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SUMMARY

Multiple signatures of somatic mutations have been
identified in cancer genomes. Exome sequences of
1,001 human cancer cell lines and 577 xenografts
revealed most common mutational signatures,
indicating past activity of the underlying processes,
usually in appropriate cancer types. To investigate
ongoing patterns of mutational-signature genera-
tion, cell lines were cultured for extended periods
and subsequently DNA sequenced. Signatures of
discontinued exposures, including tobacco smoke
and ultraviolet light, were not generated in vitro. Sig-
natures of normal and defective DNA repair and repli-
cation continued to be generated at roughly stable
mutation rates. Signatures of APOBEC cytidine
deaminase DNA-editing exhibited substantial fluctu-
ations in mutation rate over time with episodic bursts
of mutations. The initiating factors for the bursts
are unclear, although retrotransposon mobilization
may contribute. The examined cell lines constitute
a resource of live experimental models of mutational
processes, which potentially retain patterns of
activity and regulation operative in primary human
cancers.
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INTRODUCTION

Each mutational process operative in a cell leaves a mutational

signature imprinted on its genome (Stratton et al., 2009). Using

mathematical approaches applied to thousands of catalogs of

somatic mutations from the range of human cancer types (Alex-

androv et al., 2013b), more than 40 base substitution and ten

genome rearrangement mutational signatures have thus far

been identified (Alexandrov et al., 2018, 2013a; Li et al., 2017;

Nik-Zainal et al., 2016). There is currently insight into the muta-

tional processes underlying about half of these signatures (Helle-

day et al., 2014; Petljak and Alexandrov, 2016). However, many

questions remain pertaining to the biology of their underlying

mechanisms, which require experimental models to be

addressed.

The somatic mutational catalog of a cancer genome is the

aggregate of mutations that has been generated by multiple

mutational processes active at any point during the cell lineage

from the fertilized egg to the cancer cell (Stratton et al., 2009).

Some mutational processes may operate continuously and for

the full duration of the cell lineage, as proposed for the processes

underlying signatures 1 and 5, which are ubiquitous among can-

cer types and are found in normal cells (Alexandrov et al., 2015;

Blokzijl et al., 2016). Others may operate over only part of the

lineage andmay no longer be active when the cancer is sampled,

for example, exposures to tobacco smoke and ultraviolet light.

Comparisons of mutations generated during different phases
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Mutational Signatures in 1,001 Hu-

man Cancer Cell Lines

Cancer cell line classes are ordered alphabetically

as columns, and mutational signatures are dis-

played as rows. The cell line classification was

modified from the COSMIC Cell Line Project (see

Table S2). For patterns of mutational signatures,

see Figure S1. The figure format follows the

annotation of mutational signatures across a large

set of primary human cancers done previously

(Alexandrov et al., 2018).We thank themembers of

the International Cancer Genome Consortium

(ICGC) Pan-Cancer Analysis of Whole Genomes

(PCAWG) project for the figure design.
of the evolution of individual human cancers in vivo suggest that

some mutational processes show varying degrees of activity

over time (Gerstung et al., 2017; McGranahan et al., 2015; Nik-

Zainal et al., 2012a).

To provide a resource for experimental investigation of the

biological mechanisms underlying the repertoire of mutational

signatures, we first annotated mutational signatures on sets of

publicly available models, including 1,001 immortal human cell

lines (COSMIC Cell Line Project) and 577 patient-derived xeno-

grafts (PDXs; NCI Patient-Derived Models Repository) derived

from a broad spectrum of cancer types. The panel includes

most widely used models in cancer research and therapeutics

testing and is being extensively characterized genomically, tran-

scriptomally, epigenomically, and for biological responses to

therapeutics (Garnett et al., 2012; Iorio et al., 2016).

We subsequently used a subset of the cancer cell lines to

experimentally assess whether mutational processes underlying

mutational signatures continue to be active during in vitro culture

and to characterize their temporal patterns of activity. Cell

lines continuing to acquire mutational signatures represent infor-

mative models for future investigation of their underlying

mechanisms.

RESULTS

Mutational Signatures in Cancer Cell Lines and PDX
Models
The presence and relative contributions of single base substitu-

tion signatures (SBSs) were determined in each of 1,001 cancer

cell lines (Figure 1; Table S3) and 577 PDX models (Table S3),

derived from more than 40 cancer types using previously gener-

ated whole-exome DNA sequences (STAR Methods; signature

patterns in Figure S1 and Table S1). The analysis revealed a
novel signature of unknown origin in

Hodgkin’s lymphoma cell lines character-

ized by T>A base substitutions (termed

SBS25; Figures 1 and S1). During manu-

script revision, attribution of a more

limited set of mutational signatures to

the same set of cancer cell lines was re-

ported (Jarvis et al., 2018).

The majority of the base substitution

signatures observed in primary cancers
(Alexandrov et al., 2018) were found in the examined cell line

and PDX models (Figure 1; Table S3). These included signatures

of exogenous environmental exposures such as SBS4, caused

by tobacco-smoke exposure, in lung cancers; SBS7a-b and

SBS38, caused by ultraviolet light, in melanoma models;

SBS11, likely caused by temozolomide treatment, in melanoma

and glioma cell lines; SBS22, caused by aristolochic acid (Poon

et al., 2013), in a bladder cancer cell line; and SBS35, associated

with platinum compound chemotherapy (Boot et al., 2018), in

ovarian and sarcoma models.

Signatures associated with mutational processes of endoge-

nous origins were also found, including SBS2 and SBS13,

associated with APOBEC (apolipoprotein B mRNA editing

enzyme, catalytic polypeptide-like) cytidine deaminase DNA-

editing activity (Nik-Zainal et al., 2012a), in cell lines and

PDXs from breast, bladder, head and neck, cervix, lung, esoph-

ageal, and non-melanoma skin carcinomas; signatures associ-

ated with microsatellite instability (MSI) due to defective DNA

mismatch repair (MMR) (SBS6, SBS15, SBS21, and SBS26)

and due to a concurrent loss of MMR and proofreading func-

tions of polymerases epsilon (POLE; SBS14) or polymerase

delta (POLD; SBS20) (Haradhvala et al., 2018), in colorectal,

gastric, and endometrial models; SBS10a-b, due to mutations

in POLE, in colorectal, endometrial, and stomach models;

SBS36, associated with defective base excision repair and

MUTYH mutations (Pilati et al., 2017; Viel et al., 2017), in

pancreatic cell lines; and SBS3, associated with defective ho-

mologous recombination-based double-strand break (HR-

DSB) DNA repair often due to BRCA1 or BRCA2 inactivation

(Nik-Zainal et al., 2012a), in breast, ovarian, sarcoma, and

esophageal models.

Finally, signatures of uncertain and speculative origins (Alex-

androv et al., 2018) were also observed, including SBS17a-b in
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Figure 2. TrackingMutation Acquisition in a

Cancer Cell Line over Time

Sequence from the stock cell line captures mostly

clonal somatic mutations acquired from the fertil-

ized egg to the establishment of the most recent

common ancestor cell (MRCA) of the cell line

population (period 1) and residual germline varia-

tion due to the non-availability of the reference

normal DNA from the same individuals. The so-

matic mutations were acquired during an unknown

period of time, predominantly in vivo during the life

of the cancer patient, although a small proportion

may have been acquired in vitro if establishment of

the MRCA cell occurred in culture. Sequences

from the single-cell-derived parent clones include

the same set of mutations, with an addition of

mutations acquired between the establishment

of the MRCA cell of the stock cell line and isolation

of the single parent cells (period 2). Duration of this

period is unknown as it depends on timing of the

establishment of the MRCA cell and hence may

include an in vivo time frame. Mutations generated

during this period were revealed by subtracting

sequences of stock cell lines from those of

parent clones. Sequences from single-cell-derived

daughter clones include the mutations from their

parent clones and, in addition, mutations acquired

in vitro during the defined cultivation time frames

spanning the two single-cell isolation events (up to

161 days, period 3). Subtraction of the sequences of parent clones from those of daughter clones therefore reveals mutations acquired during the examined

in vitro periods. Clones in Figures 3–5 follow the outlined experimental design, but the numbers of obtained clones and generations may vary.
gastric and esophageal models; SBS18, potentially due to reac-

tive-oxygen-species-induced DNA damage, in neuroblastoma

cell lines; SBS9, which might result from aberrant processing

of AID-induced cytidine deamination by polymerase h, in lym-

phoma cell lines; and SBS28, SBS34, SBS39, and SBS40, which

were found mainly in the cancer types in which they had been

previously reported. SBS1 (associated with deamination of

5-methyl cytosine) and SBS5 (of unknown origin) are ubiquitous

among cancer types (Alexandrov et al., 2015) and were present

in most cancer cell lines and PDXs. However, some SBS1 and

SBS5 mutations are likely attributable to residual germline vari-

ants, which remain because of the non-availability of normal

DNAs from the same individuals for most cancer cell lines

(STARMethods) and which are also constituted of these two sig-

natures (Rahbari et al., 2016).

A small subset of signatures was absent from the examined

datasets (SBS7c, SBS12, SBS16, SBS24) or found less often

than expected (e.g., SBS3) (Alexandrov et al., 2018). These

may be due to the small numbers of somatic mutations in

exome sequences, the small numbers of mutations some sig-

natures contribute to individual cancers, the obscuring pres-

ence of residual germline variants, the relatively featureless

profiles of some signatures that may be more difficult to

detect, and/or the genuine absence of the signatures (Alexan-

drov et al., 2013b). Some signatures were detected in a small

proportion of models from cancer classes in which they have

not been previously reported (Alexandrov et al., 2018).

Such instances likely reflect past misclassification, past

cross-contamination, or minor misattribution of mutational

signatures.
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Investigating Continuing Mutagenesis in Cancer
Cell Lines
To investigate the patterns of activity of mutational processes

underlying a wide range of signatures, we selected 28 cell lines

derived from cancers of the breast, colorectum, uterus, lung,

stomach, cervix, ovary, head and neck, skin (melanoma and

squamous), white blood cells (B cell lymphoma and leukemia),

and neuroblastoma (Figure 3A). One or more of these had high

contributions from mutational signatures of tobacco smoke

(SBS4); ultraviolet light (SBS7a-d); aberrant APOBEC cytidine

deaminase activity (SBS2 and SBS13); defective DNA MMR

with MSI (SBS6, SBS15, SBS21, SBS26); concurrent loss of

MMR and proofreading functions in POLD (SBS20) and POLE

(SBS14); aberrant POLE activity (SBS10a-b); deficiency of HR-

DSB repair (SBS3); and signatures of uncertain origin including

SBS17a-b (frequently found in esophageal and gastric cancers),

SBS18 (found commonly in neuroblastoma), and SBS28 (com-

mon in colorectal and endometrial cancers with mutations in

POLE). SBS1 and SBS5 were detected in most cell lines.

One or more single-cell-derived subclones were established

from the stock cultures of each of the 28 cancer cell lines

(STAR Methods; Figure 2). These subclones of the stock culture

were termed ‘‘parent’’ clones. Parent clones were then propa-

gated in culture for up to 161 days (Table S2). Following this

period of cultivation, a further round of subcloning was carried

out on the cell population from each parent clone, and one or

more single-cell subclones were derived (Figure 2). These sin-

gle-cell subclones of the parent clone were termed ‘‘daughter’’

clones. Daughter clones were expanded in culture to generate

a population of cells from which sufficient DNA for further
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analysis could be obtained. DNAs extracted from parent and

daughter clones were whole-exome and/or whole-genome

sequenced, and mutations were called (STAR Methods; Fig-

ure S7). Subtraction of mutations present in parent clones from

those in related daughter clones yielded the mutation sets ac-

quired predominantly during the periods of in vitro propagation

between the two subcloning events (STAR Methods). Subtrac-

tion of mutations present in the stock cell lines from mutations

in their corresponding parent clones (or in some instances, sub-

traction of mutations shared by two parent lines) revealed muta-

tions acquired mostly between the establishment of the most

recent common ancestor cell of the stock cell line and isolation

of the single parent cells (STAR Methods). The signature

profile of 100 whole-genome- and 41 whole-exome-sequenced

daughter clones alongside their corresponding 58 parent clones

was then generated (Figure 3; Table S3; STAR Methods).

Certain mutational signatures present in stock cell lines were

not generated during in vitro culture of their descendant clones

(Figure 3; Table S3). These included SBS4 and SBS7 due to to-

bacco smoke and ultraviolet light, respectively, to which the

examined lung cancer (NCI-H650) and melanoma (Mewo) cell

lines were not exposed during in vitro culture. In addition,

SBS17a-b did not continue to be acquired in vitro in the stomach

(AGS) cell line overwhelmed with these signatures. All other sig-

natures present in stock cell lines continued to be generated dur-

ing culture of descendant clones from at least some cell lines.

Multiple mutational signatures have previously been associ-

ated with defective mismatch repair (SBS6, SBS14, SBS15,

SBS20, SBS21, SBS26) (Alexandrov et al., 2018). In some cell

lines, the particular signature(s) present in the stock converted

to different defective MMR signature(s) during in vitro culture

(e.g., acute lymphocytic leukemia MOLT-4) or remained roughly

stable (e.g., colorectal cancer CW-2) (Figure 3; Table S3). In

others, certain signatures appeared to be present in the stock

cell line but were absent from all or some clones and vice versa.

However, visual inspection of mutation spectra indicated that

this was likely due to misattribution of mutations to other

MMR-deficiency signatures and that all cell lines with defective

MMR (Table S4; Figure S2) continued to generate a subset of

the corresponding signatures alongside the large numbers of

small indels at short nucleotide repeats typical of this repair defi-

ciency (Figure 3).

The colorectal (SNU-81 and HT-115) and endometrial (ESS-1)

cancer cell lines with mutations in POLE (Table S4) continued to

generate the associated base substitution signatures. However,

the relative contribution of SBS10b (composed predominantly of

C>T mutations) compared to signature SBS10a (composed pre-

dominantly of C>A mutations) diminished markedly in vitro (Fig-
Figure 3. Activities of Mutational Processes in Human Cancer Cells

(A–C) Bars represent the numbers of base substitutions attributed to mutational

abbreviations in Table S2) and their respective parent (B) and daughter or gran

following the experimental design in Figure 2. Daughter clones were cultivated fo

and colored according to the associated etiologies. Ins/del - rep/micro/other, sma

complex, complex indels.

zOnly single parent clones from HT-115, LS-180, and AU565 cell lines were subje

the mutational catalogs of the corresponding stock cell lines (STARMethods). The

from two cells (Figure S7). Daughters were not successfully established from SN
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ure 3). Furthermore, signature 28, often found in cancers with

mutations in POLE (Alexandrov et al., 2018), continued to be

generated in all of these cell lines but not in the examined stom-

ach cancer cell line (AGS) (Figure 3; Table S3).

SBS3 is a relatively flat and featureless base substitution

signature (Figure S1) that is associated with defective homolo-

gous recombination-based DNA repair and inactivating muta-

tions of BRCA1 and BRCA2 (Alexandrov et al., 2013a; Nik-Zainal

et al., 2012a). It is usually accompanied by small deletions with

overlapping microhomology at their boundaries and large

numbers of rearrangements, including tandem duplications

and deletions (Nik-Zainal et al., 2012a, 2016). The breast cancer

cell lineMDA-MB-436 is deficient in BRCA1 (Elstrodt et al., 2006)

and generated SBS3 during in vitro culture accompanied by the

characteristic deletions with microhomology and large numbers

of rearrangements (Figures 3 and S3A). SBS3 was also gener-

ated in the ovarian (OVCAR-8) and breast (HCC38) cancer cell

lines (Figure 3), which have attenuated BRCA1 expression due

to promoter methylation as well as in lung adenocarcinoma

(NCI-H650) and breast cancer (AU565) cell lines, which did not

show obvious deficiencies in BRCA1 or BRCA2 function (Fig-

ure S2; Table S4). In contrast to MDA-MB-436, however, SBS3

in these lines was not accompanied by substantial numbers of

deletions with microhomology or rearrangements (Figure S3B).

SBS1 and SBS5 have previously been attributed to processes

generating mutations throughout life in normal tissues at con-

stant rates in all individuals (Alexandrov et al., 2015). SBS5,

which is of unknown origin, was identified inmost clones (Figures

3B and 3C). SBS1, which is attributed to deamination of 5-methyl

cytosine (Alexandrov et al., 2013a; Pfeifer, 2006), was not de-

tected by computational analysis among in vitro-generated mu-

tations. However, the distinctive profile of SBS1, characterized

by C>T mutations at NCG trinucleotides (mutated bases under-

lined and referred to by the pyrimidine partner of the mutated

base pair; N any base) was clearly visible following normalization

ofmutation frequencies to account for depletion of NCG trinucle-

otides in the human genome (Figure S3B; STAR Methods), indi-

cating that the underlying process continues to operate in all cell

lines but is not detected because of the relatively small numbers

of mutations generated.

SBS18 is prominent in neuroblastoma (Alexandrov et al.,

2013a) and continued to be generated in all of the neuroblastoma

cell lines examined (Figure 3). It was also, however, observed in

many daughter clones that were whole-genome sequenced (and

thus captured sufficient numbers of mutations) of cell lines in

which it was not detected in stocks (Figure 3). It therefore ap-

pears to be a common feature of in vitro culture, as previously

noted (Rouhani et al., 2016). SBS18 may be generated by DNA
signatures (patterns in Figure S1) and indels in stock cell lines (A; cancer type

ddaughter clones (C), which were acquired during the indicated time frames

r the numbers of days indicated in brackets. Mutational signatures are ordered

ll insertions/deletions at repetitive regions, microhomology-mediated or other;

ct to whole-genome sequencing, and their sequences were used as proxies for

high number of mutations in ESS-1 B1a clone is likely due to its establishment

U-81_B parent clone.
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damage caused by reactive oxygen species (Viel et al., 2017),

and this mechanism could plausibly mediate its manifestation

as a consequence of in vitro cell culture.

Activities of APOBEC-Associated Signatures 2 and 13

SBS2 and SBS13 have been attributed to APOBEC cytidine

deaminase activity and are common in human cancer, although

the factors responsible for their activation remain mysterious

(Alexandrov et al., 2013a; Nik-Zainal et al., 2012a; Roberts

et al., 2013). SBS2 and SBS13 show substitutions of cytosine

at TCN trinucleotides, with SBS2 predominantly characterized

by C>T and SBS13 by C>G and C>A mutations. The C>T transi-

tions may arise by replication of uracils generated by APOBEC

cytidine deamination, whereas the C>G, C>A, and potentially

additional C>T substitutions may be introduced by error-prone

polymerases following uracil excision and generation of abasic

sites by uracil-DNA glycosylase (UNG) (Helleday et al., 2014;

Roberts and Gordenin, 2014).

The rates of acquisition of SBS2 and SBS13 during in vitro cul-

ture were highly variable between cancer cell lines, between

different daughter lineages of the same cancer cell line, and

over time in the same daughter lineages (Figure 3; Table S3).

Despite the clear presence of these signatures in the stocks of

the cervical (SW756 and SiHa) and the breast (AU565) cancer

cell lines, there was no discernible continuing activity in their

daughter lineages. Of the remaining eight cell lines with promi-

nent APOBEC activity in stocks, continuing generation of SBS2

and SBS13 was detectable in three breast cancers (BT-474,

MDA-MB-453, HCC38), two B cell lymphomas (BC-1, JSC-1),

a squamous carcinoma of the tongue (CAL-27), a lung adenocar-

cinoma (NCI-H650), and possibly a cutaneous squamous cell

carcinoma (A388).

To investigate further this variability of APOBEC-associated

signature activity, we subjected two breast cancer (MDA-MB-

453, BT-474) and two B cell lymphoma (BC-1, JSC-1) cell lines

to further rounds of subcloning and the squamous carcinoma

of the tongue cell line (CAL-27) to seven serial rounds of subclon-

ing over short periods of time (Figure 4; signatures annotation in

Figure 3 and Table S3). These experiments confirmed that sub-

stantial differences in numbers of APOBEC-associated muta-

tions often occur between daughter clones from the same

parent. For example, the burden of APOBEC-associated signa-

tures acquired across multiple clones (A4a–A4j) derived from a

single clone (A3a) from the BC-1 cell line, following 20 days of

in vitro culture, varied >100-fold (Figure 4B; Table S3).

Fluctuation in numbers of APOBEC-associatedmutations was

also observed between different phases of individual cell line-

ages. For example, daughter A1a from the BC-1 cell line ac-

quired 3,157mutations at cytosine bases in 82 days, themajority

of which were SBS2 and SBS13mutations (Figure 4B). During its
Figure 4. Serial Cloning Reveals the Episodic Nature of APOBEC Muta

(A–E) Patterns of base substitutions acquired in five cancer cell lines (A, CAL-27;

consecutive time frames (see Figure 2). Numbers of days between individual si

allowed for an in vitro acquisition of mutations captured in mutational catalogs o

display only mutations at cytosine bases, and their total number is indicated at the

to the mutated cytosine base in the alphabetical order (ACA, ACC, ACG, ACT, C

indicate the counts of mutations acquired genome-wide (310�3). See Figure 3 a

clones (*) share the majority of mutations.
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succeeding round of propagation, which was for the same

period of time, one of the two granddaughter clones acquired

21,246 of such mutations and the other 5,014. Indeed, in the

daughter lineages of some cell lines, mutational activity ap-

peared to cease completely before reactivating and then discon-

tinuing again (although we cannot exclude the presence of

extremely small numbers of mutations). This intermittent tempo-

ral pattern of activity was most obvious during the serial propa-

gation of CAL-27, in which evidence of APOBEC mutagenesis

was clearly seen during one period of lineage A (clone A4a)

and was absent from at least three others (Figure 4A). The varia-

tion in activities of SBS2 and SBS13 was not obviously associ-

ated with differences in cell-proliferation rates (Figure S4A) and

was in marked contrast to other signatures acquired in vitro in

the same set of clones (Figure 3; Table S3). The results indicate

that SBS2 and SBS13 mutations can be generated in short,

intense bursts of activity with long intervening periods of silence,

a pattern that we have termed ‘‘episodic mutagenesis.’’

Most cancer cell lines with APOBEC activity displayed C>T,

C>G, and C>A mutations at the characteristic sequence con-

texts (Figure 4), and thus a combination of SBS2 and SBS13,

as do most primary human cancers in which APOBECmutagen-

esis is found (Alexandrov et al., 2013a). However, the B cell lym-

phoma cell line BC-1 and its daughter cell lineages exhibited

exclusively C>T mutations (Figure 4B). Analysis of methylation

and expression data demonstrated that UNG is expressed at

extremely low levels in BC-1 due to promoter methylation (Fig-

ure S2; Table S4; STAR Methods). These data indicate that

UNG activity is required for the generation of C>G and C>A mu-

tations following cytosine deamination in human cells, consistent

with previous reports from engineered model systems (Chan

et al., 2012; Di Noia and Neuberger, 2007; Taylor et al., 2013),

and thus add further weight of evidence to the hypothesis that

APOBEC deaminases are the sources of SBS2 and SBS13 in hu-

man cancer.

Kataegis Is Generated during In Vitro Culture
Most mutations caused by APOBEC mutagenesis during in vitro

culture were approximately evenly distributed over the

genome, recapitulating the pattern generally observed in can-

cers in vivo (Figure 5A) (Alexandrov et al., 2018). Foci of localized

APOBEC-associated hypermutation (Nik-Zainal et al., 2012a;

Roberts et al., 2012), kataegis, were also acquired during

in vitro culture of some cell lines (Figure 5) predominantly occur-

ring in clones with genome-wide SBS2 and SBS13 and with

more foci in sampleswith higher rates of genome-widemutagen-

esis (Figure 5). The locations of kataegis foci in cancer genomes

have previously been associated with the presence of rearrange-

ments (Nik-Zainal et al., 2012a; Roberts et al., 2012), and many
genesis

B, BC-1; C, MDA-MB-453; D, BT-474; E, JSC-1) during the serially examined

ngle-cell cloning events are indicated in blue and represent the time periods

f daughter or granddaughter clones (period 3, Figure 2). Mutational catalogs

top of each panel. x axes indicate the sequence contexts immediately 50 and 30

CA, CCC, CCG, CCT, GCA, GCC, GCG, GCT, TCA, TCC, TCG, TCT). y axes

nd Table S3 for annotation of mutational signatures in all samples. Indicated
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Figure 5. Genome-wide and Localized Foci of APOBEC-Associated Mutations, Kataegis, Are Generated In Vitro
(A) Circos plots depict mutations acquired in vitro in exemplar daughter or granddaughter clones. Color-coded base substitutions are plotted as dots in rainfall

plots (log intermutation distance), and their total numbers are indicated. Short green lines, short insertions; short red lines, short deletions. Arrows point to

examples of kataegis. Central lines indicate rearrangements, color coded and quantified in the bar charts at the bottom. BRCA, breast carcinoma; LYMP,

lymphoma B cell.

(B) Bars display frequencies of in vitro-acquired kataegis foci and the total burden of genome-wide APOBEC-associated signatures (SBS2 and SBS13) across

100 whole-genome-sequenced daughter and granddaughter clones from indicated cell lines. For durations of the examined in vitro time frames related to the

samples displayed in (A) and (B), see Table S2.
acquired during in vitro culture also clearly co-localized with

genome rearrangements (Figure 5A). Multiple kataegis foci

composed exclusively of C>T mutations were acquired in the

UNG-deficient BC-1 cell line (Figure 5A), indicating that forma-

tion of UNG-mediated abasic sites is not required for their

genesis.

Origins of APOBEC-Associated Mutational Signatures 2

and 13

The particular APOBEC family member(s) that causes the SBS2

and SBS13mutations observed in cancer is currently a matter of

discussion. APOBEC3B has been implicated because its

expression levels correlate most strongly with the burden of pu-

tative APOBEC-induced mutations (Burns et al., 2013a, 2013b;

Roberts et al., 2013). However, a germline polymorphism that

effectively deletes APOBEC3B and stabilizes expression of

APOBEC3A has been associated with higher burdens of SBS2

and SBS13 in breast cancers and indicates that, at least in

some cancers, APOBEC3B cannot be responsible (Caval et al.,

2014; Nik-Zainal et al., 2014). Indeed, the extended sequence

context in which SBS2 and SBS13 mutations occur in human

cancers is predominantly that at which APOBEC3A, rather than

APOBEC3B, induces mutations in yeast (TCN preceded by a py-
rimidine base rather than a purine) (Chan et al., 2015). The SBS2

and SBS13 mutations generated in the cancer cell lines in vitro

were largely enriched in the YTCN/YTCA sequence context

(where Y is a pyrimidine), consistent with episodic mutagenesis

mainly being mediated by APOBEC3A (Figure S4C; STAR

Methods).

To explore the possibility that changes in APOBEC gene

expression mediate the observed fluctuation in APOBEC muta-

tion rates, we conducted RNA sequencing of daughter and

granddaughter clones from two breast cancer (MDA-MB-453,

BT-474) and two B cell lymphoma cell lines (BC-1, JSC-1)

(STAR Methods). The clear correlations between the burdens

of in vitro-acquired SBS2 and SBS13 mutations and expression

levels of APOBEC genes were not detected (Figure S4B). It re-

mains possible, however, that transient changes in mRNA levels

had occurred that were not captured by these measurements.

The episodic pattern of APOBEC mutagenesis, and hence the

potentially fluctuating nature of underlying APOBEC expression,

may explain the absence of detectable APOBEC3A expression

in the daughter clones showing ongoing generation of SBS2

and SBS13, despite evidence for APOBEC3A being responsible

from the sequence context of the mutations. Indeed, it may also
Cell 176, 1282–1294, March 7, 2019 1289



explain the lack of common upregulation of APOBEC3A expres-

sion in human cancers and its weak correlation with SBS2 and

SBS13 mutation burdens in vivo (Burns et al., 2013a; Roberts

et al., 2013).

APOBEC3 cytidine deaminases have been implicated in

innate immunity and in restricting retrotransposons and viruses

through DNA-editing-dependent and independent mechanisms

(Vieira and Soares, 2013; Conticello, 2008). It is conceivable

that the SBS2 and SBS13 mutations observed in cancers in vivo

and during in vitro culture represent collateral mutational dam-

age on the host cell genomes from APOBEC-mediated re-

sponses directed against viruses and/or retrotransposons. The

BC-1 and JSC-1 B cell lymphoma lines, which continue to

generate SBS2 and SBS13 in culture, both carry Epstein-Barr vi-

rus (EBV) and human herpesvirus-8 DNA sequences (STAR

Methods) and express viral transcripts (Callahan et al., 1999;

Cannon et al., 2000; Cesarman et al., 1995). Truncated versions

of HPV16 and HPV18 were found in the cervical cancer cell lines

SiHa and SW756 (STAR Methods), respectively and as reported

previously (Schneider-Gädicke and Schwarz, 1986; Yee et al.,

1985), with no detectable ongoing APOBEC-associated muta-

genesis. However, viral sequences were not detected in the

breast (MDA-MB-453 and BT-474) and squamous carcinoma

of the tongue (CAL-27) cell lines, which continued to acquire

APOBEC-associated signatures in culture (STAR Methods).

Thus, among the small number of cell lines studied here, the

presence of examined viruses is not required to trigger APOBEC

mutagenesis. The continued acquisition of SBS2 and SBS13

during in vitro cell culture also indicates that microenvironmental

influences, such as inflammation, are unlikely to be necessary

for APOBEC-mediated mutagenesis, although we cannot

exclude the possibility that they play a role in vivo (Vieira and

Soares, 2013).

We further quantified in vitro-acquired insertions of the long

interspersed nuclear elements LINE�1 (L1) retrotransposons us-

ing the whole-genome sequence data from available clones and

examined the relationship between retrotransposition mobiliza-

tion and APOBEC-associated signatures (STAR Methods; Table

S5). This analysis revealed a significant correlation between the

rates of in vitro-acquired L1 insertions and burdens of SBS13

and SBS18 (respectively, p < 0.001/5 and p < 0.01/5; Bonfer-

roni-adjusted), most pronounced in breast and lung adenocarci-

noma cell lines (Figure S5; Table S5A). To further investigate this

observation, we extended the analysis to 2,353 primary cancers

from most cancer types where somatic retrotransposon inser-

tions and mutational signatures have been annotated previously

as part of the International Cancer Genome Consortium Pan-

Cancer Analysis of Whole Genomes (ICGC PCAWG; STAR

Methods) (Alexandrov et al., 2018; Rodriguez-Martin et al.,

2017). There were significant correlations between the rates of

somatic retrotransposition and individually SBS1, SBS4,

SBS17a, and SBS17b (p < 0.01/31 for SBS4 and p < 0.001/31

for SBS1, SBS17a, and SBS17b; Bonferroni-adjusted, Fig-

ure S5B; Table S5). However, there was no evidence of a corre-

lation for SBS13 (p = 1.0). The cell line data suggest a possible

relationship between APOBEC mutagenesis and retrotransposi-

tion activities, although more direct experimental testing is

required to establish this. Variable strengths of the effects
1290 Cell 176, 1282–1294, March 7, 2019
observed across the analyzed cell line types (Figure S5) suggest

that other factors are involved. Indeed, retrotransposition is

common in colorectal cancers, where APOBEC mutagenesis is

rare (Alexandrov et al., 2013a; Tubio et al., 2014).

The Prevalence of Continuing APOBEC Mutagenesis
To explore further the observation that continuing APOBEC

mutagenesis was not observed in at least three cell lines in which

it represented the predominant mutational process in the past

(SiHa, SW756, and AU565; Figure 3; Table S3), we used sin-

gle-cell sequencing as an alternative approach to single-cell

cloning, which is laborious and unpredictable, with some cell

lines being amenable to cloning and others not.

Single cells, equivalent to parent clones, after subtraction of

mutations present in the stock cell line, provide information on

mutations acquired since its most recent clonal expansion (Fig-

ure 2; STAR Methods). However, the small amounts of DNA ob-

tained from single cells necessitate whole-genome amplification

(WGA) before sequencing, and current amplification technolo-

gies entail both non-amplification of a substantial proportion of

the genome and introduction of artifact mutations (Gawad

et al., 2016). Nevertheless, mutational signature analysis does

not require detection of all mutations in a genome. Moreover,

the impact of artifacts can bemitigated if the signature of interest

is known a priori, has a distinctive profile (as for SBS2 and

SBS13), and can be deconvoluted from signatures of genome

amplification-induced mutations.

Hence, to determine the proportion of cell lines that experi-

enced APOBEC mutagenesis at some point following the estab-

lishment of the most recent common ancestor of the stock cell

line, we whole-genome sequenced 32 single cells from 16 can-

cer cell lines exposed to it in the past, alongside single cells

from endometrial cell line with POLE-associated SBS10a-b

and SBS28 (ESS-1) and an osteosarcoma cell line (G-292-

clone-A141B1) with SBS40, which is characterized by roughly

uniform representation of all 96 mutation types (Figure 6A;

STAR Methods).

Deconvolution of the single-cell mutational catalogs revealed

six signatures (Figure 6B; STARMethods), including those asso-

ciated with mutations in POLE (scA) and APOBEC activity (scB

and scC) and a signature (scD) characterized in part by C>A

mutations similar to SBS18, which probably results from

in vitro culture (see above). Two novel signatures (scE and scF)

were present exclusively in single cells and absent from the cor-

responding stock cell lines (Figure S6). These likely represent

variants introduced during the WGA process and cell lysis and

were in large part removed for subsequent attribution of muta-

tional signatures to individual cells (Figure 6A; Table S3; STAR

Methods).

Attribution of mutational signatures revealed the POLE-asso-

ciated SBS10a-b and SBS28, as well as SBS40 only in single

cells from the ESS-1 andG-292-clone-A141B1 cell lines carrying

these signatures, respectively (Figure 6A; Table S3). APOBEC-

associated signatures were identified in single cells from cell

lines shown in our previous analyses to have continuing activity

(CAL-27 and JSC-1) but not in single cells from ESS-1 cell line in

which APOBECmutagenesis had never been present or in single

cells from the cervical cell line SiHa in which mutagenesis had
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Figure 6. Mutational Signatures in Single Cells Indicate Commonly Continuing APOBEC-Associated Mutagenesis

(A) Bars represent the numbers of base substitutions (left) and mutational signatures (right) in whole-genome-sequenced stock cell lines and their single cells

(cancer type abbreviations in Table S2). Mutations presenting at <50% VAF (variant allele fraction) were excluded from mutational catalogs from single cells, as

theymostly formed patterns of signatures scE and scF, likely introduced during the process of the single-cell DNA preparation (STARMethods; see Figure S6A for

mutational signatures annotation using complete catalogs).

(B)Mutational signatures extracted from the completemutational catalogs from 36whole-genome-sequenced single cells. Each signature is displayed according

to the 96-substitution classification on horizontal axis, defined by the six color-coded substitution types and sequence context immediately 50 and 30 to the

mutated base. Vertical axes show the percentage of mutations attributed to specific mutation types.
ceased (Figures 3 and 6A; Table S3). Furthermore, SBS4, related

to tobacco smoking, was not detected in single cells from the

lung adenocarcinoma cell line NCI-H2087 in which this signature

was present in the stock sequence (Figure 6A; Table S3). Thus,

mutational signatures detected in single cells indicate continuing

mutagenesis. On the basis of detection in at least one single cell,

we estimate that at least �75% of cancer cell lines that experi-

enced APOBECmutagenesis in the past (before the most recent

common ancestor of the stock population, as revealed by the

sequence of the stock cell line) have continued to generate

SBS2 and SBS13 at some point following the establishment of

their most recent common ancestor cells (as revealed by muta-

tions present in the single cells, but not the stocks).

DISCUSSION

The cancer cell lines and PDXmodels analyzed here nowprovide

a substantial resource for exploring mechanistic questions

relating to the mutational processes underlying the majority of

mutational signatures. Given the high prevalence of SBS2 and

SBS13 in human cancer (Alexandrov et al., 2013a), the nature

of the biological factors that instigate APOBEC mutagenesis is

an important question. Cell lines that continue to generate these
signatures over time represent models suitable for such explora-

tions. For example, systematic knockouts of APOBEC family

members in such cell lines offer an opportunity to unambiguously

establish a causative link between APOBEC enzymes and muta-

genesis in human cancer cells and to resolve the current discrep-

ancies in the field concerning whichmembermay be responsible

(Burns et al., 2013a, 2013b; Chan et al., 2015; Middlebrooks

et al., 2016; Nik-Zainal et al., 2014; Starrett et al., 2016). Our

studies support the propositions that APOBEC-associated

SBS2 and SBS13 can be generated at multiple time points dur-

ing the evolution of individual cancers, as suggested previously

by studies showing that they can be acquired both early and

late but are sometimes restricted to one temporal phase of

cancer development (often late) (Jamal-Hanjani et al., 2017;

McGranahan et al., 2015; Nik-Zainal et al., 2012b).

We further find that APOBEC-associated mutagenesis ex-

hibits a highly fluctuant mutation rate over time and can be

episodic in vitro, operating in short bursts with long periods of

inactivity. The extent to which such episodic mutagenesis oc-

curs in vivo awaits further investigation. Approaches using multi-

regional sequencing or serial sampling of primary cancers may,

however, incompletely report the episodic nature of the muta-

genesis pattern, due to the inability to track mutation acquisition
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over relatively short periods of time. Nevertheless, the observed

variability in SBS2 and SBS13 mutations between branches of

phylogenetic trees from primary tumors (Jamal-Hanjani et al.,

2017; Lee et al., 2017) lends support to the possibility that

some or all APOBEC-associatedmutagenesis in vivo is episodic.

The variability in acquisition of APOBEC-associated muta-

tional signatures occurs in cell culture despite the absence of

many proposed initiators and regulators of APOBEC activity,

including the immune system and detectable exogenous virus

infections (Kanu et al., 2016; Middlebrooks et al., 2016; Vieira

and Soares, 2013), the close genetic relationships of the cell

lineages examined, and a highly controlled and uniform tissue

culture microenvironment shared by sister lineages with very

different mutation rates, and is in marked contrast to other

ongoing mutational signatures. It is unlikely that episodic

APOBEC activity was induced simply by the single-cell cloning

process because individual lineages were cloned multiple times

and APOBEC-associated signatures were not always detected.

Moreover, if mutational bursts occurred during the isolation of

single parent cells, most mutations would be shared between

daughters. The data therefore suggest that the initiators of

APOBECmutagenesis in vitro are cell intrinsic and have intermit-

tent and irregular activity. It is possible that these may also

operate in vivo and may include modulators of availability of

single-stranded DNA (ssDNA) substrate, changing access of

APOBEC(s) to nuclear DNA and retrotransposon mobilization.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

1,001 human cancer cell lines COSMIC Cell Line Project https://cancer.sanger.ac.uk/cell_lines

Critical Commercial Assays

Custom SureSelect Library Prep Kit Agilent 930075

SureSelect Targeted Enrichment kit Agilent 5190-4394

illustra GenomiPhi V2 DNA amplification kit GE Healthcare 45-001-222

Ribo-Zero rRNA Removal Kit Illumina RZH110424

KAPA Stranded mRNA-Seq Kit Kapa Biosystems 07962193001

ERCC RNA Spike-In Mix Thermo Fisher 4456740

Deposited Data

DNA sequence data This paper EGA: EGAD00001004201, EGAD00001004203

RNA sequence data This paper EGA: EGAD00001004202

Software and Algorithms

Mapping workflow Cancer, Aging and Somatic Mutation

group, Wellcome Sanger Institute

https://dockstore.org/containers/quay.io/

wtsicgp/dockstore-cgpmap

Mutation calling workflows Cancer, Aging and Somatic Mutation

group, Wellcome Sanger Institute

Whole-exome: https://dockstore.org/

containers/quay.io/wtsicgp/dockstore-cgpwxs

Whole-genome: https://dockstore.org/

containers/quay.io/wtsicgp/dockstore-cgpwgs

vafCorrect Cancer, Aging and Somatic Mutation

group, Wellcome Sanger Institute

https://github.com/cancerit/vafCorrect

GOTTCHA Freitas et al., 2015 https://github.com/poeli/GOTTCHA

TraFiC-mem; V.1.1.0 https://gitlab.com/mobilegenomes/TraFiC

TopHat2; V.2.1.1 Kim et al., 2013 https://github.com/infphilo/tophat

Picard; V.1.60 https://broadinstitute.github.io/picard/

Cufflinks; V.1.0.2 Trapnell et al., 2010 https://github.com/cole-trapnell-lab/cufflinks

Other

Mutational catalogs from 1,001 cancer

cell lines; V.83

COSMIC Cell Line Project https://cancer.sanger.ac.uk/cell_lines

Expression and methylation datasets from

1,001 cancer cell lines

Iorio et al., 2016 https://www.cancerrxgene.org/gdsc1000/

Mutational catalogs from 577 PDX models

and 25 originating tumors; V.1.3

National Cancer Institute’s Patient-

Derived Models Repository

https://pdmr.cancer.gov/default.htm

Mutational catalogs from 2,709 ICGC PCAWG

primary cancers; Platinum version

This paper; catalogs shared by the

Mutational Signatures group of the ICGC

PCAWG Project (Campbell et al., 2017)

Table S3
CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed and will be fulfilled by the Lead Contact, Michael R.

Stratton (mrs@sanger.ac.uk).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Table S2 lists primary cancer, cell line and PDX cancer datasets used, alongside their sources (where the data was downloaded) or

sequencing/experimental information (where data were newly generated).
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ICGC PCAWG Platinum dataset
Somatic mutational catalogs from 2,709 primary human cancers (Table S2) were generated as part of the Platinum version of the

ICGC PCAWG project (Alexandrov et al., 2018) and were shared by the PCAWG Mutational Signatures Working Group (Table S3),

alongside the patterns of mutational signatures (Table S1) extracted from this dataset and their annotation across individual samples

(Table S3). The Platinum set of mutational signatures was annotated here on catalogs from all cancer cell line samples and PDX

models. Annotations of mutational signatures across the ICGC PCAWG Platinum dataset were used alongside the previously iden-

tified somatic retrotransposition events across the same dataset (Rodriguez-Martin et al., 2017) to examine the relationships between

burdens of APOBEC-associated SBS2 and SBS13 and mobilization of retrotransposons (Figure S5).

Publicly available cell line and PDX datasets
Mutational catalogs from 1,001 human cancer cell lines and 577 PDX models (and their 25 available originating tumors) listed in

Table S2 were downloaded, respectively, from the COSMIC Cell Line Project (v.83; https://cancer.sanger.ac.uk/cell_lines) and the

National Cancer Institute’s Patient-Derived Models Repository (NCI PDMR v1.3; https://pdmr.cancer.gov/default.htm) and used

for annotation of mutational signatures (Figure 1; Table S3).

Expression and methylation datasets from 1,001 human cancer cell lines were generated as part of the COSMIC Cell Line Project

and processed previously (Iorio et al., 2016). These datasets are available at https://www.cancerrxgene.org/gdsc1000/ and were

anayzed here as per section ‘1,001 cell line panel expression and methylation datasets’ to find putative aberrations in genes asso-

ciated with mutational signatures in examined cell lines (Figure S2 and Table S4).

Cell line samples and sequence data generated in this study
Cancer cell lines used in this study originate from the cryopreserved aliquots of 1,001 cell lines, sourced previously from collaborators

or public repositories and extensively characterized as part of the Genomics of Drug Sensitivity in Cancer (GDSC) (Garnett et al.,

2012; Iorio et al., 2016) andCOSMICCell Line (Forbes et al., 2017) projects. All cell lines weremycoplasma negative and fingerprinted

by single nucleotide polymorphism (SNP) and short tandem repeat (STR) profiling (https://cancer.sanger.ac.uk/cell_lines).

A subset of 28 of these cell lines was used to establish 58 parent and 141 daughter clones, which were subject to whole-exome

and/or whole-genome sequencing (Table S2), depending on the rates of the mutational processes examined, to study mutation

acquisition over time (Figures 3–5). A different subset of 18 stock cell lines was subject to whole-genome sequencing, alongside their

respective 36 single cells (Table S2), to examine the prevalence of frequently ongoing APOBEC mutagenesis (Figure 6). Finally, we

performed RNA sequencing on 26 cell line clones (Table S2), to examine relationships between expression of APOBEC genes and

burdens of the corresponding mutational signatures (Figure S4B).

METHODS DETAILS

Cell culture and isolation of single cells
Cell weremaintained at 37C�, 5%CO2 in RPMI or DMEM/F12media (Iorio et al., 2016), supplementedwith 5% fetal bovine serumand

penicillin/streptomycin (GIBCO). Prior to cell sorting, cell lines were stained with Calcein AM (Cambridge Bioscience) and propidium

iodide (PI) (Thermo Fisher) and Calcein-positive and PI-negative viable single cell isolated. Cells isolated for clonal expansions were

sorted into media conditioned by 60%–80% confluent culture for 24 hours and filtered with low protein binding filters (Corning). Cells

isolated for single cell sequencing were sorted into lysis buffer, as per manufacturer’s protocol (Illustra GenomiPhi V2; GE

Healthcare).

DNA extraction and amplification
DNA was extracted using the DNeasy Blood and Tissue Kit (QIAGEN). Single cell DNA was amplified by multiple displacement

amplification (MDA) as per the manufacturer’s protocol (Illustra GenomiPhi V2; GE Healthcare), using a two-hour amplification

time. A no-cell negative control wells were processed with the same reagents to control for background contamination. Amplified

DNA was purified using a 1:1 volume ratio of AMPure XP beads (Beckman Coulter) and DNA, following the manufacturer’s protocol.

Library preparation, sequencing and alignment
Genomic libraries were prepared with the Custom SureSelect Library Prep Kit (Agilent Technologies), aiming for an average insert

size of approximately 500bp and 150bp for, respectively, whole-genome and whole-exome sequencing. The Sure Select Targeted

Enrichment kit (Agilent Technologies) was used for exome enrichment. Following cluster generation, 150 base (whole-genome) and

75 base (whole-exome) paired-end sequence data was generated on Illumina HiSeq 2000/2500 (whole-exome) and HiSeq X Ten

(whole-genome) platforms. Sequencing reads were aligned to the reference human genome (GRCh37) using the Burrows-Wheeler

Alignment (BWA) tool (Li and Durbin, 2010), with ‘bwa mem’ settings. Unmapped, non-uniquely mapped reads and PCR-derived

duplicate reads were excluded from further analysis. Small subset of samples was subject to random downsampling of the obtained

sequence coverage for consistency between related samples. Table S2 provides the average sequence coverage considered for all

samples.
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Genotyping of cell line samples
All cancer cell lines were genotyped previously by SNP and STR profiling, as part of the COSMIC Cell Line Project (https://cancer.

sanger.ac.uk/cell_lines). Individual clones obtained here were genotyped by comparing alleles presenting at the same set of SNP loci

(not shown). Reads reporting alleles presenting at the enquired loci were quantified and pairwise comparisons generated among in-

dividual samples to confirm that all single-cell derived originate from their respective cell lines.

Mutation discovery
Base substitutions, indels and rearrangements were discovered using, respectively, the CaVEMan (Jones et al., 2016), cgpPindel

(Raine et al., 2015) and BRASS algorithms developed in house (https://github.com/cancerit), by performing comparisons outlined

in Table S2. Technology-specific artifacts and germline variants were removed by filtering against a panel of more than 100 unrelated

normal samples available in-house. Additional post-processing filters were applied to remaining mutation calls as described previ-

ously (Nik-Zainal et al., 2012a). For X Ten-generated / BWA-mem aligned data, base-substitutions presenting at the loci where the

median alignment score of mutation-reporting reads (ASMD) was < 130 were removed.

Numbers of mutant andwild-type reads presenting at the loci of the remaining base substitutions and indels were assessed across

the related cell line samples using vafCorrect (Yates et al., 2017) and filters described below were subsequently applied to build cat-

alogs of mutations acquired during the time frames of interest (Figure 2).

Mutational catalogs from stock cell lines and cell line clones
Mutational catalogs from daughter and descendant clones

Mutations were discovered in daughter clones by using their related parent clones as the reference sequences. Mutational catalogs

from daughter clones therefore predominantly capture mutations acquired during the in vitro parts of the cellular lineages that are of

known durations and span two single cell isolation steps used in establishment of the parent and daughter clones (see Figure 2 for

further clarification). Smaller proportion of subclonal variants, acquired following expansion of the single daughter cells, may be

captured too (see below, ‘Clonality of the cell line clones’). For some cell lines, further series of clonal generations were established

to study mutations acquired during multiple consecutive in vitro time frames (Figures 3 and 4). Mutations in the subsequent gener-

ations of clones (for example, granddaughter clones) were discovered following the same principle of using the progenitor clones as

reference sequences to reveal themutations acquired during the in vitro time frames spanning the single cell isolation steps. Table S2

outlines all of the performed comparisons and durations of the examined in vitro time frames.

To retain mutations acquired predominantly in vitro and remove possibly pre-existing mutations acquired prior to this time frame,

base substitutions and indels were considered only if (1) the mutation locus was covered in the reference clone by R 15 reads, (2)

mutation-reporting reads were not detected in the reference clone at variant allele fraction (VAF)R 5%, (3) mutation-reporting reads

were not detected in other available clones from the preceding part of the lineage at average VAFR 5%, (4) mutation-reporting reads

did not present at average VAFR5% across clones from the other available parent lineage(s) where mutation-reporting reads were

detected, (5) mutation-reporting reads were not detected in sister clones derived from the same parent at average VAF R 5% if the

reference locuswas covered by < 30 reads (whole-exomes only; in whole-genome experiments this stepwas omitted for consistency

because sister clones were not always derived). Rearrangements were considered only if not detected in other related clones within

50bp of identified breakpoints.

Mutational catalogs from stock cell lines and parent clones – whole-exome sequencing

Mutational catalogs of both coding and non-coding variants from whole-exome sequenced cancer cell lines were downloaded from

the COSMIC Cell Line Project (v.83; https://cancer.sanger.ac.uk/cell_lines). These were generated previously using an unrelated

normal human genome as a reference sequence and were filtered extensively against the common germline variation (Iorio et al.,

2016) (Figures 1 and 3). Mutational catalogs from stock cell lines therefore predominantly capture somatic mutations acquired within

the lineages from the fertilized eggs to the most recent clonal expansions of individual stock cell lines and a proportion of germline

variants due to the absence of the matched normal DNAs.

Mutations in whole-exome sequenced parent clones (Figure 3) were discovered by using their related stock cell lines as the refer-

ence sequences (comparisons in Table S2). The raw sequence data from the stock cell lines was available in-house from theCOSMIC

Cell Line project and realigned here for consistency with clones sequenced as part of this study to GRCh37 reference human

genome, using Burrows-Wheeler Alignment (BWA) tool (Li and Durbin, 2010) with ‘bwa mem’ settings. Mutational catalogs from

parent clones therefore predominantly capture mutations acquired during the time frames of unknown durations, which span estab-

lishment the most recent common ancestor cell of the stock cell line and isolation of the single parent cells (see Figure 2 for further

clarification). Smaller proportion of subclonal variants, acquired following expansion of the single parent cells may be captured too

(see ‘Clonality of the cell line clones’). To remove possibly pre-existing mutations acquired prior to this time frame, base substitutions

and indels were only considered if (1) themutated locus was covered in the corresponding stock cell line byR 15 reads, (2) mutation-

reporting reads were not detected in clones from the other available parent lineage(s) at average VAF R 5%, (3) mutation-reporting

reads were not detected in the corresponding stock cell line at VAF R 5%.

Mutational catalogs from stock cell lines and parent clones – whole-genome sequencing

A subset of stock cell lines and subset of parent clones (from different sets of cell lines) were subject to whole-genome sequencing to

be used as, respectively, references for their related single cells (Figure 6) and daughter clones (Figures 3 and 4). In the absence of the
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related reference sequence, mutations in whole-genome sequenced stock cell lines and parent clones were discovered using an un-

related normal human genome as a reference (see Table S2) and filtered against common germline variation listed in dbSNP (Sherry

et al., 2001), 1000 genomes project (1000 Genomes Project Consortium et al., 2012), NHLBI GOExome Sequencing Project (Fu et al.,

2013) and 69 Complete Genomics panel (http://www.completegenomics.com/public-data/69-Genomes/) (Drmanac et al., 2010), as

described previously (Alexandrov et al., 2013a), as well as against panels of additional 500 normal exomes andmore than 120 normal

genomes, by removing any mutations presenting in at least three well-mapped reads of at least two normal samples.

To derive proxies for mutational catalogs of the stock cell lines from which whole-genome sequenced parent clones were derived

(Figures 3 and 4), we used mutations shared between the related parent clones, which pre-existed in their most recent common

ancestor cell. Variants private to individual parent clones served as proxies for the lineages spanning establishment of the most

recent common ancestor cell of the stock cell line and isolation of the single parent cells. Where only single parent clones were avail-

able (LS-180, HT-115, AU565 cell lines), they were used as mutational catalogs of the stock cell lines. Base substitutions and indels

were classified as ‘private’, unless they were (1) identified by the variant calling algorithms in other parent clone(s) from the same cell

line and (2) detected in > 2 samples from the other parent lineage(s) at VAFR 5%.Rearrangementswere classified as ‘private’, unless

they were identified by BRASS in any of the clones derived from the other parent lineage(s).

Using this approach, variants that were present in themost recent common ancestor cell of the related parent clones, but reside on

an allele that was subsequently lost in only one of the clones would be misclassified as ‘private’. Loss of an allele in the setting of a

polyploid cell line setting may not always manifest as B allele frequency�1 (BAF, a measure of allelic copy number ratio (Peiffer et al.,

2006)), expected following the loss-of-heterozygosity (LOH) in a diploid setting. Hence, we argued that regions that vary considerably

in copy number states andmutation rates between the related parent clonesmay exhibit allelic losses. Mutations residing within such

regions were therefore removed as they could not be correctly classified as ‘shared’ or ‘private’. This approach removedmajority (but

not all, see Figure S7) residual germline variants. To identify regions with likely LOH, the allele frequencies of SNPs from 1000 ge-

nomes project (1000 Genomes Project Consortium et al., 2015) were obtained from whole-genome sequenced parent clones. Het-

erozygous SNPs were identified as those SNPs with BAF between 0.1 and 0.9, inclusive, in all related clones. For all heterozygous

SNPs, BAF and logR were calculated from the ref and alt allele frequencies using the following equations:

BAF =maxðfref faltÞ=ðfref + faltÞ
logRunadj = log2ðfref + faltÞ
logR= logRunadj �meanðlogRunadjÞ
where fref = allele frequency of 1000 genomes a0 allele, falt = allele
 frequency of 1000 genomes a1 allele, logRunadj = unadjusted logR,

mean(logRunadj) = the mean value of logRunadj across all 1000 genomes loci. To identify regions with variable copy number, logR and

BAF of related samples were jointly segmented using the multipcf function in the R package copynumber (Nilsen et al., 2012). Joint

analysis of parent clones allowed the identification of both copy number aberrations shared between clones and aberrations that are

unique to one sample. Regions with variable copy number states and mutation rates were identified as follows:

(i) Regions with differences in BAF of > 0.03 and < 0.01 between related clones were classified as, respectively, ‘variable’ and

‘constant’ in copy number. Regions with differences in logR outside the range between the 5th and 95th centiles of the differ-

ence in logR between related clones in regions of ‘constant’ copy number regions were reclassified as ‘variable’.

(ii) Regions with variable copy number states and variable mutation rates were identified as regions variable in copy number

states with significant differences in the ratios of mutation rates compared to the ratio of rates calculated for regions constant

in copy numbers (Poisson test p < 0.01).
Clonality of the cell line clones
Clonality of the established cell line clones was examined using the proportion of the mutation-reporting reads (equivalent to variant

allele fraction, VAF) at the mutation loci remaining after the described filtering steps. Most of the VAF distributions deviated from

average 50% (Figure S7) expected for clonal heterozygous somatic mutations occurring in a diploid genome because cancer cell

lines are often polyploid and exhibit multiple copy number changes.

Some clones exhibited a shift toward lower distribution of VAF compared to other related clones, pointing to putative establish-

ments of such clones from multiple cells or from single cells that underwent genomewide increases in the ploidy. Such instances

may result in an increased mutational burden due to availability of more DNA bases and hence more opportunity for a mutation to

occur (for example, see ESS-1_B1a clone with increased mutational burden and a shift toward lower VAF compared to other related

clones, Figures 3 and S7). Some clones presented with bimodal VAF distributions and subclonal peaks (for example, see

HT-115_A1c or BC-1 A4a-A4n, Figure S7). These may reflect subclonal mutations (which occurred during the clonal expansions

of the isolated single cells) and/or clonal and subclonal mutations presenting within the regions of the genome that underwent
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copy number changes. Nevertheless, mutational signatures identified in such clones still point to continuing activities of the under-

lying processes and hence they were not removed from analysis. Furthermore, described effects are not underlying the highly fluc-

tuant and episodic nature of observed APOBEC-associated mutagenesis. For example, although some of the MDA-MB-453, BC-1

and CAL-27 clones present with lower average VAFs compared to other clones (for example, MDA-MB-453 clones B1b, A2b, B2b;

Figure S7) or with non-unimodal distributions of VAFs (for example, BC-1 clones A4a-n), many other clones from these cell lines have

consistent VAF distributions and still exhibit highly fluctuant mutational rates in SBS2 and SBS 13 (for example, BC-1 A2b and A2a;

CAL-27 A3-5). It is indeed possible that some of the peaks presenting at lower VAFs reflect a burden of mutations acquired following

isolations of the single cells during the burst of APOBEC-associatedmutagenesis. Importantly, all of the daughter and granddaughter

clones from BT-474 and JSC-1 cell lines show consistent VAF distributions and highly variable SBS2 and SBS 13 mutation rates.

Finally, whereas described scenarios may influence the burdens of acquired mutations, they are unlikely to do so to the extent at

which fluctuations in APOBEC-associated signatures were seen (sometimes 100–fold), that are in stark contrast to other signatures

detected in the same set of clones (Table S3).

Mutational catalogs from single cells
Whole genome amplification (WGA) of single cell DNA leads to (1) loci dropouts, (2) allele dropouts where only some alleles at the loci

are amplified or (3) imbalanced amplification of alleles presenting at given loci. To estimate the proportion of somatic mutations that

were likely missed due to WGA-associated losses, we annotated a set of high confidence heterozygous germline SNPs (1000

Genomes Project Consortium et al., 2012) on the sequence data from 18 stock cell lines from which single cells were derived

(mean 165,000 SNPs per cell line) and assessed their representation in the sequence data from the individual cells. It was estimated

that on average across all single cells examined, (1)�30% of the variants were lost due to loci dropouts, (2)�32% due to allele drop-

outs and (3)�12% of the variants presented at VAF below the optimal detection threshold (< 10%) of CaVEMan. Overall, we estimate

that high-quality sequence data was generated from �26% of the average single cell genome. Metrics for individual cells are avail-

able in Figure S6A.

Mutations in single cells were discovered by using related stock cell lines as the reference sequences (comparisons in Table S2)

and, analogous to parent clones, predominantly comprise mutations acquired between the establishment of the most recent com-

mon ancestor cell of the stock cell line and isolations of the single cells. To remove possibly pre-existing mutations acquired prior to

this time frame, base substitutions were considered only if (1) themutation loci were covered byR15 reads in the reference stock cell

lines and (2) mutation-reporting reads were not detected in the corresponding stock cell lines.

Mutational catalogs of single cells contain a large burden of variants introduced during the isolation and/or amplification of single-

cell DNA. We reasoned that the majority of such variants were here extracted in forms of SBS scE and scF (Figure 6B), characterized

predominantly by C>T mutations previously associated with false positive variants arising during the WGA reactions (Leung et al.,

2015). Furthermore, these signatures were detected in single cells, but absent from their corresponding stock cell lines

(Figures S6) and have never been identified among the primary human cancers (Alexandrov et al., 2018). Unlike the patterns of APO-

BEC-associated SBS2 and SBS13, patterns of SBS scE and scF (in particular, C>T at GCN contexts) were enriched among muta-

tions presenting at < 50% of the sequencing reads in single cells, both genomewide and when only haploid regions were considered

(Figure S6B) (cell line copy number was obtained from COSMIC Cell Line Project, v.83), further supporting the proposition that these

do not reflect signatures of genuine mutations. Removal of variants presenting at < 50% VAF frommutational catalogs of single cells

removed a large portion of these signatures and allowed higher sensitivity in identifying SBS2 and SBS13 (see Figures 6A and S6A for

annotation of mutational signatures on, respectively, filtered or complete mutational catalogs from single cells).

Mutational catalogs from PDX models
Mutational catalogs from PDXmodels were downloaded fromNCI PDMR (v1.3; https://pdmr.cancer.gov/default.htm). Germline mu-

tations were filtered out from the lists of reported mutations using the complete list of germline mutations from dbSNP (Sherry et al.,

2001), 1000 genomes project (1000 Genomes Project Consortium et al., 2012), NHLBI GO Exome Sequencing Project (Fu et al.,

2013), and 69 Complete Genomics panel (http://www.completegenomics.com/public-data/69-Genomes/) (Drmanac et al., 2010),

as well as BAM files of (unmatched) normal tissues containingmore than 120 normal genomes and 500 normal exomes, as described

above.

Base substitution and indel classification
Base substitutions were classified into 96-channel catalogs based on their sequence context, by considering the bases immediately

50 and 30 to each mutated base using the ENSEMBL Core APIs for human genome build GRCh37. Because there are six classes of

base substitutions (C > A, C > G, C > T, T > A, T > C, T > G; mutations are referred to by the pyrimidine of the mutated Watson–Crick

base pair) and 16 possible sequence contexts for each mutated base, there are 96 possible mutated trinucleotides.

Indels were classified as described previously (Nik-Zainal et al., 2016), by interrogating the sequences at indel junctions, according

to whether they were repeat-mediated, microhomology-mediated or neither. Complex indels were considered separately given the

ambiguity in classification.
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Kataegis quantification
Kataegis, or foci of localized hypermutation (Nik-Zainal et al., 2012a), were quantified in 100 whole-genome sequenced daughter

clones (Figure 5). A kataegis focus was defined as a cluster of 5 or more consecutive mutations, which reside in APOBEC-associated

sequence contexts (C>A, C>T and C>G substitutions at TCN trinucleotides), exhibiting strand-coordination and have an average in-

termutation distance of%1,500 bp. This approachmaymiss some foci, sacrificing sensitivity of detection in obtaining higher positive

predictive value of kataegis foci.

Sequence context quantification and enrichment analysis
Sequence contexts of interest were quantified in the reference human genome (GRCh37) across autosomal chromosomes and

within regions considered by the CaVEMan algorithm in detection of base substitutions (Figures S3B and S4C). The enrichment

of APOBEC-like mutations within autosomal chromosomes at the quantified sequence contexts was calculated as described previ-

ously (Chan et al., 2015). Only C>T and C>Gmutations were considered, as C>Amutations at APOBEC-characteristic context (TCN)

frequently arise during cell cultivation. Briefly, enrichment analysis quantifies how frequently C>T and C>G mutations occur in a

sequence context of interest, compared to the total number of C>T and C>G mutations. For example, to calculate enrichment for

mutations at TCN sites the following was used:

ETCN =
MutTCN=ConTCN

MutC=ConC

MutTCN represents the number of TCN > TGN or TCN > TTN mutations;MutC the number of C>G and C>T mutations; ConTCN and

ConC represent the number of occurrences of TCN contexts (and their reverse complements, NGA) and cytosines (or guanines),

respectively.

Doubling time measurements
Doubling times were measured for a total of 26 available daughter and granddaughter clones from the BC-1, JSC-1, MDA-MB-453

and BT-474 cell lines. Clones were thawed and recovered in culture for 14-21 days prior to seeding. 100,000 cells were seeded from

each clone and counted every 24 to 72 hours over the course of 8 to 15 days in triplicates. Alive cells, stained with Trypan Blue

(Sigma-Aldrich), were counted with a hemocytometer. Doubling times were derived from the cell counts assuming the logarithmic

growth,

Nt =N0 3 2t=T

N0 and Nt are the cell counts at the seeding time and at the examined time, respectively. T is the doubling time and t are days past

seeding at the examination. A linear regression was performed in R using the ‘lm’ function. The 90% confidence interval was calcu-

lated using the ‘prd’ function. Numbers of divisions which took place during the examined in vitro periods were estimated for each

clone from themeasured doubling times and durations of examined time frames (Table S2). Linear regressions between cell divisions

and the burden of acquired mutational signatures for each cell line were performed using the ‘lm’ function in R.

Pathogen detection
To detect viral DNA sequences in the available whole-genome sequencing data from parent and daughter clones (data not shown),

read-pairs which had one or both reads unmapped were identified and bases with Phred quality score < 10 were removed. The

remaining sequence was split into non-overlapping 30bp fragments. Terminal fragments were processed without further splitting

(30-59bp). The obtained fragments were aligned to the viral GOTTCHA database (Freitas et al., 2015), at the taxonomic levels of fam-

ily, species, genus and strain using BWA (Li and Durbin, 2010). Presence of viral sequences was defined in those cases where at least

5%of the viral genomewas covered with aminimum average depth of two reads acrossmultiple clones from the same cell line. Pres-

ence of EBV was determined by examining the average read coverage andmeanmapping quality across the viral genome present in

the reference human genome (GRCh37) andwas not detected in any of the examined cell lines, other than JSC-1 andBC-1 previously

reported to carry the virus (Callahan et al., 1999; Cannon et al., 2000) .

Identification of L1 mobile element insertions acquired in vitro

Non-reference L1 insertions were identified with TraFiC-mem v1.1.0 (https://gitlab.com/mobilegenomes/TraFiC), an improved

version of the TraFiC (Transposon Finder in Cancer) algorithm (Rodriguez-Martin et al., 2017; Tubio et al., 2014). TraFiC-mem is

based on discordant read-pair analysis as TraFiC, but it uses BWA-mem instead of RepeatMasker as a search engine for the iden-

tification of retrotransposon-like sequences in the sequencing reads and it incorporates an additional module for reconstructing the

insertion breakpoints through local de novo assembly. TraFiC-mem was executed for a total of 100 daughter (and granddaughter)

clones using the corresponding parent (and daughter) clones as reference sequences to identify L1 insertions acquired during the

examined in vitro time frames (Table S5). Filtering of somatic L1 candidate insertions was performed following the criteria defined

previously (Tubio et al., 2014), but with an additional step consisting of the removal of somatic candidates if they match a

germline retrotransposition of the same family identified across > 5,000 non-cancerous genomes from the 1000 Genomes
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(Sudmant et al., 2015) and PCAWG projects (Campbell et al., 2017; Waszak et al., 2018). Finally, the identified L1 insertions were

subject to visual inspection of BAM files with the Integrative Genomics Viewer (IGV) (Robinson et al., 2011) and removed if detected

in any number of reads in the corresponding reference clones.

RNA sequencing and analysis
RNA was extracted using RNeasy Plus kits (QIAGEN) from 26 daughter clones (Table S2). To control for non-biological variation in

expression data, ERCC Spike-In Mix (Thermo Fisher) was added (1ug total RNA spiked with 2uL of 1:100 ERCC mix). rRNA was

depleted using Ribo-Zero rRNA Removal Kit (Illumina) and 150 base short-insert cDNA libraries generated using KAPA Stranded

mRNA-Seq Kit (Illumina), following the balanced block design (Auer and Doerge, 2010). Sequencing (paired end, 75-bp read length)

was performed on Illumina HiSeq 2500 platform. The sequencing reads weremapped using TopHat2 (Kim et al., 2013) (version 2.1.1)

to the reference human genome (GRCh37) supplemented with control sequences to allow mapping of the Spike-In control RNA.

Duplicate reads were removed using the Picard (MarkDuplicates) tool (version 1.60; https://broadinstitute.github.io/picard/). Gene

expression levels were estimated with the default settings of the Cufflinks tool (Trapnell et al., 2010) (v.1.0.2), using a reference Gen-

eral Feature Format (GFF) file derived from Ensembl version 58. Only the high-confidence values (Cufflinks status ‘OK’) were consid-

ered in derivation of FPKM values and further analyses. A positive correlation between expected and observed burden of control

Spike-In RNA implied the minimal technical variation affecting the data interpretation (not shown).

1,001 cell line panel expression and methylation datasets
Expression and methylation datasets from the cell line panel are available at https://www.cancerrxgene.org/gdsc1000/ and were

processed previously (Iorio et al., 2016). The available expression dataset was generated using the Robust Multi-Array Average

(RMA) method (Iorio et al., 2016) and it was normalized gene-wisely here to conduct analysis at the individual sample level and over-

come the lack of transcriptional data from matched normal samples. The probability distribution Pg describing the expression of a

given gene g across the cell lines was estimated using a non-parametric Gaussian kernel estimator. Each expression value xg;l
(of gene g in cell line l) was assigned a normalized expression score equal to

zg;l = log

 
CDFg

�
xg;l
�

1� CDFg

�
xg;l
�!;
where CDFgðxÞ is the value assumed by the cumulative distributi
on of the gene g expression at x:

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using indicated algorithms and tests. Graphics were produced using R version 3.2.2: A language

and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria).

Mutational Signatures Analysis
Mutational signatures identified in ICGC PCAWG Platinum release

The set of mutational signatures annotated across cell line and PDX datasets was extracted across 2,709 primary human cancers, as

part of the Platinum version of ICGC PCAWG release (Alexandrov et al., 2018). The 96-channel mutational catalogs of the corre-

sponding primary cancers were provided by PCAWG ICGC Mutational Signatures group (Table S3).

The computational framework for identification of mutational signatures across the Platinum PCAWG dataset incorporated two

independent and distinct steps, termed SigProfiler (v. 2.1) and SigProfilerSingleSample (v. 1.2) (Alexandrov et al., 2018), based on

previously developed methodologies (Alexandrov et al., 2015; Alexandrov et al., 2013b; Nik-Zainal et al., 2016). The code for both

tools is freely available and can be downloaded from: https://www.mathworks.com/matlabcentral/fileexchange/38724-sigprofiler.

The first step (SigProfiler) encompasses a hierarchical de novo extraction of mutational signatures based on somatic mutations

and their immediate sequence context, while the second step (SigProfilerSingleSample) estimates the numbers of somatic mutations

in an individual sample associated with a given set of mutational signatures. Numerical and graphical patterns of the 48 Platinum set

of PCAWG signatures, including 9 signatures associated with technology-associated artifacts (termed ‘R1-9’ signatures), are pro-

vided in Figure S1 and/or Table S1. Table S3 provides the estimated numbers of somatic mutations associated with thesemutational

signatures in 2,709 cancer samples.

Framework for analysis of mutational signatures on cell line and PDX datasets

Mutational signatures were annotated on cell line and PDX datasets using SigProfiler (v.2.1) and the SigProfilerSingleSample (v.1.2),

modified as described below.

SigProfiler hierarchical de novo extraction of mutational signatures

SigProfiler was first used for de novo discovery of mutational signatures across five separate datasets, including 96-channel muta-

tional catalogs (Table S3) from (1) exome sequences from 1,001 human cancer cell lines, (2) exome sequences from 577 PDXmodels

and 25 of the available originating tumors, (3) exome sequences from 63 cell line clones, (4) whole-genome sequences from 136 cell

line clones and (5) whole-genome sequences from 36 single cells.
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For a given set of the mutational catalogs, the previously developed algorithm (Alexandrov et al., 2013b) was applied in a hierar-

chical manner to an input matrixM ˛ RK3G
+ of non-negative natural numbers with dimension K3 N, where K reflects the number of

mutation types and G corresponds to the number of samples. The algorithm first deciphers the minimal set of mutational signatures

that optimally explains the proportion of each mutation type and then estimates the contribution of each signature across the sam-

ples. More specifically, the algorithm makes use of a well-known blind source separation technique, termed nonnegative matrix

factorization (NMF). NMF identifies thematrix ofmutational signatures, P ˛ RK3N
+ , and thematrix of the activities of these signatures,

E ˛ RN3G
+ . Identification of the unknown number of signatures, N, is based on the robustness of the overall solution; the method-

ology has been previously described (Alexandrov et al., 2013b). The identification of M and P is done by minimizing the generalized

Kullback-Leibler divergence:

min
P˛RðK;NÞ

+ E˛RðN;GÞ
+

X
ij

 
Mijlog

MijbMij

�Mij + bMij

!
;

where cM ˛ RK3G is the unnormalized approximation of M, i.e., cM
+ = P 3 E. The framework is applied in a hierarchical manner to

increase its ability to find mutational signatures present in few samples as well as mutational signatures exhibiting a low mutational

burden. More specifically, after application to a matrixM containing the original samples, the accuracy for explaining the mutational

spectra of each of the cancers with the extracted mutational signatures is evaluated. All samples that are well-explained by the ex-

tracted mutational signatures are removed and the framework is applied to the remaining sub-matrix of M.

The extracted signatures were compared to the set of mutational signatures deciphered from the PCAWG Platinum release

(Table S1). Given the high proportions of germline variants inmutational catalogs from 1,001 cell lines (dataset 1) and 602 PDXmodels

and their originating tumors (dataset 2) due to non-availability of the normal reference samples, we only considered two newly ex-

tracted signatures: SBS25 discovered in Hodgkin’s lymphoma cell lines (Figure S1; Table S1), because mutational signatures anal-

ysis was not available from primary Hodking lymphomas (Alexandrov et al., 2018); and signature termed ‘SNP signature’ (Table S1),

characterized by T>C mutations at NTG context believed to reflect the residual germline variants, which commonly present as C>T

mutations at CpG islands, but on rare occasions may also present as T>C variants at TpGs in the reference genome. All signatures

extracted across all cell line clones (datasets 3 and 4) could be explained by a combination of signatures from the global set (cosine

similarity > 0.75) and hence none were considered as novel. Signatures extracted across complete mutational catalogs from single

cells (dataset 5) revealed two novel mutational signatures, termed SBS scE and scF, likely associated with the process of single cell

lysis and/or WGA of single DNA molecule (see section Mutational catalogs from single cells).

Assignment of mutational signatures with SigProfilerSingleSample

The hierarchical extraction was followed by estimating the contributions of the given sets of mutational signatures in individual muta-

tional catalogs (provided in Table S3 for all samples considered) using SigProfilerSingleSample. The core set of mutational signatures

(Figure S1; Table S1) was annotated on all cell line and PDX samples and included 39 signatures discovered across the PCAWGPlat-

inum dataset and SBS25, discovered in Hodgkin’s lymphoma cell lines. Additional signatures (Table S1) were annotated on specific

datasets and included the SNP signature annotated on mutational catalogs from 1,001 cell lines and 602 PDX models and their orig-

inating tumors, due to high levels of germline variation in the corresponding datasets; R1 through R9 signatures, associated with

technology-related artifacts (Alexandrov et al., 2018), were annotated on the PDX dataset to detect possible technology-related ar-

tifacts, because the sequencing data and corresponding quality controls were generated externally; and scE and scF signatureswere

annotated on mutational catalogs from single cells and their related stock cell lines.

For each examined sample, C ˛ RK31
+ , the estimation algorithm consists of finding the minimum of the Frobenius norm of a con-

strained function (see below for constraints) for a set of vectors Si = 1::q˛ Q, where Q is a subset (albeit, not necessarily a proper sub-

set) of the given set of mutational signatures P, i.e., Q4P.

min

�����
����� C!�

Xq
r = 1

�
Sr

!
3Er

� �����
�����
2

F

(1)

In Equation 1, C
!

and Sr
�!

represent vectors with K number of nonnegative components reflecting, respectively, the mutational cat-

alog of a sample and the r-th given mutational signature. Further, both vectors have known numerical values either from the de novo

extraction (i.e., Sr
�!

) or from generating the original mutational catalog of the sample (i.e., C
!
). In contrast, Er corresponds to an un-

known scalar reflecting the number of mutations contributed by signature Sr
�!

in the mutational catalog C
!
. Further, the minimization

of Equation 1 is always performed under two additional constraints: (i) ErR0 and (ii)
���� C! ����

1
REr ; The constrained minimization of

Equation 1 is performed using a nonlinear convex optimization programming solver using the interior-point algorithm (Byrd et al.,

1999). Assignment by SigProfilerSingleSample follows a multistep process, where Equation 1 is minimized multiple times with addi-

tional constraints (see schematic description below).

First, the subsetQ contains all signatures that are found in the primary cancers (PCAWG Platinum release, see Table S3) from the

matching cancer types. For this purpose, all cell line samples and PDXmodels were reclassified to themost closelymatching types of

primary cancers available from PCAWG Platinum release (as per Table S3). Any signature violating a biologically meaningful

constraint (Alexandrov et al., 2018) based on a transcriptional strand bias or a total number of somatic mutations was excluded
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from the set Q. Further, for the 1,001 cell lines any signature violating a biologically meaningful constraints (Alexandrov et al., 2018)

based on number of indels was also excluded from the set Q. Further, any Sr
�!

3Er for which the cosine similarity between bC and C
!

does not increase more than 0.01 are removed, where bC =
Pq

r = 1ð Sr
�!

3 ErÞ. After this assignment is completed, Equation 1 is

minimized by allowing all remaining signatures, i.e., Si = 1::q˛ QnP, to be added provided that each signature increases the cosine

similarity between bC and C
!

with more than 0.025, where bC =
Pq

r =1ð Sr
�!

3 ErÞ. Lastly, during all minimization steps, an additional

biological condition was enforced allowing SBS1 and SBS5 in all samples to account for residual germline mutations (Rahbari

et al., 2016).

Relationships between somatic retrotransposition and APOBEC-associated SBS2 and SBS13
The relationship betweenmutational signatures and somatic retrotransposition was first examined across 100 cell line daughter (and

granddaughter) cell line clones.We applied generalized linear mixedmodel (GLMM) Poisson regression analysis to burdens of in vitro

acquired mutational signatures and rates of L1 insertions (Tables S3 and S5, respectively). For each signature, we fitted two Poisson

regression models (a null model and an alternative model) for the count of mutations assigned to the specified signature. In the null

model the count of mutations y does not depend on the L1 insertion rate, while the alternative model incorporates the dependence.

Model fitting was performed using the function glmer (R package lme4), using the Poisson family with a log link function. In the case of

the null model, for each cell line experiment (i), the fittedmodel has ameanmutation countmi given by logðmiÞ = c + logðtiÞ + aðTiÞ +
ei, where c is a constant, ti is the time spent in culture by the cells in experiment i, Ti is the tumor type from which the cell line was

derived, a(Ti) denotes the random effect of this tumor type factor, and ei denotes a random effect which is specific to the experiment.

In the case of the alternative model we introduce a predictor variable u which depends on the L1 insertion rate x=t (where x is the L1

insertion count, and t is the time spent in culture). The predictor variable u is defined as u = log
�
1 + x=t

	
. The use of this predictor

variable should avoid introducing any additional dependence on the time spent in culture ti. Furthermore, the log(t) term is an ‘‘offset’’

which ensures that the estimated effect sizes (including the slopes) do not depend on the time in culture. The fittedmodel has amean

mutation countmi given by logðmiÞ = c + logðtiÞ + aðTiÞ + ei + bðTiÞ ui, where bTi denotes the random effect of this tumor type factor

on the slope of the predictor variable ui, and as before, aTi denotes the random (intercept) effect of this tumor type factor. The Wald

test was used to test the null model against the alternative model. A separate test was performed for each signature (n = 5) and the

Bonferroni procedure was applied to adjust the significance thresholds for multiple testing.

The relationship between the individual mutational signatures and the rate of somatic L1 insertions was investigated further on

2,353 primary human cancers from patients with a known age at the diagnosis project (Table S5 lists considered samples and

age at diagnosis) and previously annotated both mutational signatures (Alexandrov et al., 2018; see Table S3) and somatic L1 inser-

tions (v.1; Rodriguez-Martin et al., 2017) as part of the ICGC PCAWG, using the same GLMM Poisson regression analysis. The null

model and alternative model were as previously specified, with the index variable i referring to an individual primary cancer, and ti
representing the age of the patient at diagnosis. The L1 insertion rate was defined as x=t , where x is the L1 insertion count, and t

is the patient age at diagnosis. A separate test was performed for each signature and the Bonferroni procedure was applied to adjust

the significance thresholds for numbers of successful tests performed (i.e., numbers of signatures tested; n = 31).

DATA AND SOFTWARE AVAILABILITY

Sequence data generated in this study has been deposited at the EuropeanGenome-Phenome Archive (https://www.ebi.ac.uk/ega/)

with accession numbers:

Whole-exome sequencing: EGA: EGAD00001004201

Whole-genome sequencing: EGA: EGAD00001004203

RNA sequencing: EGA: EGAD00001004202

The most recent versions of our mapping and mutation calling pipelines, and supporting documentation, can be accessed from:

https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpmap

https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpwxs

https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpwgs
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https://www.ebi.ac.uk/ega/
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Supplemental Figures

Figure S1. Core Set of the Annotated Mutational Signatures, Related to Figures 1, 3, 5, and 6

(A) The core set of the mutational signatures, including the Platinum set of the PCAWG signatures and SBS25 discovered in Hodgkin’s lymphoma cell lines.

Signatures are displayed according to the alphabetical 96-substitution classification on horizontal axes, defined by the six color-coded substitution types and

sequence context immediately 50 and 30 to the mutated base axes (as per panel B). Vertical axes differ between individual signatures for visualization of their

patterns (numerical patterns in Table S1) and indicate the percentage of mutations attributed to specific mutation types, adjusted to genome-wide trinucleotide

frequencies. We thank PCAWG Mutational Signatures Working Group for the figure.

(B) Transcriptional strand bias for SBS25. The mutational signature is displayed according to the 192-subsitution classification, incorporating the six substitution

types in color-coded panels, the sequence context immediately 50 and 30 to the mutated base and whether the mutated base (in pyrimidine context) is on the

transcribed (blue bars) or untranscribed (red bars) strand.



Figure S2. Expression of Genes Previously Associated with Mutational Signatures in Examined Cancer Cell Lines, Related to Figures 3 and 4

Each panel compares normalized basal expression of indicated genes, between the examined cell line (black) indicated on the top and cell lines from the 1,001

panel, from matching (blue) or other (beige) cell line classes as per their COSMIC classification (Table S2). P values (one-tailed; *p < 0.05, **p < 0.01, ***p < 0.001)

correspond to the computed z-scores indicating the deviation of the mean expression of the gene in the examined cell line from the groups used in comparisons.

(A) Expression of the mismatch repair genes in cell lines with MSI-associated signatures (SBS6, SBS14, SBS15, SBS20, SBS21, SBS26). Cell lines classified as

high or low in microsatellite instability (Iorio et al., 2016) were excluded from the control panels.

(B) Expression of UNG in cell lines with APOBEC-associated SBS2 and SBS13.

(C) Expression of BRCA1 in cell lines with SBS3, associated with defective activity of the homologous-recombination-based double-strand break repair.
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Figure S3. Rearrangements and C>T Substitutions at NCG Contexts, Associated with SBS1 and 5-Methylcytosine Deamination, Are

Generated over Time, Related to Figure 3

Examination of additional mutation types acquired over time in cell line samples subjected to whole-genome sequencing and experimental design in Figure 2.

(A) Bars indicate the numbers of color-coded rearrangement classes acquired during the time periods outlined in Figure 2, in indicated cell lines. Daughter clones

were cultivated for the number of days indicated in brackets. zOnly single parent clones fromHT-115, LS-180 and AU565 cell lines were subject towhole-genome

sequencing and their sequences were used as proxies for the mutational catalogs of the corresponding stock cell lines.

(B) Each panel displays the fraction of the cytosine (or guanine) bases at 16 possible trinucleotide contexts that were mutated to thymines (or adenines,

respectively) over the examined in vitro periods (Period 3; Figure 2), in 100 indicated daughter and granddaughter clones.



(legend on next page)



Figure S4. Episodic APOBECMutagenesis Is LikelyMediated by APOBEC3A, but It Does Not Depend on Proliferation Rates or Expression of

APOBEC Genes in Examined Cell Lines, Related to Figures 3 and 4

(A) Cell divisions were measured for 26 daughter and granddaughter clones from the indicated cell lines and compared to the genome-wide burdens of the

indicated signatures acquired during the examined in vitro time frames (Period 3, Figure 2). The best fit, as well the adjusted R2, are indicated in plots where

sufficient data points were generated for a statistical comparison. *p < 0.05.

(B) RNA-sequencing derived transcription levels (FPKM = Fragments Per Kilobase of transcript per Million mapped reads) of APOBEC family members with

documented deaminase activity on DNA and preference to induce mutations at TCN context were examined in clones from color-coded cell lines, where RNA-

sequencing data was generated (Table S2). Only those clones were considered where sufficient data was generated to accurately derive point estimate ex-

pressions of examined genes (STARMethods). Expression was standardized relative to TATA-binding protein (TBP). Top panel: expression of APOBEC genes in

clones from four indicated cell lines. Horizontal bars indicate the median expression level. Bottom panels: Expression of APOBEC genes was compared to the

total burden of SBS2 and SBS13 mutations acquired genome-wide in vitro, in daughter and granddaughter clones from indicated cell lines. Robust regression

was applied to derive the best estimates for the slopes of the indicated signatures (black lines), 95%confidence intervals (gray shading) and indicatedP values, all

of which were above the Bonferroni threshold corresponding to significance at the 0.05 level, p = 0.002 (corresponding to 0.05/23, where 23 is the number of

successful tests). In some cases, insufficient data points were generated for a statistical comparison (p = NA).

(C) Each panel represents enrichment of genome-wide C>T and C>Gmutations in indicated clones, at SBS2 and SBS13-specific sequence contexts (TCN, TCA)

and atmotifs associated with APOBEC3A or APOBEC3B-indecedmutagenesis (YTCN/YTCA and RTCN/RTCA, respectively). N is any base, R is any purine and Y

any pyrimidine base. A and B are parent clones, others are daughter and granddaughter clones from the related lineages.



(legend on next page)



Figure S5. Significant Relationships between Somatic Retrotransposition and Mutational Signatures in Cell Lines and Primary Cancers,

Related to Figures 3 and 4

(A andB) The upper plots in both panels show the dependence of the observed numbers ofmutations assigned to the indicated signatures (dots), and fitted values

(lines) estimated using the GLMM Poisson regression model (STAR Methods), on the L1 insertion rate in cell line clones (panel A) and primary cancer samples

(panel B). P values which fall below the Bonferroni thresholds corresponding to significance at the 0.05, 0.01, and 0.001 levels are indicated as *, ** and ***,

respectively. The bottomplots show the estimated effects of cell line (panel A) or primary cancer (panel B) types on the slope of the regression line, in ranked order,

against the normal quantiles. For each tumor type, the fitted value is accompanied by a 95% confidence interval. See Table S5 for cell line and primary cancer

samples considered in analyses.



(legend on next page)



Figure S6. Signatures of False-Positive Somatic Mutations Are Present in DNA Prepared from Single Cells, Related to Figure 6

(A) Top two panels: bars represent the percentage of base substitutions attributed to color-coded signatures in complete (rather than filtered, see Figure 6A)

mutational catalogs fromwhole-genome sequenced stock cell lines from the denoted cancer classes (abbreviations in Table S2) and their single cells. The bottom

panel represents the color-coded fractions of minor alleles at examined heterozygous SNP loci, in indicated single cells, which were (i) lost due to WGA-

associated locus dropouts, (ii) lost due to WGA-associated allele dropouts or (iii) fall under the detection threshold for identification of base substitutions due to

WGA-associated imbalanced amplification.

(B) Spectra of mutations identified genome-wide in two exemplar stock cell lines (top panels) and in their corresponding single cells (bottom panels), genome-

wide or within haploid regions at the indicated variant allele fractions (VAF). Each panel is displayed according to the 96-substitution classification on the hor-

izontal axis defined by the six color-coded substitution types and sequence context immediately 50 and 30 to the mutated base. Order of the sequence context

follows the standard alphabetical representation (see Figure 6B). Total number of base substitutions is indicated on the top of each panel. C>T variants at NCG

contexts and T>C mutations at ATN contexts in stock cell lines largely represent germline variation due to the non-availability for most cancer cell lines of normal

DNAs from the same individuals.



(legend on next page)



Figure S7. Variant Allele Fraction Distribution Plots for Cell Line Clones, Related to Figures 3–5

(A and B) Distribution plots showing frequencies of the variant alleles fractions (VAFs) of mutations that remain after the filtering steps (STARMethods) in indicated

clones analyzed by whole-exome (panel A) or whole-genome sequencing (panel B). VAF peaks often deviate from 50%, expected for clonal heterozygous

somatic mutations in a diploid genome, because cancer cell lines are often polyploid and heterozygous copy number changes across the genome can further

modulate the distribution of the VAF. Bimodal distributions and subclonal peaks can arise from mixed effects of mutations being acquired on different copy

number states of the genome and/or subclonally. Minor proportion of mutations presenting at 100%of the reads in some clones can reflect loss of heterozygosity

at the loci of the newly acquired mutations or residual germline variants, mainly in parent clones that were compared against the unmatched normal human

genome (STAR Methods).
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