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1 Introduction

Killing-Yano tensors (KYTs) have long been studied. They play a role as square roots
of second rank Killing tensors (KTs). In gravity, supergravity and string theory they are
used to find hidden symmetries for particles and backgrounds, to separate variables in
Hamilton-Jacobi equations and to study the symmetries of the Dirac equation and its
super extensions.

General background on KTs and KYTs and their applications can be found in [1, 2]
and [3]. Some interesting aspects are: finding new supersymmetries, covered in “Susy in
the sky” [4] and their role in string theory covered, e.g. in [5]. There are applications in
General Relativity (GR) [6, 7] to G-structures [8, 9], to WZW models [10], to classical
mechanics [11] and to symmetries of the Dirac operator and super Laplacians [12, 13].
Supersymmetric conformal KTs and KYTs are discussed in [14], in [15] and [16]. Finally
KTs arise in the context of hyperKähler geometry [17].

The present paper grew out of the results in [18] which, in turn, was inspired by a result
of Kastor and Traschen [19, 20]. These authors found a conserved current for an arbitrary
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rank KYT and it was used in certain backgrounds to construct asymptotic charges [21].
Here we continue and extend the discussion of conserved currents from [18]. In particular,
we focus on a current constructed from the Cotton tensor and (conformal) KYTs. For this
current we display the conserved charges in general, and for the four-dimensional (4D) case
of the Plebański-Demiański metric in particular. In the process we derive the two conformal
KYTs (CKYTs) needed in the new Podolsky-Vratny coordinates. We further discuss the
special case of three dimensions (3D) at some length, finding obstructions to asymptotic
charges, comparing to results in Topologically Massive Gravity (TMG) and generalizing
our current to 3D conformal supergravity in superspace. Continuing our mathematical
study of KYTs, we finally include a section with identities for CKYTs.

The paper is organized as follows: in section 2 we define the Cotton current for an
arbitrary dimensionD ≥ 3 and in section 3 we study it in 4D using the Plebański-Demiański
metric as an example. In section 4 we descend to 3D and initiate a program for studying
super KY currents in supergravity by generalizing the Cotton current to a supermultiplet
in 3D conformal supergravity. Here we also discuss linearization around a background
carrying a second rank KYT and compare some results to the ones derived in [22]. Section 5
presents the potentials for the Cotton currents. The derivation of these involve some new
mathematical relations for KYTs and CKYTs. To these we add a useful relation for the
case of backgrounds with totally skew torsion. Section 6 contains our conclusions. A short
appendix has the conventions for our spinor algebra.

The setting of our discussions is GR on a manifold M of dimension D that carries a
metric g and a rank n KYT f , or CKYT k. The coordinate indices are denoted by latin
letters a, b, . . . . When we consider extension to 3D supergravity in section 4.1, we use
spinor indices and denote vector indices by pairs of these.

2 The Cotton current

In this section we introduce conserved currents constructed from the Cotton tensor and
(C)KYTs. The Cotton tensor is defined in D ≥ 3 dimensions as

Cabc ≡ 2(D − 2)∇[cSb]a = 2∇[cRb]a −
1

(D − 1)ga[b∇c]R , (2.1)

where Rab is the Ricci tensor, R is the curvature scalar and Sab is the Schouten tensor. In
D > 3 dimensions, it is related to the Weyl tensor Wabcd by

Cbdc = D − 2
D − 3 ∇aW

a
bcd . (2.2)

It is traceless on all index pairs and satisfies

Cabc = Ca[bc] ,

C[abc] = 0 ,

∇aCabc = 0 . (2.3)
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We shall be interested in combining the Cotton tensor with a (C)KYT to construct
conserved currents. A KYT of rank n is an n-form f that satisfies

∇afb1...bn = ∇[afb1...bn] , (2.4)

or equivalently
∇(afb1)...bn = 0 . (2.5)

Similarly, a CKYT of rank n is an n-form k that satisfies

∇akb1...bn = ∇[akb1...bn] + n

D − n+ 1 ga[b1 k̄b2...bn] , (2.6)

where
k̄b1...bn−1 ≡ ∇ckcb1...bn−1 . (2.7)

Consider the following combinations of the Cotton tensor C, a rank-2 KYT f and a
rank-2 CKYT k:

ja ≡ Cabcfbc and Ja ≡ Cabckbc . (2.8)

Note that
∇aja = (∇aCabc)fbc + Cabc∇afbc = 0 + Cabc∇[afbc] = 0 , (2.9)

where the last two relations in (2.3) have been invoked. Hence ja is covariantly conserved.
Similarly, we find that Ja is also covariantly conserved: there is an additional term in the
calculation corresponding to (2.9)

∇aJa = 0 + 2
D − 1 C

abc ga[b k̄c] = 0 , (2.10)

where the last equality follows from the fact that the Cotton tensor is traceless.
Since both the Cotton tensor and the CKYT are related to conformal properties of the

manifold, one may ask about the transformation properties of Ja under Weyl rescalings of
the metric g′ab = eCgab. The Cotton tensor transforms as

C ′abc = Cabc −
1
2(D − 2)(∂dC)W d

abc . (2.11)

A second rank CKYT transforms as [2]

k′ab = e3C/2kab and k̄′c = eC/2
(
k̄c + 1

2(∂aC)kac
)
. (2.12)

From (2.11) and (2.12) it follows that 1-form current Ja = Cabck
bc transforms as

J ′a ≡ C ′abck′ bc = e−C/2
(
Cabc −

1
2(D − 2)(∂dC)W d

abc

)
kbc , (2.13)

and the vector current Ja as

J ′ a = e−3C/2
(
Cabc −

1
2(D − 2)(∂dC)W da

bc

)
kbc . (2.14)
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This is clearly not a conformal scaling in general. In 3D the Weyl tensor does not exist
which means that the covariant current scales with e−C/2 and that the contravariant current
scales with e−3C/2. This holds in arbitrary D for conformally flat metrics or for constant
scalings C.

We emphasize that the Cotton current (2.8) defined here is unrelated to the other
currents discussed in [18]. In particular, the currents in [18, 19] are at most second order
in the derivatives of the metric while the Cotton current (2.8) is of third order. The
current in [19] is defined for arbitrary rank n KYT and reduces to the Einstein current for
n = 1, while our Cotton current (2.8) is only defined for rank 2. Moreover, we examine the
Cotton current for n = 2 in 3D, its relation to the discussion in [22] and its generalization
to supergravity in section 4. The current in [19] on the other hand vanishes for n = 2 in
3D, since it is proportional to the Weyl tensor as shown in [18].

3 Cotton charges for the Plebański-Demiański metric

In this section we want to give a nontrivial example where the newly introduced Cotton
current Ja (2.8) can be used for defining a conserved charge. For that purpose we re-
sort to the well-known, non-vacuum solution of GR, the celebrated Plebański-Demiański
metric [23, 24]

ds2 = Ω2
(
−Q(r)(dτ − p2dσ)2

r2 + p2 + P (p)(dτ + r2dσ)2

r2 + p2 + r2 + p2

P (p) dp2 + r2 + p2

Q(r) dr2
)
, (3.1)

which solves the cosmological Einstein-Maxwell equations Gab = 2Tab − Λgab in D = 4
when the metric functions Q(r) and P (p) are chosen as

Q(r) = k + e2 + g2 − 2mr + εr2 − 2nr3 − (k + Λ/3) r4 ,

P (p) = k + 2np− εp2 + 2mp3 −
(
k + e2 + g2 + Λ/3

)
p4 , (3.2)

the conformal factor is
Ω(p, r) = (1− pr)−1 , (3.3)

and the vector potential is

Aadx
a = − 1

r2 + p2

(
er
(
dτ − p2dσ

)
+ gp

(
dτ + r2dσ

) )
. (3.4)

Out of the seven (m,n, e, g, ε, k and Λ) arbitrary real parameters, e and g represent the
electric and magnetic charges, respectively, whereas Λ is the cosmological constant [25]. As
shown in [24], the Plebański-Demiański metric (3.1) (without using the special choices (3.2),
(3.3) and (3.4)) has a rank-2 CKYT (5.24), which reads

k = Ω3
(
pdr ∧

(
dτ − p2dσ

)
+ rdp ∧

(
dτ + r2dσ

) )
. (3.5)

It turns out that its dual h ≡ ∗k is also a rank-2 CKYT (5.24) given by [24]

h = Ω3
(
rdr ∧

(
p2dσ − dτ

)
+ pdp ∧

(
r2dσ + dτ

) )
. (3.6)
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These ingredients can be used for calculating the Cotton tensor C and the conformal
Cotton currents Jk (using (3.5)) and Jh (using (3.6)). For the special choices (3.2), (3.3)
and (3.4), we find that Cotton current vectors are

Jk = 4(e2 + g2)(1− pr)4

(p2 + r2)3

(
2p2r2∂τ + (r2 − p2)∂σ

)
, (3.7)

and
Jh = 4(e2 + g2)(1− pr)4

(p2 + r2)3

(
(p2 − r2)∂τ + 2∂σ

)
. (3.8)

It seems natural to interpret the coordinate τ as the global time function so that
ta = (∂τ )a is a vector field on the spacetime satisfying ta∇aτ = 1. We may then foliate the
spacetime (3.1) by Cauchy surfaces Στ parametrized by τ such that the metric gab (3.1)
induces a spatial metric γab on each Στ as

γab = gab + nanb ,

where na is the unit normal vector field to the hypersurfaces Στ :

na = − 1
Ω

√
p2 + r2

Q(r)− P (p) (∂τ )a ,

nadx
a = Ω√

p2 + r2

(√
Q (r)− P (p) dτ − r2P (p) + p2Q(r)√

Q(r)− P (p)
dσ

)
,

with nana = −1. The relevant piece of the volume element on the hypersurface Στ is

√
γ =

(
p2 + r2)3/2 Ω3√
Q(r)− P (p)

, with γ ≡ det γab .

These can be used in defining a conserved charge Q in the usual way as

Q ≡
∫

Στ
d3x
√
γ Ja na , (3.9)

provided the metric functions satisfy P (p) > 0 and Q(r) > 0, as suggested by the form
of (3.1), and τ can be thought of as the global time function as discussed. Using (3.7)
and (3.8), we find explicitly that

Qk = 4(e2 + g2)
∫
drdpdσ

r2P (p)− p2Q(r)
(p2 + r2) (P (p)−Q(r)) , (3.10)

Qh = 4(e2 + g2)
∫
drdpdσ

P (p) +Q(r)
(p2 + r2) (P (p)−Q(r)) . (3.11)

At this stage, it is worth emphasizing that our only aim is to give a “proof of principle”,
i.e. that the Cotton currents Jk and Jh can be used to come up with conserved charges Qk
and Qh á la (3.9). So rather than going into the discussion of different cases1 that arise
from studying the roots of the quartic functions P (p) and Q(r) to determine the ranges
of the coordinates p and r (that guarantee that P (p) > 0 and Q(r) > 0), we assume that
the coordinate patch(es) have properly chosen ranges for the variables p, r and σ such that
the relevant 3-dimensional integrals in Qk and Qh (3.9) are convergent. Note that our
Cotton charges are proportional to the sums of the squares of the physical electric and
magnetic charges.

1See e.g. the invaluable work [25] for that.
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3.1 An “improved” version

In a recent work [26], the Plebański-Demiański metric (for the version with a vanishing
cosmological constant) has been cast in a new “improved” form where the metric functions
P and Q have been factorized, and the parameters have been redefined to make their
physical meaning more accessible (See the beautiful work [26] for details). Here we want
to examine how this new version plays along with the Cotton current we propose.

The new kid on the block reads [26]

ds2 = 1
Ω2

(
−Q
ρ2

[
dt−

(
a sin2 θ + 4` sin2 (θ/2)

)
dϕ
]2

+ ρ2

Q
dr2

+ρ2

P
dθ2 + P

ρ2 sin2 θ
[
a dt−

(
r2 + (a+ `)2

)
dϕ
]2)

, (3.12)

where

Ω = 1− αa

a2 + `2
r (`+ a cos θ) ,

ρ2 = r2 + (`+ a cos θ)2 ,

P (θ) =
(

1− αa

a2 + `2
r+(`+ a cos θ)

)(
1− αa

a2 + `2
r−(`+ a cos θ)

)
,

Q(r) = (r − r+) (r − r−)
(

1 + αa
a− `
a2 + `2

r

)(
1− αa a+ `

a2 + `2
r

)
,

and the special roots of Q(r), that determine the two black-hole horizons are located at

r± ≡ m±
√
m2 + `2 − a2 − e2 − g2 . (3.13)

There are now six (non-negative) real parameters: e and g are still the electric and magnetic
charges, respectively, m is the mass, a is the “Kerr-like rotation”, ` is the NUT parameter
and α is acceleration [26]. This metric solves the Einstein-Maxwell equations Gab = 2Tab
with the vector potential

Aadx
a = −

√
e2 + g2 r

ρ2

[
dt−

(
a sin2 θ + 4` sin2 (θ/2)

)
dϕ
]
.

The two rank-2 CKYTs of (3.12) are2

k̃ = 1
Ω3

(
− r sin θdθ ∧

[
a dt−

(
r2 + (a+ `)2

)
dϕ
]

+ (`+ a cos θ)dr ∧
[
dt−

(
a sin2 θ + 4` sin2 (θ/2)

)
dϕ
] )

, (3.14)

h̃ = 1
Ω3

(
r dr ∧

[
dt−

(
a sin2 θ + 4` sin2 (θ/2)

)
dϕ
]

+ (`+ a cos θ) sin θdθ ∧
[
a dt−

(
r2 + (a+ `)2

)
dϕ
] )

. (3.15)

2To our knowledge, these are new but presumably they can be obtained from the ones in [24] by employing
judicious coordinate transformations.
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Unfortunately though, the analogous calculations for determining the charge Q (3.9)
for the most general form of (3.12) with its CKYTs (3.14) and (3.15) turn out to be
too complicated. Even though we have explicitly determined the analogous integrands as
in (3.10) and (3.11), they are best left undisplayed. To have a more manageable example,
we set the “Kerr-like rotation parameter” a = 0 in the metric (3.12), which also makes
Ω = 1 and P = 1 [26]:

ds2 = −Q
ρ2

(
dt− 4` sin2(θ/2)dϕ

)2
+ ρ2

Q
dr2 +

(
r2 + `2

) (
dθ2 + sin2 θdϕ2

)
, (3.16)

where we now have

Q(r) = (r − r+) (r − r−) , with r± ≡ m±
√
m2 + `2 − e2 − g2 ,

ρ2 = r2 + `2 .

The vector potential becomes

Aadx
a = −

√
e2 + g2 r

ρ2

(
dt− 4` sin2 (θ/2)dϕ

)
,

and (3.16) describes the non-singular charged Taub-NUT spacetime, which is also asymp-
totically flat as r → ±∞ away from the θ = π axis [26].

It turns out that setting a = 0 in k̃ (3.14),

k̂ = r(r2 + `2) sin θdθ ∧ dϕ+ `dr ∧ dt− 4`2 sin2 (θ/2)dr ∧ dϕ , (3.17)

makes k̂ (3.17) a KYT, not a CKYT, of (3.16). So we can not use it to define a Cotton
current Ja, as was done previously, but it can be used to define the Cotton current ja (2.8).
However, the a = 0 version of h̃ (3.15) is still a CKYT of (3.16):

ĥ = rdr ∧ dt− 4`r sin2 (θ/2)dr ∧ dϕ− `(r2 + `2) sin θdθ ∧ dϕ . (3.18)

With these ingredients, we have the Cotton current vectors

jk̂ = 0 , so that we trivially have Qk̂ = 0 ,

Jĥ = 8(e2 + g2) (r − r+) (r − r−)
(r2 + `2)3

(
− ∂t + 4` sin2 (θ/2)∂ϕ

)
. (3.19)

Finally, we find the charge Qĥ to be3

Qĥ = 32π(e2 + g2)
∫ ∞
−∞

dr

r2 + `2
= 32π2

`
(e2 + g2) . (3.20)

4 3D results

The Cotton tensor is particularly relevant in 3D where it plays a role similar to that of
the Weyl tensor in higher dimensions. In this section we discuss various properties of the
Cotton current pertaining to 3D.

3Here the ranges of the metric functions are r ∈ (−∞,∞), θ ∈ [0, π] and ϕ ∈ [0, 2π] [26].
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4.1 The super Cotton current in 3D conformal supergravity

In this subsection we introduce the conformal supergravity extension of the Cotton current.

4.1.1 3D conformal superspace supergravity

In 3D, N = 1 Conformal Superspace Conformal Supergravity is defined by the following
algebra4[27]

{∇α,∇β} = 2i∇αβ ,

[∇a,∇α] = 1
4(γa) β

α WβγδK
γδ ,

[∇a,∇b] = − i8εabc(γ
c)αβ∇αWβγδK

γδ − 1
4εabc(γ

c)αβWαβγS
γ , (4.1)

where K is the generator of special conformal transformation and S is the generator of S
supersymmetry. The whole super conformal group has been gauged and dilation curvature
has been set to zero. The Lorentz generator M and the translation generator P give rise to
the covariant derivatives. We shall need the properties of the super Cotton tensor W [28]

Wαβγ = W(αβγ) ,

∇αWαβγ = 0 ,

KaWαβγ = 0 , (4.2)

where the last relation says that W is a primary superfield.
From

∇α∇β = i∇αβ + 1
2εαβ∇

γ∇γ (4.3)

and the fact that, on a primary field [∇αβ ,∇γ ] = 0, it follows that

∇2∇α = −∇α∇2 = 2i∇γ∇γα , (4.4)

{∇2,∇α} = 0 , [∇2,∇α] = 4i∇γ∇γα ,

∇γ∇α∇γ = 0 .

We take a superconformal Killing supervector field ξ to be given by

ξ = ξa∇a + ξα∇α , (4.5)

where ξa is a primary and where the components are related by

∇αξµν = 4iεα(µξν) . (4.6)

It follows that

∇αξµν = −4iεα(µξν) ,

∇(αξµν) = 0 ,
4See appendix A for conventions.
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∇(αξβ) = 1
4∇

γ
(αξβ)γ ,

∇γξγ = 1
3∇aξ

a ,

ξα = i

6(γa)αβ∇βξa ,

∇2ξα = i
2
3∇

γ
αξγ ,

∇(aξb) = 1
3ηab∇cξ

c ,

∇βγξα = −2
3ε

α(β∇γ)
σξ
σ , (4.7)

where the next to last relation defines a conformal Killing vector and the last one a con-
formal Killing spinor.

4.1.2 The super Cotton current

From the last line in (4.1) we see that

Cab = ∇αWβγδ and Wβγδ (4.8)

will correspond to the Cotton and the Cottino tensors at the component level [27]. Indeed
Cab has the properties of the Cotton-York tensor

∇aCab = 0 , Cab = C(ab) , Caa = 0 . (4.9)

We may now construct a supergravity version of our Cotton current J in (2.8). To
this end we define

kα = Wαβγξ
βγ ,

kαβ = ∇αkβ = (∇(αWβ)γδ)ξγδ + 4iWαβγξ
γ . (4.10)

These satisfy

∇αkα = 0 ,

∇αβkαβ = 0 , (4.11)

and the lowest component of the first part of kαβ is the bosonic Cotton current J in (2.8).
In a more covariant form we have

(kA) = (kαβ , kα) (4.12)

with
∇AkA = 0 . (4.13)
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4.2 Currents from linearization?

Here we want to examine whether we can extend the discussion in subsection 6.1 of [18] to
the currents introduced in section 2. So we linearize the metric around a background metric
and assume that there exists a KYT asymptotically. If the linearized current defined with
this KYT is still conserved, we may try to construct its asymptotic charges. For simplicity,
consider only rank-2 KYTs in what follows. For brevity, let us start by reproducing some
formulas that will be relevant for the ensuing discussion:

(Γcab)L = 1
2 ḡ

ce(∇̄ahbe + ∇̄bhae − ∇̄ehab
)
,

(Rab)L = 1
2
(
∇̄c∇̄ahbc + ∇̄c∇̄bhac − ∇̄a∇̄bh− ¯hab

)
− hacR̄bc ,

RL = ∇̄a∇̄bhab − ¯h− habR̄ab . (4.14)

The Cotton current ja (2.8), and its linearization, is most relevant in D = 3. This is due
to the special role played by the Cotton tensor in the field equations of TMG [29, 30], so
let us set D = 3 in what follows and consider the linearized current

jaL ≡ 2(∇cSab)Lf̄ bc . (4.15)

Since
(∇cSab)L = ∇̄c(Sab)L + (Γacd)LS̄db − (Γdcb)LS̄ad ,

and
S̄ab f̄

ac + S̄ac f̄ab = 0

that follows from Rab f
ac +Rac fab = 0 [18], we find

jaL = ∇̄c ¯̀ac , (4.16)

where ¯̀ac = 2f̄ bc(Sab)L. We emphasize that this result has been obtained by working
with a generic background. Unfortunately though, we do not have ¯̀ac = ¯̀[ac], or that
∇̄ajaL = 0 even when the background is maximally symmetric. So we cannot use ja to
define asymptotic AD charges.

It is worth comparing this result with the relevant piece of the linearized current
employed in [22] to define conserved gravitational charges in TMG. There the part relevant
to our discussion is defined through the linearization of the York tensor5 Cab, which is
symmetric, traceless and identically conserved, and defined as

Cab = εacd∇cSdb , (4.17)

and is the dual of the Cotton tensor, i.e. Cbcd = εacdC
ab. In [22], it is shown that it is

always possible to write
CabL ξ̄b = ∇̄b

(
F̄ [ab](ξ̄)

)
, (4.18)

5We use the term “York tensor” to denote the dual of the Cotton tensor, which is also called the “Cotton
tensor” or “Cotton-York tensor” in the literature.
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where ξ̄b is a background Killing vector, Ξ̄a ≡ ε̄abc∇̄bξ̄c is another Killing vector constructed
out of ξ̄ and

Fab(ξ̄) = 1
2
(
FabE (Ξ̄) + ε̄cbdξ̄c

(
Gd

a)
L

+ ε̄abdξ̄c
(
Gd

c)
L

+ ε̄acdξ̄c
(
Gd

b)
L

)
, (4.19)

FabE (Ξ̄) = Ξ̄c∇̄[ahb]c + Ξ̄[b∇̄cha]c + hc[b∇̄cΞ̄a] + Ξ̄[a∇̄b]h+ 1
2h∇̄

[aΞ̄b] , (4.20)(
Ga b

)
L

=
(
Ra b

)
L
− 1

2δ
a
bRL − 2Λha b ,

RLab = 1
2
(
∇̄c∇̄bhac + ∇̄c∇̄ahbc − �̄hab − ∇̄a∇̄bh

)
,

RL = ∇̄a∇̄bhab − �̄h− 2Λh ,

where all contractions, raising and lowering of indices are performed with respect to the
maximally symmetric background ḡab for which R̄ab = 2Λḡab and R̄ = 6Λ, with Λ < 0,
hab ≡ gab − ḡab denotes the deviations from the background, h ≡ ḡabhab, ∇̄ indicates the
covariant derivative with respect to the background and �̄ ≡ ∇̄a∇̄a.

Since we have (∇cSdb)L = ∇̄c(Sdb)L on such a background, it follows that CabL =
ε̄acd∇̄c(Sdb)L. This leads to the conclusion that it is possible to write

ε̄acdC
ab
L ξ̄b = (Cbcd)Lξ̄b = ∇̄b

(
ε̄acdF̄ [ab]

)
.

In fact a close examination of (4.19) and (4.20), and the way the Killing vector Ξ̄ has been
defined above, reveals that all is indeed consistent with (4.18).

From another perspective, our proposed current (4.15) would have been satisfactory if
we could write

(Cbcd)Lf̄ cd =
(
ε̄acdf̄

cd
)
CabL =: CabL ζ̄a ,

where the would-be background Killing vector ζ̄a, satisfying ∇̄(aζ̄b) = 0, would let us write

(Cbcd)Lf̄ cd = ∇̄a
(
F̄ [ab](ζ̄)

)
on a par with (4.18). However, it is well known that ζ̄a ≡ ε̄acdf̄

cd is a closed conformal
Killing vector satisfying

∇̄(aζ̄b) = 1
3
(
∇̄cζ̄c

)
ḡab .

Hence ja does not lead to asymptotic AD charges.
As a final note, we would like to point out to an interesting observation we made

as we were trying out various ideas presented here using the renowned BTZ metric [31]
considered as a solution to TMG:

ds2 =
(
M − r2

`2

)
dt2 − J dt dθ + r2 dθ2 + dr2

−M + r2

`2 + J2

4r2

. (4.21)

The background to work with is locally AdS and obtained by setting M = J = 0 in (4.21):

ds̄2 = −r
2

`2
dt2 + r2 dθ2 + `2

r2 dr
2 . (4.22)
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The details of how to determine the energy and angular momentum of (4.21) in TMG
using the maximally symmetric background (4.22) can be found in [21]. Here we just want
to point out to the remarkable result that the linearized York tensor CabL that goes into
the current (4.18) identically vanishes in this setting, but is nevertheless able to produce
sensible F̄ [ab](ξ̄) as explained in [21].

5 Potentials & new mathematical relations

In this section we find the potentials for the Cotton currents ja and Ja, uncovering some
interesting new relations for CKYTs en route. We collect these and a relation for KYTs in
torsionful geometries, continuing the mathematical investigations in [18].

A covariantly conserved antisymmetric rank n tensor represents a co-closed n-form.
By the Poincaré lemma extended to the exterior co-derivative this means that it is equal
to the co-derivative of an (n + 1)-form in an appropriately chosen open set. We refer to
this (n+1)-form as a potential for the conserved tensor. It should thus be possible to write
our conserved currents ja and Ja as covariant divergences of such potentials.

5.1 A potential for ja

For ja this is straightforward using the relation

fab∇aGbc = 0 , (5.1)

recently proven in [18]. It implies that the current reduces to the desired form ja = ∇c`ac:

ja =
(
D − 2
D − 1

)
fac∇cR = ∇c

((
D − 2
D − 1

)
facR

)
, (5.2)

or, equivalently,

`ac =
(
D − 2
D − 1

)
facR . (5.3)

5.2 A potential for Ja

To find the potential for the Cotton current Ja involving a second rank CKYT, we need
to develop more tools.

The identity [19]

∇a∇bfc1...cn = (−1)n+1 (n+ 1)
2 Rd a[bc1 fc2...cn]d , (5.4)

may be generalized to CKYTs (2.6) (as well as to geometries with torsion, see below).
From (2.6), a second rank CKYT k satisfies

∇akbc = ∇[akbc] + 2
D − 1ga[bk̄c] . (5.5)

The modified identity corresponding to (5.4) then reads (see e.g. [32]):

∇a∇bkcd = −3
2R

e
a[bckd]e −

3
D − 1ga[b∇ck̄d] + 2

D − 1∇a
(
gb[ck̄d]

)
. (5.6)
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We note in passing that for a closed CKYT, i.e., when the first term on the r.h.s. of (5.5)
vanishes, the relation (5.6) implies no restriction on k̄.

From (5.6) we derive the following identities

∇ak̄a = ∇a∇bkba = 0 , (D − 2)∇(ak̄b) = (D − 1)Rc(akb)c , (5.7)

(D − 4)∇[ak̄b] = (D − 1)
(
Rc[akb]c − kab + 1

2k
cdRcdab

)
. (5.8)

Note that, when the spacetime gab is an Einstein space, i.e. Rab = K gab for a constant
K, (5.7) shows that k̄a is a Killing vector. The relations (5.7) and (5.8) can be used
for writing

(D − 4)∇ak̄b = (D − 1)
(
D − 3
D − 2 R

c
akbc −

1
D − 2 R

c
bkac − kab + 1

2k
cdRcdab

)
, (5.9)

(D − 4)∇c∇akcb = 2D − 5
D − 2 Rcakbc −

D − 1
D − 2 R

c
bkac + 3

2k
cdRcdab − (D − 1) kab . (5.10)

Furthermore, when D = 4, the left hand sides of (5.8), (5.9) and (5.10) vanish and yield
nontrivial constraints on kab. Additionally, for a flat 4-dimensional spacetime, k has to
be harmonic.

We can also perform a calculation analogous to that of section 3.2 in [18] for a rank-2
CKYT. Using (5.5) and (5.6) in [∇a,∇b]∇ckde, we first find

[∇a,∇b]∇[ckde] = 3
2
( (
∇iRba[cd

)
ke]i −Rib[cd∇|a|ke]i +Ria[cd∇|b|ke]i

)
+ 6
D − 1g[c[a∇b]∇dk̄e].

(5.11)
Contracting the index pairs (a, e) and (b, c) in (5.11), we arrive at

kbc∇cGab + 1
D − 1

(
R k̄a + (D − 4)Rac k̄c + 2(D − 2)∇c∇[ck̄a]

)
= 0 , (5.12)

where Gab is the Einstein tensor. This correctly reduces to (5.1), its analog for a rank-2
KYT when k̄ pieces are set to zero. Moreover, with (5.12), the current Ja (2.8) can be
expressed in an alternative form as

Ja = 1
D − 1

(
(D − 2) kac∇cR− 2R k̄a − 2(D − 4)Rac k̄c − 4(D − 2)∇c∇[ck̄a]

)
, (5.13)

in analogy to (5.2). Using (5.13), the covariant conservation of Ja can be verified easily
thanks to the observations

2∇a∇c∇[ck̄a] = 2∇[a∇c]∇ck̄a = [∇a,∇c]∇ck̄a = 0 ,

where the last equality follows from the definition of the Riemann tensor, and

Rac∇ak̄c = Rac∇(ak̄c) = 0 ,

where the last equality follows using (5.7).
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Note that we may alternatively write Ja as

Ja = ∇c
((

D − 2
D − 1

)(
Rkac − 4∇[ck̄a]

))
− 2

(
D − 4
D − 1

)
Gack̄c ,

= ∇c
((

D − 2
D − 1

)
Rkac + 2Gabkbc

)
+ 2Gack̄c +

(
D − 2
D − 1

)
Rk̄a .

= ∇c
((

D − 2
D − 1

)
Rkac + 2Gb[akbc]

)
+ 2

(
D − 2
D − 1

)
Gack̄c . (5.14)

Here the first line follows from (5.13), whereas the second one from using (2.1) and (2.8).
The current can be written as a total divergence as Ja = ∇c`ac by equating the first and
the third lines, eliminating the Gack̄c bits, where

`ac = 2(D − 4)
D − 3 Gb[akb

c] + 2(D − 2)2

(D − 1)(D − 3)∇
[ak̄c] +

(
D − 2
D − 1

)
Rkac . (5.15)

Note that kab becomes a KYT when k̄a = 0. Agreement between (5.15) and (5.3) then
follows by observing that

∇c
(
Gb[af c]b

)
= 0 (5.16)

for a KYT fab [18]. This also shows the consistency of the following useful relation unveiled
in the derivation of (5.15)

Gack̄c =
(
D − 1
D − 3

)
∇c
(
Gb[ckb

a] +
(
D − 2
D − 1

)
∇[ak̄c]

)
. (5.17)

5.3 Potentials and charges for the Kerr-Newman metric

Armed with the potential (5.15) we now return to the question of charges. We illustrate
how the potential simplifies in 4D with vanishing curvature scalar R = 0.

An example of this is the Kerr-Newman metric, obtained by setting the acceleration
α = 0 and the NUT parameter ` = 0 in the metric (3.12), which again makes Ω = 1 and
P = 1 [26]:

ds2 = −Q
ρ2

(
dt− a sin2 θ dϕ

)2
+ ρ2

Q
dr2 + ρ2dθ2 + sin2 θ

ρ2

(
adt− (r2 + a2) dϕ

)2
, (5.18)

where we now have

Q(r) = (r − r+) (r − r−) , with r± ≡ m±
√
m2 − a2 − e2 − g2 ,

ρ2 = r2 + a2 cos2 θ .

We again find a KYT by setting α = 0 and ` = 0 in k̃ (3.14) which again leads to Qk̂ = 0
through j = 0, which is also easy to see from the potential (5.2). The charge expression
Qĥ is easier to calculate using the potential `ac (5.15), since now the first and the third
terms trivially vanish, for the remaining CKYT

h̃ = r dr ∧
[
dt− a sin2 θdϕ

]
+ a cos θ sin θdθ ∧

[
a dt−

(
r2 + a2

)
dϕ
]
.
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We find

Qh̃ = 16π
(
e2 + g2

) ∫ ∞
r+

dr

∫ π

0
dθ

sin θ
(
−a2 cos2 θ + 2a2 + e2 + g2 − 2mr + r2)

(a2 cos2 θ + r2) (a2 cos2 θ + e2 + g2 − 2mr + r2) , (5.19)

which is certainly convergent and finite. The θ integral can be taken exactly:

Qh̃ = 32π
a

(
e2 + g2

)

×
∫ ∞
r+

dr

(2a2+e2+g2+2r(r−m)) tan−1(ar )
r −

2(a2+e2+g2−2mr+r2) tan−1
(

a√
e2+g2−2mr+r2

)
√
e2+g2+r(r−2m)


(e2 + g2 − 2mr) .

Unfortunately though we have not been able to evaluate the r integral 6. Alternatively, we
can evaluate the r integral first, but that leads to an equally challenging expression for the
θ integral.

5.4 KYT and torsion

In section 4.1 the geometry is torsionful. This prompts the question of generalization of
some of our formulae to such geometries. CKYTs with torsion have been discussed, e.g.,
in [9, 33] and [34]. Here we shall not be able to treat the general case, but limit ourselves
to the special case of completely skew torsion. The torsionful covariant derivative is then

∇̂ = ∇(0) + T , (5.20)

where ∇(0)
a is the Levi-Civita connection and T represents the torsion two-form

T a = 1
2T

a
bce

b ∧ ec . (5.21)

We consider a two-form f which satisfies

∇̂(afb)c = ∇(0)
(a fb)c + T d

c(a fb)d = 0 . (5.22)

From this it follows that
∇̂afbc = ∇̂[afbc] , ∇̂afac = 0 , (5.23)

and we may take (5.22) or (5.23) as the definition of a KY two-form in the presence of
torsion. For a general n CKYT k we equivalently define

∇̂akb1...bn = ∇̂[akb1...bn] + n

D − n+ 1 ga[b1 k̄b2...bn] , (5.24)

where
k̄b1...bn−1 := ∇̂ckcb1...bn−1 . (5.25)

For a KY two-form f , we then find, using the torsionful Bianchi identity

R̂[dbc]
e = ∇[dT

e
bc] + T f

[db T
e

c]f , (5.26)

that the identity corresponding to (5.4) becomes

∇̂a∇̂bfcd = 3
2 R̂

e
[bc |a| fd]e + 3

2
(
∇̂[dT

e
bc] + T f

[db T
e

c]f

)
fea − 4R̂[abc

e fd]e . (5.27)

The explicit torsion expression for the last term follows from (5.26).
6Note that in the extremal case when r+ = r− = m and m2 = a2 + e2 + g2, the argument of the tan−1

in the second piece at the lower limit r = m becomes imaginary.
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6 Conclusions

In this paper we have introduced conserved currents based on the Cotton tensor and second
rank (C)KYTs and derived their potentials. As an example we have studied the Plebański-
Demiański metric and found its two CKYTs in the new coordinates introduced in [26]. The
corresponding Cotton charges are proportional to the sum of the squares of the electric
and the magnetic charges in general. In the particular case of the charged Taub-NUT
spacetime, which corresponds to setting the rotation parameter a to zero, the charge for
the non-vanishing CKYT is simply 32π2(e2 + g2)/` with the NUT parameter `. Obviously,
the conserved charge we find is a combination of fundamental charges already present in
the metric. The existence of KYTs and conserved currents formed using them does not
automatically lead to new charges. This is evident in the case of black holes where all the
conserved charges are known by other means. However for other possibly exotic geometries,
new and hitherto unearthed (hidden) charges could well arise. Therefore, there are other
metrics waiting to be analyzed similarly, in particular in higher dimensions.

For the 3D case we have discussed possible asymptotic charges, relations to results in
TMG and constructed a generalization to conformal supergravity. This latter result opens
up the possibility to construct similar currents for supergravities in higher dimensions.

The derivation of the potentials for the Cotton currents involve generalizations of iden-
tities for KYTs and CKYTs, and shows that there are still interesting geometric relations
for these objects that deserve attention.

Note added. While this paper was a preprint, we were asked by D. Kubiznak what would
happen if one considered the ` = 0 case, i.e., the Reissner-Nordström case, in the example
leading to (3.20). The answer is that the whole discussion follows as before, but the range
of the integral in (3.20) is from r+ to ∞ now, and one has a well-defined finite answer.
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A Spinor algebra

The 3D spinor algebra we need is

{γa, γb} = 2ηab ,

εαβεβγ = δαγ , ψα = εαβψβ , ψα = εαβψ
β ,

ψαφβ − ψβφα = εαβψ
γφγ ,

ψαφβ − ψβφα = −εαβψγφγ ,
7However the entire responsibility for the publication is ours. The financial support received from

TÜBİTAK does not mean that the content of the publication is approved in a scientific sense by TÜBİTAK.
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γaγb = ηab + εabcγ
c ,

(γa)αβ(γa)γδ = 2εα(γεδ)β ,

Vαβ = (γa)αβVa = Vβα ,

Va = −1
2(γa)αβVαβ . (A.1)

Note that a vector index is equivalent to a symmetric pair of spinor indices through the
last relation.

ηab = η(αβ)(γδ) = −εα(γεδ)β . (A.2)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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