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Abstract. Urban building energy modelling (UBEM) has great 
potential for assessing the energy performance of the existing building 
stock and exploring various actions targeting energy efficiency. 
However, the precision and completeness of UBEM models can be 
challenged due to the lack of available and reliable datasets related to 
building occupant and layout information. This study presents an 
approach that aims to augment UBEM with open-data sources. Data 
collected from open data sources are integrated into UBEM in three 
steps. Step (1) involves the generation of occupant profiles from census 
data collected from governmental institutions. Step (2) relates to the 
automated generation of building plan layouts by extracting data on 
building area and number of rooms from an online real-estate website. 
Results of Steps (1) and (2) are incorporated into Step (3) to generate 
residential units with layouts and corresponding occupant profiles. 
Finally, we make a comparative analysis between data-augmented and 
standard UBEM based on building energy use and occupant thermal 
comfort. The initial results point to the importance of detailed, precise 
energy models for reliable performance analysis of buildings at the 
urban scale.  

Keywords.  Urban Building Energy Modelling; Occupancy; 
Residential Building Stock; Unit Layout Information; Open-source 
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1. Introduction 

Buildings alone account for 40% of energy consumption and 36% of greenhouse gas 
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emissions (European Commission, 2020). The global population might reach 11 billion 
by 2050, with the majority of the additional population residing in cities, bringing the 
total urban population to 6.5 billion (United Nations, 2019). Cities must be able to 
assess their energy use and investigate methods for reducing energy consumption and 
environmental effect to contribute to achieving one of the Sustainable Development 
Goals (SDGs) of the United Nations, SDG11, focusing on "Sustainable cities and 
communities" (United Nations, 2015). In order to estimate, compare, rank, and contrast 
the energy used in cities by building stock, Urban Building Energy Modelling (UBEM) 
has gained an increasing research interest in past decades. Varying between scales of a 
city block to an entire city, UBEM has been extensively used to guide energy-efficient 
design, ensure code compliance, obtain performance rating credits, evaluate retrofit 
options, and optimise building operations (Hong et al., 2020). 

UBEM requires several parameters for building characteristics as inputs, such as 
building geometry, location, climate, use type, energy systems and occupancy data. 
Modelling occupancy, which is a complex problem even for a single building since 
occupants interact with buildings in many different ways and cause uncertainty in 
building energy use estimations, has been a challenge for UBEM. Studies have shown 
that up to 30% of the variation in building energy performance can be attributed to 
occupants (Tian et al., 2018). Therefore, modelling occupancy has been one of the 
critical factors for UBEM to estimate building performance indicators accurately.  

Accurate estimations in urban scale modelling are significantly affected by the 
availability and adaptability of large datasets to UBEM. The availability and cost of the 
occupancy data, along with privacy concerns, obstructed the process to obtain data for 
energy models (Putra et al., 2021). In most UBEM attempts, building occupancy 
information is rather simplified due to the lack of necessary data in district or urban 
scales (Mosteiro-Romero et al., 2020). When data directly linked to occupancy 
presence or activity is unavailable, synthetic population generation based on various 
data resources become one of the key solutions.  

Researchers adopted several methods to model occupancy from outside resources, 
such as surveys, data-mining techniques, and sensors to generate synthetic occupancy 
data in recent decades. For instance, a recent study examined occupant presence and 
characteristics based on 12 years of survey data representing occupant presence in 
buildings and household characteristics to generate annual occupancy schedules (Mitra 
et al., 2020). Generated occupancy schedules relied on age, day of the week, number 
of household members and the age distribution of occupants in households. 
Researchers have found a 41% difference between commonly accepted default 
occupancy schedules and the schedules they generated for residential buildings, 
although both schedules share similar patterns. Similarly, another study relied on a time 
use survey and census data to assess occupancy and behavioural information (Jeong et 
al., 2021). Researchers obtained information for household composition and occupant 
activities during different periods of the year. Although similar studies have 
demonstrated that the generation of synthetic occupancy data is not new, implemention 
of the approach in the UBEM framework is yet to be explored (Happle et al., 2018). 

Estimating the occupant density within a thermal zone is critical. However, 
estimating the exact occupant presence for a large number of thermal zones is hard to 
specify when data is not available. Collecting data for each residential unit of a 

670



COMPILING OPEN DATASETS TO IMPROVE URBAN 
BUILDING ENERGY MODELS WITH OCCUPANCY AND 

LAYOUT DATA 

neighbourhood is not practical and, in most cases, data is not available due to privacy 
concerns. Generally, standardised measures for occupancy, a fixed value for people per 
floor area, is supplied to energy models which do not represent the actual occupant 
presence and systematically lower heating energy loads (Tahmasebi & Mahdavi, 
2017). In this respect, previous studies relied on the relationship between tenant units 
and the number of occupants (Sun & Erath, 2015). Unit layout information has the 
potential to reflect the probable household size. For residential buildings, the number 
of bedrooms can imply the number of people that could occupy the unit. Although 
exact modelling of interior unit division is not possible, occupant presence in units can 
be inferred from the number of rooms and floor areas available in real-estate service 
databases. Therefore, this study contributes to previous methods for synthetic 
occupancy generation based on census data by integrating the data obtained from real-
estate advertisements to associate generated occupant profiles with building units. 

This study aims to support UBEM with occupancy and layout data by compiling 
publicly available datasets. The proposed occupancy modelling approach contributes 
to the knowledge in synthetic occupancy generation for UBEM when data directly 
linked to occupancy is not present. The proposed approach is applied to UBEM of a 
neighbourhood in Ankara, Turkey, with 599 residential buildings. To contrast the 
results of the proposed occupancy generation approach with the default midrise 
apartment occupancy, two sets of simulations are compared based on performance 
indicators of heating energy demand (QH) and indoor overheating degrees (IOD). 

2. Methodology 

This paper presents a methodology for occupancy generation and residential unit 
division planning to increase the resolution of the UBEM framework based on real-
world data sets. Generated occupant profiles were associated with residential unit 
layouts in terms of total area and room number (e.g., 1+1, 2+1). The building stock 
performance of the generated occupancy and default occupancy schedules were 
compared (Figure 1).  

2.1. CASE STUDY 

Figure 1. The proposed methodology. 
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The proposed methodology is applied to the Bahcelievler neighbourhood, Turkey 
(Figure 2). The analysis region is home to a dense mass of buildings since it is located 
in Turkey's second largest city, Ankara. Three to four-story buildings occupy 574,353 
square meters (sqm) floor areas in the city. The residential buildings represent 93% of 
the building stock (599 residential buildings out of 642). The building typology of the 
region consists of primarily residential buildings with retail and office units on the 
ground floors (approximately 10% of the total units per building). Ankara is in 
ASHRAE 4B climate region; thus, heating energy demand is dominated, and cooling 
demand was not calculated in the scope of this study.  

2.2. OCCUPANT PROFILE GENERATION 

Detailed household information for residential building stock is not available for the 
studied region. Therefore, the proposed occupancy modelling was produced based on 
the analysis of publicly available census data obtained from the Turkish Statistical 
Institute (TUIK). The proposed occupancy modelling consists of two phases: the 
formation of occupant profiles and the modelling of the household combination 
according to the conditional probability methodology. Several assumptions were made 
during the various steps of this exploratory modelling study. In the first step, occupant 
profiles were formed according to the age ranges of the occupants (TUIK, 2021b), and 
divided into three subgroups: 0to24, 25to64, and 65+. As a next step, age groups were 
separated into three classes: work, school, and home (Table 1) according to their 
education, employment status and the information of whether residents were present at 
home or not (TUIK, 2021c). Occupant profiles were created by modelling their 
presence at home at different rates within 24 hours on weekdays. For instance (Table 
1), children aged 0-5 who are at home, children aged 6-24 who goes to school and 
children between the ages of 15-24 who do not study or work were gathered under the 
same group of kids aged 0to24. Independent of the profiles, all occupants are assumed 
to be at home on weekends.  

 
 

Figure 2. Bahcelievler neighbourhood. 
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Occupant profile Kids, 0to24  

(38.23% of the population) 

Adult, 25to64  

(52.26% in all population) 

Senior, 65+  

(9.51% in all population) 

Subgroups Home (e.g., infant) 

School (e.g., elementary, 
kindergarten) 

Work  

Work 

Home (e.g., unemployed, 
retired) 

Home (i.e., retired) 

Weekdays Home: 8.96% 

School: 51.94% 

Work: 39.1% 

Home: 39.6% 

Work: 60.4% (65+ 
employment status excluded) 

Home (in): 100% 

Weekend Home: 100% 

Table  1. Occupant profiles and subgroups for weekdays and weekends. 

In the second step, occupant profiles were divided into seven groups according to 
the size of the household, e.g., one-person household, two-person household (TUIK, 
2021a). Densities of different household combinations were defined based on 
conditional probability in terms of the number of households and the characteristics of 
the members of the family. Three different family types were defined: family with 
children, family with children and elderly, and no family. Children, adults, and elderly 
groups were assigned to these groups according to their proportion in the total 
population. These characteristics were determined according to census data obtained 
from the TUIK, e.g., two-person family with kids, four-person family kids and elderly 
(Figure 3). 

For instance, the proportion of a family with five children in the total population 
was 7.6%. This ratio is supported by the conditional distribution of child, elderly and 
adult groups. Specifically, a combination of 3 adults, one child, and one elderly person 
is 2.327%, according to census data. The ratio found was also multiplied by the total 

Figure 3. Occupant profile generation 
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housing unit of the neighbourhood to determine how many times this household 
occupant combination is repeated in the model. On the other hand, it is noticed that 
while some combinations are theoretically possible, they are probabilistic unlikely. For 
example, the proportion of households consisting of five members of non-family in the 
total population is 0.10%. The probability of a five-person household combination 
consisting of five elderlies in this combination set is minimal so that it can be ignored. 

2.3. UNIT LAYOUT GENERATION 

The level of detail of the building energy modelling process affects the accuracy of the 
results (Biljecki et al., 2014). Initially, a total number of units in the buildings was 
obtained through the address inquiry system (Nüfus ve Vatandaşlık İşleri Genel 
Müdürlüğü, n.d.). However, the total number of units for each building obtained from 
the address inquiry system does not relate to household information. Therefore, the 
number of occupants and their likelihood of being present at home for each unit is 
unknown. At this stage, real-estate advertisements belonging to the studied district is 
interpreted. Initially, floor area and the number of rooms belonging to building units in 
Bahcelievler were obtained from two of the most accessed online real-estate web 
services in Turkey, namely, Hepsi Emlak (Hepsiemlak, 2006) and Sahibinden 
(Sahibinden, 2000). Advertisements available on October 8, 2021, for the Bahcelievler 
neighbourhood were recorded for each resource. After data preprocessing of two 
datasets and removal of outliers, a total number of 671 data points, 382 from Hepsi 
Emlak and 289 from Sahibinden, are analysed individually due to the possibility of the 
same advertisement taking place in both resources.   

According to both the data sets, slightly less than half of the buildings in 
Bahcelievler have three rooms and a living room (3+1) with 46% and 49% in the 
examined resources (Figure 4). 2+1 and 4+1 houses occupy around 22% of the 
datasets, following the most common 3+1 houses. The relationship between the 
number of rooms and the unit floor areas (Figure 5) is also investigated to identify the 
number of rooms in the units in the digital model. The floor area of modelled units' is 
used to find the number of rooms. The probability of a unit with a specific floor area 
having a particular number of rooms is calculated based on the floor area and reflected 
in the number of rooms in units.  

Figure 4. Frequencies of unity types based on number of rooms. 
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2.4. ASSOCIATING OCCUPANCY AND UNIT LAYOUT INFORMATION 

Detailed occupancy modelling for residential units is critical since internal space 
conditioning and electrical equipment power usage is affected by occupants. First, 
residential units were grouped according to floor areas and the number of rooms 
obtained from open-source real-estate advertisements. The number of rooms can vary 
according to architectural layout design; even the floor areas are the same. For instance, 
units between 100 and 110 sqm can contain 2+1, 3+1, 4+1. During the calculations, 
overlaps in the floor area and the number of rooms was also considered. Secondly, 
generated occupancy is mapped into the units based on the number of rooms based on 
the assumption that the number of people is strongly correlated with the number of 
bedrooms of a residential unit. With this assumption, unlikely assignments, such as, a 
family of 7 people living in 1+1 units, were eliminated. 

2.5. UBEM PROPERTIES AND SIMULATION PROCESS 
Each residential building in the case study was modelled in detail down to the size of a 
unit (Figure 6). For the non-residential buildings, neither floor nor unit partitioning was 
made, and these buildings were only included as context buildings in the building 
energy simulations. The original drawings of the layout of buildings were converted to 
simple four-corner rectangles to reduce the computational cost of the simulations. 10% 
of the total area of a parcel was given to the vertical circulation area. Each building and 
its neighbours in close proximity is parametrically modelled and simulated. Since the 
large number of inputs and outputs of UBEM increase computation time and modelling 
difficulty, each building was simulated with the residential and office units it contains 
together with the buildings nearby, impacting insolation as context geometries. 

Building energy simulations are conducted using the EnergyPlus (Crawley et al., 
2000) engine through the Ladybug Tools (Sadeghipour Roudsari & Pak, 2013). 
Materials were selected following TS-825-2013 (i.e., heat insulation rules in buildings) 
(T.C. Çevre Bakanlığı, 2013) and ASHRAE (ASHRAE, 2013) standards. A 
representative climate data for the typical meteorological year was used for 
simulations. Energy model parameters other than selected occupancy-dependent 
parameters, such as u-values, infiltration rate, window to wall ratio so on, are kept 
constant for simulations with the default and generated occupant profiles. 

Figure 5. The relationship between number of rooms and unit floor areas. 
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Two sets of simulations are conducted. The total number of floors of the buildings 
and the number of units per floor were determined with the data collected from the 
address inquiry system and real-estate agencies. Only the occupancy schedules, the 
number of people per sqm and the equipment density are determined as occupant 
profile dependent variables (Heydarian et al., 2020). The equipment use has been 
determined based on the age ranges of the occupants (Table 1). 65+ is assumed to have 
an equipment density of 2W/sqm, while the other profiles have 3W/sqm. 

Simulations with the default and generated occupancy schedules are compared 
based on QH (kWh/sqm) and IOD (°C). IOD estimation reflects the impact of design 
parameters in summers when the cooling system is not actively used. The calculation 
of IOD is the annual summation of the indoor operative temperature above 28°C for 
the whole residential units (CIBSE, 2006).  

3. Results 

 599 residential buildings of the studied neighbourhood were simulated to observe the 
difference between generated and default occupancy profiles. While the QH is 
significantly greater, with the mean difference of 17.77 kWh/sqm, in simulations with 
generated occupant profiles, IOD values are similar in both cases. 

 

Simulation outputs for QH imply that generated occupancy profiles increase 

Figure 7. Default vs. generated occupancy schedule for energy demand (kWh/sqm) 

Figure 6. Properties of building energy model 
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instances located towards the upper ends of the data set, shifting the distribution mean 
to the right (Figure 7). More instances close to the median value are observed with the 
standardised schedules. On the other hand, IOD for generated occupancy schedules 
does not differ considerably from the default schedules.  

4. Discussion and Conclusion 

We have proposed a methodology to infer occupant profiles by compiling census and 
real-estate data when a direct source of occupancy information is not available. In 
addition to widely used census data for occupancy profile generation, we analysed real-
estate advertisements to obtain data for building layouts and the possible combination 
of their inhabitants. Performance simulations with the proposed occupancy profile 
generation approach have increased the number of observations above the mean value 
of the QH. In contrast, the use of default occupancy profiles resulted in the 
accumulation of data points around the mean value of the complete dataset. QH with 
the generated occupancy profiles was around 32% greater than the simulation with 
default profiles. Unsurprisingly, default occupancy produced standardized results, 
while the proposed approach increased the observation of less common data points. On 
the other hand, the observed difference in IOD was much smaller. This result could 
stem from the use of mechanical ventilation during the summer period.  

Results of this study rely on several assumptions and generalizations that were made  
and explained in the methodology chapter of this paper. The findings of this 
exploratory study aligns with the previous research reporting that the default occupancy 
underestimates the heating energy demand (Tahmasebi & Mahdavi, 2017; Tian et al., 
2018). To increase the reliability of the results, multiple simulations with different yet 
random household profile allocation will be tested in the following study. Future 
studies should also consider validating the results of the proposed methodology with 
data directly relating to occupancy. 
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