan. The typical

estimates of the algorithms are illustrated in Figure 5.8 and the overall error metric

results are given in Table 5.2.
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Figure 5.8: An example target trajectory of scenario 1 with an average of 3 measure-

ments at each scan. The results of the filtering algorithms are shown with dashed lines

while those of the smoothing algorithms are shown with solid lines.

The same conclusions as the previous subsection can be made based on the results

except that the performance of all algorithms degrades due to the low number of mea-

surements. It is clear that the performance, especially the position estimation perfor-

mance, of the filtering algorithms is reduced more than the smoothing algorithms.

Table 5.2: Average GW distance and RMSE results of Scenario 1 with an average of

3 measurements at each scan.

GWx [m2] GWΛ [m2] GW1 [m] RMSE(θ) [°] GWX [m2] GW2 [m]

VS 964.30 257.22 28.97 2.13 296.77 29.69

VSO 920.27 195.03 27.51 1.88 226.19 28.12

TO 2110.16 258.11 39.14 1.88 292.72 39.65

FFK 2123.29 447.95 41.37 2.34 494.32 41.98

GB 915.55 282.46 28.87 2.09 320.32 29.56
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5.2 Scenario 2: Maneuvering Target Case

The maneuvering target scenario, which is a widely used target trajectory in extended

target tracking simulations, contains two 90° and one 45° turns. The target moves

on straight paths in between these turns and it has a constant velocity of 13.88m/s

throughout the trajectory. The major and minor axis lengths of the target are equal to

λ1 = 170m and λ2 = 40m, respectively.

The true target position starts at the origin with an orientation angle of θ0 = π/4. It

moves on a straight path for 20 samples and then starts a 45° turn in counter clockwise

direction. This turn takes 11 samples. After moving straight on +x direction for 10

samples again, the target starts its second turn. The target completes this 90° turn in

11 samples. Then, it moves in +y direction for 20 samples and starts its last turn of

90° which also lasts 11 samples. The target moves on −x direction for 20 samples

and completes the trajectory of 103 samples in total. The sampling time is T = 10 s

throughout the trajectory (see Figure 3.2).

5.2.1 Measurement Generation

At each MC run, the measurements Yk = {yjk}
mk
j=1 are generated with a Gaussian

distribution around the true target. Setting the measurement parameters as

mk = max(2,m ∼ Poisson(20)), (5.16a)

R = 502I2m
2, (5.16b)

s = 0.25, (5.16c)

H = [I2 02×2], (5.16d)

each measurement can be generated as

yjk ∼ N (yjk;Hxk, sXk +R). (5.17)
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5.2.2 Model and Initial Density Parameters

The kinematic state mean and covariance are initialized as

x0|−1 =
[
0m 0m 10m/s −10m/s

]T
, (5.18a)

P0|−1 = diag
([

900m2 900m2 16m2/s2 16m2/s2
])

. (5.18b)

The state transition matrix and gain matrix of the process noise can be written as

Ax =

I2 TI2

02 I2

 , B =

T 2I2

TI2

 , (5.19)

where Qx = σ2I2 is the process noise covariance with σ =
√
10 m/s2.

For the models with orientation, the system model parameters are set to Aθ = 1 and

Qθ = 0.01 rad2. The scale and shape estimates are initialized as

α1,2
0|−1 = [2 2]T, (5.20a)

β1,2
0|−1 = [1002 1002]T. (5.20b)

The mean and covariance of the orientation are initialized as

θ0|−1 = −π/6 rad, (5.21a)

Θ0|−1 = 1 rad2. (5.21b)

In order to initialize all of the algorithms with equivalent extent estimates, the ex-

pected value of the initial extent X0 is calculated using (5.8). The degrees of freedom

and scale matrix parameters of the extent state for the model without orientation are

initialized as

ν0|−1 = 7, (5.22a)

V0|−1 = X0(ν0 − 2ny − 2). (5.22b)

The forgetting factor is set to ψ = 0.75 for the VS, VSO, TO algorithms. The equiv-

alent time constant parameter τ of FFK, and the degrees of freedom parameter nk of

GB can be obtained by using (5.10).

5.2.3 Error Metrics

The same error metrics given in Subsection 5.1.3 are also used in scenario 2.
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5.2.4 Simulation Results

Similar to Subsection 5.1.4, the average error metrics are provided for each time step

in Figure 5.10-Figure 5.15. Furthermore, an example trajectory of the target with the

algorithm estimates is given in Figure 5.9. In all plots, filtering algorithms are given

in dashed lines, while smoothing algorithms are shown in solid lines.

When we analyze the estimation results of the algorithms in Figure 5.9, we can clearly

observe that the estimation performance of the algorithms without orientation de-

grades during the turns. However, because TO and VSO algorithms treat the orienta-

tion as a separate variable to be estimated, these algorithms can maintain their good

estimation performance during the turns as well.
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Figure 5.9: An example trajectory of scenario 2. The results of the filtering algorithms

are shown with dashed lines while those of the smoothing algorithms are shown with

solid lines.

The average positional error of the algorithms can be seen in Figure 5.10. As ex-

pected, the form of the average GWx is similar to the one in scenario 1 because the

performance of the positional estimation is not affected substantially from the ma-

neuvering behavior of the target. As before, the smoothing algorithms VS, VSO, and
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GB performs better than the filtering algorithms TO and FFK.
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Figure 5.10: Average GWx distance for scenario 2. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.

In Figure 5.11, the average error of the axis length matrices are given. The average

GWΛ of the VS, GB, and FFK algorithms rises dramatically during the turns since

these algorithms do not treat the orientation as a separate random variable. The pro-

posed VS algorithm shows the poorest performance among all algorithms. When we

investigate the reason for this behavior, we found out that the Beta-Bartlett backward

recursion is not the best selection for the scenarios where target shows rapid orien-

tation changes. Since the Beta-Bartlett smoother makes a backward update which is

similar to the covariance update of the covariance intersection algorithm [42], it is

not capable of reacting fast enough to the orientation variations. Nevertheless, the

proposed VSO algorithm achieves the best performance among all algorithms thanks

to its model with orientation.

The average GW1 distance of the algorithms is given in Figure 5.12. Since the VS,

FFK, and GB show significant performance degradation in axis length estimation, this

behavior dominates the overall GW1 distance as well. Different than the axis length

estimation errors, the errors of VS and GB are closer to the error of FFK because of

their lower kinematic estimation error. The performance of the proposed algorithm

VSO is better than other algorithms throughout the trajectory.
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Figure 5.11: Average GWΛ distance for scenario 2. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.
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Figure 5.12: Average GW1 distance for scenario 2. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.

As it can be seen in Figure 5.13, the average RMSE of the orientation angle exhibit

considerable increase during the turns. The orientation error does not change much

during the turns for VSO and TO as expected. FFK shows the worst orientation angle

estimation performance among all algorithms for the model without orientation. This
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behavior can be explained by the improvement of the smoothing algorithms.
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Figure 5.13: Average RMSE(θ) for scenario 2. The results of the filtering algorithms

are shown with dashed lines while those of the smoothing algorithms are shown with

solid lines.

The angle estimation errors also affect the average extent estimation performance

of the algorithms. Looking into Figure 5.14, we can see that the GWX distance

of FFK is the most among all algorithms which is different than the result of GWΛ.

Although axis length errors of the VS and GB are higher than FFK, their performance

are better in estimating the extent because the extent matrix also holds orientation

angle information.

Integrating the effect of angle errors into the extent and consequently into the GW2

distance, we can see the resulting performance of the algorithms in Figure 5.15. The

GW2 distance results show that VSO performs best in scenario 2 without being af-

fected by the turns of the target. Conversely, FFK shows the worst performance as

expected because it does not estimate the orientation separately and does not conduct

a backward recursion.

The overall GW distance and RMSE error metric results of scenario 2 is given in

Table 5.3. The proposed algorithm VSO outperforms the alternative algorithms in the

literature for all of the error parameters. This result demonstrates the advantage of

estimating the orientation angle as another random variable for maneuvering target
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Figure 5.14: Average GWX distance for scenario 2. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.
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Figure 5.15: Average GW2 distance for scenario 2. The results of the filtering al-

gorithms are shown with dashed lines while those of the smoothing algorithms are

shown with solid lines.

scenarios. If we group the algorithms for the model with or without orientation, it

is also obvious that the smoothing algorithms are superior to the filtering algorithms

within their respective groups.
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Table 5.3: Average GW distance and RMSE results of scenario 2.

GWx [m2] GWΛ [m2] GW1 [m] RMSE(θ) [°] GWX [m2] GW2 [m]

VS 333.74 757.33 29.19 4.81 822.56 30.31

VSO 327.67 46.85 16.90 2.44 92.02 18.43

TO 420.61 86.35 19.89 3.51 181.09 22.38

FFK 421.76 407.75 25.68 11.56 1136.04 34.12

GB 330.46 588.35 26.83 3.77 670.53 28.27

5.3 Computational Load

The average run times of the algorithms (per time step) when number of iterations is 1,

5, and 20, are given in Table 5.4. The superior performance of VSO comes at a cost

of computation time due to its iterative nature and additional smoothing algorithm

computations. It is worth noting that the proposed algorithms VS and VSO converge

in an average of 5 iterations but the simulations were performed in 20 iterations to

make sure of the convergence. Therefore, the run time can be decreased by optimizing

the number of iterations depending on the application.

Table 5.4: Average algorithm run times (per time step) with different number of iter-

ations.

VS VSO TO FFK GB

Run time with a single iteration (ms) 1.32 2.37 2.13 0.69 1.13

Run time with 5 iterations (ms) 4.61 7.74 5.93 0.69 1.13

Run time with 20 iterations (ms) 17.07 29.14 19.37 0.69 1.13
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis study, we proposed two Bayesian smoothers for extended targets whose

extents are modeled with random matrices. By leveraging the previous work in the

literature and using the variational approximation technique, we derived the smooth-

ing algorithms for the extended target models without and with the orientation. The

performances of both algorithms were presented using the simulation results on two

different ETT scenarios. In order to make a proper evaluation, we included the al-

gorithms of Feldmann et al. (FFK), Tuncer and Özkan (TO), and Granström and

Bramstång (GB), into both simulation scenarios and compared their results with the

proposed algorithms.

The results of the first scenario with a non-maneuvering extended target show that

under no model mismatch between the target motion and the filter model, the pro-

posed variational smoothers outperform the previous algorithms in the literature. The

results obtained in this scenario also provide information about the estimation ac-

curacy of the algorithms with different methodologies. In general, the smoothing

algorithms perform better than the filtering algorithms. When we consider the algo-

rithms separately according to their subgroups of smoother or filter, it can be declared

that the overall results of the algorithms for the model with orientation are slightly

better than the results of the algorithms for the model without orientation. This dif-

ference becomes more evident for the results of orientation and consequently extent

estimation. Moreover, the algorithms which utilize the variational method outper-

form the other algorithms. Although all algorithms show satisfactory results due to

the non-maneuvering extended target scenario, the results validate the capability of

the proposed algorithms and their methodologies.
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In the second scenario with maneuvering extended target, the algorithms which do not

treat the orientation as a separate random variable show performance degradation dur-

ing the turns. However, the proposed VSO algorithm is able to retain its performance

throughout the trajectory and achieves the best performance among all algorithms.

In a more general sense, the results of this simulation scenario show that the explicit

modelling of the orientation becomes much more effective for tracking maneuvering

targets. The remaining comparison results of the second scenario are in analogy with

the results of the first scenario.

Overall, VSO algorithm proposed in this thesis study shows superior performance in

both non-maneuvering and maneuvering target scenarios and it can be used in target

tracking applications with batch data processing where estimation accuracy is more

important than the computational resources. On the other hand, if the application

is not accuracy driven or the target is expected to have a relatively constant orienta-

tion, the proposed VS algorithm can be used in order to allocate less computational

resources to smoothing.

In closing, the future work may perform experiments using real data collected from

aerial vehicles with image sensors, radars or lidars. Moreover, the performance of the

VS algorithm can be improved further by introducing different transition models than

the matrix Beta-Bartlett stochastic evolution model. Furthermore, adaptive estima-

tion of forgetting factor used in filtering and smoothing might be considered for ma-

neuvering ETT. Similar smoothing algorithms can be derived for other ETT models,

such as Gaussian process ETT model [23] or random hypersurface model [9], [22],

and also for other measurement models involving measurements which are nonlinear

functions of the kinematic state, e.g., range, angle measurements [43]. The scope of

the proposed smoothers can also be expanded for multiple target tracking [44], [45]

applications.
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APPENDIX A

PARAMETER MAPPING BETWEEN INVERSE WISHART AND INVERSE

GAMMA DISTRIBUTIONS

Inverse Wishart Distribution

Consider d× d SPD matrix Xk describing the current ellipsodial object extension

IW(X; ν, V ) ∝ |X|−
1
2
νetr(−1

2
X−1V ) (A.1)

If d = 1, we get

IW(X; ν, V ) ∝ X− 1
2
νetr(−1

2

V

X
) (A.2)

Inverse Gamma Distribution

IG(X;α, β) ∝ X−α−1 exp− β
X

(A.3)

By equating (A.2) and (A.3) we get

α ≡ 1

2
ν − 1 (A.4)

β ≡ V

2
(A.5)

Expected value of the inverse Wishart density is

E[X] =
V

ν − 2d− 2
(A.6)

When d = 1 we have

E[X] =
V

ν − 4
(A.7)

Expected value of the inverse Gamma density is

E[X] =
β

α− 1
=

ν
2

1
2
ν − 2

=
V

ν − 4
(A.8)

equal to the expected value found in (A.7), which confirms the (A.4) and (A.5).

79



80



APPENDIX B

EQUIVALENT PREDICTION PARAMETERS IN DIFFERENT EXTENDED

TARGET TRACKING MODELS

The algorithms covered in this study use different prediction parameters to govern the

time evolution of the extent. The variational smoother with and without orientation

algorithms proposed in this thesis along with Özkan and Tuncer’s variational filter

with orientation algorithm [28] use the forgetting factor ψ; Feldmann et al.’s filter [28]

uses the time constant τ ; and Granström’s smoother [2] uses the degrees of freedom

parameter nk. In order to be able to compare the performances of these algorithms

properly, we need to find the condition when these parameters are equivalent.

The equivalent time constant parameter can be obtained by equating exp(−T/τ) = ψ.

This equality gives

τ = − T

lnψ
. (B.1)

In [2], a Wishart extension transition density is used, i.e.,

p(Xk+1|Xk) =W
(
Xk+1;nk,

Xk

nk

)
. (B.2)

When we consider the Beta-Bartlett transition we have

Vk+1|k = ψVk|k, (B.3a)

νk+1|k − 2ny − 2 = ψ(νk|k − 2ny − 2). (B.3b)

Given the assumption that "the extension does not tend to change over time", we have

Xk+1|k =
Vk+1|k

νk+1|k − 2ny − 2
=

ψVk|k
ψ(νk|k − 2ny − 2)

= Xk|k. (B.4)
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Let us now compare the variances:

σijk|k ≜ var
(
[Xk]ij|Y0:K

)
, (B.5a)

σijk+1|k ≜ var
(
[Xk + 1]ij|Y0:K

)
. (B.5b)

Using the inverse Wishart covariance formulas given in [31] we can write

var
(
[X]ij

)
=

2(ν − 2ny − 2)−1[V ]2ij + [V ]ii[V ]jj + [V ]2ij
(ν − 2ny − 1)(ν − 2ny − 2)(ν − 2ny − 4)

,

=

(
2

ν−2ny−2
+ 1
)
[V ]2ij + [V ]ii[V ]jj

(ν − 2ny − 1)(ν − 2ny − 2)(ν − 2ny − 4)
,

=
(ν − 2ny)[V ]2ij + (ν − 2ny − 2)[V ]ii[V ]jj

(ν − 2ny − 1)(ν − 2ny − 2)(ν − 2ny − 4)
. (B.6a)

This gives

var
(
[X]ii

)
=

2(ν − 2ny − 1)[V ]2ii
(ν − 2ny − 1)(ν − 2ny − 2)2(ν − 2ny − 4)

,

=
2[V ]2ii

(ν − 2ny − 2)2(ν − 2ny − 4)
. (B.7a)

Assuming that ν − 2ny − 2≫ 2, we can write

var
(
[X]ii

)
≈ 2[V ]2ii

(ν − 2ny − 2)3
. (B.8)

We can now write σk|k and σk+1|k as

σiik|k =
2[Vk|k]

2
ii

(νk|k − 2ny − 2)3
, (B.9a)

σiik+1|k =
2[Vk+1|k]

2
ii

(νk+1|k − 2ny − 2)3

=
2ψ2[Vk|k]

2
ii

ψ3(νk|k − 2ny − 2)3
=
σiik|k
ψ

(B.9b)

As a result, Beta-Bartlett prediction keeps the mean the same while increasing the

variance by a factor of 1/ψ.

In [32], it is given that with the Wishart transition distribution

p(Xk+1|Xk) =W
(
Xk+1;nk,

Xk

nk

)
, (B.10)

we have

σiik+1|k =

(
1 +

νk|k − 2ny − 2

nk

)
σk|k . (B.11)

82



Therefore, we can find the equivalent nk as(
1 +

νk|k − 2ny − 2

nk

)
=

1

ψ
, (B.12)

which gives

nk =
νk|k − 2ny − 2

1
ψ
− 1

. (B.13)
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