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COMPLETE b-SYMBOL WEIGHT DISTRIBUTION OF SOME

IRREDUCIBLE CYCLIC CODES

HONGWEI ZHU & MINJIA SHI & FERRUH ÖZBUDAK

Abstract. Recently, b-symbol codes are proposed to protect against b-symbol er-

rors in b-symbol read channels. It is an interesting subject of study to consider the

complete b-symbol weight distribution of cyclic codes since b-symbol metric is a gener-

alization for Hamming metric. The complete b-symbol Hamming weight distribution

of irreducible codes is known in only a few cases. In this paper, we give a complete b-

symbol Hamming weight distribution of a class of irreducible codes with two nonzero

b-symbol Hamming weights.

Keywords: cyclic code, b-symbol error, b-symbol Hamming weight distribu-

tion, irreducible cyclic code

1. Introduction

In traditional information theory, people often analyze noise channels by dividing

information into independent information units. However, with the development of

storage technology, one finds that symbols can not always be written or read contin-

uously. In 2011, Cassuto and Blaum [1, 2] first proposed a new coding framework for

read channel based on symbol-pair. In this channel, the output of the reading process

is the overlapping symbol-pair of the read channel. Symbol-pair codes are designed to

correct symbol-pair errors. Later, Cassuto and Litsyn [3] studied the symbol-pair codes

corresponding to the cyclic codes and gave the lower bound for symbol-pair distance

of cyclic codes through discrete Fourier transform and BCH bound. Next, Chee et

al. [4, 5] established the Singleton-type bound of codes with symbol-pair metric, and

considered the construction of symbol-pair codes reaching this bound. More related

results on this topic can be found in [6, 7, 8, 10]. Recently, Yaakobi et al. [15] gener-

alized the symbol-pair read channel to the b-symbol read channel (2-symbol is exactly
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symbol-pair) and gave a decoding algorithm based on a bounded distance decoder for

the cyclic code, where b ě 1. When b “ 1, the 1-symbol weight is exactly Hamming

weight. Ding et al. [8] established the Singleton-type bound for b-symbol codes, and

constructed several infinite families of linear maximum distance separable (MDS) b-

symbol codes. In the b-symbol read channel, one tends to consider the cyclic codes.

Important motivations for considering cyclic codes include that cyclic shifting does not

change the b-symbol weight of the codeword, there are good decoding algorithms and

cyclic codes have good algebraic structure. Hence it is natural to consider b-symbol

weight distribution of cyclic codes. It is well known that the problem of determining

the weight distribution of an irreducible cyclic code is notoriously difficult in general.

Similar difficulty holds in the case of arbitrary cyclic codes and also for their b-symbol

weights, in general. There are only few cases that the b-symbol weight distribution

of cyclic codes are completely determined. Sun et al. [14] gave the 2-symbol distance

distribution of a class of repeated-root cyclic codes over finite fields. Using geometric

approach, Shi it et al. [13] obtain, among other results, tight lower and upper bounds

on b-symbol Hamming weight of arbitrary cyclic codes and a class of irreducible cyclic

codes with constant b-symbol Hamming weight.

In this paper we consider a natural next step after [13]. We completely deter-

mine the b-symbol weight distribution of irreducible cyclic codes of length n over Fq

if gcd
´

qr´1

q´1
, qr´1

n

¯

“ 2 with n | pqr ´ 1q and r ě 2. These results correspond to two-

weight cyclic codes over the alphabet Fq ˆ ¨ ¨ ¨ ˆ Fq “ Fb
q, which is not a field (see

Remark 3.2 below). It turns out that the complete determination of b-symbol weights

of these irreducible cyclic codes are more difficult and we obtain our results up to a

new invariant µpbq that we introduce in Definition 2.2 below. We find that µpbq is a

natural arithmetic and geometric invariant and we determine it exactly if b “ r. We

also obtain numerical results for 2 ď b ă r.

Our main results are Theorems 3.1 and 3.3. These results are stronger than the b-

symbol weight distributions as we determine the b-symbol weight of any given codeword

for the irreducible cyclic codes of this paper. Another important problem in this area

is construction of maximum distance separable (MDS) b-symbol codes. There are

interesting constructions in the recent literature using various methods, for example

[4, 5, 7, 8, 10]. As a consequence of Theorem 3.3 we observe that all of the irreducible

cyclic codes we study here are MDS b-symbol if b “ r.

This paper is organized as follows. In section 2, we introduce basic notations and

definitions. In section 3, we show the main results. In section 4, we give the detailed

proof of the main results. In the appendix, using exponent sum, we give another proof

to show the equality (15) holds.
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2. Preliminaries

Throughout this paper we assume and fix the following:

‚ Fq: finite field with q elements.

‚ F˚
q : Fqzt0u.

‚ q “ pe, p “ char Fq and p is odd.

‚ r ě 2: an even integer.

‚ nN “ qr ´ 1, where n,N are positive integers.

‚ gcd
´

qr´1

q´1
, N

¯

“ 2.

‚ 2 ď b ď n ´ 1 : an integer.

‚ η P Fqr : a primitive pqr ´ 1q-th root of 1, or equivalently a primitive element of

Fqr .

‚ Tr : Fqr Ñ Fq: the trace map defined as x ÞÑ x ` xq ` ¨ ¨ ¨ ` xqr´1

.

Denote by wpxq or wHpxq the Hamming weight of x P Fn
q . The b-symbol Hamming

weight wbpxq of x “ px0, . . . , xn´1q P Fn
q is defined as the Hamming weight of πbpxq,

where

πbpxq “ ppx0, . . . , xb´1q, px1, . . . , xbq, ¨ ¨ ¨ , pxn´1, . . . , xb`n´2pmod nqqq(1)

is in pFb
qq

n. When b “ 1, w1pxq is exactly the Hamming weight of x. For any x,y P FN
q ,

we have πbpx ` yq “ πbpxq ` πbpyq, and the b-symbol distance (b-distance for short)

dbpx,yq between x and y is defined as dbpx,yq “ wbpx´yq. Let A
pbq
i denote the number

of codewords with b-symbol Hamming weight i in a code C of length n. The b-symbol

Hamming weight enumerator of C is defined by

1 ` A
pbq
1
T ` A

pbq
2
T 2 ` ¨ ¨ ¨ ` Apbq

n T n.

Ding et al. [8] established a Singleton-type bound for b-symbol codes. Let q ě 2 and

b ď dbpCq ď n. If C is an pn,M, dbpCqqq b-symbol code, then we have M ď qn´dbpCq`b.

An pn,M, dbpCqqq b-symbol code C with M “ qn´dbpCq`b is called a maximum distance

separable (MDS for short) b-symbol code.

For a P Fqr , let cpaq P F
n
q be the codeword defined as

cpaq “
`

Trpaη0¨Nq,Trpaη1¨Nq, . . . ,Trpaηj¨Nq, . . . ,Trpaηpn´1q¨Nq
˘

,
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where 0 ď j ď n ´ 1.

Let C be the Fq-linear code of length n defined as

C “ tcpaq : a P Fqru .

The following simple lemma is useful.

Lemma 2.1. C is the irreducible code of length n over Fq and dimFq
C “ r.

Next we introduce an important invariant µpbq of the extension Fqr{Fq. First we

introduce a subset Ppbq of F˚
qr , which we use in the definition of µpbq below.

Definition 2.1. Let 2 ď b ď r be an integer. It follows from [13, Corollary 4.1] that

the set
 

1, ηN , η2N , . . . , ηpb´1qN
(

is linearly independent over Fq. Let Ppbq be the subset

of cardinality pqb ´ 1q{pq ´ 1q in F
˚
qr defined as

Ppbq “
b´1
ď

j“1

 

ηpj´1qN ` x1η
jN ` ¨ ¨ ¨ ` xb´jη

pb´1qN : x1, ¨ ¨ ¨ , xj P Fq

(

Y
 

ηpb´1qN
(

.

Example 2.1. For r ě 3 we have

Pp2q “
 

1 ` x1η
N : x1 P Fq

(

Y
 

ηN
(

and

Pp3q “
 

1 ` x1η
N ` x2η

2N : x1, x2 P Fq

(

Y
 

ηN ` x1η
2N : x1 P Fq

(

Y
 

η2N
(

.

Now we are ready to define the invariant µpbq.

Definition 2.2. For 2 ď b ď r, let

µpbq “
ˇ

ˇ

 

x P Ppbq : x is a square in F
˚
qr

(ˇ

ˇ .

It seems difficult to determine µpbq exactly when b ă r. We determine it exactly

when b “ r in the following.

Lemma 2.2. Under notation as above, we have

µprq “
1

2
|Ppbq| “

qr ´ 1

2pq ´ 1q
.

Proof. First note that pqr ´ 1q{pq ´ 1q is an even integer as r is even. Moreover any

element of F˚
q is a square in F˚

qr as r is even. It follows from Definition 2.1 that

F
˚
qr “

ğ

xPPpbq

xF˚
q ,

where
Ů

is a disjoint union. Hence x P Ppbq is a square in F˚
qr if and only if each

element of xF˚
q is a square in F˚

qr . This implies that

µpbqpq ´ 1q “
qr ´ 1

2
,

which is the number of squares in F˚
qr . This completes the proof. �
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Example 2.2. Here are some numerical examples about µpbq which computed by Magma.

p q r N b µpbq

3 3 2 2 2 2 “ qr´1

2pq´1q

3 3 4 2 2 3

3 3 4 2 3 8

3 3 4 2 4 20 “ qr´1

2pq´1q

5 5 2 2 2 3 “ qr´1

2pq´1q

5 5 4 2 2 4

5 5 4 2 3 18

5 5 4 2 4 78 “ qr´1

2pq´1q

3 9 2 2 2 5 “ qr´1

2pq´1q

3 9 4 2 2 4

3 9 4 2 3 50

3 9 4 2 4 410 “ qr´1

2pq´1q

3 9 6 2 2 4

3 9 6 2 3 51

3 9 6 2 4 401

3 9 6 2 5 3728

3 9 6 2 6 33215 “ qr´1

2pq´1q

5 25 2 2 2 13 “ qr´1

2pq´1q

5 25 4 2 2 11

5 25 4 2 3 338

5 25 4 2 4 8138 “ qr´1

2pq´1q

According to Example 2.2, when 2 ď b ă r, we notice that the value of µpbq is close

to, but not equal to, qb´1

2pq´1q
. It is natural for us to arise such an open question as follows.

Open Problem 2.3. Determine the invariant µpbq when 2 ď b ă r or give good lower

and upper bounds to µpbq.

3. The main results

Next we state our first main result. We completely determine the b-symbol Hamming

weight of a given arbitrary nonzero codeword of C for 2 ď b ă r. Recall that q “ pe,

p “ char Fq and p is odd.

Theorem 3.1. Let a P F˚
qr . Assume that 2 ď b ă r. Then we determine wbpcpaqq

explicitly as follows:
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‚ If p ” 1 mod 4 and a is a square in F˚
qr , then

wbpcpaqq “
qb ´ 1

Npq ´ 1qqb´1

ˆ

qr ´
qr ` pq ´ 1qqr{2

q

˙

`
2µpbqpq ´ 1qqr{2

Nqb
.

‚ If p ” 1 mod 4 and a is a non-square in F˚
qr , then

wbpcpaqq “
qb ´ 1

Npq ´ 1qqb´1

ˆ

qr ´
qr ´ pq ´ 1qqr{2

q

˙

´
2µpbqpq ´ 1qqr{2

Nqb
.

‚ If p ” 3 mod 4 and a is a square in F˚
qr , then

wbpcpaqq “
qb ´ 1

Npq ´ 1qqb´1

ˆ

qr ´
qr ` p´1qer{2pq ´ 1qqr{2

q

˙

`
2µpbqp´1qer{2pq ´ 1qqr{2

Nqb
.

‚ If p ” 3 mod 4 and a is a non-square in F˚
qr , then

wbpcpaqq “
qb ´ 1

Npq ´ 1qqb´1

ˆ

qr ´
qr ´ p´1qer{2pq ´ 1qqr{2

q

˙

´
2µpbqp´1qer{2pq ´ 1qqr{2

Nqb
.

Remark 3.2. The Hamming weight distribution of the above cyclic codes has been

considered in [9], and C is a two-weight code under the Hamming metric. In this paper

we consider b-symbol weight distribution of such codes. Using the map πb in (1), the

problem becomes Hamming weight distribution of some 2-weight cyclic codes over the

alphabet Fq ˆ ¨ ¨ ¨Fq “ Fb
q, which is not a field. We remark that two-weight irreducible

cyclic codes over finite fields were characterized in [12], and it would be interesting

to obtain such a characterization over the alphabet Fb
q. We think that this would be

related to Open Problem 2.3 above.

It remains to consider r ď b ă n for C. Using [13, Theorem 4.2] and Lemma 2.2 we

obtain a nice formula in the following.

Theorem 3.3. Let a P F˚
qr . For r ď b ă n we have

wbpcpaqq “ n.

Combining Theorem 3.1 and Theorem 3.3 we obtain the weight b-symbol Hamming

weight enumerators of C completely.

Corollary 3.1. For 2 ď b ď r ´ 1, the b-symbol Hamming weight enumerator of C is

ApT q “ 1 `
qr ´ 1

2
pT u1 ` T u2q ,

where

u1 “

$

’

’

&

’

’

%

qb´1

Npq´1qqb´1

´

qr ´ qr`pq´1qqr{2

q

¯

` 2µpbqpq´1qqr{2

Nqb
if p ” 1 mod 4,

qb´1

Npq´1qqb´1

´

qr ´ qr`p´1qer{2pq´1qqr{2

q

¯

` 2µpbqp´1qer{2pq´1qqr{2

Nqb
if p ” 3 mod 4,
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and

u2 “

$

’

’

&

’

’

%

qb´1

Npq´1qqb´1

´

qr ´ qr´pq´1qqr{2

q

¯

´ 2µpbqpq´1qqr{2

Nqb
if p ” 1 mod 4,

qb´1

Npq´1qqb´1

´

qr ´ qr´p´1qer{2pq´1qqr{2

q

¯

´ 2µpbqp´1qer{2pq´1qqr{2

Nqb
if p ” 3 mod 4.

For r ď b ă n ´ 1, the b-symbol Hamming weight enumerator of C is

ApT q “ 1 ` pqr ´ 1qT n.

Moreover, C is an MDS b-symbol code when b “ r.

4. Proofs of the main results

4.1. Proof of Theorem 3.1. For a P Fqr , let ĉpaq P F
qr´1

q be the extended codeword

of length qr ´ 1 defined as

ĉpaq “
`

Trpaη0¨Nq,Trpaη1¨Nq, . . . ,Trpaηj¨Nq, . . . ,Trpaηpqr´2q¨Nq
˘

,

where 0 ď j ď qr ´ 2. As ηnN “ 1, we observe that

wpcpaqq “
1

N
wpĉpaqq and wbpcpaqq “

1

N
wbpĉpaqq(2)

for each 2 ď b ď n ´ 1.

For a P Fqr , let Zpaq P C be defined as

Zpaq “
1

q

ÿ

yPFq

ÿ

xPFqr

e
2π

?
´1

p
Trq{ppyTrqr{qpaxN qq.(3)

For each x P F˚
qr , we observe that

ÿ

yPFq

e
2π

?´1

p
Trq{ppyTrqr{qpaxN qq “

#

q if Trqr{qpax
N q “ 0,

0 otherwise.

This implies that

wpĉpaqq “ qr ´ Zpaq.(4)
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Let H ď F˚
qr be the multiplicative subgroup of order qr´1

N
. Using (3) we obtain that

Zpaq “
1

q

$

&

%

qr `
ÿ

yPF˚
q

ÿ

xPFqr

e
2π

?
´1

p
Trqr{qpyTrqr{qpaxN qq

,

.

-

“
1

q

$

&

%

qr `
ÿ

yPF˚
q

»

–1 `
ÿ

xPF˚
qr

e
2π

?
´1

p
Trqr{ppayxNq

fi

fl

,

.

-

“
1

q

$

&

%

qr ` q ´ 1 `
ÿ

yPFq̊

ÿ

xPF˚
qr

e
2π

?´1

p
Trqr{ppayxNq

,

.

-

“
1

q

$

&

%

qr ` q ´ 1 ` N
ÿ

yPF˚
q

ÿ

zPH

e
2π

?
´1

p
Trqr{ppayzq

,

.

-

(5)

It is well known (see, for example, [11, Theorem 5.15]) that

ÿ

yPF˚
qr

y is square

e
2π

?´1

p
Trqr{ppyq “

#

´qr{2´1

2
if p ” 1 mod 4,

´p´1qer{2qr{2´1

2
if p ” 3 mod 4,

(6)

and

ÿ

yPF˚
qr

y is non-square

e
2π

?
´1

p
Trqr{ppyq “

#

qr{2´1

2
if p ” 1 mod 4,

p´1qer{2qr{2´1

2
if p ” 3 mod 4,

(7)

The following lemma is also useful.

Lemma 4.1. Consider F˚
qˆH as a group with componentwise multiplicative operations.

Let φ be the map defined as

φ : F˚
q ˆ H Ñ F˚

qr

py, zq ÞÑ yz

Then φ is a group homomorphism and Ker φ “ tph, h´1q : h P H0u, where H0 ď F˚
qr is

the multiplicative subgroup of order 2pq´1q
N

.

Proof. Note that py, zq P Ker φ if and only if yz “ 1. This implies that if py, zq P

Ker φ, then y P F˚
q X H , z P F˚

q X H and z “ y´1. Conversely if h P F˚
q X H , then

ph, h´1q P Ker φ. It remains to prove that F˚
q X H “ H0. This is equivalent to the

statement that

gcd

ˆ

q ´ 1,
qr ´ 1

N

˙

“
2pq ´ 1q

N
.(8)
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Note that gcd
´

qr´1

q´1
, N

¯

“ 2 by one of the main assumptions of this paper in Section

2. Hence we have

gcd

ˆ

qr ´ 1

2pq ´ 1q
,
N

2

˙

“ 1.(9)

As N
2

ˇ

ˇ

qr´1

2
and qr´1

2
“ qr´1

2pq´1q
¨ pq ´ 1q, using (9) we conclude that

N

2

ˇ

ˇ

ˇ

ˇ

pq ´ 1q.(10)

Moreover 2
ˇ

ˇ

ˇ

qr´1

q´1
as r is even and q is odd. Using (10) we obtain that

2pq ´ 1q

N

ˇ

ˇ

ˇ

ˇ

gcd

ˆ

q ´ 1,
qr ´ 1

N

˙

.(11)

Combining (9) and (11) we conclude that the statement in (8) holds. This completes

the proof. �

In the following lemma we use the multiset notation t˚ ¨ ¨ ¨ ˚u and the multiplicities

are denoted as multiplication coefficients. For example we have t˚x1, x1, x2˚u “ t˚2 ¨

x1, x2˚u.

Lemma 4.2. Let a P F˚
qr . Using the multiset notation as above we have the followings:

‚ If a is a square, then

t˚ayz : y P F
˚
q , z P H˚u “

"

˚
2pq ´ 1q

N
¨ x : x P F

˚
qr , x is a square˚

*

.

‚ If a is a non-square, then

t˚ayz : y P F
˚
q , z P H˚u “

"

˚
2pq ´ 1q

N
¨ x : x P F

˚
qr , x is a non-square˚

*

.

Proof. First we assume that a “ 1. The homomorphism φ : F˚
q ˆ H Ñ F˚

qr defined

in Lemma 4.1 has a kernel of cardinality 2pq´1q
N

by Lemma 4.1. This implies that the

image of φ has cardinality

pq ´ 1q qr´1

N

2pq´1q
N

“
qr ´ 1

2
.(12)

Moreover φpy, zq is a square in F˚
qr for any y P F˚

q and z P H as r is even and N is

even. Hence using (12) we obtain that Imφ is exactly the set tx P F˚
qr : x is a squareu.

Counting the multiplicities we complete the proof if a “ 1.

If a P F˚
qrzt1u is a square, then it is clear that the multiset t˚ayz : y P F˚

q , z P H˚u

is the same as the multiset t˚yz : y P F˚
q , z P H˚u.

If a P F˚
qr is a non-square, then we obtain that the set tayz : y P F˚

q , z P Hu is equal

to the set tx : x P F˚
qr , x is a non-squareu. Moreover the multiplicities are the same.

This completes the proof. �
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Assume that a P F˚
qr is a square. Using (5), (6) and Lemma 4.2 we obtain that

Zpaq “
1

q

$

’

’

’

&

’

’

’

%

qr ` q ´ 1 ` N
2pq ´ 1q

N

ÿ

yPF˚
qr

y is square

e
2π

?
´1

p
Trqr{ppyq

,

/

/

/

.

/

/

/

-

“

$

’

’

&

’

’

%

1

q

´

qr ` q ´ 1 ` 2pq ´ 1q´qr{2´1

2

¯

if p ” 1 mod 4,

1

q

´

qr ` q ´ 1 ` 2pq ´ 1q qr{2´1

2

¯

if p ” 3 mod 4,

“

$

’

&

’

%

qr´pq´1qqr{2

q
if p ” 1 mod 4,

qr´p´1qer{2pq´1qqr{2

q
if p ” 3 mod 4,

(13)

Next we assume that a P F˚
qr is a non-square. Using (5), (7) and Lemma 4.2 similarly

we obtain that

Zpaq “

$

’

&

’

%

qr`pq´1qqr{2

q
if p ” 1 mod 4,

qr`p´1qer{2pq´1qqr{2

q
if p ” 3 mod 4,

(14)

Recall that the set Ppbq is defined in Definition 2.1. An important result obtained

in [13] using algebraic curves over finite fields is that

wbpĉpaqq “
1

qb´1

ÿ

θPPpbq

w pĉpθaqq .(15)

Recall that µpbq is the integer defined in Definition 2.2.

Now assume that p ” 1 mod 4 and a is a square in F˚
qr . Combining (4), (13), (14)

and (15) we obtain that

wb pĉpaqq “
1

qb´1

ˆ

µpbq

„

qr ´
qr ´ pq ´ 1qqr{2

q

˙

` 1

qb´1

´´

qb´1

q´1
´ µpbq

¯ ”

qr ´ qr`pq´1qqr{2

q

ı¯

“
qb ´ 1

pq ´ 1qqb´1

ˆ

qr ´
qr ` pq ´ 1qqr{2

q

˙

`
2µpbqpq ´ 1qqr{2

qb
.

(16)
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Next assume that p ” 1 mod 4 and a is a non-square in F˚
qr . Combining (4), (13),

(14) and (15) we obtain that

wb pĉpaqq “
1

qb´1

ˆ

µpbq

„

qr ´
qr ` pq ´ 1qqr{2

q

˙

` 1

qb´1

´´

qb´1

q´1
´ µpbq

¯ ”

qr ´ qr´pq´1qqr{2

q

ı¯

“
qb ´ 1

pq ´ 1qqb´1

ˆ

qr ´
qr ´ pq ´ 1qqr{2

q

˙

´
2µpbqpq ´ 1qqr{2

qb
.

(17)

Again next assume that p ” 3 mod 4 and a is a square in F˚
qr . Combining (4), (13),

(14) and (15) we obtain that

wb pĉpaqq “
1

qb´1

ˆ

µpbq

„

qr ´
qr ´ p´1qer{2pq ´ 1qqr{2

q

˙

` 1

qb´1

´´

qb´1

q´1
´ µpbq

¯ ”

qr ´ qr`p´1qer{2pq´1qqr{2

q

ı¯

“
qb ´ 1

pq ´ 1qqb´1

ˆ

qr ´
qr ` p´1qer{2pq ´ 1qqr{2

q

˙

`
2µpbqp´1qer{2pq ´ 1qqr{2

qb
.

(18)

Finally assume that p ” 3 mod 4 and a is a non-square in F˚
qr . Combining (4), (13),

(14) and (15) we obtain that

wb pĉpaqq “
1

qb´1

ˆ

µpbq

„

qr ´
qr ` p´1qer{2pq ´ 1qqr{2

q

˙

` 1

qb´1

´´

qb´1

q´1
´ µpbq

¯ ”

qr ´ qr´p´1qer{2pq´1qqr{2

q

ı¯

“
qb ´ 1

pq ´ 1qqb´1

ˆ

qr ´
qr ´ p´1qer{2pq ´ 1qqr{2

q

˙

´
2µpbqp´1qer{2pq ´ 1qqr{2

qb
.

(19)

Using (2), (16), (17), (18) and (19) we complete the proof of Theorem 3.1.

4.2. Proof of Theorem 3.3. If r ă b ď n ´ 1, then using the proof of [13, Theorem

4.2] we obtain that wbpcpaqq “ wrpcpaqq. It remains to prove Theorem 3.3 for b “ r.
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Assume that p ” 1 mod 4 and a is a square in F˚
qr . Then using Lemma 2.2 and

Theorem 3.1 we obtain that µprq “ qr´1

2pq´1q
and hence

wrpcpaqq “
qr ´ 1

Npq ´ 1qqr´1

ˆ

qr ´
qr ` pq ´ 1qqr{2

q

˙

`
pqr ´ 1qqr{2

Nqr

“
qr ´ 1

Npq ´ 1qqr´1

`

qr ´ qr´1
˘

`
qr ´ 1

Nqr

`

´qr{2 ` qr{2
˘

“
pqr ´ 1q qr´1

Nqr´1
“

qr ´ 1

N
“ n.

The proof is similar for the case that p ” 1 mod 4 and a is a non-square.

Next assume that p ” 3 mod 4 and a is a square in F˚
qr . Then similarly using

Lemma 2.2 and Theorem 3.1 we obtain that

wrpcpaqq “
qr ´ 1

Npq ´ 1qqr´1

ˆ

qr ´
qr ` p´1qer{2pq ´ 1qqr{2

q

˙

`
p´1qer{2pqr ´ 1qqr{2

Nqr

“
qr ´ 1

Npq ´ 1qqr´1

`

qr ´ qr´1
˘

`
p´1qer{2qr ´ 1

Nqr

`

´qr{2 ` qr{2
˘

“
pqr ´ 1q qr´1

Nqr´1
“

qr ´ 1

N
“ n.

The proof is similar for the case that p ” 3 mod 4 and a is a non-square. From the

definition of the MDS b-symbol codes, it is easy to check that C is MDS when b “ r.

This completes the proof of Theorem 3.3.

Example 4.1. Let γ be a primitive element of F81 with γ4 ` 2γ3 ` 2 “ 0.

According to Table 1 of [9], the Hamming weight enumerator of C is 1 ` A
p1q
24
T 24 `

A
p1q
30
T 30 “ 1 ` 40T 24 ` 40T 30 when q “ 3, r “ 4, N “ 2 and gcdp qr´1

q´1
, Nq “ 2. When

b “ 2, |Pp2q| “ q ` 1 “ 4. Let Pp2q “ t1, γ2, 1 ` γ2, 1 ` 2γ2u. If a P C
p2,rq
i , then

γ2a, p1`γ2qa “ γ58a P C
p2,rq
i , p1`2γ2qa “ γ65a P C

p2,rq
i`1pmod 2q, where i “ 0, 1. According

to the equality (15), we have

w2pcpaqq “
1

3
rw1pcpaqq ` w1pcpγ2aqq ` w1pcpp1 ` γ2qaqq ` w1pcpp1 ` 2γ2qaqqs

“

$

’

&

’

%

1

3
p24 ` 24 ` 24 ` 30q “ 34 a P C

p2,rq
0

,

1

3
p30 ` 30 ` 30 ` 24q “ 38 a P C

p2,rq
1

.

Therefore the 2-symbol Hamming weight enumerator of C is 1 ` A
p2q
34
T 34 ` A

p2q
38
T 38 “

1 ` |C
p2,rq
0

|T 34 ` |C
p2,rq
1

|T 38 “ 1 ` 40T 34 ` 40T 38.

Combining Example 2.2 and Corollary 3.1, we have µp2q “ 3, u1 “ 38 and u2 “ 34,

which is the same as above result. The above result also verified by Magma experiment.
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5. appendix

Using algebraic curves, Shi et al. [13] proved that the equality (15) holds. Here we

give another proof which using exponent sum.
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Let C be a cyclic irreducible code of period n and dimension k with zero η “ γN

where γN is a primitive element in Fqr and N “ qk´1

n
. Let I “ t1, η, . . . , ηn´1u.

Recall that C “ tcpaq “
`

Trpaη0¨Nq,Trpaη1¨Nq, . . . ,Trpaηj¨Nq, . . . ,Trpaηpn´1q¨Nq
˘

u and

the Hamming weight of a codeword w1pcpaqq is

n ´ w1pcpaqq “
ÿ

xPI

1

q

ÿ

yPFq

χpyaxq,

where χ is an additive character of Fqr . To find the b-symbol Hamming weight of cpaq,

then one needs to count how often b consecutive positions pTrpaxq,Trpaηxq, ¨ ¨ ¨ ,Trpsηbxqq

are all 0. This implies

n ´ wbpcpaqq “
ÿ

xPI

1

qb

ÿ

y1,...,ybPFq

χppy1 ` y2η ` ¨ ¨ ¨ ` yb´1η
b´1qaxq

“
1

qb´1

ÿ

xPI

1

q

ÿ

uPV

χpuaxq,

where V “ă 1, η, ¨ ¨ ¨ , ηb´1 ą . Let
Ť

qb´1

q´1

i“0
θiF

˚
q Y 0 then

n ´ wbpcpaqq “
1

qb´1

qb´1

q´1
ÿ

i“1

ÿ

xPI

1

q

ÿ

yPFq̊

χpyθiaxq `
n

qb

“
1

qb´1

qb´1

q´1
ÿ

i“1

pn ´ w1pcpθiaqqq ´
npqb ´ 1q

qbpq ´ 1q
`

n

qb

“
npqb ´ 1q

qb´1pq ´ 1q
´

1

qb´1

qb´1

q´1
ÿ

i“1

w1pcpθiaqq ´
npqb ´ qq

qbpq ´ 1q

“ n ´
1

qb´1

qb´1

q´1
ÿ

i“1

w1pcpθiaqq.

Hence, wbpcpaqq “ 1

qb´1

ř

qb´1

q´1

i“1
w1pcpθiaqq.
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