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To date, endowing robots with an ability to assess social appropriateness of their
actions has not been possible. This has been mainly due to (i) the lack of relevant and
labelled data and (ii) the lack of formulations of this as a lifelong learning problem. In this
paper, we address these two issues. We first introduce the Socially Appropriate
Domestic Robot Actions dataset (MANNERS-DB), which contains appropriateness
labels of robot actions annotated by humans. Secondly, we train and evaluate a
baseline Multi Layer Perceptron and a Bayesian Neural Network (BNN) that estimate
social appropriateness of actions in MANNERS-DB. Finally, we formulate learning
social appropriateness of actions as a continual learning problem using the uncertainty
of Bayesian Neural Network parameters. The experimental results show that the social
appropriateness of robot actions can be predicted with a satisfactory level of precision.
To facilitate reproducibility and further progress in this area, MANNERS-DB, the trained
models and the relevant code are made publicly available at https://github.com/
jonastjoms/MANNERS-DB.
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1 INTRODUCTION

Social robots are required to operate in highly challenging environments populated with complex
objects, articulated tools, and complicated social settings involving humans, animals and other
robots. To operate successfully in these environments, robots should be able to assess whether an
action is socially appropriate in a given context. Learning to navigate in the jungle of social etiquette,
norms, verbal and visual cues that make up such a social context, is not straightforward. Little work
has been done on allowing robots to obtain this ability and even for humans, it takes years to learn to
accurately read and recognise the signals involved when determining the social appropriateness of an
action.

The social robotics community has studied related problems such as socially appropriate
navigation (Gómez et al., 2013), recognition of human intent (Losey et al., 2018), engagement
(Salam et al., 2017), facial expressions and personality (Gunes et al., 2019). However, determining
whether generic robot actions are appropriate or not in a given social context is a relatively less
explored area of research. We argue that this is mainly due to the lack of appropriately labeled data
related to social appropriateness in robotics.
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To this end, we first introduce the Socially Appropriate
Domestic Robot Actions Dataset (MANNERS-DB) that
constitutes simulated robot actions in visual domestic scenes
of different social configurations (see an example in Figure 1).
In a similar vein to other robotics related dataset papers
(Celiktutan et al., 2017; Lemaignan et al., 2018; Yang et al.,
2021), we do not take a hypothesis formulation and testing
approach. Instead, to be able to control but vary the
configurations of the scenes and the social settings,
MANNERS-DB has been created utilising a simulation
environment by uniformly sampling relevant contextual
attributes. The robot actions in each scene have been
annotated by multiple humans along social appropriateness
levels. Moreover, we train and evaluate a baseline Multi Layer
Perceptron, as well as a Bayesian Neural Network that estimate
social appropriateness of actions on MANNERS-DB, along with
rich uncertainty measures enabled by the probabilistic approach.
Finally, we formulate learning social appropriateness of actions as
a continual learning problem, more precisely task-incremental
learning, and propose a Bayesian continual learning model that
can incrementally learn social appropriateness of new actions.
Our experimental results show that the social appropriateness of
robot actions can be predicted with a satisfactory level of
precision. The aforementioned aspects of our work take robots
one step closer to a human-like understanding of (social)
appropriateness of actions, with respect to the social context
they operate in.

2 RELATED WORK

2.1 Social Appropriateness and HRI
Operating successfully in a social environment is already
challenging for most people, let alone robots. The social cues
and signals that need to be interpreted and acted upon are
numerous and complex. However, some of the social rules and
conventions that need to be followed and understood are similar
for both humans and robots. A good starting point for this is the
survey paper on social signal processing by Vinciarelli et al.
(2009) that provides a compilation of the relevant cues

associated with the most important social behaviours,
including posture and usage of space.

In the context of group behaviour, Kendon (2009) proposed
the Facing-formation (F-formation) system of spatial organisation
where F-formations refer to the spatial patterns formed when
people interact face-to-face. According to this framework, the
space that an individual directs their attention to is called a
transactional segment. When two or more people’s transactional
segments overlap during an interaction, an F-formation with
different configurations is formed (L-arrangement, face-to-face,
side-by-side, semicircular, and rectangular arrangements). This
framework has been widely adopted for automatic analysis of
free-standing group interactions and we follow the same
convention when analysing appropriate robot actions in the
context of human groups.

When it comes to assessing how we use the space and the
environment around us in social interactions, Hall et al. (1968)
identified four concentric zones around a person, namely the
intimate, the casual-personal, the socio-consultive and the public
zone. He argued that the preferred interpersonal distance between
the parties interacting is determined by the social relationship
between them. The intimate zone is reserved for our closest
relations which we embrace and physically touch. The casual-
personal zone, is where we interact with friends and wider family.
The socio-consultive zone is where acquaintances etc. are let in.
And lastly, the public zone is where strangers and impersonal
interactions often occur.

In the field of human-robot interaction, studies have shown
that robots are treated differently than humans with respect to
appropriate interpersonal distance and invasion of personal
space. Evidence suggests that, when introduced to a robot,
people prefer it to be positioned in what Hall et al. (1968)
defines as the social zone and only after the first interactions
they would feel comfortable allowing it into their personal zone
(Hüttenrauch et al., 2006; Walters et al., 2009). Studies also show
that these preferences change as people get used to the robot over
time (Koay et al., 2007), and that these preferences are also
dependent on robot appearance (Walters et al., 2008).

We note that majority of the existing works on robot
behaviour toward and around people have focused on
socially aware motion planning and navigation. Traditional
approaches in this area rely on hand-crafted methods such as
the work of Triebel et al. (2016) where the problem of socially
aware navigation was broken down to detection, tracking and
recognition of human relations and behaviour, followed by
tailored motion planning. Similarly, human-aware navigation
has been proposed by Ferrer et al. (2013) through the use of
“social forces” interacting between humans and robot
companions. On the other hand, modern machine learning
approaches such as deep reinforcement learning (DRL) have
also been utilised for socially compliant navigation. Using
DRL, Chen et al. (2017) approached the challenge of
socially appropriate motion planning by emphasizing what
a social robot should not do instead of what it should do.
Recently, new toolkits and guidelines for social navigation
have been proposed (e.g., Baghel et al., 2020; Tsoi et al.,
2020a,b).

FIGURE 1 | An example scene from the simulated living room
environment. The robot (in circle) is expected to execute an action that is
appropriate to the given social context.
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Researchers have also examined how and when to engage
humans appropriately in HRI situations (Walters et al., 2007).
Michalowski et al. (2006) explored this based on sensory inputs
indicating location, pose, and movement of humans in the
environment. More recently, Gao et al. (2019) investigated
how robots should approach groups of people in a socially
appropriate way using deep learning. To the best of our
knowledge, the perception and the machine-learning based
recognition of social appropriateness of domestic robot actions
has not yet been investigated.

Determining the social appropriateness of an action relies
on determining the social context in which that action will be
executed. Contextual understanding has been an important area of
research in human-computer interaction (HCI) (Dey, 2001), and
several works in the field of HRI have aimed to model context
(Mastrogiovanni et al., 2009; Larochelle et al., 2011). Celikkanat
et al. (2015) transferred the classical topic modelling method,
Latent Dirichlet Allocation, and used it to model contexts. They
placed probability distributions over objects and contexts instead of
words and topics. All the above-mentioned works have mainly
focused on context modelling and recognition, not what to do with
that information when it becomes available. We take a different
approach—instead of modelling context directly, we implicitly do
so by determining appropriate robot actions given a context.
Where the choice of context was based on that modelling the
social appropriateness of actions in a living room of a home setting
is more challenging and complex than for example a bedroom or a
bathroom. We implement an end-to-end solution, mapping
directly from the feature space obtainable through sensory
inputs, to the social appropriateness of actions.

2.2 Continual Learning
Humans excel at continuously learning new skills and new
knowledge with new experiences. This has inspired a new
problem in machine learning, coined as lifelong learning
(Thrun and Mitchell, 1995; Chen and Liu, 2016) or continual
learning (CL) (Ring, 1994) and has for long been a difficult
challenge for the deep learning community. Following the
definitions of Lesort et al. (2020) we will use the term
Continual Learning throughout this work which might overlap
with other established terms such as Incremental Learning
(Gepperth and Hammer, 2016) and Never-ending Learning
(Carlson et al., 2010). In essence, continual learning covers the
approaches that handle the challenges of learning new tasks or
updating the old ones with a continuous stream of data, where the
data distribution might change over time and where old data is
not always available.

An important challenge in CL is to be able to retain the previously
acquired knowledge while learning new ones. This is known as the
catastrophic forgetting problem (McCloskey and Cohen, 1989;
French, 1999). Unless appropriate measures are taken, learning
from new experience tends to overwrite the previously learned
associations. Over the years, many strategies have been devised
against catastrophic forgetting (for reviews, see e.g., Thrun and
Mitchell 1995; Parisi et al., 2019): Regularization-based, memory-
based, and model-extension approaches. In regularization-based
approaches, the destructive learning signals can be regularized by

explicitly controlling which parameters (weights) are updated during
learning (Sharif Razavian et al., 2014; Fernando et al., 2017) and how
much they are updated (Kirkpatrick et al., 2017; Liu et al., 2021).
Memory-based approaches, on the other hand, store previous
experiences in memory and rehearse or indirectly use them in
order to avoid forgetting them. To this end, the experiences
themselves can be stored (Robins, 1993) or a generative model
can be trained to generate pseudo-experiences (Robins, 1995) to
rehearse experiences; or an episodic or semantic memory can be
learned to retain information for longer terms and to interpret new
experiences in the context of such a memory (Hassabis et al., 2017;
Churamani and Gunes, 2020). Finally, in model-extension
approaches, the model (the network architecture) can be
extended itself to accommodate the required capacity for the new
task or experience (Draelos et al., 2017). This can be achieved by
adding new neurons (Parisi et al., 2017; Part and Lemon, 2017;
Doğan et al., 2018a), layers (Rusu et al., 2016; Fernando et al., 2017)
or both (Doğan et al., 2018b). Of course, hybrid approaches are also
possible. For example, attention maps (Dhar et al., 2019) or
embedded representations (Yu et al., 2020) for classes can be
used to detect and mitigate catastrophic forgetting.

In this paper, we use a method that regularizes updates to
parameters by looking at their uncertainties, following the
approach of Ebrahimi et al. (2019). We extend this approach
to predict epistemic and aleatoric uncertainties (with the method
of Kendall and Gal 2017) and apply it to the continual learning of
social appropriateness.

2.3 Continual Learning in Robotics
Continual learning is essential for robotics since robots
interacting with the environment and the humans
continuously discover new tasks, contexts and interactions. For
a widespread use of robots, whenever needed, robots are expected
to learn new tasks and skills, and to adapt to new experiences or
contexts (Feng et al., 2019; Churamani et al., 2020; Kasaei et al.,
2021; Ugur and Oztop, 2021).

There has been substantial work lately on addressing lifelong
learning in robots, to enable lifelong learning in various robot
capabilities, ranging from perception to navigation and
manipulation (for reviews, see Churamani et al., 2020; Ugur
and Oztop 2021; Feng et al., 2019; Kasaei et al., 2021). For
example, Feng et al. (2019) benchmarked existing continual
learning strategies for object recognition for a robot interacting
continually with the environment. Liu et al. (2021) and Thrun and
Mitchell (1995) studied lifelong learning for mobile robots
navigating in different environments. Doğan et al. (2018a,b)
introduced solutions for addressing lifelong learning of context
in robots continually encountering new situations through their
lifetimes. As a last example, Churamani and Gunes (2020)
proposed a memory-based solution for continual learning of
facial expressions that can potentially be used by a humanoid
robot to sense and continually learn its user’s affective states.

Although these studies are promising, task-incremental
learning within the social robotic aspect of HRI is less
explored. What’s more, adapting to the behaviours of a robot
in accordance with its users or new contexts is essentially a very
practical setting of continual learning (Churamani et al., 2020). A
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detailed discussion on how this can be achieved in practice for
various affective robotics and HRI problems, as well as the open
challenges, is provided by Churamani et al. (2020).

2.4 Datasets Related to Social
Appropriateness
There exist a couple of datasets for studying socially appropriate
navigation in environments populated with objects and humans.
For example, the Edinburgh Informatics Forum Pedestrian
Database (Majecka, 2009) constitutes images of a large hall
captured with a top-view camera. People walking by or across
other people in the hall are captured by the camera. The
navigation behaviors observed in the images can be used as
targets for socially appropriate navigation behaviours in robots
(Luber et al., 2012). The SocNav1 Social Navigation Dataset
(Manso et al., 2020) contains different indoor settings with
several humans and a robot navigating in the environment,
which has been used for learning a map for socially
appropriate navigation (Rodriguez-Criado et al., 2020).

Another dataset that is pertinent to our study is the CMU
Graphics Lab Motion Capture Database (CMU, 2021) which
contains 3D recordings of various types of human-human
interactions (shaking hands, conversing, displaying non-verbal
interactions etc.). This information has been utilized for learning
personal comfort zones (Papadakis et al., 2013) which can be
deployed on robots for navigation purposes.

Compared to the abovementioned datasets, MANNERS-DB is
distinct as it considers a wider range of actions (cleaning, carrying
objects etc.), modalities (includes sound) and social settings
(includes children, pets, lying humans etc.). Therefore, our
dataset makes it possible to study social appropriateness of
robot actions in a more generic context than navigation.

2.5 Rich Uncertainty Estimates
Decision-making physical robots should provide insight into the
uncertainty behind their actions, in particular when interacting with
humans. In this work, we model two types of uncertainty, namely,
aleatoric uncertainty describing the underlying ambiguity in the data
and epistemic uncertainty reflecting the lack of or unfamiliarity with
data. The two types were first combined in one model by Kendall
and Gal (2017). They leveraged the practical dropout approach (Gal
and Ghahramani, 2016) for variational Bayesian approximation to
capture epistemic uncertainty, and extracted heteroscedastic
aleatoric uncertainty by extending the model output to predict
both a mean, ŷ, and a variance, σ̂2. Our work is different in that
we implement the method in a continual learning application and
use a BNN instead of the dropout approach. A social robotics
implementation of this, making use of both aleatoric and epistemic
uncertainty, is to our knowledge novel.

3 THE MANNERS DATASET

Creating a real environment with simultaneously controlled and
varied social configurations and attributes is difficult. Therefore,

we developed a simulation environment to generate static scenes
with various social configurations and attributes. The scenes were
then labeled by independent observers via a crowdsourcing
platform. As input data to our learning models we use a lower
dimensional representation of the generated scenes using the
variables presented in Table 1.

3.1 Dataset Generation
3.1.1 The Simulation Environment
The environment was developed in Unity3D simulation software
(Unity, 2020). With Unity, we could generate a living room scene
with various social configurations and attributes, involving
groups of people, children and animals in different
orientations and positions in space, music playing, robot
facing the people etc. See an example scene with these aspects
illustrated in Figure 1. The living room in which all the scenes are
generated is part of a Unity Asset package from Craft Studios
Apartment (2020). All avatars used to represent either people or
animals are taken from Adobe’s Mixamo software Adobe (2020).
Avatars are spawned into the living room scene as Unity
Gameobjects, following a script written in the Unity
compatible C# programming language.

3.1.2 Scene Generation
Social appropriateness of robot actions can be investigated in
numerous social contexts. In this work, we chose to focus on
“visual” robot domestic actions that could potentially occur in a
home setting as social robots are envisaged to be incorporated
into our homes in the near future. Modelling the social
appropriateness in the living room of such a home setting is
more challenging and complex than for example a bedroom or a
bathroom setting. Therefore, we chose the living room scenario as
the context for MANNERS-DB and represented this context
using and varying the features defined in Table 1. Thousand

TABLE 1 | The factors forming the 29-dimensional input to the learning models.

Feature Variable type Range

Operating within circle Int 0 or 1
Radius of action circle Float 0.5 → 3
Operating in the direction of an arrow Int 0 or 1
Number of humans Int 0 → 9
Number of children Int 0 → 2
Distance to closet child Float 0.4 → 6
Number of animals Int 0 or 1
Distance to animal Float 0.4 → 6
Number of people in a group Int 2 → 5
Group radius Float 0.50 → 1
Distance to group Float 0 → 6
Robot within group? Int 0 or 1
Robot facing group? Int 0 or 1
Distance to 3 closest humans 3 x Float 0.3 → 5
Direction robot to 3 closest humans 3 x Float 0.0 → 360.0
Direction closest human to robot Float 0.0 → 360.0
Robot facing 3 closest humans? 3 x Int 0 or 1
3 closest humans facing robot? 3 x Int 0 or 1
Number of people sofa Int 0 → 2
Playing music? Int 0 or 1
Total number of agents in scene Int 1 → 11
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scenes were generated by uniformly sampling the factors listed in
Table 1, which include the number of people, the number of
groups with people, animals, their locations and orientations etc.
Specific attention was paid to the uniform sampling of positions
and orientations to ensure that the dataset contains a wide
spectrum of proxemics (Hall et al., 1968; Kendon, 2009)
configurations. In scenes where some features are not
applicable, such as group-distance when no group exists in the
scene, or interpersonal distance and directions when there is less
than three people in a scene, the distance features were hard
coded to a value of 50 and the direction features to a value of 1000.

3.1.3 Robot Actions
We specifically consider the social appropriateness of the actions
listed in Table 2. In total, 16 robot actions are investigated - all
actions except for Cleaning (Picking up stuff) and Starting a
conversation are investigated in two sets, based on whether
they are executed in a region (within a circle surrounding the
robot) or in a direction pointed by an arrow.

3.2 Annotation and Analyses
3.2.1 Data Annotation
The generated scenes were labelled for social appropriateness of
the robot actions in the depicted domestic setting using a crowd-
sourcing platform (Morris et al., 2014). The screenshot of what
the annotators were presented with is depicted in Figure 2.
Using this platform, we gathered 15 observer labels per scene, on
a Likert scale from 1 to 5, where 1 represented “very
inappropriate” and 5 “very appropriate.” The annotators
constituted a varied group of English speakers. In order to
avoid low-quality annotations, participants had to answer a
honeypot question (similarly to Salam et al., 2017), that asked
them whether there was an animal or child present in the scene
(Figure 2). They were additionally requested to explain the
reasons for the annotation they have provided via free-form
sentences in a text box. Once the annotations have been
obtained, we first analyze the quality of the annotations and
what we can infer from them about the factors affecting social
appropriateness of robot actions.

3.2.2 Reliability
When collecting subjective opinions similarly to how it is done in
our work, evaluating the inter-rater reliability is necessary to
ensure that there is a sufficient level of consistency in the gathered

labels (Hallgren, 2012). The inter-rater reliability measure also
provides a good indication of agreement between annotators. To
evaluate this, we compute two well-known metrics, intra-class
correlation (ICC) (Shrout and Fleiss, 1979) for inter-agreement,
and Cronbach’s α (Bland and Altman, 1997) for intra-agreement.

In Table 3, we present the ICC(1, 1) and ICC(1, k) values for
all 16 actions, separated by scenes where the action is executed
within a circle versus along an arrow. Note that all measures have
a significance level of p < 0.001. Given the crowd-sourcing
approach used in this work, we have k different raters
(annotators) per scene (k = 15 in our case), all randomly
sampled from a larger population of potential annotators.
Knowing this, we examine ICC(1, 1) and ICC(1, k), per action
over all scenes, backed by established guidelines for ICC (Koo and
Li, 2016). ICC(1, 1), also called one-way random single score,
gives an indication of the amount of agreement between any two
raters. ICC(1, k), called one-way random averaged score, averages
over the k raters’ independent scores.

By looking at the intra-class correlations in Table 3, it is clear
that single rater values [ICC(1, 1)] show lower correlations than
when averaged over annotators [ICC(1, k)]. Going more into
detail, we observe that the actions related to carrying food, drinks
and small objects have substantially lower values than the rest of
the actions. This could be explained by the nature of these actions
being less intrusive and more ambiguous in terms of evaluating
their appropriateness. The values obtained from ICC(1, 1) and
ICC(1, k) were sufficient for the data to be used for machine
learning modelling. If that had not been the case, previous work
has shown that ranking-based methods can be used to remove
low-quality contributors, i.e., going from 15 to 10 judgements but
with higher agreement (Salam et al., 2016). This was not
necessary in our case.

We also analyzed the reliability of the annotations using the
Cronbach’s α metric (Bland and Altman, 1997), which tests the
reliability of our crowd-sourced data by looking at internal
consistency. For the actions-in-circle we obtain α = 0.885 and
for actions-along-arrow, α = 0.851. According to Nunnally
(1978), Cronbach’s α values over 0.70 are deemed as a good
level of agreement.

3.2.3 Perceived Social Appropriateness of Actions
We explored the relation between the various factors and the
social appropriateness of actions. Figure 3 provides the Pearson
correlation coefficients for group-related (a) and distance-related
features (b) respectively.

We observe that, in group related contexts, the number of
people in the room, as well as in a group, seems to have slight
negative correlation with the appropriateness of different actions.
However, most of these are very close to zero, except for intrusive
actions such as vacuum cleaning and mopping the floor. On the
other hand, the distance from the robot to the group shows a
more interesting relationship. We see that 7 out of the 8 robot
actions positively correlate with distance, meaning that they
might be deemed more appropriate when executed further
away from the group. Starting conversation is the only action
where this is not the case, which is reasonably determined as more
appropriate when closer to a group. When looking at the impact

TABLE 2 | The robot actions investigated in each scene.

Actions
within a circle

Actions
along an arrow

Vacuum cleaning Vacuum cleaning
Mopping the floor Mopping the floor
Carry warm food Carry warm food
Carry cold food Carry cold food
Carry drinks Carry drinks
Carry small objects (plates, toys) Carry small objects (plates, toys)
Carry big objects (tables, chairs) Carry big objects (tables, chairs)
Cleaning (Picking up stuff) Starting conversation
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of the robot being within the group, we observe opposite
correlation values, indicating that all actions, but starting
conversation, are less appropriate to execute when standing
within a group.

The correlations of the distance related features (Figure 3B)
indicate that most actions besides starting conversation are
deemed more appropriate at a further distance. Vacuum
cleaning, mopping the floor and carrying big objects have the
highest correlation with distance features, further indicating that
these might be viewed as intrusive and that the other actions are
more appropriate to execute at a closer distance.

Building on the personal spaces of Hall et al. (1968),
MANNERS-DB can be separated into parts based on where

the robot executes an action with respect to the closest
human. Figure 4A shows the labelled appropriateness of
actions along the direction of an arrow with respect to the
distance from the closest human, averaged over all samples.
The different personal spaces in which the actions are
executed in are indicated. We observe the same patterns here
as in the correlation matrix from Figure 3, most actions become
more appropriate further away from the closest humans, except
starting a conversation. We also see the clear difference in
reported appropriateness between intrusive actions such as
carrying big objects and vacuum cleaning, and less intrusive
alternatives like carrying small objects or carrying drinks. One
surprising finding is that the appropriateness of starting a
conversation is highest in the intimate space and decreases
steadily with distance. Based on previous literature
(Hüttenrauch et al., 2006), the expected result in this case
would be that the reported appropriateness level starts quite
low in the intimate space, peaks in the personal space and
then slowly decreases with distance.

We investigate four different scenarios with respect to how
the robot and the closest human face each other, see Figure 4B.
The four different scenarios occur when: Neither the robot or
the closest human face each other, when only one of them face
the other (2 scenarios), and when both the robot and the
closest human face each other. As expected, starting a
conversation is deemed most appropriate when the closest
human and the robot is facing each other. Interestingly, the
relationship is flipped for the other actions, where the most
appropriate situation is when neither the robot nor the human
face the other. It is worth noting that the orientation has a
subtle effect on the appropriateness of the less intrusive actions
related to serving food and drinks, and a more substantial
effect on Vacuum cleaning, mopping the floor and carrying big
objects.

FIGURE 2 | The annotation task as shown to the annotators on the crowd-sourcing platform. The page includes an image of the scene along with a honey-pot
question (bottom-left) and questions around the appropriateness of robot actions.

TABLE 3 | Inter-class correlation values for all actions over all scenes.

Actions Intra-class correlation

Actions within a circle ICC(1,1) ICC(1,k)

Vacuum cleaning 0.317 0.848
Mopping the floor 0.339 0.860
Carry warm food 0.068 0.465
Carry cold food 0.043 0.355
Carry drinks 0.048 0.378
Carry small objects (plates, toys) 0.087 0.533
Carry big objects (tables, chairs) 0.256 0.805
Cleaning (Picking up stuff) 0.192 0.740

Actions in the direction of an arrow ICC(1,1) ICC(1,k)

Vacuum cleaning 0.267 8 0.814
Mopping the floor 0.278 0.822
Carry warm food 0.048 0.378
Carry cold food 0.047 0.371
Carry drinks 0.042 0.346
Carry small objects (plates, toys) 0.078 0.503
Carry big objects (tables, chairs) 0.203 0.753
Starting a conversation 0.111 0.600
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4 A CONTINUAL LEARNING MODEL FOR
SOCIAL APPROPRIATENESS

In this section, we propose a continual learning model for
learning social appropriateness of robot actions. For training
our model, we use our MANNERS-DB dataset.

4.1 Architecture and Continual Learning
Models
We experiment with two approaches, Multi Layer Perceptron
(MLP) and Bayesian Neural Network (BNN), as baselines for
estimating appropriateness ŷAi

(in range 1–5) as well as the
aleatoric uncertainty log σ̂Ai for each action Ai. To evaluate
and investigate the performance of our Bayesian continual
learning framework, we conduct three experiments and
compare the models’ ability to learn the social appropriateness
of actions sequentially:

• Baseline (BNN and MLP):
Our baseline is the conventional MLP and BNN with the

architecture shown in Figure 5, where no continual learning is
used, but data for all actions are given at the same time to train
the model.

• 2-tasks model (BNN-2CL and MLP2):
For the second experiment, we split the dataset into two.

First training on the actions executed within a circle, followed
by a new training session given samples with actions executed
along the direction of an arrow. In other words, in this
experiment, 2 tasks of 8 actions each are trained on
sequentially.

• 16-tasks model (BNN-16CL and MLP16):
In the third experiment, the models are also given data

sequentially, separated into parts for each of the 16 actions.
Meaning, they are trained over 16 tasks of 1 action each.

All models share the same architecture, illustrated in Figure 5.
The input vector is a 29-dimensional vector that consists of

A

B

FIGURE 3 | Pearson correlation (Freedman et al., 2007) between social appropriateness of actions and group related features (A) and distance related features (B).
We observe that certain group related features (e.g., distance to group) and distance-related features (e.g., distance to the closest human) have higher correlation to
appropriateness – see the text for more details.
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features detailed in Table 1. There is one hidden layer with 800
units and an output layer of 32 units (two for each action). These
architectural choices are based on a thorough hyperparameter
search investigating, among others, number of hidden layers and
number of units in the hidden layer. The different models
performed optimally with different architectures, but for the
sake of a fair comparison we chose to use the same
architecture for all of them.

Two of the models are implemented with active measures to
handle catastrophic forgetting, the BNN-2CL and the BNN-
16CL. They are extensions of the work of Ebrahimi et al.
(2019), with some substantial modifications. In our work we
deal with a regression task instead of classification, we use fully

connected layers instead of convolution, and more importantly,
we modify the output and loss function to obtain aleatoric
uncertainty.

We would like to note that the continual learning problem in
our paper is slightly different than in many other CL applications
in that the distribution of the input data does not change
significantly between two tasks, however, the labels do. For
every task, the model is trained to predict the social
appropriateness of a new set of actions. In more traditional
applications, like sequentially learning to classify the
handwritten digits of the MNIST dataset, both the input and
the labels change. In other words, a handwritten five looks
different from a four and they should be assigned to different

A

B

FIGURE 4 | Average appropriateness of actions with respect to the distance to the closest person in the environment (A) and the orientation of the closest person in
the environment (B). We observe that distance to the closest human and the orientation between the human and the robot are significantly affecting appropriateness of
certain actions – see the text for more details.
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classes. However, the approach taken in our work follows
tightly with the overall human-like learning approach we
have taken. As humans, we might face situations and
contexts that we have seen before, but where we discover a
new skill or develop our understanding related to that context,
i.e. the input features are the same, but what we want to learn to
predict changes.

4.2 Training the BNN
The inherent stochastic nature of BNNs leads to challenges at
inference due to the intractability of the marginal probability,
p(Y|X), which is needed to compute the posterior in Bayes
theorem. To handle this, several approximate inference
techniques have been proposed over the years (Hastings, 1970;
Graves, 2011; Hernandez-Lobato et al., 2016), divided in two sub-
groups: variational inference and sampling based methods. The
Bayesian framework implemented in this work builds on the
Bayes-by-backpropmethod introduced by Blundell et al. (2015), a
back-propagation-compatible algorithm based on variational
inference.

Bayes-by-backprop transforms the inference problem into an
optimization problem by defining an approximate variational
distribution, qθ(ω), and minimizing the Kullback-Leibler
divergence (Kullback and Leibler, 1951) between this and the
true Bayesian posterior on weights, p(ω|X, Y). The resulting cost
function is known as variational free energy or expected lower
bound (ELBO), coined by Neal and Hinton among others (Saul
et al., 1996; Neal and Hinton, 1998). To approximate this,
Blundell et al. (2015) proposed a generalisation of the well-
used Gaussian re-parameterisation trick (Opper and
Archambeau, 2009; Kingma and Welling, 2013; Rezende et al.,
2014), operating on stochastic weights instead of stochastic
hidden units like previous work.

When combining the cost function given by Bayes-by-
backprop with a regression loss, the following objective for the
continual learning models are defined:

L θ( ) ≈ ∑M
i�1

p1 log qθ ω i( )( ) − p2 logp ω i( )( )︸�������������︷︷�������������︸
KL divergence

+p3

K
∑K
j�1

1
2
σ̂−2
j ‖yj − ŷj‖2 +

1
2
log σ̂2

j︸�������������︷︷�������������︸
Regression loss

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(1)

Here, the first component controls variational approximation;
the second component enforces the correctness of the predictions
and estimates their uncertainty;M is the number of Monte Carlo
samples; K represents the number of actions we predict the social
appropriateness of during the training process – K is 16 for the
BNN model, 8 for the BNN-2CL model and 1 for the BNN-16CL
model; and p1 = 0.001, p2 = 0.001, p3 = 0.05 are empirically tuned
constants.

4.3 Handling Catastrophic Forgetting
When undertaking continual learning, we need to deal with
catastrophic forgetting. To prevent this, we use the uncertainty-
guided continual learning strategy of Ebrahimi et al. (2019). This
method proposes rescaling a “global” learning rate (η) to calculate a
learning rate (ημi , ησi) for each parameter (ωi = (μi, σi)) according
to the current variance σi of that parameter: ημi ← σ iη. Following
Ebrahimi et al. (2019), we take ησ i � η.

4.4 Estimating Uncertainties
We want to extract rich uncertainty estimates from the models.
We do this through epistemic uncertainty (only BNNs) related to
the lack of or unfamiliar data, as well as aleatoric uncertainty
describing the underlying noise in the data. Examples of these two
in our work could be high epistemic uncertainty for scenes with

FIGURE 5 |Neural network architecture for all models. The models take in the representation of the scene as a 29-dimensional vector (Table 1) and estimate social
appropriateness of each action (ŷAi

) in range (1–5) as well as the uncertainty of estimation (log σ̂Ai ).
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features that do not occur often in the training set, and high
aleatoric uncertainty for scenes or actions where annotators had a
high level of disagreement. Following the work of Kendall and Gal
(2017) on uncertainty in computer vision, we extract these two
types of uncertainty as follows:

Var y( ) ≈ 1
T
∑T
t�1

ŷ2
t( ) −

1
T
∑T
t�1

ŷ t( )⎛⎝ ⎞⎠2

︸�����������︷︷�����������︸
Epistemic component

+ 1
T
∑T
t�1

σ̂2t( )︸���︷︷���︸
Aleatoric component

, (2)

where ŷ(t) and σ̂(t) (for each action) are one out of T sampled
outputs of stochastic forward passes through the BNN models.
We take T = 100 following the literature (Kendall and Gal, 2017).

5 EXPERIMENTS AND RESULTS

5.1 Implementation and Training Details
As mentioned, we kept the hyperparameters the same for all
experiments to allow for a reasonable comparison in
performance. Nevertheless, an extensive hyperparameter search
was carried out to validate that this did not lead to a substantial
drop in performance. For training, we used a batch size of 64, 200
epochs per task and an initial global learning rate η of 0.06. The
learning rate η was decayed by a factor of 3 every time the
validation loss stopped decreasing for 5 epochs in row, similar to
traditional adaptive learning rate methods. Following the
suggestions of Ebrahimi et al. (2019), in the BNN-2CL and
BNN-16CL models we use 10 Monte Carlos samples to
approximate the variational posterior, qθ(ω), and the initial
mean of the posterior was sampled from a Gaussian centered
at 0 with 0.1 in SD. The variable ρ, used to parameterise the SD of
the weights, was initialised as -3. The two SD used in the scaled

mixture Gaussian was set to 0 and 6, and the weighting factor for
the prior, π, was set to 0.25.

Training on each task was done sequentially and the models’
weights were saved between tasks. This way, the change in
performance, both the ability to predict accurate
appropriateness and obtain sensible uncertainty measures, can
be investigated with respect to the number of tasks the model has
been trained on.

Training and Test Sets. For all three experiments, we split the
dataset into training, validation and testing sets. The number of
test samples, 100 scenes, are the same for all experiments, the
training and validation sets are, however, separated differently to
facilitate Continual Learning. The 650 scenes used for training
and validation contain 9584 individual labelled samples. The
validation part consist of 1000 samples for the baseline
experiment, 400 samples per task (circle and arrow) for the
BNN-2CL and MLP2 models and 100 per task (each action)
for the BNN-16CL and MLP16 models. This means that the size
of the training set for each experiment is approximately 8500 for
the baseline, 4400 per task for the 2 task models and 500 per task
for the 16 task models. It is worth noting that these differences in
size of training set affect the comparative results obtained for each
model as discussed in the next section.

5.2 Quantitative Results
The prediction results from the experiments are presented in
Table 4. We see that all models generally estimate the
appropriateness level (1–5) with low error (on average, with
RMSE values lower than 1, for all models). Therefore we
conclude that the social appropriateness of robot actions can be
predicted with a satisfactory level of precision on the MANNERS-
DB.When looking at the RMSE averaged over all actions, the values
indicate that training on tasks sequentially impacts performance and

TABLE 4 | Root-mean-squared error (RMSE) of predictions.

Actions RMSE

MLP MLP-2 MLP-16 BNN BNN-2CL BNN-16CL

Within a circle

Vacuum cleaning 0.493 0.877 0.941 0.467 0.501 0.767
Mopping the floor 0.516 0.817 1.214 0.502 0.594 0.581
Carry warm food 0.472 0.796 0.617 0.445 0.448 0.810
Carry cold food 0.402 0.656 0.749 0.420 0.403 0.561
Carry drinks 0.390 0.771 0.790 0.402 0.485 0.733
Carry small objects 0.375 0.437 0.979 0.386 0.879 0.517
Carry big objects 0.533 0.734 1.271 0.497 0.520 0.665
Cleaning (Picking up stuff) 0.413 0.624 1.390 0.192 0.479 0.491

In direction of arrow

Vacuum cleaning 0.547 0.573 1.014 0.555 0.591 0.750
Mopping the floor 0.541 0.551 1.063 0.542 0.602 0.664
Carry warm food 0.416 0.431 0.759 0.468 0.489 0.678
Carry cold food 0.441 0.446 0.883 0.477 0.495 0.526
Carry drinks 0.434 0.440 0.798 0.451 0.465 0.586
Carry small objects 0.417 0.425 0.431 0.431 0.464 0.548
Carry big objects 0.502 0.497 1.361 0.498 0.535 0.594
Starting a conversation 0.513 0.525 0.601 0.539 0.523 0.678

Mean over all actions 0.463 0.600 0.968 0.480 0.530 0.630
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that the active measures implemented in the BNN-2CL and BNN-
16CL models work as intended. The BNN model had an average
RMSE of 0.48, while the average RMSE for the BNN-2CL and BNN-
16CL model were 0.53 and 0.63, respectively. The MLP on the other
hand, performed better when training on all actions at once with an
RMSE of 0.463, but had difficulties keeping up the performance
when training sequentially over 2 and in particularly 16 tasks. It is
important to note that for the 16 task experiment, the number of
training samples per action is 1/8th of the number of training
samples per action in the two other experiments. This would also
affect the performance whichmakes it more difficult to pinwhat part
of the increase in error is a result of continual learning and what part
comes from the fewer number of training samples per action.

We provide an analysis of one of the continual learning model’s
performance (BNN-16CL) in Figure 6. The figure shows that there
is substantial difference in performance before and after training on
a task/action. It also indicates clearly that before a task is trained on,
its performance is affected by the training on other tasks. Looking
at Figure 6A and task 6, we observe a good example of this, where
the loss is increasing as the model is getting trained on other tasks,
before dropping after being trained on the specific task at hand.
Looking at Figure 6, we confirm that the loss on the test data for a
specific task drops as the model gets trained on that specific task
and thereafter, stays reasonably low and unaffected by the follow-
up training process(es). This suggests that the model is able to
handle catastrophic forgetting well.

5.3 Qualitative Results
The metrics presented above provide a good indication that all
three BNN models perform well on unseen data. In this section
we provide a qualitative evaluation of the predictions by taking a
closer look at a number of representative scenes from the test set
and the corresponding predicted social appropriateness of robot
actions.

In Figure 7A, a scene where the robot is alone in the living
room is presented. Here we observe that the labelled
appropriateness level is high and the corresponding

appropriateness prediction is also high for all actions.
However, actions related to serving food seem to be deemed
slightly less appropriate. This is expected given the lack of people
in the room. Looking at explanations provided by annotators, this
appears to be a valid reason. For instance, one of the annotator
wrote: “There are no people around, so it seems more appropriate
to be cleaning (and not to carry drink/food/etc). Noise is not a
problem, since the room is empty,” and another annotator stated:
“Can complete jobs but not provide services to others.”

Next, we take a closer look at a scene with more complex input
features. In Figure 7B, we observe one man standing alone, a
group of people standing around the robot and two people
relaxing on the sofa. The robot’s working radius is quite large,
encapsulating almost all the people in the room. Compared to the
scene in Figure 7A, some of the actions, in particular the most
intrusive ones, are both labelled and predicted with a lower level
of appropriateness. This can be seen in the appropriateness levels
of vacuum cleaning, mopping the floor or carrying big objects. We
further observe from Figure 7 that both the annotators and the
models deem less intrusive actions, such as carrying cold food and
carrying drinks, as appropriate given the contexts. Interestingly,
and perhaps to be expected given the small radius of the group
surrounding the robot, carrying warm food is labelled as less
appropriate than the two other serving-related actions. However,
themodels do not seem to be able to capture this subtle difference.
Looking at the annotator explanations, the group radius seem to
play an important role in this specific context: “Would be
impolite to conduct certain tasks with so many people in such
close proximity.” If we take a closer look at the predicted values
for appropriateness from all models in Figure 7, and compare
them to the true average of the annotators’ labels, the overall
performance appears to be reasonable. The only values to stand
out with a significant error are the BNN-16CL model’s
predictions for mopping the floor.

To conclude the qualitative evaluation of the predictions, two
scenes where the robot executes actions along the direction of an
arrow are presented. In Figure 8A, intrusive actions such as

A B

FIGURE 6 | Per action performance on test data at different stages of continual learning. As expected, when training of a task starts, its loss decreases and the
performances of previously trained tasks do not change significantly.
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vacuum cleaning and carrying big objects, as well as mopping the
floor, are labelled as inappropriate and the predicted values are
also low for these actions. We observe that, similar to the scene in
Figure 7B, actions related to serving food and drinks are
predicted by the model as more appropriate than the
intrusive actions. Starting conversation was not one of the
actions investigated in the previously presented scene and as
expected it is both labelled and predicted as appropriate given
how the robot is facing one of the humans. Further insight can

be obtained by looking at annotator explanations, where one
reported: “Starting a conversation seems to be the number one
action to do here. Therefore, the robot should not be doing any
kind of cleaning nor carrying objects, especially big ones.”
Another annotator responded that starting conversation
would be the only appropriate option: “There is a person in
the way. Only starting conversation is appropriate.” Overall, the
models seems to capture the opinions of the annotators
quite well.

A

B

FIGURE 7 | Predictions for test scene with no people (A) and with people, group and music (B).
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In Figure 8B, the robot is positioned outside the group of
people, facing away from them. As expected, the intrusive actions
deemed inappropriate in the previous scene are now both labelled
and predicted with slightly higher appropriateness levels. We
observe that the model is more accurately predicting the
appropriateness level of the actions related to carrying food or
drinks. These values might seem questionably high given that the
robot is moving away, however, annotator explanations from the
scene in question indicate that carrying food away from the group
is seen as appropriate: “He left the group. He could be bringing
food or drinks left from them, but since the group is socializing,
any other house chores should be avoided.” Also looking at

Figure 8B, the labelled appropriateness level of starting a
conversation is now considerably lower than when the robot
was facing a human, and so are the predicted values. Annotators
seem to believe that starting a conversation is less appropriate
given this context. One annotator reported: “Moving away from a
group of people, the robot definitely should not be trying to start a
conversation.”

5.4 Analysis of Uncertainty Estimates
We will now qualitatively evaluate the epistemic and aleatoric
uncertainties for some example scenes in the test set. Since the
MANNERS-DB dataset does not have significant differences in

A

B

FIGURE 8 | Predictions for test scene with actions along an arrow, with robot within group of people (A) and outside group of people (B).
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FIGURE 9 | Four example scenes and their corresponding epistemic uncertainty estimate from the BNN-16CL model. As scenes 1 and 3 are less frequent in the
dataset compared to scenes 2 and 4, we observe high epistemic uncertainty (indicating amount of familiarity) for scenes 1 and 3—see the text for more details.

FIGURE 10 | Example scene from test set with corresponding variance in annotator labels and aleatoric uncertainty per action. We observe that aleatoric
uncertainty is high when the variance of labels is high, and vice versa. In other words, aleatoric uncertainty is able to capture the disagreement between the annotators in
evaluations of social appropriateness of robot actions.
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the input features for different actions, we compute the epistemic
uncertainty per scene, averaged over all actions. However, we
report the aleatoric uncertainty per action, as it should reflect the
disagreement between annotators’ labels on each action. In
Figure 9, we present four different scenes from the test set,
along with their averaged epistemic uncertainty. Scenes 1 and 3 in
Figure 9 show higher epistemic uncertainty in the prediction
than scene 2 and 4. The reason for this might lay in the fact that
the contexts simulated in scenes 1 and 3 are less frequent in the
dataset than the ones showed in the two other scenes.
Approximately 10% of the scenes in the dataset have no
people in them, and the number of scenes with music playing
is roughly the same. The contexts simulated in scenes 2 and 4 are
much more common.

As we discussed in Section 2.5, one common approach
for epistemic uncertainty estimation is the Monte Carlo
(MC) Dropout method (Gal and Ghahramani, 2016). To
see the reliability of epistemic uncertainties estimated by
BNN and MC Dropout, we adapted the two epistemic
uncertainty quality measures of Mukhoti and Gal (2018)
for regression:

p accurate | certain( ) � # accurate
# accurate + # inaccurate&certain

, (3)

p uncertain | inaccurate( ) � # inaccurate&uncertain
# inaccurate &uncertain + # inaccurate&certain

,

(4)
where we consider a prediction “accurate” if its RMSE is less
than 0.1; and “certain” if the 0–1 normalized epistemic
uncertainty (BNN or MC Dropout) is less than 0.5. For the
two approaches, p(accurate|certain) is equal to 0.80 for BNN
and 0.31 for MC Dropout; whereas p(uncertain|inaccurate) is
equal to 0.89 for BNN and 0.05 for MC Dropout. We illustrate
these with a number of examples in Figure 9 where MC
Dropout estimates epistemic uncertainty as 0.111, 0.000,
0.019 and 0.012. Both the quantitative and qualitative results
in Figure 9 suggest that BNN provides more reliable epistemic
uncertainty estimates for the problem of predicting social
appropriateness of robot actions.

The aleatoric uncertainty should indicate annotator
disagreement regarding the appropriateness of different robot
actions. In our case, the dataset had high annotator agreement
and therefore, annotator disagreement in aleatoric uncertainty
was not observed. However, to further validate the models’
capability to capture aleatoric uncertainty, we increased the
disagreement between annotators by artificially modifying the
labels. In detail, we increased the variance in the labels by
changing the annotators answers on the first 7 actions (for
half of the dataset, they are set to one, and for the other half,
to five) and leaving the original answer for the eighth action. By
doing this we created a more distinct change in agreement levels
between actions. See Figure 10 for an example scene with the
corresponding variance in labels and predicted aleatoric
uncertainty from the BNN-2CL model trained on the modified
data. In this example scene, we can see that the aleatoric
uncertainty follows the variance in the labels.

6 CONCLUSION AND FUTURE WORK

In this work, we studied the problem of social appropriateness of
domestic robot actions which, to the best of our knowledge, had
not been investigated before. To this end, we first introduced a
dataset with social appropriateness annotations of robot actions
in static scenes generated using a simulation environment. The
subjective appropriateness annotations were obtained from
multiple people using a crowd-sourcing platform.

Our analysis of the annotations revealed that human
annotators do perceive appropriateness of robot actions
differently based on social context. We identified, for example,
starting a conversation is perceived more appropriate if the robot
is both close to the human and facing the human. We then
formulated learning of social appropriateness of actions as a
lifelong learning problem. We implemented three Bayesian
Neural Networks, two of which employed continual learning.
Our experiments demonstrated that all models provided a
reasonable level of prediction performance and the continual
learning models were able to cope well with catastrophic
forgetting.

Despite its significant contributions, our work can be
extended in various ways. For example, other environments,
social settings and robot actions can be considered to study the
social appropriateness of robot actions at large. This appears to
be especially important for obtaining generalizable estimations
from data-hungry learning models. In addition, our work’s
simulation-based nature is likely to limit the ability of the
models to catch nuances that are important when evaluating
the appropriateness of actions in real-world scenarios. An
interesting avenue of future research could include similar
experiments with real-world social contexts. Moreover, our
dataset contains textual annotations provided by users
explaining the reasons behind their choices. This rich
information can be leveraged for developing explainable
models that can provide justifications for their social
appropriateness predictions.

Going beyond the aforementioned future directions would
entail generating dynamic scenes in which a robot is moving and/
or generating scenes from robot’s first-person perspective, and
obtaining relevant annotations for these scenes and movements.
How to extend the research work and the results from the
annotations obtained from the third-person perspective, as has
been done in this paper, to the first-person perspective of the
robot, would also be an interesting area to explore. Moreover,
other CL methods (e.g., Ke et al., 2020) that handle catastrophic
forgetting and the transfer of knowledge more explicitly
among tasks.
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