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A wave pulse (be it a gravitational wave or a light wave) undergoes anomalous disper-
sion in a vacuum in flat spacetimes with an even number of spatial dimensions even if all
the frequencies move at the same speed. Such an anomalous dispersion does not occur in
spacetimes with an odd number of spatial dimensions. We study various gravity theories
and show that dispersion-free propagation is possible in even number of spatial dimensions
if the background is not the Minkowski but the de Sitter spacetime and the gravity theory
is massive gravity with a tuned mass in terms of the cosmological constant. Mass and the
cosmological constant conspire to get rid of the anomalous dispersion and restore Huygens’
principle.

I. INTRODUCTION

Recently [1] it was shown that the wave equation of a massive Klein-Gordon field with a tuned
mass m =

√
Λ in a (2+1)-dimensional de Sitter spacetime, with a positive cosmological Λ allows

dispersionless propagation. Namely, an initial wave pulse does not broaden and change shape when
it propagates in this background. This result, a prirori , is counter-intuitive since it is well-known
that wave pulses in even spatial dimensions undergo anomalous (dimension-dependent) dispersion
even if all modes propagate at the same speed [2]; and massive wave equations in all dimensions
show (regular) dispersion as there is always propagation inside the light-cone due to the fact that
the group velocity depends on the wave-number of the individual waves constructing the pulse. But
it turns out that these two effects help each other eliminate the anomalous dispersion in certain
cases.

The result of [1] was inspired by two works: in [3] it was shown that adding one more time-

like dimension to the (2 + 1) flat spacetime, namely, considering a massless wave equation in a
(2 + 2)-dimensional World, one has the possibility of dispersion-free propagation. This is rather
surprising since we know that adding a space-like dimension removes the anomalous dispersion,
but even an extra time-like direction, albeit physically so removed from a space-like direction,
seems to do the job of removing the anomalous dispersion. Even though spacetimes with two

time dimensions appear in theoretical physics [4], one would feel much pleased if an experimental
effective model appears to have two time directions. This indeed happens in some hyperbolic
metamaterials [5, 6]: in a nondispersive, nonmagnetic, uniaxial anisotropic metamaterial (which
can be constructed in a lab) the extraordinary (non-transverse) component of the electric field obeys
a massless Klein-Gordon wave equation in a flat (2+2)-dimensional spacetime. In [3] this massless
wave equation with constant coefficients in Cartesian coordinates was shown to be equivalent to
a modified wave equation with time-dependent coefficients. Then this modified wave equation
was shown to allow particular initial wave pulses to propagate without dispersion in vacuum. The
modified wave equation introduced in [3] is somewhat ad hoc and the initial data chosen is rather
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specific. An explanation was given in [1]: it was shown that the modified wave equation exactly
corresponds to a massive scalar field in a (2 + 1)-dimensional de Sitter spacetime with a tuned
mass. Therefore the mentioned hyperbolic metamaterial acts like a (2 + 1)-dimensional de Sitter
background and dispersion-free propagation is possible for a generic wave pulse if the mass is tuned
to the cosmological constant.

In this work, building on these considerations, we give a detailed account of propagation of
massless and massive gravity waves in generic D = d + 1 dimensions. These waves will be gravity
waves defined in the weak field limit. It will turn out that in de Sitter backgrounds, massive fields
with tuned masses allow dispersion-free propagation generalizing the results of [1].

The lay-out of the paper is as follows: In Section II, we study the D dimensional massless gravity
(General Relativity) in some detail to set-up the formalism and to see the anomalous dispersion
in the behavior of the spacetime Green’s functions. In Section III, Fierz-Pauli massive gravity is
studied in a flat spacetime background. In Section IV, D dimensional quadratic gravity is studied
in a flat spacetime background; and in Section V, 2+1 dimensional topologically massive gravity
is studied. In Section VI, 2+1 dimensional new massive gravity and massive Klein-Gordon fields
in a D-dimensional de Sitter background are studied. The computations are straightforward but
rather lengthy, we have provided some of the details of the computations in the appendices.

II. MASSLESS GRAVITY IN D = d + 1 DIMENSIONS

As it will be our guiding theory, we shall study the D dimensional massless gravity in some
detail. Here we will give the background expansions of the relevant tensors that will also appear
in various massive gravity theories studied in other sections. In (d + 1) dimensions, the Einstein-
Hilbert action reads

I =
1

2κ

ˆ

dd+1x
√−g R. (1)

To compute the Green’s function of the linearized theory around the flat spacetime, let us expand
the action up to the second order in the metric fluctuations using

gµν := ḡµν + τhµν , (2)

where τ is a small expansion parameter, ḡµν denotes the flat background spacetime metric in some
coordinates. The inverse metric yields

gµν = ḡµν − τhµν + τ2hµσhν
σ + O(τ3). (3)

One also has the expansion of the square root of the determinant of the metric as

√−g =
√

−ḡ

(
1 + τ

h

2
+ τ2 1

8
(h2 − 2h2

µν)

)
, (4)

where h2
µν = hµνhµν . Expansion of the metric yields an expansion of tensors that depend on the

metric. In particular, the scalar curvature at the desired order becomes

R = R̄ + τ(R)(1) +
τ2

2
(R)(2), (5)

where the first and the second order terms can be found to be

(R)(1) = ḡµν(Rµν)(1) − hµνR̄µν , (R)(2) = ḡµν(Rµν)(2) − 2hµν(Rµν)(1) + 2hµσhν
σR̄µν . (6)
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The Ricci tensor at the first order can be computed to be

(Rµν)(1) =
1

2

(
∇̄σ∇̄µhσ

ν + ∇̄σ∇̄νhσ
µ − �̄hµν − ∇̄µ∇̄νh

)
, (7)

where ∇̄µ denotes the background metric compatible covariant derivative and �̄ := ∇̄µ∇̄µ. So the
linearized scalar curvature becomes

(R)(1) = ∇̄σ∇̄λhσλ − �̄h − hµνR̄µν , (8)

while the second order Ricci tensor is more complicated:

(Rµν)(2) = ∇̄σ(Γσ
µν)(2) − ∇̄ν(Γσ

µσ)(2) + 2(Γσ
σλ)(1)(Γλ

µν)(1) − 2(Γσ
νλ)(1)(Γλ

µσ)(1), (9)

where (Γλ
µν)(1) denotes the first order Christoffel connection that reads as

(Γλ
µν)(1) =

1

2
ḡλρ(∇̄µhνρ + ∇̄νhµρ − ∇̄ρhµν). (10)

(Γσ
µν)(2) is the second order Christoffel connection of which the explicit form is not needed. Now

we can expand the Einstein-Hilbert action (1) as

I = Ī + τ(I)(1) +
τ2

2
(I)(2). (11)

After making use of the above results, the second order term boils down to

(I)(2) =
1

2κ

ˆ

dd+1x
√

−ḡ

(
ḡµν(Rµν)(2) − 2hµν(Rµν)(1) + 2hµσhν

σR̄µν + h(R)(1) +
1

4
R̄(h2 − 2h2

µν)

)
.

(12)
This expression is valid for a generic background metric, let us now consider the flat spacetime
with Cartesian coordinates and take ḡµν = ηµν , ∇̄µ = ∂µ and R̄µν = 0 = R̄. Then (12) becomes

(I)(2) =
1

2κ

ˆ

dd+1x
(
ḡµν(Rµν)(2) − 2hµν(Rµν)(1) + h(R)(1)

)
, (13)

which, making use of the linearized Einstein tensor

(Gµν)(1) = (Rµν)(1) − 1

2
ḡµν(R)(1) − 1

2
hµνR̄ = (Rµν)(1) − 1

2
ḡµν(R)(1), (14)

reduces to

(I)(2) =
1

2κ

ˆ

dd+1x
(
ḡµν(Rµν)(2) − 2hµν(Gµν)(1)

)
. (15)

One can proceed in a gauge-invariant way, but here we impose the harmonic gauge to simplify the
ensuing expressions. Then assuming

∂µhµ
σ =

1

2
∂σh, (16)

the linearized Einstein tensor becomes

(Gµν)(1) =
1

4

(
ηµνηαβ − ηµαηνβ − ηµβηνα

)
∂2hαβ . (17)
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Dropping the boundary terms, in the harmonic gauge, one has ḡµν(Rµν)(2) = hµν(Gµν)(1), and (15)
reduces to

(I)(2) = − 1

2κ

ˆ

dd+1x hµν(Gµν)(1). (18)

This can be written as

(I)(2) =
1

4κ

ˆ

dd+1xhµνOµναβ(x)hαβ , (19)

with the formally self-adjoint operator given as

Oµναβ(x) = −1

2

(
ηµνηαβ − ηµαηνβ − ηµβηνα

)
∂2. (20)

Green’s function is the inverse of the operator Oµναβ , under the assumed (sufficient decay at
infinity) boundary conditions, hence one must solve the equation

Oµναβ(x)Gαβλτ (x, x′) =
1

2
(δλ

µδτ
ν + δλ

ν δτ
µ)δ(d+1)(x − x′), (21)

which, in the momentum space, reads as

Õµναβ(p) G̃αβλτ (p) =
1

2
(δλ

µδτ
ν + δλ

ν δτ
µ). (22)

Õµναβ can be obtained from (20) by replacing ∂µ with ipµ to get

Õµναβ(p) =
p2

2

(
ηµνηαβ − ηµαηνβ − ηµβηνα

)
. (23)

Then the solution satisfying (22) is

G̃αβλτ (p) = − 1

2p2

(
ηαληβτ + ηατ ηβλ − 2ηαβηλτ

d − 1

)
. (24)

The position space Green’s function can be obtained from the Fourier transform

Gαβλτ (x, x′) =

ˆ

dd+1p

(2π)d+1
e−ip·(x−x′)G̃αβλτ (p), (25)

which reads

Gαβλτ (x, x′) = −1

2

(
ηαληβτ + ηατ ηβλ − 2ηαβηλτ

d − 1

) ˆ dd+1p

(2π)d+1
e−ip·(x−x′) 1

p2
. (26)

We are looking for the retarded Green’s function, the poles should be displaced as such, the result
of the integral depends on the number of dimensions. For d ≥ 2, defining t := t−t′ and r := |~x−~x′|,
one arrives at (see the Appendix for details)

Gαβλτ (t, r) = −1

2

(
ηαληβτ + ηατ ηβλ − 2ηαβηλτ

d − 1

)






1
4π

(
− 1

2πr ∂r

) d−3

2 δ(t−r)
r : for odd d,

θ(t)
2π

(
− 1

2πr ∂r

) d
2

−1
θ(t−r)√

t2−r2
: for even d.

(27)

For odd d, the Green’s function is non-zero only for null separation and hence there is no tail inside
the light-cone. On the other hand, for even d, even though the Green’s function is peaked around
for the null separation due to the appearance of the function 1√

t2−r2
, there is a tail inside the light

cone. Hence, even a delta-function initial wave is dispersed and one has anomalous dispersion of
gravitational waves. Note that, among the odd spatial dimensions, d = 3, our World is special
since only for this dimension, there is no derivative on the delta function, hence the delta function
pulse at t = 0 remains a delta function, only-shifted to a new location, at all points and for all
times.
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III. FIERZ-PAULI MASSIVE GRAVITY IN D = d + 1 DIMENSIONS

The linearized Fierz-Pauli action, that has (D+1)(D−2)
2 degrees of freedom in a flat spacetime

background, is

I =
1

2κ

ˆ

dd+1x

(
−1

2
∂λhµν∂λhµν + ∂νhλµ∂µhλν − ∂µhµν∂νh +

1

2
∂λh∂λh − m2

2
(h2

µν − h2)

)
. (28)

The field equations coming from this action

∂2hµν − ∂λ∂νhλ
µ − ∂λ∂µhλ

ν + ∂ν∂µh + ηµν∂σ∂λhσλ − ηµν∂2h = m2(hµν − ηµνh) (29)

can be recast as three equations

(∂2 − m2)hµν = 0, ∂µhµν = 0, h = 0. (30)

The action (28) up to boundary terms reads

I =
1

4κ

ˆ

dd+1xhµνOµναβ(x)hαβ , (31)

with

Oµναβ(x) =
1

2

(
ηµαηνβ + ηµβηνα

)
(∂2 − m2) + ηαβ

(
∂µ∂ν − ηµν(∂2 − m2)

)
+ ηµν∂α∂β

−1

2

(
ηµβ∂α∂ν + ηµα∂α∂ν + ηνβ∂α∂µ + ηνα∂α∂µ

)
. (32)

Following the steps in the previous section verbatim, one arrives at the momentum space Green’s
function

G̃αβσλ(p) = − 1

2(p2 + m2)

(
ηασηβλ + ηαληβσ − 2

d
ηαβησλ

)
, (33)

in which we dropped the terms proportional to pα etc. as they do not contribute to any calculation
for which the energy-momentum tensor is conserved (pαTαβ = 0). Then we have the position space
Green’s function

Gαβσλ(x, x′) = −1

2

(
ηασηβλ + ηαληβσ − 2

d
ηαβησλ

) ˆ dd+1p

(2π)d+1

e−ip(x−x′)

p2 + m2
. (34)

Once again the results of this integral differ for odd and even d (see the Appendix for discussion).
For odd d, one has

Gαβσλ

odd d
(t, r) = −1

2

(
ηασηβλ + ηαληβσ − 2

d
ηαβησλ

)Θ(t)

2

(
− 1

2πr

d

dr

) d−1

2
(

J0(m
√

t2 − r2)Θ(t − r)

)
,

(35)
where J0 is the Bessel function. For example for d = 3, one gets

Gαβσλ(t, r) = −1

2

(
ηασηβλ +ηαληβσ − 2

3
ηαβησλ

)
Θ(t)

2

(
− 1

2πr

d

dr

)(
J0(m

√
t2 − r2)Θ(t−r)

)
. (36)

The derivative part yields

(
− 1

2πr

d

dr

)(
J0(m

√
t2 − r2)Θ(t − r)

)
=

δ(t − r)J0

(
m

√
t2 − r2

)

2πr
−

mθ(t − r)J1

(
m

√
t2 − r2

)

2π
√

t2 − r2
.

(37)
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In the m → 0 limit, this last equation gives the expected result δ(t−r)
2πr ; but (36) does not smoothly

reduce to the corresponding d = 3 case of (27) due to the discrete difference in the third terms in
the first brackets. This is the well-known van-Dam-Veltman-Zakharov discontinuity. Generically,
as expected, in flat space for non-zero m, there is a tail inside the light-cone and the retarded
Green’s function has support inside the light-cone.

For even d, one has

Gαβσλ
even d(t, r) = −1

2
(ηασηβλ + ηαληβσ − 2

d
ηαβησλ)

Θ(t)

2π

( −1

2πr

d

dr

) d−2

2

(
cos(m

√
t2 − r2)Θ(t − r)√

t2 − r2
).(38)

For d = 2, this yields

Gαβσλ(t, r) = −1

2

(
ηασηβλ + ηαληβσ − ηαβησλ

)
Θ(t)

2π
cos(m

√
t2 − r2)

Θ(t − r)√
t2 − r2

. (39)

For the even d case, there is a support inside the light-cone and the Huygens’ principle is violated.
These results are expected in flat spacetime for massive fields.

IV. QUADRATIC CURVATURE GRAVITY IN D = d + 1 DIMENSIONS

We consider the following quadratic gravity action 1

Iquad =
1

2κ

ˆ

dd+1x
√−g

(
σR + αR2 + βR2

µν

)
, (40)

from which the second order action in the harmonic gauge can be found to be

(Iquad)(2) =
1

4κ

ˆ

dd+1x hµνOµναβ(x)hαβ , (41)

where the inverse propagator is a fourth order operator

Oµναβ(x) = ηµνηαβ

(
(2α+

β

2
)∂2−σ

2

)
∂2−(2α+β)ηαβ∂µ∂ν∂2+

1

2

(
ηµαηνβ+ηµβηνα

)
(σ+β∂2)∂2. (42)

From the Fourier transform of this operator, one can find the Green’s function in the momentum
space following the similar steps as in the second section. The Green’s function satisfying (22)
reads in the momentum space as

G̃αβλτ (p) =
(
− 1

2σ
(ηαληβτ + ηατ ηβλ) +

1

σ(d − 1)
ηαβηλτ − 4α + 2β

σ2(d − 1)
ηλτ pβpα

) 1

p2

+
( 1

2σ
(ηαληβτ + ηατ ηβλ) − 1

σd
ηαβηλτ +

β

σ2d
ηλτ pβpα

) 1

p2 − σ/β
(43)

+
(
− 1

σd(d − 1)
ηαβηλτ +

4αd + β(d + 1)

σ2d(d − 1)
ηλτ pβpα

) 1

p2 + σ(d−1)
4αd+β(d+1)

.

From the pole structure, one can read the masses of the excitations: there is a massless spin 2
particle, there is a massive spin 2 particle with a mass m2

g = −σ
β , and there is a massive scalar

1 We do not consider the R
2

µναβ term, since at the end we would like to study the particular 2+1 dimensional gravity

for which this term only shifts the parameters in the Lagrangian.
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mode with a mass m2
s = σ(d−1)

4αd+β(d+1) . A complimentary study of these in (anti) de Sitter spacetimes

can be found in [7]: the masses get non-trivial contributions from the non-zero constant curvature
background. In generic D-dimensions, this theory has a massive ghost [8] which only disappears
for D = 3 in a particular tuning of α and β which we shall study in the next section.

To get the retarded Green’s function in the position space, we have to do the following integrals

Gαβλτ (x, x′) =
(
− 1

2σ
(ηαληβτ + ηατ ηβλ) +

1

σ(d − 1)
ηαβηλτ +

4α + 2β

σ2(d − 1)
ηλτ ∂β∂α

)

×
ˆ

dd+1p

(2π)d+1

e−ip(x−x′)

p2
(44)

+
( 1

2σ
(ηαληβτ + ηατ ηβλ) − 1

σd
ηαβηλτ − β

σ2d
ηλτ ∂β∂α

)ˆ dd+1p

(2π)d+1

e−ip(x−x′)

p2 − σ/β

−
( 1

σd(d − 1)
ηαβηλτ +

4αd + β(d + 1)

σ2d(d − 1)
ηλτ ∂β∂α

) ˆ dd+1p

(2π)d+1

e−ip(x−x′)

p2 + σ(d−1)
4αd+β(d+1)

,

which again should be studied in odd and even d separately.
i: Odd d case

Gαβλτ (t, r) =
(
− 1

2σ
(ηαληβτ + ηατ ηβλ) +

1

σ(d − 1)
ηαβηλτ +

4α + 2β

σ2(d − 1)
ηλτ ∂β∂α

)
(45)

× 1

4π
Θ(t)

(
− 1

2πr

d

dr

)(d−3)/2 δ(t − r)

r

+
( 1

2σ
(ηαληβτ + ηατ ηβλ) − 1

σd
ηαβηλτ − β

σ2d
ηλτ ∂β∂α

)

×1

2
Θ(t)

(
− 1

2πr

d

dr

)(d−1)/2
J0

(
mg

√
t2 − r2

)
Θ(t − r)

−
( 1

σd(d − 1)
ηαβηλτ +

1

σdm2
s

ηλτ ∂β∂α
)

×1

2
Θ(t)

(
− 1

2πr

d

dr

)(d−1)/2
J0

(
ms

√
t2 − r2

)
Θ(t − r),

where we have used the explicit forms of the masses mg and ms. In particular for d = 3, one arrives
at

Gαβλτ (t, r) =
(
− 1

2σ
(ηαληβτ + ηατ ηβλ) +

1

2σ
ηαβηλτ +

4α + 2β

2σ2
ηλτ ∂β∂α

) 1

4π

Θ(t)δ(t − r)

r

+
( 1

2σ
(ηαληβτ + ηατ ηβλ) − 1

3σ
ηαβηλτ − β

3σ2
ηλτ ∂β∂α

)
(46)

×Θ(t)

2

(
− 1

2πr

d

dr

)
J0

(
mg

√
t2 − r2

)
Θ(t − r)

−
( 1

6σ
ηαβηλτ +

12α + 4β

6σ2
ηλτ ∂β∂α

)
× Θ(t)

2

(
− 1

2πr

d

dr

)
J0

(
ms

√
t2 − r2

)
Θ(t − r).

Again, due to the massive parts, as expected, there is propagation inside the light-cone. Hence the
quadratic gravity violates the Huygens’ principle in a flat spacetime.
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ii: Even d case

Gαβλτ (t, r) =
(
− 1

2σ
(ηαληβτ + ηατ ηβλ) +

1

σ(d − 1)
ηαβηλτ +

4α + 2β

σ2(d − 1)
ηλτ ∂β∂α

)
(47)

× 1

2π
Θ(t)

(
− 1

2πr

d

dr

)(d−2)/2 Θ(t − r)√
t2 − r2

+
( 1

2σ
(ηαληβτ + ηατ ηβλ) − 1

σd
ηαβηλτ − β

σ2d
ηλτ ∂β∂α

)

× 1

2π
Θ(t)

(
− 1

2πr

d

dr

)(d−2)/2
cos
(
mg

√
t2 − r2

)Θ(t − r)√
t2 − r2

−
( 1

σd(d − 1)
ηαβηλτ +

1

σdm2
s

ηλτ ∂β∂α
)

× 1

2π
Θ(t)

(
− 1

2πr

d

dr

)(d−2)/2
cos
(
ms

√
t2 − r2

)Θ(t − r)√
t2 − r2

.

In particular, for d = 2, one has

Gαβλτ (t, r) =
(
− 1

2σ
(ηαληβτ + ηατ ηβλ) +

1

σ
ηαβηλτ +

4α + 2β

σ2
ηλτ ∂β∂α

) 1

2π
Θ(t)

Θ(t − r)√
t2 − r2

+
( 1

2σ
(ηαληβτ + ηατ ηβλ) − 1

2σ
ηαβηλτ − β

2σ2
ηλτ ∂β∂α

)Θ(t)

2π
cos
(
i
√

σ/β
√

t2 − r2
)Θ(t − r)√

t2 − r2

−
( 1

2σ
ηαβηλτ +

8α + 3β

2σ2
ηλτ ∂β∂α

)Θ(t)

2π
cos
(√ σ

8α + 3β

√
t2 − r2

)Θ(t − r)√
t2 − r2

. (48)

A particular 2 + 1 dimensional model, the so called New Massive Gravity (NMG) [9–11] is one
of our main interests here. So let us consider this theory. Choosing β = 1/m2 and α = −3/(8m2)
and σ = −1, (48) yields

Gαβλτ
NMG(t, r) =

1

4π

(
ηαληβτ + ηατ ηβλ − 2ηαβηλτ +

1

m2
ηλτ ∂β∂α

)
Θ(t)Θ(t − r)√

t2 − r2
(49)

− 1

4π

(
ηαληβτ + ηατ ηβλ − ηαβηλτ +

1

m2
ηλτ ∂β∂α

)
cos(m

√
t2 − r2)√

t2 − r2
Θ(t)Θ(t − r).

There is propagation inside the light-cone and hence NMG in flat spacetime violates the Huygens’
principle. We shall come back to the de Sitter version of this theory in Section VI.

V. TOPOLOGICALLY MASSIVE GRAVITY

The action for TMG is [12]

IT MG =

ˆ

d3x
√−g

(
1

κ
R +

1

2µ
ηµναΓβ

µσ

(
∂νΓσ

αβ +
2

3
Γσ

νλΓλ
αβ

))
, (50)

where ηµνα is the 3D antisymmetric tensor. The action yields the following field equations

1

κ
Gµν +

1

µ
Cµν = 0, (51)

where Cµν denotes the Cotton tensor given as

Cµν = ηµ
σρ∇σ

(
Rρν − 1

4
gρνR

)
, (52)
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which is symmetric, divergence-free and traceless. Linearization of the action around the flat
spacetime yields the inverse propagator

Oµναβ(x) = − 1

2κ

(
ηµνηαβ − ηµαηνβ − ηµβηνα

)
∂2 (53)

+
1

4µ

(
ηµ

σ
αηνβ + ηµ

σ
βηνα + ην

σ
αηµβ + ην

σ
βηµα

)
∂σ∂2,

which in momentum space becomes

Õµναβ(p) =
p2

2κ

(
ηµνηαβ − ηµαηνβ − ηµβηνα

)
(54)

− p2

4µ
pλ
(
ηµλαηνβ + ηµλβηνα + ηνλαηµβ + ηνλβηµα

)
.

We obtain the momentum space propagator as

G̃αβρσ(p) =
κ

16µ4

(
16µ4ηαβηρσ − 8µ4(ηασηβρ + ηαρηβσ) (55)

−6µ2κ2(ηαρpβpσ + ηβρpαpσ + ηασpβpρ + ηβσpαpρ)

+8µ2κ2(ηαβpρpσ + ηρσpαpβ) − 6κ4pαpβpρpσ

−4iµ3κpκ(ηκαρηβσ + ηκβρηασ + ηκασηβρ + ηκβσηαρ)

−3iµκ3pκ(ηκαρpβpσ + ηκβρpαpσ + ηκασpβpρ + ηκβσpαpρ)

)
1

p2

+
κ

4µ4

(
−2µ4ηαβηρσ + 2µ4(ηασηβρ + ηαρηβσ)

+2µ2κ2(ηαρpβpσ + ηβρpαpσ + ηασpβpρ + ηβσpαpρ)

−2µ2κ2(ηαβpρpσ + ηρσpαpβ) + 2κ4pαpβpρpσ

+iµ3κpκ(ηκαρηβσ + ηκβρηασ + ηκασηβρ + ηκβσηαρ)

+iµκ3pκ(ηκαρpβpσ + ηκβρpαpσ + ηκασpβpρ + ηκβσpαpρ)

)
1

p2 + µ2/κ2

− κ3

16µ4

(
2µ2(ηαρpβpσ + ηβρpαpσ + ηασpβpρ + ηβσpαpρ) + 2κ2pαpβpρpσ

+iµκpκ(ηκαρpβpσ + ηκβρpαpσ + ηκασpβpρ + ηκβσpαpρ)

)
1

p2 + 4µ2/κ2
.

Applying the inverse Fourier transformation we obtain

Gαβρσ(t, r) =
κ

16µ4

(
16µ4ηαβηρσ − 8µ4(ηασηβρ + ηαρηβσ) (56)

+4µ3κ(ηκαρηβσ + ηκβρηασ + ηκασηβρ + ηκβσηαρ)∂κ

)
1

2π
Θ(t)Θ(t − r)

1√
t2 − r2

+
κ

4µ4

(
−2µ4ηαβηρσ + 2µ4(ηασηβρ + ηαρηβσ)

−µ3κ(ηκαρηβσ + ηκβρηασ + ηκασηβρ + ηκβσηαρ)∂κ

)
1

2π
Θ(t)Θ(t − r)

cos
(

µ
κ

√
t2 − r2

)

√
t2 − r2

,
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where, in the last expression, we dropped the terms which vanish when the propagator is sandwiched
between two conserved sources. There is a single massive spin-2 mode with only one degree of
freedom since it is a parity non-invariant theory. Once again there is a tail inside the light cone
and the Huygens’ principle is violated.

VI. NEW MASSIVE GRAVITY IN DE SITTER SPACETIME

As mentioned in the introduction, anomalous dispersion can disappear in the 2 + 1 dimensional
gravity in a curved background. To understand this, let us consider a generic quadratic gravity in
a de Sitter background. This theory was studied in detail in [13]. Here, we shall only quote the
pertaining details for our discussion. Generic three dimensional quadratic action is

I =

ˆ

d3x
√−g

(1

κ
(R − 2Λ0) + αR2 + βR2

µν

)
. (57)

Consider the linearization of this theory in a de Sitter background given by the following metric

ds2 =
ℓ2

t2

(
−dt2 + dx2 + dy2

)
, (58)

where the effective cosmological constant is

1

ℓ2
=

1

4κ (3α + β)

(
1 ±

√
1 − 8κΛ0 (3α + β)

)
. (59)

Defining the perturbations as

gµν =
ℓ2

t2
ηµν + hµν , (60)

a rather long discussion given in [7, 13] one shows that for generic α, β, κ there are three propagating
degrees of freedom. Two of these constitute the massive spin-2 field with the mass

m2
g = − 1

κβ
− 12α

ℓ2β
− 4

ℓ2
, (61)

and the third degree of freedom is a spin-0 mode with the mass

m2
s =

1

κ (8α + 3β)
− 4

ℓ2

(
3α + β

8α + 3β

)
. (62)

Let ϕ denote the spin-0 field, which arises as a gauge-invariant object then its action is given as

Iϕ =
(8α + 3β)

8

ˆ

d3x

[
t3

ℓ3
ϕ̇2 − 1

(8α + 3β)

t

ℓ

(
1

κ
− 12α

ℓ2
− 4β

ℓ2

)
ϕ2

]
. (63)

On the other hand, the two modes of the spin-2 field comes with the following action

Iσ =
1

2

ˆ

d3x

[
β

t3

ℓ3

(
σ̇2 + σ∇2σ

)
+

(
1

κ
+

12α

ℓ2
+

4β

ℓ2

)
t

ℓ
σ2

]
. (64)

To understand these modes, let us recall that a free scalar field in this background with mass m
has the action

I = −1

2

ˆ

d3x
√−g

(
∂µΦ∂µΦ + m2Φ2

)
= −1

2

ˆ

d3x

{
ℓ

t

[
−Φ̇2 + (∂iΦ)2

]
+

ℓ3

t3
m2Φ2

}
.
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Comparing this with (63) and (64), after scaling σ as σ → ℓ2

t2 σ and similarly ϕ → ℓ2

t2 ϕ one can read
(62) from (63) and (61) from (64). In the NMG limit, that is 8α + 3β = 0 the ϕ field is infinitely
massive and drops out of the spectrum. One is left with a massive spin-2 field with the mass

m2
g = − 1

κβ
+

1

2ℓ2
. (65)

As shown in [1], a massive scalar field in de Sitter spacetime with the tuned mass m = 1/ℓ
shows dispersionless propagation in 2 + 1 dimensions. One can easily see this from the following
construction: with the coordinate change t = ℓe−τ/ℓ and a(τ) = eτ/ℓ, de Sitter metric becomes

ds2 = −dτ2 + a(τ)2
(
dx2 + dy2

)
.

In these coordinates, the Fourier modes of the massive graviton has the dispersion relation

w2
~k

= − 1

ℓ2
+ m2

g +
k2

a2
. (66)

For m2
g = 1/ℓ2, the group velocity is independent of ~k. Hence anomalous dispersion disappears.

This corresponds to the case κβ = −2ℓ2. This is possible for Λ0 = −27/ℓ2. Note that, the bare
cosmological constant is negative, but the effective cosmological constant is positive.

One can easily generalize the discussion of the previous section to generic D dimensions. Con-
sider a massive scalar field living in the background spacetime with the metric

ds2 = −dτ2 + a(τ)2
D−1∑

i=1

dxidxi, a(τ) = eHτ H :=

√
2Λ

(D − 1)(D − 2)
. (67)

Then the wave equation (✷ − m2)Φ = 0, is solved by the Fourier modes

Φ(τ, xi) :=
f~k

(τ)

a(τ)
ei~k·~x, (68)

as long as the following equation is satisfied

f̈~k
(τ) + ω2

kf~k
(τ) = 0, ω2

k := m2 − Λ(D − 1)

2(D − 2)
+

k2

a(τ)2
. (69)

Note that for the tuning m2 = Λ(D−1)
2(D−2) , the group velocity vi

g = ∂ωk

∂ki is independent of k and hence

there is no dispersion. For this case, the solution to (69) is given in terms of the Bessel function of
the first and second kinds as

f~k
(τ) = c1J0

(
k

a(τ)H

)
+ c2Y0

(
k

a(τ)H

)
, (70)

and a generic wave pulse can be constructed from the superposition of these modes. Note that in
[14]2 the same result was reached but to make the proper comparison H = 1 → Λ = (D−1)(D−2)

2
choice should be made in our expressions.

2 We thank a conscientious referee for bringing this reference to our attention.
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VII. CONCLUSIONS

We studied the propagation of gravity waves in some detail in flat and de Sitter spacetimes
for massless and massive gravity, quadratic gravity theories. It is quite well-known that in flat
backgrounds, with odd number of spatial dimensions (such as our universe), there is no anomalous
dispersion in a vacuum, while for all even spatial dimensions there is anomalous dispersion. So
introducing one space-like dimension changes the propagation dramatically. What has been a
rather unexpected surprise was to see that adding one time-like dimensions also removes anomalous
dispersion which was demonstrated in [3] for a particular setting whose details have been given in
[1]. In this work we have studied the extensions of these considerations to massive gravity theories,
in particular showed that for a particular tuning of the mass in terms of the cosmological constant,
both scalar waves in D dimensional de Sitter spacetime and new massive gravity in 2+1 dimensions
allow dispersion-free propagation and hence the Huygens’ principle survives.
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Appendix A: Massless Integral

Here, for completeness, we give some of the details of the integrals that we used in the body of
the text. We claim no originality in these two appendices as these results can be found in various
forms in the literature [2, 15–18]. We used [19] for various integrals and relations.

Consider the mass free integral

I1 :=

ˆ

dd+1p

(2π)d+1

e−ip·(x−x′)

p2
, (A1)

which reads

I1 =

ˆ

ddp

(2π)d
e−i~p·~r

ˆ ∞

−∞

dp0

2π

eip0t

~p2 − (p0)2
, (A2)

where we have defined ~r := ~x − ~x′ and t := x0 − x′0. To obtain the retarded Green’s function, in
carrying out the p0 integral, both poles are displaced in such a way that they are located in the
upper-half plane and contribute to the integral. Hence the p0 integral yields

ˆ ∞

−∞

dp0

2π

eip0t

~p2 − (p0)2
=

sin(pt)

p
Θ(t), (A3)

where Θ(t) denotes the Heaviside step function and p := |~p|. Then

I1 = Θ(t)

ˆ

ddp

(2π)d
e−i~p.~r sin(pt)

p
. (A4)

Assuming ~p · ~r =
∣∣~p
∣∣∣∣~r
∣∣ cos θ1 and using

ddp = pd−1(sin θ1)d−2(sin θ2)d−3... sin θd−2dθ1dθ2....dθd−1dp (A5)
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we obtain

I1 = Θ(t)

∞̂

0

dp

(2π)d
sin(pt)pd−2

π̂

0

dθ1e−i
∣∣~p
∣∣∣∣~r
∣∣ cos θ1(sin θ1)d−2

ˆ

dθ2....dθd−1(sin θ2)d−3... sin θd−2,

(A6)
where

ˆ

dθ2....dθd−1(sin θ2)d−3... sin θd−2 =
2π(d−1)/2

Γ
(

d−1
2

) (A7)

is the solid angle in d − 1 dimensions for both the even and odd dimensional cases. To evaluate
the θ1 integral we use the following formula

π
ˆ

0

dθeikr cos θ(sin θ)m−2 =
√

π

(
2

kr

)(m−2)/2

Γ

(
m − 1

2

)
Jm/2−1(kr). (A8)

Then we get

I1 = Θ(t)(2π)−d/2

∞̂

0

dp sin(pt)pd−2 Jd/2−1(−pr)

(−pr)d/2−1
. (A9)

To complete the calculation, we need to compute the term Jd/2−1(−pr)/(−pr)d/2−1. We use the
identity [15]

Jv+n(x)

xv+n
=

(
− 1

x

d

dx

)n Jv(x)

xv
. (A10)

Now, let us consider the even and odd dimensional cases separately.

a. Odd d case

We have x = −pr in (A10). Let v = −1/2, then one has n = (d − 1)/2 and we use

J−1/2(z) =

√
2

πz
cos z (A11)

to arrive at

Jd/2−1(−pr)

(−pr)d/2−1
= 2d/2π(d−2)/2p1−d

(
− 1

2πr

d

dr

)(d−1)/2

cos(pr). (A12)

Then I1 integral reduces to

I1 =
1

π
Θ(t)

(
− 1

2πr

d

dr

)(d−1)/2
∞̂

0

dp
sin(pt) cos(pr)

p
. (A13)

In order to take the p integral one needs [19]

∞̂

0

dx
sin(ax) cos(bx)

x
=





π/2, a > b ≥ 0

π/4, a=b > 0

0, b > a ≥ 0.

(A14)

Using these one ends up with

I1 =
1

4π
Θ(t)

(
− 1

2πr

d

dr

)(d−3)/2 δ(t − r)

r
. (A15)
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b. Even d case

We have x = −pr in (A10). Let v = 0, then one has n = (d − 2)/2 and (A10) yields

Jd/2−1(−pr)

(−pr)d/2−1
= p(2−d)/2

(
1

r

d

d(−pr)

)(d−2)/2

J0(−pr), (A16)

where

J0(z) =
∞∑

k=0

(−1)k z2k

22k(k!)2
. (A17)

One has J0(−z) = J0(z), then we obtain

Jd/2−1(−pr)

(−pr)d/2−1
= (2π)(d−2)/2p2−d

(
− 1

2πr

d

dr

)(d−2)/2

J0(−pr). (A18)

Substituting this in (A9) we get

I1 =
1

2π
Θ(t)

(
− 1

2πr

d

dr

)(d−2)/2
∞̂

0

dp sin(pt)J0(−pr), (A19)

and we end up with

I1 =
1

2π
Θ(t)

(
− 1

2πr

d

dr

)(d−2)/2 Θ(t − r)√
t2 − r2

. (A20)

We can summarize the results as follows [2, 16, 17]

I1 =

ˆ

dd+1p

(2π)d+1

e−ip(x−x′)

p2
=





1
4π Θ(t)

(
− 1

2πr
d
dr

)(d−3)/2 δ(t−r)
r : for odd d,

1
2π Θ(t)

(
− 1

2πr
d
dr

)(d−2)/2 Θ(t−r)√
t2−r2

: for even d.

(A21)

Appendix B: Massive integral

Let us consider the following integral

I2 :=

ˆ

dd+1p

(2π)d+1

e−ip·(x−x′)

p2 + m2
. (B1)

Similar steps in the previous section yields

I2 = Θ(t)(2π)−d/2

∞̂

0

dppd−1 sin(t
√

~p2 + m2)√
~p2 + m2

Jd/2−1(−pr)

(−pr)d/2−1
. (B2)

Now we need to consider the odd and even d separately.
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a. Odd d case

Using the identity (A12) the I2 integral reduces to

I2 =
1

π
Θ(t)

(
− 1

2πr

d

dr

)(d−1)/2
∞̂

0

dp
sin(t

√
~p2 + m2)√

~p2 + m2
cos(pr). (B3)

In order to take the p integral we use

∞̂

0

dx
sin
(
p
√

x2 + a2
)

cos(bx)

x2 + a2
=

{
πJ0

(
a
√

p2 − b2
)
/2, 0 < b < p, a > 0

0, b > p > 0, a > 0
(B4)

and we arrive at

I2 =
1

2
Θ(t)

(
− 1

2πr

d

dr

)(d−1)/2

Θ(t − r)J0
(
m
√

t2 − r2
)
. (B5)

b. Even d case

Using (A18) we get

I2 =
1

2π
Θ(t)

(
− 1

2πr

d

dr

)(d−2)/2
∞̂

0

dp
p sin(t

√
~p2 + m2)√

~p2 + m2
J0(pr), (B6)

where

ˆ ∞

0
dpJ0(pr)

p sin(t
√

~p2 + m2)√
~p2 + m2

=
cos(m

√
t2 − r2)√

t2 − r2
Θ(t − r). (B7)

Then one obtains

I2 =
1

2π
Θ(t)

(
− 1

2πr

d

dr

)(d−2)/2 cos(m
√

t2 − r2)√
t2 − r2

Θ(t − r). (B8)

We can summarize the results as follows [18]

I2 =

ˆ

dd+1p

(2π)d+1

e−ip(x−x′)

p2 + m2
=






1
2Θ(t)

(
− 1

2πr
d
dr

)(d−1)/2
Θ(t − r)J0

(
m

√
t2 − r2

)
: for odd d,

1
2π Θ(t)

(
− 1

2πr
d
dr

)(d−2)/2 cos(m
√

t2−r2)√
t2−r2

Θ(t − r) : for even d.

(B9)
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