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ABSTRACT 

 

DISCRETE TIME/COST TRADE-OFF PROJECT SCHEDULING 
PROBLEM – AN APPLICATION TO THE MINISTRY OF HEALTH 

PROJECTS 
 
 
 

Akbudak, Özlem 
Master of Science, Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 
Co-Supervisor: Assist. Prof. Dr. Gülşah Karakaya 

 
 

April 2022, 76 pages 

 

 

The Discrete Time/Cost Trade-off (DTCT) problem is a widely studied and 

important research area in project scheduling literature. Decision-makers try to select 

the best schedule alternative when there are two or more conflicting criteria. So-

called Time/Cost Trade-off problems represent the two conflicting criteria 

generalized as time and cost. Decreasing the processing time of a task requires more 

resources which demand additional cost. 

This study focuses on the DTCT problems where some of the tasks have due dates. 

If a completion time of a task exceeds the due date of a task, we face tardiness. We 

aim to find the best solution in terms of cost, with the total tardiness not exceeding 

the maximum allowable total tardiness level.   

We take our motivation from the two Information Technology projects that were 

most recently undertaken in the Ministry of Health. 

We construct a mixed integer linear programming model for this well-defined 

problem. Additionally, we propose a heuristic approach, which makes use of the 
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optimal solutions of the Linear Programming Relaxation of the model.  We tested 

the performance of the mathematical model and heuristic approach on several 

instances taken from the literature and on the two Ministry of Health projects, and 

report favorable results. 

Besides, one of the well-known Evolutionary Algorithm is applied to generate all 

non-dominated objective vectors with respect to the total cost and total tardiness 

criteria. We illustrate the algorithm on the two Ministry of Health projects. 

 

Keywords: Project Scheduling, Discrete Time/Cost Trade-off Problem, Tardiness, 

Mathematical Model, Heuristic Approach 
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ÖZ 

 

KESİKLİ MALİYET/ZAMAN ÖDÜNLEŞİMLİ PROJE ÇİZELGELEME 
PROBLEMİ – T.C. SAĞLIK BAKANLIĞI PROJELERİ ÜZERİNDE 

UYGULAMA 
 
 
 

Akbudak, Özlem 
Yüksek Lisans, Endüstri Mühendisliği 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 
Ortak Tez Yöneticisi: Dr. Ögr. Üyesi Gülşah Karakaya 

 

 

Nisan 2022, 76 sayfa 

 

Kesikli Zaman/Maliyet Ödünleşimli problemler proje çizelgeleme literatüründe 

kapsamlı olarak çalışılan ve önemli bir araştırma alanıdır. İki veya daha fazla zıt 

kriterin bulunduğu durumlarda karar vericiler proje için en iyi çizelge alternatifini 

seçmeye çalışırlar. Zaman maliyet ödünleşim problemleri birbirlerine zıt amaç 

fonksiyonlarını genel olarak zaman ve maliyet kategorileri altında değerlendirirler. 

Bir aktivitenin süresini kısaltmak daha fazla kaynak ihtiyacını doğurur ve maliyet 

artışına neden olur. 

Bu çalışmada, teslim tarihli aktivitelerin de yer aldığı projeler için kesikli zaman 

maliyet ödünleşimli problemler üzerine odaklandık. Teslim tarihinden sonra 

tamamlanan aktiviteler gecikmeler ile karşılaşmamıza neden olur. Amacımız, kabul 

edilebilir toplam gecikme miktarı veya bu miktarın altında kalmak şartı ile optimal 

maliyet değerini veren proje çizelgesi üretmektir.  

Yakın zamanda T.C. Sağlık Bakanlığı tarafından üstlenilen iki Bilgi Teknolojileri 

projesi bu çalışmanın motivasyon kaynağı oldu. 
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Bu iyi tanımlanmış problem için karmaşık tam sayılı doğrusal model geliştirdik. 

Ayrıca, geliştirdiğimiz modelin doğrusal programlama gevşemesinin optimal 

çözümünden yararlanan bir sezgisel yaklaşım algoritması oluşturduk. Matematiksel 

modelimizi ve sezgisel yaklaşımımızı literatürden aldığımız bazı problemler ve iki 

T.C. Sağlık Bakanlığı projesi üzerinde test edip, sonuçları raporladık. 

Bunun yanında, toplam gecikme ve toplam maliyet kriterlerine uygun tüm domine 

edilmeyen amaç fonksiyonu vektörlerini elde etmek için iyi bilinen bir evrimsel 

algoritmanın uygulamasını yaptık. Bu algoritmayı iki T.C. Sağlık Bakanlığı projesi 

üzerinde gösterdik. 

 

Anahtar Kelimeler: Proje Çizelgeleme, Kesikli Zaman/Maliyet Ödünleşimi, 

Gecikme, Matematiksel Model, Sezgizel Yaklaşım 
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CHAPTER 1  

1 INTRODUCTION  

Project management is defined as “The application of knowledge, skills, tools, and 

techniques to project activities to meet project requirements.” by the Project 

Management Institute (Project Management Institute Inc. 2021a). The right people, 

who have the required knowledge and experience, can lead projects into success by 

using the right tools and techniques. According to the Pulse of the Profession 2021 

report (Project Management Institute Inc. 2021b), even though there has been an 

improvement over the years, still 55 percent of the projects are completed on time 

and 62 percent are completed within the original budget. Additionally, projections 

show that the global economy requires 25 million new project professionals by 2030 

(Project Management Institute Inc. 2021c). Failing to meet this talent gap could come 

with a loss of up to $345.5 billion in global GDP by 2030 (Project Management 

Institute Inc. 2021c). Therefore, project management has gained importance over the 

years while the world has become more project-oriented.  

Project Scheduling is an essential part of project management. It defines the start and 

completion times of the activities and a proper selection of processing modes for the 

activities. Meeting the project goals in a predefined budget and time requires realistic 

project schedules created with the help of tailored tools and techniques.  

Project professionals in all sectors use the project scheduling tools and techniques at 

all phases of the project. Even though the construction and manufacturing sector 

highly benefit from the project management and scheduling tools and techniques 

from the very beginning, the Information and Technology (IT) sector has also 

become one of the top leading project-oriented sectors over the years with the driving 

role of digitalization.   
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Healthcare is one of the enormous sectors where digitalization plays a significant 

role and that benefits from the successful project scheduling tools and techniques. 

According to the OECD data, Turkey, Denmark, Germany, the UK, and the US spent 

4.3, 10.6, 12.5, 12.8, and 16.8 percent of their GDP on healthcare projects (OECD 

2022).  

The Ministry of Health (MOH) is the main governmental entity responsible for the 

healthcare service of Turkey. Besides the policymaking, the implementation of the 

national health strategies through programs is also another duty of the MOH. The 

MOH conducts and participates in a considerable number of health projects most of 

which lie in the IT area. 

This thesis considers the two IT projects that are most recently undertaken by the 

MOH. These projects have tasks with more than one processing alternative. Some of 

the tasks, in particular the ones that define the milestones, are required to meet 

predefined termination times, so-called the due dates. The termination times that 

exceed the due dates yield tardiness. The managers tolerate total tardiness, however 

to some extent. They define an upper bound on the maximum total tardiness value 

above which the solutions are not accepted. They aim to minimize the total cost of 

task time reductions. Based on the way that the managers of the MOH follow, we 

define a discrete time-cost trade-off problem. We generate project schedules, which 

have total tardiness values under the maximum tolerable amount while minimizing 

the total cost. We discuss the use of this tardiness-related constrained problem to 

generate all nondominated objective vectors for the total tardiness and total cost 

criteria. Our motivation is to help decision-makers to see the trade-offs between total 

tardiness and total cost criteria, and decide the best action with the most reliable 

information. 

We develop a mathematical model to represent our constrained optimization 

problem. We observe that the model is not capable of solving large-sized problem 

instances. To tackle those instances, we design a heuristic algorithm that runs in two 

steps: the first step finds an initial solution using the optimal solutions of the Linear 
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Programming Relaxations of the mathematical model and the second step improves 

the initial solution by several pairwise interchange mechanisms. We tested the 

performances of the mathematical modal and the heuristic algorithm on the two real-

life problems and on the instances gathered from the literature.  We find that the 

model cannot handle all generated instances in our termination limit of two hours 

and the heuristic procedure finds high quality approximate solutions very quickly. 

To generate all nondominated objective vectors with respect to the total tardiness 

and total cost criteria, we propose an 𝜀-constraint approach that uses the optimal 

solutions of the constrained optimization model iteratively. We also apply a well-

preferred Evolutionary Algorithm, NSGA-II, to find the approximate nondominated 

set of the objective vectors.  We test the performances of the 𝜀-constraint approach 

and Evolutionary Algorithm on the MOH projects. 

The rest of the thesis is organized as follows. In Chapter 2, we define the projects in 

general, give the terminology on the project networks and project scheduling terms, 

and review the related literature. Chapter 3 provides general information on the 

MOH and the two real-life projects most recently undertaken by the MOH. We also 

explain the objectives, constraints, and current solutions/drawbacks in Chapter 3. In 

Chapter 4, we define our problem, present the mathematical model and the heuristic 

approach. Chapter 5 discusses the generation of all nondominated objective vectors 

and presents 𝜀-constrained approach and the Evolutionary Algorithm. In Chapter 6, 

we report the results of our computational experiment for the constrained 

optimization problem. Chapter 7 concludes the study by summarizing the main 

results of our work and pointing out some future research directions. 
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CHAPTER 2  

2            GENERAL INFORMATION ON PROJECTS AND LITERATURE REVIEW 

In Chapter 2, we give general information about the projects and a general view of 

the project scheduling problems. We also review the literature on project scheduling, 

including single-mode and multi-mode project scheduling problems. Finally, we 

discuss the contribution of this study to the current literature.  

2.1 Projects in General 

Project Management Institute (PMI) is a worldwide accepted organization in the 

field of project management. It was established in 1969 to guide project management 

professionals and organizations through their goals with the help of project 

management principles and standards. PMI publishes a guide entitled ‘A Guide to 

the Project Management Body of Knowledge (PMBOK Guide)’ to support its aim 

of presence. 

PMI defines a project as "A temporary endeavor undertaken to create a unique 

product, service, or result." in the PMBOK Guide (Project Management Institute Inc. 

2021a). The guide also states that phases of the project tasks or the whole work 

between the project’s start and the finish times are defined by the project.  

Project management is defined as "The application of knowledge, skills, tools, and 

techniques to project activities to meet project requirements." in the PMBOK Guide 

(Project Management Institute Inc. 2021a). The project manager, the responsible 

person for the project, makes decisions to complete the project successfully. Widely 

used or tailor-made tools or models help the project manager with these decisions. 
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2.1.1 Project Networks 

The aforementioned tools use common representations and terms. The smallest and 

most meaningful workpiece is called activity. We use activity and task 

interchangeably in this thesis. The relation between the tasks is widely named 

precedence relations. Suppose that Task 1’s output is required by Task 2 as an input. 

Then, starting time of Task 2 depends on the completion of Task 1. In this case, we 

say that there is a precedence relation between Task 1 and Task 2, and Task 1 is an 

immediate predecessor for Task 2. In other words, we can also say that Task 2 is an 

immediate successor for Task 1.  

There are two different types of representations of the project networks in the 

literature: Activity on Node (AoN) and Activity on Arc (AoA). We next explain 

these representations. 

2.1.1.1 Activity on Node (AoN) Representation 

In AoN representation, tasks are represented by nodes, and arcs represent the 

precedence relations between the tasks. Arcs come out of one node and go into 

another node. The node that the arrow comes out is the immediate predecessor node, 

and the node that the arrow goes into is the immediate successor node. 

An example project network is created to illustrate the AoN representation is given 

below.  
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Table 2.1 Precedence Relations of the Example Network 

Task Immediate Predecessor 

0 - 

1 0 

2 0 

3 1 

4 1, 2 

5 3, 4 

 

 

 

 

Figure 2.1 depicts that Task 1 is the immediate predecessor of Tasks 3 and 4, and the 

predecessor (but not immediate) of Task 5. Accordingly, Tasks 3 and 4 are 

immediate successors of Task 1, and Task 5 is the successor (but not immediate) of 

Task 1. 

0 

1 

2 

3 

4 

5 

Figure 2.1 AoN Representation of Example Network 
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2.1.1.2 Activity on Arc (AoA) Representation 

In AoA representation, tasks are represented by the arcs. For each arc there are two 

nodes named tail and head nodes. The activity comes out of the tail node and goes 

into the head node. Parallel arcs are not allowed in the project networks; hence, to 

represent some precedence relations, dummy activities may be needed.  

AoA representation of the example network is given below. 

 

 

 

The dashed lines in Figure 2.2 are dummy activities with zero time and cost. 

2.2 Project Scheduling 

Project scheduling determines the start time and finish time of the tasks while 

considering the precedence relations, durations, and consumed resources (usually 

indicated by cost) of these tasks. There are different tools in the literature to help 

schedule the project. Selecting the tools, algorithms, or models for scheduling 

activities also depends on the nature of the project. Project managers’ aim may 

change with the constraints of the elements of the project. For example, some 

projects may have budget constraints while others have time limitations. In the 

literature, projects with tasks having only one processing alternative are defined as 

single-mode projects. Alternatively, in some projects, we may have an option to 

reduce the required processing time of a task to complete in exchange for an extra 

Figure 2.2 AoA Representation of the Example Project Network 

0 
1 

2 

3 

4 

5 



 
 
9 

cost.  In the literature, project scheduling problems in which some tasks that have 

more than one processing alternative are called multi-mode project scheduling 

problems. We name the time–cost pairs as processing alternatives or modes. 

2.2.1 Single-Mode Project Scheduling Problems 

In single-mode project scheduling, tasks have fixed durations. The outputs of a 

single-mode project scheduling are the task start times and finish times obeying the 

precedence relations.  

Critical Path Method (CPM) is the well-known and widely used method to construct 

a project schedule with project completion time. The definitions that are frequently 

used in the CPM are given below. 

Critical Path: The longest path(s) in the project network is called the critical path. 

Total Slack: The difference between the earliest start time and latest start time, or 

the earliest completion time and the latest completion time of the task, is called as 

total slack of the task. The positive total slack means that the task can be moved back 

or forward with the amount of total slack without causing any delay in the project 

completion time. 

Critical Activity: The tasks with zero total slack are named as critical. Any delay of 

a critical activity causes a delay in the project completion time. 

First, we select the tasks without any predecessor and set their start times as zero. A 

task’s completion time equals the sum of the task’s start time and duration. We select 

the maximum completion time to assign as the start time of the task with 

predecessors. If the task requires waiting some predefined time to start (lag), we add 

this lag to the maximum completion time of the predecessor tasks to find the start 

time of the successor task. We repeat this procedure until we find all the tasks’ start 

and completion times. These start and completion times are also named as earliest 

start and completion times. The last task’s completion time also equals the earliest 
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project completion time. Additionally, the process of finding the earliest times is 

called forward pass.  

Afterwards, we select the tasks without any successor and use their earliest 

completion time found during a forward pass as the latest completion time. The latest 

start time of the task is the latest completion time of the task minus its duration. To 

find the latest completion time of the tasks with successors, we use the minimum 

latest start time of the immediate successor tasks. We complete the calculations in 

this direction until we find the latest start time of the tasks which do not have 

predecessors. This process is named backward pass. 

After completing forward pass and backward pass, we detect the tasks with zero total 

slack.  These tasks are marked as critical activities. The longest path consists of only 

critical activities, which we call the critical path.  The project managers give extra 

attention to the critical path since any delay on this path directly affects the project’s 

completion time. 

We take the stepwise description of the CPM below from (Değirmenci 2008) who 

use the following notation: 

 

𝑡!: Processing (task) time of activity i. 

𝑃!: Set of immediate predecessors of activity i. 

𝑆!: Set of immediate successors of activity i. 

𝐸𝑆!: Earliest start time of activity i. 

𝐿𝑆!: Latest start time of activity i. 

𝐸𝐶!: Earliest completion time of activity i. 

𝐿𝐶!: Latest completion time of activity i. 

𝐶𝑟𝑖𝑡: Set of critical activities. 

𝑆𝑙𝑎𝑐𝑘!: Total slack of activity i. 
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Initialization:   

𝐸𝑆! = 0  𝑖:	𝑃! = ∅ 

Main Body:   

Repeat   

 𝐸𝑆! = max
"∈$!

6𝐸𝑆" + 𝑡"8 𝑖: ∀𝑗 ∈ 𝑃! 	𝐸𝑆" 	𝑖𝑠	𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

Until 𝐸𝑆! 	𝑓𝑜𝑟	𝑖 = 1,2, … , 𝑁	𝑎𝑟𝑒	𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

   

𝑇 = max
!
{𝐸𝑆! + 𝑡!}  

𝐿𝐶! = 𝑇  𝑖:	𝑆! = ∅ 

Repeat   

 𝐿𝐶! = min
"∈%!

6𝐿𝐶" − 𝑡"8 𝑖: ∀𝑗 ∈ 𝑆! 	𝐿𝐶" 	𝑖𝑠	𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

Until   

 𝐿𝐶! 	𝑓𝑜𝑟	𝑖 = 1,2, … , 𝑁	𝑎𝑟𝑒	𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

Finalization:   

𝑆𝑙𝑎𝑐𝑘! = 𝐿𝐶! − 𝐸𝑆! 𝑖 = 1, 2, … , 𝑁 

𝐶𝑟𝑖𝑡 = {𝑖 = 1, 2, … , 𝑁	|𝑆𝑙𝑎𝑐𝑘! = 𝑡!}  

 

2.2.2 Multi-Mode Project Scheduling Problems 

In multi-mode project scheduling problems, one task or more than one task has at 

least two processing time (task time) options. The task time options require different 

amounts of resources represented by cost. These processing time–cost pairs are 

called as modes. Real-life practices show that reducing the duration of a task 

demands additional effort and/or resources, which finally comes with additional cost. 

Naturally, project managers are in favor of completing the projects with less time 

and money spent. Therefore, there is a trade-off between time and cost. 
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To illustrate the concept of multi-mode project scheduling, the example is given in 

Table 2.2, below. 

Table 2.2 Multi-mode Project Scheduling Example Data 

Task 
Normal Duration 

(day) 
Cost (₺) 

Reduced Duration 

(day) 
Cost (₺) 

1 50 6000 30 12000 

2 48 4500 42 5000 

3 55 6200 45 8000 

4 10 2000 8 1900 

5 5 500 4 950 

 

Note from the above table that there are two modes for all tasks and decreasing the 

time of the task increases its required cost. The project manager tries to select the 

modes for the desired project outcome. These kinds of problems are called Discrete 

Time/Cost Trade-off (DTCT) problems in the literature. 

2.3 Literature Review on Time/Cost Trade-off Problems 

In this section, we give the literature review for the linear and discrete time/cost 

trade-off (multi-mode) project scheduling problems.  We discuss the related works 

in chronological order. 

2.3.1 Linear Time/Cost Trade-off Project Scheduling 

Choi and Chung (2014) and Choi and Park (2015) focus on linear project time/cost 

trade-off problems. Choi and Chung (2014) consider milestone activities whose 

tardiness values are penalized. They present mathematical models to minimize the 

total weighted number of tardy milestones. The first model minimizes the total 
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weighted number of tardy milestones within the total compression budget. The 

second model minimizes the total weighted number of tardy milestones plus the total 

cost of reducing the activity durations. 

Choi and Park (2015) assume some activities with deadlines. Their objective is to 

minimize the total penalty cost plus the total cost of reducing the activity durations. 

They show that the problem is NP-hard in the ordinary sense and propose an 

optimization algorithm that runs in pseudo-polynomial time. 

2.3.2 Discrete Time/Cost Trade-off Project Scheduling 

We review the discrete time/cost trade-off (DTCT) problems in three categories: the 

deadline problem, the budget problem, and the time/cost curve problem. The 

deadline problem minimizes the total cost of mode assignments without exceeding 

the prespecified project deadline. The budget problem minimizes the project 

completion time subject to the constraint that the total cost of mode assignments does 

not exceed the available budget. The time/cost curve problem generates all non-

dominated vectors with respect to the total cost and the project completion time 

objectives.  De et al. (1997) show that all three DTCT problems are NP-hard in the 

strong sense. 

2.3.2.1 Deadline Problem 

Crowston and Thompson (1967) propose a Decision Critical Path Method (DCPM) 

that considers alternative methods to complete a job in the project. Alternative 

methods of completing a job may represent various cost and time options or 

technological dependencies. They formulate a mixed-integer programming model 

and propose a heuristic approach for large sized problem instances.  
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Crowston (1970) suggests a reduced version of the DCPM network that includes 

only the decision nodes and the maximum distances between these nodes, and 

ignores precedence relations.  

Hindelang and Muth (1979) also focus on the DCPM and propose a dynamic 

programming approach.  

De et al. (1995) show that Hindelang and Muth (1979)’s approach cannot handle two 

immediate predecessors without causing a multi-dimensionality problem. They 

propose a new dynamic programming model for the deadline problem that corrects 

the approach of Hindelang and Muth (1979). Besides, they indicate that their 

proposed model can be used to generate a time/cost trade-off curve. Moreover,  De 

et al. (1995) introduce a network decomposition approach and discuss its application 

to the DCPM.  

Demeulemeester et al. (1996) present a dynamic programming approach to solve 

DTCT problems. They propose two procedures, one of which finds the minimal 

number of node reductions to transform a general network to a series-parallel 

network. The other method aims to minimize the difficulty of enumerating 

alternative modes. 

Skutella (1998) works on a discrete time/cost problem with a fixed budget.  Skutella 

(1998) proposes the first approximation algorithm with a performance guarantee of 

O (log l), where l is the ratio of the maximum time to the minimum nonzero time for 

both deadline and the budget problems. He also discusses the bi-criterion 

approximation algorithms for the budget and deadline problems.  

Vanhoucke et al. (2002) study the deadline problem with a special constraint that 

forces a specified starting time for some activities. They propose a branch-and-bound 

algorithm and a heuristic procedure. 

Grigoriev and Woeginger (2004) generalize the DTCT problem with irregular costs 

that depend on activities’ starting and completion times. They prove the NP-hardness 
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of the deadline problem and show that the problem is polynomially solvable when 

the precedence constraints are series-parallel.  

Vanhoucke and Debels (2005) introduce three different extensions of the DTCT 

problem’s deadline version: time/switch constraints, work continuity constraints, 

and net present value maximization. They develop a new meta-heuristic approach 

for powerful approximate solutions. 

Akkan et al. (2005) discuss the hardness of the deadline problems in tackling large-

sized instances and provide lower bounds on their total cost values.  

He and Xu (2008) work on the deadline problem and consider bonus/penalty 

incentives on the project’s deadline. They focus on the payment schedule and try to 

decide the timing and magnitude of the payments. They propose a simulated 

annealing heuristic search for their mixed-integer non-linear model.  

Hafızoǧlu and Azizoǧlu (2010) consider a deadline model and use of the deadline 

model in generating the time/cost curve. They propose a branch-and-bound 

algorithm that benefits from the optimal solutions of the linear programming 

relaxations. 

Hazir et al. (2011) work on a deadline version of DTCT problem where the activity 

times are known but activity costs have interval uncertainty. They propose an exact 

method based on Benders decomposition and a tabu search algorithm for the 

approximate method. 

Said and Haouari (2015) focus on a deadline version of the stochastic discrete 

time/cost trade-off problem. They try to select modes to the activities while 

minimizing the activity costs and tardiness costs. They also aim for the stability of 

the schedule against uncontrollable factors. They propose a two-stage solution 

approach that first uses simulation optimization to find a cost-effective schedule and 

then mixed-integer programming to stabilize the resulting schedule.  
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Aminbakhsh and Sonmez (2016) propose a swarm optimization method for an 

effective solution of the cost optimization problem. The proposed method solves 

instances with up to 630 activities in reasonable times and with small deviations.  

2.3.2.2 Budget Problem 

Robinsonf (1975) works on the time/cost trade-off budget problem, which has 

activities with arbitrary cost-time functions. He features a dynamic programming 

approach to allocate the resources while trying to minimize the duration of the 

project.  

Hazir et al. (2010a) focus on a multi-mode DTCT problem with budget constraints. 

They develop a branch-and-cut procedure that is based on decomposition idea and 

report that their algorithm can solve instances with up to 136 activities in reasonable 

times. 

Hazir et al. (2010b) discuss a stochastic budget problem where they aim to build 

schedules that are less sensitive to uncontrollable parameters. They propose a two-

step methodology First, they find the minimum required budget and then inflate the 

budget slightly using a specified amplification factor. 

Deǧirmenci and Azizoǧlu (2013) study the budget problem and propose a branch-

and-bound algorithm to solve medium-sized problem instances to optimality and a 

heuristic algorithm based on the linear programming relaxation to solve large-sized 

problems approximately. 

2.3.2.3 Curve Problem 

Fulkerson (1961) introduces a network flow method to create the complete project 

cost curve (time/cost curve). The author describes the project network, which has 

jobs with normal and crashed completion times. The cost of completing these jobs 

associates within the normal and crashed completion time intervals. He indicates that 
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the desired solution lies on the time/cost curve of the project while proving that this 

curve is piecewise linear and convex between normal and crash completion times.  

Feng et al. (1997) consider time/cost trade-off curve problem. They mention that the 

existing methods are not capable of dealing the real-life construction projects. They 

propose a genetic algorithm that searches only a small part of the search space.  

Demeulemeester et al. (1998) generate a time/cost curve for a DTCT problem where 

the task times are functions of a single resource. They use a horizon-varying 

approach-based procedure to minimize the total resource used.  

Chassiakos et al. (2005) argue that the existing literature does not consider the 

generalized precedence relations, external time constraints, activity planning 

constraints, and incentives for early or delayed project completions. They propose 

mathematical programming models and provide an approximation procedure by 

considering the characteristics aforementioned above to provide a project time/cost 

curve. 

Szmerekovsky and Venkateshan (2012) give three integer programming 

formulations for the time/cost trade-off problem where the costs are irregular.  Their 

models could solve problems with up to 90 activities. 

Li et al. (2018) provide two bi-objective heuristic algorithms to solve the large scale 

DTCT problems. The aim of their study is to create the efficient frontier set for the 

problem. One of them is based on the NSGA-II algorithm, and the other one is based 

on the steepest descent heuristic algorithm. They give a performance analysis for 

large-sized problems. 

Li et al. (2020) indicate a need to create a schedule with time and resource buffer to 

make these schedules durable against the uncertain factors and focus on 

time/cost/robustness trade-offs. They construct a multi-objective optimization model 

with the makespan, cost, and robustness minimization objectives. The multi-

objective model is decomposed into a series of robustness-maximization models 

with various makespan and cost constraints to be able to deal with the NP-hardness 
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of the problem. Three propositions are proposed to navigate trade-off among 

objectives.  Additionally, they provide an 𝜀-constraint method-based genetic 

algorithm to generate the efficient frontier for the problem. 

Eynde and Vanhoucke (2022) propose a network based decomposition algorithm to 

create the exact set of nondominated objective vectors. Even though their method 

does not outperform the best reported branch-and-bound procedure, it shows a 

promise of the decomposition idea for performance improvements. 

2.4 Our Contribution to the Literature 

In this thesis, we study the DTCT problem with task due dates. We minimize the 

total cost subject to the constraint that the total tardiness is below a specified value. 

We formulate the problem as a mixed-integer linear program and propose a linear 

programming based heuristic procedure for its solution. We also discuss the use of 

that model in finding the time/cost curve with respect to the total tardiness and total 

cost criteria. To the best of our knowledge, there is no reported discrete time/cost 

trade-off study with tardiness penalties. 
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CHAPTER 3  

3 GENERAL INFORMATION ABOUT MINISTRY OF HEALTH AND ITS 
PROJECTS 

In this chapter, we first give a general information about Ministry of Health and its 

projects. We then discuss the details of the two most recent projects that motivated 

this study.  

3.1 General Information About Ministry of Health 

Ministry of Health Turkey (MOH), established in 1920, is the central government 

body responsible for health sector policymaking, implementation of national health 

strategies through programs, and the direct provision of health services. MOH is the 

major provider of primary, secondary, and tertiary health care services in Turkey. It 

has fourteen general directorates and departments to fulfill its duties with its powers 

given with the Decree-Law 663 (Ministry of Health 2022). The directorates are: 

• General Directorate of Legal Services 

• Health Institution of Turkey 

• Department of Strategy Development 

• General Directorate of Emergency Health Services 

• General Directorate of Health Promotion  

• General Directorate of Administrative Services 

• General Directorate of Health Investments 

• General Directorate of Health Information Systems 

• General Directorate of EU and Foreign Affairs 
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• General Directorate of Health Services 

• General Directorate of Borders and Coastal Health of Turkey 

• Turkish Medicines and Medical Devices Institution 

• General Directorate of Turkish Public Hospitals 

• General Directorate of Public Health 

The General Directorate of Health Information Systems (GDHIS) is responsible for 

digital maturity of information systems of the MOH’s healthcare services. One of 

the essential duties and power of GDHIS given by the Presidential Decree No. 1 on 

the Presidency Organization is “to make and have all kinds of information systems 

and projects related to the information systems, including personal health data, 

country-level health status, and data and information flow related to health services” 

(Sağlık Bilgi Sistemleri Genel Müdürlüğü 2020). Hence, GDHIS develops national 

and international projects to support digital health care services. 

European Union (EU) has created European Union Research Framework 

Programmes since 1984. With the help of these multi-annual research framework 

programmes, EU aims to drive economic growth and create jobs. Through this 

instrument of funding research, EU invests in their future for smart, sustainable, and 

inclusive growth and jobs (Horizon 2020 | European Commission 2022). Recent 

framework programs of EU are Horizon 2020 (2014-2020) and Horizon Europe 

(2021-2027). 

These framework programs support the United Nation’s Sustainable Development 

Goals and elevate the EU’s competitiveness and growth (Horizon Europe | European 

Commission 2022). EU opens calls within these framework programs for EU 

member countries and associate countries to develop projects, prepare proposals, and 

carry out these projects successfully (if funded) by forming consortiums. 

Numerous governmental organizations and private sector players from Turkey 

participate in these projects. MOH is one of these participant governmental 
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organizations. GDHIS participates and conducts projects on the behalf of MOH, 

supporting digitalization in the health sector and improving organizational culture 

around digital health while creating employment. 

3.2 Project Descriptions 

EU opens calls within the framework programs for specific themes. Organizations 

that are willing to be part of the project search for appropriate potential partners to 

form a consortium with the help of brokerage events or using their network. Potential 

partners offer their professions to the consortium to support the project idea. 

Afterward, the consortium is established, consortium members write a proposal, 

which will be presented to the European Commission for a grant. The proposal 

comprises a Gantt Chart at a Work Package (WP) level. Additionally, it has WP’s 

descriptions and high-level tasks belonging to these WPs. Sub-tasks and the 

dependencies within these tasks can be deduced by analyzing these descriptions.  EU 

only needs to know (related to the project’s schedule) the due dates of the 

deliverables, after it funds the project. The consortium conducts the project and 

presents the associated works by submitting the related deliverables. 

GDHIS participated in various projects on the behalf of the MOH, two most recent 

of those projects are explained in Sections 3.2.1 and 3.2.2 

3.2.1 HSMonitor 

Pre-commercial Procurement of innovative ICT- enabled monitoring to improve 

health status and optimize hypertension care (HSMonitor) is a project funded under 

the Pre-Commercial Procurement Action within the Horizon 2020 Framework 

Program by EU. It invests in Research and Development (R&D) services towards 

innovative ICT-enabled monitoring solutions to improve health status and optimize 

hypertension care (HSMonitor - Health Status Monitor - ICT-enabled monitoring 

2022). There are five healthcare providers and two private sector organizations as 
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partners of this project. Partners are from six countries: Turkey, Italy, Sweden, Spain, 

Germany, and Croatia. 

Output of this project will be the software, which aims to support end-users to 

monitor their overall health status and assist them to manage their hypertension care 

with the help of using technology, easily share their results with their doctors and get 

feedback, and manage required processes to stay healthy. ICT- enabled solutions in 

non-communicable diseases aim to decrease hospital visitations and better patient 

monitoring practices by empowering patients on their healthcare management. As a 

result of using ICT-enabled products in healthcare, both patients with non-

communicable diseases who conduct avoidable visitations to the hospitals and 

patients who require to visit hospitals unavoidably will benefit from these products 

and healthcare professionals in an optimally managed way.  

3.2.2 STAMINA 

Demonstration of intelligent decision support for pandemic crisis prediction and 

management within and across European borders (STAMINA) is a project funded 

under the Innovation Action within the Horizon 2020 Framework Programme by 

EU. Early detection and management of infectious diseases remain a serious 

challenge due to the number of people involved, the different legal, administrative, 

professional and political cultures, and the lack of transboundary crisis management 

infrastructures. STAMINA project aims to create an ICT-based solution to overcome 

these challenges by providing improved decision-making technology to pandemic 

crisis management practitioners at regional, national and international levels (The 

STAMINA Project - Stamina 2022). The project has 37 partners from Turkey, 

Greece, Austria, Netherlands, Luxembourg, Belgium, England, Germany, Italy, 

Slovenia, Czech Republic, Tunisia, Romania, France, Spain, and Lithuania.  

The project’s output is a set of guidelines and best practices to improve the response 

and an integrated set of software tools to support early detection and efficient 
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management of infectious diseases at national and international levels. STAMINA 

tools target both strategic level services and operational level services. There are 

Preparedness Pandemic Training Tool, Predictive Models, and Crisis Management 

Tool for strategic level end-users. For the use of operational level end-users, there 

are test devices, wearable devices, web and social media analytic tools, and early 

warning system tools. 

3.3 Decisions, Parameters, Constraints, and Objectives 

In this section, the common characteristics of HSMonitor and STAMINA projects 

are described. 

The project consists of WPs each of which has its own purpose. WPs are broken 

down into tasks that have precedence relations within each other. Some tasks have 

lag and some have a due date to be met. The tasks with due dates are referred to as 

deliverables.  

The time of a task may vary based on the number of people who work on the task, 

person’s expertise level, required quality level, over time permit, and other reasons. 

Therefore, in our projects, some tasks have various time options. One of the options, 

normal task time, is the longest possible time that can be used with no additional 

cost. Other time options are relatively smaller than the normal task time and are used 

to reduce tardiness at an expense of increasing cost. 

The following figures illustrates the characteristics of our projects. 
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Figure 3.1 illustrates the Finish-to-Start (FTS) and Start-to-Start (STS) precedence 

relations within tasks. The relation between tasks 3 and 5 is an example of STS 

precedence relations, while the remaining precedence relations illustrated in Figure 

3.1 are examples of the FTS relations. 

 

Figure 3.2 illustrates the lag characteristic of our projects. Task 2 requires waiting a 

predefined amount of time after Task 1 is completed. 

1 

3 

2 

4 

5 

Figure 3.1 Illustration of Precedence 
Relations 

1 

2 

lag 

Figure 3.2 Illustration of Lag Characteristic 
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Figure 3.3 illustrates the due-date and tardiness characteristics. Some of the tasks 

have due-dates called deliverables. Tardiness occurs if the task's completion time 

exceeds the due date of the task. 

3.3.1 Decisions 

On the planning of the project, EU requires the consortium to divide planned work 

into WPs, assign the responsibilities within the consortium, and set out a schedule 

for main deliverables and milestones (Get prepared - H2020 Online Manual 2022).   

Even though a detailed project plan, which includes the start and finish times of the 

tasks, is not a direct requirement by EU, it is essential to have a detailed schedule for 

successful management of the project. Therefore, the project coordinator or 

responsible partner(s) should create a project plan that includes the start and finish 

times of the tasks with precedence relations to monitor the process properly. 

Moreover, it will be beneficial when a consortium faces any tardiness for one or 

1 

due-date 

2 

tardiness 

Figure 3.3 Illustration of Due-date and 
Tardiness Characteristics 
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several tasks to respond with appropriate risk assessment and mitigation plans for 

future tasks. 

To create a schedule, precedence relations and their lags, and time of the tasks are 

required. The critical decision for an optimal schedule is to select the best task time 

options that balance the total tardiness and the total cost (cost in terms of the amount 

of total time reduced compared to the normal task time). 

3.3.2 Parameters 

The parameters of the projects are listed below. 

• Task time options (modes): Task times and the number of task time options 

vary within the tasks. Every task has at least one time option, that is, the 

normal task time. 

• Precedence relations: Precedence relations are known and two types of them, 

FTS and STS, are considered.  

• Lags: Some tasks may have lags. 

• Due dates: Target completion times of the tasks are known beforehand.  Not 

all, but several tasks have due dates. 

3.3.3 Constraints 

Precedence relations should be considered since one task is an input for one or 

several other tasks. In our projects, the following two types of precedence relations 

constraints are considered: 

• Finish-to-Start with Lag: A task can start after its immediate predecessor 

task(s) is(are) finished and waited for its lag.  If the lag is zero then a task can 

start after its immediate predecessor task(s) is(are) finished. 
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• Start-to-Start with Lag: A task can start after its immediate predecessor 

task(s) is(are) started and waited for its lag. If the lag is zero then a task can 

start after its immediate predecessor task(s) is(are) started. 

3.3.4 Objectives 

The projects have several deliverables, i.e., tasks with due dates. The consortium 

makes an effort to meet these due dates. As mentioned before, tardiness occurs when 

the completion time of a task is greater than the due date and its value is the 

difference between these two. The sum of the tardiness values for all tasks indicates 

the total tardiness value of the project with the schedule taken into consideration. 

The best practice is to complete the project with minimum total tardiness value or to 

complete the project without exceeding a predefined total tardiness value. 

Decreasing the tardiness of a task requires either pulling back its start time or 

decreasing its time. In order to pull back the start time of the task, one or several 

predecessor tasks’ times should be shortened. Eventually, efforts to decrease the 

tardiness come with its cost. Decreasing a task’s time requires additional resources 

or overtime with the existing resources. Both of these options increase the overall 

cost of the project. Therefore, the consortium makes an effort to avoid increasing the 

total cost of the project. The cost of decreasing the task time can be expressed with 

the amount of decreased time. Reduction of the tasks indicates the difference 

between the normal task time and the task time selected to use in the current 

schedule. Therefore, total reduction signifies the sum of the reduction amounts for 

all tasks. Since increasing the cost of the project is not preferable by the consortium, 

minimization of the total cost is a valuable practice. 

3.4 Current Solutions and Its Drawbacks 

MOH handles several EU Framework Program projects simultaneously. Even 

though the application areas change for these projects, the characteristics are very 
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similar. EU requires the description of work on the high-level tasks, but neither a 

detailed breakdown of the work nor a project schedule. At the beginning of the 

project, it pursues the due dates for the deliverables promised in the proposal.  

To manage the project successfully, the responsible partner /organization requires to 

keep track of the works completed and set start and completion time for the works 

for preparing the aforementioned deliverables. As a current solution, the upcoming 

steps are tried to be foreseen by the project manager based on previous experiences 

on similar projects with similar/same partners. Accordingly, appropriate start and 

completion times for the works are set for the responsible partners. Since EU requires 

only high-level tasks on the proposal, a complete breakdown structure of the project 

may not be available. Therefore, he may treat several tasks (due to uncompleted 

breakdown structure) as one united task. Time management problems may occur if 

different partners are responsible for these tasks. 

 

Current practice has several drawbacks that are listed below: 

• Due date setting for deliverables at the beginning does not base on a 

methodical approach. It requires specific expertise in the field and is biased 

in favor of the project manager’s foresight. 

• Deliverables have preceding tasks. An increase in complexity of the 

precedence relations may affect the successful management of the tasks 

resulting in undesirable tardiness for the deliverables. 

• There may be less costly alternatives to meet the due dates of the deliverables. 

 

In this thesis, we offer a systematic approach that can be used to create a project 

schedule for the MOH projects. We test the performance of the approach on the 

HSMonitor and STAMINA projects and obtain very favorable results. 
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CHAPTER 4  

4 PROBLEM DEFINITION, MODEL, AND A HEURISTIC PROCEDURE 

In this chapter we define our problem, give its mathematical model, discuss its 

complexity, and present a heuristic procedure.  

4.1 Problem Definition 

We consider a project scheduling problem with n tasks (activities). We define two 

dummy tasks, task 0 where all tasks with no immediate predecessors are connected, 

and task n+1 where all tasks with no immediate successors are connected. 

Accordingly, task 0 and task n+1 represent the start and completion of the entire 

project, respectively. 

Task i has 𝑚! processing alternatives, each alternative is defined by its task time and 

cost.  We refer to these alternatives as modes.  We let (𝑝!& , 𝑐!&) be the task time and 

cost values of the 𝑘'( mode of task i. We assume that the modes are nondominated, 

i.e., 𝑝!&"> 𝑝!&# implies 𝑐!&"< 𝑐!&#  for any modes 𝑘) and 𝑘* of any task i.  

The time/cost pairs are indexed according to the increasing order of the times 

(thereby decreasing order of the cost). Accordingly,  𝑝!) <	𝑝!* < ⋯ <	𝑝!+! and 

𝑐!) >	𝑐!* >	. . . > 	 𝑐!+!. 

Some tasks have due dates such that their completions beyond those dates are 

penalized.  We let 𝑑! denote the due date of task i and penalize the task if its 

completion time exceeds 𝑑!. Moreover, we let D be the total tardiness allowed over 

all tasks. 
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There exist two types of precedence relations between some predefined task pairs. 

Those relations are explained below. 

• Finish-to-Start with lags 

Task j cannot start before task i completes.  There may be lags between the start time 

of one activity and the completion time of another one.  We let  𝑙𝑎𝑔"  be the time 

units between the start time of task j and completion time of task i. When  𝑙𝑎𝑔" is 

zero, task j can start immediately after the completion of task i.  We let FS be the set 

of all Finish-to-Start relations. 

• Start-to-Start with lags 

Task j cannot start before task i starts.  There may be lags between the start times of 

the two activities. We let  𝑙𝑎𝑔"  be the time units between the start of task j and the 

completion of task i. When  𝑙𝑎𝑔" is zero, task j can start immediately after the start 

of task i. We let SS be the set of Start-to-Start precedence relations. 

 

Our decisions are explained by the following two types of decision variable sets: 

• Mode Assignment Decision Variables 

𝑥!& = V1	0	
if	mode	𝑘	is	selected	for	ta𝑠𝑘	𝑖, 𝑖 = 1, . . , 𝑛			𝑘 = 1, . . , 𝑚! 	

otherwise  

 

• Time Related Decision Variables 

𝑆! = start	time	of	the	task	𝑖, 𝑖 = 1, . . , 𝑛 

𝑇! = tardiness	of	the	task	𝑖, 𝑖 = 1, . . , 𝑛 

𝑇! = 𝑀𝑎𝑥{0, 𝑆! +e𝑝!&𝑥!&

+!

&,)

− 𝑑!} 
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There are ∑ 𝑚! 		-
!,)  binary 𝑥!& 	variables and 2n (n for 𝑆! + n for 𝑇! ) continuous 

variables. 

 

We have five constraint sets each of which is explained below. 

1. Mode Assignment Constraints 

Each task should be assigned to one of its defined modes. 

e𝑥!& = 1		
+!

&,)

𝑖 = 1, . . , 𝑛		(1) 

 

2. Precedence Constraints 

Finish-to-Start Relations 

Task j can start after 𝑙𝑎𝑔" units of completion of task i for (𝑖, 𝑗) ∈ 𝐹𝑆. 

𝑆! +e𝑝!&𝑥!&

+!

&,)

+		 𝑙𝑎𝑔" ≤	𝑆" 	𝑓𝑜𝑟	(𝑖, 𝑗) ∈ 𝐹𝑆			(2) 

 

Start-to-Start Relations 

Task j can start after 𝑙𝑎𝑔" units of the start of task i for (𝑖, 𝑗) ∈ 𝑆𝑆 

𝑆! +	𝑙𝑎𝑔" 	≤ 	 𝑆" 	𝑓𝑜𝑟	(𝑖, 𝑗) ∈ 𝑆𝑆			(3) 

 

3. Project Start Time 

Project starts at time zero, i.e., the start time of dummy task 0 is zero. 

𝑆. = 0			(4) 
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4. Tardiness Related Constraints 

The total tardiness of the tasks cannot exceed D. 

𝑇! 	≥ 	 𝑆! +e𝑝!&𝑥!&

+!

&,)

−	𝑑! 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖		(5) 

𝑇! 	≥ 0			𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖		(6) 

e𝑇!

-

!,)

≤ 𝐷			(7) 

 

5. Binary Constraints 

0	 ≤ 𝑥!& ≤ 1	𝑎𝑛𝑑	𝑖𝑛𝑡𝑒𝑔𝑒𝑟	𝑖 = 1, . . , 𝑛			𝑘 = 1, . . 𝑚! 			(8) 

 

Our objective is to minimize total cost over all activities and stated below. 

𝑀𝑖𝑛	ee𝑐!&𝑥!&

+!

&,)

	
-

!,)

			(𝑂1) 

where 𝑐!& =	𝑝!. − 𝑝!&   

We hereafter refer to our problem as 𝑃), where 𝑃) is stated as  

𝑀𝑖𝑛	𝑂1  s.t.  Constraint Sets (1) through (8). 

 

𝑃) is a Discrete Time/Cost Trade-off Problem (DTCTP) with total tardiness 

constraint.  
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4.2 A Heuristic Algorithm – Two-Step Heuristic 

(De et al. 1997) show that all versions of the Discrete Time/Cost Trade-off Problem 

(DTCTP) are NP Hard in the strong sense so is our DTCTP with total tardiness 

constraint. This justifies the use of heuristic algorithm to find high quality solutions 

in reasonable solution times. In this study, we develop a heuristic algorithm that uses 

the optimal solution of the Linear Programming Relaxation (LPR) of our model, 𝑃). 

The name of our heuristic algorithm is Two-Step Heuristic. 

The optimal LPR solution is found by relaxing the integrality constraints on the 

binary variables, hence using the following constraint and solving the resulting 

model optimally. 

0	 ≤ 	 𝑥!& 	≤ 1		𝑖 = 1, . . , 𝑛		𝑘 = 1, . . , 𝑚! 

Our heuristic procedure consists of two phases: construction and improvement. In 

the construction phase, we find a feasible solution, and in the improvement phase, 

we try to decrease the total cost of the solution while maintaining its feasibility.  

We illustrate the general schema of the Two-Step Heuristic in Figure 4.1, below. 
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Figure 4.1 A General Scheme of Two-Step Heuristic Procedure 
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4.2.1 Construction Phase 

We find the solution by repairing the optimal solution of the LPR of 𝑃). The LP 

relaxed model uses continuous decision variables, hence may produce partial mode 

assignments. We keep the integer mode assignments and move the partial mode 

assignments to their next smaller time mode. In doing so, we keep feasibility (as the 

times are decreased) and increase the total cost as low as possible (as the next smaller 

times are taken). 

Below is the formal description of our construction phase. 

Let 

𝑥!&/$ = optimal	LP	relaxed	assignment	variable 

𝑝!/$ =	e𝑝!&

+!

&,)

𝑥!&/$ 

𝑐!/$ =	e𝑐!&

+!

&,)

𝑥!&/$ 

 

If 𝑥!&/$ is fractional for any k then we set its task to mode ri such that 

𝑝!0! 	≤ 	 𝑝!
/$ <	𝑝!0!$" 

Equivalently 

𝑐!0! 	≥ 	 𝑐!
/$ >	𝑐!0!$" 

We illustrate the construction phase of the Two-Step Heuristic in Figure 4.2. 
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Figure 4.2 Two-Step Heuristic Construction Phase 

4.2.2 Improvement Phase 

In the improvement phase, we improve the schedule found by the construction phase. 

The improvement phase consists of two sub-steps.  We improve the schedule, i.e., 

reduce its total cost value, while keeping the feasibility, at the first step.  When 

further improvements are not possible, we let the schedule worsen within the feasible 

region with the hope of reducing the total cost value in the subsequent iterations. We 

keep the incumbent solution at hand throughout the process. 

While realizing all interchanges, we check the feasibility using the Critical Path 

Method (CPM).  Recall that the CPM produces the earliest possible completion times 

for the tasks for a given set of mode assignments. We use the method to check the 

feasibility of the total tardiness constraint. For any other schedule, one cannot find 

smaller task completion times, thereby smaller tardiness for any task, thereby smaller 

total tardiness over all tasks. 

We use a list of task pairs, which consist of two tasks on the same path, to improve 

the schedule found by the construction phase. The main idea of the improvement 

phase is that while increasing one of the task’s task time, we can decrease the other 

task’s task time simultaneously to stay in the feasible region and move into a better 
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spot. The main goal is to increase any task’s task time (which means decreasing the 

cost) and maintain feasibility (which means staying below the preset total tardiness 

value). 

We need to select the task pairs during the improvement step, which supports our 

goal and brings improvement to our schedule at hand. For this purpose, we calculate 

the benefit of a pair as follows. 

𝐷𝑟' = maxz𝐷𝑟'" , 𝐷𝑟'#{	 

where 𝑡 indicates the pair, 𝐷𝑟'"indicates the benefit if we increase the task time 

(decrease the cost) of the first task and the 𝐷𝑟'# indicates the benefit if we increase 

the task time (decrease the cost) of the second task of the pair, respectively. 

𝐷𝑟'" = 𝑠𝑢𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑐𝑜𝑠𝑡𝑠	𝑜𝑓	𝑡𝑤𝑜	𝑡𝑎𝑠𝑘𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑎𝑖𝑟	𝑡

− (𝑛𝑒𝑥𝑡	𝑠𝑚𝑎𝑙𝑙𝑒𝑟	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑓𝑖𝑟𝑠𝑡	𝑡𝑎𝑠𝑘

+ 𝑛𝑒𝑥𝑡	𝑙𝑎𝑟𝑔𝑒𝑟	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑒𝑐𝑜𝑛𝑑	𝑡𝑎𝑠𝑘) 

𝐷𝑟'# = 𝑠𝑢𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑐𝑜𝑠𝑡𝑠	𝑜𝑓	𝑡𝑤𝑜	𝑡𝑎𝑠𝑘𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑎𝑖𝑟	𝑡

− (𝑛𝑒𝑥𝑡	𝑙𝑎𝑟𝑔𝑒𝑟	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑓𝑖𝑟𝑠𝑡	𝑡𝑎𝑠𝑘

+ 𝑛𝑒𝑥𝑡	𝑠𝑚𝑎𝑙𝑙𝑒𝑟	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑒𝑐𝑜𝑛𝑑	𝑡𝑎𝑠𝑘) 

If the task is already at its maximum or minimum task time option, we cannot 

increase or decrease its task time and let  𝐷𝑟'" = 0 or 𝐷𝑟'# = 0, respectively. 

The pairs with positive values are rewarding since they help us improve our schedule. 

We use several 𝐷𝑟' modes to calculate values which are explained below. 

1. current task time, next second larger task time 

2. current task time, next larger task time 

3. next smaller task time, next larger task time 

4. next second smaller task time, next larger task time 

5. next smaller task time, second next larger task time 
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At the first step of the improvement phase, we evaluate the pairs without any specific 

order (the first one in the pair list comes first). First, we use mode 2 for our pair at 

hand, which means using the current task time of the one task and the next larger 

task time of the other task of the pair. (Note that deciding which task to increase its 

task time depends on the 𝐷𝑟'" , 𝐷𝑟'# values explained above.). If the  𝐷𝑟' value is 

positive, using the CPM, we check the feasibility of the schedule. If the schedule is 

feasible, we accept the task time changes. If the schedule is not feasible, we try other 

modes to calculate 𝐷𝑟' values for the same pair, hoping that we can acquire a positive 

𝐷𝑟' value to work with.  

After we try mode 2 and either cannot find a feasible schedule or positive 𝐷𝑟', we 

give a chance to the same pair by using mode 3. The same procedure applies to mode 

3. Subsequently, we try mode 4 and mode 5 to look for interchanges, which also 

yields a feasible schedule. If the pair does not improve at the end of mode 5, we pass 

the pair and try the next one. Remember that we start with mode 2 and continue in 

the order of mode 3, 4, and 5 when the modes give positive 𝐷𝑟' values but infeasible 

schedules. If the schedule is also feasible, we accept the changes and try the next pair 

to check for additional improvement. 

On the other hand, we have a second branch at mode 3. If the 𝐷𝑟' value is negative 

for the pair t when we apply mode 3, we try mode 5 directly. The aforementioned 

procedure continues until every pair in the pair list is checked for improvement. 

Lastly, we try mode 1 for every pair starting over the top of the pair list with the hope 

that there may be a pair that have a task already at its minimum task time option 

(therefore we couldn’t improve), but the other task may have not its maximum 

(longest) task time option. We repeat this procedure for a predefined number of 

iterations. Also, to avoid unnecessary iterations during the first step of the 

improvement phase, we control if there is an improvement compared to the previous 

iteration’s cost objective. If we cannot see any improvement, we stop the first step 

and continue with the second step of the improvement phase. This procedure 

completes the first step of the improvement phase. 
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We illustrate the improve step of the improvement phase in Figure 4.3. 

 

Figure 4.3 Two-Step Heuristic Improvement Phase (Improve Step) 
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We let the schedule worsen at the second step of the improvement phase by using 2 

pairs. At this stage, we select the two pairs with the help of 𝐷𝑟' values. Unlike the 

first step of the improvement phase explained above, we calculate 𝐷𝑟' value for all 

pairs at once (without accepting any changes). Then, we select the pair with the 

maximum 𝐷𝑟' values among negative ones. We apply the interchanges and accept 

the changes if we are still in the feasible region. If not, we exclude the pair and select 

another one. This procedure continues until we find two acceptable pairs, which 

worsen the schedule at hand within the feasible region. The reason for selecting the 

number of pairs to worsen the schedule as two is not the lead schedule to the non-

promising area while escaping the local optimal values. 

After we successfully worsen the schedule by using two pairs, we again apply the 

first step of the improvement phase. 

We illustrate the worsen step of the improvement phase in Figure 4.4 below. 
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Figure 4.4 Two-Step Heuristic Improvement Phase (Worsen Step) 
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We apply the improvement phase 5 times and visit the worsen step 3 times for every 

improvement phase applied unless we stop the algorithm since we do not see further 

improvement. These stopping criteria are defined based on the preliminary 

experiments. 
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CHAPTER 5  

5 GENERATION OF NONDOMINATED OBJECTIVE VECTORS 

In this section, we generate nondominated objective vectors considering two 

conflicting objectives to minimize: total cost of reduction, 𝑍1 , and total tardiness, 

𝑍2. The corresponding model is as follows:  

Min {𝑍1 , 𝑍2}    s.t. 		𝑥 ∈ 𝑋 

This model is formed by relaxing Constraint (7), the tardiness constraint of Model 

𝑃), and defining it as objective. The existence of the second objective leads to many 

nondominated points. Dominance and efficiency terms are counterparts of each other 

in the objective and decision spaces, respectively. An efficient solution is a solution 

such that there is no other solution that is at least as good as it in both objectives and 

strictly better than it in at least one objective. That is, a decision vector 𝑠 ∈ 𝑋 is 

efficient if there does not exist 𝑠3 ∈ 𝑋 satisfying 𝑍41 ≤ 𝑍4%
1  and 𝑍42 ≤ 𝑍4%

2  with a strict 

inequality in at least one. Otherwise, 𝑠 is inefficient. If 𝑠 is efficient (inefficient), 

then the corresponding objective vector (𝑍41 , 𝑍52) is nondominated (dominated). The 

set of all nondominated vectors is referred to as Pareto front. 

We generate the Pareto front exactly and approximately in Sections 5.1 and 5.2, 

respectively. In Section 5.3, we illustrate the approaches to MOH projects.  

5.1 Model-based Procedure 

We apply an augmented version of the 𝜀-constraint method by Haimes et al. (1971) 

to find all nondominated objective vectors. In the bi-objective 𝜀-constraint method, 

one of the objectives is optimized and the other is bounded as a constraint. All 

nondominated objective vectors are generated by changing the bound in the 

constraint systematically. In our implementation, without loss of generality, we 
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optimize 𝑍1  and put a bound on 𝑍2. Thus, we replace the objective function of Model 

𝑃) with Min 𝑍1 + 𝜇𝑍2 and solve it iteratively by changing the right-hand-side value 

of Constraint (7). We use the augmentation in the objective function,  𝜇𝑍2, to break 

the ties in favor of minimizing total tardiness to find a nondominated point. That is, 

when there are alternative objective vectors having the same 𝑍1  as the optimal, the 

augmented part enables to end up with the one having minimum 𝑍2 among the 

alternatives.  

We note that a sufficiently small 𝜇 value should be used to guarantee that the 

augmentation does not cause any trade-off with 𝑍1  and it only has the effect of 

breaking ties. 

Let  

(𝑍2)+67 = maximum possible  𝑍2value = total tardiness value returned by the CPM 

with maximum task time options 

(𝑍2)+!- = minimum possible  𝑍2value = total tardiness value returned by the CPM 

with minimum task time options 

 

Using (𝑍2)+!-	and	( 𝑍2)+67 we set the following relation for a sufficiently small 

value of 𝜇: 

𝑍1  + 𝜇( 𝑍2)+67	≤ 𝑍1  + 1+ 𝜇(𝑍2)+!- (as the 𝑍1  value should not increase even one 

unit for the maximum reduction of the 𝑍2 value). 

This follows, 

𝜇  (( 𝑍2)+67 − ( 𝑍2)+!-) ≤ 1 

𝜇 ≤ )
((	:&)'()<(	:&)'!*)	

 

We set  𝜇 to  )
((	:&)'()<(	:&)'!*)	=)

. 

For the sake of completeness, we next provide the steps of the procedure. 
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Let (𝑍∗1 , 𝑍∗2) be the optimal objective vector of the corresponding model and 𝑃 

denote the set of nondominated points. Recall that D is the bound on 𝑍2. 

 

Algorithm 1: Finding all nondominated objective vectors 

Step 0 (Initialization) 

 Set 𝑃 ← ∅  

 Set 𝜇 ← )
((	:&)'()<(	:&)'!*)	=)

 

Solve Min 𝑍1 + 𝜇𝑍2 s.t. 𝑥 ∈ 𝑋 

 Set 𝑃 ← 𝑃 ∪ (𝑍∗1 , 𝑍∗2) and 𝐷 ← 𝑍∗2 − 1  

Step 1 (Finding nondominated objective vector and a corresponding efficient 

solution) 

 Solve Min 𝑍1 + 𝜇𝑍2 s.t.  𝑍2 ≤ 𝐷, 𝑥 ∈ 𝑋 

If the model is infeasible, go to Step 2; otherwise set 𝑃 ← 𝑃 ∪ (𝑍∗1 , 𝑍∗2), 𝐷 ←

𝑍∗2 − 1 and repeat Step 1 

Step 2 (Termination) 

Stop, all nondominated objective vectors (in 𝑃) and an efficient solution 

representing each objective vector are found. 

We solve Min 𝑍1 + 𝜇𝑍2 s.t.  𝑍2 ≤ 𝐷, 𝑥 ∈ 𝑋 to find a new nondominated objective 

vector in Step 1. We keep updating 𝐷	and solving the model until it becomes 

infeasible. Whenever the model is infeasible, we stop searching as there is no more 

nondominated point available. We utilize the integrality property of objective vectors 

and decrement the optimal total tardiness value, 𝑍∗2, by 1 while updating 𝐷. 

.  
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5.2 Evolutionary Algorithm 

Evolutionary Algorithm (EA) is a metaheuristic approach based on the genetic 

processes of biological organisms. EA tries to mimic the survival of the fittest of 

nature and applies it to the field of solving problems. One well-known multi-

objective metaheuristic is the NSGA-II algorithm proposed by Deb et al. (2002). 

NSGA-II has been developed for multi-objective problems. In this algorithm, each 

solution is compared with every other solution in the population, and then solutions 

are placed to the corresponding frontiers according to their 

dominance/nondominance relation among each other. That is, all nondominated 

objective vectors are placed to the first front. Then, all nondominated objective 

vectors of the resulting population (excluding the ones on the first) are placed to the 

second front, and so forth. In addition, NSGA-II uses a crowded-comparison 

approach to ensure diversity and density evaluation. As for diversity preservation, 

crowding distance comparison guides the selection process toward a uniformly 

spread-out Pareto front. 

NSGA-II maintains a parent population and generates offspring population using 

selection, recombination, and mutation operators. Then, parent and offspring 

populations are combined to form a global population. In the global population the 

frontiers are formed and the crowding distances of the solutions are calculated. Then, 

solutions in each frontier are sorted in descending order by considering the crowding 

distance value. Finally, solutions are selected starting from the first frontier until the 

initial population size is reached. These steps are repeated for a predefined number 

of generations. This approach aims to find better solutions in each iteration and pass 

these good solutions to the next generations. 

NSGA-II algorithm is adapted and modified for our problem. The chromosomes that 

are used in the algorithm and details of the related algorithm are explained in the 

following sections.  
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5.2.1 Chromosome Representation Approach 

Recall that some tasks have more than one task time option in our projects. Shorter 

task times can be used to crush some tasks, if required, to meet the due dates. 

Therefore, it is proper to represent the chromosomes according to the task time 

options, i.e., 0, 1, and 2.  

Tasks that have more than one task time option are included in the chromosomes. 

The selected representation schema does not include tasks having only one task time 

option. Hence, feasibility is guaranteed without additional mechanisms. To 

exemplify, suppose that a gene representing a task is assigned to the second task time 

although the task does not have more than one task time option. This situation yields 

an infeasible solution. The representation schema used in our EA avoids these kinds 

of infeasibilities and shortens the chromosome length.  

A gene represents time option of the task of the project. 

A chromosome represents a solution for the project scheduling problem. 

A solution of the project shows which task time option is used for the tasks if they 

have any task time reduction option.  

 

The chromosome representation is illustrated in the following instance where 0 is the 

original task time of the tasks. 

1 – first level task time reduction option  

2 – second level task time reduction option  

 

 

 

 

 



 
 

48 

Example: 

Table 5.1 Example Chromosome Structure 

Task No 2 4 5 8 

Chromosome 1 0 2 1 0 

Chromosome 2 1 0 1 2 

 

• Suppose that tasks 2, 4, 5, and 8 have more than one time option. 

• Tasks 2 and 5 have 2 different time options meaning that the genes standing 

for tasks 2 and 5 can take the value of either 0 or 1. 

• Tasks 4 and 8 have 3 different time options meaning that the genes standing 

for tasks 4 and 8 can take the value of 0, 1, and 2. 

5.2.2 Evolutionary Algorithm Operators and Parameter Settings 

Representation schemes, parameter settings, and the selection of suitable operators 

play a significant role on the success of the EAs. We next explain the selection of 

crossover and mutation operators. 

Three most common crossover operators are 1-point crossover, 2-point crossover, 

and uniform crossover (Lim et al. 2017, Pinho and Saraiva 2020). In our study, we 

use 1-point crossover as it is more suitable for our chromosome representation. 2-

point crossover is preferred when the chromosome is viewed as a loop rather than a 

string. We prefer 1-point crossover to uniform crossover as building blocks are less 

disrupted by 1- or 2- point crossover. 

In the application of the 1-point crossover, we select two individuals from the 

population randomly. Then, the cut point at which the crossover is performed is 

selected randomly. That is, the parents are divided into two parts with respect to the 
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selected cut point. Lastly, we combine the first part of the first parent and the second 

part of the second parent to create the first child, and the second part of the first 

parent and the first part of the second parent to create the second child. We repeat 

this operation for half of the population size times. The following example illustrates 

the generation of offspring from the parents. 

 

Parent 1 = 0 2 | 1 0 

Parent 2 = 1 1 | 1 2 

 

Child 1 = 0 2 | 1 2 

Child 2 = 1 1 | 1 0 

 

The mechanism of the mutation operator is explained as follows. First, we define the 

number of individuals to be used for the mutation. In our study, it is set to 0.2 of the 

population size based on the preliminary experiments. We randomly select the 

individuals for mutation. For each selected individual, we choose three genes 

randomly. During the mutation of a gene, we assign a randomly selected task time 

for the gene different than the current one within the task times of the corresponding 

task. 

Additionally, we included the extreme solutions, which are the solutions with 

maximum total tardiness and maximum total cost, in the initial population as seeds. 

5.3 Illustration on MOH Projects 

In our bi-objective problem setting, the objectives are total tardiness and total cost, 

and Pareto fronts of MOH projects are generated exactly and approximately. In each 

project, the exact Pareto front is achieved by Algorithm 1 of Section 5.1 and 

approximation is obtained by the EA explained in Section 5.2.  
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Population sizes 30, 40, 50, and 60 are illustrated for both of our real-life projects. 

We run our experiments for the 100, 150, 200, and 250 generations to observe the 

convergence of the generated efficient frontiers. For all of the experiments illustrated 

below, we selected (population size * 0.2) the number of individuals for the mutation 

and mutated three genes of every selected individual. We produced two individuals 

from every randomly selected two parents from the population and repeated the 

crossover process for (population size / 2) times.   

 

Figure 5.1 HSMonitor Experiment 1 (# of Generations: 100) 
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Figure 5.2 HSMonitor Experiment 2 (# of Generations: 250) 

 

Figure 5.3 STAMINA Experiment 1 (# of Generations: 100) 
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Figure 5.4 STAMINA Experiment 2 (# of Generations: 250) 

 

Table 5.2 CPU Times Algorithm 1 vs EA 

Algorithm 
1 CPU 
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SM

on
ito

r EA CPU Time 
Number of Generations 

100 150 200 250 

Population 
Size 

30 3.08 4.47 5.97 7.34 
7.22 40 4.33 6.07 8.49 10.54 
(68 

solutions) 
50 5.53 7.89 10.78 13.61 
60 6.57 9.99 13.01 16.14 
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Table 5.3 Number of Optimal Solutions Found by EA 

  
  # of Generations: 100 # of Generations: 250 

  Population 
Size 30 40 50 60 30 40 50 60 

HSMonitor 

# of 
optimal 

solutions 
found 

11 12 17 27 6 13 17 32 

# of 
unique 

solutions 
found 

29 32 39 40 25 35 36 42 

STAMINA 

# of 
optimal 

solutions 
found 

4 4 6 9 4 8 8 12 

# of 
unique 

solutions 
found 

30 35 45 57 30 38 46 62 

 

Parameter setting for the heuristic algorithms plays an essential role in both the 

solution times expressed in CPU (Central Processing Unit) seconds and the solution 

quality. In our case, increasing the population size and the number of generations 

yields an increase in the CPU time of the algorithm. On the other hand, increasing 

these two parameters produces better results in better convergence to the exact Pareto 

front. 

The dark blue points on Figures 5.1 through 5.4 represent the exact Pareto front 

found by Algorithm 1. Orange, grey, yellow, and blue colors represent the results for 

population sizes of 30, 40, 50, and 60, respectively. The comparison of Figures 5.1 

and 5.2 shows that increasing the number of generations and the initial population 

improves the performance of the EA. When we compare the Figure 5.1 and Figure 

5.2, Figure 5.2 represents improved output. Increasing the number of generations and 

the initial population resolves the high fluctuation from the Pareto front at an expense 

of increased CPU time. 
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Similar observations hold for STAMINA project illustrated in Figures 5.3 and 5.4. 

Increasing the parameters improves the quality of the solutions. 

Additionally, Table 5.3 represents the number of exact solutions found by the EA. 

We observe that increasing the number of generations and the population size 

increases the number of exact solutions found by the EA for most cases. 

Recall that in our case, the project manager leads the project team to complete the 

projects within the pre-planned time and cost limitations. Therefore, generating the 

whole Pareto front offers a valuable projection for the overall project.  

We observe that the EA finds representative objective vectors from different portion 

of the Pareto front, hence the project manager can select a proper solution according 

to all target tardiness ranges. The project manager can check and analyze different 

objective vectors which in turn enables him/her to focus on any specific portion of 

the Pareto front to select the proper strategy.  

We also observe that for small tardiness values, the marginal cost for one unit 

decrease in tardiness is high, whereas for large tardiness values the marginal cost is 

relatively small.  Therefore, the project manager can focus on a promising section 

where the gained time is worthy of the target cost. 
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CHAPTER 6  

6 COMPUTATIONAL EXPERIMENTS 

In this chapter, we discuss the results of our experiment that is designed to test the 

performances of our mixed integer linear programming (MILP) model and heuristic 

algorithm. Section 6.1 presents our data generation scheme, Section 6.2 gives the 

measures used to evaluate the performance, and Section 6.3 discusses the 

performance of the algorithms.  

6.1 Data Generation 

Recall that the following parameters characterize a problem instance. 

1. Precedence network (precedence relations of tasks with/without lags) 

2. Processing modes (task time and cost pairs) of the tasks 

3. Due dates of the tasks 

In our experiments we use 3 data sets: i) two real-life projects’ networks, ii) large-

sized networks from literature, and iii) small-sized networks from literature. The first 

data set includes the networks of HSMonitor and STAMINA, which are two real 

projects of the MOH.  These projects’ data (instances) have their own real parameter 

values.   

We selected 4 large-sized networks (with 87-138 tasks) and 3 small-sized networks 

(with 31-40 tasks) from the data sets given in (Akkan et al. 2005).  For each n value, 

there are three instance types. The types differ by their task times and the number of 

modes. Hence a total of 21 instances are taken from the literature. 

Our problem additionally uses due dates. We aim to generate due dates similar to the 

two real-life projects. In our real-life projects, tasks with due dates are the 

deliverables that require input from several tasks, hence the deliverables are observed 
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frequently in the paths. We assign due dates to these frequently observed tasks to 

mimic this pattern. Accordingly, we generate several paths and count the occurrences 

of the tasks on the paths. We select the top 30 percent of the tasks, which are 

commonly observed within the paths, and set due dates only to those tasks. In doing 

so, we schedule using the longest task times and find the latest possible completion 

times. Thereafter, we assign a defined percentage of the completion times as due 

dates. We create instances that neither have nonrealistic and lazy due dates nor too 

tight and unrealizable due dates. To see the effect of loose and tight due dates on the 

performance, two percentages of the completion times, 60% and 30%, are used. We 

hereafter refer 60% and 30% sets as DueDate Set 1 and DueDate Set 2, respectively. 

Five different D (maximum allowable total tardiness) values are selected using the 

following procedure. We generate the efficient frontier of the instance using two 

hours termination limit.  We take D values of the solutions that have the first 5 

longest Central Processing Unit (CPU) times.  When we cannot generate the whole 

efficient frontier in two hours, we choose the D values among the partial efficient 

frontier, which we can generate within the time limit. 

Table 6.1 below represents the instance status over finding the complete efficient 

frontier within the time limit. The table indicates "Yes" if we can find the efficient 

frontier within the time limit and "No" otherwise. The numbers represent the number 

of solutions found within the time limit. 

Table 6.1 Efficient Frontier Generation in 2 hours 

n Instance 
Type 

CPU Time 
DueDate 

Set 1 

CPU Time 
DueDate 

Set 2 

32 
1 572 (Yes) 753 (Yes) 
2 575 (Yes) 996 (Yes) 
3 473 (Yes) 759 (Yes) 

36 
1 481 (Yes) 625 (Yes) 
2 591 (Yes) 977 (Yes) 
3 610 (Yes) 730 (Yes) 
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Table 6.1 Efficient Frontier Generation in 2 hours (continued) 

40 
1 550 (Yes) 339 (No) 
2 608 (Yes) 381 (No) 
3 530 (Yes) 232 (No) 

87 
1 590 (Yes) 416 (Yes) 
2 553 (Yes) 392 (Yes) 
3 614 (Yes) 387 (Yes) 

104 
1 503 (No) 167 (No) 
2 447 (No) 170 (No) 
3 427 (No) 151 (No) 

121 
1 340 (No) 98 (No) 
2 392 (No) 158 (No) 
3 364 (No) 281 (No) 

138 
1 500 (No) 87 (No) 
2 583 (No) 131 (No) 
3 303 (No) 82 (No) 

 

As we can observe from Table 6.1, we have found the complete efficient frontier for 

the instances in the small-sized data set for both DueDate Set 1 and DueDate Set 2 

except the instances with n equals 40 with the tight due date set. Table 6.1 also shows 

that we could not find the complete efficient frontier for large-sized data set except 

for the instances with 87 tasks. Therefore, we can conclude that the D values are 

representative of the instances where we can generate the complete efficient frontier. 

We have 21 instances retrieved from the literature. We select 5 different D values 

with 2 different due dates and get 220 problem instances. For the real-life projects, 

we use real due dates with 5 D values, hence getting a total of 10 instances. Thus, 

our data sets include a total of 230 problem instances. 

We solve our mathematical model and its LPR using Gurobi Optimizer with Python 

interface. The algorithms are also coded in the Python programming language. We 
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run our experiments on a macOS Catalina operating system with a 2.3 Ghz Quad-

Core Intel Core i7 Processor, 32 GB Memory (RAM). 

6.2 Performance Measures 

We use the following measures to evaluate the performance of the MILP. 

1. Average CPU time (in seconds) of 5 instances (5 D values) 

2. Maximum CPU time (in seconds) over 5 instances  

For the heuristic procedure, additional deviation based performance measures are 

defined below: 

1. Average deviation of the heuristic solution from the optimal solution by the 

MILP over 5 instances 

A deviation of an instance is defined as 

(𝑍	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑡ℎ𝑒	𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐	𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙	𝑍	𝑣𝑎𝑙𝑢𝑒)
𝑂𝑝𝑡𝑖𝑚𝑎𝑙	𝑍	𝑉𝑎𝑙𝑢𝑒 ∗ 100 

 

2. Maximum deviation over 5 instances  

Number of times the heuristic finds the optimal solution (the deviations are zero), 

out of 5 instances.  

6.3 Analysis of the Results 

In this section, we discuss the performance of the mathematical model and the 

heuristic approach.   

First, we give the performance results for the real-life MOH projects. Table 6.2 

reports the CPU times of the MILP and the heuristic procedure, whereas Table 6.3 

reports the deviation based performance measures for the heuristic procedure. 
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Table 6.2 The CPU times of the MOH projects for 5 instances (5 D values) 

n MOH 
Projects 

MILP Construction Phase Improvement Phase 
Average Maximum Average Maximum Average Maximum 

135 HSMonitor 4.56 5.80 0.03 0.04 4.20 4.81 
155 STAMINA 0.74 0.79 0.07 0.08 4.97 5.39 

 

Table 6.3 The Deviations of the MOH projects for 5 instances (5 D values) 

n MOH 
Projects 

Construction Phase Improvement Phase 

Average Maximum Average Maximum 
135 HSMonitor 3.51 12 0(5)* 0 
155 STAMINA 0.74 3.7 0(5) 0 

*The numbers in parentheses give the number of times the heuristic finds the 
optimal solution (out of 5) 

 

Note from the above tables that the Two-Step Heuristic finds an optimal solution to 

each of the 10 instances within 5 seconds. We observe the satisfactory behavior of 

the heuristic for the construction phase as well. The respective deviations are 3.51% 

and 0.74% for 135 and 155 task instances.  This indicates that the LPR of the model 

is quite satisfactory. Due to this satisfactory behavior, we observe small CPU times 

spent by the MILP.  

We next investigate the performances on the 220 instances taken from the literature 

and report the associated results in Tables 6.4 through 6.11. Tables 6.4 and 6.6 

indicate the performance measures of the small-sized instances with DueDate Set 1. 

Tables 6.5 and 6.7 represent the large-sized instances’ analysis results with DueDate 

Set 1. Tables 6.8 and 6.10 illustrate the CPU times, and Tables 6.9 and 6.11 represent 

the deviations with the DueDate Set 2 for small and large-sized instances, 

respectively. 
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Improvement Phase CPU times indicated in Tables 6.2, 6.4, 6.5, 6.8, 6.9 also include 

the construction phase CPU times. 

Table 6.4 The CPU Times _ Small Sized Instances -- DueDate Set 1 for 5 instances 
(5 D values) 

n Instance 
No 

MILP Construction Phase Improvement Phase 
Average Maximum Average Maximum Average Maximum 

32 
1 12.84 20.04 0.03 0.03 0.42 0.51 
2 5.41 6.60 0.03 0.03 0.26 0.32 
3 24.44 39.65 0.03 0.03 0.40 0.44 

36 
1 41.30 57.78 0.03 0.03 0.50 0.52 
2 6.72 9.34 0.03 0.03 0.61 0.74 
3 5.27 5.44 0.03 0.03 0.46 0.64 

40 
1 1148.38 1767.30 0.04 0.04 0.57 0.58 
2 816.59 982.08 0.04 0.04 0.81 0.87 
3 726.99 2037.13 0.04 0.04 0.67 0.78 

 

 

Table 6.5 The CPU Times _ Large Sized Instances -- DueDate Set 1 for 5 instances 
(5 D values) 

n Instance 
No 

MILP Construction Phase Improvement Phase 
Average Maximum Average Maximum Average Maximum 

87 
1 18.35 35.07 0.09 0.10 2.12 2.54 
2 128.14 165.65 0.09 0.11 2.49 2.95 
3 91.28 190.15 0.09 0.10 2.27 3.14 

104 
1 628.40 1216.42 0.11 0.12 4.27 4.85 
2 803.58 1225.69 0.11 0.14 4.57 5.34 
3 1047.24 1636.02 0.11 0.13 5.48 6.71 

121 
1 182.85 243.35 0.15 0.17 6.43 7.06 
2 343.40 389.78 0.13 0.14 7.69 8.42 
3 6.63 9.22 0.13 0.15 4.97 6.51 

138 
1 11.95 19.89 0.16 0.17 9.57 17.04 
2 17.63 29.26 0.15 0.17 7.32 10.88 
3 11.99 14.26 0.16 0.17 8.73 10.55 
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Table 6.6 The Deviations of the Heuristics _ Small Sized Instances -- DueDate Set 
1 for 5 instances (5 D values) 

n Instance 
No 

Construction Phase Improvement Phase 
Average Maximum Average Maximum 

32 
1 8.84 10.45 0.04(4)* 0.18 
2 13.24 20.24 0.70(1) 2.96 
3 16.44 17.29 0.24(4) 1.21 

36 
1 10.48 16.01 0.04(4) 0.18 
2 17.37 20.93 1.70 2.69 
3 8.27 13.07 2.65 5.17 

40 
1 11.99 13.79 0.03(4) 0.17 
2 5.90 6.58 0.00(5) 0.00 
3 9.74 11.22 0.09(3) 0.29 

*The numbers in parentheses give the number of times the heuristic finds the 
optimal solution (out of 5) 
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Table 6.7 The Deviations of the Heuristics _ Large Sized Instances -- DueDate Set 
1 for 5 instances (5 D values) 

n Instance 
No 

Construction Phase Improvement Phase 
Average Maximum Average Maximum 

87 
1 19.95 34.21 0.00(5)* 0.00 
2 20.94 25.28 0.19(3) 0.48 
3 11.39 18.14 0.46(3) 1.44 

104 
1 24.16 25.07 0.18(3) 0.44 
2 8.71 11.45 0.83(1) 1.26 
3 13.08 15.54 0.70(2) 3.24 

121 
1 9.01 12.13 1.06(1) 2.60 
2 13.38 13.77 0.47 0.82 
3 18.56 21.24 0.54(1) 1.04 

138 
1 25.77 30.50 3.60 6.46 
2 16.43 25.00 0.40(3) 1.43 
3 41.84 46.90 7.02 10.22 

*The numbers in parentheses give the number of times the heuristic finds the 
optimal solution (out of 5) 

 

Table 6.8 The CPU Times _ Small Sized Instances -- DueDate Set 2 for 5 instances 
(5 D values) 

n Instance 
No 

MILP Construction Phase Improvement Phase 
Average Maximum Average Maximum Average Maximum 

32 
1 42.65 52.52 0.02 0.02 0.50 0.62 
2 39.58 56.25 0.02 0.02 0.47 0.51 
3 30.24 35.29 0.02 0.03 0.49 0.55 

36 
1 53.42 61.23 0.03 0.03 0.55 0.61 
2 9.40 9.82 0.03 0.03 0.69 0.82 
3 6.68 7.30 0.03 0.03 0.67 0.70 

40 
1 312.42 320.19 0.03 0.03 0.67 0.71 
2 667.83 721.30 0.03 0.03 0.71 0.76 
3 445.92 487.90 0.03 0.03 0.53 0.55 
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Table 6.9 The CPU Times _ Large Sized Instances -- DueDate Set 2 

n Instance 
No 

MILP Construction Phase Improvement Phase 
Average Maximum Average Maximum Average Maximum 

87 
1 139.27 153.05 0.08 0.09 3.23 3.67 
2 195.31 201.02 0.08 0.10 3.75 4.05 
3 340.64 365.58 0.08 0.09 3.89 4.52 

104 
1 366.20 611.56 0.09 0.10 6.38 7.75 
2 1655.43 1969.11 0.10 0.10 6.94 7.78 
3 1162.49 1386.82 0.10 0.11 7.02 7.31 

121 
1 1137.37 1548.20 0.12 0.12 9.99 10.83 
2 337.82 353.06 0.12 0.13 9.80 11.14 
3 61.93 81.57 0.12 0.14 11.41 11.97 

138 
1 327.23 456.06 0.13 0.14 16.73 18.47 
2 214.77 238.36 0.14 0.14 14.23 14.96 
3 484.66 515.88 0.14 0.16 14.96 15.26 

 

Table 6.10 The Deviations of the Heuristics _ Small Sized Instances -- DueDate Set 
2 for 5 instances (5 D values) 

n Instance 
No 

Construction Phase Improvement Phase 
Average Maximum Average Maximum 

32 
1 4.44 6.00 1.10 2.03 
2 6.74 11.18 2.56 4.05 
3 8.13 9.68 1.05 2.29 

36 
1 3.34 4.32 1.20 2.59 
2 10.32 12.97 0.96 1.38 
3 9.94 18.25 1.52 2.67 

40 
1 4.17 9.15 1.28(1)* 2.47 
2 3.74 5.13 0.31 0.48 
3 5.13 8.32 0.33(1) 0.73 

*The numbers in parentheses give the number of times the heuristic finds the 
optimal solution (out of 5)  

  



 
 

64 

 

Table 6.11 The Deviations of the Heuristics _ Large Sized Instances – DueDate Set 
2 for 5 instances (5 D values) 

n Instance 
No 

Construction Phase Improvement Phase 
Average Maximum Average Maximum 

87 
1 8.88 12.11 6.11 9.15 
2 7.10 8.97 1.71 2.97 
3 7.13 8.95 2.16 4.13 

104 
1 13.23 17.11 1.68 2.99 
2 7.75 8.54 3.73 5.06 
3 7.79 8.46 3.24 3.83 

121 
1 10.86 12.66 6.51 6.71 
2 5.46 8.12 0.68 1.08 
3 14.68 15.62 5.02 7.02 

138 
1 16.65 19.11 3.42 7.20 
2 6.89 7.80 0.59 1.32 
3 13.29 14.38 2.25 3.33 

 

The comparison of the MILP columns of Table 6.4 and Table 6.8, which show the 

CPU times for small-sized problems for DueDate Sets 1 and 2, respectively, can lead 

us that the CPU times tend to increase as the due dates are tightened under the 

assumption that the other parameters remain unchanged. We note that n=40 is an 

exception since the D values for DueDate Set 2 is not representative. 

Additionally, tight due dates and nontrivial network types have the potential to 

dramatically increase the CPU times of the MILP model since reaching the optimal 

solution requires more mode combinations to explore. Therefore, observing the 

inconsistent CPU times over different instances is an expected result. Table 6.5 

shows that the MILP solved the 3rd instance with 104 tasks for one of the D values 

in 1636.02 CPU time and the 3rd instance with 121 tasks for one of the D values in 

9.22 CPU time. These two instances are an example of the inconsistency of the MILP 

model in terms of CPU times.  
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Besides, even though D values are not entirely representative for some instances, 

especially for large-sized instances, Table 6.5 and Table 6.9 show that tight due dates 

may affect the CPU times. 

Our first expectation was that the heuristic solution would be less dependent on the 

number of tasks of the instances compared to the MILP model. As we can observe 

from Tables 6.4 and 6.5 (DueDate Set 1) and Tables 6.8 and 6.9 (DueDate Set 2), 

the results are in line with our expectations. The construction and improvement 

phases of our heuristic solutions show a slight increase in the CPU times while the 

number of tasks of the instances increases. Additionally, it is safe to mention that the 

slight increase in the CPU times while the number of tasks increases is linear.  

One of the main advantages of our heuristic is the ability to solve large instances in 

short CPU times. Table 6.5 indicates that the maximum CPU time required to find a 

solution for the instances with n=138 is 17.04 seconds. Our observation does not 

change when we tighten the due dates. The consistent CPU times for finding 

solutions are preferable compared to the inconsistent CPU times of the MILP. 

Moreover, the CPU time spent to find a solution remains consistent when D values 

vary. Tables 6.4 and 6.5, and Tables 6.8 and 6.9 show that the difference between 

the average and maximum CPU times are very close. Also, the average CPU times 

slightly change while the number of tasks increases. 

As we mentioned earlier, our LPR-Based Heuristic consists of two phases, which are 

construction and improvement phases.  First, we construct a feasible solution using 

the LPR, and then we try to improve the constructed solution by using the proposed 

method. We analyzed the deviations for both loose and tight due date sets, i.e., 

DueDate Set 1 and DueDate Set 2, respectively.  Tables 6.6 and 6.7 report the results 

for DueDate Set 1, and Tables 6.10 and 6.11 are for DueDate Set 2. 

Tables 6.6 and 6.7 report the deviations of the heuristic solutions from the optimal 

solutions and the number of optimal solutions found out of 5 different D values for 

the DueDate Set 1. Although we cannot find any optimal solution by the construction 
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phase, the improvement phase helps a lot to reach optimal solutions. We find optimal 

solutions for many instances, and we find 5 optimal solutions out of 5 D values for 

some instances. Besides, we cannot find optimal solutions for several instances but 

the average deviations from the optimal solutions for these instances vary between 

0% and 7.02%, closer to the lower part of the interval. 

Tables 6.10 and 6.11 report the deviations of the heuristic solutions from the optimal 

solutions and the number of optimal solutions found out of 5 different D values for 

DueDate Set 2. Note that tightening the due dates does not have a negative effect on 

the deviations. Even though the number of optimal solutions found decreases when 

we tighten the due dates, the deviations are still within an acceptable limit. The 

maximum deviation among instances for DueDate Set 2 is below 10 percent, and the 

average deviation is 2.26 among all instances for DueDate Set 2. 

Table 6.12 below represents the CPU times for instances that we could not solve 

within two hours limit. We can observe that Two-Step Heuristic CPU times are 

consistent and preferable compared to the MILP. 

Table 6.12 The CPU Times for Instances Unsolved within Time Limit 

    Construction Phase Improvement Phase 
n DueDate Set Average Maximum Average Maximum 

104 DueDate Set 1 0.0948 0.1032 3.91928 4.2845 
138 DueDate Set 1 0.13546 0.1542 8.6189 11.1361 
40 DueDate Set 2 0.03002 0.0305 0.70736 0.7395 
104 DueDate Set 2 0.09562 0.1152 8.7043 8.7747 
138 DueDate Set 2 0.13368 0.1409 17.71974 21.0114 

 

Table 6.13 below summarizes the Coefficient of Network Complexities (CNC) of 

the instances used. We expect that the increase in CNC may lead increase in the CPU 

times for the MILP. On the other hand, we observe that increase in CNC does not 

have a significant effect on the Two-Step Heuristic CPU times. 
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Table 6.13 CNC Values of the Networks 

Networks Instance n CNC 

Real-Life Projects 
HSMonitor 135 1.31 
STAMINA 155 1.51 

Small-Sized 
Networks 

All instances 32 2 
All instances 36 2 
All instances 40 2 

Large-Sized 
Networks 

All instances 87 5 
All instances 104 6 
All instances 121 7 
All instances 138 8 

 

We can conclude that the heuristic procedure produces excellent results in very small 

CPU times for all instances of the problem set. Hence it can be used as a powerful 

decision making tool by the managers of the Ministry of Health.  
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CHAPTER 7  

7 CONCLUSIONS 

In this study, we consider a discrete time-cost trade-off problem in project networks. 

We assume that the processing time requirement of a task can be reduced by 

additional cost. We aim to find the task times for the constrained optimization 

problem of minimizing the total cost while meeting the maximum total tardiness 

amount. We formulate the problem as a Mixed Integer Linear Programming model. 

Additionally, to find near-optimal solutions, we introduce a two-step heuristic 

algorithm. The heuristic algorithm benefits from the optimal solutions of the Linear 

Programming Relaxations of the mathematical model in the first step and modifies 

the solution by several pairwise exchange mechanisms, in the second step.    

Our experiments show that the solution times of the mathematical model for the 

constrained optimization problem can be too high for many values of the total 

tardiness limits, in particular when there are many tasks. On the other hand, our 

proposed heuristic algorithm demonstrates a consistent and slight increase in the 

CPU times with the increases in the number of tasks. We also observe that the 

tightness of the due dates affects the quality of the solutions: the tighter the due dates, 

the higher is the deviations from the optimal solutions. 

We use the optimal solutions of the constrained optimization problem to generate the 

exact set of the nondominated objective vectors with respect to the total tardiness 

and total cost criteria. We also present an Evolutionary Algorithm to find near-exact 

nondominated objective vectors. We illustrate the outputs of our algorithms in the 

two real-life projects from the Ministry of Health. 

To the best of our knowledge, we present the first study on the discrete time-cost 

trade-off problems with tardiness penalties. We hope that our work contributes to the 

literature of the discrete time-cost trade-off problems; brings light and motivation for 
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future research on the field. Some note-worthy further research directions are the 

development of implicit enumeration algorithms to find exact solutions in our 

constrained optimization problem. Such algorithms may use the optimal solutions of 

the Linear Programming Relaxations for defining lower bounds and for guiding the 

direction of the search space. Moreover, different constrained optimization problems 

like minimizing total tardiness while obeying the budget on the task time reductions, 

may be a fruitful research direction. In addition, a preference-based EA can be 

developed to generate objective vectors that are interest of the decision-maker, rather 

than the whole Pareto front. Also, future research may consider a dynamic 

environment where the task data change during the execution of the project. The 

procedures that quickly react to those changes would be invaluable tools for the 

practitioners. 
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