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Abstract 

The world has witnessed a fast-paced digital transformation in the past decade, giving rise to all-connected 
environments. While the increasingly widespread availability of networks has benefited many aspects of our lives, 
providing the necessary infrastructure for smart autonomous systems, it has also created a large cyber attack 
surface. This has made real-time network intrusion detection a significant component of any computerized system.  
With the advances in computer hardware architectures with fast, high-volume data processing capabilities and the 
developments in the field of artificial intelligence, deep learning has emerged as a significant aid for achieving 
accurate intrusion detection, especially for zero-day attacks. In this paper, we propose a deep reinforcement 
learning-based approach for network intrusion detection and demonstrate its efficacy using two publicly available 
intrusion detection datasets, namely NSL-KDD and UNSW-NB15. The experiment results suggest that deep 
reinforcement learning has significant potential to provide effective intrusion detection in the increasingly complex 
networks of the future.        

Keywords: security, deep reinforcement learning, intrusion detection 

1. Introduction 

The fast-paced developments in computing and network infrastructures in the past two decades have led 
to the rise of the Internet of Things (IoT) paradigm with ubiquitous connectivity along with increasingly 
widespread usage of cloud computing. While these developments have greatly facilitated daily 
operations in many industries and enterprises in addition to touching the daily lives of people in positive 
ways, the resulting cyber security issues have created deterrents for the more widespread adoption of 
IoT due to an enlarged attack surface with many security vulnerabilities. The number of zero-day 
attacks, which are security incidents whose signatures were not previously observed, is rising every day 
with the increasing number of vulnerabilities in these networked systems. Some of these attacks can 
have devastating consequences, as they are now capable of destroying not only software, but also 
hardware components through IoT connections.  

Modern network intrusion detection and prevention systems (IDPS) have the purpose of detecting and 
mitigating various attacks on networked systems with sub-second response times.While IDPS in legacy 
systems mostly relied on attack signature-based solutions, which would create rules for each observed 
attack pattern and compare incoming traffic with the rules in the IDPS’s database, this solution is not 
sufficient to cover the variety of attacks in today’s complex systems both because of the high of volume 
of traffic that needs to be analyzed in real time and due to the inability to generalize and detect attacks 
with unknown signatures. Security researchers thus have turned to machine learning (ML) and deep 
learning (DL) techniques that are capable of learning patterns of attacks and normal behavior of systems 
so that anomalous network traffic can be detected and classified in real time, and the IDPS can adjust 
itself to deal with new types of attacks over time.      

Reinforcement learning (RL) algorithms, which are based on agents interacting with a runtime 
environment under a variety of states to learn to maximize their rewards, has been a popular technique 
for many learning-based tasks since their introduction. More recently, deep reinforcement learning 
(DRL) algorithms, which utilize deep neural networks within RL to facilitate representation of many 
possible state-action pairs and provide generalizability, have been applied successfully to a variety of 
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problem domains. Among successful applications of DRL are Atari games [1], chess [2], solving 
arithmetic problems [3], medication treatment plans [4], optimization of chemical reactions [5], and 
extraction of biological sequence data [6] among many others. Despite its success in various fields, the 
application of DRL to network security has been rather limited so far.    

In this paper we propose a DRL-based approach for network intrusion detection and evaluate its 
effectiveness on two real-world benchmark datasets that have been commonly used in the evaluation of 
ML-based approaches for detecting cyber attacks in legacy networks, namely NSL-KDD and UNSW-
NB15. The evaluation results demonstrate that DRL is a promising method for network intrusion 
detection, achieving F-1 scores of over 96% on both datasets. We also show that the effectiveness of the 
algorithm is significantly affected by the structure of the embedded deep neural network, i.e., the number 
of hidden neurons, as well as the number of training iterations. Performance comparison of the model 
with various state-of-the-art ML/DL models demonstrates its promise, especially in terms of F-1 score, 
on the two benchmarks.       

The remainder of this paper is organized as follows: Section 2 provides an overview of related work in 
ML-based intrusion detection systems. Section 3 provides details of the proposed DRL model for 
network intrusion detection. Section 4 provides an experimental evaluation of the model on two public 
network intrusion detection datasets. Section 5 concludes the paper with future work directions.  

2. Related Work 

The advances in the field of machine learning have paved the way for their use in the field of cyber 
security for the past two decades. Most existing anomaly-based intrusion detection systems rely on ML 
techniques. Beehive, a successful solution for detecting intrusion from network logs, was proposed in 
[7]. Beehive uses four types of features and utilizes k-means clustering to detect anomalies. One 
downside is that it does not work in real time. Another successful approach utilizing k-means clustering 
includes the work of [8]. While k-means clustering can be effective for detecting anomalies, predefining 
the value of k can be a problem in many settings.  

Balogun and Jimoh [9] proposed a method utilizing the k-nearest neighbor (KNN) classifier and decision 
trees. Their approach was shown to be capable of detecting new attacks with high accuracy. [10] utilized 
a variety of ML algorithms including k-means clustering, isolation forest, histogram based outlier score 
and cluster-based local outlier factor in their approach called CAMLPAD, and achieved an accuracy of 
95% in an intrusion detection task. Pervez and Farid [11] proposed using Support Vector Machines 
(SVM) for intrusion detection on the NSL-KDD dataset. Although SVM was successful on the training 
set, it failed to detect many attacks in the test set. In [12], a multi-layer perceptron based model with 3 
layers was proposed, which achieved 81% accuracy for binary classification on NSL-KDD. Kamel et 
al. [13] proposed an AdaBoost-based intrusion detection model and reported 99.9% accuracy on NSL-
KDD, however their training and test sets consisted of subsets of the whole dataset, which were not 
clearly described. Hu et al. [14] also applied AdaBoost for intrusion detection on the KDD Cup’99 
dataset and achieved 91% detection rate. Engly et al. [15] evaluated the performance of Gradient 
Boosting Machines on NSL-KDD and achieved successful results with an ensemble model. Moustafa 
and Slay [16] applied Expectation-Maximization Clustering, Logistic Regression (LR) and Naive Bayes 
classification on the UNSW-NB15 datasets, and achieved the best results with an accuracy of 83% for 
LR.   

Following the success of deep learning in many fields in recent years, security researchers have started 
employing it in many intrusion detection systems. [17] and [18] proposed using recurrent neural 
networks (RNN) in intrusion detection on data with time dependencies and achieved successful results. 
A variant of the RNN-based intrusion detection model was proposed by Yin et al. [19], achieving over 
83% accuracy on the KDD Cup’99 dataset. An LSTM-based model, which is a special RNN-structure, 
was proposed by Li et al. [20], which achieved 83% accuracy and F-1 score on NSL-KDD. Behera et 
al. [21] also proposed the use of convolutional neural networks (CNN) for intrusion detection and 
achieved high accuracy on the NSL-KDD dataset. They also stated their approach can be adapted to 
detect zero-day attacks. Another CNN-based intrusion detection model was proposed by Li et al. [22], 
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which also achieved successful results on NSL-KDD. Lopez-Martin et al. [23] proposed a conditional 
variational auto-encoder based model for unsupervised intrusion detection, which achieved 80.10% 
accuracy on NSL-KDD. A two-stage stacked auto-encoders based model was proposed by Khan et al. 
[24], which achieved 89% accuracy on the UNSW-NB15 dataset. A hybrid model consisting of deep 
neural networks and spectral clustering was proposed by Ma et al. [25], which achieved around 72% 
accuracy on NSL-KDD. A scalable, hybrid intrusion detection approach, which utilizes deep neural 
networks (DNNs), was proposed by Vinayakumar et al. [26]. The distributed DNN-based model was 
shown to achieve better performance than traditional ML-based classifiers on a set of benchmarks. Gao 
et al. [27] developed a deep belief networks-based model for intrusion detection, and demonstrated its 
superior performance in comparison to SVM and MLP.     

Researchers have also utilized RL for detecting attacks in networks. Various types of log files were used 
in the solution of [28] where a rule-based approach was taken to create association rules signaling 
attacks. Their approach utilized RL as a helper rather than basing the solution on it. [29] also proposed 
an RL-based approach with multiple agents watching over the network states in a hierarchical manner, 
which was shown to provide accurate results, although it was not evaluated with different datasets. A 
cyber security simulation was set up in [30] to apply RL for finding the best strategies of both attackers 
and defenders in a Markov game. Their experiments demonstrated the tool can be used both for intrusion 
detection systems and for launching successful cyber attacks on systems. The approach we propose in 
this work differs from existing RL-based approaches in that it utilizes fully connected deep neural 
networks for allowing the RL agents to make decisions based on unstructured input data, obviating the 
need to manually create large state spaces.  

3. Proposed Intrusion Detection Approach 

In this section, we describe our proposed DRL-based approach for network intrusion detection. We first 
provide a brief overview of deep neural networks, and continue with an explanation of how they are 
integrated into RL to achieve a highly accurate intrusion detection model. 

3.1 Deep Neural Networks (DNN) 

Neural networks are a special category of ML models the design of which resembles the functioning of 
the human brain in the sense that it simulates the processing and tranmission of information through the 
complex networks of neurons, which get excited or inhibited by the signals in the network [31]. One of 
the first examples of neural network structures is the perceptron, which contains a single input layer 
connected to an output. The perceptron represents the simplest processes in the brain’s neurons using 
an activation function and a set of weights, as depicted in Figure 1(a). Machine learning with a 
perceptron involves random assignment of weights to each of the input nodes, and the passage of the 
weighted sum of the input values through an activation function to produce the output value. The weights 
are adjusted throughout the training process in multiple iterations and the goal of the training process is 
to minimize the aggregate error in the output. The error is calculated as the difference between the 
ground truth output, and the output that is calculated by the model.       

Multi-layer perceptrons (MLP) are feedforward neural networks containing a number of hidden layers 
in between the input and output layers, as demonstrated in Figure 1(b). The figure shows a fully-
connected deep neural network with one hidden layer, with every input node connected to every hidden 
node and likewise, every hidden node connected to every output node. When the fully-connected neural 
network consists of more hidden layers, each node in a hidden layer will be connected to each node in 
the following hidden layer. As seen in the figure, each edge connecting the nodes has a weight that is 
updated throughout the training process to achieve minimum output error. The number of hidden 
neurons in each layer can be different from the number of input and output layer neurons. Training of 
the network involves running a back-propagation algorithm [31] updating the weights of the edges in 
each iteration. While the number of input nodes is decided by the dimensionality of the input feature 
vector, the number of output nodes is decided by the specific learning task, e.g. multi-class classification, 
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regression, binary classification etc. Among commonly used activation functions in MLP are sigmoids 
including  𝑦𝑦(𝑣𝑣𝑖𝑖) = t𝑎𝑎𝑎𝑎ℎ (𝑣𝑣𝑖𝑖) and 𝑦𝑦(𝑣𝑣𝑖𝑖) = tanh(𝑣𝑣𝑖𝑖) + (1 + 𝑒𝑒−𝑣𝑣𝑖𝑖)−1. 

DNNs are yet more complex artificial neural networks with many more hidden layers than MLPs. Their 
complexity allows them to express more complex hypotheses by better modeling the nonlinear 
relationships in the network. DNNs provide the inherent ability to learn higher level representations 
from possibly unstructured data, which makes them very valuable for a variety of machine learning 
tasks. In this work, we utilize fully connected DNNs integrated into the RL process as described below 
to achieve highly accurate intrusion detection.  

  
(a) Simple perceptron (b) Feedforward neural network 

Figure 1 Structure of neural networks 

3.2 DRL-Based Intrusion Detection 

Reinforcement learning is an ML technique based on an agent learning through rewards and 
punishments it receives through its interactions with the environment. Each state of the agent is 
associated with a set of actions that could have different rewards, and the agent learns over time what 
action to perform based on its history of actions-rewards at that same state. An agent in RL takes actions 
from among a set of possible actions for its current state, and receives a positive or negative reward for 
taking that particular action, which it saves in its memory. These rewards are then used by the agent to 
decide which action to take in later states, where the ultimate goal of the agent is to maximize its total 
reward value. Agents are connected to their environments with action and recognition as described by 
Kaelbing et al. [32]. Picking a certain action at a certain state results in an output, which modifies the 
state of the agent, and the agent receives the value of this change with a reinforcement signal. The agent 
learns to choose the most rewarding action over time by trial and error using different algorithms. The 
environment is not always deterministic, i.e. choosing the same action can have different consequences 
at different points in time in the same state.  

As apparent from the description above, RL is quite different from supervised learning. While 
supervised learning utilizes training datasets consisting of labeled input/output pairs, an agent in RL 
receives immediate rewards based on its actions after performing the action. Learning does not actually 
stop in RL; it is a continuous process in which the agent keeps receiving new rewards or punishments 
as it interacts with its environment, however it is expected that the rewards will keep increasing over 
time, as the agent learns which actions provide the greatest rewards at each state.   

The state-action space could get very large in RL in complex environments, causing the algorithm not 
to generalize well. DRL is an improvement of RL algorithms that provides improved generalization 
power by augmenting RL with deep neural networks in the state-action input formation. i.e., DRL 
utilizes deep neural networks for function approximation in policy and value functions in RL.  This 
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capability is important in a network intrusion detection setting, as generalizability matters especially for 
cases like zero-day attacks.  

In an RL algorithm based on Q-learning, the value function is as follows: 

 𝑄𝑄(𝑠𝑠,𝑎𝑎)=𝑟𝑟(𝑠𝑠)+ 𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′Σ𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝑄𝑄(𝑠𝑠′,𝑎𝑎′)                                              (1) 

Equation 1 is the Bellman Equation. Here s represents the state, a represents the action, r represents the 
reward, and P represents state change possibility. Based on the equation, the Q value of a state-action 
pair is equal to the sum of the current reward and potential future Q-values. While this equation is 
discrete, many real-life applications involve continuous actions and states. Thus, we need an effective 
function approximation technique for the value function. This requirement is met by integrating DNNs 
into RL. In the value function using DNNs, every state and Q-value are calculated by utilizing hidden 
layers of neural networks, which are trained using backpropagation.  

Algorithm 1 Deep Q-learning 

1 Initialize replay memory D to capacity N  

2 Initialize Q-function with random weights  

3 
4 
5 
6 
7 
8 
9 
10 
 
11 
 
12 

for episode = 1, M do  
      Initialize neural network from a random state s  
     for t = 1, T do 
            Find Q-values for all actions using DNN algorithm: at = maxaQ* (st, a;θ) 
            Choose an action at for current state st by using e-greedy exploration 
            Move to the next state st+1 with action at, pick reward rt 

                  Store transition (st, at, rt, st+1) in D 
            Sample random minibatch of transitions (st, at, rt, st+1) in D 
            Set yj =  

            �
𝑟𝑟𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑠𝑠𝑗𝑗+1

𝑟𝑟𝑗𝑗 +  𝛾𝛾 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′𝑄𝑄�𝑠𝑠𝑗𝑗+1, 𝑎𝑎′; θ�, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑓𝑓𝑎𝑎𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 𝑠𝑠𝑗𝑗+1 
 

            Perform a gradient descent step on (𝑦𝑦𝑗𝑗 − 𝑄𝑄�𝑠𝑠𝑗𝑗 , 𝑎𝑎𝑗𝑗; θ�)2 

We describe deep Q-learning [1] in Algorithm 1 above. As the algorithm describes, DNNs are used as 
part of the RL, forming the DRL algorithm. In RL, immediate rewards are valued more than distant 
rewards in the future. DNNs provide the capability for the Q-functions to more accurately take future 
rewards into account when deciding about the actions to take. Another advantage of using DNNs in RL 
is that the number of interactions needed is reduced by sampling, resulting in better performance and 
efficiency. 

In this paper, we propose a simple DRL model for network intrusion detection, where the learning agent 
has two different states, i.e. under attack or normal traffic, and four possible actions. Table 1 provides a 
high-level overview of states, actions and corresponding reward values. The main difference of this 
approach from state-of-the-art ML/DL models for intrusion detection is the overall learning process, 
which involves exploration of the different classification options by the learning agent, which is 
penalized when it incorrectly classifies an instance and rewarded for correct classification. Through this 
process, the agent learns to take the optimal actions over time to maximize its reward. Here the states 
refer to the network traces. Unlike traditional deep learning, DNNs are only used as part of the process 
in DRL to enable representation of the policies of the agent, i.e. actions to be taken to achieved the 
maximum reward at a specific state, without having to enumerate all possible states manually. The 
learning process continues throughout the lifetime of the agent. This is an important feature for 
especially online learning systems, which will be instrumental in successful intrusion detection in the 
era of ever increasing zero-day attacks. Figure 2 shows an activity diagram of the deep Q-learning 
algorithm.  
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Table 1 RL States, Actions and Rewards  
State Action Reward 

Normal No Alarm +1 

Normal Alarm -1 

Attack Alarm +1 

Attack No Alarm -1 

  
Figure 2 Deep Q-learning activity diagram 

4. Experimental Evaluation 

We have evaluated the effectiveness of the proposed DRL model for intrusion detection using two 
benchmark datasets, UNSW-NB15 and NSL-KDD, where the task was to perform binary classification 
of records into attack and normal classes. Below we describe the datasets and provide results of the 
performed experiments.   

4.1 Datasets 

UNSW-NB15: 
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The UNSW-NB15 [33] dataset was created by the University of New South Wales in 2015, using the 
IXIA tool for generating network traffic including attacks. It has 49 features, two of which are labels for 
binary classification (i.e. attack or normal traffic) and multi-class classification (i.e. type of attack). The 
dataset contains 9 types of attack traffic in addition to normal traffic, where attacks include DoS, DDoS, 
fuzzing, backdoor, analysis, worm, exploit, shellcode and generic. The remaining fields include network 
packet and connection details like IP addresses, ports, communication protocols. A subset of the features 
of this dataset are listed in Table 2 below. The dataset consists of about two million network packet 
traces, which is quite extensive.  

Table 2 UNSW-NB15 Features 
Feature Type Description Feature Type Description 

srcip nominal Source IP sloss integer Source packets retransmitted 
or dropped 

sport integer Source port dloss integer Destination packets 
retransmitted or dropped 

dsip nominal Destination IP service nominal http, ftp, … 

dsport integer Destination port Sload float Source bits/sec 

proto nominal Protocol Dload float Destination bits/sec 

dur float Total duration Spkts integer Source-to-destination packet 
count 

sbytes integer Source-to-destination 
transaction bytes 

Dpkts integer Destination-to-source packet 
count 

dbytes integer Destination-to-source 
transaction bytes 

stime timestamp Record start time 

sttl integer Source-to-destination time 
to live value 

ltime timestamp Record last time 

dttl integer Destination-to-source time 
to live value 

label binary 0 for normal, 1 for attack 

…      

NSL-KDD: 

KDD CUP’99 [34] has been one of the most frequently used datasets in the evaluation of ML-based 
intrusion detection techniques since it was released in 1999. This dataset was generated by extracting 
features from DARPA98 [35], which is a dataset consisting of traffic obtained from the U.S. Air Force 
LAN. The dataset consists of 41 features and 4 attack categories: probing, denial of service (DoS), R2L, 
U2R. Despite its age, this dataset is still used by many researchers due to its large size (about 5 million 
records) and its modeling of a variety of conditions obtained from real network traffic. It also has some 
drawbacks including the presence of many duplicate records, unbalanced numbers of records from 
different classes in the training set, which could create biased classification models and the unbalanced 
distribution of records in the training and test sets [36]. 
 
The NSL-KDD dataset [36] was created to solve the abovementioned issues with KDD CUP’99. It 
involved removal of duplicate records and balancing of the number of records for different classes to 
prevent bias in the classification. The researchers also provided more balanced training and test sets. All 
original features from KDD CUP’99 were retained. Different sets were provided in the dataset, including 
sets with binary classification labels as in UNSW-NB15, sets with attack type labels and difficulty 
levels, as well as sets not including the hardest-to-detect cases.   
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4.2 Experimental Results 

To evaluate the effectiveness of the solution, we have utilized metrics commonly used to in ML to judge 
the goodness of algorithms, which are precision, recall, accuracy, and F-1 score. The description of each 
metric is provided in Table 3 below. The abbreviations used in the table are as follows: 

TP (true positive): The number of instances correctly classified as attacks 

TN (true negative): The number of instances correctly classified as normal traffic 

FP (false positive): The number of instances incorrectly classified as attacks 

FN (false negative): The number of instances incorrectly classified as normal traffic 
Table 3 Evaluation Metrics 

Metric Formula 
Accuracy 𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑇𝑇
 

Precision 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃

 

Recall 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇

 

F-1 Score 2 ∗  𝑃𝑃𝑟𝑟𝑒𝑒𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑓𝑓𝑎𝑎 ∗ 𝑅𝑅𝑒𝑒𝑃𝑃𝑎𝑎𝑡𝑡𝑡𝑡 
𝑃𝑃𝑟𝑟𝑒𝑒𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑓𝑓𝑎𝑎 + 𝑅𝑅𝑒𝑒𝑃𝑃𝑎𝑎𝑡𝑡𝑡𝑡

 

Here, the recall is quite important, as it demonstrates the ability of the algorithm to detect attack traffic. 
However, equally important is precision, which will ensure that the system will not block legitimate 
traffic by creating many false positives. Therefore, the value of the F-1 score, which combines both 
metrics, is a good measure for the efficacy of the algorithm. Accordingly, for the optimization of the 
models, the F-1 score has been taken as the main performance measure. In the below subsections, we 
provide performance results of the DRL model on the two benchmark datasets discussed above and 
compare them with the results of previous work that have utilized the same datasets for evaluation.     

4.2.1 Experiments with NSL-KDD 

The first set of experiments were performed using the NSL-KDD dataset. The learning system was set 
up in a Gym environment as explained by Koduvely [37]. Gym provides an environment for testing and 
comparison of RL algorithms. We used the full training and test datasets for the experiments. We 
experimented with different numbers of training iterations to evaluate the effect of the number of 
training iterations on the accuracy of the algorithm. Table 4 lists the precision, recall, accuracy and F-1 
score values for the experiments with a low number of training iterations (1) and a high number of 
training iterations (20). As seen in the table, the algorithm achieves very high precision and recall when 
the number of training iterations is high.  

Table 4 Precision, Recall and Accuracy for Varying Number of Training Iterations in NSL-KDD 
 Precision Recall Accuracy F-1 Score 

Low Iterations 0.715 0.719 0.725 0.72 
High Iterations 0.951 0.925 0.940 0.93 

We also experimented with different DNN architectures to see the effects of the number of hidden 
neurons on the performance of the algorithm. As opposed to the number of iterations, we observe that 
increasing the number of hidden neurons in the DNN does not always lead to better performance. We 
have tried five different settings and the results are reported in Table 5 below.  

In the first experiment, we set the number of neurons at the hidden layers to be 2/3 of the input layer’s 
size. We achieved satisfying results with an accuracy close to %97. In the second experiment, the 
number of hidden neurons was set equal to the size of the input layer. The performance was much lower 
than that of the first setting. 



Sakarya University Journal of Computer and Information Sciences 
 

Gülmez et. al 

19 
 

In the third experiment, the number of hidden neurons was one and a half times the input layer’s size. 
This made the performance degrade even further. In the fourth experiment the number of hidden neurons 
was half the size of the input layer, and while the precision and recall values were quite balanced, this 
setting did not achieve the performance of the first setting either.  

In Experiment 5, we used the square root of the input layer’s size as the number of hidden neurons. This 
provided an increase in performance over the previous settings except for the first experiment.  

Table 5 Precision, Recall, Accuracy, and F-1 Score for Varying Number of Hidden Neurons in NSL-KDD 
 #of hidden 

neurons 
Precision Recall Accuracy F-1 Score 

Experiment 1  2 ∗ 𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒
3

 
0.98 0.96 0.97 0.97 

Experiment 2 Input size 0.65 0.91 0.70 0.76 
Experiment 3 3 ∗ 𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒

2
 

0.72 0.54 0.68 0.62 

Experiment 4 𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒
2

 
0.77 0.79 0.79 0.78 

Experiment 5 �𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑒𝑒 0.89 0.92 0.89 0.90 

After the initial set of experiments with different numbers of hidden neurons, we optimized the training 
process by automating the setting of hyperparameter values for the DNN component of the model. The 
optimization process performs a grid search [38] over all given possible values of the different 
hyperparameters, calculates F-1 scores achieved with the specific hyperparameter settings on the 
validation dataset and reports the hyperparameter values resulting in the best F-1 score. Grid search is 
currently one of the most commonly used hyperparameter optimization techniques in DL, as it has been 
proven to find the most optimal parameter settings when compared to random search and function 
approximation techniques for hyperparameter optimization. It involves determining a range of possible 
values for each hyperparameter and training the model with all combinations of those values to find the 
combination with the optimal performance. In this work, we included the following hyperparameters 
for DNN in the automated grid search: (a) learning rate (in the range [0, 0.1]) (b) dropout rate (in the 
range [0, 0.4]) (c) number of hidden neurons (in the range [6, 60]). Adam optimizer and L2 
regularization were used for DNN. The best performance was achieved with a learning rate of 0.01, 
dropout rate of 0.3 and 27 hidden neurons. Before performing grid search for the selected 
hyperparameters, we performed trials for the other hyperparameters including the number of epochs, 
batch size and reward decay rate, and the best performance was achieved with 30 epochs, a batch size 
of 1000 and a reward decay rate of 0.9. Note that although it is possible to include many hyperparameter 
types and hyperparameter values in the grid search, the more parameter values included, the longer it 
takes to train the model. For a large hyperparameter space, the optimization process could take days of 
training, which has been avoided in the DNN literature, as the resulting model could also overfit the 
training data, decreasing the usefulness of the model for real-world application. The increase in the 
training time would also hurt the performance of online learning, which is important in intrusion 
detection systems that need to continuously update their models with new data.       

Table 6 provides performances of state-of-the-art ML algorithms in the literature in terms of precision, 
recall, accuracy, and F-1 score on the NSL-KDD dataset and example related works in the literature 
utilizing these algorithms. The models compared against include logistic regression, SVM with the 
Radial Basis Function (RBF) kernel, random forest, Gradient Boosting Machine (GBM), Adaboost, 
multi-layer perceptron (MLP), convolutional neural networks (CNN) (results of these are provided by 
Lopez-Martin et al. [39]), variational autoencoder, deep belief network and fully connected deep neural 
network (results of these are provided by Yang et al. [40]). All of the included models are state-of-the-
art ML/DL models that have been utilized in a variety of intrusion detection systems.  

As seen in Table 6, the proposed DRL model achieved good results in all of the performance measures 
for the NSL-KDD experiments. While models such as random forest, GBM, Adaboost, MLP and CNN 
achieved quite high precision values, their low recall values caused a lower F-1 score. As recall values 
demonstrate the ability of the models to detect attacks, it is quite an important metric for the goodness 
of the models in practice. 
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Table 6 Performance Comparison of Proposed Approach and Existing ML Approaches on NSL-KDD 
ML/DL 

algorithm  
Precision Recall Accuracy F-1 

Score 
Example 

Work 
Method 

DRL 
(proposed) 

0.98 0.96 0.97 0.97 --  

Logistic 
regression 

0.90 0.55 0.71 0.68 Moustafa and 
Slay [16] 

A network intrusion detection 
system using logistic regression 
in its decision engine along with 
association rule mining is 
proposed. 

SVM  0.91 0.88 0.88 0.89 Lopez-Martin 
et al. [39] 

Application of an optimized 
SVM model on intrusion 
detection datasets is evaluated. 

Random 
forest 

0.97 0.57 0.75 0.72 Lopez-Martin 
et al. [39] 

Application of an optimized 
random forest model on intrusion 
detection datasets is evaluated.  

GBM 0.97 0.63 0.78 0.76 Engly et al. 
[15] 

The performance of GBM on 
intrusion detection datasets is 
evaluated by itself vs. in an 
ensemble with random forests 
and neural networks.  

Adaboost 0.97 0.60 0.76 0.74 Hu et al. [14] A computationally lightweight 
intrusion detection model based 
on direct application of the 
AdaBoost algorithm is proposed.   

MLP 0.97 0.67 0.80 0.79 Ingre and 
Yadav [12] 

An artificial neural network with 
Backpropagation (BFG) and 
tansig activation function is 
proposed for intrusion detection. 

CNN 0.97 0.68 0.81 0.80 Li et al. [22] An image conversion method for 
network data is proposed and the 
resulting data is fed into a 
convolutional neural network for 
intrusion detection. 

Variational 
Autoencoder 

0.95 0.80 0.80 0.87 Yang et al. 
[40] 

A supervised variational auto-
encoder with regularization is 
proposed, which utilizes 
Wasserstein GAN for learning 
latent data distribution. 

Deep belief 
network 

0.89 0.55 0.57 0.68 Gao et al. 
[27] 

A DNN classifier comprising 
multilayer unsupervised learning 
networks, and a supervised 
backpropagation learning 
network is proposed for intrusion 
detection.  

Fully 
connected 

DNN 

0.89 0.61 0.62 0.73 Vinayakumar 
et al. [26] 

A distributed, fully connected 
DNN architecture is proposed for 
intrusion detection in large 
networks.  
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4.2.2 Experiments with UNSW-NB15 

The second set of experiments was performed with the UNSW-NB15 dataset. As in the previous 
experiments, the optimal hyperparameters were found using grid search with the same set of possible 
values as in Section 4.2.1. The best performance was achieved with a learning rate of 0.01, dropout rate 
of 0.3 and 32 hidden neurons. We report the best performance results in Figure 3 below. We performed 
two different experiments, where we utilized the default training set consisting of 175341 records and 
test set consisting of 82332 records in the first experiment. In the second experiment we randomly 
selected training and test data over the dataset. 100000 records were selected for both sets. The results 
did not change much in this experiment as compared to the first experiment. 

 
Figure 3 Precision, Recall, Accuracy, and F-1 Score on UNSW-NB15 

Table 7 provides a performance comparison of the proposed approach with existing state-of-the-art ML-
based approaches in the literature in terms of precision, recall, accuracy, and F-1 score on the UNSW-
NB15 dataset. The models in the table are the same as those in Section 4.2.1 and their results are 
provided by Lopez-Martin et al. [39] and Yang et al. [40] as before.   

Table 7 Performance Comparison of Proposed Approach and Existing ML Approaches on UNSW-NB15 
Algorithm Precision Recall Accuracy F-1 Score 

DRL (proposed) 0.95 0.97 0.96 0.96 

Logistic regression 0.81 0.94 0.84 0.87 

SVM  0.75 0.99 0.82 0.86 

Random forest 0.83 0.99 0.88 0.90 

GBM 0.80 0.99 0.86 0.88 

Adaboost 0.80 0.98 0.85 0.88 

MLP 0.81 0.98 0.87 0.89 

CNN 0.86 0.98 0.90 0.91 

Variational Autoencoder 0.95 0.92 0.93 0.94 

Deep belief networks 0.85 0.97 0.89 0.91 

Fully connected DNN 0.82 0.98 0.87 0.90 

As seen in Table 7, high precision, accuracy and F-1 scores are achieved by the proposed DRL-based 
approach. While for this dataset SVM, random forest and GBM achieve higher recall values, their 
precision values are much lower than that of the DRL approach, which means they would create many 
false positives at runtime. The DRL model achieves a better balance between false positives and false 
negatives, with high precision, recall and F-1 values. This makes it promising for both accurately 
detecting attacks and achieving high network reliability by avoiding unnecessary interruption of traffic. 
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The good performance of the DRL model is attributable to the exploration of a wide set of network 
states and penalizing all incorrect classifications with the same penalty function, which limits the 
number of false positives and false negatives as the RL agent continues to learn.      

5. Conclusion 

In this work, we proposed a deep reinforcement learning based approach for network intrusion detection. 
The proposed approach overcomes the generalization shortcomings of reinforcement learning and 
achieves high performanca on binary intrusion detection tasks trying the differentiate between normal 
and attack traffic. The efficacy of the model was evaluated with two widely used intrusion detection 
benchmark datasets and F-1 scores of over 96% were achieved for both datasets. We also demonstrated 
the effects of the number of hidden neurons and number of iterations on the performance of the proposed 
algorithm. This study has shown that deep reinforcement learning is a promising method for network 
intrusion detection. We aim to expand upon this study in future work by evaluating the performance of 
the model on additional datasets as well as creating extensions of the model with different reward 
functions to achieve optimal performance in a variety of settings.   
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